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ABSTRACT 

Controlling and preventing outbreaks of infectious diseases in human and non-

human animals is a priority objective for public and animal health, and failure to 

do so can result in a significant loss of life and have adverse effects on the 

economy and on the conservation of biodiversity.  

Free-ranging domestic dogs are reservoirs for several zoonotic diseases, and 

are currently the focus of two major public health programmes; the ‘Zero by 30’ 

strategic plan to eliminate dog-mediated rabies and the Guinea worm 

eradication programme. The management of these and other dog-mediated 

diseases would benefit from insights into the social and spatial ecology of free-

ranging domestic dogs, and their relationships to the dynamics of disease 

transmission. 

In this thesis, I explore spatial and temporal dynamics in the contact rates and 

space use of free-ranging domestic dogs in rural Chad; a region where the risks 

to humans of infection with rabies and Guinea worm are high.  

I first describe static contact networks for free-ranging dogs, using novel 

proximity sensors, and then simulate the transmission of a communicable 

disease similar to rabies through the networks. My results show that there is 

considerable variation in the number and duration pf contacts between 

individuals, and that communities in the network were defined by household 

membership. Disease simulations showed that dogs with a higher ranked 

degree have a higher probability of starting an epidemic should they become 

infected, while those with a higher ranked eigenvector centrality tend to cause 

larger epidemics. Furthermore, in one settlement ranked eigenvector centrality 

was positively correlated with home range size. I demonstrate that dogs are not 
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equal in the epidemiological risks that they present and that there may be traits 

(e.g. drivers behind space use) that could identify individuals that present a 

higher risk. 

I then explore dog space use using GPS loggers and continuous time 

movement models to calculate the dogs’ home ranges and to investigate 

temporal patterns in their activity and space use. I find that dogs had larger 

ranges in the dry season, but that this was also when 70% of dogs can be more 

reliably found around their households. Owner activity explained some of the 

variation in dog space use, whereby dogs from households that went hunting 

had larger ranges in the dry season. These results demonstrate how dog spatial 

ecology can be used to inform disease management practices, such as 

vaccination campaigns, and highlight the potential to use targeted strategies at 

the household level.  

Next, I use the detail of dyadic-level interactions to investigate the spatial-

temporal variations in contact rates between dogs. I find that the probability that 

individuals were ever observed in contact and the hourly probability and 

duration of contacts should they have interacted, were all negatively correlated 

with the distance between the individual’s households. Contact rates were 

higher around the household and village where they peaked between 5am-9am 

and again between 6pm-8pm. However, the duration of contacts were highest 

when they occurred outside the village. Evidence for the seasonal preferential 

mixing among the sexes was found, whereby male-male and male-female 

dyads had higher contact rates in the dry season. 

Next, I quantify the exposure of free-ranging dogs to water sources in Chad; 

which are considered potential sources for Guinea worm infection. I use the 
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activity of dogs (based on GPS data) as a proxy for variation in exposure. I find 

that 85% of dogs had visited at least one water source, but that dogs with larger 

ranges had higher activity levels around water sources. In all field sites and 

seasons, no more than 4 water sources accounted for 95% of dog visits, and 

these were all <0.5 km from a household with tracked dogs. These results can 

be used to prioritise the chemical treatment of water sources that have the 

highest dog ‘traffic’. 

Finally, I tie the results of this thesis together, and discuss the implications that 

they have for our understanding of the dynamics of disease transmission in 

free-ranging domestic dogs, and how this might be used to improve the 

management of dog-mediated diseases. I conclude that insights into the 

variations in dog ecology, particularly in their contact behaviour, can be useful in 

the management of dog-mediated diseases, and that relating contact behaviour 

to drivers of space use could inspire targeted strategies that are tailored to local 

socio-ecological contexts.  
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GENERAL INTRODUCTION 
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 EMERGING INFECTIOUS DISEASES  1.1

Diseases that are newly discovered, introduced or that re-emerge through a 

rapid increase in incidence, shift in their hosts or geographical range, are all 

classed as EIDs (Petersen et al. 2018). Historically, EIDs have caused 

substantial loss to human life, and examples include the Black Death pandemic 

(pneumonic plague; Kool & Weinstein, 2005), influenza pandemics (Potter, 

2001) and the HIV/AIDs pandemic (Merson et al. 2008). Despite advances in 

the control, prevention and treatment of EIDs (Morens & Fauci, 2012), trends in 

the number and frequency of emergence and re-emergence events suggest 

they are on the rise (Jones et al. 2008).  

The impact of EIDs can be far reaching and, beyond the obvious threat imposed 

to public health, they can have substantial ‘knock on effects’ for economics and 

conservation efforts. Economic impacts can include direct costs (e.g. costs of 

workforce and resources required for containment, prevention and recovery), 

losses to economic output (e.g. reduced productivity and trade) and the impact 

on future economic growth. The 2014 Ebola outbreak has been estimated to 

have had a global economic and social burden of US$53 billion (Huber et al. 

2014), the 2003 SARS outbreak cost the global economy up to US$100 billion 

(Smith et al. 2006), while the annual global cost of Norovirus is estimated at 

US$64 billion (Bartsch et al. 2016). EIDs in livestock can also have significant 

impacts, and this is highlighted by the foot-and-mouth outbreak in 2001 that 

cost the economy £3.1 billion and involved the slaughter of over 4 million 

animals (Thompson et al. 2002). Furthermore, emergence events in wildlife 

have impacts on biodiversity, causing significant declines in wildlife populations, 

with some threatened with extinction (Smith et al. 2009). For example, 

outbreaks of trichomonosis has caused declines in some British bird 
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populations (Robinson et al. 2010), haemorrhagic septicaemia has caused 

mass die offs in the critically endangered Saiga antelope (Kock et al. 2018), and 

the spread of chytridiomycosis has resulted in the decline and extinction of 

amphibian species across the globe (Olson et al. 2013).  

Drivers of emergent infections are numerous and the majority stem from 

anthropogenic activity (Peterson et al. 2018). Human induced climate change is 

facilitating range shifts and expansions of disease vectors, such as mosquitoes, 

and causing the emergence of diseases in locations they have not been 

previously recorded (Tjaden et al. 2018). Furthermore, extreme weather events 

brought about by climate change are often followed by outbreaks of infectious 

diseases (McMichael, 2015). There are also more direct influences of human 

activity in causing emergence events, including the trade of wildlife (Karesh et 

al. 2005), habitat loss/alteration (Wilkinson et al. 2018), resource exploitation 

(Rohr et al. 2019) and the supplemental feeding of wildlife (Sorensen et al. 

2014). It is clear that the drivers behind EID events are diverse however, a 

common theme is the increased exposure of humans and domestic animals to 

wildlife. This is emphasised further where the majority (60%) of past emergence 

events of diseases in humans have been shown to originate from non-human 

animals (Jones et al. 2008). 

 DOMESTICATION, DOGS AND DISEASE 1.2

The risk of EIDs at the human-wildlife interface is often amplified through the 

involvement of domestic animals (Cleaveland et al. 2001; Wolfe et al. 2007; 

Morand et al. 2012). Domestic animals, especially those that are free-ranging, 

can constitute a reservoir for disease (Han et al. 2016), and are capable of 

acting as ‘bridges’ for the transmission of zoonotic pathogens between both 
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humans and wildlife (Caron et al. 2015). Examples of zoonotic emergent events 

that have involved domestic animals, include Guinea worm in domestic dogs 

(Hopkins et al. 2018) and Nipah virus in domestic pigs (Epstein et al. 2006). 

Moreover, the number of shared pathogens between humans and non-human 

animals appears to increase with the time since a species was domesticated 

(Morand et al. 2014). 

Dogs Canis familiaris are among the earliest domesticated animals and, due to 

their close affiliation with humans, they are widespread with a global population 

of one billion (Gompper, 2014). Dogs share 47% of their known pathogens with 

wild mammals (Knobel et al. 2014) and 16% with humans (Morand et al. 2014). 

They exist on a continuum from companion animals that have restrained 

movements, to feral animals with loose connections to humans, and fully wild 

populations. However, due to their dependency on anthropogenic resources 

and their unrestrained movements, it is the free-ranging dog populations that 

have the greatest capacity to bridge the gap between humans and wildlife. Of 

concern to public health is the large number of zoonotic pathogens that dogs 

can transmit, including rabies, echinococcosis, Guinea worm and visceral 

Leishmaniasis. This threat extends to wildlife populations that can face the risk 

of extinction due to dog-mediated diseases (Doherty et al. 2017). An example of 

this is canine distemper, for which dogs are a reservoir, and which threatens 

populations of lions Panthera leo in Tanzania (Viana et al. 2015), Ethiopian 

wolves Canis simensis in Ethiopia (Gordon et al. 2015) and Giant pandas 

Ailuropoda melanoleuca in China (Yan et al. 2019). 

Several zoonotic infections that dogs share with humans are considered 

neglected tropical diseases (Bodimeade et al. 2019), as they predominantly 
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affect the poorest regions of the world, where resources for disease control are 

limited. Despite this, there are global efforts to try and control zoonotic diseases 

for which dogs are a reservoir. Most notable are (1) the ‘Zero by 30’ rabies 

campaign, which aims to eliminate dog-mediated rabies by 2030 (Jarvis, 2016), 

and (2) the Guinea worm eradication program, that hopes to globally eradicate 

the nematode parasite (Hopkins et al. 2018). These ambitious ventures 

highlight the challenges of managing multi-host pathogens and the need for a 

transdisciplinary approach. 

 DOG-MEDIATED RABIES 1.3

Rabies is a zoonotic disease in the Lyssavirus genus. It has a wide range of 

mammalian hosts and a near global distribution (Hayman et al. 2016). Infection 

typically occurs when the virus enters the body through a break in the skin, 

where it then migrates to the brain via the central nervous system and causes 

fatal encephalitis (Hemachudha et al. 2013). The virus has an incubation period 

of 1-2 months in humans, but this is highly variable and ranges from weeks to 

years. After the incubation period, the disease can manifest as either ‘furious’ 

rabies (symptoms include fluctuating consciousness, spasms and hydrophobia 

or aerophobia) or ‘paralytic’ rabies (symptoms include weakness and motor 

neuron disturbances). Although a vaccine has been developed, once symptoms 

begin, the disease becomes fatal. 

In humans, around 99% of all cases are derived from rabid dog bites, and cases 

predominantly occur in Africa and Asia (WHO, 2018). Dog-mediated rabies is 

estimated to cause 59,000 human deaths every year and costs the global 

economy US$8.6 billion annually (Figure 1.1; Hampson et al. 2015). The risk of 

infection is generally associated with rural areas and the presence of free-
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ranging dog populations (WHO, 2018). Dogs are considered the main reservoir 

for rabies in humans (Lembo et al. 2008; Beyer et al. 2011), but the dog 

reservoir also threatens wildlife populations including the endangered Ethiopian 

wolf and African wild dog Lycaon pictus (Stuchin et al. 2018). 

In the last century there have been significant advances in our knowledge on 

the epidemiology of rabies, and this has set us on a mission for zero human 

deaths from dog-mediated rabies by 2030 (Cleaveland & Hampson, 2017). It is 

widely accepted that this can be achieved through the mass vaccination of dogs 

alone (WHO, 2018). Due to the high turnover of dog populations, successful 

vaccination campaigns require an annual population coverage of 70% (Conan 

et al. 2015). While this is achievable, there are several barriers to elimination 

that include the distribution of resources, the need for socio-political motivation 

and the design of more sustainable and effective intervention strategies 

(Fahrion et al. 2017). A ‘One health’ approach has been advocated to help 

overcome the barriers to elimination and to reach the ‘Zero by 30’ goal 

(Cleaveland et al. 2014; Dürr et al. 2017). The ‘One Health’ approach 

recognises the interconnectedness of humans, animals and the environment, 

and advocates tackling public health issues through the collaboration between 

multiple sectors and the application of inter-disciplinary research (Degeling et al. 

2015).  
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Figure 1.1. The distribution of the global burden of rabies: A) human rabies 

deaths, B) per capita death rates (per 100,000 persons), and C) expenditure on 

dog vaccination (per 100,000 persons). Countries shaded in grey are free from 

canine rabies. Reproduced from Hampson et al. (2015). 
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An ecological perspective is required to help eliminate dog-mediated rabies. 

Despite a century of research on the disease, there are still large knowledge 

gaps in our understanding of dog ecology, some of which are fundamental to 

transmission. For instance, little is known about the contact rates between dogs 

(Sparkes et al. 2015; Leung & Davies, 2017), and yet this is a crucial parameter 

in models that predict the spread of disease and that are used to determine 

optimal intervention strategies (Anderson & May, 1992; Barlow, 1996; Keeling & 

Eames, 2005). It has been increasingly acknowledged that dogs exist in various 

socio-cultural contexts, and that this requires locally adapted strategies to 

ensure access to 70% of the population (Taylor & Nel, 2015; Fahrion et al. 

2017). Again, research on dog ecology and how it varies in these different 

cultural contexts could help design tailored strategies. Overall, a more rounded 

view of dog ecology could identify more optimised management practices, and 

this would alleviate issues of poorly distributed resources and could enhance 

the success rate of campaigns if access to individuals can be improved.  

 GUINEA WORM AND THE DOG RESERVOIR 1.4

Guinea worm disease is a debilitating infection of humans caused by the 

parasitic nematode Dracunculus medinensis. The transmission cycle of Guinea 

worm  starts after a female worm emerges from its host and releases larvae into 

a water source, where an intermediate host (copepods) then ingest the larvae 

(Greenaway, 2004). The classic transmission pathway to humans is through the 

consumption of drinking water containing infected copepods (Figure 1.2). 

However, a novel pathway has recently been hypothesised, and transmission is 

now thought possible through the ingestion of tissue from a paratenic or 

transport host; such as fish or frogs that have themselves eaten an infected 

copepod (Eberhard et al. 2016; Cleveland et al. 2017). Once ingested, the 
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copepods are killed by stomach acid that releases the worm larvae. Larvae then 

migrate out of the digestive tract and into the host’s connective tissues, where 

they mature and mate (Greenaway, 2004). Fertilized females continue to 

develop over the subsequent months, growing up to 1 m in length. After the 10-

14 month incubation period, the female worm creates a painful blister on its host 

from which it emerges once contact with water is made. 

 

Figure 1.2. Life cycle of Guinea worm. Reproduced from Greenaway (2004). 
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Historically, Guinea worm disease has afflicted 3.5 million people per year 

across Asia and Africa (Watts, 1987), but global eradication efforts since the 

1980s have reduced the number of human cases to only 28 in 2018 (CDC, 

2019). Human cases have been reduced by applying a number of methods to 

break the cycle of transmission, including: the detection and isolation of cases, 

chemical treatment of water bodies to remove copepods and encouraging the 

filtration of drinking water (Biswas et al. 2013). While this has proved hugely 

successful, the final stage of the eradication programme faces major obstacles 

with insecurity in the remaining endemic areas and the recent detection of 

cases in non-human animals (Al-Awadi et al. 2014).  

Of the few remaining endemic countries, infections in non-human animals have 

been detected in Chad, Ethiopia and Mali (Molyneux & Sankara, 2017). In 2018, 

infections were confirmed in 1069 domestic dogs, 32 domestic cats Felis catus 

and 1 olive baboon Papio anubis (CDC, 2019). Furthermore, recent evidence 

shows that emergent worms from human and non-human hosts are genetically 

indistinguishable (Thiele et al. 2018), suggesting that Guinea worm disease is a 

zoonotic infection. Therefore, even in the near-absence of human cases, non-

human hosts could maintain Guinea worm in the environment, resulting in an 

ongoing low-level of infection in humans. The existence of a non-human 

reservoir could explain the situation in Chad, where no human cases were 

reported for 10 years, but in 2010 the disease re-emerged (Eberhard et al. 

2014). Given their disproportionate representation in the number of non-human 

cases, domestic dogs are now recognised as a reservoir for the disease (Galán-

Puchades, 2017). To achieve global eradication of Guinea worm, it is apparent 

that transmission must be interrupted in both human and non-human hosts.  
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While the transmission of Guinea worm to humans is fairly well understood, little 

is known about the epidemiology of the disease in any of its non-human hosts. 

It seems likely that the transmission pathways for non-human hosts are the 

same as for humans, but comparable control strategies are much harder to 

implement for free-ranging animals. Thus, to prioritise control efforts, a better 

insight into the ecology of non-human animal hosts, particularly dogs, in relation 

to Guinea worm infection is required (Molyneux & Sankara, 2017). Specifically, 

more information is needed on the relative exposure of dogs to sources of 

infection (e.g. activity around water sources associated with infection and 

amount of aquatic foods in the diet), and correlates between these metrics of 

exposure and infection are required to provide evidence based risk factors for 

dogs; see Appendix A for an investigation of this nature that was conducted in 

Ethiopia. 

 DISEASE ECOLOGY AND MANAGEMENT 1.5

A parameter fundamental to epidemiological theory is the contact rate between 

infected and susceptible individuals (May, 2006; Meyers, 2007). Historically, 

epidemiological models have made several assumptions about the relationship 

between contact rates and the transmission of disease, including that 

transmission is density dependent and populations mix both uniformly and at 

random (Begon et al. 2002). Density-dependent transmission suggests that 

infection rates, and therefore contact rates, increase with population density, 

and that a critical density threshold determines if an outbreak occurs (Anderson 

& May, 1997). In contrast, frequency-dependent transmission, which is often 

associated with heterogeneous mixing patterns, proposes that transmission 

rates are independent of population density and that epidemics are not 

determined by a density threshold (Begon et al. 2002). Another key concept in 
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epidemiology is the basic reproductive number (R0); the average number of 

secondary infections caused by a single infected host in a fully susceptible 

population (Anderson & May, 1992). Crucial in determining R0, is the 

transmissibility of the pathogen, the infectious period and the contact patterns 

between the infected and susceptible (Meyers, 2007). If R0 is less than or equal 

to one, the disease incidence declines, but if R0 is more than one and each 

individual goes on to infect others, the infection has the potential to persist and 

spread in the population (Heffernan et al. 2005).  

The distinction between density & frequency dependent transmission and 

homogenous & heterogeneous mixing is important, as these can determine the 

appropriateness of different management strategies. For instance, assumptions 

of density dependent transmission with random uniform mixing favours the 

culling or sterilisation of wildlife populations, with the aim of reducing the density 

of susceptible individuals to below the ‘threshold’ that disease epidemics will 

persist. However, in the last few decades evidence has emerged to show that 

heterogeneity in host contact behaviour is common place in social species 

(Stehlé et al. 2013; Rushmore et al. 2013; Hirsch et al. 2013; Hamede et al. 

2009; Cross et al. 2013; Quevillon et al. 2015). Furthermore, observed contact 

heterogeneities among individuals have been shown to determine the dynamics 

of disease transmission (Craft et al. 2011; Drewe et al. 2010; MacIntosh et al 

2012; Weber et al. 2013). This realisation has led to the integration of contact 

heterogeneities into agent-based disease models, which has allowed the 

consideration of novel management strategies such as targeted vaccination 

(Silk et al. 2019). 
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Another aspect of behaviour that is pertinent for disease transmission is an 

individual’s space use (Barlow, 1996). The movement of individuals in time and 

space can cause fluctuations in a population’s density and contact rates, which 

inevitably influences the patterns of transmission (Altizer et al. 2011). Examples 

include the peaks in disease incidence that are associated with the seasonal 

aggregations of some species (Hosseini et al. 2004; Reperant et al. 2010), the 

spatial constraints of disease by territoriality (Davies et al. 2015; Craft et al. 

2011), and infections that are propagated by dispersal (Robertson et al. 2006; 

Nunn et al. 2008). The complex relationship between population density, 

contact rates and spatial movements can be challenging for disease control. 

This is highlighted in the transmission of bovine tuberculosis in the European 

badger Meles meles, where novel intervention strategies, such as ring 

vaccination (Smith et al. 2012), have been inspired by a complex system of 

demographic processes, density dependent dispersal and contact 

heterogeneities (McDonald et al. 2018).  

In respect to dog ecology, there is mixed evidence for density and frequency 

dependent transmission processes for diseases such as rabies (Morters et al. 

2013). Furthermore, as illustrated in the previous sections, it is apparent that 

little is known about the contact rates between dogs (Sparkes et al. 2015; 

Leung & Davies, 2017) or their spatial ecology. Although dogs are a domestic 

species they occupy a diverse array of socio-ecological contexts, each of which 

may elicit different social and spatial behaviours. Therefore, investigations into 

the individual level variations in contact rates and movements are required, with 

the aim of better informing our understanding of the transmission and control of 

dog-mediated diseases.  
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 THESIS OUTLINE 1.6

The role of free-ranging dogs as a reservoir for diseases that can infect both 

humans and wildlife populations is now widely recognised. However, currently 

there are substantial knowledge gaps in our understanding of dog social and 

spatial ecology. In this thesis, I investigate the dynamics in the contact 

behaviour and spatial movements of free-ranging domestic dogs in rural Chad; 

where the risk of infection to humans for Guinea worm and rabies is high. I 

discuss how these new perspectives on dog ecology can help in the 

management of dog-mediated diseases. 

Chapter 2 investigates the heterogeneity in contacts between free-ranging 

domestic dogs. I describe the contact network for dogs and use an agent-based 

disease model to highlight the implications of the observed network structure on 

epidemic outcomes for a disease comparable to rabies.  

Chapter 3 provides a comprehensive analysis on the spatial movements of 

free-ranging dogs. I discuss how these movement patterns can be used to 

better inform disease management strategies, such as vaccination campaigns, 

that require access to a large proportion of the population. 

Chapter 4 investigates the spatial-temporal dynamics of the contact behaviour 

between free-ranging dogs. I use a dyadic level analysis to describe the contact 

probabilities and contact durations between dogs in different seasons, at 

different times of day and in different locations.  

Chapter 5 investigates the activity of free-ranging domestic dogs around water 

sources that are potential sources for Guinea worm infection. I discuss how 

these results can be used by the Guinea worm eradication program to prioritise 

resources used in the targeted treatment of water sources.  
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CHAPTER 2:  

HIGH-RESOLUTION CONTACT NETWORKS OF FREE-

RANGING DOMESTIC DOGS CANIS FAMILIARIS  AND 

IMPLICATIONS FOR TRANSMISSION OF INFECTION 
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 ABSTRACT 2.1

Contact patterns strongly influence the dynamics of disease transmission in 

both human and non-human animal populations. Domestic dogs Canis familiaris 

are a reservoir for several zoonotic infections, yet few studies have empirically 

determined contact patterns within dog populations. Using high-resolution 

proximity sensors, we characterised the contact networks of free-ranging 

domestic dogs from two settlements (n = 108 dogs, covering >80% of the 

population in each settlement) in rural Chad. We used these data to simulate 

the transmission of an infection comparable to rabies and investigated the 

effects of observed contact heterogeneities on epidemic outcomes. We found 

that dog contact networks displayed considerable heterogeneity, particularly in 

the duration of contacts and that the network had communities that were highly 

correlated with household membership. Simulations using observed contact 

networks had smaller epidemic sizes than those that assumed random mixing, 

demonstrating the unsuitability of homogenous mixing models in predicting 

epidemic outcomes. When contact heterogeneities were included in 

simulations, the network position of individuals initially infected had an important 

effect on epidemic outcomes. The risk of an epidemic occurring was best 

predicted by the initially infected individual’s ranked degree, while epidemic size 

was best predicted by the individual’s ranked eigenvector centrality. For dogs in 

one settlement, we found that ranked eigenvector centrality was correlated with 

range size. Our results demonstrate that observed heterogeneities in contacts 

are important for the prediction of epidemiological outcomes and that 

observable traits relating to an individual’s network position hold potential for 

informing targeted disease management strategies.  
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 INTRODUCTION 2.2

Heterogeneity in contact rates is influential in the epidemiology of both human 

and non-human animal diseases. In principle, variation in the contact rates 

among individuals affects their risk of acquiring and/or transmitting infections 

(May, 2006; Craft, 2015). Relationships between host social behaviour and the 

distribution of infections have been demonstrated in several wild animal host-

pathogen systems, from tuberculosis in badgers Meles meles (Weber et al. 

2013) and meerkats Suricata suricatta (Drewe, 2009) to nematodes in 

Japanese Macaques Macaca fuscata (MacIntosh et al. 2012). One driver of 

these relationships is the variation in contacts between individuals, which can 

influence the flow of infection through populations (Hamede et al. 2012; 

Reynolds et al. 2015). Therefore, in order to successfully manage some 

diseases, it is important to understand the dynamics of host contacts that 

facilitate the transmission of infection (Webster et al. 2016). 

The number of infectious disease emergence events in humans has been 

increasing over time, and the majority of these are zoonotic in origin (Jones et 

al. 2008). This may, in part, be associated with the domestication of animals, as 

evidence suggests that the number of shared pathogens (between humans and 

non-human animals) increases with the time since a species was domesticated 

(Morand et al. 2014). This is because domestication increases the exposure of 

people and animals to a greater range of pathogens, and increases the risk of 

humans acquiring zoonotic infections (Karesh et al. 2012). If domestic animals 

are free-ranging, they are also more likely to interact with wild animals, further 

facilitating the transmission of disease between people and wildlife (Caron et al. 

2015). 
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Dogs Canis familiaris are among the earliest domesticated animals and they 

share 16% of their known pathogens with humans (Morand et al. 2014) and 

47% with wild mammals (Knobel et al. 2014). Amongst these pathogens is 

rabies, a viral zoonosis that poses a significant public health risk, responsible 

for approximately 59,000 human deaths annually (Hampson et al. 2015) and 

primarily transmitted to humans through the saliva of an infected dog when they 

are bitten (Warrell et al. 2004; Meslin & Warrell, 2013). Mathematical models 

can be applied to inform management efforts by predicting epidemics and, for 

rabies, these models are relatively well developed (Panjeti & Real, 2011). 

However, one of the challenges identified in controlling rabies is a lack of 

information on dog ecology (Fahrion et al. 2017) and variation in contact rates 

has been identified as being especially influential for epidemic outcomes in a 

number of modelling studies (Sparkes et al. 2016; Johnstone-Robertson et al. 

2017). This is unsurprising given that dogs are social animals that exhibit 

pronounced between-individual variation in their behaviour (Bradshaw et al. 

2009).  

Collecting high resolution data on the contact rates between individuals is a 

major challenge, particularly for free-ranging animals. This lack of empirical data 

has meant that stochastic models have relied on assumptions that contact rates 

are density dependent or have included a frequency dependent function in the 

form of spatial and/or social scaling parameters to generate variation in the 

probability of contacts (Bradshaw et al. 2009; Beyer et al. 2011; Johnstone-

Robertson et al. 2017). Although these assumptions are biologically sound, they 

fail to capture social phenomena that could influence disease transmission, 

such as assortative mixing (Newman, 2003) and clustering (Newman, 2009). 

Including observed contact data in stochastic models of communicable 
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diseases could help better predict epidemics at a local scale and help identify 

novel management techniques (Newman et al, 2001). 

To date, there has been only one study published that integrated observed 

contact rates of free-ranging dogs into a model for the transmission of rabies 

(Laager et al. 2018), in which the contact network of dogs was characterised 

over 3.5 days in an urban environment. They found that urban dogs formed 

communities that were defined by roads, which acted as a barrier to movement. 

When simulating outbreaks of rabies, the authors observed that major 

epidemics were avoided when 70% of the population were vaccinated and 

targeted management based on network measures increased the effectiveness 

of vaccination. However, it is unclear if this would also apply to rural dog 

populations, where the landscape and dog-human relationships are likely to be 

different to that in an urban environment (Gompper, 2014), where unowned 

dogs are rare, roads are few and where hunting, subsistence farming and 

fishing are more prevalent. 

In this study, we used automated proximity loggers to generate high-resolution 

contact networks of free-ranging dogs in an area of rural sub-Saharan Africa, 

where dogs are susceptible to a number of zoonotic infections. We use these 

data to model the transmission of an infection that is epidemiologically similar to 

rabies. We test the effect of including observed heterogeneities in contacts 

between free-ranging dogs on predictions for epidemic size. Using a network 

model we simulate epidemics through random networks, the observed network 

characterised as binomial (present/absent) interactions and the observed 

network when weighted by the duration of interactions. The observed binomial 

network introduces non-random structures while maintaining uniformity and the 



32 
 

observed weighted network adds non-random and non-uniform mixing. In 

addition, we investigate the effect of seeding different individuals with the 

infection. If contact heterogeneity influences epidemics it may be possible to 

predict epidemic outcomes using the network position and/or associated traits 

of the seeded individual.  
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 METHODS 2.3

 Data collection 2.3.1

Dogs were studied between June 24th and July 12th 2016 in two settlements, 

each comprising two neighbouring villages, located along the Chari River in the 

Guelendeng district of the Mayo-Kebbi East region of Chad. The settlement 

Kakale is located to the south-east of Guelendeng town and includes the 

villages Kakale-Mberi (10°53'0.79"N, 15°38'8.45"E) and Awine (10°48'6.34"N, 

15°37'56.61"E). Kakale-Mberi is a linear settlement along a main (dirt) road that 

runs parallel to the Chari River. Awine is a dispersed settlement that is 

seasonally occupied by the people of Kakale-Mberi, who move there to cultivate 

crops. The settlement Magrao is comprised of the villages Magrao and Sawata 

(centred on 10°59'44.31"N, 15°29'29.27"E), located to the north of Guelendeng. 

Magrao is a dispersed village lying between the Chari River and the main road 

from Guelendeng to the capital, N’Djamena. Sawata is a smaller village that is 

surrounded by Magrao but is distinguished by different ethnicity and a higher 

prevalence of pastoralism.  

All dogs had clear ownership and were associated with a specific household. 

They were all sexually intact. With the consent of owners, dogs were collared 

with standard nylon dog collars (Ancol Heritage). Puppies (less than 6 months 

of age) were not collared. Collars were fitted with two devices; (1) an i-GotU 

GT-600 GPS unit (Mobile Action Technology Inc., Taiwan) and (2) a wearable 

proximity sensor based on a design developed by OpenBeacon project 

(http://www.openbeacon.org/ and the SocioPatterns collaboration consortium 

(http://www.sociopatterns.org/. The GPS units were configured with a fix interval 

of 10 minutes and a sleep mode to extend battery life. The proximity sensors 

exchange one ultra-low power radio packet per second in a peer-to-peer 
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fashion and, have been successfully deployed in several studies on humans 

(Stehle et al. 2013; Voirin et al. 2015). The exchange of radio-packets is used 

as a proxy for the spatial proximity of individuals wearing the sensors (Cattuto et 

al. 2010; Isella et al. 2011). Close proximity is measured by the attenuation, 

defined as the difference between the received and transmitted power. The 

attenuation threshold used in this deployment was selected to detect close-

contact events (within 1-1.5 m), during which a communicable disease infection 

might be directly transmitted, either by airborne transmission or by direct 

physical contact. Additional data collected on the individual dogs included sex 

and body condition score (BCS; Laflamme, 1997). Due to low frequencies of 

some scores, we categorised them into poor (BCS ≤ 2) and moderate (BCS ≥ 

3). Interviews using a standardised questionnaire were carried out at 

households to record the number of dogs owned and the dogs’ ages, as 

recalled by the owner. A single observer estimated BCS and another conducted 

all household interviews. Dogs aged 12 months or less were classified as 

juveniles, dogs aged between 13 and 24 months were classed as sub adults 

and dogs older than 24 months were regarded as adults (Cafazzo et al. 2010). 

Since all households known to have dogs in the settlement were visited, the dog 

population size (excluding puppies) was calculated for each settlement by 

summing the reported number of owned dogs from each household. 

 Data processing 2.3.2

The proximity data were extracted from devices and cleaned by identifying 

corrupted sensors (where no data were available) or anomalous signals (such 

as continuous bursts of data). The GPS data were cleaned by removing 

erroneous fixes with speeds greater than 20 km/hr between locations. For both 

GPS and proximity data we discarded records collected on the first and last day 
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of collar deployment in each village; providing time for the dogs to habituate to 

collars at the start and to account for the collection of the collars at the end of 

the field study. 

Data analysis was conducted in R v3.3.3 (R Core Team, 2017) and Python 

v2.7. The R packages ‘sp’ v1.2-3 and ‘rgdal’ v1.2-5 were used to project the 

GPS data into the relevant coordinate reference system for Chad 

(EPSG:32634). The package ‘adehabitatHR’ v0.4.14 was used to calculate the 

dog’s total range (99% minimum convex polygons) and core range (60% kernel 

density estimate).  

Networks were treated as undirected symmetric networks. Since dogs were not 

collared for the same number of days, the weights for the weighted networks 

were converted to the average number of seconds the dogs were in contact per 

day monitored. This was done by dividing the total duration in seconds over 

which a pair was in contact, by the shorter of the two periods in days for which 

the two dogs were collared. These weights were then log10 transformed. The 

global and local network metrics were calculated using the R package ‘igraph’ 

(Csardi & Nepusz, 2006). The network position of individuals was described 

using metrics most relevant to disease transmission (Silk et al. 2017a), 

including: degree (the number of unique connections of an individual), strength 

(the summed strength of all connections for an individual), betweenness (the 

number of shortest paths between other individuals upon which the focal 

individual lies), and eigenvector centrality (a measure of second order contacts 

whereby a higher score is assigned to individuals if they associate with highly 

connected individuals or many moderately connected individuals). To compute 

the probability density distribution of contact durations and the complementary 
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cumulative distribution function (CCDF) of edge weights, we used the Python 

package ‘Powerlaw’ v1.4.1. Community membership describes individuals that 

are closely associated/clustered together and these groups were identified 

using the edge betweenness and Greedy algorithms in the Python package 

‘igraph’ v0.7.1. 

 Epidemic simulations 2.3.3

The package ‘Epimodel’ v1.3.0 (Jenness et al. 2018) was used to build a 

Susceptible, Exposed, Infected and Removed (SEIR) network model of infection 

spread. Simulations were run on the observed binomial network, the observed 

weighted network and the null model (random networks). Random networks are 

traditionally used in network analysis to overcome the non-independence nature 

of contacts, and are typically constrained to biologically plausible scenarios. The 

null model for this study was that individuals mix randomly and so random 

networks were generated using the Erdős-Rényi model, conserving the 

observed number of nodes (individual dogs) and edges (connections). Every 

individual in the binomial and weighted networks was seeded with the infection 

and, for each seeded individual, 100 simulations of the model were run. For the 

null model, the same procedure was conducted, however, each simulation 

involved a different random network and all seeded individuals experienced the 

same set of 100 random networks. Simulations were run over 300 time steps 

(days). The network model assumed that (a) there was no recruitment or loss of 

individuals to the population (except the eventual removal of those infected), (b) 

the edges and weights of the network did not rewire over time or in response to 

infected or removed individuals and (c) individuals do not change their 

behaviour when infected.  
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For each simulation an initial seed (infectious individual) was selected at time 

step 1. At time steps 2-300, an edge list of infectious and susceptible individuals 

was made and transmission events were determined through a random 

binomial draw using the calculated per link transmission probability (β): 

(1) 𝛽 = 1 − (1 −  𝜆)𝛼 

The probability of infection after being bitten (λ) was taken to be 0.49 (Hampson 

et al. 2009). To our knowledge, no data are available on the act rate (α; number 

of bites per partnership per day) of rabid dogs and it was therefore taken to be: 

(2) 𝛼 =
log(1−𝛽)

log(1−𝜆)
 

Where β was calculated by assuming a constant value of the basic reproductive 

number (R0) and by rearranging its definition in the heterogeneous mean-field 

approximation (Pastor-Satorras et al. 2015): 

(3) 𝛽 =
𝑅0 μ 〈𝑘〉

〈𝑘2〉− 〈𝑘〉
 

The mean degree 〈k〉 and mean square degree 〈k2〉 were extracted from the 

observed networks (see Table 2.1). The infectious period (µ) was randomly 

drawn from a gamma distribution (shape = 3.0; scale = 0.9; see Hampson et al. 

2009 & Talbi et al. 2010). Simulations were run for a range of basic reproductive 

numbers found in the literature for rabies in dogs. The lower R0 was set to 1.2, 

the mid value was 1.8 (Hampson et al. 2009) and the upper R0 was 2.4 

(Kurosawa et al. 2017). The transmission probability for different edge weights 

(βij) was calculated using equation 4: 

(4) 𝛽𝑖𝑗 = 1 − (1 −  𝜆)𝛼𝑖𝑗  
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(5) 𝛼𝑖𝑗 = α
𝑤𝑖𝑗

1+𝑤𝑖𝑗
× 2 

The weighted act rate (αij) was calculated through equation 5 which is modified 

from Reynolds et al. (2015). Here we assumed that αij was positively associated 

with the daily average of the total duration that individuals were in contact (wij), 

and in so doing, we applied a sigmoidal scaling function. This value was then 

multiplied by two to shift the mean of βij to β. The use of this scaling function is 

justified where biting is the main method of rabies transmission and only a short 

contact time is required. Once a transmission event occurred, a random draw 

from a gamma distribution was used to allocate an incubation period (shape = 

1.1; scale = 20.1; see Hampson et al. 2009 & Talbi et al. 2010) and infectious 

period (see above for parameters). During the incubation period individuals 

were considered to be in the exposed category. Once the incubation period was 

over, the individual was classed as infected and could transmit the disease until 

such time as the assigned infectious period was over and the individual, along 

with its associated edges, was removed from the network. For this study, an 

epidemic was defined as disease transmission to at least one other individual. 

 Statistical Analysis 2.3.4

Differences in ranked network position (degree, strength, eigenvector centrality 

and betweenness) between nodal attributes (sex, age, BCS and home ranges) 

were identified by calculating t-statistics, using either t-tests or linear models. 

Observed statistics were compared to the distribution of test statistics from null 

models to identify if they were significantly different to those expected had 

individuals mixed randomly (Farine et al. 2015). Null models consisted of 

10,000 random networks generated by randomly shuffling the node attributes 

while keeping the structure of the observed network the same. Homophily within 
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the attributes age, sex and household was investigated by calculating the 

assortativity (r) coefficient using the ‘assortnet’ package in R. Again the 

observed coefficients were compared to the distribution of coefficients from null 

models. To see if community membership was determined by the dogs’ sex, 

age or household, we used the Normalized Mutual Information (NMI) score to 

scale the results between 0 (no mutual information) and 1 (perfect correlation). 

To investigate if there was a correlation between edge existence/weight and the 

distance between households, the ‘sna’ package v.2.4 in R was used to perform 

a quadratic assignment procedure (QAP) with 1000 permutations. 

Generalised additive models (GAMs) were used to identify non-linear 

relationships between the averaged epidemic outcomes of simulations for 

seeded individuals and their ranked network position (degree, eigenvector 

centrality, and betweenness). Models were fit with family set to Gaussian and 

included a smoothing term (k = 3). Strength was not investigated in these 

models since no difference in epidemic size between weighted and binomial 

simulations was observed. Since measures of network position are often 

correlated, separate models were fitted for each measure of centrality and type 

of network. Akaike’s Information Criterion (AIC) and adjusted r2 values were 

extracted and used to identify which centrality measure best explained epidemic 

outcomes.  
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 RESULTS 2.4

 Network structure 2.4.1

In Kakale, collars were successfully deployed for a mean of 8 days (range 2 – 9 

days) on 48 dogs (86% of the population excluding puppies) from 28 different 

households (Figure 2.1). The distance between dog owning households ranged 

from 23 – 10,002 m. 8561 contact events were recorded between dogs in 

Kakale and the median contact duration was 20 seconds with a percentile (2.5 

% - 97.5 %) range of 20 – 200 seconds. In Magrao, contact data were collected 

for a mean of 8 days (7 – 10 days) for 60 dogs (82% of the population) from 36 

households. The distance between households ranged from 35 – 4758 m. 7361 

contact events were recorded between dogs in Magrao and the median contact 

duration was 20 seconds, with a percentile range of 20 – 160 seconds.  

The global structure of both networks revealed high levels of clustering and 

short average path lengths (Table 2.1). Furthermore, community analysis using 

the edge betweenness (EB) and Greedy (G) algorithms showed the dog 

populations in both settlements exhibited high modularity in the binomial 

network (Kakale: EB = 0.48,  G = 0.51; Magrao: EB = 0.56,  G = 0.57) and the 

weighted network (Kakale: EB = 0.57,  G = 0.603; Magrao: EB = 0.60,  G = 

0.617). Magrao was the larger of the two networks and had a wider degree 

distribution (kmin = 1, kmax = 17) than that of Kakale (kmin = 2, kmax = 14). In both 

networks the degree distribution was homogenous (Kakale: coefficient of 

variation (CV) = 0.49, Magrao: CV = 0.48) while the distributions for the duration 

of contacts were highly heterogeneous (Kakale: CV = 1.88, Magrao: CV = 1.85), 

and the probability density distribution declined as contact durations increased 

(Figure 2.2).   
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Figure 2.1. Locations of two settlements in rural chad at which contact patterns of free-

ranging domestic dogs were quantified. Pentagons represent a household where at 

least one dog was collared. Villages include Magrao (purple), Sawata (pink), Kakale-

Mberi (green) and Awine (orange). The satellite image was generated using the Esri 

world imagery basemap (sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, 

USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User 

Community).  
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Figure 2.2: The contact networks, degree distribution, edge weight distribution and probability density distribution of contacts 
between free-ranging dogs for two settlements in Chad. In the networks, the circles represent individuals and the colours 

indicate the village that the dogs belong to: Kakale-Mberi in green, Awine in orange, Magrao in purple and Sawata in pink. 

The lines connecting individuals indicate that they have been in contact and the thickness of the lines are proportional to the 

logged daily average contact time between individuals. The red line of the degree distributions (probability that a randomly 

chosen node has degree ≥ k) indicates the mean degree (number of connections). 
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Table 2.1. Summary of individual attributes and the global and local network 

metrics for free-ranging dogs from two settlements, Kakale and Magrao, in 

rural Chad. 

 

 
Kakale Magrao 

Attributes   
Sex (male : female) 25 : 23 39 : 21 
Age (adult : sub adult : juvenile)* 25 : 13 : 9 26 : 18 : 15 
BCS (poor : moderate)** 24 : 24 15 : 40 
Core range (km2)*** 2.28 ± 0.72 0.17 ± 0.05 
Total range (km2)*** 20.77 ± 3.27 4.56 ± 0.66 
 
Global network metrics   
Nodes 48 60 
Edges 160 191 
Edge Density 0.14 0.11 
Diameter 7 8 
Average path length 3.01 3.57 
Clustering coefficient 0.51 0.50 
 
Local network metrics 

  Degree 6.7 ± 0.5 6.4 ± 0.4 
Square degree 55.4 ± 7.2 49.9 ± 6.3 
Strength 10.2 ± 0.7 9.1 ± 0.7 
Eigenvector 0.32 ± 0.05 0.19 ± 0.03 
Betweenness 47.1 ± 9.9 75.9 ± 16.8 
The mean ± standard error is reported for spatial attributes and the local network 
metrics. Total range is the 99 % Minimum Convex Polygon and core range is the 
60 % Kernel Density Estimate. Global network metrics include the number of 
nodes (individuals), number of edges (connections between individuals), diameter 
(longest path length), average path length and cluster coefficient (transitivity). 
Local network metrics include the degree (number of connections), square 
degree, strength (summed strength of connections), Eigenvector centrality 
(second order contacts) and betweenness (contribution to number of shortest 
paths).  
*The age of one individual in both settlements was unknown. ** In Magrao, data 
for BCS was missing for 5 individuals. *** The spatial ranges of 9 individuals in 
Magrao and 3 individuals in Kakale were unknown. 
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 Individual attributes and network position 2.4.2

Dogs in Magrao had substantially smaller ranges than dogs from Kakale, and 

the distribution of ranges was right skewed for both settlements (Appendix B 

Figure B1). Dogs in Kakale that had larger ranges had higher ranked 

eigenvector centralities and this was significantly different to null models (Table 

2.2). Similarly, the home ranges of dogs in Kakale were positively correlated 

with their ranked degree, and this correlation was significantly greater than that 

of null models. In both networks, comparisons to null models revealed no 

significant association of any ranked network measures (degree, strength, 

eigenvector centrality or betweenness) with sex, age or body condition 

.



 

45 
 

Table 2.2. Relationships between the ranked network position of free-ranging 

domestic dogs from two rural settlements in Chad and their individual 

attributes. 

  

 
Ranked 
Degree 

Ranked 
Strength 

Ranked 
Eigenvector 
Centrality 

Ranked 
Betweenness 

 
t p t p t p t p 

 

Male vs Female 

Kakale -0.755 0.222 -0.237 0.404 -0.113 0.446 1.796 0.043 
Magrao 1.735 0.045 1.530 0.069 1.060 0.147 -0.118 0.456 

 

Adult vs Juvenile 

Kakale 2.073 0.031 1.580 0.072 1.148 0.131 2.039 0.033 
Magrao 0.754 0.233 -0.578 0.276 1.270 0.109 1.632 0.054 

 

Adult vs Sub Adult 

Kakale 0.501 0.306 1.258 0.106 0.048 0.484 0.012 0.488 
Magrao -0.905 0.490 -0.620 0.303 -0.013 0.494 1.002 0.161 

 

Sub Adult vs Juvenile 

Kakale 1.238 0.115 0.350 0.367 0.934 0.425 1.590 0.065 
Magrao 0.480 0.237 0.905 0.452 1.363 0.124 0.456 0.316 

 

BCS (Moderate vs Poor) 

Kakale 1.266 0.103 1.570 0.057 0.061 0.472 0.041 0.481 
Magrao 0.660 0.259 -0.205 0.414 1.921 0.033 0.760 0.224 

 

Core Range 

Kakale 3.603 <0.001 2.044 0.024 3.895 <0.001 -1.372 0.007 
Magrao 0.822 0.217 0.232 0.420 0.508 0.317 1.897 0.029 

 

Total Range 

Kakale 2.936 0.003 1.708 0.048 3.915 <0.001 2.310 0.012 
Magrao 1.035 0.164 0.116 0.459 0.703 0.243 2.403 0.008 

Observed statistics for differences in ranked degree (number of connections), strength (summed 
strength of connections), Eigenvector centrality (second order contacts) and betweenness 
(contribution to number of shortest paths) are reported. Total ranges are based on 99 % Minimum 
Convex Polygons and core ranges are 60 % Kernel Density Estimates. P-values are for comparisons 
between the t-statistics of the observed and random graphs. P-values in bold are significant. The 
alpha level was corrected for multiple comparisons using the Bonferroni correction (α = 0.007). 
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All measures of community membership were strongly correlated with 

household membership in both the binomial networks (Kakale: NMIEB = 0.622, 

NMIG = 0.625; Magrao: NMIEB = 0.739, NMIG = 0.649) and weighted networks 

(Kakale: NMIEB = 0.674, NMIG = 0.70; Magrao: NMIEB = 0.725, NMIG = 0.713). 

Community membership had no significant relationship with either the dog’s sex 

or age (Appendix B Table B1). When compared to null models, dogs in both 

settlements had a strong preference to associate with individuals from the same 

household and no assortative mixing patterns were found between dogs of a 

different/similar age or sex (Table 2.3). QAP tests found a significant negative 

correlation for the distance between households and the existence of an edge 

(Kakale: r = -0.23, p < 0.001; Magrao: r = -0.4, p < 0.001). A negative 

correlation was also found for the relationship between household distance and 

edge weight (Appendix B Figure B2. Kakale: r = -0.22, p < 0.001; Magrao: r = -

0.37, p < 0.001). 

Table 2.3. The binomial and weighted assortativity for the contact networks of 

free-ranging dogs from two settlements, Kakale and Magrao, in rural Chad. 

Attribute Settlement 
Binomial Weighted 

r p r p 

Sex Kakale -0.051 0.381 -0.091 0.237 

 

Magrao -0.075 0.206 -0.160 0.027 

      
Age Kakale 0.060 0.112 0.047 0.205 

 

Magrao -0.015 0.405 -0.013 0.447 

      Household Kakale 0.130 < 0.001 0.283 < 0.001 

 

Magrao 0.162 < 0.001 0.329 < 0.001 
The assortativity between individuals of a similar sex, age and household in Kakale and 
Magrao. The r coefficient is for the observed network and the p-values are for the 
comparison between the observed coefficient and the distribution of those from null models. 
Significant p-values are in bold. 
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 Epidemic simulations 2.4.3

For both settlements, larger R0 values resulted in an increased risk of epidemics 

occurring and larger epidemic sizes (Figure 2.3, see Appendix B Figure B3 for 

the frequency distributions of secondary cases). In simulations when R0 was 1.8 

or 2.4, mean epidemic size was higher for random networks than that of 

simulations with observed contacts. Epidemic sizes for simulations using these 

random networks had a bimodal distribution, whereby epidemics either involved 

a large number of individuals or very few.  In contrast, the distribution of 

epidemic sizes for observed networks had multiple peaks at intermediate sizes. 

The distributions of epidemic sizes differed for the two settlements, whereby 

Kakale had more intermediate peaks. Simulations with the lowest R0 value (1.2) 

showed no discernible difference in mean epidemic sizes between the random 

and observed networks. 
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Figure 2.3. Simulated epidemic sizes of disease transmission through 

empirically determined contact networks for free-ranging dogs in two rural 

settlements in Chad. Bean plots show the distribution of epidemic sizes of 

simulations using the observed binomial and weighted networks and random 

networks: Kakale (n = 4800) and Magrao (n = 6000). All plots consider 

simulations where an epidemic occurred (the disease spread to at least one 

individual). The percentage of simulations that resulted in an epidemic is 

displayed above each bean plot. The horizontal red lines indicate mean 

epidemic size.  
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For the observed networks for both settlements, the seeded individual’s ranked 

centrality measures (degree, eigenvector centrality and betweenness) were all 

positively correlated with the proportion of simulations that resulted in an 

epidemic (Appendix B Figure B4). The seeded individual’s ranked degree was 

the best predictor for the proportion of simulations to result in an epidemic 

(Table 2.4), and at larger R0 values the relationship between ranked degree and 

an epidemic outcome began to plateau for higher ranked individuals (Figure 

2.4). As expected, the seeded individual’s observed centrality measures did not 

correlate with the proportion of simulations to result in an epidemic in any of the 

random networks. 

The seeded individual’s ranked eigenvector centrality and ranked degree were 

positively correlated with the mean epidemic size in simulations on the binomial 

and weighted networks for both settlements (Appendix B Figure B5). Ranked 

eigenvector centrality was the best predictor of mean epidemic size (Table 2.4), 

and for simulations of Magrao at larger R0 values, mean epidemic size 

plateaued for individuals with a higher ranked eigenvector centrality (Figure 

2.4). The distributions of eigenvector centralities for dogs in each settlement 

(Appendix B Figure B6), were similar to the distribution of epidemic sizes in 

respective settlements. No correlation between the seeded individual’s network 

position and mean epidemic size was found in any of the random networks.  
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Figure 2.4. The relationship between epidemic outcomes simulated on contact networks of free-ranging dogs from two rural settlements 

in Chad and the seeded individual’s ranked network position.  Scatter plots for each settlement (Kakale and Magrao) show the seeded 
individual’s ranked centrality measures (Eigenvector centrality (second order contacts), degree (total number of contacts) and betweenness 
(contribution to number of shortest paths)) plotted against the proportion of simulations that resulted in an epidemic (the disease was transmitted to at 
least one individual) and mean epidemic size. The mean epidemic sizes exclude simulations where the infection did not spread beyond the seeded 
individual. The data include the results for the random, binomial and weighted networks, and are for simulations when R0 was set to 2.4. GAMs are 
fitted to the data to identify non-linear trends. 
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Table 2.4. Measures of model fit for the relationship between epidemic outcomes simulated on contact networks of free -ranging dogs and the 

seeded individual’s network position. Networks were described in two settlements, Kakale and Magrao, in rural Chad. 

 
R0 Network 

Proportion of simulations that resulted in an epidemic Mean epidemic size 

 
Eigenvector 

centrality 
Degree Betweenness 

Eigenvector 
centrality 

Degree Betweenness 

 
r2 AIC r2 AIC r2 AIC r2 AIC r2 AIC r2 AIC 

K
a

k
a
le

 

1.2 Random 0 -130 0.03 -131 0.07 -133 0.13 99 0.02 105 0 106 
 Binomial 0.45 -72 0.93 -169 0.33 -64 0.49 120 0.18 144 0.04 151 
 Weighted 0.32 -53 0.86 -130 0.42 -61 0.56 132 0.31 153 0.03 170 
              1.8 Random 0 -166 0 -166 0 -166 0.01 206 0 207 0 207 
 Binomial 0.36 -35 0.92 -138 0.36 -36 0.68 234 0.09 284 0 288 
 Weighted 0.26 -31 0.91 -132 0.34 -37 0.71 231 0.24 277 0 291 
2.4 Random 0.03 -151 0 -149 0.09 -153 0.01 178 0.05 176 0 178 
 Binomial 0.40 -40 0.94 -148 0.29 -32 0.79 219 0.18 285 0.01 294 
 Weighted 0.24 -27 0.91 -132 0.28 -30 0.69 253 0.25 295 0 308  

              

 

              

M
a

g
ra

o
 

1.2 Random 0 -197 0.06 -201 0 -197 0 233 0 232 0.15 223 

 Binomial 0.33 -59 0.87 -158 0.14 -45 0.73 188 0.34 243 0 268 

 Weighted 0.37 -58 0.88 -159 0.16 -40 0.68 223 0.36 264 0 292 

1.8 Random 0 -199 0 -199 0 -199 0 259 0.03 257 0 259 

 Binomial 0.35 -53 0.91 -173 0.18 -39 0.66 262 0.30 304 0 325 

 Weighted 0.29 -47 0.85 -138 0.10 -33 0.54 292 0.33 314 0 338 

2.4 Random 0.02 -222 0.05 -225 0 -221 0 255 0 255 0 255 

 Binomial 0.34 -68 0.87 -164 0.19 -55 0.49 299 0.17 327 0 339 

  Weighted 0.30 -53 0.87 -151 0.13 -40 0.30 333 0.24 338 0 355 
The adjusted r

2
 and AIC of fitted GAMs are reported for the seeded individuals centrality measures (Eigenvector centrality (second order contacts), degree (total 

number of connections) and betweenness (contribution to the number of shortest paths)). Results are reported for when R0 was set to 1.2, 1.8 and 2.4, and for the 
random, binomial and weighted networks of both Kakale and Magrao. The best r

2
 and AIC are highlighted in bold for each R0 of the binomial and weighted networks. 

 



 

52 
 

 DISCUSSION  2.5

We have gathered high-resolution data on the contacts among free-ranging 

domestic dogs living in two rural settlements in Chad, an area where rabies 

infection is endemic and regularly causes human fatalities. Using these data we 

have demonstrated the importance of including observed contact patterns when 

simulating the transmission of an infection comparable to rabies. We show that 

the observed contact rates between dogs are heterogeneous and that 

interactions were dominated by contacts that were short in duration and 

between dogs from the same household. In our model, for the transmission of 

infection, the inclusion of observed contact rates resulted in fewer epidemics 

occurring compared to when random mixing was assumed and, for all but the 

lowest R0 values, epidemics were smaller in simulations using the observed 

networks. We also show that the seeded individual’s first and second order 

contacts were strong indicators of epidemic outcomes, verifying that individuals 

differ in the risk they present for the transmission of infections. Furthermore, for 

dogs in one settlement, second order contacts were correlated with ranging 

behaviour, suggesting that observable traits exist which could inform targeted 

management strategies. 

The transmission probabilities associated with the lowest R0 value rarely 

resulted in an epidemic and, when one occurred, no more than a few individuals 

were infected. This meant that there was little difference in the overall mean 

epidemic size between simulations of random and observed networks. 

However, heterogeneity in contacts was still important in determining epidemic 

outcomes whereby the seeded individual’s ranked degree was positively 

correlated with the proportion of simulations that resulted in an epidemic, and 

this was echoed in simulations with higher R0 values. This finding demonstrates 
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that, regardless of the transmission probability, dogs that are in contact with 

more individuals relative to the rest of the population are at higher risk of 

causing an epidemic should they become infected.  

In simulations with all but the lowest R0 value, the risk of a large epidemic was 

higher when infection started in dogs with a higher ranked eigenvector 

centrality, and this was further emphasised where the distribution of eigenvector 

centralities paralleled that of epidemic sizes for each settlement. The 

importance of an individual’s eigenvector centrality in disease dynamics has 

also been shown in models for the transmission of Mycobacterium bovis in 

badgers (Silk et al. 2017b) and observed parasite infection in Japanese 

macaques (MacIntosh et al. 2012), where this measure was positively 

correlated with infection status. It appears that eigenvector centrality is a robust 

predictor of epidemic size and infection status because it describes how an 

individual is rooted into the network beyond their immediate connections.  

We show that ranging behaviour was correlated with eigenvector centrality, but 

this was only true for dogs in Kakale. Both range sizes and eigenvector 

centralities were higher for dogs in Kakale than those in Magrao. This is likely 

due to anthropogenic variation in dog behaviour whereby some people in 

Kakale moved with their dogs between a permanent residence and a 

seasonally-occupied homestead, while people in Magrao tended to stay at one. 

The dogs that accompany their owners in travelling between permanent and 

seasonal homesteads will have larger ranges and this would influence the dog’s 

network position by creating new contact opportunities. Nevertheless, the 

relationships between dog network position and epidemic outcomes were the 

same in both settlements. We also show that the distribution of dog owning 

households is important in determining contacts between dogs, with dogs more 
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likely to have been in contact with and having stronger connections with dogs 

from closer households. However, it is important to note that this distance effect 

cannot fully explain the structure of the contact networks as many dogs from 

households in close proximity did not come into contact (Appendix B Figure B2). 

Although the dogs in this study were free-ranging, they were owned and 

anthropogenic influences on dog contact rates and ranging behaviour should 

not be overlooked, and understanding these would provide insight into disease 

management approaches.  

For both settlements, there was no notable difference in epidemic size between 

simulations using the observed binomial and weighted networks. This result 

would suggest that including non-random mixing (whom individuals contact) in 

disease models is more important than including non-uniform mixing (contact 

duration/frequency). However, heterogeneities in edge weights are likely to be 

important and have been shown to further limit epidemic sizes when they are 

allowed to be dynamic in time (Ferreri et al. 2014). To further understand the 

effect of non-uniform mixing, future research should try to describe the temporal 

dynamics of free-ranging dog contacts over a timeframe relevant to the disease 

in question. Specifically, investigations should look for daily and seasonal 

differences in network structure and identify whether or not individuals occupy 

stable network positions. 

The model of rabies transmission used in this study makes several assumptions 

that should be considered. First, individuals do not change their behaviour once 

infected. It is well known that rabies can manifest as either encephalitic (furious) 

or paralytic (dumb) and evidence suggests that, unless vaccinated, the furious 

form is more likely to develop in dogs (Tepsumethanon et al. 2016). However, it 

is not clear what determines the type of rabies an individual develops or if the 
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different forms result in considerable deviations from the individuals’ typical 

behaviour. Such deviations could result in changes to the contact network with 

either new connections being formed, the loss of connections or changes in the 

strength of connections. A second assumption is that when individuals were 

removed due to death, the network structure did not change. Removing these 

assumptions would require a rewiring of the network and this process should be 

biologically informed. Reynolds et al (2015) attempted to account for dumb and 

furious behaviours by assuming different frequencies of each and either 

changing the transmission probability (higher for furious and lower for dumb) or 

by altering the individual’s contact behaviour (removing half their connections 

for dumb or doubling them for furious). They found that both methods produced 

similar results and the speed of transmission increased when there was a 

higher frequency of furious individuals and decreased with a higher frequency of 

dumb individuals. Although this effort to model behavioural change can be 

insightful, the methods of rewiring are not biologically informed and so should 

be interpreted carefully as they cover a limited number of possible scenarios in 

which the network could change. Solutions to such network dynamics are 

challenging as there is a lack of experimental data on the processes of network 

rewiring and, without this guidance, the number of potential modes of change is 

too computationally demanding to include in models. For diseases such as 

rabies it is unlikely that such data will ever exist given the ethical implications of 

such experimentation. However, understanding how a network rewires as 

individual states or community membership change could better allow network 

models to include such dynamics that are thought to be a major obstacle for 

controlling rabies (Hampson et al. 2009). 
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The inflation of predictions for epidemic size in models that do not account for 

observed contact heterogeneities are of particular concern when public health 

resources are limited (Rahmandad et al. 2008). This is the case for dog-

mediated rabies in developing countries, where epidemics are preventable 

through vaccination but a major challenge is the high incidence of dog infections 

and human cases, combined with limited public health resources (Fahrion et al. 

2017). Currently it is advised that successful vaccination campaigns require 

70% coverage of the dog population (Coleman & Dye, 1996). However, through 

targeted management this might be reduced, helping alleviate costs. Further to 

work on urban dogs (Laager et al. 2018), our results show that even in a rural 

context, epidemic risk is not equal among individuals and suggest that, by 

identifying the network position of individuals and correlates thereof, targeted 

management could be feasible. We find evidence to suggest that the spatial 

ranging behaviour of dogs was associated with their network position, though 

anthropogenic influences clearly have a role in determining free-ranging dog 

movements and this deserves further investigation. Our research illustrates how 

a greater understanding of the social contact network of free-ranging dogs can 

help better inform the management of diseases such as dog-mediated rabies. 
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CHAPTER 3:  

THE SPATIAL AND TEMPORAL DYNAMICS OF SPACE 

USE BY FREE-RANGING DOMESTIC DOGS IN RURAL 

AFRICA 
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 ABSTRACT 3.1

Variation in the spatial ecology of animals can have a major effect on the 

transmission of infections and an improved understanding of host behaviours 

can inform control of zoonotic diseases. Little is known about the dynamics of 

space use by free-ranging domestic dogs Canis familiaris, which are globally 

widespread and act as a reservoir for several zoonotic diseases, including 

rabies. In this study we aimed to (1) characterise variation in dog space use, (2) 

determine the degree to which dog movements are predictable and (3) identify 

correlates of variation in patterns of movements. We deployed GPS loggers on 

dogs from six villages in rural Chad, and characterised the movements of 174 

individuals in the dry season and 151 in the wet season. We found that 

seasonality was an important source of variation in space use, whereby home 

ranges were up to 38 times larger on average in the dry season than in the wet 

season. This seasonal variation was exaggerated by owner activities, with dogs 

in the dry season having ranges that were five times larger when they were 

from households that reported going hunting. 80% of dogs demonstrated daily 

patterns in their activity levels (speed), but just over half the dogs exhibited 

temporal patterns in their location (repeated space use). Furthermore, we show 

that in rural Chadian villages, the proportion of dogs found around their 

household where access for disease control interventions is easiest, is more 

reliably above 70% throughout the day in the dry season. These results 

highlight that, in rural Chad, disease interventions such as vaccination 

campaigns could access more dogs in the dry season, and the influence of 

human activity on dog movements presents opportunities for targeted 

interventions at the household level. 
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 INTRODUCTION 3.2

Calls for a ‘One Health’ approach to tackle neglected tropical diseases 

(Cunningham et al. 2017) require that an ecological perspective is adopted to 

progress towards successful management of zoonoses. The spatial ecology of 

free-ranging animals is important for understanding disease transmission and 

dynamics (Altizer et al. 2011; Dougherty et al. 2018). The space use of 

individuals influences their contacts with others (Robert et al. 2012; Sanchez & 

Hudgens, 2015) and their exposure to environmental sources of infection (Padie 

et al. 2015; Tartu et al. 2018), both of which can determine the acquisition and 

onward transmission of infections (Boyer et al. 2010; Craft et al. 2011; Mysterud 

et al. 2016; McDonald et al. 2018). Knowing the spatial movements of free-

ranging host populations can help forecast epidemics (Nobert et al. 2016; Tyne 

et al. 2017), while understanding predictors of space use can inspire novel or 

better-designed disease interventions. For example, knowledge of the seasonal 

dispersal behaviour of European foxes Vulpes vulpes was used to optimise the 

timing of vaccination campaigns against rabies in Europe (Vos, 2003; AHAW, 

2015), understanding the migration patterns and habitat use of grey-headed 

flying-foxes Pteropus poliocephalus in Australia is helping to determine the 

management strategies for controlling the spread of Hendra virus (Plowright et 

al. 2017; Degeling et al. 2018), and in New Zealand, the spatial behaviour of 

brushtail possums Trichosurus vulpecula, has been integrated into models of 

surveillance, with the aim of determining if areas are free of bovine tuberculosis 

(Anderson et al. 2013; Livingstone et al. 2015). For the successful management 

of animal and zoonotic diseases involving free-ranging animal populations, the 

spatial ecology of individuals therefore needs to be considered when designing 

intervention strategies. 
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Free-ranging domestic dogs Canis familiaris are globally widespread and are 

frequently associated with public health concerns (Gompper, 2014). Dogs often 

constitute a reservoir for infections and facilitate the maintenance and 

transmission of zoonotic diseases such as rabies, echinococcosis, Guinea 

worm and visceral Leishmaniasis. Because the living conditions of domestic 

dogs are so variable, the management of dog-mediated diseases would benefit 

from an increased knowledge of the ecology of free-ranging individuals, so that 

intervention strategies might be tailored to local contexts (Slater, 2001; Fahrion 

et al. 2017; WHO, 2018). This is particularly true for dog-mediated rabies, 

where the majority of human cases occur in rural African and Asian 

communities, and the risk of human infection is increased with the presence of 

free-ranging dog populations (WHO, 2018). The ‘Zero by 30’ campaign aims to 

eliminate dog-mediated rabies by 2030 (Jarvis, 2016), and it is thought that this 

can be achieved through vaccination alone (Hampson et al. 2009), providing 

campaigns can achieve a 70% population coverage (WHO, 2018) Similarly, 

dogs have been implicated as reservoirs for Guinea worm, a zoonotic parasite 

which is close to being globally eradicated (Hopkins et al. 2018). However, 

access to the dog population is essential for surveillance and for control efforts 

such as the delivery of antihelminthics. With these examples in mind, it would 

be beneficial for intervention strategies to consider aspects of dog behaviour 

and ecology that determine the accessibility of individuals e.g. their home range 

and the probability of individuals being found around the household. 

Studies on the spatial ecology of free-ranging dog are, perhaps surprisingly, 

somewhat rare and the majority of research has been motivated by the desire to 

control rabies. Among the most comprehensive studies on the movements of 

free-ranging dogs to date have been conducted in Northern Australia (Sparkes 
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et al. 2016; Dürr et al. 2017; Hudson et al. 2017), a region that is presently free 

of canine rabies but where authorities are preparing for incursion of the infection 

from Indonesia. Dürr et al (2017) tracked 135 dogs over multiple seasons and 

found they had very small core and extended ranges, with a median of 0.35 ha 

(range: 0.17-2.33 ha) and 4.48 ha (range: 0.86-40.46 ha) respectively. Using 

the same study system, Hudson et al (2017) categorised dogs on the basis of 

their ranging behaviour, as either ‘stay at home’, ‘roamers’ or ‘explorers’, the 

former having extremely localised movements and the latter having relatively 

large ranges. Despite the use of different tracking procedures, observation 

periods and methods of home range estimation, similar range sizes have been 

reported in studies on the space use of dogs in Chile (Sepúlveda et al. 2015; 

Pérez et al. 2018), Kyrgyzstan (Van Kesteren et al. 2013), Mexico (Ruiz‐

Izaguirre et al. 2015) and India (Vanak & Gompper, 2010). 

In terms of understanding variation in dog ranging behaviour, an interaction 

between the effects of sex and reproductive status on range size was found for 

dogs in Australia (Dürr et al. 2017), whereby neutered males had smaller 

ranges than intact males, but spayed females had larger ranges than intact 

females. In addition, seasonal variation in space use was identified, with 

individuals having larger ranges at the start of the rainy season, compared to at 

the end. Similarly, seasonality was important in determining the movements of 

domestic dogs in Ethiopia, where the mean home range was 30 ha in the wet 

season, compared to 590 ha in the dry season (Atickem et al. 2010). Dogs in 

Chile were shown to have larger ranges when they had higher body condition 

scores (Pérez et al. 2018), whereas in Kyrgyzstan variation in ranging 

behaviour remained largely unexplained by the traits of individuals investigated 

(Van Kesteren et al. 2013). Current evidence clearly indicates that the spatial 
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movements of dogs vary in time and, the globally inconsistent predictors of 

space use imply that drivers behind this variation are not universal. 

The spatial movements of individuals could determine their accessibility for 

disease interventions such as vaccination campaigns. If individuals can 

predictably be found at a particular location at a certain time, the number 

accessed might be increased through tailored field operations. Little is known 

about the variation in the periodicity of dog movements. Periodicity in location 

implies repeated visits to a particular place or places, and for free-ranging 

domestic dogs we would expect them to return repeatedly to their owner’s 

household. Existing evidence suggests daily patterns are not geographically 

consistent, with one study in Kenya finding that dogs were most active and at 

greater distances from their household at 10am (Woodroffe & Donnelly, 2011), 

while a recent study in Australia found that dogs were furthest from their 

household at 6am and again at 6pm (Maher et al. 2019).In this study, we 

provide a comprehensive investigation into the dynamic spatial ecology of a 

large number of free-ranging domestic dogs from multiple rural villages in Chad. 

Using GPS loggers we characterise the variation in the dogs’ ranging behaviour 

and investigated the predictability of their movements in time and space. 

Specifically, we quantify the dogs’ home ranges, temporal patterns in their 

activity levels (speed), temporal patterns in repeated space use (location) and 

investigate times of the day when a high proportion of the population can be 

found around the household.  
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 METHODS 3.3

 Field study timings and locations 3.3.1

Fieldwork was conducted in rural Chad and dogs were collared in six villages 

(Figure 1) during the dry season (between 5th March and 17th May 2018) and 

again during the wet season (between 3rd August and 17th October 2018). 

Medegue (11°01'48.8"N 15°26'37.7"E) is a village in the district Guelendeng of 

the Mayo-Kebbi East region in the western central part of Chad. The remaining 

5 villages are located in the district of Sarh in the Moyen-Chari region in the 

south of the country. Ngakedji (9°11'16.5"N 18°18'10.7"E), Kira (9°10'50.8"N 

18°17'00.3"E) and Bembaya (9°11'33.6"N 18°17'42.3"E) are villages located 

approximately 10 km to the west of Sarh town. Approximately 40 km to the east 

of Sarh is the village Marabodokouya (9°19'42.3"N 18°43'20.0"E), (9°08'19.8"N 

18°42'00.9"E) and ~20 km south of this settlement is the village Tarangara. 
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Figure 3.1. Locations of the districts and six villages in rural Chad and the human 

households in which at least one dog was collared.  Triangles represent households from 
the different villages; Medegue (orange), Kira (yellow), Ngakedji (green), Bembaya (red), 
Marabodokouya (blue) and Tarangara (pink). Map data copyrighted OpenStreetMap 
contributors and available from https://www.openstreetmap.org.  

  

https://www.openstreetmap.org/
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 Data collection and processing 3.3.2

After obtaining approval from the village chief, the field team conducted door-to-

door visits to all households that owned dogs with the aim of collaring all the 

dogs in the village. The location of dog owning households was recorded using 

a handheld GPS and owners were asked whether or not they went hunting. The 

number of dogs reported to be owned in each household was summed to 

estimate the adult dog population for each village. For each dog, we recorded 

its sex and its body condition score (categorised into Poor: 1-2; Moderate: 3; 

Good: 4-5; Laflamme, 1997). With owner consent, dogs were collared with 

commercial dog collars (Ancol Heritage) that were fitted with an i-GotU GT-600 

GPS logger (Mobile Action Technology Inc., Taiwan). The GPS unit was 

configured with a fix interval of 10 minutes. In each field season, an initial two 

week deployment was conducted immediately followed by a longer second 

deployment, where collars were fitted with a GT-600 unit modified with a larger 

battery. 

After retrieving the collars and downloading data, the data were cleaned by 

removing locations taken up to 12 hours after the collar was deployed and 12 

hours before collar recovery. Any likely erroneous GPS fixes with speeds 

greater than 20 km/hr between locations were removed. Data was discarded for 

times when dogs were known to have been tied up by their owners. GPS data 

were projected into the relevant coordinate reference system (EPSG: 32633) 

using the ‘sp’ and ‘rgdal’ packages (v1.3.1 & v1.4.4 respectively) in R (R Core 

Team, 2017). 

 Home range analysis 3.3.3

Continuous time movement models were used to estimate home ranges. 

Models were fitted and auto-correlated kernel density estimates (AKDE) 
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calculated using the ‘ctmm’ package (v0.5.5), following the procedures set out 

by Calabrese et al (2016). Briefly, variograms were used to identify whether 

individuals were range-residents, and non-range-resident individuals were 

excluded from home range analysis. Movement models were then fitted to each 

individual’s spatial data separately, using maximum likelihood, followed by 

model selection based on the Akaike information criterion (AIC). The models 

considered included Ornstein-Uhlenbeck (OU) and Ornstein-Uhlenbeck with 

foraging (OUF). Once the best model was selected for each range-resident 

individual, the 95% AKDE (AKDE95) and core AKDE (AKDEcore) were 

calculated. Core isopleths were determined through an individual-based 

approach, using an exponential regression to identify the ‘threshold’ isopleth 

(slope = 1) where the estimated home range area begins to increase more 

rapidly than the relative frequency of use (Vander Wal & Rodgers, 2012). The 

distributions for AKDEcore and AKDE95 were described using a gamma 

distribution fitted using maximum likelihood in the package ‘fitdistrplus’ (v1.0-

14). Traditional home range analyses (minimum convex polygons, 50% and 

95% kernel density estimates) were calculated using the package 

‘adehabitatHR’ (v0.4.15). 

The proportion of the dogs’ relocation points within a 50m radius of their 

household was used as a measure of how much time they spent around their 

household. The proportion of dogs that were around the household was 

calculated for each hour of each day that dogs were tracked. To estimate the 

amount of time dogs spent around the village, the proportion of relocation points 

within 100m of any household in the village that had dogs was calculated. 

Although crude, in the absence of known locations for all households in the 

village and considering the difficulties in defining boundaries of rural African 
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villages, this method provides a conservative estimate of village area in the 

relevant terms of the spatial extent of dog-owning households. An alternative 

method would involve calculating a minimum convex polygon around the known 

household locations, but in situations where the households are widely 

dispersed, this method would over estimate space use in the village by 

including areas of unoccupied bush between households.  

 Periodicity analysis 3.3.4

To explore daily periodic patterns in space use (repeated visits to locations; 

latitude and longitude) and activity levels (peaks in speed) we followed the 

protocol set out by Péron et al (2016). Lomb-Scargle periodograms were used 

to identify the peak frequencies that most strongly contributed to variance in 

movement data. Due to the duration of the observation periods in this study, we 

focused on periodicities that were equal to or less than 24 hours. 

Periodicity in activity levels was only investigated for individuals where an OUF 

model was selected for the home range analysis. This is because activity levels 

are characterised by speed, which can only be reliably estimated from models if 

the velocity autocorrelation is accounted for, as is the case with OUF models 

but not OU models. Instantaneous speed estimates were generated via the 

‘ctmm’ package, using a function that simulates multiple realizations of the 

possible trajectory between observed locations and calculates a point estimate. 

To investigate patterns in the dog’s locations, periodic-mean models were fitted 

to the data and selected using AIC values. These models describe OU and 

OUF processes where the constant mean term is replaced with the movement 

process mean, modelled as a sum of sinusoids (Péron et al. 2017). 



 

68 
 

A null model approach was used to identify if the observed periodicity in 

location/speed was significant. The home range model for each dog was used 

as the null model and to simulate 150 datasets for predicted locations at the 

same sampling schedule as the observed data. For periodicity in activity levels, 

instantaneous speeds were calculated for each simulation. Periodograms were 

then computed for the simulated locations/speeds and a value for P was 

generated by calculating the proportion of simulated datasets that had larger 

values at the period of interest than that of the observed. Using data simulated 

from the periodic models, the time of the ‘peaks’ (maximum speeds or 

maximum distances from the household) and ‘valleys’ (minimum speeds or 

minimum distances from the household) in the periodicities were identified for 

each individual. To find the peaks and valleys in an individual location, general 

additive models (GAMs) were fitted to the estimates for the distance of 

relocation points to the household. To find the peaks and valleys for 

periodicities in speed, GAMs were fitted to the instantaneous speed estimates. 

The R package ‘MGCV’ (v1.8-24) was used to fit GAMs with family set to 

Gaussian and including a smoothing term (24 hr: k = 4; 12 hr: k = 6), and the 

package ‘quantmod’ (v0.4-15) was used to identify the peaks and valleys from 

the model estimates. Individuals with significant periodicities in location/speed 

were categorised into either 24 hr (one peak), 12 hr (two peaks), or <12 hr 

(more than 2 peaks) periodicity. 

To determine the hourly variation in the proportion of tracked dogs that were 

around the household, for each hour of each day that dogs were tracked, the 

number of unique dogs with relocation points within 50 m of their household 

was summed and divided by the total number of dogs being tracked on that 
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date at that time. This analysis considered all dogs regardless of if they had 

significant periodicity in their speed/location. 

 Statistical analysis 3.3.5

To investigate predictors of the dog’s home range size, linear mixed-effect 

models with a Gaussian error structure were implemented using the package 

‘lme4’ (v1.1-18.1; Bates et al. 2014). Model simplification was conducted using 

the package ‘LMERConvenienceFunctions’ (v2.1.0) through backward and 

forward fitting the fixed effects using AIC model comparison. To extract 

contrasts from models, the package ‘emmeans’ (v1.3.3) was used to estimate 

marginal means, estimates for contrasts, confidence intervals and p-values for 

pairwise comparisons using the Tukey method. Models were fitted with dog ID 

as a random variable and the response variable (either AKDE95 or AKDEcore) 

was logged to meet assumptions of normality. Explanatory variables included 

sex, body condition score, village, whether the owner went hunting, the 

proportion of relocation points within 50 m of the household and the interactions 

between season and the aforementioned variables. In addition the number of 

days the dogs were monitored was included as a fixed effect. Preliminary 

analyses identified a strong positive relationship between the dogs logged 

AKDE95 and logged AKDEcore  (Pearson’s correlation: r = 0.98; t323 = 100.56; p < 

0.001). We therefore present the results for the analysis of AKDE95 in the main 

text, while results for AKDEcore are provided in Appendix C. 

General linear models were used to investigate whether or not the dogs 

exhibited predictable space use (the presence/absence of repeated visits to 

locations) or activity levels (presence/absence of periodicity in the dog’s speed), 

as preliminary analysis showed that the variance for dog ID was zero when 

included as a random effect. A binomial error structure with a logit link function 
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was used, and the explanatory variables and model simplification methods were 

the same as that used in previous models. For dogs that were found to have 

significant periodicity in their location/speed, similar models were fitted to 

identify correlates with the variation in the dog’s location/speed that was 

attributable to their periodicity in location/speed. These models used a 

Gaussian error structure and the response variable was either the dogs rotation 

deviance (ηp) or rotation speed (ηv), which correspond to the proportion of the 

variance in either the animal’s position or velocity that is caused by the 

periodicity in the mean, and are extracted from OU and OUF models 

respectively. Models for three individuals failed to converge when periodicity 

was included and were therefore excluded from the analyses. 
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 RESULTS 3.4

 Home range  3.4.1

In the dry season, 180 dogs were tracked successfully and of these, 174 dogs 

from 122 households were identified as range-resident (Table 3.1). Individuals 

were tracked for a mean of 37 days (range; 1-70 days). In the wet season, 159 

dogs were tracked successfully and of these, 151 dogs from 107 households 

were identified as range-resident. Individuals were tracked for a mean of 35 

days (range; 2-65 days). 77 individuals had data available in both the dry and 

the wet seasons. Reasons for dogs not having been collared or lacking spatial 

data in a field season included the dog being reported to have died (35 dogs) 

and inaccessibility due either to the dog’s behaviour (10), the absence of the 

dog/owner when visiting a household (18) or inability to reach a household due 

to high waters (29). In addition, dogs were sometimes relocated, either by their 

owner moving to a different village (7) or to temporary housing nearer their crop 

fields in the wet season (11). For 37 dogs, no spatial data were available due to 

damaged GPS units or lost collars. 

The AKDE95 range of dogs differed between villages (Table 3.1), whereby dogs 

in Marabodokouya had ranges that were 2.7 (95% confidence limits; 1.2, 6.2) 

times larger than those of dogs from Kira (z = 3.38; p = 0.010) and 5.3 (1.7, 

16.9) times larger than the ranges of dogs from Ngakedji (z = 4.13; p = 0.001). 

An interaction between season and village was found (Figure 3.2), with dogs 

from Bembaya having ranges that were 38.4 (12.2, 121.3) times larger in the 

dry season than in the wet season (z = 6.22; p < 0.001), and in Marabodokouya 

ranges were 6.7 times larger (3.4, 13.3) in the dry season (z = 5.42; p < 0.001). 

In the dry season dogs from hunting households had AKDE95 ranges that were 

4.5 (2.0, 9.9) times larger than the ranges of dogs from non-hunting households 
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(z = 4.77; p < 0.001), but this was not the case in the wet season (z = 1.68; p = 

0.333). The AKDE95 ranges of dogs decreased by 3% (2%, 4%) for every 1% 

increase in the proportion of time they spent within 50 m of their household (t = -

5.63; p < 0.001). Finally, for the 77 dogs that had data available in both 

seasons, there was a positive correlation between their AKDE95 range in the dry 

season and wet season (r = 0.35; t75 = 3.18; p = 0.002). A summary of the home 

ranges estimated using the conventional KDE and MCP methods are presented 

in Appendix C (Table C1). 
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Table 3.1. Summary for the sample sizes of free-ranging domestic dogs from rural communities in Chad that were identified as range resident.  For 

both the dry and the wet season, the number of dogs identified as range  resident is reported for each village with the percentage of the adult 

population that the sample represents in brackets. The number of dogs of different sex and body condition are reported, as we ll as the number of 

dogs that belong to a hunting household. 

Village Season n 
Sex 

(female : male) 
Body condition 

(poor : moderate : good) 
Hunting  

household 

Medegue 
Dry 22 (73%) 11 :11 11 : 8 : 2* 1 

Wet 27 (71%) 13 : 14 5 : 16 : 2* 3 

Kira 
Dry 41 (91%) 22 : 19 7 : 17 : 16* 18 

Wet 36 (74%) 19 : 17 4 : 19 : 12* 15 

Bembaya 
Dry 12 (100%) 6 : 6 1 : 7 : 4 8 

Wet 18 (86%) 8 : 10 4 : 10 : 4 9 

Ngakedji 
Dry 19 (70%) 11 : 8 7 : 7 : 5 5 

Wet 13 (52%) 8 : 5 3 : 6 : 3* 4 

Marabodokouya 
Dry 64 (75%) 31 : 33 27 : 27 : 9* 44* 

Wet 57 (51%) 32 : 25 20 : 19 : 10* 40* 

Tarangara 
Dry 16 (76%) 12 : 4 3 : 10 : 3 12 

Wet - - - - 

Overall 
Dry 174 (79%) 93 : 81 56 : 76 : 39* 88* 

Wet 151 (65%) 80 : 71 36 : 70 : 31* 71* 

* some individuals have missing information 
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Table 3.2. Parameters from movement models for the space use and periodicity of free -ranging domestic dogs in rural Chad.  For each village and 

season the median and inter-quartile range for estimates are reported. Parameters include AKDE 95 and AKDEcore, as estimated from either Ornstein-

Uhlenbeck (OU) or Ornstein-Uhlenbeck with Foraging (OUF) models. Speed estimates are derived from OUF models. Parameters from periodic 

models include the percentage of the dogs’ variance in location that was explained by the periodici ty in location (ηp; from both OU and OUF 

models), and the percentage of variance in the dogs’ speed that is explained by their periodicity (η v; from OUF models). 

Home range models Periodicity models 

Village Season n (OU:OUF) AKDE95 (km2) AKDEcore (km2) Speed (km/hr) n (OU:OUF) ηp (%) ηv (%) 

Medegue 

Dry 22 (9:13) 
0.15 

(0.07 - 0.39) 
0.02  

(0.01 - 0.04) 
1.37  

(0.91 – 1.76) 
15 (6:9) 

31  
(19 - 44) 

6  
(4 - 9) 

Wet 27 (8:19) 
0.57  

(0.07 - 1.76) 
0.08  

(0.01 - 0.30) 
1.49  

(1.06 - 1.99) 
15 (3:12) 

36  
(19 - 53) 

7 
(2 - 9) 

Kira 

Dry 41 (10:31) 
0.26  

(0.06 - 1.32) 
0.04  

(0.01 – 0.14) 
1.07  

(0.84 – 1.30) 
26 (6:20) 

23  
(18 - 30) 

4  
(3 - 7) 

Wet 36 (13:23) 
0.33  

(0.14 - 0.70) 
0.03  

(0.02 - 0.07) 
1.13  

(0.99 – 1.53) 
24 (4:20) 

27  
(21 - 31) 

4  
(5 - 16) 

Bembaya 

Dry 12 (1:11) 
5.01  

(0.36 - 17.82) 
0.58  

(0.04 - 2.08) 
1.29  

(1.16 - 1.36) 
7 (1:6) 

35  
(33 - 36) 

12  
(4 - 16) 

Wet 18 (12:6) 
0.05  

(0.03 - 0.13) 
0.01  

(<0.01 - 0.02) 
0.84  

(0.75 – 0.93) 
11 (8:3) 

20  
(13 - 28) 

< 1  
(< 1 - <1) 

Ngakedji 

Dry 19 (9:11) 
0.11  

(0.03 - 0.36) 
0.01  

(<0.01 - 0.05) 
1.15  

(0.90 - 1.65) 
15 (6:9) 

24  
(13 - 29) 

1  
(1 - 2) 

Wet 13 (6:7) 
0.12  

(0.02 - 0.58) 
0.02  

(<0.01 - 0.10) 
1.12  

(0.71 - 1.42) 
7 (2:5) 

22  
(16 - 30) 

2  
(1 - 3) 

Mar 

Dry 64 (5:59) 
9.76  

(0.57 – 19.81) 
1.21  

(0.12 - 2.59) 
1.4  

(1.06 – 1.64) 
35 (1:34) 

30  
(16 - 44) 

12  
(5 - 17) 

Wet 57 (14:43) 
0.65  

(0.09 - 4.31) 
0.08  

(0.01 - 0.55) 
1.09  

(0.88 - 1.37) 
27 (4:23) 

29 
(16 - 39) 

4  
(< 1 - 9) 

Tarangara 
Dry 16 (5:11) 

0.36  
(0.02 - 0.70) 

0.07  
(<0.01 – 0.17) 

1.06  
(0.73 - 1.36) 

6 (3:3) 
21  

(17 - 24) 
5  

(3 - 5) 

Wet - - - - - - - 

Overall 
Dry 174 (39:135) 

0.54  
(0.08 – 6.21) 

0.08  
(0.01 – 0.87) 

1.26  
(0.99 - 1.54) 

104 (23:81) 
27  

(18 - 36) 
6  

(3 - 13) 

Wet 151 (53:98) 
0.31  

(0.07 - 1.06) 
0.04  

(0.01 - 0.13) 
1.12  

(0.93 - 1.42) 
84 (21:63) 

25  
(16 - 36) 

3  
(1 - 6) 
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Figure 3.2. Variation in the home ranges of free-ranging domestic dogs in rural 

Chad. Maps A-D show the core (solid lines) and 95% (dashed lines) auto-

correlated kernel density estimates (AKDEcore and AKDE95 respectively) for two 

exemplar dogs in the dry (red) and wet (blue) seasons, with a black tringle 

representing their household. Plot E shows the GLMM predictions of the 

AKDE95 ranges for dogs from different villages in the dry season (red triangles) 

and wet season (blue circles). Plot F shows the model predictions of AKDE 95 

ranges for dogs from hunting and non-hunting households in Marabodakouya 

(Mar) during the wet and dry seasons. Map data copyrighted OpenStreetMap 

contributors and available from https://www.openstreetmap.org.  
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 Periodicity in activity levels 3.4.2

In the dry season, instantaneous speeds were estimated for 132 dogs, of which 

54 (36%) exhibited a periodicity of 24 hours, 47 (41%) had a periodicity of 12 

hours, 15 (11%) had a periodicity <12 hours, and 16 (12%) individuals had no 

periodicity. In the wet season, instantaneous speeds were estimated for 98 

dogs, of which 64 (65%) individuals had a periodicity of 24 hours, 13 (13%) had 

a periodicity of 12 hours, 15 (15%) had a periodicity <12 hours and 6 (6%) had 

no periodicity. In both seasons, the activity of dogs exhibiting 24 hour periodicity 

peaked at 12 noon while those with a periodicity of 12 hours tended to show 

activity peaks around both 6am and 6pm (Figure 3.3).  

The number of days that dogs were tracked was the only significant predictor 

for whether or not dogs had periodicity in their activity levels, whereby 

periodicity in speed estimates was more likely to have been identified in dogs 

that were tracked for longer (z = 2.06; p = 0.040). For dogs that did have 

periodicity in their activity levels, those from hunting households had 4% (2-6%) 

more of the variation in their speed explained by their periodicity in the dry 

season than in the wet season (Z = 4.41; p < 0.001). Furthermore, the 

periodicity of dogs from hunting households explained 3% (1-5%) more of the 

variance in their speed than that of dogs from non-hunting households in the dry 

season (Z = 2.87; p = 0.004). Finally, dogs in Marabodokouya had 3% (1-6%) 

more of the variation in their speed explained by their periodicity compared to 

dogs from Kira (z = 3.72; p = 0.003) and 5% (1-8%) more than dogs from 

Ngakedji (z = 3.23; p = 0.020). 
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Figure 3.3. Periodicity in activity levels for free-ranging domestic dogs in rural Chad.  Plots A and D show histograms and density curves for 

the time of peak activity for dogs with 12 hour (two peaks; dark grey) and 24 hour (single peak; light grey) periodicities. R adial plots 

show the speed estimates (in meters per second) from movement models for exemplar dogs at different times of the day. The red lines 

are fitted values from a GAM for the maximum likelihood estimates from movement models, and the grey dotted lines are fitted values 

for the upper and lower confidence intervals. Plots B and E are for two exemplar individuals  showing 24 hour periodicity and plots C and 

F are for two individuals showing 12 hour periodicity.  
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 Periodicity in location 3.4.3

Periodic patterns in location could be assessed in 171 dogs in the dry season, 

of which 81 (47%) individuals had a periodicity of 24 hours, 19 (11%) had a 

periodicity of 12 hours, 4 (2%) a periodicity < 12 hours, while 67 (39%) 

individuals exhibited no significant periodicity in their space use. Dogs with a 

24-hour periodicity in their location were farthest from the household at ~12 

noon (Figure 3.4), while dogs with 12-hour periodicity were at greater distances 

from their household between 6am and 12 noon and again between 6pm and 

10pm. Periodic patterns in location could be assessed in 151 dogs during the 

wet season, of which 72 (48%) individuals had a periodicity of 24 hours, 6 (4%) 

had a periodicity of 12 hours, 3 (2%) had a periodicity < 12 hours, while 70 

(46%) of individuals had no periodicity in their space use. The majority of dogs 

showing 24-hour periodicity were farthest from their household at ~12 noon 

(Figure 3.4).  

Dogs with a good body condition were 4.3 (1.5, 12.0) times more likely to have 

periodicity in their location in the dry season than in the wet season. Periodicity 

in the dogs location was more likely to have been detected if they were tracked 

for longer (t = 3.74; p < 0.001). When dogs did have periodicity in their location, 

those that were tracked for longer had less of the variance in their location 

explained by their repeated movements (t = -4.53; p < 0.001). In addition, the 

proportion of explained variance in the dogs location decreased by 0.16% (0.07-

0.27%) with every 1% increase in the proportion of time dogs spent around the 

household (t = -3.19; p = 0.002).  
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Figure 3.4. Periodicity in location for free-ranging domestic dogs in rural Chad. The histograms and density curves in plots A & E show 

the peak time of day at which dogs with 12 hour (two peaks; dark grey) and 24 hour (single peak; light grey) periodicity were  farthest 

from their household. Plots B & F show the time of day that dogs were closest to their household. Radial plots show the periodicity in 

location for four individuals, where their distance from the household is plotted against time of day. The red lines are fitt ed values from 

a GAM and the grey shaded areas are the 95 % confidence intervals. Plots C and G are for two individuals with a 24 hour periodicity 

and plots D and H are for two individuals with a 12 hour periodicity.  
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 Proportion of time spent around the household 3.4.4

In the dry season, a median of 72% (58 - 81%) of the dogs’ relocation points 

were within 50 m of their respective households and 90% (79 – 95%) were 

around the village. In the wet season, 67% (52 – 78%) of the dogs’ relocation 

points were around the household and 89% (82 – 96%) were around the village. 

In the wet season, the hourly pattern in the proportion of tracked dogs that were 

around their households was consistent between villages (Figure 3.5), and 

more than 70% of tracked dogs were around their households at ~6am and 

~6pm, but this proportion dropped below 70% between 8am and 4pm. In the dry 

season, the hourly pattern was not consistent between villages; in three villages 

over 70% of dogs were around their household throughout the day, but in two 

villages the proportion dropped below 70% at ~7am and crossing above the 

threshold at ~12 noon. 
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Figure 3.5. Temporal variations in the proportions of tracked dogs that can be 

found around their household at different times of the day.  Dogs from 5 rural 

villages in Chad were tracked with GPS units in both the dry and wet seasons. 

Dogs were considered to be around the household if they had relocation points 

within 50m of their household. For each hour the mean and confidence 

intervals are plotted for the proportion of tracked dogs found around the 

household. The red dotted line represents the 70% threshold advised for 

vaccination campaigns. 
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 DISCUSSION 3.5

This study quantifies the dynamics of space use for a large number of free-

ranging domestic dogs in rural Chad, where dogs are implicated in the 

maintenance and transmission of numerous zoonotic infections, including rabies 

and Guinea worm disease, which are subject to control measures. In some 

villages, the dogs’ home ranges varied seasonally and for some individuals 

these were up to 120 times larger in the dry season, compared to those in the 

wet season. Seasonal variation in ranges was increased by owner activity, 

whereby in the dry season, dogs from hunting households had home ranges 

that were five times larger on average than dogs from non-hunting households. 

While over 80% of dogs had predictable daily patterns in their activity levels 

(speed), and ~50% of individuals exhibited temporal patterns of repeated space 

use, there were clear seasonal differences in the periodicity of dog activity and 

location. In the wet season, the majority of dogs exhibited 24 hour cycles in their 

speed and location, while in the dry season two strategies were apparent, with 

dogs either having 24 hour or 12 hour cycles. 

Our results suggest that, despite being unrestrained, the movements of dogs in 

rural Chad are governed to some extent by the routines of their owners. The 

owners’ hunting activities in the dry season predicted their dogs ranging 

behaviours, but this was not the case in the wet season since, as reported by 

hunters, they tended to hunt less frequently in the wet season due to long grass 

making it harder to spot and capture game. The periodicity in the dogs’ 

locations may also be human-mediated, given that dogs with larger ranges also 

had more of the variation in their location explained by their repeated space 

use. While patterns of repeated space use were detected in ~50% of individuals 

tracked, it is likely that these temporal patterns in location are more common 
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than reported in this study, as the probability of detecting periodicity was 

positively correlated with the number of days that individuals were tracked. 

Nevertheless, the influence of owner activities on dog movements warrants 

further investigation to identify any nuanced effects of different occupational 

practices such as cattle herding, fishing and farming on dog movements. 

From a global perspective, the home range estimates for dogs in this study 

were larger than that reported for other free-ranging domestic dog populations 

(Dürr et al. 2017; Hudson et al. 2017; Sepúlveda et al. 2015; Pérez et al. 2018; 

Van Kesteren et al. 2013; Ruiz‐Izaguirre et al. 2015; Vanak & Gompper, 2010). 

Differences in the home range estimates for dogs across the globe may be a 

reflection of the various analytical methods used, with this study using 

continuous time movement models and previous studies using conventional 

home range methods (e.g. kernel density estimates, minimum convex polygons 

and Brownian movement models), which have been shown to underestimate 

home ranges (Noonan et al. 2019). However, when home ranges for dogs in 

this study were calculated using traditional methods, the range estimates were 

still larger than those reported in other studies (Appendix C Table C1). Similarly, 

while other studies have found evidence for 12 hour and 24 hour cycles in the 

dogs peak activity levels and location (Woodroffe et al. 2011; Maher et al. 

2019), we find that the proportion of dogs exhibiting either of these strategies 

varies by season. When considered alongside previous research, our results 

highlight the variation in dog spatial movements and emphasise that predictors 

of dog space use are not globally consistent. 

The variation in the spatial ecology of dogs described here has implications for 

disease transmission. An individual’s space use is often related to their contact 
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rates (Robert et al. 2012; Vander Wal et al. 2014), which can determine the 

dynamics of disease outbreaks (Craft et al. 2011; McDonald et al. 2016). In a 

previous study on free-ranging dogs in rural Chad, individuals with larger ranges 

were found to have more second order contacts, and these individuals 

presented a greater risk of causing simulated disease epidemics should they 

become infected (Wilson-Aggarwal et al. 2019). Therefore, dogs from 

households whose owners participate in hunting may present a larger risk for 

disease transmission. Furthermore, as seen in simulated outbreaks of rabies in 

racoons Procyon lotor (Reynolds et al. 2015), the seasonality of dog 

movements described in this study could determine temporal variations in the 

risk of an epidemic occurring and the appropriateness of different disease 

management strategies. Therefore, models predicting the transmission of 

canine mediated diseases in rural Chad should consider both the seasonal and 

anthropogenic influences on dog movements. 

The spatial dynamics of free-ranging dogs in this study can be used to design 

optimal field operations for controlling dog-mediated diseases. In the case of 

vaccination campaigns, possible strategies of accessing dogs include static 

point and door-to-door campaigns, which have been combined successfully in 

rural Tanzania (Kaare et al. 2009) and in Malawi (Gibson et al. 2016) to reach 

the advised 70% coverage. However, strategies involving house visits may be 

less effective if half the dogs are not predictably at their household. We show 

that, although dog ranges are smaller in the wet season, the proportion of dogs 

that are around their household drops below the advised 70% threshold during 

midday, and that this is consistent between villages. On the other hand, during 

the dry season, in three of the five villages more than 70% of the dogs could be 

found around the house at all hours of the day. The remaining two villages were 
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those with dogs that generally had larger ranges, and here the proportion of 

dogs that could be found around the household dropped below the threshold at 

~8am, and peaked above the threshold from 12 noon onwards. Therefore, it 

may be concluded that door-to-door campaigns in rural Chad are best 

conducted in the dry season since, in many of the villages reaching the advised 

70% population coverage is more achievable. Furthermore, the relationship 

between owner activities and dog movements provides an opportunity for 

targeted interventions that are focused at the household level, i.e. households 

with owners that go hunting could be prioritised. This is supported by a study on 

urban free-ranging dogs in N’Djamena, which found that vaccination strategies 

targeting dogs based on their movement and contact behaviour could reduce 

the size of simulated epidemics of rabies (Laager et al. 2018). However, 

simulations of such intervention strategies would be required to identify if there 

was a benefit of targeted approaches in a rural context. 

This study provides an insight into the variation of space use by free-ranging 

domestic dogs in rural Chad, and emphasises the importance of owner activities 

in understanding variation in their dogs’ movements. In light of the ‘Zero by 30’ 

rabies campaign (WHO, 2018) and recommendations for locally adapted 

vaccination strategies to improve the access to individuals (Fahrion et al. 2017), 

our results highlight the potential for a ‘One Health’ approach that considers the 

spatial ecology of domestic dogs in the design and implementation of disease 

intervention strategies. 
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CHAPTER 4:  

SPATIAL-TEMPORAL DYNAMICS OF CONTACT 

RATES AMONG FREE-RANGING DOMESTIC 

DOGS IN RURAL AFRICA  
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 ABSTRACT 4.1

Forecasting and preventing epidemics can benefit from an understanding of the 

spatial-temporal dynamics of host contact rates, as these can determine 

variations in the risk of transmission. Free-ranging domestic dogs Canis 

familiaris have multiple shared pathogens with humans and wildlife, and 

managing canine-mediated infections is of interest to both public health and 

conservation concerns. We explored spatial-temporal variation in contacts 

among free-ranging dogs from six rural villages in Chad. We found that the 

distance between households was negatively correlated with the probability that 

individuals were ever observed in contact and negatively correlated with the 

hourly probability and duration of contacts should they have interacted. 

Interactions around the household and village peaked between 5am and 9am 

and again between 6pm and 8pm. The probability of contact events outside the 

village peaked between 5am and 8am. Contacts outside the village were of 

longer duration in the dry season than in the wet season and, in the dry season, 

contacts outside the village were longer than those within the village or 

household. We found evidence for seasonal differences in preferential mixing 

between the sexes. In the wet season, male-male contacts had a higher 

probability of occurring, and, if a pair had interacted, within-sex dyads had 

higher hourly probabilities of contact. In the dry season, if a pair had interacted, 

hourly contact probabilities were higher for male-male and male-female dyads. 

Although this study focused on within-village contacts, we observed rare 

between-village interactions; these were short in duration and mainly occurred 

around villages and during the dry season, when dogs ranged more widely. This 

study reveals clear spatial-temporal patterns in the contact behaviour of free-
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ranging dogs, suggesting that contact rates have the potential to drive temporal 

variation in the incidence of canine-mediated diseases in rural areas. 
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 INTRODUCTION 4.2

Interactions between individuals vary in time and space, and this can have 

implications for the transmission of infectious diseases (Silk et al. 2017a; Meyer 

& Held, 2017). Spatial-temporal patterns in contact rates between individuals 

can cause predictable increases in the incidence of infectious diseases in both 

humans and animals (Altizer et al. 2006). In humans, the increased contact 

between children during the school term has been shown to determine cyclic 

patterns for the incidence of measles (Bjornstad et al. 2002), chicken pox 

(Jackson et al. 2014) and influenza (Jackson et al. 2016). Examples in wildlife 

populations include the seasonal aggregation of birds during the onset of cold 

weather, that are synonymous with surges of conjunctivitis in house finches 

Carpodacus mexicanus (Hosseini et al. 2004) and avian influenza in water birds 

(Reperant et al. 2010). The observed association between the dynamics of 

contact rates and disease incidence occur because an individual’s contact 

behaviour can determine their susceptibility to infections (Drewe et al. 2011; 

Rimbach et al. 2015) and their propensity to transmit diseases (Lloyd-Smith et 

al. 2005; Lau et al. 2017). Therefore our capacity to forecast and control 

infectious diseases would benefit from knowledge of the temporal patterns of 

host contact behaviour. 

Free-ranging dogs Canis familiaris share several pathogens with humans 

(Otranto et al. 2017) and with wildlife (Knobel et al. 2014), and managing dog-

mediated diseases is often the focus of public health and conservation efforts. 

For domestic dogs in Africa, cyclic patterns have been observed in the 

incidence rates of rabies (Hampson et al. 2007) and canine distemper (Viana et 

al. 2015), but it is unknown as to what drives this periodicity. Such patterns of 

disease incidence could be explained by several interacting factors, including 
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fluctuations in contact rates, climatic conditions and the renewal of susceptible 

individuals (Fisman et al. 2012). However, while the dynamics of dog 

populations are generally well studied (Morters et al. 2014; Conan et al. 2015), 

it is only in recent years that contact rates between free-ranging dogs have 

been successfully observed and quantified.  

Few studies have provided a thorough account into the contact behaviour of 

free-ranging dogs, and those that have found significant between-individual 

variation in contact rates (Laager et al. 2018; Brookes et al. 2018; Wilson-

Aggarwal et al. 2019). Dogs in northern Australia were shown to be highly 

connected with others in their village and, in general, the total time that each 

pair of dogs spent in association was 2-16 minutes a day (Brookes et al. 2018). 

A study of free-ranging dogs in rural Chad showed that individuals had 

heterogeneous contact rates, and that contacts were predominantly short in 

nature (Wilson-Aggarwal et al. 2019). Furthermore, contact rates were 

influenced by the distribution of dog owning households, with dogs more likely 

to interact and have longer interaction times when their houses were closer 

together. In one village, dogs that had larger ranges interacted with a greater 

number of individuals and had more second order contacts (Wilson-Aggarwal et 

al. 2019). In a study on urban free-ranging dogs in Chad, individuals were highly 

connected to others from nearby households, and the spatial structure of dog 

social communities were effectively characterised by elements of urban 

infrastructure e.g. main roads (Laager et al. 2018). Beyond the household, none 

of these studies identified preferential mixing patterns, however, a study on a 

managed population of dogs in north Australia, found reproductive status was 

important and a larger number of contacts were recorded for intact females and 

for neutered males (Sparkes et al 2014).  
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These studies have provided an aggregated ‘snap-shot’ account of the variation 

in the contact behaviour of free-ranging dogs, with observation periods of 3-10 

days. However, it is not known if there are daily or seasonal variations in the 

occurrence of contact events or their durations, and yet these features can be 

important in determining disease epidemics (Volz & Meyers, 2009; Enright & 

Kao, 2018). For example, seasonal outbreaks of simulated rabies in racoons 

Procyon lotor are best explained by shifts in contact durations, rather than 

observed shifts in intersexual interactions or pulses in birth rates (Hirsch. et al. 

2016). Moreover, evidence suggests that the temporal dynamics of contacts 

have larger influences on transmission dynamics when R0 (average number of 

cases an individual will cause) is less than two (Chen et al. 2014), or when the 

disease shows low transmissibility and a long infectious period (Springer et al. 

2017), as is the case with rabies (Hampson et al. 2009; Kurosawa et al. 2017). 

In this study, we investigated spatial-temporal variations in the contact 

behaviour of a large number of free-ranging domestic dogs in rural Chad, where 

rabies remains endemic. We use proximity loggers to quantify the time, 

frequency and duration of close contacts that could facilitate the transmission of 

infections, and use GPS devices to identify the location of contact events. 

Specifically, we set out to identify if there is daily and seasonal variation in the 

tendency for individuals to contact each other, in their contact durations, and 

whether or not these temporal patterns vary by location.  
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 METHODS 4.3

 Field study timings and locations 4.3.1

Fieldwork was conducted in six rural villages in Chad (Figure 1) during the dry 

season (between 5th March and 17th May 2018) and again during the wet 

season (between 3rd August and 17th October 2018). The most northerly village, 

Medegue (11°01'48.8"N 15°26'37.7"E), is located on a main road in the Mayo-

Kebbi east region in the western central part of Chad, and is approximately 15 

km from the district town of Guelendeng. The remaining villages are all located 

in the district of Sarh in the Moyen-Chari region in the south of the country. 

These five villages can be split into two geographical sites, ‘Sarh east’ and 

‘Sarh west’. Sarh west is approximately 10 km to the west of Sarh town and 

includes: Ngakedji (9°11'16.5"N 18°18'10.7"E), which stretches along the edge 

of a tributary from the Chari River; Kira (9°10'50.8"N 18°17'00.3"E) which is a 

large, nucleated village ~2 km from Ngakedji; and Bembaya (9°11'33.6"N 

18°17'42.3"E) which is situated between the other two villages and is relatively 

small in size. Sarh east is approximately 40 km to the east of Sarh town and 

includes: Marabodokouya (9°19'42.3"N 18°43'20.0"E) which is a large village 

that is split into quartiers, where the principal quartier is located along the main 

road to Kyabé and several smaller quartiers are located along the river up to 10 

km away from the road; and Tarako, which is a small, nucleated quartier of the 

village Tarangara (9°08'19.8"N 18°42'00.9"E), that is situated ~20 km south of 

Marabodokouya’s principal quartier and on a remote branch of the Chari. 

With the consent of owners and the village chief, dogs were collared with 

standard nylon dog collars (Ancol Heritage). All collared dogs were sexually 

intact and had clear ownership and were closely affiliated with a specific human 

household. Puppies (less than six months of age) were not collared. We 
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recorded the location of every dog-owning household visited using a handheld 

GPS. Since in each village all households known to have dogs were visited, the 

number of dogs owned by each household was recorded and summed to 

estimate the adult dog population.  Additional data collected on the individual 

dogs included sex and age in months (as recalled by the owner).  

Collars were fitted with two devices; (1) an i-GotU GT-600 GPS unit (Mobile 

Action Technology Inc., Taiwan) and (2) a wearable proximity sensor developed 

by the OpenBeacon project (http://www.openbeacon.org/) and the 

SocioPatterns collaboration consortium (http://www.sociopatterns.org/). The 

proximity sensors exchange one radio packet per second in a peer-to-peer 

fashion, and this exchange of radio-packets is used as a proxy for the spatial 

proximity of individuals wearing the sensors (Cattuto et al. 2010; Isella et al. 

2011; Wilson-Aggarwal et al. 2019). Proximity is measured by the attenuation 

between devices, defined as the difference between the received and 

transmitted power. An attenuation threshold of -70 dbm was used in this study 

as it has been shown to detect close-contact events (within 1-1.5 m) in humans, 

during which a communicable disease might be directly transmitted, either by 

direct physical contact or by airborne transmission (Stehle et al. 2013; Voirin et 

al. 2015). In both field seasons, collars were deployed for an initial two weeks, 

and then replaced with collars containing a new proximity sensor and a new 

GPS logger modified with a higher capacity battery. The GPS units were all 

configured with a fix interval of 10 minutes. 

Data processing 

Processing of the proximity data was conducted in Python v2.7. After extraction 

from the logging devices, proximity data were cleaned by identifying corrupted 

http://www.openbeacon.org/
http://www.sociopatterns.org/
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sensors (where no data were available) and by removing data with anomalous 

signals (such as continuous bursts of data). To see if the contact events were 

recorded in an asymmetric way, inter-logger variability was assessed by 

comparing the number of packets emitted and received for all pairs of working 

sensors. The data from sensors were discarded if they showed deviations from 

the expected linear relationship between radio packets emitted and received. A 

contact event was defined by sensors exchanging radio packets for a minimum 

of 20 consecutive seconds. Contact events terminated if the sensors stopped 

exchanging radio packets in any of the subsequent 20 s breaks, meaning that 

the weights of interactions were characterised by multiples of 20 s.  

Processing of the GPS data was conducted in R v3.3.3 (R Core Team, 2017) 

and the ‘sp’ v1.2-3 and ‘rgdal’ v1.2-5 packages were used to project all GPS 

data into the relevant coordinate reference system for Chad (EPSG:32634). The 

distance between the households for each observed pair of individuals (dyad) 

that could have come into contact was calculated. The GPS data for the dogs’ 

movements were cleaned by removing erroneous fixes with speeds greater 

than 20 km/hr between locations. To control for any effect of the researchers’ 

presence on the dogs’ behaviour and to give dogs time to adjust to the collars, 

we discarded both GPS and proximity records 12 hours after collar deployment 

and 12 hours before collar collection. 

 Locating contacts 4.3.2

To identify the locations where contact events were first initiated, continuous 

time movement models were fitted to the spatial data using the ‘ctmm’ package 

(v0.5.5). The models were used to simulate the possible location of individuals 

at times between the ‘known’ locations (recorded by GPS). For each individual, 

30 realisations of their possible paths were simulated at an interval of one 
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minute, excluding the period between the first collar being collected and the 

second collar being deployed. The time at which contact was first recorded by 

the proximity loggers was then used to extract the simulated locations of both 

individuals involved, or of just one individual if no spatial data were available for 

the other. The mean latitude and longitude of the simulated locations was taken 

to be the location of where the contact event was first initiated. This mean 

location was then categorised for each contact event as being either around the 

household (within 50 m of either of the individuals’ households), around the 

village (within 100 m of any household that owned a tracked dog, excluding the 

individuals’ households) or outside the village. 

For each dyad, we recorded whether or not the individuals came into contact at 

any point during each season, how many contacts they had, the duration of 

each contact event, the daily probability of contacts (the total number of days a 

contact was observed divided by the number of days a contact could be 

observed), and the probability of contact during each hour of the day, in the 

household, village and outside the village (i.e. the number of hours that a 

contact occurred at time i and at location j, divided by the total number of hours 

that a contact could have been observed at time i).  

 Statistical analysis 4.3.3

General linear mixed-effect models (GLMMs) were used to investigate variation 

in the contact behaviour of dogs at the dyad level (rather than an individual 

level; Cross et al. 2012; Cross et al. 2013; Silk et al. 2017). Preliminary analysis 

suggested that contacts between individuals from different villages were 

exceptionally rare, and so statistical models were only run for data on contacts 

between individuals from the same village (within-village dyads). 
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 To investigate predictors of whether or not a dyad ever came into contact 

during the observation period (0 for absence of a contact and 1 for the presence 

of contacts), a GLMM was fitted with a binomial error structure using the 

package ‘lme4’ (v1.1-18.1; Bates et al, 2015). Explanatory variables included 

dyad sex (categorised as male-male, male-female or female-female), age 

difference between individuals in months, the log (base 2) transformed distance 

between the individuals’ households (with 1 m added to all values), season, the 

interactions between the aforementioned variables and season, and finally 

region. The number of hours that both individuals in a dyad could have been 

observed in contact was included as a fixed effect to control for biases in 

observation times. Random effects consisted of the identity of each individual in 

a dyad (to control for individual variations in the tendency to have contact with 

others), the identity of the households to which each individual belonged (to 

control for household level variations in contact rates) and the village identity for 

both individuals (to control for village level variations in contact rates). 

A GLMM was fitted with a binomial error structure to investigate spatial-

temporal variations in the hourly probability of contacts. This model only used 

data for dyads that were observed to have been in contact. Because the 

response variable was a proportion, dyads that had less than 10 repeated 

observations for any hour were removed from the analysis, and the model was 

weighted by the total number of hours that each dyad could have been 

observed in contact at each hour of the day. Fixed effects were the same as in 

the previously-described model, with the exception of hours observed and with 

the addition of hour of day (as a categorical variable), location, and the 

interactions of these two variables with season. Random effects were the same 
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as in the previous model, with the addition of dyad ID (to control for repeated 

observations). 

To investigate spatial-temporal variations in the duration of contacts, a GLMM 

was fitted with a negative binomial error structure using the ‘glmmTMB’ (v0.2.3) 

package. Similar to the previous model, data for dyads that were not observed 

to have been in contact were excluded. Data on dyads from Tarako, Tarangara 

were also excluded as the missing data from the wet season caused errors 

when generating confidence intervals and predictions from the model. Fixed 

and random effects were the same as in the previously described model. For all 

models, the package ‘emmeans’ (v1.3.3) was used to estimate test statistics, p-

values, odds ratios and confidence intervals for contrasts from the full model. 

The ‘DHARMa’ (v0.2.6) package was used to assess model residuals and 

goodness of fit.  
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 RESULTS 4.4

Dogs were collared for a mean of 37 days (range; 1-70 days) in the dry season 

and 34 days (range; 2-65 days) in the wet season. Proximity data were 

successfully collected for 199 individuals in the dry season, and of these, 179 

individuals had spatial data available. In the wet season 166 individuals had 

proximity data successfully collected, and 149 of these individuals also had 

spatial data available. 

 Within-village contacts 4.4.1

Of the 4254 potential within-village dyads in the dry season, 713 (17%) came 

into contact, and a total of 47,373 contact events were recorded (see Table 4.1 

for a summary by village). Of the 3221 potential within-village dyads in the wet 

season, 533 (34%) came into contact, with a total of 33,259 contact events 

recorded. For dyads that were observed to have been in contact, the median 

daily probability of contact was 6% (inter-quartile range: 3–14%) in the dry 

season, and 10% (3–22%) in the wet season. In both seasons, the median 

duration of contact events was 20 s (20–40 s). In all villages, a higher proportion 

of contacts occurred within the village with a median of 44% (0–100%) of 

located contacts occurring within the village during the dry season and 75% 

(36–100%) in the wet season. 
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Table 4.1. Summary of the contacts between free-ranging domestic dogs from rural villages in Chad. For each village and season the 

adult dog population size is reported along with the number of individuals sampled, the number of potential within -village dyads that 

could have been observed in contact (due to overlapping deployments of proximity sensors),  the number of observed within-village 

dyads that had recorded contact events, and the total number of observed contacts. The percentage reported for the number of dyads 

observed in contact, is calculated using the total number of observable within -village dyads, as opposed to the total number of dyadic 

pairs in the population. For dyads that were observed to have contacts, the median and inter -quartile range is reported for the duration 

of contacts (in seconds), the daily contact frequency (number of contacts divided by the total number of days monitored) and the 

proportion of GPS-located contacts that were around the household, within the village and outside of the village.  

Village Season Pop. 
Individuals 

sampled 

No. of 
observable 

dyads 

No. of dyads 
in contact 

No. of 
contacts 

Duration of 
contacts (s) 

Daily 
frequency 

(%) 

Prop. in the 
household 

(%) 

Prop. within 
the village  

(%) 

Prop. outside 
the village 

(%) 

Medegue 
Dry 30 26 (87%) 325 (75%) 62 (19%) 3814 20 (20 - 40) 6 (3 - 13) 0 (0 - 36) 51 (28 - 76) 11 (0 - 38) 

Wet 38 29 (76%) 355 (50%) 61 (17%) 4401 20 (20 - 40) 6 (3 - 17) 0 (0 - 12) 57 (48 - 100) 1 (0 - 47) 

Kira 
Dry 45 44 (98%) 942 (95%) 168 (18%) 15015 20 (20 - 40) 5 (2 - 14) 0 (0 - 32) 86 (41 - 100) 0 (0 - 6) 

Wet 49 36 (73%) 618 (53%) 210 (34%) 18529 20 (20 - 60) 8 (3 - 20) 0 (0 - 18) 93 (58 - 100) 0 (0 - 7) 

Bembaya 
Dry 12 12 (100%) 65 (98%) 46 (71%) 5586 20 (20 - 40) 12 (6 - 28) 20 (1 - 48) 55 (24 - 78) 0 (0 - 30) 

Wet 21 18 (86%) 151 (72%) 85 (56%) 4535 20 (20 - 40) 16 (5 - 30) 0 (0 - 25) 86 (49 - 100) 0 (0 - 4) 

Ngakedji 
Dry 27 27 (100%) 341 (97%) 47 (14%) 4499 20 (20 - 60) 9 (5 - 18) 6 (0 - 35) 65 (34 - 100) 0 (0 - 21) 

Wet 25 17 (68%) 136 (45%) 9 (7%) 649 20 (20 - 40) 9 (3 - 19) 50 (48 - 72) 29 (24 - 42) 0 (0 - 10) 

Mar. 
Dry 85 70 (82%) 2391 (67%) 347 (15%) 15693 20 (20 - 60) 6 (2 - 10) 0 (0 - 22) 14 (0 - 60) 60 (0 - 100) 

Wet 111 66 (59%) 1961 (32%) 167 (9%) 5145 20 (20 - 40) 11 (3 - 24) 0 (0 - 46) 50 (0 - 100) 0 (0 - 47) 

Tarangara 
Dry 21 20 (95%) 190 (90%) 43 (23%) 2766 20 (20 - 40) 5 (3 - 11) 48 (20 - 91) 48 (0 - 75) 0 (0 - 0) 

Wet - - - - - - - - - - 

Overall 
Dry 220 199 (91%) 4254 (76%) 713 (17%) 47373 20 (20 - 40) 6 (3 - 14) 0 (0 - 33) 44 (0 - 100) 4 (0 - 100) 

Wet 244 166 (68%) 3221 (38%) 533 (34%) 33259 20 (20 - 60) 10 (3 - 22) 0 (0 - 25) 75 (36 - 100) 0 (0 - 18) 
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 Probability of having had contact 4.4.2

The marginal R2 value (0.41) and conditional R2 (0.69) suggests that both the 

fixed and random effects explain a substantial amount of the variation in the 

probability that a within-village dyad came into contact. The variance between 

individuals (τ00[ID1] = 1.01; Appendix D Table D1), households (τ00[Household 

ID2] = 0.63) and the villages (τ00[Village ID] = 0.13) suggests there was 

considerable variation between individuals in their tendency to have been in 

contact with others, but that there was little variation between villages. 

For every doubling in the distance between the dyad individuals’ households, 

the odds of them having had contact dropped by a factor of 0.49 (confidence 

intervals; 0.45-0.53; z = -18.25; p < 0.001; Figure 4.1). An interaction between 

season and sex was found, whereby the probability of a contact between males 

was 2.10 (1.23, 3.59) times more likely in the wet season than in the dry season 

(z = 2.712; p = 0.007). In the wet season, observed contacts between potential 

male-male dyads were 2.19 (1.07, 4.52) times more likely than female-female 

dyads (z = 2.55; p = 0.029). The odds of a contact having been observed 

between individuals increased by a factor of 2.56 (1.59, 4.13) for every 10-fold 

increase in the number of days observed (z =3.87; p < 0.001; Appendix D 

Figure D1).  
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Figure 4.1. The probability of observing contact between potential dyads of free-

ranging domestic dogs in rural Chad with increasing distance between the 

individuals’ households.The predictions and confidence intervals are plotted 

from a general linear mixed model. The points are the raw data and have a jitter 

and alpha level applied. The x axis is on a logged scale. 
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 Hourly probability of contact 4.4.3

The marginal R2 (0.34) and conditional R2 (0.56) suggest the fixed and random 

effects provided reasonable predictive power for the hourly probability of contact 

for dyads should the two individuals have been in contact. The between 

individual variance (τ00[ID1] = 0.22) and between household variance 

(τ00[Household ID1] = 0.29) in the hourly probability of contact was similar, 

while the between village variance was minimal (τ00[Village ID] < 0.01).  

The hourly probability of contact reduced by a factor of 0.62 (0.60, 0.64) for 

every doubling in the distance between the individuals households (z = -29.60; 

p < 0.001). There was an interaction between sex and season, whereby the 

hourly probability of contact between female-female dyads was 1.64 (1.43, 

1.87) times higher in the wet season than in the dry season (z = 7.21; p < 

0.001), while the probability of male-male dyads was 1.26 (1.05, 1.52) times 

higher in the wet season (z = 2.47; p = 0.013). Furthermore, in the dry season, 

the hourly probability of male-male dyads was 1.57 (1.05, 2.36) times higher 

than female-female dyads (z = 2.62; p = 0.024), and male-female dyads were 

1.45 (1.10, 1.90) times higher than that of female-female dyads (z = 3.18; p = 

0.004). 

The hourly probability of contact between dyads varied spatially, and was 1.56 

(1.51, 1.62) times higher within the village than around the individual’s 

household (z = 28.12; p < 0.001), and 5.37 (5.05, 5.71) times higher within the 

village than outside of the village (z = 63.56; p < 0.001). Furthermore, the hourly 

probability of contact between individuals was 3.44 (3.23, 3.67) times higher 

around the household than outside the village (z = 45.11; p < 0.001). There was 

also an interaction between season and location, whereby the hourly probability 

of contact between dyads in the village was 2.13 (1.90, 2.38) times larger in the 
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wet season than that in the village during the dry season (z = 13.32; p < 0.001; 

Figure 4.2). 

Significant hourly variations were identified in the probability of contact for 

dyads (Figure 4.2; Table 4.2). The probability of contact peaked twice 

throughout the day, with one peak between 5 and 9am and a second peak 

between 6 and 8pm (Figure 4.2). While this pattern did not change between 

seasons, there was an interaction between season and time of day, and the 

probability of contact was noticeably higher in the wet season after 5pm (Table 

4.2). There was also an interaction between time of day and location, where the 

probability of contact around the village and the individuals’ households 

followed the aforementioned hourly pattern, but the probability of contact 

outside of the village had a smaller peak between 5 and 8am, after which it 

gradually declined throughout the day (Appendix D Table D2). 
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Figure 4.2. Temporal and spatial interactions affecting variation in the frequencies of contact among free -ranging domestic dogs in rural Chad. All 

predictions and confidence intervals are derived from general linear mixed models. Plot A shows the predicted frequencies of contacts between 

dogs at each hour of the day in the dry (red) and wet (blue) seasons. Plot B shows the predicted contact frequencies at each hour of the day in 

different locations; within 50 m of either of the dyadic i ndividual’s households (orange), within the village (purple) which is defined by a 100 m buffer 

around all households that own a dog while excluding the 50 m around either individual’s household and outside of the village  (green). Plot C 

depicts the models predictions for the frequencies of contacts between dogs at each of the different locations in the dry and wet season.  
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 Duration of contacts 4.4.4

The marginal R2 (0.70) and conditional R2 (0.99) suggest that the model had 

strong predictive power, although the between-group variances was very low, 

suggesting that variation in contact durations was similar for different individuals 

(τ00[ID1] = 0.01), households (τ00[Household ID1] < 0.01) and villages 

(τ00[Village ID] < 0.01). 

The duration of contacts for dyads reduced by a factor of 0.95 (0.95, 0.96) for 

every doubling in the distance between households (z = -12.64; p < 0.001). 

There was an interaction between the effects of the age difference between 

individuals and season (z = -2.79; p = 0.005), whereby in the wet season the 

duration of contact increased by 1.00 second (1.00, 1.01 seconds) for every 

month increase in the age difference between individuals, which was not the 

case in the dry season (Figure 4.3). 

The interaction between the locations of contacts and season significantly 

affected contact durations; outside of the village contact durations were 1.35 

(1.24, 1.48) times longer in the dry season compared to the wet season (t = 

6.62; p < 0.001). Furthermore, in the dry season, contacts outside the village 

were 1.38 (1.29, 1.48) times longer than those within the village (t = 10.73; p < 

0.001), and 1.40 (1.30, 1.51) times longer than those around the household 

(10.66; p < 0.001). 

Seasonal variation in the duration of contacts at different hours of the day were 

identified (Figure 4.3). Contact durations in the wet season peaked twice, once 

between 5am-7am and again at 6pm. In the dry season, contact durations 

peaked three times, the first at 5am followed by a peak at 1pm and a third at 

6pm. Spatial-temporal patterns were also detected, with longer contact 
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durations outside of the village compared to those within the village or around 

the household, at almost all hours of the day. 
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Figure 4.3. Spatial-temporal variation in the duration of contacts between free-ranging domestic dogs in rural Chad. All predictions and 

confidence intervals are derived from general linear mixed models and are presented in seconds. Plot A shows the predicted co ntact 

durations between dyads of dogs at each hour of the day in the dry (red) and wet (blue) seasons. Plot B shows the predicted c ontact 

durations at each hour of the day in different locations; within 50m of either of the individual’s household (orange) and within the village 

(purple) which is defined by a 100 m buffer around all households that own a dog and excluding the 50m that defines either in dividual’s 

household, and outside of the village (green). Plot C shows the predicted contact duration of contact s for dogs with different age 

differences in the wet (blue) and dry (red) seasons.  
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 Between-village contacts 4.4.5

Between-village contacts were only observable in two of the field sites (in Sarh 

east during the dry season and in Sarh west during both the dry and wet 

seasons). During the dry season in Sarh east, none of the 5565 potential 

between-village dyads were found to have been in contact. In Sarh west, of the 

3361 potential between-village dyads in the dry season, 25 (1%) came into 

contact, and 166 contact events were recorded with a median contact duration 

of 20 seconds (20 – 40 seconds; Table 4.2). Locations were estimated for 160 

of the 166 contact events in the dry season, and of these 43 (27%) occurred 

within 50 m of one individual’s household, 101 (63%) occurred within the village, 

and 16 (10%) occurred outside of the village. In the wet season, only 3 (<1%) of 

the 1556 observed between-village dyads came into contact. A total of 5 

contacts occurred, all of which were 20 seconds long and located within the 

village. These contacts involved two dogs from the same household in Kira that 

visited Bembaya on multiple days and came into contact with three dogs from 

different households.  
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Table 4.2. Summary of between-village contacts for free-ranging domestic dogs from rural villages in Chad.

For each season and village in the field site ‘Sarh west’, the number of observable dyads is reported with the  percentage of the total 

number of dyads for the population in brackets. The number of observed dyads that came into contact is reported along with th e 

percentage that this represents from the total number of observed dyads in brackets. As well as the tota l number of contacts, the 

median and inter-quartile range for the duration of contacts is reported. A ratio of the locations of where contacts were located is 

reported for all located contacts. 

 

illage Season 
No. of observable 

dyads 

No. of dyads in 

contact 

Total no. of 

contacts 

Duration of 

contacts (s) 

Location 

(household : within village 

: outside village)* 

Kira 
Dry 1699 (97%) 14 (1%) 54 20 (20 - 40) 1 : 48 : 3 

Wet 1250 (61%) 3 (<1%) 5 20 (20 - 20) 0 : 5 : 0 

Bembaya 
Dry 838 (97%) 21 (3%) 162 20 (20 - 40) 42 : 98 : 16 

Wet 944 (61%) 3 (<1%) 5 20 (20 - 20) 0 : 5 : 0 

Ngakedji 
Dry 1489 (97%) 15 (1%) 116 40 (20 - 40) 43 : 56 : 13 

Wet 918 (49%) 0 (0%) 0 - - 

Overall 
Dry 2013 (97%) 25 (1%) 166 20 (20 - 40) 43 : 101 :16 

Wet 1556 (68%) 3 (<1%) 5 20 (20 - 20) 0 : 5 : 0 

* Some contacts were not located 
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  DISCUSSION 4.5

This study quantifies spatial-temporal variations in the within-village contact 

rates between free-ranging domestic dogs in rural Chad. The probability of the 

dogs in a dyad ever coming into contact, their hourly probability of contact 

should they have interacted, and the duration of their contacts were all 

negatively correlated with the distance between dog households. The hourly 

probability of interactions around the household and within the village peaked 

between 5am-9am and again at 6pm-8pm. While less common, the probability 

of contact events outside the village peaked between 5am-8am. Contacts 

outside the village were of longer duration in the dry season, when they were 

also longer than those within the village or household. Contact patterns for 

within- and between-sex dyads varied by season, whereby males were more 

likely to have been in contact in the wet season. When individuals had been in 

contact, contact probabilities throughout the day were higher for within-sex 

dyads in the wet season, and higher for male-male and male-female dyads in 

the dry season. 

In two of the field sites studied (Sarh west and Sarh east) there was the 

opportunity to observe contacts between dogs living in different villages. 

Contact events were only recorded for between-village dyads in Sarh west, 

where the three villages under study were in close proximity (up to 2 km apart), 

relative to the distance between the two villages in Sarh east (~20 km apart). 

Given the negative relationship between the probability of contact for within-

village dyads and the distance between the individuals’ households, this 

absence of contacts between villages that are further apart is unsurprising. The 

contact events for between-village dyads in Sarh west were rare, accounting for 

less than 1% of all observed contacts. However, there was a clear seasonal 
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difference in the occurrence of contacts for between-village dyads, with a 

greater number of dyads in contact and a greater number of contact events 

recorded in the dry season. Again, the spatial distribution of villages was 

important, as a greater number of the potential between-village dyads in 

Bembaya (which is situated between Kira and Ngakedji) were found to have 

had contact. 

Peaks in the probability of contact around the household and within the village 

at ~6am and ~6pm, are in accordance with sunrise and sunset, the timings of 

which vary little throughout the year in Chad. Given the periodic patterns of 

repeated space use described for dogs in this study system (Chapter 2), the 

daily pattern of interaction is likely driven by dogs passing other dog owning 

households as they leave the village and again when they return to their 

household. The duration of contacts between dogs in this study were in line with 

that reported in previous studies (Brookes et al. 2018; Wilson-Aggarwal et al. 

2019), with the majority consisting of brief interactions lasting 20-60 seconds. 

The longer duration of contacts outside of the village might suggest that these 

interactions are different to the type of contacts that occur around the village 

and household, and this may be of epidemiological importance if they involve 

more/less direct contact. Whether or not these patterns are driven by 

independent or owner-mediated movement is unclear. However, this distinction 

could be important for the management of diseases, since owner-mediated 

movements imply that there is an opportunity for dog owners to intervene and 

prevent contacts.  

In contrast to previous studies (Laager et al. 2018; Brookes et al. 2018; Wilson-

Aggarwal et al. 2019), we find evidence for the preferential mixing between 
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sexes, and this varied by season with male-male dyads were more likely to 

have been in contact during the wet season. Whilst in this study we cannot 

determine the nature of contact events, aggressive interactions have been 

shown to be more common among male dogs (Pal, 2015), and this may 

increase the risk of disease transmission through behaviours such as biting. All 

dogs in this study were reproductively intact and the higher frequency of male-

male and male-female interactions during the dry season may be indicative of a 

spike in mating behaviours. However, free-ranging dogs are generally thought 

of as non-seasonal breeders, and while there is a lack of research in this area, 

evidence for seasonal breeding has only been found for free-ranging dogs in 

India (Pal, 2011). A study in northern Australia provides further evidence for the 

effect of reproductive state on an individual’s contact rates, where a higher 

number of contacts were recorded for intact females and neutered males in a 

managed population of free-ranging dogs (Sparkes et al. 2014). Given the 

current evidence, there is potential for the management of free-ranging dog 

populations to have unintended effects, whereby reducing the number of 

susceptible individuals through neutering campaigns could change transmission 

dynamics by altering the spatial-temporal patterns of dog contact behaviour.  

Until recently, there has been a lack of empirical data on the contact rates of 

free-ranging dogs. This has meant that models for dog-mediated diseases have 

assumed that contact rates are density dependent, or have generated variation 

in the probability of contacts by applying frequency dependent functions in the 

form of spatial and/or social scaling parameters (Beyer et al. 2011; Johnstone-

Robertson et al. 2017). Our results provide support for the use of a spatial 

scaling parameter in determining the contact rates between dogs from different 

households. This distance effect may also be relevant for contacts between 
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dogs in different villages, but in rural Chad this might be complicated by 

seasonal differences in the dogs’ range sizes, that are larger in the dry season 

(Chapter 2) and may increase the probability of contact of individuals from 

different villages. By comparison, defining social scaling parameters requires 

more care, and for free-ranging dogs in rural Chad, the seasonal preferential 

mixing patterns between sexes should be included.  

The contact patterns described for dogs here cannot on their own explain the 3-

6 year cycles of canine distemper or rabies in free-ranging dog populations in 

Africa (Hampson et al. 2007; Viana et al. 2015). However, both contact 

frequency and duration can be important in determining whether an infection 

might be transmitted (Smieszek, 2009), and the importance of each depends on 

the infectiousness of the disease and its method of transmission (Cao et al. 

2014; Toth et al. 2015). Furthermore, the seasonal variation in the contact 

behaviours of dogs reported here, could determine the size of outbreaks and 

the speed of transmission, depending on when and where the disease is first 

introduced. We might expect diseases with high transmissibility, such as canine 

distemper, to spread through a village faster in the wet season when contacts in 

the village are more frequent. Equally, we might expect larger outbreaks of 

diseases with both high and low transmissibility in the dry season, when contact 

durations are longer outside the village and interactions for between-village 

dyads are more probable. 

In this study, we provide an in-depth account of the spatial-temporal patterns in 

the contact behaviour of free-ranging domestic dogs in rural Chad. While the 

spatial distribution of households and villages determined the contact rates and 

contact durations between individuals, we find evidence for preferential mixing 
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among sexes and spatially explicit hourly patterns of interactions, both of which 

varied seasonally. These results have implications for the predictions of disease 

transmission in a domestic species that shares several pathogens with humans 

and wildlife.  
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CHAPTER 5:  

EXPOSURE OF FREE-RANGING DOMESTIC 

DOGS CANIS FAMILIARIS  TO POTENTIAL 

SOURCES OF INFECTION FOR GUINEA WORM 

DRACUNCULUS MEDINENSIS 
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 ABSTRACT 5.1

The global campaign to eradicate Guinea worm disease, caused by the parasite 

Dracunculus medinensis, has been compromised by the emergence of 

infections in non-human hosts, particularly domestic dogs Canis familiaris. Dog 

infections have been found in several countries but are most abundant in Chad, 

where the distribution of infections follows the course of the Chari River. 

Infections in humans are acquired either via the classical pathway of drinking 

water contaminated with infected copepods, or through a possible novel route of 

consuming aquatic vertebrates that act as paratenic or transport hosts. 

Irrespective of the specific transmission pathway, water bodies along the Chari 

River are the sources of infection. In this study, we characterised the activity of 

dogs around natural water sources. GPS technology was used to track the 

movements of 298 free ranging domestic dogs across three climatic seasons, 

and in six rural villages in Chad where dog infections are frequently recorded. 

High-resolution satellite imagery was used to identify natural water sources. We 

found considerable temporal and spatial variation in the activity of dogs around 

water sources. Our results show that, in all seasons >85% of dogs had visited 

at least one natural water source. However, in any field site or season, no more 

than 4 water sources accounted for 95% of dog visits and these were all <0.5 

km from a household with tracked dogs. Dogs from households that were closer 

to the Chari River and that had larger home ranges were consistently found to 

be more active around natural water sources. These results can be used to 

prioritise control efforts, such as the treatment of water sources with 

organophosphate temephos (Abate), whereby treatment of water sources close 

to villages that are subject to the greatest amounts of dog activity could be 

treated as a priority.  
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 INTRODUCTION 5.2

Guinea worm disease, or dracunculiasis, is a profoundly debilitating disease 

that is caused by the parasitic nematode Dracunculus medinensis. The disease 

has historically infected humans throughout Africa and Asia, and it has been 

estimated that until recently the disease affected 3.5 million people living in 21 

countries per year (Watts, 1986). Since the 1980s, a global campaign to 

eradicate Guinea worm disease has successfully reduced the number of human 

cases down to 28 in 2018 (CDC, 2019a), and the disease is now thought to be 

endemic in only 4 countries: Chad, Ethiopia, Mali and South Sudan (Hopkins et 

al. 2018), though Angola and Cameroon have recently experienced sporadic 

cases.  

Despite the public health successes in reducing the incidence of human 

dracunculiasis, a large number of non-human animal infections have been 

detected in recent years, particularly in domestic dogs Canis familiaris. In 2018, 

infections were confirmed in 1069 domestic dogs, 32 domestic cats Felis catus 

and 1 olive baboon Papio anubis (CDC, 2019a). Furthermore, emergent worms 

from human and non-human hosts have been shown to be genetically 

indistinguishable (Thiele et al. 2018). The maintenance of the parasite in the 

environment by non-human reservoirs could, in addition to the challenges of 

surveillance, explain the apparent re-emergence of the disease in Chad after a 

10 year hiatus of detected human cases (Eberhard et al. 2014). Even in the 

near-absence of human cases, Guinea worm evidently has the potential to 

persist in the environment as an ongoing source of infection for humans. Given 

the majority of detected non-human infections have been found in dogs, and 

94% of dog infections in 2018 were found in rural Chad (CDC, 2019a), it 

appears plausible that dogs constitute a viable reservoir for infection. Since 
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eradication of Guinea worm requires elimination in all hosts, these non-human 

infections now present a major obstacle for the final stages of the campaign. 

The life cycle of Guinea worm starts when an adult female worm emerges from 

its host and releases larvae into a water source after a 10-14 month incubation 

period (Greenaway, 2014). Larvae are then ingested by an intermediate host 

(copepod crustaceans) where they develop into stage three larvae. The 

definitive host is then infected after ingesting the stage three larvae via either 

the classical or hypothesised novel transmission pathways. The classical 

transmission pathway is through drinking water containing the infected 

copepods. The novel pathway involves the ingestion of a paratenic or transport 

host, such as fish or frogs that have themselves eaten an infected copepod 

(Eberhard et al. 2016; Cleveland et al. 2017).  

The reduction of human cases was achieved through methods of interrupting 

these cycles of transmission, and these included the chemical treatment of 

water sources with the organophosphate temephos (Abate) to reduce copepod 

populations, the provision of safe drinking water or filters to remove copepods 

from water, and, more recently, educating people on the importance of cooking 

fish before consumption (Eberhard et al. 2014). It is thought that similar 

methods can be used to reduce infections in dogs, and current control efforts 

include tethering suspect cases to prevent infected individuals contaminating 

water sources, and burying fish entrails to reduce the dogs’ access to potentially 

contaminated food sources (Molyneux & Sankara, 2017). However, preventing 

dogs drinking from potentially contaminated water sources is clearly more 

difficult than in people, as dogs are free-ranging and only loosely controlled by 

their owners. For this reason, reducing copepod populations in water sources 
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through chemical treatment with organophosphates remains one of the principal 

control strategies. Despite the continuation and intensification of these control 

efforts, dog infections continue to persist, and it is apparent that a better insight 

into the ecology of dogs in relation to Guinea worm infection is required to help 

inform appropriate control efforts. 

The distribution of both human and dog infections in Chad follows the Chari 

River system, and the period for peak detection of new infections in dogs is 

between April and July (CDC, 2019b). Assuming incubation in the host of 10-14 

months, the period of peak transmission is likely to coincide with the end of the 

dry season, when the river recedes to its lowest level and reveals ephemeral 

standing water sources. These ephemeral ponds are numerous, highly variable 

in size and are thought to be a source for Guinea worm infection (Eberhard et 

al. 2014), whether transmission is via classical or novel pathways. However, 

little is known about the interaction between dogs and water sources, which 

makes chemical control efforts harder, more labour intensive and more costly to 

implement. Furthermore, as seen from efforts to control vectors for malaria in 

sub-Saharan Africa, chemical treatment of water bodies can come with high 

operational costs (Derua et al. 2019). In Chad, such problems will be 

exacerbated by the dynamic hydrology of the Chari River. Thus, it is important 

to understand the activity of dogs around water bodies, so that resources and 

field operations can be prioritised or even targeted towards water sources that 

are disproportionately used by dogs.  

This study explores the behaviour of free-ranging domestic dogs and their 

activity around water sources in rural Chad. We tracked the movements of dogs 

from six villages in which dog infections are frequently recorded, and have 
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characterised the variation in dog activity around water bodies that are thought 

to be potential sources for Guinea worm infection. We aim to identify predictors 

for the dogs’ activity around water bodies, which can then be used to inform 

control strategies, particularly in targeting and prioritising chemical treatment of 

copepod populations.  
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 METHODS 5.3

 Field sites and timing of fieldwork  5.3.1

Fieldwork was conducted in six villages in three areas of rural Chad (Figure 

5.1). Medegue (11°01'48.8"N 15°26'37.7"E) is in Guelengdeng district of Mayo-

Kebbi East region, in the western central part of Chad and is located ~15 km 

north from the town of Guelendeng on the main road along the Chari river. The 

other five villages were located in the district of Sarh of the Moyen-Chari region 

in the south of the country. Three villages lay close together, ~10 km to the west 

of the local capital town of Sarh (Sarh West area): Ngakedji (9°11'16.5"N 

18°18'10.7"E) extends along the edge of a tributary from the Chari River, 

Kira(9°10'50.8"N 18°17'00.3"E) is a large, nucleated village ~2 km from 

Ngakedji, and Bembaya (9°11'33.6"N 18°17'42.3"E) is situated between the 

two. The other two villages were situated ~40 km to the east of Sarh (Sarh East 

area): Marabodokouya (9°19'42.3"N 18°43'20.0"E) is a large, dispersed 

settlement with its centre situated on the road to Kyabé, and multiple hamlets 

along the river bank, up to 10 km away from the main road, and Tarangara 

(9°08'19.8"N 18°42'00.9"E)  is a small nucleated village ~13 km south of 

Marabodokouya, situated on a remote branch of the Chari that is cut off from 

the main river during the dry season forming a large pond. 

Fieldwork was conducted in three field seasons; the dry season (between 

March and May 2018; 35°C mean daily maximum temperature, 10.3 mm mean 

total rainfall), the wet season (between August and September 2018; 27°C 

mean daily maximum temperature, 174.4 mm mean total rainfall) and the cool 

season (between January and March 2019; 28°C mean daily maximum 

temperature, 0 mm mean total rainfall). Temperature and rainfall information are 
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reported for N’Djamena from the world meteorological organisation, 

(https://worldweather.wmo.int/en/home.html; accessed on 30/09/2019).  

https://worldweather.wmo.int/en/home.html
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Figure 5.1. Field sites & natural water sources in rural Chad. Triangles 

represent a household where at least one dog was collared. Orange triangles 

represent households from the village Medegue in Guelendeng district. In the 

Sarh East area, blue triangles represent households in the village 

Marabodokouya and pink triangles are households from Tarangara. In the Sarh 

West area, yellow triangles represent the village Kira, green triangles the 

village Ngakedji and red triangles represent Bembaya. Vectorised water bodies 

from the satellite imagery are displayed for the wet season (blue) and dry/cool 

season (red).  
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 Dog space use 5.3.2

After consent was provided by the village chief and dog owner, dogs were 

collared with retail dog collars (Ancol Heritage) fitted with a standard i-GotU GT-

600 GPS unit (Mobile Action Technology Inc., Taiwan). After two weeks the 

collars were replaced with collars fitted with the same GT-600 GPS units, but 

which had been modified with a larger battery. The GPS units were configured 

with a fix interval of 10 minutes. GPS data were cleaned by removing locations 

taken up to 12 hours after the collar was deployed and 12 hours before collar 

recovery. Any likely erroneous GPS fixes with speeds greater than 20 km/hr 

between locations were removed. GPS data were projected into the relevant 

coordinate reference system for Chad (EPSG: 32633) using the ‘sp’ (v1.3.1) 

and ‘rgdal’ (v1.3.3) packages in R. 

The dogs’ home ranges were calculated using auto-correlated kernel density 

estimates (AKDE) from continuous time movement models. Models were fitted 

using the ‘ctmm’ package (v0.5.5) following procedures set out by Calabrese et 

al (2016). Variograms were used to check the autocorrelation structure of each 

individual’s movement data. Individuals were excluded from home range 

analyses if there was no asymptote in the variogram, suggesting the individual 

was not monitored long enough or was exhibiting non-range resident 

behaviours, e.g. range expansion or dispersal. Movement models were fitted 

using maximum likelihood and model selection was determined by Akaike 

information criteria (AIC). Once models were selected, the 95% isopleth was 

extracted from models as an estimate for the dog’s total range (AKDE95).  

 Water sources 5.3.3

High resolution satellite imagery was obtained from DigitalGlobe for the three 

field sites. All satellite imagery was collected in either January or February 2018 
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and included red, green, blue and near infra-red bands from WorldView-2 & 

WorldView-3 satellites. Natural water sources were identified and vectorised 

using the Quantum Geographic Information System (v2.18.1) by visually 

searching the satellite imagery (a search area of 1463 km2 for Sarh East, 486 

km2 for Sarh West and 147 km2 for Guelendeng; Figure 1). Search areas for 

each field site were determined by creating a bounding box around all of the 

relocation points for dogs in the first field season. Water bodies were 

considered as present in the dry and cool season if water was visible in the 

satellite imagery. For identification of water bodies in the wet season, the 

boundaries of those identified for the cool and dry seasons were extended if 

visual evidence from the satellite imagery suggested they became larger (e.g. 

concentric rings caused by water evaporating in the surrounding soil). Similar 

evidence was also used to identify water sources that were present in the wet 

season but not in the dry or cool seasons, and to determine the likely 

boundaries of the river during the wet season. To ground-truth the location of 

vectorised water bodies, GPS locations of water sources around villages were 

taken in the field, and the proportion of these that were also identified in the 

satellite imagery was calculated. 

 Activity around water sources 5.3.4

To infer dog activity at water sources we used a similar approach to in a 

previous investigation conducted in Ethiopia (Appendix A), where for each dog 

we determined: the number of GPS location points within 100 m of a natural 

water source, the number of separate visits to water sources (defined by an 

interval of 30 minutes between GPS location points) and the number of unique 

water sources visited. The threshold distance of 100 m was chosen as 

preliminary analysis using the movement models showed that on average dogs 
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moved 0.02 km/min (200 m per 10 minutes), meaning that if an individual had a 

GPS fix 100 m from a water source, they could reasonably have visited it and 

moved outside of the 100 m threshold within 10 minutes. For each water 

source, we measured: area, type (river or standing water), whether the water 

body was part of the river in the wet season, the distance to the nearest 

household with tracked dogs, whether it had been visited by a tracked dog 

during the monitoring period, the number of unique dogs that had visited, and 

the number of GPS location points within 100 m of the pond for all dogs. 

 Statistical analysis 5.3.5

Variation in whether or not dogs interacted with water bodies was analysed 

using a general linear mixed model (GLMM) with a binomial error structure. 

Explanatory variables included sex, logged (base 2) age, body condition, logged 

(base 10) AKDE95 range, season, whether the dog was from a hunting 

household, whether the household provided water for their dogs, the logged 

(base 2)  distance of the household from the river and the logged (base 10) 

number of days the dog was tracked. Region, village and household ID were 

included as nested random effects. Two further models were fitted with the 

same explanatory variables as the aforementioned model, but were used to 

investigate predictors for whether or not dogs interacted with (1) the river or (2) 

standing water bodies. 

For dogs that had visited natural water sources, several GLMMs were fitted to 

investigate variations in the exposure of dogs to water sources. The first model 

investigated the number of unique natural water sources with which the dogs 

had visited, and used a Poisson error structure. A second model, fitted with a 

negative binomial error structure, investigated predictors for the activity of dogs 

around water sources, and used the number of GPS fixes that dogs had within 
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100 m of water bodies as a proxy for activity. The model for activity around 

water sources was re-run for activity just around rivers, and again for activity 

just around standing water bodies. Explanatory and random variables for all 

models were the same as in the aforementioned binomial models.  

To investigate correlates with whether or not a water body was visited by a dog, 

a GLMM with a binomial error structure was built for each field season 

separately. Explanatory variables included the logged (base 10) area of the 

water source and the logged (base 2) distance of the water source from the 

nearest household with tracked dogs, while study site was included as a 

random variable. GLMMs with a negative binomial error structure and the 

aforementioned variables were used to investigate correlates with the number 

of unique dogs that visited each water source, and the number of trips by dogs 

to each water source. A generalised additive model (GAM) was used to relate 

the cumulative total of dog visits per water body to the logged (base 2) distance 

of the water body from a household with tracked dogs. The cumulative count of 

visits was made after ordering the water sources by the number of dog visits in 

descending order. 

An information theoretic approach was used for the model selection of all GLMs 

and GLMMs, using ranked comparisons of corrected AIC (AICc) values. The top 

model set was selected using a difference in AIC (ΔAIC) of <2 from the top 

model, and model averaging was conducted over the top model set (Burnham 

and Anderson, 2002). Throughout the manuscript we report the more 

conservative full-averaged model results (as opposed to the conditional average 

results). Correlations between explanatory variables were investigated prior to 

analyses using Spearman’s rank correlation tests, and correlated variables 
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were precluded from appearing in the same models. ‘lme4’ (v1.1-12) was used 

to conduct GLMMs, ‘MuMIn’ (v1.15.6) for model selection and ‘mgcv’ (v1.8.12) 

for GAMs.  
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 RESULTS 5.4

Ranging data were collected for a total of 298 unique dogs. In each field 

season, dogs were tracked for a mean of 35 days, with a minimum observation 

period of 1 day and a maximum observation period of 70 days. 65 dogs had 

spatial data available in all three field seasons. Reasons for missing spatial data 

included loss or damage of collars and dogs dropping out of the study due to 

death, disappearance or relocation. 

Of the dogs with spatial data available, those that were identified as range-

resident and for which home ranges could be calculated, comprised 174 

individuals in the dry season, 151 in the wet season and 190 in the cool season. 

The dogs’ AKDE95 ranges had a median of 0.54 km2 (inter-quartile range: 0.08 

– 6.21 km2) in the dry season, 0.31 km2 (0.07 – 1.06 km2) in the wet season and 

0.57 km2 (0.09 – 3.39 km2) in the cool season (see Table 5.1 for a summary be 

village). In all seasons, over 85% of tracked dogs interacted with a natural water 

source, but spent a median of ≤1% of their time around water sources. 

However, there were large variations in the activity of dogs around water 

sources, both between villages and seasons (Table 5.1). 

 In total, 1179 natural water sources were identified from satellite imagery for 

the dry/cool season, of which 842 of the standing water sources were part of the 

river system (Table 5.2). For the wet season 817 natural water sources were 

identified and, since the river was at maximum capacity, no standing water 

sources were part of the river system. Of the water sources with known GPS 

locations, 64 of 78 (82%) were detected in the satellite imagery. 
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Table 5.1. Summary for the activity of free-ranging domestic dogs around natural 

water sources in rural Chad. Reported for each field season and village is the number 

of individuals with spatial data, the number of individuals to have visited water 

sources (for standing water and the river in brackets), the AKDE95 range of range 

resident individuals and the activity of dogs around water sources. Where relevant the 

median and inter-quartile range in brackets is provided. Data on individuals were 

excluded from metrics for the number of unique water sources visited and the activity 

around water sources if they were never recorded to visit the respective  water source. 

Village Season n 
No. to visit a 
water body 

(standing : river) 
AKDE95 (km

2
) 

No. of 
unique water 

bodies 
visited 

Activity around 
standing water 

(%) 

Activity 
around the 
river (%) 

M
e

d
e

g
u

e
 Dry 22 22 (22 : 14) 

0.15 
(0.07 - 0.39) 

8 
(5 - 10) 

8 
(2 - 63) 

1 
(<1 - 2) 

Wet 27 27 (22 : 27) 
0.57 

(0.07 - 1.76) 
5 

(3 - 9) 
3 

(<1 - 50) 
12 

(3 - 57) 

Cool 28 28 (28 : 19) 
0.32 

(0.08 – 1.29) 
8 

(4 - 12) 
5 

(2 - 39) 
1 

(<1 - 2) 

K
ir
a
 

Dry 41 31 (18 : 25) 
0.26 

(0.06 - 1.32) 
1 

(1 - 2) 
<1 

(<1 - <1) 
2 

(<1 - 4) 

Wet 38 32 (30 : 8) 
0.33 

(0.14 - 0.70) 
2 

(1 - 4) 
<1 

(<1 - 1) 
<1 

(<1 - 1) 

Cool 38 29 (19 : 25) 
0.60 

(0.05 – 2.61) 
2 

(1 - 2) 
<1 

(<1 - <1) 
1 

(<1 - 2) 

B
e

m
b

a
y
a
 Dry 12 12 (6 : 12) 

5.01 
(0.36 - 17.82) 

2 
(1 - 3) 

1 
(1 - 1) 

8 
(5 - 10) 

Wet 18 9 (0 : 9) 
0.05 

(0.03 - 0.13) 
1 

(1 - 1) 
- 

<1 
(<1 - <1) 

Cool 14 13 (0 : 13) 
0.41 

(0.02 – 1.06) 
1 

(1 - 1) 
- 

3 
(1 - 6) 

N
g

a
k
e

d
ji 

Dry 20 19 (1 : 19) 
0.11 

(0.03 - 0.36) 
1 

(1 - 1) 
<1 

17 
(4 - 30) 

Wet 15 14 (2 : 14) 
0.12  

(0.02 - 0.58) 
1 

(1 - 1) 
2 

16 
(4 - 43) 

Cool 19 19 (1 : 19) 
0.13 

(0.02 – 0.28) 
1 

(1 - 1) 
<1 

11 
(4 - 47) 

M
a

r.
 

Dry 68 60 (59 : 39) 
9.76 

(0.57 – 19.81) 
6 

(3 - 9) 
2 

(1 - 5) 
<1 

(<1 - 1) 

Wet 61 57 (46 : 19) 
0.65 

(0.09 - 4.31) 
3 

(1 - 5) 
1 

(<1 - 3) 
12 

(1 - 87) 

Cool 88 73 (71 : 31) 
1.49 

(0.16 – 5.61) 
3 

(2 - 7) 
1 

(1 - 5) 
2 

(<1 - 7) 

T
a
ra

n
g

a
ra

 

Dry 17 17 (17 : 1) 
0.36 

(0.02 - 0.70) 
4 

(3 - 6) 
38 

(7 - 73) 
<1 

Wet - - - - - - 

Cool 12 12 (12 : 1) 
1.12 

(0.16 – 2.87) 
8 

(3 - 10) 
26 

(7 - 55) 
<1 

O
v
e

ra
ll 

Dry 180 161 (123 : 110) 
0.54 

(0.08 – 6.21) 
3 

(1 - 7) 
1 

(<1 – 5) 
<1 

(<1 - 5) 

Wet 159 139 (100 : 77) 
0.31 

(0.07 - 1.06) 
2 

(1 - 5) 
<1 

(<1 - 2) 
<1 

(<1 - 7) 

Cool 199 174 (131 : 108) 
0.57 

(0.09 – 3.39) 
3 

(1 - 7) 
<1 

(<1 - 5) 
<1 

(<1 - 3) 
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Table 5.2. Summary for natural water sources and the amount of dog activity they 

received.  Where appropriate the median is reported with the inter -quartile range in 

brackets.  Water bodies are considered part of the river system if the river flooded into 

them during the wet season. Summary metrics for the median number of unique dogs 

to visit each water body visited by dogs, and the median distance of water bodies 

visited by dogs from a household with tracked dogs. 

  

Region Season 
No. of water 

sources 

No. of water 
sources 

associated with 
the river system 

No. visited 
by dogs 

No. unique 
dogs 

Distance from dog 
household (km) 

S
a
rh

 E
a
s
t 

Dry 623 445 110 2 (1 - 6) 1.43 (0.78 – 2.69) 

Wet 343 1 34 2 (1 - 7) 0.93 (0.33 – 1.55) 

Cool - - 119 3 (1- 6) 1.68 (0.93 – 4.51) 

S
a
rh

 W
e
s
t 

Dry 447 301 18 2 (2 - 4) 2.44 (1.41 – 2.68) 

Wet 279 1 21 4 (1 - 6) 1.19 (0.56 – 1.74) 

Cool - - 17 3 (2 – 4) 2.44 (1.38 – 2.61) 

G
u
e
le

n
d
e

n
g

 

Dry 109 96 39 3 (1 - 6) 0.35 (0.24 – 0.83) 

Wet 195 1 43 1 (1 - 4) 1.66 (0.24 – 2.35) 

Cool - - 32 6 (4 – 8) 0.32 (0.23 – 0.63) 
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 Probability of visiting water sources 5.4.1

From the dog’s perspective, the odds of individuals having been within 100 m of 

a natural water source, reduced by a factor of 0.34 (confidence limits: 0.23, 

0.51) with each doubling in the distance between their household and the river 

(z = 5.27; p < 0.001; Figure 5.2). The odds of dogs having visited a water 

source increased by a factor of 7.27 (3.59, 14.73) with each 10-fold increase in 

their AKDE95 range size (z = 5.51; p < 0.001; Figure 5.2). There was a marginal 

effect of sex, whereby the odds of females having visited a water source was 

2.44 (1.03, 5.81) times that of males (z = 2.02; p = 0.043). In addition, the odds 

that dogs had visited a water source increased by a factor of 1.68 (1.04, 2.71) 

for every doubling in the days they were monitored (z = 2.12; p = 0.034).  

The same predictors were found (with the exception of sex) when only 

considering whether or not dogs had visited standing water sources (distance 

from the river: 0.80 (0.66, 0.98); z = 2.15; p = 0.031; AKDE95 range: 4.56 (2.77, 

7.52) z = 5.95; p < 0.001); days monitored: 12.78 (3.69, 44.22); z = 4.02; p < 

0.001). Again, when looking at whether or not dogs had visited the river, there 

was an effect of the household’s distance from the river (0.33 (0.22, 0.49); z = 

5.46; p < 0.001) and the dog’s AKDE95 range (7.17 (3.69, 13.91); z = 5.82; p < 

0.001). However, there was also an effect of season whereby, compared to the 

dry season, dogs were less likely to have interacted with the river in the wet 

(0.23 (0.08, 0.63); z = 2.85; p = 0.004) and cool (0.44 (0.20, 0.97); z = 2.03; p = 

0.044) seasons.  

From the perspective of the water sources, in the dry season, the odds of a 

water source having been visited by a dog increased by a factor of 1.52 (1.11, 

2.09) with every 10-fold increase in their size (z = 2.60; p = 0.009). In all 

seasons, the odds of a water source having been visited by a dog, decreased 
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with every doubling in their distance from a household with tracked dogs (dry: 

0.23 (0.18, 0.28); z = -13.32; p < 0.001; wet: 0.20 (0.14, 0.27); z = 10.01; p < 

0.001; cool: 0.35 (0.30, 0.42); z = 12.71; p < 0.001). 

 

Figure 5.2. Predictors for whether or not free-ranging domestic dogs from rural 

villages in Chad had visited a natural water source.  Predictions are from a 

general linear mixed model. Individuals were considered to have visited a 

water source if they had GPS fixes within 100 m of a water source. Plot A 

shows the predicted probability of individuals having visited a water source as 

the distance of their households from the Chari River increases. Plot B shows 

the predicted probability of having visited a water source at different AKDE 95 

range sizes. In both plots the x-axis is on a log scale. 

 

Unique water sources visited 

From the dog’s perspective, the number of unique natural water sources visited 

by dogs increased by a factor of 1.58 (1.45, 1.71) for each 10-fold increase in 

the dogs AKDE95 range (z = 11.05; p < 0.001), and decreased by a factor of 

0.92 (0.88, 0.95) for every doubling in the distance between their household and 

the river (z = 4.84; p < 0.001). The number of unique water sources visited 

increased by a factor of 2.04 (1.62, 2.58) for every 10-fold increase in the 

number of days the dogs were monitored. 

From the perspective of the water sources, in all seasons, the number of unique 

dogs to have visited decreased with every doubling in their distance to a 
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household with tracked dogs (dry: 0.74 (0.68, 0.81); z = 6.93; p < 0.001; wet: 

0.71 (0.65, 0.76); z = -9.14; p < 0.001; cool: 0.71 (0.66, 0.77); z = 8.50; p < 

0.001). 

 Activity around water sources 5.4.2

From the perspective of the dogs and for those that had visited a natural water 

source, the number of relocation points within 100 m of a water source reduced 

by a factor of 0.51 (0.47, 0.55) for every doubling in the distance between the 

dogs household from the river (z = 16.67; p < 0.001; Figure 5.3). The amount of 

time dogs spent around water sources increased by a factor of 1.63 (1.39, 1.92) 

with every 10-fold increase in their AKDE95 range (z = 6.00; p < 0.001). There 

was also an effect of season (Figure 5.3), whereby in the cool season, the time 

that dogs spent around water sources decreased by a factor of 0.66 (0.48, 0.90) 

compared to that in the dry season (z = 2.65; p = 0.008), and by a factor of 0.74 

(0.59, 0.93) compared to that in the wet season (z = 2.59; p = 0.010). 

When only considering the activity of dogs around the river, the effect of the 

distance of the dog’s household to the river (0.54 (0.48, 0.60); z = 10.43; p < 

0.001), the dog’s AKDE95 range (1.59 (1.34, 1.89); z = 5.32; p < 0.001) and 

number of days monitored (4.48 (3.19, 7.36); z = 7.40; p < 0.001) was 

unchanged. However, the effect of season showed that compared to the wet 

season, dog activity around the river decreased by a factor of 0.25 (0.16, 0.39) 

in the dry season (z = 5.93; p < 0.001) and by a factor of 0.16 (0.10, 0.24) in the 

cool season (z = 8.48; p < 0.001). Furthermore, the activity of dogs around the 

river was lower in the cool season than in the dry season, by a factor of 0.63 

(0.44, 0.89; z = 3.28; p = 0.001). With the exception of season, the same effects 

were also found when only considering the activity of dogs around standing 

water (distance from the river: 0.73 (0.65, 0.81); z = 5.81; p < 0.001; AKDE95 
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range: 1.38 (1.16, 1.65) z = 3.57; p < 0.001); days monitored: 3.75 (2.38, 5.90); 

z = 5.70; p < 0.001).  

From the perspective of the water sources, when a water source was visited by 

dogs, the number of visits increased by a factor of 1.39 (1.19, 1.62) for every 

10-fold increase in the water sources size in the dry season (z = 4.18; p < 

0.001), and by a factor of 1.48 (1.21, 1.80) in the cool season (z = 4.18; p < 

0.001). In all seasons, the number of dog visits received by a water source 

decreased with every doubling in their distance to a household with tracked 

dogs (dry: 0.45 (0.41, 0.50); z = -14.60; p < 0.001; wet: 0.42 (0.38, 0.47); z = 

15.56; p < 0.001; cool: 0.44 (0.39, 0.50); z = -13.01; p < 0.001). 

 

 

Figure 5.3. Sources of variation in the number of relocation points that free-ranging 

domestic dogs from rural villages in Chad had within 100 m of a water source.  

Predictions are from a general linear mixed model. Plot A shows the predicted number 

of relocation points that individuals would have around water sources in each season. 

Plot B shows the relationship between the dogs AKDE 95 range sizes and their 

predicted number of relocation points around water sources. In plot B the x -axis is on 

a log scale. 

 

In all field seasons and at all field sites, only a few water sources accounted for 

95% of dog visits, and these were all less than 0.5 km from a household with 
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tracked dogs (Figure 5.4). In Sarh east, the river received the highest number of 

dog visits in all seasons, and in the dry season this was followed by standing 

water sources that originated from the river. During the wet season in Sarh east 

and all seasons in Sarh west, the river was the only water source to contribute 

towards 95% of the dog visits to water sources. In these instances, the shallow 

fitted lines for the relationship between the number of dog visits and the 

distance of water sources to the nearest household with tracked dogs, 

emphasises the small contribution that standing water sources had to the total 

count of dog visits. During all seasons in Guelendeng, the river was identified as 

one of the water sources contributing to 95% of dog visits to water sources, 

however, in the dry and cool seasons there were standing  

 water sources originating from the river that received more visits than the river 

itself. During the wet season in Guelendeng, several standing water sources 

that were not associated with the river received a large number of dog visits, 

and this is in contrast to the other field sites, where such water sources never 

featured in those that contributed to 95% of dog visits. Finally, it is notable that 

the amount of dog activity at water sources in the southern field sites (Sarh west 

and east), is highest in the dry and cool seasons. In contrast, dog activity 

around water sources in the northern field site, Guelendeng, is highest in the 

wet season. 
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Figure 5.4. Relationships between the distance of water sources to households 

with tracked dogs and the number of visits from tracked dogs. The x axis is on 

a log scale. 
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 DISCUSSION 5.5

The emergence of dog infections threatens the success of efforts to eradicate 

Guinea worm disease. We have characterised the activity of 298 free-ranging 

domestic dogs around water sources in rural Chad that may be potentially 

sources of worm infection. In so doing, we have shown that both dogs and 

water bodies are not equal in their exposure to potential sources of infection for 

Guinea worm. Across all three field sites and during each of three seasons, 

more than 85% of dogs had visited at least one natural water source. Dogs from 

households that were closer to the river and dogs with larger home ranges were 

consistently found to be more active around natural water sources. 

Furthermore, water bodies received more dog activity when they were larger 

and closer to a household with tracked dogs. It is striking, however, that in each 

season and field site, no more than four water sources accounted for 95% of 

dog visits, and these were all less than 0.5 km from a household with tracked 

dogs. 

The temporal and spatial patterns of dog activity around water bodies in Chad, 

suggests there are seasonal and regional differences in the exposure of dogs to 

potential sources of Guinea worm infection. During the dry and cool seasons in 

the southern field sites, dog activity around water sources was higher than in 

the wet season and, in addition to the river, standing water bodies that were 

derived from the river received the majority of dog activity. This pattern of dog 

activity around water bodies follows that expected from what is known about the 

epidemiology of Guinea worm, with peak transmission in the dry season and 

water bodies associated with the river being the main sources of infection 

(Eberhard et al. 2014). In contrast, during the wet season in Guelendeng (the 

northern field site), the total activity of dogs around water sources was highest 
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in the wet season. While in Guelendeng the river and a few of its associated 

water bodies received the majority of dog activity in the dry and cool seasons, 

the standing water bodies that appear in the wet season could provide an 

additional risk of infection if they are capable of acquiring and supporting 

copepod populations. 

It is surprising that, regardless of the spatial or temporal context, the majority of 

dog activity around natural water sources was focused around no more than 

four water sources, and these were all less than 0.5 km from a household with 

tracked dogs. This finding makes the prospect of the targeted treatment of 

water bodies feasible. One strategy for the treatment of water sources might be 

to target or prioritise the water bodies receiving the highest dog activity during 

the time of peak transmission for Guinea worm, i.e. water bodies derived from 

the river and areas of the river that are within 0.5 km of a household with dogs, 

and during the dry season. In doing so, for the field sites studied here, only 28 

(2%) of the identified standing water bodies would need treating. However, the 

river is clearly harder to treat due to its size and flow, which would quickly renew 

vector populations, and although chemical application is possible at known 

human entry points, those used by dogs may not be equally represented. While 

it is clear that some water sources should be prioritised for chemical treatment, 

it is currently not possible to detect the presence or prevalence of infected 

copepods in any water bodies. This means that, until a ‘pond-side’ test for the 

presence of Guinea worm in a water source is developed, a broader approach 

to targeting water sources is required, and targeting the treatment of water 

sources with the most dog activity would seem a reasonable means of 

prioritising use of resources.  
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While the predictors of dog activity at water bodies can be used as a measure 

of the dogs’ exposure to potential sources of infection for Guinea worm, it is 

unclear if these predictors reflect the risk of infection. For instance, although 

larger water bodies received more dog activity in the dry season, it is not 

obvious how their size relates to their capacity to support copepod populations 

or the likelihood of them being infected with Guinea worm larvae. Similarly, it is 

not possible to determine if, or how often, dogs actually drank from the water 

bodies they are thought to have visited, or whether or not our measure of 

activity at water bodies is positively correlated with the probability of drinking 

from a water source. In addition, although 82% of water bodies with GPS 

coordinates were identified, the satellite imagery used to identify water bodies 

best reflected the cool season, and it is possible that the number of water 

bodies and their boundaries in the wet and dry season are not as accurately 

represented. However, this is not to say that there was a systematic bias in the 

detection of water sources, and so this is not expected to have a large impact 

on the results. The limitations in this study highlight the need for further 

investigation into the hydrology of the River Chari in relation to copepod 

ecology. Such studies would help to narrow down sites of potential infection and 

could be used to further inform targeted strategies for chemical treatment. 

In the current absence of a test to diagnose the presence of infection in 

copepods in water bodies or in dogs, a basic understanding of the interaction 

between vectors and the worm’s new, non-human animal hosts, is required to 

help guide the campaign to eradicate Guinea worm disease. This study has 

characterised one element of this system, and quantified variation in the 

exposure of dogs to natural water bodies in the worst affected areas of Chad. 
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This work highlights the potential for targeted control strategies to treat water 

bodies that receive a disproportionate amount of dog activity. 
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CHAPTER 6:  

GENERAL DISCUSSION  
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 BACKGROUND 6.1

Controlling and preventing epidemics of zoonotic diseases is of crucial 

importance for public health (Morens & Fauci, 2012). Free-ranging domestic 

dogs provide a reservoir for several pathogens that can infect humans 

(Bodimeade et al. 2019), and global efforts are being made to eliminate the risk 

that some dog-mediated diseases present to humans. These include the ‘Zero 

by 30’ rabies campaign (Jarvis, 2016) and the Guinea worm eradication project 

(Hopkins et al. 2018). However, there are some basic aspects of dog ecology 

that had not been well described, but which are fundamental to disease 

transmission and which could help design more informed disease management 

strategies. Specifically, the spatial-temporal heterogeneity in their contact rates 

was unknown and there was limited research on the dynamics of their spatial 

movements. In this thesis, I have provided a comprehensive account of spatial-

temporal dynamics in both the contact rates and ranging behaviour of free-

ranging domestic dogs in rural Chad; where dogs provide a reservoir for rabies 

and Guinea worm, and the risk of infection for both in humans is high. In this 

discussion, I will review the key findings of this thesis and, with particular 

reference to rabies and Guinea worm, I will discuss the implications that these 

findings have for the management of dog-mediated diseases. 
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 KEY FINDINGS 6.2

Heterogeneity in the contact rates among individuals can strongly influence the 

dynamics of disease (May, 2006; Meyers 2007). In Chapter 2, I investigate this 

concept for free-ranging domestic dogs in two rural settlements in Chad. 

Despite it being evident that dogs are social animals (Bradshaw et al. 2009) and 

that contact rates are fundamental to disease transmission (May, 2006; Meyers, 

2007), at the time of study there was no published literature describing a 

contact network for free-ranging dogs, and it is only recently that studies similar 

to the one presented here have emerged (Laager et al. 2018; Brookes et al. 

2018). In describing the contact networks for dogs, I found that while there was 

variation in the contact rates of individuals, interactions were dominated by 

contacts of short duration, and that communities in the network were 

determined by household membership. I also found that, in one settlement, the 

individuals’ second order contacts (eigenvector centrality) were positively 

correlated with their range size. Following this, I use agent-based models to 

simulate the transmission of a disease comparable in its characteristics to 

rabies through the observed contact network. I found that the position, within 

the contact network, of the individual first seeded with the disease, determined 

epidemic outcomes, whereby the risk of an epidemic occurring increased with 

the individual’s ranked number of contacts (ranked degree), whereas the size of 

epidemics was positively related to the individual’s ranked second order 

contacts. Through these results, I have highlighted that free-ranging domestic 

dogs have heterogeneous contact rates, and that individuals are not equal in 

their capacity to initiate disease epidemics or the size of epidemics they initiate. 

This led to my further investigation of the dynamics of contact rates, which I 

present in Chapter 4. The correlation between dog range size and the network 
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position of individuals (relevant to disease transmission), suggested that 

targeted intervention strategies were feasible. However, a more in-depth 

understanding of the variation and drivers of space use is required, which I then 

addressed in Chapter 3.  

The movement of individuals in time and space explicitly determines their 

interactions with others and their propensity to both transmit and acquire 

infections (Altizer et al. 2011; Dougherty et al. 2018). In Chapter 3, I explored 

temporal variation in the ranging behaviour of free-ranging dogs from six rural 

villages in Chad. Prior to this study, the temporal dynamics of dog ranging 

behaviour had only been extensively investigated in one population of 

community dogs in Northern Australia (Dürr et al. 2017; Maher et al. 2019). I 

used continuous time movement models to calculate home ranges and to 

describe the periodicity in the dogs’ repeated space use and activity levels. I 

have shown that seasonality is an important source of variation in space use, 

with dogs having larger ranges in the dry season. Owner activity was also 

important, with dogs from hunting households having larger home ranges in the 

dry season than those from non-hunting households. These results 

demonstrate that there are considerable differences in the spatial movements of 

free-ranging dogs, and that, despite their free-ranging behaviours, some of this 

variation is mediated by the activities of their human owners. In Chapter 2, I 

showed that dogs with larger ranges have more second order contacts and a 

greater capacity to cause larger epidemics, should they become infected. My 

results in Chapter 3, suggest that targeted management strategies could be 

used at the household level to prioritise dogs with larger ranges (e.g. those from 

hunting households). Seasonal differences were found in the proportion of dogs 

that could be found around their household at different times of the day. In the 
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dry season, over 70% of the population could be found around their household 

at all hours, except for dogs in two villages where less than 70% of individuals 

were around their household between 7am-11am. In the wet season, less than 

70% of dogs were around their household between 8am-4pm, and this was 

consistent between villages. The ‘70% threshold’ is particularly relevant to dog 

vaccination campaigns against rabies, which require this level of population 

coverage to be successful (WHO, 2018), and my results highlight the variation 

in the access to dogs should interventions use a door-to-door strategy in rural 

Chad.  

Dynamic patterns in the interactions between individuals can have implications 

for disease transmission and cause predictable pulses of disease incidence in 

time and space (Altizer et al. 2006; Silk et al. 2017; Meyer & Held, 2017). In 

Chapter 4, I conducted a thorough investigation into the spatial-temporal 

dynamics of contact rates between free-ranging dogs in six rural villages in 

Chad. Studies on where and when contacts occur between free-ranging 

domestic dogs are currently absent from the published literature, making this 

research a unique account of dog behaviour. I used high resolution proximity 

loggers to characterise the within-village contacts and a dyadic level analysis to 

describe the mixing patterns, probability of contact and the duration of contacts 

in time and space. I find that, similar to the results in Chapter 2, the probability 

of a contact occurring, the frequency of contact should two individuals have 

interacted, and the duration of contacts all decreased with increasing distance 

between the individuals’ households. Interactions around the household and 

village peaked between 5am-9am and again between 6pm-8pm, while contacts 

outside the village were not as common but peaked between 5am-8am. Contact 

durations followed a similar pattern, but a strong seasonal difference was found, 



 

150 
 

whereby contacts outside the village were of longer duration in the dry season, 

and longer than both contacts in the village and household. I also found 

evidence for preferential mixing between the sexes that varied by season; male-

male contacts had a higher probability of occurring in the wet season, and in the 

dry season, hourly contact probabilities were higher for male-male and male-

female dyads, should they have interacted. While this study focused on 

contacts among dogs living in the same village (within-village contacts), 

between-village contacts were observed and found to be rare, but more 

common in the dry season where they tended to occur within the village. These 

results reveal clear temporal and spatial patterns in the contact behaviour of 

dogs that could have implications for the spread of disease. 

Dogs have recently been identified as a significant reservoir for Guinea worm 

disease, and insight into their exposure to potential sources of infection is 

required to help inform the management practices of the global eradication 

campaign (Hopkins et al. 2018). In Chapter 5, I investigated the exposure of 

free-ranging domestic dogs in Chad to natural water sources; that are a 

potential source of Guinea worm infection. I found that, in all seasons, over 85% 

of dogs had visited at least one natural water source. Dogs spent less time 

around water sources in the cool season but, overall, dogs with larger ranges 

had higher activity levels around water sources. In addition, I showed that the 

majority of dog visits were to water sources that were within 0.5 km from a 

household with tracked dogs. My analysis provides an informed perspective on 

the variation in risk that different dogs and water sources have in facilitating the 

life cycle of Guinea worm. These results can be used to design control 

strategies with simple heuristics that enable prioritisation of dogs and water 
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sources that present the greatest risk of transmitting/acquiring Guinea worm 

infection.  
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 DOG ECOLOGY AND DOG-MEDIATED DISEASE 6.3

TRANSMISSION 

The contact rates and mixing patterns of individuals in a population are 

fundamental to our understanding of disease transmission and in informing our 

choice of control strategies (Anderson & May, 1992; Silk et al. 2019; McDonald 

et al. 2018). The explicit influence of an individual’s spatial movements in 

determining their interactions with others makes the variation in individual space 

use another important consideration in disease ecology (Altizer et al. 2011). In 

this thesis, I have provided one of the first comprehensive descriptions of the 

dynamic social and spatial behaviour of free-ranging domestic dogs in rural 

Africa. I found that there were heterogeneities in several aspects of dog 

behaviour that are relevant for the dynamics of disease transmission.  

 Contact heterogeneity 6.3.1

In Chapter 2, I show that there is variation in the number of individuals that 

dogs interact with, and that substantial differences exist in the total duration of 

contacts that individuals had with others. These findings challenge models of 

dog-mediated diseases that have assumed homogenous mixing, and more 

broadly contribute to the growing literature that show social species do not mix 

randomly.  The observed contact heterogeneities that I have presented here 

may, along with other processes such as high population turnover, help explain 

the failure of culling campaigns to reduce the incidence of disease in dogs 

(Windiyaningsih et al. 2004). The fact that some dogs interact with more 

individuals than others, suggests that there is the potential for ‘super spreading 

events’, where some individuals, ‘super spreaders’, contribute 

disproportionately to disease incidence and spread by causing unusually high 

numbers of new, secondary infections (Lloyd-Smith et al. 2005). Furthermore, 

variation in contact duration has particular importance for the transmission of 
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communicable diseases that have low transmissibility, where individuals that 

have longer contact durations have an increased probability of transmitting a 

disease should they be infected (Smieszek, 2009).  

In both Chapter 2 and Chapter 4, the spatial distribution of the households with 

which dogs were affiliated determined interactions between individuals. This 

provides support for studies that, due to the absence of observed contact data, 

have used a spatial scaling parameter to determine contact rates when 

modelling disease in free-ranging domestic dog populations (Johnstone-

Robertson et al. 2017). This spatial scaling of contacts seems appropriate at 

both the household and village level. However, my analysis in Chapter 4 

identified clear spatial-temporal patterns in the contact behaviour of dogs, and 

these patterns could result in seasonal variations in the duration and size of 

epidemics depending on when and where the disease is first introduced (Altizer 

et al. 2011; Reynolds et al. 2015). This may be further complicated by the 

evidence for preferential mixing between the sexes that varied seasonally 

(Nishiura et al. 2011). It would be beneficial for future studies to use simulations 

to determine which of these aspects of contact behaviour have the greatest 

impact on epidemic processes.  

 Movement heterogeneity 6.3.2

The spatial movements of individuals are inherently tied to the interactions they 

have with others (Altizer et al. 2011), and I demonstrate this in Chapter 2, 

whereby the ranges of dogs was positively associated with their second order 

contacts which was in turn related to their risk of causing larger simulated 

epidemics should they become infected. This inspired a more thorough 

investigation into the space use of dogs, and in Chapter 3 I showed that dogs 

have larger ranges in the dry season, which may explain the findings in 
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Chapter 4 that indicate between-village contacts are more common in the dry 

season. The seasonal ranges of dogs clearly influence their interactions with 

others, and we might expect the incidence of communicable dog infections in 

rural Chad to peak in the dry season, when ranges are larger and contacts 

between villages are more likely. However, while periodic patterns of rabies and 

canine distemper have been described in dogs in Africa (Hampson et al. 2007; 

Viana et al. 2015), these are on the scale of 3-6 years, and a combination of 

factors may contribute to such patterns of disease incidence. 

The spatial heterogeneity of dog space use described in this thesis helps 

illustrate the inherent link between an individual’s movements and their 

interactions with others. Furthermore, these results suggest that identifying 

drivers in the variation of space use might help infer the epidemiological risks 

that different individuals present. This work also highlights that, despite being 

free-ranging, the owner’s activity has a marked influence on dog movements 

and this should not be overlooked. 
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 DOG ECOLOGY AND DOG-MEDIATED DISEASE MANAGEMENT 6.4

Several of the zoonotic diseases for which dogs provide a reservoir are classed 

as neglected tropical diseases  and, as is the case for rabies and Guinea worm, 

these infections predominantly afflict people in regions that are resource limited 

(Bodimeade et al. 2019). Therefore, there is the need for control efforts to 

optimise operations to ensure that interventions successfully reduce disease 

incidence while also trying to alleviate the issue of limited resources. The results 

I report in this thesis can inform the management of dog-mediated diseases, 

and here I discuss how these findings might be applied to the efforts to control 

rabies and Guinea worm. 

 Access to individuals 6.4.1

Disease interventions often require access to individuals and, in the case of dog 

vaccination, a successful campaign requires 70% of the population to be 

accessed (WHO, 2018). It has been suggested that this can more reliably be 

achieved if campaigns are tailored to local contexts, and one consideration here 

is the local ecology of dogs (Fahrion et al. 2017). Furthermore, door-to-door 

methods are a reasonable strategy used in vaccination campaigns (Kaare et al. 

2009; Gibson et al. 2016), but access to dogs requires them to be at their 

household. In Chapter 3, I found that, compared to in the wet season, 70% of 

dogs in rural Chadian villages were more likely to be around their households at 

all hours of the day in the dry season. These results suggest that there are 

seasonal and daily variations in the accessibility of free-ranging domestic dogs, 

and in Chad, door-to-door campaigns would be best conducted in the dry 

season. Furthermore, they give credence to the use of local dog ecology in 

tailoring interventions and optimising field operations. These temporal patterns 

of dog accessibility are unlikely to be the same for other free-ranging domestic 
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dog populations around the world and in different contexts (e.g. urban 

populations). Therefore, field operations would benefit from studies into the 

temporal patterns of free-ranging domestic dog space use, as this knowledge 

provides the opportunities to improve the success of interventions that require 

direct access to individuals.  

 Targeted control strategies  6.4.2

Characterising the heterogeneities in the social and spatial behaviour of 

individuals can identify those that might present higher epidemiological risks 

should they become infected (Lloyd-Smith et al. 2005). The benefit of targeted 

strategies was recently demonstrated using simulated epidemics on a contact 

network for urban free-ranging domestic dogs in Chad (Laager et al. 2018). The 

findings of this study showed that targeting individuals based on their movement 

or position in the network substantially increased the impact of vaccination on 

epidemic outcomes. However, the feasibility of targeted management strategies 

requires that target individuals are readily identifiable through a common trait. In 

Chapter 3, I find that dogs from a hunting household have larger ranges in the 

dry season than dogs from non-hunting households. The positive relationship 

between range size and both contact behaviour (Chapter 2 & Chapter 4) and 

exposure to environmental sources of infection (Chapter 5), suggests hunting 

households may present an identifiable trait for which interventions might target 

or prioritise. However, for this to be realised several studies would be required 

to determine if dogs from hunting households actually present higher 

epidemiological risks (be it Guinea worm or rabies infection), and whether 

targeting control efforts in this context would improve the impact of vaccination 

campaigns. Furthermore, in rural Chad there are several other human related 

activities that could influence dog movements and which should be investigated 
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e.g. cattle herding, fishing and farming small holdings. Nevertheless, these 

results highlight the potential for using local dog ecology to inform targeted 

disease management strategies. 

The life cycle of Guinea worm (Greenaway, 2004) means that in rural Chad, the 

disease can be transmitted both from free-ranging domestic dogs to a water 

source and from a water source to dogs. However, one of the primary control 

measures is to chemically treat natural water sources that potentially harbour 

infected vectors (copepods). In Chapter 5, I described both the exposure of 

dogs in Chad to water sources and the exposure of water sources to dogs. I 

found that water sources that receive the highest exposure to dogs were all 

within 0.5 km of a household with tracked dogs. This provides an informed 

option for the targeted treatment of water sources and, for the eradication 

program, this could be particularly useful given that the treatment of water 

sources is resource intensive and the hydrological system in Chad is vast and 

complex, making it impractical to treat all water bodies. These results highlight 

how the ecology of dogs can be used to not only identify individuals that might 

disproportionately contribute to epidemics, but also identify environmental 

sources of infection that present greater epidemiological risks. 
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 SOCIO-ECOLOGICAL CONTEXTS 6.5

Throughout this thesis I find evidence of anthropogenic influences on dog 

contact rates and movements, whether it be through the distribution of 

households or the activity of owners. Dogs exist in a wide range of socio-

ecological contexts, from companion animals the movements of which are 

restrained, to feral animals with loose, if any, connections to humans, and fully 

wild populations. This thesis focuses on a specific area of this spectrum; free-

ranging domestic dogs in a rural African context. It should be expected that this 

anthropogenic influence on dog ecology will show considerable global variation, 

and that this could also vary substantially on the local scale if there is high 

cultural diversity among humans. However, investigations into the 

anthropogenic influences on dog ecology could provide an insight into drivers of 

dog-mediated disease transmission and simple meausres that can optimise 

control efforts. 
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 CONCLUSION 6.6

Preventing outbreaks of infectious disease is a key concern for public health, 

the health of livestock and that of wildlife. Domestic animals, particularly those 

that are free-ranging, provide a reservoir for zoonotic diseases. Free-ranging 

domestic dogs share several pathogens with humans and are currently the 

focus of two major public health programmes; the ‘Zero by 30’ strategic plan to 

eliminate dog-mediated rabies and the Guinea worm eradication programme. In 

this thesis, I provide a comprehensive investigation into the dynamics of the 

social and spatial behaviour of free-ranging domestic dogs in rural Chad. These 

insights have identified key seasonal and daily patterns in the contact behaviour 

and space use of individuals, shown that individuals are not equal in the risks 

they pose to disease transmission, related the influence of anthropogenic 

activity on space use, and highlighted the potential for targeted disease 

management strategies that are tailored to the local socio-ecological context. 

Overall, it is evident that studies of domestic dog ecology can contribute to a 

‘One Health’ approach to tackling dog-mediated diseases. 
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Abstract 

A programme for the global eradication of Guinea worm disease, caused by the 

parasitic nematode Dracunculus medinensis, has made substantial progress 

over the last three decades. However, the recent discovery of Guinea worm 

infections in populations of domestic dogs presents a major obstacle for the 

eradication programme. Dog infections have mainly been found in Chad, Mali 

and Ethiopia, where infections are apparently limited to parts of the Gambella 

region of western Ethiopia. Little is known about the epidemiology of the 

disease in non-human animals. While humans classically acquired Guinea 

worm infection by drinking water containing infected copepods, it has been 

hypothesised that dogs might additionally or alternatively acquire the infection 

via a novel pathway, such as the consumption of uncooked fish or frogs, as 

possible paratenic hosts, or which are functioning as transport hosts. 

 

We characterised the ecology of free-ranging dog populations from three 

villages in Gog woreda, Gambella region, Ethiopia. We analysed their exposure 

to potential sources of Guinea worm infection, and investigated risk factors 

associated with the dogs’ history of infection. The home ranges of 125 dogs and 

their activity around natural water sources were estimated using GPS tracking, 

and the diet of 119 dogs was described using stable isotope analysis. Owner 

questionnaires were carried out to describe dog husbandry and household 

characteristics, while the locations and features of natural water sources were 

determined through local knowledge and by searching high-resolution satellite 

imagery. 
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There were no clear correlates of past Guinea worm infection in dogs, other 

than that owners had apparently increased the frequency of the provision of 

clean water in response to previous infections and a marginal effect of 

increasing exposure risk with dog age. There was no effect of consumption of 

aquatic vertebrates (fish or frogs) on infection history and we found no evidence 

to support this hypothesised, novel transmission pathway. Variations in dog 

ranging behaviour, owner behaviour and the distribution and characteristics of 

natural water sources all influenced the exposure of dogs to potentially 

infectious water bodies. This initial study suggests that the classical 

transmission pathway should be the main focus of attention in future studies of 

Guinea worm infection in dogs in Ethiopia and in developing appropriate local 

control measures.  
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Introduction 

Guinea worm disease is caused by the parasitic nematode Dracunculus 

medinensis and has historically infected humans across Asia and Africa [1]. 

Since the 1980s, global eradication efforts have reduced human cases from 

approximately 3.5 million per year to only 28 human cases in 2018 [2]. 

However, a significant number of infections in non-human animals have been 

detected in 3 of the 4 remaining endemic countries, with infections found in 

Chad, Ethiopia and Mali but none in South Sudan [3]. In 2018, infections were 

confirmed in 1069 domestic dogs Canis familiaris, 32 domestic cats Felis catus 

and 1 olive baboon Papio anubis [2]. These non-human infections, along with 

insecurity in the remaining endemic areas, present major obstacles for the 

eradication programme [4]. 

Recent evidence shows that emergent worms from human and non-human 

hosts are genetically indistinguishable [5]. Given the low numbers of human 

cases, this suggests that Guinea worm disease in humans is now effectively a 

zoonotic infection that is sustained by reservoir(s) in non-human animals. 

Therefore, even in the near-absence of human cases, non-human hosts are 

maintaining Guinea worm in the environment, resulting in an ongoing low-level 

of infection in humans. The existence of a non-human reservoir could, in 

addition to the challenges of surveillance, explain the apparent re-emergence of 

the disease in Chad, where no human cases were reported for 10 years prior to 

2010 [6]. To prevent the re-emergence of Guinea worm after its elimination in 

humans and for eradication to be completed, transmission must be interrupted 

in non-human hosts. However, little is known about the epidemiology of Guinea 

worm in any of its non-human hosts. 



 

182 
 

The transmission cycle of Guinea worm starts after a 10-14 month incubation 

period when a female worm emerges from its host and releases larvae into a 

water body [7]. Here the larvae are ingested by intermediate hosts (copepods) 

where they develop into stage 3 larvae. Classically, transmission to humans is 

through the consumption of drinking water containing infected copepods [7]. It 

has recently been hypothesised that a novel pathway might also contribute to 

ongoing infections of humans and, to a greater extent, non-human animals. This 

hypothesised pathway requires the ingestion of tissue from a paratenic or 

transport host such as fish or frogs that have themselves eaten an infected 

copepod [8,9]. Human cases have been reduced by applying a number of 

methods, including: the detection and isolation of cases, chemical treatment of 

water bodies to remove copepods (using organophosphate temephos, Abate), 

encouraging the filtration of drinking water [10] and thoroughly cooking fish or 

discarding fish entrails [8]. These control strategies are much harder to 

implement for free-ranging animals and, although some of these measures are 

being applied to control dog infections, infections in dogs persist. Thus, to 

prioritise control efforts, a better insight into the ecology of non-human animal 

hosts, particularly dogs, in relation to Guinea worm infection is required. 

Detected cases in dogs are found along major river systems in Chad and Mali, 

where they are spatially distributed in riverine and wetland habitats associated 

with the Chari [11] and Niger [12] rivers, respectively. In contrast, cases in 

Ethiopia are not concentrated along a major water source and are instead 

localised to a cluster of villages [13] in an area dominated by forest and 

smallholdings [14]. The different ecology of the affected area in Ethiopia 

compared to that in Chad and Mali has raised questions on the similarity of risk 

factors for transmission in non-human hosts [3]. This study aimed to outline the 
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ecology of dogs in this part of Ethiopia and to identify potential risk factors 

associated with dog infections. Both the classical and novel transmission 

pathways for Guinea worm infection in humans are used to inform a priori 

hypotheses. Specifically, the study investigated dog husbandry, access to 

natural water sources and consumption of aquatic foods as potential correlates 

of previous worm infections. 
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Methods 

Fieldwork was conducted in the Gog woreda of Gambella region in western 

Ethiopia, between 28th April and 15th May 2018. A total of 129 dogs, 98.5% of 

the resident adult population, were studied across three settlements; Ablen, 

Atheti and Wichini (centered on 7°37'19.7"N 34°23'25.9"E; Figure 1). For each 

household that owned dogs we recorded its location using a handheld GPS 

(Garmin Map 64S), and a questionnaire was used to gather information on 

whether the household members went hunting, the frequency of water provision 

for dogs (1-3 times a day and > 3 times a day), what they fed their dogs and the 

number of dogs in the household. For each dog we recorded its sex, age in 

months (as recalled by the owner), body condition score (BCS; score between 1 

(emaciated) and 9 (obese)) [15] and whether the dog had ever had Guinea 

worm. BCS was binned into categories of poor (<= 2), moderate (3) and good 

(>= 4). 

Dog space use 

Dogs were collared for up to 14 days with off the shelf dog collars (Ancol 

Heritage), which were fitted with an i-GotU GT-600 GPS unit (Mobile Action 

Technology Inc., Taiwan). The GPS was configured with a fix interval of 10 

minutes. GPS data was cleaned by removing locations taken 12 hours after 

collar deployment and 12 hours before collar recovery. Any likely erroneous 

GPS fixes with speeds greater than 20 km/hr between locations were removed. 

GPS data were projected into the relevant coordinate reference system for 

Ethiopia (EPSG: 32636) using the ‘sp’ and ‘rgdal’ packages (v1.3.1 & v1.3.3 

respectively). 
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The dogs’ home and core ranges were calculated using auto-correlated kernel 

density estimates (AKDE) from continuous time movement models. Models 

were fit using the ‘ctmm’ package (v0.5.5) following procedures set out by 

Calabrese et al (2016) [16]. Variograms were used to check the autocorrelation 

structure of each individual’s movement data. Individuals were excluded from 

home range analyses if there was no asymptote in the variogram, suggesting 

the individual had not been monitored for long enough, or was exhibiting non-

range resident behaviours, e.g. range expansion or dispersal. Movement 

models were fit using maximum likelihood and model selection was determined 

on the basis of Akaike information criteria (AIC). Once the models were 

selected, the 95% AKDE (AKDE95) and core AKDE (AKDEcore) were calculated. 

To calculate the core range, for each individual an exponential regression was 

used to identify the isopleth where the estimated home range area begins to 

increase more rapidly than the relative frequency of use (slope = 1) [17]. To 

estimate the probability of finding each dog around their respective household, 

the number of relocation points within a 50 m radius of the household’s location 

was divided by the total number of relocation points. In addition, the same was 

done for relocation points within 100 m of any household with tracked dogs, and 

this was used to estimate the probability of finding the dogs around the village. 

DigitalGlobe satellite imagery of the field site was obtained for October 2018; 

red, green, blue and near infra-red bands from WorldView-3 & WorldView-2 

satellites. Natural water sources were identified and vectorised using the QGIS 

platform by manually searching a 1365 km2 area centred on the villages of 

interest. To ground truth the location of vectorised water bodies, GPS locations 

of water sources around villages were taken in the field. For each dog, we 

determined the number of relocation points within 100 m of a natural water 
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source and water pumps, the number of separate visits to water sources 

(defined by an interval of 30 minutes between fixes) and the number of unique 

water sources visited. For each water source, we measured: area; distance to 

the nearest household with tracked dogs; whether it had been visited by a dog 

across the monitoring period; the number of unique dogs that had visited; the 

number of relocation points within 100 m of the water source for all dogs and for 

those dogs with a history of Guinea worm infection. 

Variation in the size of the dogs’ ranges was analysed using linear models 

(LMs). Only AKDE95 was considered for analysis as it was highly correlated with 

AKDEcore (rho = 0.99; p < 0.01). AKDE95 was log-transformed to normalise its 

distribution and explanatory variables included village, sex, age, body condition, 

whether the dog was from a hunting household, frequency of water provision, 

number of days monitored and the distance of the nearest water pump and 

natural water source to the household. 

Variation in the activity of dogs around natural water sources was analysed 

using general linear models (GLMs). The first model used a binomial error 

structure and considered whether or not dogs had visited a water source or not. 

Explanatory variables included village, sex, age, body condition, AKDE95, 

whether the dog was from a hunting household, frequency of water provision, 

days monitored and the distance of the nearest natural water source and 

nearest pump to the household. Two additional models, with negative binomial 

error structures, were used to investigate activity around water for those 

individuals that visited water bodies. The response variables for these models 

were the number of relocation points around water bodies and the number of 

unique water bodies visited. Explanatory variables were the same as in the 
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previous model, only the number of days for which a dog had been monitored 

was log-transformed and included as an offset. 

To investigate predictors of whether or not a water source was visited by dogs, 

a binomial GLM was conducted. Explanatory variables included the logged(base 

2) area of the water source and the logged(base 2) distance of the water source to 

the nearest known household with dogs. To identify predictors of the variation in 

dog activity around water sources for those visited by dogs, a negative binomial 

GLM was conducted. The number of relocation points around the water source 

was used as the response variable and the explanatory variables were the 

same as that in the previous model. A generalised additive model (GAM) was 

used to relate the cumulative total of dog visits per water source to the log-

transformed distance of the water sources from a household with tracked dogs. 

The cumulative count of visits was made after ordering the water sources by 

number of visits in ascending order. 

Dog diet 

To identify principal food items, owners were asked (i) What they feed their 

dogs? (ii) What did they feed their dogs yesterday? and (iii) What they have 

seen other people’s dogs eating? Where possible samples of principal food 

items were sampled from the households and were otherwise sourced from the 

market in the nearby town of Pugnido (Gog) or opportunistically from local 

hunters and fishermen. On the day of collection, samples were dried and stored 

in ambient conditions. Items were sterilised in a sterlising oven for 6 hours at 

140°C before, and in an autoclave, after importation. Prior to analysis, samples 

were freeze-dried and homogenised, and approximately 0.7 mg (± 0.1 mg) was 

weighed into a tin cup. For nitrogen depleted plant samples, 10 mg (± 0.1 mg) 
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was weighed out and analysed in order to produce enough nitrogen for accurate 

isotopic characterisation. 

For each dog, one whisker was plucked during collar collection. The whiskers 

were rinsed in distilled water, scraped to remove surface contaminants, 

sterilised and dried for 24 hours. They were then cut into 0.4 - 0.8 mg sections 

and sealed in a tin cup for analysis. To conduct stable isotope analyses of 

carbon (δ13C) and nitrogen (δ15N), samples were analysed in a Sercon 2020 

elemental analyser isotope ratio mass spectrometer. Stable isotope ratios are 

expressed as δ values in ‰, the ratio of heavy to light isotope relative to the 

isotopic ratios of an international standard for each element: the Vienna Pee 

Dee Belemnite (VPBD) for δ13C and atmospheric N2 for δ15N. Estimated mean 

precision between sample runs was ± 0.10‰ (± 0.01) for δ15N and 0.08‰ (± 

0.01) for δ13C, based on standards run within sample batches. A lipid-

normalisation model was applied to δ13C values of samples with a high lipid 

content [18, 19]. 

Relative contributions of food sources to dog diets was estimated using the 

‘SIMMR’ package (v.0.3) [20] and isotope ratios were averaged across all 

whisker sections for each dog. This was done initially to estimate the diets of 

the whole dog population, and then to estimate the diets of individual dogs. 

Models were run for 1,000,000 iterations, with a burn-in of 50000 and thinning 

rate of 50. Gelman diagnostics were used to check model convergence. The 

‘SIDER’ package v 1.0.0 [21] was used to generate trophic discrimination 

factors for dogs for δ15N (3.68‰ SD 1·36) and δ13C (2.82‰ SD 1·78), based on 

their diet type and phylogenetic position. Since dogs are omnivores, 

concentration dependence values (mean N/C) were added to the model [22]. 
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Guinea worm infection 

Field records of owner-reported Guinea worm histories were cross-checked with 

records of emergent adult worms from Ethiopian Dracunculiasis Eradication 

Program (EDEP). There was agreement in all but three records: Two owner-

reported cases were not in the EDEP database, and for these the owner-

reported records were used as they could represent undetected cases. The 

third discrepancy was a case recorded by the EDEP that was missing in the 

owner-reported records.  To resolve this, we included the EDEP Guinea worm 

record as they are based on the collection of an emergent worm. Any EDEP 

records of emergent worms within 14 months post-fieldwork were also included, 

as transmission may have occurred at the time of the study. 

A GLM with a binomial error structure was used to explore the correlates of 

individual level factors with the dogs’ history of infection. Explanatory variables 

included sex, age, BCS, proportion of fish in the diet, AKDE95, number of 

relocation points within 100 m of a water body, water provision, village and 

whether the dog was from a hunting household. A staged analysis was 

conducted in order to maximise sample size. The model was run first for all 

predictors (requiring the removal of data for individuals with missing data). All 

variables that appeared in at least 50% of top models for any of the three sets 

of Guinea worm infection records (EDEP, owner-reported, and finalised 

records) in this initial analysis, were then included in the final model. This 

ensures that any potentially important explanatory variables were retained for 

further analysis. 

To identify traits of water sources that might be more likely to be visited by dogs 

with a history of Guinea worm infection, a binomial GLM was conducted. 
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Explanatory variables included the logged area of the water source and the 

logged distance of the water source to the nearest known household with dogs. 

A GLM with a Poisson distribution and offset for total number of visits was used 

to identify predictors for the variation in the activity of dogs with a history of 

Guinea worm around water sources. The number of relocation points within 100 

m of the water source was used as the response variable and the explanatory 

variables were the same as in the previous model. 

An information theoretic approach was used for model selection in all LMs and 

GLMs, using ranked comparison of corrected AIC (AICc) values. The top model 

set was selected using a difference in AIC (DAIC) of <2 from the top model, and 

model averaging was conducted over the top model set [23]. Results are 

expressed as full model-averaged coefficients for specific explanatory variables, 

often translated onto an interpretable scale, and 95% confidence intervals. For 

binomial epidemiological models, results are expressed as the odds of having 

had Guinea worm and as relative risks, with 95% confidence intervals from 

bootstrapping 10,000 times with replacement. Correlations between explanatory 

variables were investigated prior to analyses using Spearman’s rank correlation 

tests, and correlated variables were precluded from appearing in the same 

models. In all models, village identity and distance from natural water sources 

were highly covariable and so were precluded from appearing together in 

models. Analyses were undertaken in R version 3.4.2 [24] and Quantum 

Geographic Information System (v2.18.1). ‘lme4’ (v1.1-12) was used to conduct 

GLMMs, ‘MuMIn’ (v1.15.6) for model selection and ‘mgcv’ (v1.8.12) for GAMs. 
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Results 

Ranging behaviour 

Collars were deployed on 131 dogs from 47 households (Table A1). Of these, 

125 individuals were identified as range-resident. The mean number of days 

that dogs were tracked was 10 days, with a minimum observation period of 3 

days and a maximum of 13 days. The median AKDE95 for all dogs was 0.10 km2 

and 0.02 km2 for the dogs AKDEcore (Table A2). The median proportion of time 

that dogs spent around their household was 77 % (inter-quartile range: 61 – 89 

%). 

Range size was larger in older dogs (26.6% larger for every year older; 4.0 - 

54.2 95% Confidence Intervals). Range sizes did not differ between villages. 

The sex, health, and whether the dog was from a hunting household or one that 

provided more water did not affect range size. 

Activity around natural water sources 

A total of 359 water bodies were identified. Of the water bodies with known GPS 

locations 60 of 99 (61%) were detected in the satellite imagery. Households 

with tracked dogs were a median of 406 m (312 – 513 m; Table A2) from the 

nearest natural water source. Of all the water bodies identified, 50 (14%) were 

visited by dogs during the study. The visited water bodies were a median of 742 

m (43 – 230 m) from a household with tracked dogs and had a median area 

size of 225 m2 (43 - 230 m2). 27 water bodies accounted for 95% of all dog 

visits and these were all less than 1.5 km from a household with tracked dogs 

(Figure A2). 

Natural water sources that were closer to a household were more likely to be 

visited by dogs than those at greater distances (Odds ratio of 0.20 (0.13, 0.32) 
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as distance from a household doubles). Of the water bodies that were visited by 

dogs, those further from households experienced less dog activity (time spent 

by water bodies roughly halved (0.58 (0.39, 0.84)) each time distance from 

households doubles), while smaller water sources  experienced more dog 

activity (0.73 (0.60, 0.91) of the activity time as size doubles). 

Dogs in Atheti were more likely to have visited a natural water source than dogs 

in Ablen (Odds ratio of 13 (3.1, 55)). Dogs with larger ranges were more likely to 

have visited a water body (Odds ratio of 48 (6, 373); Figure A3), and dogs from 

a hunting household were less likely to have visited a water body (Odds ratio 

0.13 (0.03, 0.62)). 

Of those dogs that had visited a natural water source, dogs in poor health spent 

less time (proportionally 0.55 (0.38, 0.81) of GPS fixes) around water bodies 

than dogs in good health. Dogs in different villages spent different amounts of 

time near natural water sources. Those in settlements nearer natural water 

source systems spent more time near water bodies: dogs were predicted to 

have 7.6 (4.4, 13.2) and 2.8 (1.5, 5.2) times more fixes near water bodies in 

Atheti and Wichini respectively, compared to Ablen. All households reported 

providing water for dogs on at least a daily basis, but dogs from households that 

provided water more frequently (>4 times a day) spent less time near standing 

water (proportionally 0.65 (0.47, 0.90) of GPS fixes; Figure A3) than those dogs 

provided water 1-3 times a day. 

There were only significant differences in the number of unique water bodies 

dogs had visited between different villages, with dogs in Atheti and Wichini 

visiting more water bodies than dogs in Ablen: 4.24 (2.70, 6.66) and 3.57 (2.24, 

5.70) times the number of water bodies respectively. 
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Dog diet 

Dog owners reported that they had either fed or had seen their dogs eat a range 

of items from maize, wild meat, livestock, vegetables and grain foods. Maize or 

a maize-based porridge were the most frequently reported items (47 out of 48 

respondents), the next most commonly reported items were C3 plant foods 

(cabbage, beans, squash, rice and papaya; 17 respondents) and livestock meat 

(beef, goat and pork; 11 respondents). These were followed by wild meat (Olive 

baboon, wild bovid (antelope) species, rats, frogs, lion and unspecified; 8 

respondents) and fish (4 respondents). Most people reported that they didn’t 

know what dogs from other households ate (27 respondents), or that they ate 

maize (13 respondents), with a range of other items which were only singly 

identified. Only 3 respondents reported that their own or others’ dogs ate 

faeces. 

Owner reports of principal dietary items of dogs together with previous studies 

of dog diets in Chad [25] determined the initial collection of putative food 

sources. Once isotopically compared, these food items were formed into six 

groups: C3 plants, C4 plants, livestock, terrestrial wild food, aquatic wild food 

(comprising fish and frogs) and human faeces (Figure A4; Table A3). 

Whiskers of 119 dogs were analysed, and their dietary composition estimated. 

Based on an estimate of dog whisker growth rate of 0.42 mm per day [25], 

these whiskers represented dog diets over a timespan of a little over  3 months 

(98 days; SD 21 days). 

Isotopic analysis of dog whiskers and food sources correspond with owner-

reported dog dietary composition; the majority of the diet of the dog population 
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was composed of C4 plant sources (62%; 59 - 66 95% Credible Intervals). This 

was followed by faeces (17%; 11 - 22) and livestock meat (11%; 8 - 14) making 

up between 10-20% of the diet, then wild foods (aquatic: 2.6%; 1 - 4.3; 

terrestrial: 3.7%; 1.5 - 6.1) and C3 plants (4.2%; 1.1 - 8.3), each constituting 

<10% of the dogs’ diets (Figure A4). 

Correlates of Guinea worm infection 

In initial models of the risk factors in predicting the history of Guinea worm 

infection, the age of a dog, its village, the frequency of water provision and the 

number of relocation points near water bodies, all appeared in at least 50% of 

one of the top model sets, and so were retained for further analysis. The 

proportion of aquatic food in the diet of dogs appeared in a proportion of 0.06, 

0.17 and 0.24 of the respective top model sets for the three Guinea worm 

record datasets. Older dogs had higher chances of having had Guinea worm 

(Relative risk (RR) of 1.02 (0.99, 1.05) with each additional month of age), 

although this effect was marginal. Dogs which were reported to be provided 

water at least 4 times a day had a higher chance of having had Guinea worm 

than those provided with water, but less frequently (RR of 4.38 (1.6, 48.4); 

Figure A5). 

Of the natural water sources which were visited by dogs over the course of the 

study, a water body was less likely to have been visited by a dog with a history 

of Guinea worm if it was further away from households (Odds ratio: 0.23 (0.08, 

0.50) as distance doubles), and dogs with a history of Guinea worm spent more 

time around larger water bodies, compared to the general dog population (dogs 

with a Guinea worm history were located proportionally 1.22 (1.12, 1.33) more 

times around natural water sources as the area size doubled). 
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Discussion 

We have provided a detailed account of the ranging behaviour and diets of free-

ranging domestic dogs in rural Ethiopia, with the aim of understanding the 

potential pathways of Guinea worm infection in dogs, and therefore potential 

ways in which transmission might be interrupted. In this initial, short-term study 

in this disease system in Ethiopia, we found no evidence to support the 

hypothesised novel transmission pathway involving paratenic or transport hosts 

[8,9]; there was a general lack of dietary variation across the dog population 

and the contribution of aquatic foods (frogs and fish) to dog diets was small and 

uncorrelated with infection history. This is not to say that any putative novel 

transmission pathway, via paratenic or transport hosts, is not salient in this 

system, but suggests that either transmission via such hosts is not a major 

pathway, or that it is confined to very rare events and/or consumption of very 

low mass items that do not contribute significantly to dog diets. This is in 

contrast to Chad, where evidence suggests that dog infections are related to 

variations in the proportion of fish in their diet, over the range of about 10-20% 

[25]. 

We found that variations in dog body condition, dog husbandry and the range 

size of dogs were related to their exposure to potentially contaminated standing 

water bodies. These results identify factors affecting exposure to water sources 

and might be used to frame further investigations and measures in mitigation of 

potential risks of dogs in rural Ethiopia acquiring Guinea worm infection through 

the classical transmission pathway [7]. Management efforts in both Ethiopia and 

Chad, where studies of dog ecology in relation to Guinea worm infection have 

now been conducted, need to be tailored to the ecology of the affected areas 
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and, in Ethiopia, there is more support for links between the classical 

transmission pathway and dog infections. 

The positive effect of dog age on history of infection is a simple function of the 

duration of exposure. While this effect is intuitive, reflecting the fact that older 

dogs have had longer to acquire an infection, due to the relative infrequency of 

infection, this effect was marginal. It was also the case that older dogs had 

larger home ranges, which was associated with a greater probability of having 

visited a natural water body. Therefore, the increased ranges of older dogs 

could lead to increased exposure risk. Overall, dogs in these villages had small 

home ranges and the majority of their time was spent around the village. 

Although seasonal differences in ranging behaviour is expected [26], the ranges 

in this study are representative of dog movements at the start of the Guinea 

worm transmission season and when infection is thought most likely to occur 

[12]. 

Against a background of near universal provision of pumped groundwater to 

dogs, we identified an increase in the likelihood of a history of infection with 

respect to increasing frequency of water provision. This is counterintuitive, given 

that increased water provision might be expected to reduce the risk of infection, 

as dogs would be less reliant on potentially contaminated natural sources of 

water. The water provided to dogs comes from groundwater (aquifers) that 

cannot, at the time of collection, be contaminated with copepods or larvae. One 

possible explanation for the current result is that households reporting their 

current practice of providing water more frequently were doing so in response to 

owning a dog that had previously had an emergent worm. The Guinea worm 

eradication campaign has clearly had some success in educating rural 
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communities in this region of Ethiopia on how to reduce risks of infection. 

Therefore, it is reasonable that the owners would respond to having had an 

infected dog by ensuring that clean water is readily available, thereby reducing 

the chance of reinfection. This response seems appropriate given that dogs 

provided with water more frequently were also found to spend less time around 

standing water bodies. 

The distance of natural water sources from households was an important 

correlate of variation in the amount of dog activity they experienced, much of 

which is explained by the different locations of villages in relation to areas with 

the greatest concentration of water bodies. Water bodies closer to a household 

with dogs were both more likely to be visited by a dog, and a dog with a history 

of Guinea worm. Both the general dog population and infected dogs spent more 

time around natural water sources that were closer to households, however the 

wider dog population more frequently visited smaller water bodies, while dogs 

with Guinea worm spent proportionally more time around larger water bodies. 

This correlation with infection history could be due to the fact that larger water 

bodies will persist for longer during dry periods, and therefore have a greater 

potential to support copepod populations that could be infected with Guinea 

worm. From a management perspective, this knowledge of how dogs interact 

with water bodies can help tailor strategies for the control of copepod 

populations, initially targeting efforts towards systematic treatment of those with 

the most dog ‘traffic’. In this case, water sources within 1.5km of a household 

with dogs accounted for the overwhelming majority of interactions between 

dogs and natural water sources. In our use of satellite imagery to identify water 

sources, there was some difficulty in detecting small ephemeral water bodies 

which were identified in the GPS survey. While this may not substantially affect 
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results, as it appears that larger water bodies are used most by dogs with a 

history of Guinea worm infection, improved detection rates might be achieved 

through the use of additional spectral bandwidths and/or machine learning 

techniques. 

This study occurred during the onset of the rainy season in Gambella region 

[27], which corresponds to the beginning of the Guinea worm transmission 

season [12], thus the observed behaviour and diet of the dogs is reflective of 

the period in which infection likely occurs. However, if dog behaviour changes 

later in the season, different emphasis might be placed on alternative 

transmission pathways. It is also worth noting that, due to the current lack of a 

pre-patent diagnostic test, Guinea worm infections are only detected through 

the emergence of an adult worm, meaning individuals will be overlooked if they 

were exposed but did not successfully facilitate the completion of the parasite’s 

life cycle. In addition, the eradication program requires the containment of every 

case and, although necessary, this prevents the characterisation of dog 

behaviour during, or shortly after, worm emergence, which would explicitly 

identify the water bodies that are at greater risk of becoming sources of 

infection. 

This study has identified correlates for the history of Guinea worm disease in 

free-ranging dogs in rural Ethiopia. It was found that dog owners may be 

responding to dog infections by taking positive measures to prevent further 

reinfection by providing clean drinking water for dogs. The provision of clean 

water, as well as improved body condition, in turn reduces the time dogs spend 

at natural water bodies. These findings suggest that there are multiple elements 

of owner behaviour, dog ranging behaviour and the characteristics of natural 
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water sources which can influence potential exposure through the classical 

pathway of transmission (drinking contaminated water), and these can be 

targeted for more effective disease control. 
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Figures & tables 

 

 
Figure A1: Locations of villages and households in which dogs were collared. The 
house symbols represent households from Ablen (yellow), Atheti (green) and Wichini 
(red) that dogs that were tracked. The maps include the base map from 
OpenStreetMap (https://www.openstreetmap.org) and the satellite image was 
generated using the ESRI world imagery basemap (sources: Esri, DigitalGlobe, 
GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, 
swisstopo, and the GIS User Community). 
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Figure A2: Dog activity around water sources in rural villages in Ethiopia. The graph to 
the left shows the cumulative total of all dog visits to water sources plotted against the 
distance of the water source to the nearest household with tracked dogs. The dashed 
lines indicate the distance from a household with dogs at which 80%, 90% and 95% of 
all dog visits are captured. Points represent water sources which account for 95% of 
visits (red), which have been visited but are not within the 95% threshold (blue) and 
those not visited by dogs (white). The red line represents the predictions from a GAM 
relating the cumulative number of dog visits to the distance of water sources from a 
household with a tracked dog. 
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Figure A3: Dog ranging behaviour and exposure to potential sources for Guinea worm 
infection. A) The relationship between range size and the likelihood of a dog having 
visited a pond. Odds are predicted from the model of factors explaining whether a dog 
had visited a water body over the course of the study. B) The relationship between 
frequency of water provision and the amount of time spent near natural water sources 
(based on the number of relocation GPS fixes). Predictions are from the model of 
factors explaining the number of fixes within 100m of water body for those dogs which 
had visited a natural water source. The predictions are shown for dogs in the three 
villages: Atheti (dotted line; circles); Wichini (solid line; triangles) and Ablen (dashed 
line; squares). Other factors are held constant 
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Figure A4: The dietary composition of dogs in three villages in Gog woreda, Ethiopia, 
as determined by stable isotope analysis of dog whiskers and putative foods. A) 
Estimates of the proportional contribution of each food group to the diet of the sampled 
dog population in as calculated by stable isotope mixing model analysis. B) The 
isospace of dogs and their dietary sources: the mean ± standard deviation error bars of 
the mean ± standard deviation error bars of δ15N and δ13C for the food groups; and the 
mean δ15N and δ13C values, averaged across all whisker sections for each individual 
dogs (black crosses). Trophic discrimination factors have been applied to adjust the 
relative position of sources upwards for both δ15N and δ13C. 
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Figure A5: The relationship between the frequency of water provision and the Guinea 
worm infection histories of dogs in Chad. The odds, with 95% Confidence intervals, of 
having had Guinea worm are shown for dogs which are reported to be provided with 
water from 1 to 3 times a day, and at least 4 times a day. Odds are predicted from the 
model looking at the relationship between the history of Guinea worm infection, and 
with other predictive factors held constant. Results are presented for Atheti. 
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Table A1: Summary of all dogs studied in Gog, Ethiopia. Reported for each village is 
the number of dogs collared, their sex, age (mean ± standard error), body condition 
and the number of dogs with a history of Guinea worm (GW). 

Village 
No. 

dogs 
Sex  

(F:M) 
Age  

(months) 
Body condition  

(Good: Moderate: Poor) 
Dogs with GW 

history 

Ablen 24 14 : 10 28 ± 4.7 9 : 6 : 8* 2 (8 %) 

Atheti 68 37 : 31 34 ± 2.9* 19 : 30 : 16* 12 (16 %) 

Wichini 39 19: 19* 29 ± 3.7* 8 : 26 : 3* 5 (14 %) 

Overall 131 70 : 60* 32 ± 2.1* 36 : 62 : 27* 19 (15 %) 

*some individuals had missing information 
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Table A2: Home range estimates and measures of the activity around natural water 
sources for free-ranging domestic dogs from rural villages in Ethiopia. A summary of 
the home range estimates for the 95% and core auto-correlated kernel density 
estimates (AKDE95 and AKDEcore respectively) are provided for each village. Summary 
statistics are also reported for the number of individuals with relocation points within 
100 m of a water source, the number of unique water sources visited, proportion of 
time spent around water sources and the distance of households to the nearest water 
source. For the number of unique water sources visited and time at water sources, 
summary values exclude individuals that were not active around water sources. Where 
relevant, the median and inter-quartile ranges are provided for each parameter. 

Village n AKDE95 (km
2
) AKDEcore (km

2
) 

No. of 

dogs to 

visit water 

sources 

Unique 

water 

sources 

visited 

Time at 

water 

sources 

(%) 

Distance of 

household to 

nearest 

natural water 

source (km) 

Ablen 22 
0.14  

(0.01 - 0.32) 

0.03  

(<0.01 - 0.07) 
7 

1  

(1 - 2) 

<1  

(<1 - <1) 

1.10  

(1.06 - 1.13) 

Atheti 65 
0.08  

(0.02 - 0.46) 

0.01  

(<0.01 - 0.08) 
54 

6  

(4 - 8) 

3  

(1 - 6) 

0.31  

(0.23 - 0.36) 

Wichini 38 
0.12  

(0.03 - 0.73) 

0.02  

(<0.01 - 0.17) 
17 

6  

(4 - 7) 

1  

(<1 - 2) 

0.46  

(0.41 - 0.48) 

Overall 125 
0.10  

(0.02 - 0.44) 

0.02  

(<0.01 - 0.07) 
78 

5  

(4 - 8) 

2  

(1 - 5) 

0.41  

(0.31 - 0.51) 
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Table A3.The number of samples collected of each dietary group, and their constituent 

food items.  

Dietary 
Group 

Food item Sample 
count 

Group 
total 

C3 plants Pulses 11 52 

Grains 9 

Vegetables 18 

Fruit 14 

C4 plants Maize 19 29 

Sorghum 5 

‘Mash’ 5 

Feces (Human) 2 2 

Fish Lake fish 3 29 

River fish 7   

Stream fish 19   

Frogs (Assorted 
species) 

10 10 

Livestock Chicken 5 12 

Beef 1 

Goat 6 

Wild prey Reptile 1 10 

Mammal 7 

Bird 2 
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APPENDIX B 

Methods 

Duration of model runs 

To ensure the presence of active exposed and/or infected individuals at the 300 

day mark did not affect the final results or conclusions, we re-ran simulations for 

all networks of Magrao when R0 was set to 2.4. When allowed to run up to 730 

days, the maximum epidemic duration was 454 days. We found that the 

distributions for epidemic size were unchanged, and the mean epidemic size did 

not change (mean epidemic size for: random = 46; binomial = 27; weighted = 

26). Epidemics lasting longer than 300 days were either due to a few individuals 

that were assigned long incubation times or when an infection occurred towards 

the end of the 300 days. However, by 300 days the epidemics lasting more than 

300 days had run their course and no new cases were produced after 300 days.
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Table B2: The duration of epidemics simulated on the contact networks of free-ranging dogs 
from two rural settlements in Chad. 

Village R0 Network 
Duration 
(days) Duration > 300 (%) 

Kakale 1.2 Random 29 ± 1 0.01 

  
Binomial 28 ± 1 0.01 

  
Weighted 32 ± 1 0 

 
1.8 Random 102 ± 2 0.13 

  
Binomial 86 ± 1 0.05 

  
Weighted 95 ± 1 0.60 

 
2.4 Random 135 ± 2 0.09 

  
Binomial 112 ± 1 0.09 

  
Weighted 121 ± 1 0.08 

 

Magrao 1.2 Random 51 ± 1 0.06 

  
Binomial 46 ± 1 0.02 

  
Weighted 52 ± 1 0.02 

 
1.8 Random 107 ± 2 0.20 

  
Binomial 84 ± 1 0.09 

  
Weighted 92 ± 1 0.07 

 
2.4 Random 139 ± 1 0.12 

  
Binomial 113 ± 1 0.16 

  
Weighted 117 ± 1 0.14 

Results are reported for R0 set to 1.2, 1.8 and 2.4, and for the random, binomial and weighted 
networks of the settlements Kakale and Magrao. Summary statistics are for simulations where 
at least one individual was infected by the seeded individual. The mean ± standard error are 
reported for the duration of epidemics that ended within the 300 days. The percentage of 
simulations that were longer than 300 days is also reported. 

Table B1. Normalized Mutual Information (NMI) score for the relationship between the 
community membership of free-ranging dogs in two rural settlements in Chad and their 
attributes; sex, age and household membership. 

Attribute Settlement EB 
binomial 

EB 

weighted 
G 
binomial 

G 
weighted 

Sex Kakale 0.048 0.058 0.042 0.069 

Magrao 0.077 0.062 0.053 0.066 

Age Kakale 0.196 0.147 0.070 0.147 

Magrao 0.165 0.164 0.150 0.115 

Household Kakale 0.622 0.674 0.625 0.70 

Magrao 0.739 0.725 0.649 0.713 

NMI scores closer to 1 imply a greater overlap between community membership and attributes. 
Community membership is calculated from observed binomial and weighted contact networks 
and calculated using both the edge betweenness (EB) and Greedy (G) algorithms. 
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Figure B1. Frequency distribution of total ranges recorded for free-ranging dogs from 

two rural settlements in Chad. Total ranges are 99 % Minimum Convex Polygons.  

 

 

Figure B2. Relationships between the strength of contacts among free -ranging dogs in 

two rural settlements in Chad and the distance between their respective households.  

Scatter plots show the logged daily average edge weights between observed dyads in 

the settlements Kakale and Magrao against the distance (m) between their 

households. The histograms show the distr ibution of r coefficients calculated from 

permutations where edges were randomly shuffled. The red lines on the histograms 

indicate the observed r coefficient. For all plots, edges for individuals in the same 

household were excluded.
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Figure B3. Number of secondary cases produced from epidemics simulated on the contact networks of free -ranging dogs from two rural settlements 

in Chad. Density plots for the number of secondary cases in simulations of the different networks (columns) of the settlements Kakale  and Magrao 

and for the different R0 values (rows).  
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Figure B4. Relationship between the proportion of simulations to have an epidemic and the seeded individual’s ranked centrality measures 

(eigenvector, degree and betweenness) when disease transmission is simulated through the contact networks of free -ranging dogs from two rural 

settlements in Chad.  The scatter plots include the results for the random,  binomial and weighted networks of each settlement (Kakale and Magrao), 

and are for each R0 value modelled (1.2, 1.8 and 2.4). GAMs are fitted to the data to identify non -linear trends.
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Figure B5. The relationship between the mean epidemic size of simulations and the seeded individuals ranked centrality measures (eigenvector, 

degree and betweenness) when disease transmission is simulated through the contact networks of free -ranging dogs from two rural settlements in 

Chad. The scatter plots include the results for the random, binomial and weighted networks of each settlement (Kakale and Magrao), and ar e for 

each R0 value modelled (1.2, 1.8 and 2.4). The means exclude simulations where the infection did not spread beyond the seeded  individual. GAMs 

are fitted to the data to identify non-linear trends.
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Figure B6. The distribution of eigenvector centrality scores for free-ranging dogs from 

two rural settlements in Chad.  Bean plots are plotted for dogs from the settlements 

Kakale and Magrao. 
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APPENDIX C 

Results 

Variation in core range size 

The AKDEcore ranges of dogs differed significantly between villages, whereby 

the AKDEcore of dogs in Marabodokouya were 3.5 (confidence intervals; 1.5, 

8.0) times larger than those of dogs from Kira (z = 4.24; p < 0.001) and 5.6 (1.8, 

17.7) times larger than the ranges of dogs from Ngakedji (z = 4.26; p < 0.001). 

Seasonal differences in the dogs AKDEcore ranges were also found, but only for 

dogs from Bembaya which had ranges that were 29.2 (9.1, 93.4) times larger in 

the dry season than in the wet season (z = 5.69; p < 0.001) and dogs from 

Marabodokouya which had ranges that were 7.8 (2.6, 15.1) times larger in the 

dry season (z = 6.17; p < 0.001). The AKDEcore of dogs from hunting 

households was 2.6 (1.6, 4.3) times larger than that of dogs from households 

that did not report going hunting (z = 3.94; p = 0.001). The AKDEcore ranges of 

dogs decreased by 3% (2%, 4%) with every 1% increase in the proportion of 

time that they spent around the household (t = -5.76; p < 0.001). 
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Figure C1. Fitted distributions for the 95% auto-correlated kernel density estimates 

(AKDE95) of free-ranging domestic dogs from rural villages in Chad during the dry and 

wet seasons. Plots A & B are for the dry season and plots C & D are for the wet 

season. Plots A & C are histograms for the observed data with the fitted gamma 

distributions (red line; A: shape = 0.30; rate = 0.05; C: shape = 0.38; rate = 0.21). 

Plots B & D show the empirical cumulative distribution against  the fitted gamma 

distributions (red line). 
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Conventional home range estimation methods 

Table C1: Home range estimates using conventional methods for free-ranging domestic dogs in 

rural Chadian communities during the wet and dry seasons. The home ranges of dogs identified 

as being range resident were estimated using Kernel density estimates at the 95% isopleth 

(KDE95) and 50% isopleth (KDE50), and using minimum convex polygons (MCP). Range sizes 

are reported in km
2
. The median is reported along with the interquartile range in brackets. 

Village Season MCP KDE95 KDE50 

Medegue 

Dry 
4.12 

(1.68 – 6.28) 
0.19 

(0.08 - 0.40) 
0.01 

(<0.01 – 0.04) 

Wet 
7.26 

(2.67 – 10.09) 
0.68 

(0.09 – 1.72) 
0.06 

(0.01 – 0.16) 

Kira 

Dry 
8.46 

(2.91 – 14.69) 
0.29 

(0.06 – 1.20) 
0.03 

(0.01 – 0.07) 

Wet 
4.30 

(2.82 – 7.05) 
0.35 

(0.19 – 0.91) 
0.02 

(0.01 – 0.05) 

Bembaya 

Dry 
29.27 

(6.08 – 44.01) 
4.21 

(0.74 – 14.20) 
0.18 

(0.05 – 0.61) 

Wet 
0.68 

(0.61 – 1.90) 
0.06 

(0.03 – 0.14) 
0.01 

(<0.01 - 0.02) 

Ngakedji 

Dry 
1.57 

(0.88 – 4.98) 
0.12 

(0.04 – 0.28) 
0.01 

(<0.01 – 0.03) 

Wet 
1.08 

(0.23 – 3.97) 
0.19 

(0.02 – 0.44) 
0.02 

(<0.01 – 0.06) 

Marabodokouya 

Dry 
32.25 

(12.10 – 
58.28) 

6.71 
(0.52 – 16.99) 

0.44 
(0.05 – 0.92) 

Wet 
5.40 

(1.89 – 13.56) 
0.72 

(0.11 – 3.62) 
0.05 

(0.01 – 0.30) 

Tarangara 
Dry 

8.67 
(0.28 – 25.45) 

0.36 
(0.05 – 0.62) 

0.04 
(<0.01 – 0.11) 

Wet - - - 

Overall 

Dry 
9.50 

(2.94 – 31.65) 
0.56 

(0.09 – 3.84) 
0.05 

(0.01 – 0.31) 

Wet 
3.97 

(1.35 – 8.21) 
0.35 

(0.06 – 1.12) 
0.03 

(0.01 – 0.09) 
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APPENDIX D 

 

Figure D1: The probability of contact between free-ranging domestic dogs in rural Chad with an 

increasing number of days over which a potential dyad was observed. The predictions and 

confidence intervals are plotted from a general linear mixed model. The x axis is on a logged 

scale.  
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Table D1: Summary of mixed effect models for the probability of free-ranging domestic dogs in rural Chad ever having had contact, their hourly contact probability 
should they have been in contact and the duration of their contacts. For each model either the odds ratio or incidence rate ratio and confidence intervals (CI) are 
reported. For the random effects of each model the variance (σ

2
), between-group variance (τ00), group size (Nτ00) and intra-class correlation (ICC) are reported.  

Predictors 

Contact probability 
Hourly contact 

probability 
Contact Duration 

Odds 
Ratios 

CI 
Odds 
Ratios 

CI 
Incidence 

Rate Ratios 
CI 

(Intercept) 0.86 0.06 – 12.08 0.02 *** 0.01 – 0.03 182.93 *** 152.04 – 220.11 

log10(hours monitored) 2.56 *** 1.59 – 4.13 - - - - 

log2(Household Distance) 0.49 *** 0.45 – 0.53 0.62 *** 0.60 – 0.64 0.95 *** 0.95 – 0.96 

Sex [female-female] Reference Reference Reference 

Sex [male-female] 1.48 * 1.03 – 2.13 1.45 ** 1.15 – 1.82 1.01 0.94 – 1.08 

Sex [male-male] 1.16 0.66 – 2.05 1.57 ** 1.12 – 2.21 1.03 0.94 – 1.13 

Age difference 1 0.99 – 1.01 1.01 1.00 – 1.01 1 1.00 – 1.00 

region [Guelendeng] Reference Reference Reference 

region [Sarh East] 0.35 0.10 – 1.20 0.71 0.42 – 1.21 1 0.89 – 1.12 

region [Sarh West] 1.17 0.35 – 3.87 1.05 0.62 – 1.78 1.09 0.98 – 1.21 

season [dry] Reference Reference Reference 

season [wet] 0.83 0.33 – 2.12 1.73 *** 1.41 – 2.13 1.12 0.92 – 1.35 

location [Household] - - Reference Reference 

location [Out.Village] - - 0.21 *** 0.15 – 0.29 1.41 * 1.02 – 1.95 

location [Village] - - 1.09 0.91 – 1.31 1.09 0.91 – 1.32 

hour [01] - - Reference Reference 

hour [02] - - 0.8 0.63 – 1.01 1.01 0.81 – 1.26 

hour [03] - - 0.67 ** 0.53 – 0.85 1.07 0.85 – 1.33 

hour [04] - - 0.99 0.80 – 1.24 1.05 0.84 – 1.30 

hour [05] - - 3.73 *** 3.11 – 4.47 1.91 *** 1.60 – 2.27 
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hour [06] - - 3.31 *** 2.76 – 3.97 1.64 *** 1.38 – 1.96 

hour [07] - - 2.45 *** 2.03 – 2.95 1.32 ** 1.10 – 1.59 

hour [08] - - 1.61 *** 1.32 – 1.96 1.22 * 1.01 – 1.48 

hour [09] - - 1.27 * 1.03 – 1.57 1.25 * 1.02 – 1.52 

hour [10] - - 1.28 * 1.04 – 1.58 1.37 ** 1.13 – 1.66 

hour [11] - - 1.35 ** 1.09 – 1.66 1.31 ** 1.08 – 1.59 

hour [12] - - 2.09 *** 1.72 – 2.53 1.49 *** 1.24 – 1.79 

hour [13] - - 2.15 *** 1.77 – 2.61 1.60 *** 1.34 – 1.92 

hour [14] - - 2.26 *** 1.86 – 2.74 1.53 *** 1.28 – 1.84 

hour [15] - - 2.53 *** 2.09 – 3.06 1.36 *** 1.14 – 1.64 

hour [16] - - 2.69 *** 2.23 – 3.25 1.43 *** 1.19 – 1.71 

hour [17] - - 2.59 *** 2.15 – 3.13 1.25 * 1.04 – 1.50 

hour [18] - - 4.28 *** 3.59 – 5.11 1.51 *** 1.28 – 1.79 

hour [19] - - 4.71 *** 3.95 – 5.61 1.49 *** 1.26 – 1.77 

hour [20] - - 3.40 *** 2.84 – 4.07 1.31 ** 1.10 – 1.56 

hour [21] - - 2.20 *** 1.82 – 2.66 1.26 * 1.05 – 1.51 

hour [22] - - 1.72 *** 1.41 – 2.10 1.27 * 1.05 – 1.53 

hour [23] - - 1.28 * 1.04 – 1.57 1.06 0.87 – 1.30 

hour [24] - - 0.91 0.73 – 1.14 1.04 0.83 – 1.29 

season [wet] * log2(Household 
Distance) 

1.04 0.94 – 1.15 1.01 0.99 – 1.02 1.01 1.00 – 1.02 

season [wet] * Sex [male-female] 0.92 0.59 – 1.44 0.64 *** 0.58 – 0.72 1 0.92 – 1.09 

season [wet] * Sex [male-male] 1.89 * 1.05 – 3.41 0.77 * 0.63 – 0.94 0.95 0.84 – 1.08 

season [wet] * Age difference 0.99 0.98 – 1.01 1 1.00 – 1.00 1.00 ** 1.00 – 1.01 

location [Out.Village] * season [wet] - - 0.87 ** 0.79 – 0.95 0.71 *** 0.65 – 0.78 
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location [Village] *  season [wet] - - 1.95 *** 1.84 – 2.07 0.97 0.92 – 1.03 

hour [02] * season [wet] - - 1.11 0.86 – 1.43 1.01 0.78 – 1.30 

hour [03] * season [wet] - - 1.11 0.86 – 1.44 0.87 0.68 – 1.12 

hour [04] * season [wet] - - 0.83 0.64 – 1.06 0.86 0.68 – 1.11 

hour [05] * season [wet] - - 0.34 *** 0.28 – 0.42 0.63 *** 0.52 – 0.78 

hour [06] * season [wet] - - 0.49 *** 0.40 – 0.60 0.76 ** 0.62 – 0.93 

hour [07] * season [wet] - - 0.73 ** 0.60 – 0.90 0.92 0.75 – 1.13 

hour [08] * season [wet] - - 0.92 0.74 – 1.14 0.83 0.67 – 1.02 

hour [09] * season [wet] - - 0.89 0.71 – 1.11 0.86 0.69 – 1.06 

hour [10] * season [wet] - - 0.85 0.68 – 1.06 0.79 * 0.63 – 0.98 

hour [11] * season [wet] - - 0.68 *** 0.54 – 0.85 0.75 ** 0.61 – 0.93 

hour [12] * season [wet] - - 0.60 *** 0.48 – 0.75 0.71 ** 0.58 – 0.88 

hour [13] * season [wet] - - 0.58 *** 0.47 – 0.73 0.71 ** 0.57 – 0.88 

hour [14] * season [wet] - - 0.56 *** 0.45 – 0.70 0.70 ** 0.57 – 0.87 

hour [15] * season [wet] - - 0.52 *** 0.42 – 0.65 0.78 * 0.63 – 0.96 

hour [16] * season [wet] - - 0.53 *** 0.43 – 0.66 0.71 ** 0.58 – 0.87 

hour [17] * season [wet] - - 0.76 * 0.62 – 0.94 0.86 0.70 – 1.06 

hour [18] * season [wet] - - 0.96 0.79 – 1.17 0.86 0.71 – 1.05 

hour [19] * season [wet] - - 0.9 0.74 – 1.10 0.85 0.70 – 1.02 

hour [20] * season [wet] - - 0.96 0.78 – 1.17 0.9 0.74 – 1.10 

hour [21] * season [wet] - - 0.95 0.77 – 1.17 0.94 0.76 – 1.15 

hour [22] * season [wet] - - 0.89 0.71 – 1.11 0.88 0.71 – 1.09 

hour [23] * season [wet] - - 1.02 0.81 – 1.29 0.96 0.76 – 1.20 

hour [24] * season [wet] - - 1.11 0.87 – 1.41 0.99 0.78 – 1.25 

hour [02] * location [Out.Village] - - 0.57 0.32 – 1.00 1.3 0.76 – 2.23 

hour[02] * location [Village] - - 1.06 0.81 – 1.39 0.95 0.73 – 1.25 

hour[03] * location [Out.Village] - - 0.96 0.57 – 1.61 2.17 *** 1.37 – 3.45 
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hour[03] * location [Village] - - 1.19 0.90 – 1.57 1.02 0.78 – 1.35 

hour[4] * location [Out.Village] - - 0.52 * 0.29 – 0.91 1.52 0.91 – 2.54 

hour[4] * location [Village] - - 0.99 0.76 – 1.28 1.11 0.85 – 1.45 

hour[5] * location [Out.Village] - - 1.86 ** 1.28 – 2.70 0.95 0.66 – 1.35 

hour[5] * location [Village] - - 1.24 1.00 – 1.54 0.87 0.70 – 1.08 

hour[6] * location [Out.Village] - - 2.63 *** 1.83 – 3.79 0.92 0.65 – 1.30 

lhour[6] * ocation [Village] - - 1.1 0.88 – 1.36 0.92 0.74 – 1.15 

hour[7] * location [Out.Village] - - 3.48 *** 2.41 – 5.00 1.01 0.71 – 1.43 

hour[7] * location [Village] - - 1.11 0.89 – 1.38 0.9 0.72 – 1.13 

hour[8] * location [Out.Village] - - 5.47 *** 3.79 – 7.90 1.14 0.81 – 1.62 

hour[8] * location [Village] - - 1.04 0.82 – 1.32 0.97 0.77 – 1.22 

hour[9] * location [Out.Village] - - 5.64 *** 3.88 – 8.21 1.07 0.75 – 1.53 

hour[9] * location [Village] - - 1.06 0.83 – 1.36 0.9 0.70 – 1.15 

hour[10] * location [Out.Village] - - 5.15 *** 3.53 – 7.52 0.86 0.60 – 1.23 

hour[10] * location [Village] - - 0.98 0.76 – 1.26 0.89 0.70 – 1.13 

hour[11] * location [Out.Village] - - 4.24 *** 2.89 – 6.22 0.97 0.67 – 1.40 

hour[11] * location [Village] - - 1.29 * 1.01 – 1.64 0.97 0.76 – 1.23 

hour[12] * location [Out.Village] - - 2.37 *** 1.62 – 3.46 1.02 0.71 – 1.47 

hour[12] * location [Village]  - - 0.96 0.76 – 1.21 0.91 0.72 – 1.14 

hour[13] * location [Out.Village] - - 1.57 * 1.06 – 2.33 0.85 0.59 – 1.24 

hour[13] * location [Village]  - - 0.92 0.73 – 1.17 0.86 0.68 – 1.08 

hour[14] * location [Out.Village] - - 1.11 0.74 – 1.66 1.26 0.86 – 1.84 

hour[14] * location [Village]  - - 0.88 0.69 – 1.11 0.9 0.71 – 1.13 

hour[15] * location [Out.Village] - - 1.23 0.83 – 1.83 0.89 0.61 – 1.29 

hour[15] * location [Village]  - - 0.92 0.73 – 1.15 0.93 0.74 – 1.16 

hour[16] * location [Out.Village] - - 1.86 ** 1.28 – 2.72 0.83 0.57 – 1.19 

hour[16] * location [Village] - - 0.98 0.78 – 1.23 0.91 0.73 – 1.13 
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hour[17] * location [Out.Village] - - 1.47 * 1.00 – 2.15 1.07 0.75 – 1.55 

hour[17] * location [Village] - - 0.98 0.78 – 1.22 0.98 0.79 – 1.22 

hour[18] * location [Out.Village] - - 0.68 * 0.46 – 1.00 0.92 0.64 – 1.33 

hour[18] * location [Village] - - 0.82 0.66 – 1.01 0.83 0.67 – 1.02 

hour[19] * location [Out.Village] - - 0.49 *** 0.33 – 0.73 0.67 * 0.46 – 0.99 

hour[19] * location [Village]  - - 0.9 0.73 – 1.11 0.88 0.72 – 1.08 

hour[20] * location [Out.Village] - - 0.71 0.48 – 1.06 0.77 0.53 – 1.13 

hour[20] * location [Village]  - - 0.96 0.77 – 1.18 0.87 0.71 – 1.07 

hour[21] * location [Out.Village] - - 1.17 0.79 – 1.73 0.75 0.51 – 1.09 

hour[21] * location [Village] - - 1.15 0.92 – 1.43 0.87 0.70 – 1.08 

hour[22] * location [Out.Village] - - 1.23 0.82 – 1.86 0.73 0.49 – 1.08 

hour[22] * location [Village] - - 1.04 0.82 – 1.31 0.89 0.71 – 1.12 

hour[23] * location [Out.Village] - - 1.18 0.76 – 1.81 0.9 0.59 – 1.36 

hour[23] * location [Village]  - - 1.02 0.80 – 1.30 0.98 0.77 – 1.25 

hour[24] * location [Out.Village] - - 1.12 0.70 – 1.78 1.02 0.66 – 1.58 

hour[24] * location [Village]  - - 1.2 0.93 – 1.55 0.99 0.76 – 1.27 

Random Effects 

σ2 3.29 3.29 1.06 

τ00 [ID1] 1.01 0.22 0.01 

τ00 [ID2] 0.77 0.18 0.01 

τ00 [Household ID1] 0.43 0.29 < 0.01 

τ00 [Household ID2] 0.63 0.08 < 0.01 

τ00 [Village ID] 0.13 < 0.01 < 0.01 

τ00 [Dyad ID] - 0.9 < 0.01 

ICC 0.47 0.34 0.02 

Nτ00 [ID1] 255 194 198 

Nτ00 [ID2] 160 203 197 

Nτ00 [Household ID1] 258 129 131 
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Nτ00 [Household ID2] 161 134 129 

Nτ00 [Village ID] 6 6 5 

Nτ00 [Dyad ID] - 1058 1060 

Observations 7190 94656 20594 

Marginal R2 / Conditional R2 0.407 / 0.688 0.338 / 0.561 0.70 / 0.99 

* p<0.05   ** p<0.01   *** p<0.001 
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Table D2: Contrasts for model predictions of the hourly probability that free-ranging domestic 

dogs in rural Chad were in contact. For each hour of the day the odds ratio and confidence 

intervals are provided for the contrast between the probability of contact at the focal hour and to 

that three hours ahead, between the focal hour in the wet and dry season, and between 

contacts at the focal hour within the village. 

 

 

Hour 

Hour 
hour[i] - hour[i+3] 

Hour*season:  
hour[Dry] - hour[Wet] 

Hour*location: 
 hour[within village] - 
hour [outside village] 

Odds 
Ratios 

CI 
Odds 
Ratios 

CI 
Odds 
Ratios 

CI 

hour [01] 1.38 0.96 - 1.99 0.59 *** 0.48 - 0.73 7.91 *** 5.37 - 11.67 

hour [02] 0.25 *** 0.18 - 0.34 0.54 *** 0.43 - 0.67 14.75 *** 8.59 - 25.31 

hour [03] 0.25 *** 0.17 - 0.3 0.53 *** 0.43 - 0.67 9.85 *** 6.18 - 15.71 

hour [04] 0.22 *** 0.16 - 0.3 0.72 ** 0.58 - 0.89 15.08 *** 8.81 - 25.8 

hour [05] 1.05 0.88 - 1.24 1.74 *** 1.48 - 2.04 5.28 *** 4.37 - 6.38 

hour [06] 1.51 *** 1.28 - 1.79 1.22 * 1.04 - 1.42 3.3 *** 2.77 - 3.92 

hour [07] 1.62 *** 1.37 - 1.92 0.81 ** 0.69 - 0.94 2.52 *** 2.13 - 2.99 

hour [08] 1.41 *** 1.18 - 1.68 0.64 *** 0.55 - 0.76 1.51 *** 1.26 - 1.79 

hour [09] 1.03 0.85 - 1.23 0.67 *** 0.56 - 0.79 1.49 *** 1.23 - 1.81 

hour [10] 1.09 0.89 - 1.33 0.7 *** 0.59 - 0.83 1.5 *** 1.23 - 1.84 

hour [11] 1.17 0.95 - 1.45 0.87 0.73 - 1.04 2.4 *** 1.95 - 2.95 

hour [12] 1.12 0.91 - 1.37 0.99 0.84 - 1.18 3.2 *** 2.58 - 3.97 

hour [13] 0.77 *** 0.63 - 0.94 1.02 0.85 - 1.21 4.65 *** 3.62 - 5.96 

hour [14] 0.66 *** 0.53 - 0.81 1.06 0.89 - 1.27 6.27 *** 4.74 - 8.3 

hour [15] 0.55 *** 0.45 - 0.67 1.14 0.96 - 1.36 5.91 *** 4.58 - 7.64 

hour [16] 0.71 *** 0.59 - 0.86 1.11 0.94 - 1.31 4.17 *** 3.38 - 5.15 

hour [17] 0.87 0.72 - 1.05 0.78 ** 0.67 - 0.92 5.28 *** 4.23 - 6.59 

hour [18] 1.46 *** 1.21 - 1.77 0.62 *** 0.53 - 0.71 9.49 *** 7.54 - 11.94 

hour [19] 1.93 *** 1.56 - 2.39 0.66 *** 0.57 - 0.76 14.61 *** 11.32 - 18.85 

hour [20] 2.14 *** 1.7 - 2.7 0.62 *** 0.53 - 0.72 10.6 *** 8.26 - 13.6 

hour [21] 2.23 *** 1.73 - 2.88 0.63 *** 0.54 - 0.74 7.78 *** 6.06 - 9.98 

hour [22] 1.76 *** 1.34 - 2.31 0.67 *** 0.56 - 0.8 6.67 *** 5.05 - 8.83 

hour [23] 1.93 *** 1.36 - 2.72 0.58 *** 0.48 - 0.7 6.84 *** 4.96 - 9.43 

hour [24] 1.43 *** 1.02 - 2 0.54 *** 0.44 - 0.65 8.51 *** 5.85 - 12.39 

* p<0.05   ** p<0.01   *** p<0.001 


