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Abstract  

Between 39-57 million pheasants (Phasianus colchicus) are reared and released into 

the UK each year to accommodate recreational shooting. When carried out well, the 

associated land management can be very positive for the environment. However, 

releases at high densities can cause significant detrimental impacts for the wildlife 

around release sites. To improve the environmental sustainability of the shooting 

industry, methods must be found to; reduce the numbers of birds released without 

adversely affecting the shooting industry, increase knowledge and understanding of 

the impacts of pheasant releases on wildlife, and ensure that methods of monitoring 

pheasant populations are robust and reliable.  

 

I showed that two separate rearing enhancements can be combined within a 

commercial rearing system and lead to greater pheasant harvests while still 

releasing the same numbers, so future release sizes can be reduced while harvest 

rates are maintained. This was achieved by the provisioning of perching material and 

providing an improved diet during rearing that resulted in improved pheasant survival 

post-release, enabling more to contribute to the harvest. Enhanced pheasants were 

harvested at rates 16-17% higher than Control pheasants on shoots releasing <601 

or >2000 pheasants but 6% lower on shoots releasing 601-2000 pheasants. When 

release date was considered and not release size, shoots that released prior to 

August 22nd shot proportionately more Enhanced birds while shoots that released 

after shot proportionally more Control. Enhanced Rearing was cost-effective, only 

increasing the average cost per pheasant by 2.6%. Enhanced pheasants also flew 

higher, had larger hearts, larger breast muscles, thicker tarsi, gained weight more 
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slowly over time, and impact invertebrates and habitats in and around the release 

pen no more than traditionally reared pheasants. Higher flying pheasants were shot 

at higher rates early in the shooting season but lower rates by the end. The overall 

flight performance of the pheasant population as a whole does not change over the 

course of the shooting season.  

 

Releasing pheasants can lower total invertebrate biomass, slug counts, and 

detritivore counts within the release pen by 4 weeks post-release when overall 

invertebrate abundance is high, but this effect is removed by 9 weeks post-release. 

Conversely, when overall invertebrate abundance is low, there is little effect of 

releasing pheasants on invertebrates within release pens 4 weeks post-release, but 

by 9 weeks post-release, pen interiors can have higher total invertebrate biomass, 

total invertebrate counts, slug counts, and beetle counts. Releasing pheasants at 

higher stocking densities in one year can, prior to releases in following years, reduce 

the invertebrate biomass within the release pen, reduced detritivore counts both 

inside and outside of the pen, and increase slug counts both inside and outside of 

the pen.  

 

I created a correction factor that accounts for the deterioration rate of the 

Multi-Tag patagial wing tag which is widely used for marking gamebirds. This allows 

past and future datasets using this tag to increase the accuracy of their findings. 

Even with the correction factor, I recommend that Multi-Tags not be used for long-

term (>1 year) studies. I improved the accuracy of aging pheasants using proximal 

primary feather features by 1.3% by adding feather mass as an additional variable to 
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length and diameter. I also found that machine learning may be overall less effective 

at aging pheasants via the proximal primary method alone. Finally, I discussed the 

implications of my findings and how they could impact wildlife conservation, 

pheasant and shoot management, and monitoring gamebird populations. I also 

identified several areas for potential future study.  
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 Chapter 1 – The pheasant shooting industry, its impacts on UK wildlife, 

current methods of improving and measuring sustainability within it, and how 

my research will aim to improve these methods 

 

 

1.1 The current state of shooting and pheasant releases in the UK 

 

1.1.1 The Shooting industry and the mass release of pheasants  

In the UK today, few non-native species are intentionally released into the wild due 

to potential adverse impacts to native wildlife such as over-competition, alteration of 

natural environments, and the spread of disease (Manchester and Bullock, 2000; 

Sakai et al., 2001). However, this is not the case for the tens of millions of common 

pheasants (Phasianus colchicus) released each year to supplement wild populations 

for shooting. There has been a dramatic increase in the number of pheasants 

released over the past five decades, with average release numbers on the land 

where shooting takes place (shot land) between 1962 and 1985 increasing from 60 

to 260 peasants per km2 (Hill and Robertson, 1988b), an overall 9-fold increase in 

release numbers between 1961-2011 according the National Gamebag Census 

Index (Parrott, 2015), an average of 4.3% increase in release numbers each year 

between 1960-2014 (Robertson et al., 2017), and current yearly pheasant release 

figures at 39-57 million (Aebischer, 2019). This directly adds an estimated additional 

41,000 tonnes of biomass into the UK countryside, 16 times higher than any other 

wild bird species (Parrott, 2015), though as many pheasants would die before 

becoming fully grown (Sage et al., 2018), this figure could be lower.  
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The common pheasant’s natural range stretches across much of Asia but has 

now been extended across the globe for its use as a game quarry, with confirmed 

records in the UK from the 11th century  (Hill and Robertson, 1988b). Pheasants 

were not a primary gamebird in the UK until the 20thcentury, when a shift occurred 

away from the shooting of grey partridge (Perdix perdix) due to the ease with which 

pheasants could be captively bred. This change from supporting larger wild 

populations in favour of captive rearing and release marks the beginning of the 

commercial pheasant rearing industry and a change in traditional gamekeeping 

practices. Despite pheasants being present at low densities for many hundreds of 

years, the current extent of mass releases in the UK has the potential to place a 

significant burden on UK wildlife and ecosystems. 

 

1.1.2 Captive rearing and the release pen system  

Most pheasants released in the UK are reared from day-old chicks in large, heated 

sheds accommodating hundreds to thousands of chicks. These modern methods are 

far more efficient than traditional methods such as incubating eggs under a hen 

pheasant or bantam (Swarbrick, 1985). ‘Rearing' itself covers the pre-release period 

comprising the first 6-7 weeks of a pheasant’s life. After this, they are delivered to 

the shoots and ‘released’ into open-topped pens where they typically voluntarily 

remain for 4-6 weeks, typically during July and August. The quantities, locations, and 

timing of releases are subject to no legal regulation as pheasants are considered 

naturalised and non-invasive, meaning that management and release techniques 

can vary greatly between shoots.  
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Release pens are fenced-off areas of woodland designed to acclimatise 

captive-reared pheasants to the wild. Where possible, pens have mixtures of 

habitats comprising sunny open areas for feeding and socialising, low 0-1m ground 

vegetation to encourage foraging, relatively dense 1-2m shrubby cover to provide 

protection from predators and encourage roosting, and trees that enable roosting 

(Game and Wildlife Conservation Trust, 2008). Hoppers filled with either grain or 

high protein crumb provide most of the bird’s nutrition, as release pens are far too 

small to support sufficient forging. Very often the pheasants have their wings clipped 

prior to release, inhibiting their capacity to fly from the pen until the feathers are 

regrown (Game Conservancy, 1996). This allows gamekeepers to ensure that the 

pheasants stay within the confines of the release pen for an average of 4 weeks, 

after which they can either fly out or the keeper opens the pen, enabling the 

pheasants to move outside during the day and return to the pen’s relative safety at 

night (Bicknell et al., 2010). Pens are usually placed in areas that reduce the 

likelihood of pheasants dispersing away from shot land but are also constricted by 

the available habitat (Hill and Robertson, 1988b). As pheasants are acclimatising to 

the wild environment within the confines of the release pen, they forage, socialise, 

feed, and produce waste (Hill and Robertson, 1988b), all of which can disturb and 

damage the habitat within the pen. Stocking densities of 700 pheasants/ha of 

release pen should reduce potential negative impacts upon the release environment 

caused by ground disturbance and foraging behaviours (Sage and Swan, 2003), but 

average stocking densities have been shown to be as high as 2250 pheasants/ha 

(Sage, Ludolf and Robertson, 2005), with some pens almost double this. Once the 

pheasants are outside the pen, grain hoppers are strategically placed around shot 

land to minimise bird dispersal by providing ready food sources. 
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1.1.3 Reducing pheasant release numbers and how that relates to this thesis 

Reducing the numbers of captive-reared pheasants that die naturally or fail to 

contribute to population growth means that fewer birds could be released, yet the 

same numbers could be harvested. To this end, novel method of improving the 

quality of pheasant welfare during rearing have shown promise at improving post-

release survival, which in turn can lead to smaller releases. The methods of 

improving diet (Whiteside, Sage and Madden, 2015) and providing perching material 

(Whiteside, Sage and Madden, 2016; Santilli and Bagliacca, 2017) have the potential 

to be tested under commercial pheasant rearing conditions instead of smaller scale 

experimental rearing, but this in itself produces four key issues. First, can these 

methodologies be worked into the much larger and more intensive scale of 

commercial pheasants rearing, and if so, do they produce the same benefits in a 

cost-effective manner over a variety of sites? Second, in what additional ways might 

enhanced rearing affect the morphology and behaviour of pheasants raised in this 

way? Third, what impact might these changes to the pheasants have from the 

hunter’s (hereafter referred to as ‘guns’) perspective? Finally, will enhanced rearing 

lead to unforeseen impacts on the environment within which the pheasants are 

released? It is these questions that the core of my thesis will endeavour to answer. 

Additionally, to efficiently analyse how changes to pheasant rearing practices are 

affecting harvest rates and pheasant populations as a whole, robust monitoring 

method must but used. Therefore, any study looking at changing aspects of 

pheasant release or management should adopt the following approach – evaluate 

intervention success; estimate economic costs and benefits; search for potential 

non-economic consequences for humans (guns and shoot managers) and the 

environment; consider long term effects; confirm that survey methods are robust. 

The following sections of this chapter will present pheasant releases in a wider 
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context and how the above research aims could provide a positive impact on 

pheasant releases in the UK.  

 

 

1.2 The positive and negative aspects of pheasant releases 

 

1.2.1 Overview 

In the UK, shot land is highly managed to accommodate pheasants. Management 

designed to maximise pheasant harvests can have beneficial knock-on effects for 

other wildlife while some practices can have mixed or adverse effects. In a review of 

the costs and benefits of gamebird shooting (of all quarry species) across Europe, 

Mustin et al’s (2018) found a mixed picture. On average, direct effects of gamebird 

releases are negative, such as disturbance of habitat within release pens, predation 

of larger invertebrates, and degradation of the hedgerows close to release pens. 

Positive aspects of pheasant releases for wildlife tend to come indirectly as spill-over 

from practices carried out to support pheasant populations, such as habitat 

management, the removal of land from intensive agriculture for use as game cover, 

and supplementary feeding for pheasants providing additional food sources for other 

animals. In order for pheasant releases to have a net gain for wildlife, the negative 

aspects, often driven by high density releases (Sage, Ludolf and Robertson, 2005; 

Sage et al., 2009; Neumann et al., 2015; Capstick, Sage and Hoodless, 2019), must 

be reduced whilst the positive aspects are retained. The main impacts of pheasant 

releases will now be broken down into largely positive or negative categories, 

although such effects can vary greatly between sites and release sizes.  

 



 

30 
 

1.2.2 Positive effects of pheasant releases 

 

1.2.2.1 Positive effect on woodlands 

Roughly 500,000ha of woodland in the UK are managed for game shooting, with 

100,000ha of that being copses maintained as a shelter for game (PACEC, 2014). 

Large areas adjacent to release woodlands are often removed from agriculture and 

planted with cover crops to provide additional shelter, movement corridors, and to 

fosters pheasants’ natural instincts to forage and feed (Draycott, Pock, & Carroll, 

2002). Management carried out by gamekeepers accounts for 3.9 million work days 

of active conservation for UK habitats (PACEC, 2014), and species that share these 

habitats gain from the nearly 2 million ha of land that is actively managed for game 

(PACEC, 2014). 

The woodland in areas managed for game-shooting can be considered to be 

in better condition than other woodland. Woodlands managed for pheasants have 

2%-7% less canopy, causing a denser understorey of between 5%-58% more 

ground vegetation. This may explain the 32% increase in bird numbers found in such 

woods, with woodpigeons (Columba palumbus), warblers, finches, and ground 

feeders being more abundant (Draycott, Hoodless and Sage, 2008; Bicknell et al., 

2010). Pheasant release woodlands also contain significantly higher numbers and 

more species of butterflies than unmanaged woodlands or those used for 

commercial forestry, likely because of higher levels of sunlight that penetrate the 

canopy (Robertson, Woodburn and Hill, 1988; Bicknell et al., 2010). However, such 

benefits are not universal, with some sites showing little difference in invertebrate 

populations between woodlands managed and unmanaged for pheasants (Davey, 

2008). Pheasant management can also encourages the creation of habitats of 

conservation concern such as hazel coppices, which support animal species of 
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conservation concern such as dormice (Muscardinus avellanarius) (Bright and 

Morris, 1994).  

One particular feature of woodlands manged for game-shooting may be 

especially beneficial. Rides, strips of woodland cleared to create a proxy for 

woodland edges to attract pheasants, comprise on average 13% of woodlands 

managed for pheasant, compared to 8% of non-pheasant woodlands (Game and 

Wildlife Conservation Trust, 2016). Responsible creation and maintenance of rides 

can provide large open glades in which species of non-shade-tolerant flora and light-

loving fauna can thrive (Robertson, Woodburn and Hill, 1988; Draycott, Hoodless 

and Sage, 2008). Ride creation also encourages the development of woodland 

understory, a habitat that’s reduction has led to the decline of many woodland 

passerines (Fuller et al., 2005).  

 

1.2.2.2 Positive effect on arable land 

Various arable management options to improve pheasant populations also have 

beneficial knock on effects for other wildlife, primarily through habitat creation and 

increased availability of food items. 

Removing an area of land from agricultural use for a time, called set-aside, 

can be used to provide habitat and food sources for pheasant populations (Draycott, 

Pock and Carroll, 2002), but it also provides an important over-winter food source for 

other wildlife, with five out of six declining farmland bird species found in significantly 

higher numbers on areas with set-aside (Buckingham et al., 1999). Beetle banks, 

isolated strips of sown tussock-forming grass located within arable fields, are also 

used as another method of providing cover and food for pheasants (Thomas, 

Goulson and Holland, 2001). They also provide areas of refuge and potential food 
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sources within large arable fields for other wildlife such as grey partridge and corn 

bunting (Emberiza calandra) (Boatman, Stoate and Watts, 2000; Vickery et al., 

2004). Additionally, beetle banks can reduce numbers of aphids on winter wheat 

(Collin et al 1997), leading to reduced needs for pesticides. Decreased use of 

pesticides in general is also a proven method used for increasing gamebird brood 

sizes by increasing insect prey availability (Sotherton, Robertson and Dowell, 1993), 

and pesticide reduction can then have wide ranging benefits both for wildlife and 

human health (Pimentel et al., 1991).  

However, many farming management options that bring positive effects to 

both pheasants and other wildlife may only be adopted if a shoot is actively trying to 

increase the number of breeding pheasants or retains as many pheasants as 

possible after the shooting season (Hinsley et al., 1999). With an estimated 83% of 

shoots relying solely on pheasants released that year (Bicknell et al., 2010), there is 

far less drive for some shoots to instigate such beneficial measures, as the return on 

the investment is often outweighed by simply releasing more pheasants. This 

furthers the problems caused by high density releases. 

 

1.2.2.3 Positive effects of predator control 

Reduction of predator numbers, both avian and terrestrial, is a primary pheasant 

management technique used to reduce predation losses (Hill and Robertson, 1988b; 

Heydon, M.J. and Reynolds, 2000; Sage et al., 2018; Porteus, Reynolds and 

McAllister, 2019), but it can also have positive effects for other wildlife. The red fox 

(Vulpus vulpus) is the pheasant’s primary predator (Sage et al., 2018), and as many 

ground-nesting birds are also predated by red foxes, the reduction of fox numbers to 

support gamebirds can also improve populations of other species (Angelstam, 1986; 
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Isaksson, Wallander and Larsson, 2007; Fletcher, Nicholas J Aebischer, et al., 

2010). This is particularly important when considering the national and global 

declines in ground-nesting and farmland birds (Isaksson, Wallander and Larsson, 

2007). Currently, studies conflict on the level of impact of predators on other wildlife 

and the benefits from predator control. Fletcher et al (2010) showed a 3-fold increase 

to the breeding success of target bird species after predator control, Stoate and 

Szczur (2001) found that a general combination of game management techniques, 

including predator control, resulted in increased abundance of breeding passerines, 

but Thomson et al (1998) showed no correlation between the spread of avian 

predators and declines in songbird populations. The impact of predator control on 

other species is often driven by the initial densities of predators (Bolton et al., 2007), 

so results can vary substantially between sites.  

However, on shoots that care little for retaining previous years’ pheasants and 

promoting the breeding populations of pheasants, much of the predator control is 

only carried out consistently between pheasant releases and the end of the shooting 

season (Bicknell et al., 2010), meaning that during the spring, when prey are 

breeding and most vulnerable and predators are hunting at greater frequencies to 

support their young (Sargeant, 1972), there is often little if any predator control.  

 

1.2.2.4 Additional positive impacts 

Grain hoppers provided to feed pheasants also increase food availability for other 

wildlife (Draycott, Hoodless and Sage, 2008). Draycott (2005) found that only ~22% 

of hopper use is accounted for by gamebirds, with ~45% by passerines, ~18% by 

mammals, ~9% by columbids, and ~6% by corvids. Wood mouse (Apodemus 

sylvaticus) and bank vole (Myodes glareolus) populations have been shown to 
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increase with proximity to feed hoppers (Davey, 2008), and gamebird feeders have 

been shown to be used by 47 different species (33 birds and 14 mammals), with 

67% of the grain being eaten by species other than gamebirds (Sánchez-García, 

Buner and Aebischer, 2015). 

Released pheasants also provide potential food sources for predators in 

winter, disrupting the usual predator-prey population dynamics (Korpimaki and 

Krebs, 1996; Roos et al., 2018). For protected species, such as red kites (Milvus 

milvus), buzzards (Buteo buteo), and other raptors, this availability of additional food 

could be a potential boon for their populations, both by providing an ample food 

source and by reducing predation on other animals, delivering conservation benefits 

for struggling predator species. Bicknell et al (2010) hypothesise that the increase in 

pheasant releases has helped the reestablishment of buzzard populations in UK 

lowlands over the past 20 years, and the population numbers of generalist avian 

predators have been generally positively associated with increased gamebird 

populations (Pringle et al., 2019). Shot pheasants that are not retrieved or that die by 

other means, such as the estimated 6% that are hit by cars each year (Turner, 

2007), also provide additional food sources for scavengers, and gamebird carcasses 

left in the open are usually scavenged within 1.5-3.3 days after death (Pain, 1991).  

 

1.2.3 Negative effects of pheasant releases 

 

1.2.3.1 Negative effects on woodlands and hedgerows flora and fauna 

The effects of pheasant releases on woodland and hedgerow fauna can be negative. 

Species such as tits, finches, and larks that are positively associated with dense 

hedgerows may be negatively affected indirectly by pheasant releases due to the 

detrimental effect they can have on hedgerow structure (Sage et al., 2009; Bicknell 
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et al., 2010). Pheasant releases also impact invertebrate communities. High density 

pheasant releases (>1000 birds/ha of release pen) cause reductions in large 

carabids (>17.0mm) and those carabids that are active in spring within the release 

pen while also shifting the invertebrate community assemblage within the wooded 

release pens to more closely resemble that found on arable land (Neumann et al., 

2015). Areas where pheasants were released also had significantly less invertebrate 

biomass year-round and specifically reduced lepidoptera larvae biomass (Pressland, 

2009), conflicting with the results that have shown gains that can be made by 

lepidoptera through efficient game woodland management.  

Pheasant releases can also be detrimental to flora. In general, release pen 

interiors have increased bare ground, a reduction in vegetation below 50cm, and 

lower average species diversity (Sage, Ludolf and Robertson, 2005). Soil within the 

release pen is also altered chemically by the build-up of pheasant faeces increasing 

potassium levels (Sage, Ludolf and Robertson, 2005), causing knock-on effects to 

plant communities and the invertebrates they support. Although these changes may 

be limited to the release pen and the area immediately around it, many pheasant 

release pens are located within Ancient or Semi-Natural Woodlands (Sage, Ludolf 

and Robertson, 2005), a habitat that is of high conservation concern. Release pens 

are also often relocated to reduce disease likelihood and to provide fresh habitat that 

has not been degraded by the concentrated presence of pheasant. However, it can 

take over ten years for significant signs of recovery to the ground flora and soil 

chemistry to take effect after the pen has moved (Capstick, Sage and Hoodless, 

2019), and this only occurred on sites with stocking density <1000 pheasants/ha. 

Negative effects on flora can extend beyond the release pen as well. Sage et al 

(2009) found that hedgerows within 250m of pheasant release pens, which are often 
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used to facilitate movement, had increased bare ground, more weeds, fewer stable 

perennials, and fewer tree and shrub seedlings compared to hedgerows >500m 

away from release pens. They also found that although the hedge structure itself 

was not significantly different, the leafiness of the shrub layer was reduced. These 

negative effects were often, but not entirely, confined to hedgerows close to release 

pens that were stocked with >1000 birds. 

 

1.2.3.2 Negative effects from increased predator populations and predator control 

Releasing pheasants can support higher predator populations which may also 

predate non-gamebird, native wildlife. The percentage of pheasant in fox diet is 

positively correlated with pheasant densities (Ferrari and Weber, 1995), and the UK 

has higher generalist predator densities (e.g. red fox and crow) than other European 

countries (Roos et al., 2018). This is likely in part due to our unique system of mass 

pheasant releases removing prey availability as a limiting population factor for large 

portions of the year (Webbon, Baker and Harris, 2004; Bicknell et al., 2010). 

Between 34-81% of spring pheasant biomass is predated by foxes alone (Baker et 

al., 2006), yet these levels are sustainable due to consistent pheasant releases. 

However, such additional influxes of population do not occur for other prey species. 

With released pheasant populations reduced to ~16% by spring (Turner, 2007), the 

increased number of predators brought about by pheasant releases will switch to 

other prey species, which could be particularly damaging to breeding ground-nesting 

birds (Angelstam, 1986). With regards to more direct negative impacts, the conflict, 

or perceived conflict, between gamekeepers and raptors leads to illegal predator 

control being carried out against raptors (Parrott, 2015), with Kenward et al (2001) 

finding that 10% of the 136 radio-tracked buzzards in their study were illegally killed 
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in close proximity to pheasant pens. With all raptor species in the UK protected 

under law, any predator control against them is not only damaging to wildlife but also 

illegal. 

 

1.2.3.3 Additional negative effects from pheasant releases 

Released pheasants can pose a threat to native fauna through disease transmission 

(Tompkins et al., 2002; Aebischer and Ewald, 2004). Static feed hoppers facilitate 

disease transmission via concentrations of infected faeces mixing with feed grain 

spilt on the ground below them (Gethings, Sage and Leather, 2015). Larger stocking 

densities and releases have been directly related to increased disease transmission 

for pheasants (Draycott et al., 2006; Gethings, Sage and Leather, 2015), and mass 

pheasant releases facilitating greater transmission of parasites to grey partridge 

have been proposed as a caused for reduced grey partridge numbers (Tompkins, 

Draycott and Hudson, 2000); although this theory could not be replicated under lab 

conditions (Sage et al., 2002). 

The carcasses of dead and wounded shot pheasants may provide a very easy 

and beneficial food source for species that often scavenge, such as buzzards and 

red kites, but it also results in high levels of lead poisoning through ingestion of lead 

shot (Pain, Sears and Newton, 1995). Red kites were found to have elevated lead 

levels in 34% of sampled living birds, while 14% of dead birds were found to have 

lead at greater than lethal levels and 9% with lead as the probable cause of death 

(Pain et al., 2007), and so a direct link can be made from pheasant shooting to the 

causes of death of this species of high conservation concern.  
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1.2.4 Conclusion 

There are clear negative effects from pheasant releases, such as habitat and faunal 

degradation, supporting higher populations of predators, and lead poisoning in 

scavengers. The most damaging of the negative effects, such as habitat and faunal 

degradation, are more pronounced at higher density releases (Sage et al., 2009; 

Gethings, Sage and Leather, 2015; Neumann et al., 2015). One way that these 

negative issues could be removed would be to ban pheasant shooting altogether. 

However, this would not only cripple the £2 billion that the shooting industry adds to 

the UK economy each year but may also remove an economic incentive for retaining 

the vast areas of habitat excluded from intensive agriculture and the beneficial 

habitat management associated with it (PACEC, 2014). Another solution would be to 

continue with current practices. However, the yearly average 4.3% increase in 

pheasant release numbers (Aebischer, 2019) cannot be sustained indefinitely, if it 

even is sustainable currently. Another solution would be to ban releasing pheasants 

but allow for continued shooting of wild-bred pheasant populations. This option has 

some support, with the majority of gamekeepers being willing to shift their 

management practices from releasing pheasants to managing those naturally 

present in the landscape (Greenall, 2007), but this too would result in falls in the 

economic gains from shooting by drastically reducing the number of birds available 

to be shot and is an idea that is very unpopular to most within the shooting 

community (Greenall, 2007). Finally, restrictions could be placed on release numbers 

and release locations, reducing the negative effects of high-density releases but 

allowing shooting to continue at levels somewhat similar to current practices.   

Although this final option may prove the most effective at balancing the 

benefits for wildlife with the wishes of those involved in shooting, currently there is no 

such legislation in place to implement it. As such, reducing the negative 
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environmental aspects of gamebird releases within the current rearing and release 

system is the most viable option, and to do this, methods must be found that can 

facilitate reduced releases sizes without adversely affecting harvest rates. One way 

to achieve this is by reducing pheasant mortality post-release. 

 

 

1.3. Why are so many pheasants released? 

 

1.3.1 Pheasant release numbers  

Traditionally, shooting on private estates and syndicated farmland was recreational. 

However, socio-economic changes over the past 50 years caused a dramatic 

increase in the number of ‘sold days’ and gave rise to entirely commercial shoots, 

drastically increasing the numbers of pheasants being released. As of 2010, 83% of 

shoots rely solely on released pheasants (Bicknell et al., 2010), with the remainder 

being almost entirely small shoots with small shooting harvests (bag counts). On 

average, only 35% of released pheasants are actually shot, down from 50% between 

1960-1990 (Robertson et al., 2017), but the unharvested birds make little 

contribution to future year’s harvests. Turner (2007) recorded that only 16% of 

pheasants were still alive and within the vicinity of the shoot by the end of the 

shooting season, and often as little as 9% of released pheasants remain by the 

beginning of the breeding season in spring (Hoodless et al. 1999). Because of such 

losses and the increase in popularity of driven shooting, numbers of pheasants being 

release have steadily increased. However, the number of pheasants shot has not 

matched this increase since the early 1990s, with larger release numbers producing 

diminishing returns (Robertson et al., 2017).  
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This loss and effective waste of unharvested birds has three detrimental 

effects. First, unharvested birds do not bring income to the shoot, so represent an 

economic cost. Ensuring an economically viable harvest requires that a certain 

number of birds must be shot. This is not due to the pheasant’s value as meat, which 

is on average only £0.20-£0.30 per bird if the shoot is paid for the carcasses at all 

(Game and Wildlife Conservation Trust, 2018), but is instead due to the cost paid by 

those participating in shooting for every bird shot, averaging at £34.61 per bird 

(Game and Wildlife Conservation Trust, 2018).To achieve a profit in the face of 

predicted losses from causes other than shooting, shoot managers must release an 

excess of birds. Second, the release of excessively large numbers of birds, 

especially if released at high densities, can cause environmental damage as 

described in the previous section. Third, the loss of birds to a fate for which they 

were not intended (i.e. recreational harvest) represents an ethical cost, and 

opponents of shooting can rightly object to the needless waste of reared gamebirds.  

As the primary cause for such large release numbers is high levels of natural 

mortality prior to the end of the shooting season, methods of improving survival must 

be found. This requires an understanding of the causes of such high mortality and an 

exploration of methods to try and reduce this, allowing for areas in which current 

methods can be improved or novel methods created to be identified.   

 

1.3.2 Causes of mortality 

With 35% of pheasants being shot (Robertson et al., 2017) but only 16% surviving to 

the end of the shooting season (Turner, 2007), an estimated 49% die by other 

causes before or during the time when they could be shot. Natural mortalities are 
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due to predation, disease, human action and starvation. Each of these factors has 

the potential to be moderated by management interventions.  

 

1.3.2.1 Pheasant predation 

Figures looking specifically at the UK release system put captive-reared pheasant 

mortality rates at 5.5% every 10 days for the first 30 days after release, 11.6% 

between 31-70 days, 6.0% between 70-240 days, and 2.3% between 241-365 days 

(Robertson, 1988). As predator numbers stay fairly constant throughout this period 

while pheasant numbers decline, this reduction in mortality hints at an 

acclimatisation to the wild environment by released pheasants so that they more 

closely match the seven times higher survival rates of wild bred pheasants (A. P. 

Leif, 1994). Predation, primarily by the red fox, is highest immediately after release 

(Frey et al., 2003). Sage et al (2018) put average fox predation between release and 

the beginning of shooting (October) at 19.2 ± 4.0%, with a further 15.9 ± 1.9% lost 

during the shooting season. Predation levels are also increasing due to agricultural 

intensification increasing predation risks by reducing habitat that provides cover for 

pheasants while foraging, moving, and roosting (Taylor, Wolfe and Baxter, 1978; 

Warner, 1994). Birds of prey, particularly buzzards, also predate upon pheasants. 

Kenward et al (2001) found 5.6% of pheasant mortality was from birds of prey, with 

4.3% from buzzards alone, but a larger meta-analysis by Parrott (2015) found that 

90% of UK shoots lost <1% of their pheasants to raptor predation, with only extreme 

cases increasing to >5%. Reduced predator avoidance and ineffective roosting 

behaviour exhibited by captive-reared birds may explain their higher predation rates 

when compared to wild bred pheasants (Krauss, Graves and Zervanos, 1987; Hill 

and Robertson, 1988a). Captive-reared pheasants are less fearful of humans, more 
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visible upon approach, and stay closer to the release site, creating a honey-pot effect 

of more visible prey for predators (Krauss, Graves and Zervanos, 1987; Hill and 

Robertson, 1988a; Robertson, 1988).  

 

1.3.2.2 Disease 

The spread of disease in reared pheasants poses significant problems for 

gamekeepers and pheasant breeders both during the rearing and release process 

and post-release (Goldová et al., 2006). Parasites such as Heterakis 

gallinarum, Capillaria spp. and Syngamus trachea are commonplace in pheasant 

populations, particularly at high stocking densities (Draycott et al., 2006), and 

parasitized pheasants breed less successfully and are more susceptible to predation 

(Millán et al., 2002; Draycott et al., 2006). The spread of diseases and parasites is 

far more prevalent in released pheasants than wild pheasants, as feed and faeces 

can mix easily both within the release pens and around hoppers placed about the 

shoot (Gethings, Sage and Leather, 2015), and often 100% of released pheasant 

populations are infected with H. gallinarum to some degree (Draycott et al., 2000). 

As disease becomes a greater problem with increased releases densities 

(Gethings, Sage and Leather, 2015), it is often the largest shoots that are forced to 

increase their release numbers further to accommodate disease losses.  

Within the rearing and release pens, average mortality from disease and 

parasites can vary greatly based on the speed of identification of an infected 

individual and application of medication. As an example of an extreme case, one 

shoot used as a study site in this thesis suffered losses of roughly 300 out of 500 

pheasants within 3 weeks of release due to infection (likely with coccidiosis). 

Comparing this to another release in our project which saw 22 of 800 birds dying of 
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various infections whilst in the release pen, we can see the inconsistencies and 

spikes of infection induced mortality. 

 

1.3.2.3 Starvation 

Captive-reared pheasants may also be lacking the skills to identify high-quality food 

items (Hoodless et al, 2001), affecting both their fitness and their ability to reproduce 

successfully. To some extent, the provision of feed hoppers can negate these 

deficiencies. However, outside of the shooting season, many shoots stop providing 

feed and force pheasants to rely on foraging to sustain themselves (Draycott et al., 

2005; Sánchez-García, Buner and Aebischer, 2015). Although pheasant densities 

are often of an order of magnitude lower after the shooting season (Turner, 2007), 

the poor development of pheasant foraging strategies might still adversely affect 

their survival and reduce the number of pheasants available to a shoot by the next 

shooting season. Beyond reducing body condition, inefficient foraging ability also 

increases the time spent foraging out of cover and the subsequent increase in 

predation risk (Whiteside, Sage and Madden, 2015). Availability of natural food 

sources in general also impacts pheasant survival, with pheasant populations 

positively affected by increased unharvested land, increased ‘useful' crops such as 

barley, and decreased use of pesticides (Coates et al., 2017), but all of these 

practices have declined due to increases in agricultural intensification. A major 

impact that disease and starvation have upon pheasants once outside of the 

release pen is through reducing overall health and increasing the likelihood of other 

forms of mortality, primarily predation. As such, estimating mortality expressly due 

to starvation and disease is hard to quantify outside of the rearing and release 

pens. 
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1.3.2.4 Dispersal 

Pheasants that disperse from shot land are effectively lost to that harvest. They may 

also be more likely to die, especially if they leave an area where predator control is 

carried out (Sage et al., 2018). In the UK, intensive management and nationwide 

releases likely result in smaller levels of dispersal when compared to the other 

countries (Leif, 1994; Hoodless, Draycott, and Lundiman, 2001), and Turner (2007) 

recorded distance travelled by pheasants from the release pen ranging from 32m to 

4685m prior to the shooting season in October. With many UK shoots taking place 

over relatively small areas, dispersal from release sites of just a couple of kilometres 

would mean those birds are no longer present on shot land and effectively lost to 

that shoot. However, dispersal can work both ways, with Turner (2007) reporting that 

6% of shot pheasants from her study were immigrants, released from neighbouring 

shoots. 

 

1.3.2.5 Survival differences between wild and captive-reared pheasants 

Breeding animals in a controlled environment and releasing them into the wild is 

often used to supplement wild populations (Mathews et al., 2005). However, the 

success of such releases is not assured, and individuals may fail to thrive because 

they do not behave appropriately for their environment due to abnormal early life 

rearing (Snyder et al., 1996). The release of captive-reared pheasants is no different.  

As wild and captive-reared pheasant exist in the same habitat and under the 

same management conditions, differences in survival likely result from some aspect 

of the rearing process (A. Leif, 1994). The primary method through which a lack of 

natural behaviours affects captive-reared pheasants is their reduced predator 

avoidance (Krauss, Graves and Zervanos, 1987). Captive-reared pheasants have 
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similar mortality rates to wild pheasants in areas of naturally low predator densities 

(Kallioniemi et al., 2015), suggesting that predation is a major discriminator between 

wild and captive-born birds. This can be seen in hen pheasants of wild stocks having 

survival rates 5-10 times higher than those of captive-reared stocks (Musil and 

Connelly, 2009). Declining mortality rates post-release suggest that, given time, 

pheasants will adapt and naturally learn these essential survival skills (Robertson, 

1988), but mortality rates immediately after release are often still large (Krauss, 

Graves and Zervanos, 1987).  

 

 

1.4 Methods for reducing wasted pheasants 

 

1.4.1 Directly reducing predation 

Both pheasant adult and chick populations increase in the presence of predator 

control (Sage et al., 2018; Trauman et al, 1974; Jensen, 1970), and Sage et al’s 

(2018) meta-analysis found average predation losses at estates with high predator 

control to be 30% ± 5.3% compared to 59% ± 4.7% at those with little predator 

control. However, such predator control must be carried out consistently and over 

large areas to prevent predator populations from quickly re-establishing (Chesness, 

Nelson and Longley, 1968; Frey et al., 2003), and decreases in fox numbers through 

culling are often offset by the immigration of foxes from outside of controlled areas 

(Baker and Harris, 2006). Where direct predator control cannot be carried out, as is 

the case for raptors, non-lethal methods can be attempted. These include methods 

such as providing supplementary feed for predators, but these can often be either 

inefficient or very costly (Redpath, Thirgood and Leckie, 2001), limiting their use.  
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Predator control, primarily fox control, is already carried out widely where it is 

needed most, with the most foxes killed where the most foxes are present (Baker 

and Harris, 2006). As such, there is little scope for increasing it further without the 

persecution of protected species or the adoption of illegal predator control practices, 

such as use of poison bait. 

 

1.4.2 Habitat and release management  

Better release management can improve pheasant numbers both through improving 

their survival and reducing dispersal (Messmer and Rohwer, 1996). Such methods 

include regularly moving drinkers and feed hoppers within the release pen to reduce 

the likelihood of disease transmission (Gethings, Sage and Leather, 2015), 

increasing shrubby cover in release pens to reduce raptor predation (Kenward et al., 

2001), releasing pheasants later to reduce time exposed to predators and to reduce 

the time pheasants have to disperse (Thomas F . Haensly , S . Mark Meyers, 1985; 

Turner, 2007; Lloyd, 1976), and continuing to provide feed year round (Hoodless et 

al., 2001; Draycott et al., 2005). Lowering release pen stocking densities reduces 

dispersal and lowers the likelihood of disease outbreaks and feather-pecking  (Sage 

and Swan, 2003; Turner, 2007), but lower release densities would mean increasing 

release pen areas in order to maintain current harvest levels, resulting in increased 

costs to shoots and further spreading the negative environmental effects associated 

with release pens (Sage, Ludolf and Robertson, 2005). Most shoots compensate for 

disease risk by medicating their pheasants, but this becomes significantly harder 

once the pheasants disperse beyond the release pens (Mcquistion, 1987).  

Most commonly used pheasant management techniques aim to improve 

habitat availability and quality during the autumn and winter (Hill and Robertson, 
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1988b), as it is simply more cost-effective to support the masses of pheasants 

released in summer than support small numbers of wild or surviving birds after the 

shooting season. Heterogeneity in available habitat types has been shown to benefit 

pheasant populations (Whittingham & Evans, 2004; P. A. Robertson et al., 1988), 

with particular benefits of increasing woodland edge area (Game Conservancy, 

1988). Planting game cover crops adjacent to woodlands offers shelter, easy paths 

of movement, fosters predator avoidance, encourages foraging behaviours, 

concentrates pheasants to allow for more efficient shooting, and when combined 

with supplementary feeding, can further reduces dispersal (R. Draycott et al., 2002; 

Turner, 2004). However, in the UK where potential habitat space is in high 

competition with agriculture, habitat creation and planting extensive networks of 

game cover are often simply not viable. Although less intrusive methods, such as the 

recovery of marginal lands and alternate farming practices, have the potential to 

benefit pheasant survival (Clark and Diamond, 1993), the cost of such methods often 

severely curtails their potential benefits. In short, as with the maximisation of current 

predator control practices, most shoots are already maximising what land they can 

feasibly commit to habitat improvement instead of agriculture, meaning that 

additional methods of increasing pheasant survival and harvest efficiency must be 

found 

 

1.4.3 Pre-release techniques 

The fact that wild-born pheasants living alongside released birds within the same 

landscape and under the same management can survive seven times better (A. Leif, 

1994) implies that the cause of these survival deficiencies occurs prior to release. 

Captive-reared pheasant chick survival matched that of wild stocks when the two 
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were hatched and reared together (Thomas et al, 1985), showing that any genetic 

difference between the two groups, at least at the time of that particular study, had a 

negligible effect on survival. The artificial rearing environment is lacking natural 

stimuli that the wild birds receive (Whiteside, Sage and Madden, 2016), and so it 

may be possible to add natural elements to captive rearing environments to better 

mimic wild rearing and increase survival to more closely match that of wild 

pheasants. 

Inducing more natural behaviours prior to release has been shown to be 

beneficial to gamebirds (Ferretti et al., 2012). Breeding pheasants in the historical 

manner of using their mother or a mother surrogate leads to the development of 

better predator avoidance behaviours and increased survival post-release (Dowell, 

1989; Ferretti et al., 2012), but changes in economics, technology, and the 

expansion of the shooting industry have led to almost all captive-reared pheasants 

being raised at an industrial scale in sheds of hundreds or thousands, separated 

from their mothers or sitting bantam hens (Beani and Dessi-Fulgheri, 1998). Pre-

release training techniques, such as early exposure to predators or predator models, 

have also been shown to reduce predation post-release (Miller et al., 1990; van 

Heezik, Maloney and Seddon, 1999). However, the cost and time required to 

implement such techniques at the industrial scale are not feasible when simply 

breeding and releasing more pheasants is cheaper, meaning that different and 

simpler methods of improving the fitness of captive-bred pheasant must be 

considered.  

Altering a chick’s early diet by adding a mixture of natural seeds and live 

invertebrates increases post-release survival by modifying their morphology and 

behaviour (Whiteside, Sage, & Madden, 2015). Whiteside, Sage, and Madden 
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(2015) provided a more natural diet to pheasant chicks from 1-day-old to seven-

weeks-old, consisting of 5% mixed seed and fruit with 1% live mealworm in addition 

to the 94% of standard chick crumb. After one year, the number of pheasants from 

the improved diet group still alive was more than double that of the control group. 

This was attributed to birds reared with a more naturalistic diet being: more efficient 

foragers which allowed them to spend more time on vigilance behaviours, being 

better able to handle live prey, being less reliant on supplementary feeding which is 

not always available, and developing a more natural gut morphology. This 

experiment shows that relatively simple changes to the pheasant rearing diet can 

lead to more than twice as many pheasants being recorded over a year after 

release. However, this research was carried out at a relatively smaller scale, and not 

at the harsher, more industrial scale that dominates commercial pheasant rearing in 

the UK. Commercial pheasant rearing occurs at high densities similar to the manner 

in which broiler chickens can be raised, meaning aggressive behaviours and the 

detrimental effects that they can have on fitness occur at higher rates (Nicol et al., 

1999; Kjaer, 2004). 

Environment enrichment of captive-reared animals via the provisioning of 

natural materials prior to release can improve both fitness and natural behaviours 

(Shepherdson, 1994), and this has also been shown in gamebirds (Miller et al, 

2006). For pheasants specifically, Whiteside, Sage, and Madden (2016) added 

perching material into hand-reared pheasant pens during the first seven weeks after 

hatching, effectively shifting the rearing pen environment from two-dimensions to 

three-dimensions. This provoked a succession of morphological, cognitive, and 

behavioural changes that resulted in decreased post-release mortality. This result 

was due to three factors. First, perch-reared birds were morphologically better 
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adapted to perching off the ground for longer due to thicker tarsus bones, reducing 

vulnerability to ground predators. Second, they were more likely to roost off the 

ground at night (although this difference between treatment and control birds 

declined over time post-release), producing the same effect. Third, the pheasants 

had better spatial working memory, likely allowing them to move more efficiently and 

thus spend less time at risk of predation. A similar investigation by Santilli and 

Bagliacca (2017) also found that pheasants provided with perching material during 

early life had a greater tendency to roosted off the ground in addition to reduced 

plumage damage compared to those reared without perching material. Although 

carried out at relatively small scales thus far, adding perching material and improving 

diet are novel pre-release interventions that have the potential to be easily 

transposed to mass pheasant rearing and could have significant benefits to reducing 

the high levels of captive-reared pheasant mortality if the benefits are still present 

under commercial rearing conditions.  

 

 

 

 

 

1.5. Additional potential effects of rearing pheasants under enhanced 

conditions 

 

1.5.1 Changes to body condition 

Instilling more natural behaviours within Enhanced pheasants will likely also lead to 

morphological changes. In both of Whiteside, Sage, and Madden’s (2016; 2015) 

studies, changes to morphology were recorded, with perching material producing 
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heavier birds with thicker tarsi while improved diet showed an altered gut 

morphology. These changes may be caused by either the adoption of new 

behaviours, such as increased roosting, or by differing nutrient uptake via an altered 

early-life diet. As such, recording and analysing morphological changes in pheasants 

will enable a clearer understanding of mechanisms explaining changes in survival 

and shooting as a whole. This will be achieved by identifying morphological 

characteristic that could be caused from behaviours that affect survival, such as 

thicker tarsi indicating a greater propensity to roost (Whiteside, Sage and Madden, 

2016). Additionally, changes to body condition might also impact the pheasant meat 

industry, with greater or less quantities of meat present on Enhanced birds, providing 

another reason to investigate such potential changes. Changes in morphology will 

most effectively be investigated by carrying out post-mortem examinations of birds 

reared under Enhanced and Control methods and comparing the two.  

 

1.5.2 Changes to pheasant flight performance 

Improving pheasant fitness and body condition might not only alter survival but also 

impact flying ability. Enhanced Rearing aims to permit captive-reared pheasants to 

develop more like wild pheasants, and wild birds also fly higher and for longer than 

their heavier captive-reared counterparts (Robertson, Wise and Blake, 1993). It 

follows that improving early rearing conditions could then alter the body condition of 

captive-reared pheasants to make them closer to those of wild stocks, leading to 

better flying birds. As such, flight ability of Enhanced and Control birds should also 

be investigated. Pheasants that fly higher are also thought to be shot at a higher rate 

due to a preference by the guns to aim for harder targets (Robertson, Wise and 

Blake, 1993). This could mean rearing enhancements also have the potential to not 
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only improve pheasant survival, but also the ‘quality’ of birds presented to the guns. 

However, this could also mean that higher flying birds’ contribution to harvests is 

skewed. This could result in disproportionate harvest rates between Enhanced and 

Control pheasants that do not accurately reflect increases in survival. As such, the 

effect of flight performance on likelihood of being shot should also be investigated.  

 

1.5.3 Impact on surrounding wildlife 

Pheasants are capable of eating a wide variety of foods, such as seeds, grains, 

berries, green shoots, arthropods, molluscs, and even small vertebrates (Hill and 

Robertson, 1988b). Enhancement of early rearing diet has been shown to reduce 

foraging times and decrease the time taken to catch novel invertebrate prey 

(Whiteside, Sage and Madden, 2015). This could be detrimental to the invertebrate 

populations within those environments. Possible effects will likely be concentrated 

within pheasant release pens, where pheasants will be at their highest densities, but 

Neumann et al (2015) found that pheasants show few significant impacts upon 

woodland invertebrate communities within their pens over the long term. However, 

releasing thousands of Enhanced pheasants with superior foraging capacities may 

change this, potentially causing reductions to invertebrate abundances due to 

increased predation or increasing degradation to the pen habitat from increased 

foraging behaviours above that which traditionally reared pheasants already cause 

(Sage, Ludolf and Robertson, 2005). Differences between the pen environment and 

that of the surrounding woodland might be most pronounced immediately following 

releases, when pheasants have not yet dispersed and are concentrated within the 

pens. Therefore, the effects on resident invertebrate communities by birds reared 

under Enhanced conditions should be investigated at this time. 
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1.6. Measuring changes in pheasant population demographics 

 

1.6.1 The importance of determining pheasant population demographics.  

Recording changes in pheasant populations is essential for both research and shoot 

management. Traditionally, shoots simply count the number of shot birds and 

compare this to release numbers to create an overall return percentage (Hill and 

Robertson, 1988b), but this provides no information for which pen the birds were 

released from, if they were even released on that shoot, or the age of those birds. 

Without this information it is very difficult to measure the effects of changes in 

management and release practices, reducing both a shoot’s ability to reduce wasted 

pheasants and a researcher’s ability to carry out most forms of detailed analysis. 

This is particularly relevant when trying to reduce release number by increasing 

year-to-year survival of un-shot pheasants and supporting larger wild breeding 

populations. 

 

1.6.2 Methods and issues of measuring pheasant population demographics  

A simple and cost-effective method to gather population demographic data is via 

tagging, such as the patagial tagging carried out for the Game and Wildlife 

Conservation Trust's National Game-Marking Scheme (NGMS) (Game and Wildlife 

Conservation Trust, 2019). Tags can be dated and made individual to each release 

pen, allowing for a more accurate accounting of what was shot and from where for 

both shoot managers and researchers. Patagial tagging in particular can be 

conducted en masse in a cost-effective manner and is the most viable method for 

determining numbers of Enhanced and Control birds in the harvest for this thesis if 
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the tags remain undamaged (Carver, Vincent A, Burger, Loren W., Brennan, 1999). 

However, my initial work for this thesis found an estimated 36% of the ‘Multi-Tags’ 

used by both myself and the NGMS were damaged beyond use for subsequent 

years after 6 months, preventing the identification of mature birds in the harvest. 

Also, by extrapolating figures, potentially 20% of the Multi-Tags may have been lost 

entirely by the end of the first shooting season, leading to reduced tag records and 

inflating the results of pheasant wastage. As such, a more reliable form of patagial 

tagging than the commonly used Multi-Tags should be investigated and the rate of 

Multi-Tag deterioration should be investigated to correct past and future results. 

Increasing the number of pheasants surviving between years and 

strengthening the wild population can also help reduce future release numbers, but 

in order to understand what contribution older pheasants make the to the harvest 

and assess the age demographics of the wild population, accurate methods of aging 

pheasants in the absence of tagging are required. This is particularly relevant for 

determining the effectiveness of, and increasing the efficiency of, specific 

management options designed to improve year-to-year survival and breeding 

success in the wild, such as predator control that can significantly reducing nest 

predation (Draycott et al., 2008) and supplementary feeding which can increased 

breeding success (Draycott et al., 2005). When tagging is not possible, either 

because the birds were wild-born and/or never tagged or the tags have fallen off, the 

collection and analysis of biometric data can be carried out to age pheasants 

(Woodburn et al., 2009). Such biometrics include; body weight, tarsus length, head 

length, spur length, ratio of body weight to tarsus length and head length, the depth 

of the Bursa of Fabricius, and proximal primary feather length and diameter, and 

considering a mix of biometrics can be used to accurately classify 83% and 94% of 
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the juvenile and mature pheasants respectively. Such biometrics provide a high 

degree of accuracy in classification, but their collection requires specialised skills 

and takes time, limiting data collection to specialists. However, the length and 

diameter of the proximal primary feather alone have proven to be accurate predictors 

of pheasant age if a known-age subsample can be used to calibrate juvenile and 

mature (pre and post first breeding season) feather metrics, resulting in 92% 

accuracy when classifying the ages (Greenberg, Etter and Anderson, 1972). This 

method is known as the Proximal Primary Method (PPM). Taking the proximal 

primary feathers alone has the potential to be widely used, as after collecting a range 

of biometric data to correctly age the calibration sub-sample, just the feather alone 

can be taken from additional birds. This would allow for extensive and swift data 

collection by non-specialists, greatly increasing the scope of data collection. 

However, one additional feather metric that has not been tested to see if its addition 

could improve the accuracy of PPM is the mass of the feather. The addition of this 

variable may further improve the accuracy of PPM and allow for more precision for 

both research outcomes and management decisions made based on aging pheasant 

populations via PPM.  

Machine learning is an analytical technique that is offering novel approaches 

in data analysis over traditional methods by considering multidimensional metrics 

and non-linear relationships. This method is becoming widely used in ecology to 

categorise animals based on specific criteria (Larrañaga et al., 2014), and allows for 

multiple machine learning algorithms (MLAs) to be swiftly and directly compared to 

identify which methods best increase predictive accuracy (Acevedo et al., 2009). As 

such, it holds potential to improve upon the accuracy with which current PPM 

methods classify the age of pheasants. 
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1.7. Thesis overview 

 

Chapter 2 of this thesis will test the viability of altering the commercial pheasant 

rearing system currently employed in the UK by adding improved diet and perching 

material to improve pheasant survival through the immediate shooting season and 

then that of the following year, with the intention that Enhanced Rearing could lead to 

increased pheasant survival, facilitating equal or greater harvest rates, yet requiring 

smaller releases sizes and reduced wastage within the current pheasant release 

system. It will also be necessary to assess whether these methods are cost-

effective, a factor that will be essential if these methods are to be adopted by the 

pheasant rearing industry. Chapter 2 will also assess changes to morphology caused 

by the enhancements to further understand what, if any, impacts Enhanced Rearing 

has on pheasants.  

Chapter 3 will study the flight performances of Enhanced and Control birds to 

further investigate the effects of Enhanced Rearing and identify any additional 

impacts that it might have on the shooting industry from the perspectives of those 

who shoot (the guns). Additionally, we will investigate if the flight performance of a 

pheasant influences the likelihood of it being shot, and if the flight performance of the 

pheasant population as a whole changes over the course of the shooting season.  

Chapter 4 will investigate the overall impacts that traditionally reared 

pheasants have on invertebrate populations and habitats within the release pens. 

This will be used to both further present knowledge and as a benchmark to 

investigate if the presence of Enhanced pheasants alters these impacts, allowing 

further analyse of the effects of Enhanced Rearing and allowing for more informed 

recommendations for its adoption should it prove successful at increasing harvests. 

We will also investigate the effect that pen stocking density has on invertebrates and 
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habitats within and around release pens and the chronic effects upon invertebrates 

and habitats caused by successive releases.   

Chapter 5 will assess the effectiveness of monitoring pheasant population 

using patagial tags. Specifically, we shall compare the durability of the commonly 

used Multi-Tag patagial wing tag against a more durable tag type. Through this, we 

will develop a correction factor that can be applied to previous and future studies that 

use Multi-Tags, aiding in producing more robust datasets for both shoots and other 

research projects.      

Chapter 6 will investigate the accuracy of aging pheasants based on the 

established method of analysing the length and diameter of the proximal primary 

feather and extend these by incorporating feather mass and using machine learning 

to attempt to improve classification accuracy.  

 

This thesis will aim to explain the consequences that Enhanced Rearing might 

have with reference to the ecological, economic, and recreational aspects of the 

pheasant shooting industry. It is the hope of this PhD to find a method of reducing 

pheasant release numbers without adversely affecting either the benefits gained to 

wildlife by effective shoot management or the livelihoods of those involved within the 

shooting industry. This work will be of interest both to those in favour and against 

shooting, as improving sustainability and reducing the negative environmental 

aspects brought about by high density releases is an issue both sides wish to see 

addressed.  
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Chapter 2: Can adding dietary and pen enrichment improvements to a 

commercial pheasant rearing environment lead to increased pheasant 

harvest? 

 

Abstract 

Rearing pheasants under modern commercial conditions can lead to deficiencies in 

natural behaviours, causing higher rates of natural mortality. By improving rearing 

conditions to more accurately match those of wild-bred pheasants, post-release 

mortality rates of captive-reared pheasants could be reduced, resulting in more 

pheasants contributing to the harvest and necessitating smaller release sizes. Small-

scale experimental studies have shown that providing perching material and a more 

natural diet can increase pheasant survival, but this work was carried out under very 

controlled conditions at single sites. Therefore, we combined both methodologies 

within a commercial pheasant rearing system to rear Enhanced pheasants, released 

them alongside traditionally reared Control pheasants, and measured their 

contributions to the harvest of 8 shoots. 

Enhanced pheasants were harvested at a higher rate than Control, but this increase 

was inconsistent between sites. Enhanced birds were harvested at rates ~16%-17% 

higher on Large (>2000) and Small (<601) sized pheasant releases but ~6% lower 

on while Medium (601-2000) releases. When release date and not release size was 

considered, shoots that released prior to August 22nd harvested proportionately more 

Enhanced birds, but those that released after this point harvested proportionally 

more Control. Enhanced harvests increased over Control by 1.44% with every day 

prior to August 22nd that pheasants were released. Enhanced pheasants had 

proportionally larger breast muscles (+7.3%), hearts (+4.5%), and tarsi diameter 
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(+6.2%) and gained 0.82g of weight less each day after release than Control birds, 

but breast muscle and tarsus diameter increases were only present when Enhanced 

harvest rates were higher than Control.  

 Enhanced Rearing only increases the cost of rearing by roughly ~2.4% per bird, 

making it cost effective on Large and Small shoots or those that release earlier, 

resulting in fewer pheasants needing to be released to achieve the same harvest 

rates.  
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2.1 Introduction 

An estimated 39-57 million pheasants (Phasianus colchicus) are released for 

shooting each year in the UK (Aebischer, 2019). The numbers of released birds 

actually being shot has declined over time, with the ~50% shot in the 1990s reducing 

to ~35% in 2005 (Robertson et al., 2017), though since 2005 the fall in efficiency has 

been much slower. A major cause of such low harvest numbers (return rates) is that 

many pheasants die of natural causes prior to and during the shooting season (Hill 

and Robertson, 1988b; Sage et al., 2018). Predation is the primary cause for this 

mortality, with fox predation alone accounting for 19.2 ± 4.0% of mortality prior to the 

shooting season and another 15.9 ± 1.9% during it (Sage et al., 2018). Reducing 

these losses could permit shoot managers to release fewer pheasants yet harvest a 

similar number of birds. This could have several wide-ranging effects.  

Firstly, there are environmental benefits. The release of increasingly high 

densities of pheasants can have negative effects on the surrounding wildlife, with 

increased damage to the environment in and immediately around the release pens 

(Sage, Ludolf and Robertson, 2005; Sage et al., 2009; Capstick, Sage and 

Hoodless, 2019), declines in some bird and invertebrate populations in release 

woodlands (Draycott, Hoodless and Sage, 2008; Neumann et al., 2015), and 

increased pheasant populations potentially increasing predator abundances (Pringle 

et al., 2019) that could then increase predation pressures on other prey species 

(Roos et al., 2018). Releasing fewer birds would limit such negative effects. 

Secondly, there would be economic benefits to shoot managers. The cost of rearing 

each pheasant is on average £12.41 per bird (Game and Wildlife Conservation 

Trust, 2018). The loss of each pheasant to a fate other than shooting is felt 

monetarily by shoots and contributes to both rising costs to those that carry out the 
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shooting (collectively called ‘guns’) and losses to the shoots themselves, resulting in 

42% of commercial shoots making a loss in 2017/2018 (Game and Wildlife 

Conservation Trust, 2018). Increasing pheasant survival would reduce these 

monetary losses. Thirdly, increasing survival may have ethical benefits. The raising 

of so many pheasants under artificial conditions, specifically for sport shooting, is 

already a major point of contention for some (Humphreys, 2010), and the fact that 

many more pheasants must be released to compensate for losses to natural 

predators rather than to fulfil the purpose for which they were intended (i.e. providing 

sporting targets and harvested food) increases ethical concerns.   

 

Management methods to improve pheasants survival post-release typically 

focus on the landscape into which the birds are released through supplementary 

feeding, habitat management, and predator control  (Draycott et al., 2005; Sage et 

al., 2018), but the high losses persist even with these methods in place. In their 

absence, losses would likely be even higher, with pheasant losses from predation 

found to be 29 ± 4.7% higher on ground with no predator control (Sage et al., 2018). 

As such, novel methods for improving pheasant survival must be found. Additionally, 

methods such as predator control are also ethically contentious, despite being 

shown to produce net gains for other wildlife (Tapper, Potts and Brockless, 1996; 

Fletcher, Nicholas J. Aebischer, et al., 2010). Alternatively, or additionally, 

improvements in pre-release management have the potential to improve pheasant’s 

post-release survival. 
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Pheasants may survive poorly after release because they have been reared 

under unnatural conditions, and this may detrimentally affect their development both 

physically and behaviourally (Brittas et al., 1992; Sage et al., 2003). Improving 

rearing conditions for captive-bred animals is an important aspect of improving post-

release survival of animals (Mathews et al., 2005), and an absence of features that 

mimic an animal’s natural habitat within the rearing environment, such as perches 

and foraging spaces, can reduce the development of behavioural and physiological 

traits seen in their wild counterparts by depriving the animal of natural stimuli 

(Mathews et al., 2005). Wild pheasants can have survival rates ranging from 74% to 

700% higher than their pen-reared counterparts and breeding success from 200% to 

500% times higher (Hill and Robertson, 1988a; Brittas et al., 1992; A. P. Leif, 1994). 

This poorer survival and breeding success in pen-reared birds is largely caused by 

deficiencies in foraging, roosting, predator detection, and nest-siting behaviours that 

are likely induced by the commercial rearing environment (Krauss, Graves and 

Zervanos, 1987; Hill and Robertson, 1988a, 1988b; Sage, Robertson and Wise, 

2001). These findings have stimulated a series of recent studies that attempt to 

reduce these negative effects by adjusting the rearing environment to produce pen-

reared pheasants that more closely resemble their wild counterparts (Whiteside, 

Sage and Madden, 2016; Santilli and Bagliacca, 2017).  

 

A paucity of roosting behaviours increases vulnerability to terrestrial predation 

in other released Galliformes, such as grey partridge (Perdix perdix) and cheer 

pheasants (Catreus wallichii) (Dowell, 1990; Garson, Young and Kaul, 1992), and 

the absences of roosting material within the pheasant rearing environment means 

that there are limited, if any, opportunities for them to develop perching behaviours 
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and the associated morphologies during the first 6-7 weeks of their lives. To counter 

this, Whiteside, Sage, and Madden (2016) increased the probability of young 

pheasants using elevated perches to roost by adding perching material to the 

standard bare rearing environment. They found that this reduced mortality, enhanced 

morphological characteristics better suited to roosting, increased the rate at which 

the pheasants roosted, and improved their spatial memory. Similar research by 

Santilli and Bagliacca (2017) found that the provisioning of perching material led to 

higher rates of roosting off the ground once the pheasants were moved to release 

pens and lower rates of plumage damage caused by feather pecking.  

 

 Presenting food in a more natural manner improves captive-bred animal 

fitness by reducing abnormal behaviours and improving manual manipulation of 

dietary items (Shepherdson et al., 1993; Kerridge, 2005; Regan and Kitchener, 

2005), and improving foraging efficacy reduces predation by increasing vigilance 

behaviours, body condition, and fitness (Draycott et al., 1998; Watson, Aebischer 

and Cresswell, 2007).  Whiteside, Sage, and Madden (2015) incorporated these 

benefits into pheasant rearing by adding the weight of 1% live mealworm and 5% 

wild birds seed mix to commercial pheasant feed provided during rearing to facilitate 

a more natural diet. The provision of a more complex/varied diet resulted in 

pheasants spending more time being vigilant, increased their ability to handle live 

prey items, supported the development of a more natural gut morphology, and made 

the pheasants less reliant on supplementary feed. This method did not increase the 

harvest rate of pheasants on the year of release but did increase survival after the 

shooting season, but in other studies, techniques that also promoted better foraging 

have predicted more immediate increases in post-release survival in both captive-
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reared grey partridges and whooping cranes (Kreger et al., 2006; Homberger et al., 

2014). 

 

These manipulations of early rearing environments were all conducted at 

small scales at single study sites, but for these simple alterations to be adopted by 

commercial scale pheasant rearers they must satisfy three concerns from the 

shooting industry. First, they must deliver improved rates of survival and harvest 

across a range of sites and under commercial rearing conditions. When pheasants 

are reared under commercial conditions it is at high densities, with broiler chickens 

being an accurate comparison. This means that commercially reared pheasants may 

undergo some of the more negative aspects of high density rearing, such as 

increases in aggressive behaviours and the detrimental effects that they can have on 

fitness (Nicol et al., 1999; Kjaer, 2004), such as reduced plumage quality, higher 

proportions of skin injuries, and increases beak-inflicted injuries (Kjaer, 2004). 

Second, shoot managers must be convinced that the altered rearing does not induce 

unforeseen changes that may be detrimental to shoots. Third, the benefits must be 

cost-effective in terms of the number of additional pheasants shot. The effects of 

improved rearing conditions might also differ depending on the shoot they are 

released at. Examples could be that earlier releases could lead to greater rates of 

dispersion and longer exposure to predators, and larger releases are more likely to 

be found on commercial shoots with full-time game keepers and greater investments 

in habitat management. It is essential to identify if any such differences between 

shoots affects the harvest rate of birds reared under improved conditions before 

recommending if and to where they are released.  
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Additionally, changes to the rearing procedures may bring unexpected 

detrimental economic consequences for the shoot purchasing and releasing the 

birds. First, early-life exposure to an enriched diet may make released pheasants 

less reliant on the feed provided by shoots (Whiteside, Sage and Madden, 2015). 

This could facilitate greater dispersal and lead to fewer pheasants being available to 

be harvested, despite increase survival, if they move away from the shoot where 

they were released. Of course, these birds may be shot elsewhere, but this provides 

no compensatory revenue to the shoot that purchased them. Second, alterations to 

the body condition of the birds may affect their desirability for game dealers and 

butchers. Wild pheasants are lighter than their pen-reared counterparts (Majewska et 

al., 1979), but providing perching material produced pheasants that were heavier for 

both Santilli and Bagliacca (2017) and Whiteside, Sage, and Madden (2016). If 

rearing Enhanced pheasants does impact mass, it could in turn impact the pheasant 

meat industry and the desirability and value of harvested pheasants. Access to 

perches has also been shown to increase tarsus thickness (Whiteside, Sage and 

Madden, 2016; Santilli and Bagliacca, 2017). Both the differences in weight and tarsi 

were removed several months after release (Whiteside, Sage and Madden, 2016), 

implying that some differences caused by providing perches are only temporary, 

likely from non-perch birds developing their own perching behaviours and associated 

morphological changes after significant time exposed to the wild environment. 

However, measuring these and other potential morphometric changes (such as 

breast muscle, heart, and body fat) may provide a good indicator that rearing 

improvements are having an effect beyond basic harvest rates and also indicate 

what might be causing potential effects on survival.  
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In this chapter, we extended work by Whiteside, Sage, and Madden 

(2015,2016) and Santilli and Bagliacca (2017) by combining the provisioning of 

perching material and improved diet into what shall now be referred to as the 

Enhanced Rearing methodology. We then applied these techniques to pheasants 

reared under commercial conditions and released them over a range of shoots. 

These Enhanced pheasants were tagged and released into each pen alongside the 

same number of traditionally reared tagged Control pheasants to standardise all 

variables outside of the rearing environment, allowing for a direct comparison 

between the two. The two specific questions this chapter investigates are 1) does 

Enhanced Rearing improve pheasant harvests? and 2) How does Enhanced Rearing 

affect pheasant morphology and attendant behaviour and carcass properties, and 

can these alteration help explain the effects of Enhanced Rearing on survival?  

 

2.2 Methods 

 

2.2.1 Rearing and tagging 

Rearing was conducted over 2 years at a single commercial game rearer in 

Worcestershire. In 2016, we reared 3000 Control and 3000 Enhanced pheasants in 

4 runs of 800 birds (large runs) and 8 runs of 350 birds (small runs). In 2017, we 

reared 1750 Control and 1750 Enhanced pheasants in 2 runs of 800 and 6 pens of 

350. The number of birds (both Enhanced and Control) that were released were 

5700 in Year 1 and 3200 in Year 2. 
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Pheasants were reared for the first two weeks in night-sheds (2.5 x 2.5m for 

small night-sheds, 3.6m x 3.6m for large night-sheds) before being given access to 

larger fenced and netted exterior runs which constituted 70m2 for small runs and 

170m2 for large runs. Pheasants were reared until 6-7 weeks old before release. For 

Control birds, the runs were flat, effectively two-dimensional areas with feeders and 

drinkers as their only additional features. The diet for Control birds consisted entirely 

of the Bartholomews pheasant feed range, starting with Chick Crumb from day old 

chick to two weeks old, then Chick Micro from two weeks old to four weeks old, then 

Grower Mini pellets until release. For Enhanced birds, we added to the Control diet 

live mealworms (from Live Foods Direct) that comprised 1% by weight of the Control 

diet and mixed seed (Ruddings Wood Wild Bird Seed Blend) that comprised 5% by 

weight of the Control diet. Dietary enhancements would be supplied to the Enhanced 

birds each morning and were scattered over a wide area of the pens to deter any 

individual pheasant from monopolising the feed. The quantities of both seed and 

mealworm per birds were recalculated on a weekly basis alongside the weekly 

increases in standard feed to ensure that increases were consistent (Table 2.1).  

 

        
Pheasant age in 
weeks 1 2 3 4 5 6 7 

Chick feed per bird 
per day (grams) 10 21 27 38 42 46 50 

Table 2. 1 Feed budget by weight of pheasant chicks during rearing. 

 

Enhanced birds were also provided with perching material from day 1. To 

make the process of constructing perches as easy and cost effective as possible, 

perches in 2016 were constructed from a scaffold of either delivery pallets (1mx1m) 
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or disused metal fencing (1.5mx1m) (Fig 2.1). Upon these scaffolds were attached a 

selection of coppiced hazel branches to provide as natural a perching surface as 

was possible. This resulted in ~5m of perching material for the smaller perches and 

~10m for the larger metal-based perches from a range of different hazel diameters to 

try and best simulate real perching material found in trees and shrubby cover. A 

single small (1mx1m) perch was placed within both the small and large night-sheds 

due to size restrictions. Once the pheasants were allowed access into the exterior 

runs at 2 weeks of age, the small runs were provided with an additional ~10m of 

perching material while the large runs were provided with an additional ~30m of 

perching material, resulting in ~0.042m of perching per bird in the small runs and 

~0.043m per bird for the large runs. In 2017, the perch design was altered to be 

more space efficient, producing 3 new designs. Large perches were freestanding A-

frames that had 7x3m batons as perching (Fig 2.1), large night-shed perching 

ladders had 5x1.5m perching, and small night-shed ladders had 5x1m perching. 

Small runs of 350 birds had 1 large perch on the exterior and one small night-shed 

ladder within the nigh-shed interior, resulting in 0.074m of perching per bird. Large 

runs of 800 birds had 2 large perches on the exterior and 2 large night-shed ladders 

on the night-shed interior, resulting in 0.071m of perching material per bird. The 

amount of perching provided was primarily determined by the amount of space the 

game rearer was willing to allow. Although Whiteside, Sage, and Madden (2016) 

used 0.21m per bird, one of the main objectives of our study was to see if these 

methods can be transferred from small, specifically designed rearing environments 

into those of a commercial setting, and as such we were forced to work within the 

confines prescribed by the game rearers. Additionally, although the allotted space 

per perch appears small, that is the minimum amount of perching available to a bird 
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if all were to perch at the same time. In reality, this is extremely unlikely to happen, 

and if a more realistic 20% of the birds within the run are using the perches at any 

one time, each bird could access around 0.21m in 2016 and 0.35m in 2017 of perch 

space.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 1 A) Large perches based on a metal frame using coppiced hazel used in Year 1; B) Small 
perches based on wooden pallet frame used in Year 1; C) Large perches based on a wooden A-frame 
used in Year 2.   

A) B) 

C) 
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Pheasants were released between 6-7 weeks of age onto six shoots in 2016 

and four in 2017, with two of 2017’s being used in the previous year and two new. In 

2016, we released equal numbers of Control and Enhanced birds into each of 18 

pens, and in 2017 we released equal numbers of Control and Enhanced birds into 11 

pens (Table 2.2). We marked each bird according to its release pen and rearing 

condition using coloured patagial tags (Roxan Livestock Identification, Selkirk). Light-

weight Multi-Tags were used in Year 1, but these were replaced with the more 

durable Plastags in Year 2. Most shoots released approximately equal numbers of 

male and female pheasants. However, Site 3 released only males as part of their 

overall pheasant release management strategy. All sites were lowland farmland 

shoots releasing into either coniferous, deciduous, or mixed woodlands. All shoots 

practiced some degree of game cover planting and all release pens and release 

practices broadly conformed to the description given in the introduction of this thesis. 

Various levels of gamekeeping were carried out by the differing shoots, with the 

shoot Size classification described further in this chapter accounting for broad 

differences in gamekeeping effort.  
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OS Grid 
Reference 

Released 
Tagged Birds 
Relative to 
Total Number 
of Pheasants 
Release Over 
the Entire 
Shoot Year 1 

Released 
Tagged Birds 
Relative to 
Total Number 
of Pheasants 
Release Over 
the Entire 
Shoot Year 2 

Pens 
Year 1 

Pens 
Year 2 

Shoot 1 SO 64303 71069 2000/10000 - 5 0 

Shoot 2 SO 63234 64496 400/400 - 3 0 

Shoot 3 SK 79126 02398 1000/2500 1600/2500 1 2 

Shoot 4 SO 62837 58424 800/800 800/800 2 2 

Shoot 5 SO 60997 65720 700/700 - 4 0 

Shoot 6 SO 60048 71171 - 500/500 0 4 

Shoot 7 SO 55996 63677 800/800 - 3 0 

Shoot 8 SO 59022 64313 - 600/600 0 3 
Table 2. 2 Broad locations, release numbers, and pen numbers of the participating shoots over the 
two years of the project. 

 

2.2.2 Tag Returns 

Shot pheasants were checked for tags at the end of each shoot day over the course 

of the shooting season (Oct 1st-Feb 1st), with rearing Treatment, year of release, and 

pen of release identified by tag colour. Any previous year’s tags that were collected 

in Year 2 were also recorded to compare year-to-year survival. Records of Year 2 

tags were also provided from two shoots in 2018. The pens were also categorised 

based on the total number of birds (both tagged and non-tagged) released upon that 

entire shoot. These categories were Small, Medium, or Large shoots with releases of 

0-600, 601-2000, and >2000 respectively. Categories were chosen, as opposed to 

using release size as a continuous variable, because these three categorisations 

also broadly represent the gamekeeping effort carried out on each of the shoots, with 

Small carrying out very limited gamekeeping, Medium carrying out non-intensive 

keeping efforts, and Large having employed profession gamekeepers on a regular or 

fulltime basis. Gamekeeping effort broadly covers aspects such as how often feeders 
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are refilled, predator control, release pen maintenance, etc, with increased 

gamekeeping effort representing better quality pheasant management and likely 

leading to increased harvest rates. As such, subdividing the pens into these three 

categories may highlight differing harvest rates between Enhanced and Control 

pheasants in relation to the quantity of pheasant management that the shoot carries 

out.  

Additional variables that were collected regarding each shoot and used during the 

analysis are show in Table 2.3.  

 

 

 

Variable Definition 

Tag Returns  
The numbers of recorded tags from shot pheasants 
over the entire shooting season from each pen 
separated by Treatment. 

Treatment 
Whether the pheasant was reared under Enhanced 
or Control conditions. 

Stocking 
Density 

Pen stocking density in m² of release pen area per 
bird, calculated by using a handheld GPS to 
measures the size of the release pen and dividing it 
by the number of pheasants released within that 
pen.  

Release to 
Season 

The number of days between pheasant release and 
the legal start of the shooting season (Oct 1st).   

Release Size  
Combined total of tagged and untagged pheasants 
released on the shoot: Small (<600), Medium (601-
2000), and Large (>2000).    

Year Year of the study (Year 1 or Year 2). 

Pen ID The name of the pen.  

Shoot ID 
The name of the shoot where the pens were 
located. 

Table 2. 3 Definitions of the variable abbreviations used in the statistical analysis 
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2.2.3 Statistical analysis for harvest rates 

All statistical analysis was carried out in R version 3.6.1 (R Core Team, 2018) using 

the lme4 (Bates et al., 2015), mgcv (Wood, 2011), gam (Wood, 2017), and MuMin 

(Barton, 2019) packages. 

The primary question that this investigation sought to answer was whether there was 

a difference between the rates at which Enhanced and Control pheasants were 

harvested. To answer this, three Generalised Linear Mixed Effect Models were used 

with the absolute Tag Returns as the dependant variable. As Tags were count data, 

a poisson model family was used. These models included Pen IDs and Shoot IDs as 

random effects. This allowed Enhanced and Control birds from the same pens to be 

modelled against each other directly and accounted for differences between release 

pens that were not used as independent variables, such as the total number of birds 

released into the pens which ranged from 50-1000. Pen ID was then nested within 

Shoot ID, accounting for additional differences between shoots that were not used as 

independent variable within the models, such as management practices. 

A series of model structures were adopted to investigate the results. As the number 

of pens was relatively low (n29) and the number of independent variables, some of 

which may correlate, was high, a smaller model containing only Treatment as an 

independent variable was first created to investigate the central question of ‘does 

rearing treatment affect harvest rates’. This model is referred to as Treatment 

GLMM. After this, a larger model was created to investigate the other factors that 

might impact on the harvest rates of Treatment. The independent variables that were 

added to this model were Treatment, Stocking Density, Year, Release to Season, 

Release Size, and their two-way interactions. Three-way interactions were not 

included as their addition would decrease the statistical power of the model to a high 
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degree due to its small sample size. However, there was high collinearity between 

Release Size and release dates (Release to Season), with Large shoots releasing 

earliest, Medium shoots releasing latest, and Small shoots releasing between the 

two. To avoid the effects of collinearity within the models, the larger model was 

separated into two models; one that removed Release Size (DATE GLMM) and one 

that removed Release to Season (SIZE GLMM). I then applied the Dredge function 

to both models. This function generates a selection table of models comprising of 

combinations (subsets) of the fixed effect terms from the original model that Dredge 

was applied to, providing an AIC value for each model subset which can then be 

compared to identify which combination of the fixed effects produces a model with 

the lowest AIC. This is often superior to methods such as stepwise regression as 

fixed effects that have been removed at one stage in stepwise may in fact improve 

model AIC in successive stages after additional fixed effects have been removed. 

The model with the lowest AIC was selected as the criteria to select the best model 

as reducing model AIC is considered an appropriate method of improving model 

accuracy (Akaike, 1974). However, when using the dredge function to select the best 

model the user must bear in mind that it is possible for the dredge function to 

produce models that have the lowest AIC but whose variable combinations make 

little realistic sense, so caution must always be taken to assess the practical viability 

of the ‘best’ model selected by the Dredge function. When selecting between models 

via the lowest AIC value, those model structures with an AIC difference of <2 can 

also be considered to have equally substantial support(Burnham and Anderson, 

2004), in which case the additional reasons for selecting one model over the other 

should be explained.  
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After running the Dredge function, Year, Density, and all their interactions were 

removed from both DATE GLMM and SIZE GLMM as they had no statistically 

significant effects and retaining them increased model AIC by >2. An error arose on 

the DATE GLMM with near non-convergence due to a very high eigenvalue, with the 

model output suggesting that rescaling one of the variables may solve this issue. As 

such, Release to Season was square-rooted, resulting in the desired elimination of 

non-convergence. When these results are presented graphically (Figure 2.2) the 

graph is based off of Date GLMM without square-rooting Release to Season to 

enable easier visual interpretation. 

 When SIZE GLMM was run, the model produced a singular boundary fit warning. 

This is caused by some dimension of the variance-covariance matrix having been 

estimated as exactly zero. The likely cause of the singularity is from the model 

overfitting from data that has poor statistical power, likely from the small sample size. 

There is not yet a consensus on how to deal with such singularity errors. As this 

model has been reduced down to its most simple form by the Dredge package 

(independent variables being: Treatment, Release Size, and their interaction), 

removing any of the remaining variables to remove the singularity, as suggested by 

Barr et al (2014), would render the model useless for the question it sought to 

answer. As such, the most effective method of retaining the model’s purpose but 

also removing the singularity error was to remove Shoot ID from the random effect, 

leaving just Pen Name. Once removed, the results of the Size GLMM differed very 

little from when Shoot ID was included; however it must be noted that some of the 

descriptive power of this model had been lost. All three final GLMM structures can be 

seen in Table 2.4. 
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Model 
Name  

Dependant 
Variable  

Independent Variables 
Random 
Effect 

Treatment 
GLMM 

Tag Return Treatment Type 
Shoot 
ID /Pen 
ID 

DATE 
GLMM  

Tag Return 

Treatment Type 

Shoot 
ID/Pen 
ID 

Square rooted 
Release to Season 

Interaction between 
Treatment and 
Sqrt(Release to 
season) 

SIZE 
GLMM 

Tag Return 

Treatment Type 

Pen ID 

Release Size 

Interaction between 
Treatment and 
Release Size 

Table 2. 4 Final GLMM models structures use for Tag Return analysis. 

 

2.2.4 Collecting biometrics data 

I investigated the effects of Treatment on pheasant morphology by collecting and 

analysing biometric data from birds that had been shot in an effort to identify the 

biological effects of Enhanced Rearing and to identify any effects that may have 

directly impacted pheasant survival post-release. In the last 2 shoot-days of the Year 

1 season at Site 3, I collected a total of 28 male pheasants for dissection. In Year 2, 

12 male birds were collected from Site 3 from each of the first 8 shoot-days with the 

exception of one day where only 8 males were collected. An additional 39 were 

collected on the last shoot-day, totalling 133 carcasses. Additionally, the weights of 

shot, tagged, male pheasants were also taken on shoot-days at Site 3 over both 

years using a spring-balance to an accuracy of 5g. When combined with the 
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dissected carcasses, this provided weights for 135 pheasants from Year 1 and 385 

from Year 2.  

 

Each of the 133 collected carcasses were dissected after being weighed (AMIR 

Digital Kitchen Scale, precision 1.0g) and having Tarsus length (Year 1 only) and 

tarsus diameter measured (Tacklife DC01 digital calipers, precision 0.1mm). During 

dissections, both pectororalis and supracoracoideus muscles were removed and 

weighed together to form the Breast Muscle measure (Triton T3 scales, precision 

0.01g). The heart was also removed and weighed, and so was total body fat in Year 

1 and cloacal fat in Year 2. These organs and tissues were chosen as they may 

have some direct effect on pheasant survival and help further explain how Enhanced 

Rearing may have affected harvest rates. Breast muscle weight was taken as it 

could be easily removed in a consistent manner and could stand as a proxy for the 

pheasant’s total body muscle mass. Heart weight was taken as a measure of 

cardiovascular strength, directly impacting a pheasant’s ability to fly and overall 

fitness. Fat weight was taken as a measure of energy reserves during winter, with 

fatter pheasants having foraged more effectively and needing to do so less in the 

future, reducing opportunities for predation. In Year 2, cloacal fat alone was taken as 

the fat measure as it has been shown to be an effective proxy for total body fat 

(Draycott et al., 2002) and is much easier to remove in its entirety. These three 

organs and tissues had not been studied before in either of the perch provisioning 

studies or the diet improvement study (Whiteside, Sage and Madden, 2015, 2016; 

Santilli and Bagliacca, 2017). Biometrics values were then standardised to be 

relative to overall body weight by dividing each biometric’s weights (g) or lengths 

(mm) by the total body weight of the pheasant (g). Descriptions of each biometric 

https://www.amazon.co.uk/gp/product/B01797RJAU/ref=ppx_yo_dt_b_asin_title_o08_s00?ie=UTF8&psc=1
https://www.amazon.co.uk/gp/product/B01797RJAU/ref=ppx_yo_dt_b_asin_title_o08_s00?ie=UTF8&psc=1
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variable and all other variables used in the biometric analysis can be found in table 

2.5.  

 

Variables Definition 

Weight  
Total body weight of the pheasant to the nearest 5g for 
pheasants weighed with spring balance and 1g for 
those weighed during dissections. 

% Breast 
Muscle 

Both pectororalis and supracoracoideus muscles were 
removed from both breasts and weighed to the nearest 
0.01g. Their weight was then converted to a 
percentage of total body weight.  

% Heart  
Heart was removed, emptied of blood, and weighed to 
the nearest 0.01g. Its weight was then converted to a 
percentage of total body weight.  

% Total Fat 

Year 1 only. As much of the body fat as could be 
feasibly removed was taken from the entire carcass 
and weight to the nearest 0.01g. Its weight was then 
converted to a percentage of total body weight.  

% Cloacal Fat 
Year 2 only. Cloacal fat was removed in its entirety and 
weighed to the nearest 0.01g. Its weight was then 
converted to a percentage of total body weight.  

Tarsus 
Diameter 
Ratio 

Diameter of tarsus above the spur was measured to 
the nearest 0.1mm using digital callipers. This length 
was then divided by the total body weight. 

Tarsus Length 
Ratio 

Year 1 only. Length of the tarsus was measured to the 
nearest 0.1mm using digital callipers. This length was 
then divided by the total body weight. 

Treatment 
Whether the bird was reared under Enhanced or 
Control conditions. 

Days Since 
Release  

The number of days between release and the date the 
pheasant was shot.  

Year The year of the project (Year 1 or Year 2) 

Table 2. 5 Definitions of variables used in Biometric analysis 
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2.2.5 Statistical analysis for biometric data 

I tested whether rearing Treatment affected weight, tarsi, breast muscle, heart, and 

fat by conducting a GLM and a GAM for each biometric measure. Days Since 

Release was included as an independent variable to account for growth over time 

and Year was included to account for the increased perching material provided to the 

pheasants in Year 2 and any environmental or management differences that 

occurred between years. GAMS were used, with Days Since Release as a 

smoothing independent variable for polynomial regression between Days Since 

Release and the dependent variable. These GAMs were compared to GLMs as they 

could potentially account for non-linear relationships in biometrics over time whereas 

GLMs only account for linear relationships. This is of particular note as biometrics 

were all standardised using total body weight, and disparities in weight gain might 

arise between continued growth of juvenile pheasants and the onset of winter 

reducing body fat.   

The Dredge package was then used to remove independent variables and/or 

interactions that increased model AIC until the model with the lowest AIC remained, 

both for GLMs and GAMs. If the final reduced model for any of the biometrics 

removed Treatment as an independent variable, indicating that Treatment had no 

statistically significant effect on that specific biometric, the results are not presented 

graphically, and model structures were not included in Table 2.6. Whichever model 

had the lowest AIC for each biometric, either the GLM or GAM, was used for the 

analysis. The final minimal model structures containing Treatment with the lowest 

AIC for each biometric are shown in Table 2.6.  
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2.2.6 Ethical Concerns 

To clarify the project regarding ethics, all alterations to the rearing process were 

done to improve pheasant fitness and welfare and were overseen by professional 

pheasant rearers within their much broader commercial gamebird rearing operations. 

Some limited tagging had been carried out previously by the rearers, and the tagging 

for this project integrated within their own practices. Once released to the shoots, all 

pheasants were managed to the discretion of their respective shoot owners in 

accordance with their own practices with no additional steps taken as a result of this 

project other than the counting of tags at the end of shoot-days. No pheasant were 

shot or killed specifically for this project. Instead, they were shot as a part of each 

shoot’s standard release and shooting regime, all within the legal shooting season 

for pheasants. All dissected pheasants were provided freely by Site 3 on the day 

they were shot. Aside from the initial rearing enhancements, designed to improve 

welfare and fitness within the rearing environment, and the tagging, live pheasants 

were not directly interacted with in any way by this project. 
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Model Name  Dependant Variable  Independent Variables 

Weight GLM Weight 

Treatment 

Days Since Release 

Year 

Interaction: Treatment, Day since 
Release  

Breast Muscle 
GAM 

% Breast Muscle 

Treatment 

Year 

Interaction: Treatment, Year 

Smoothed Variable: Days Since 
Release 

Heart GAM % Heart 
Treatment 

Smoothed Variable: Days Since 
Release 

Tarsus Diameter 
GAM 

Tarsus Diameter Ratio 

Treatment 

Year 

Interaction: Treatment, Year 

Smoothed Variable : Days Since 
Release  

Table 2. 6 Final GLM and GAM model structures used for Biometric analysis where Treatment was a 
significant variable 
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2.2 Results  

 

2.3.1 Tag Returns 

 

2.3.1.1 Did rearing treatment alone result in significantly different Tag Returns – 

Treatment GLMM 

Rearing Treatment had a statistically significant effect on the numbers of recorded 

Tag Returns, with Enhanced Tag Returns being ~10% higher than Control Tag 

Returns overall (Estimate = 0.101, Std Error = 0.0433, P = 0.0198).  

 

2.3.1.2 Did release date (Release to Season) affect the relationship between Tag 

Returns and Treatment? – DATE GLMM 

Enhanced Tag Returns were predicted as being recorded at a lower rate than 

Control Tag Returns when days between release and the start of the shooting 

season were 0 (Estimate =  -1.14, Std Error = 0.499, P = 0.022, Fig 2.2). Enhanced 

Tag Returns then increasing at a higher rate than Control Tag Returns by 1.44% for 

every increase in days between release and the start of the shooting season (1st 

October) (Estimate = 0.183, Std Error= 0.0731, P = 0.0124, Fig 2.2). Our model 

predicted the mean per-pen harvest sizes of Enhanced birds surpassing Control 

harvests on releases that occurred 40 days (August 22nd) prior to the legal start of 

the shooting season. Year (Estimate = -0.078, P = 0.385) and Stocking Density 

(Estimate = -0.005, P = 0.743) did not significantly affect the relationship between 

Enhanced and Control Tag Returns in this model. 
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2.3.1.3 Did Release Size affect the relationship between Tag Returns and 

Treatment? – SIZE GLMM 

On Large shoots, mean Enhanced Tag Returns were predicted as being +17.4% 

(±32.8%) higher than Control Tag Returns (Estimate = 0.160, Std Error = 0.0548, P= 

0.003, Fig 2.3, Table 2.7). This rate did not differ significantly on Small shoots 

(Estimate = -0.01, Std Error = 0.143, P = 0.942), where the model predicted mean 

Enhanced Tag Returns as being recorded at a +16.2% (± 31.0%) higher rate than 

Control Tag Returns. However, on Medium shoots, mean Enhanced Tag Returns 

were predicted as being -6.296% (±30.371%) lower than Control Tag Returns 

(Estimate = -0.221, Std Error = 0.101, P = 0.028). Year (Estimate = -0.134, P = 

0.151) and Stocking Density (Estimate = -0.027, P = 0.176) did not significantly 

affect the relationship between Enhanced and Control Tag Returns in this model. 

 

Release 
Size 

  Control Enhanced 
Number of 

Pens 

Large 
Mean Tag Returns per pen 62.1 72.9 8 

Std Error 20.4 23.9 

Medium 
Mean Tag Returns per pen 13.8 13 11 

Std Error 4.2 3.96 

Small 
Mean Tag Returns per pen 7.8 9.06 10 

Std Error 2.43 2.81 
Table 2. 7 Mean predictions of numbers of Tag Returns per release pen between the different release 
sizes classifications. 
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Figure 2.2 Predicted change in the per pen mean Enhanced (Blue) 
and per pen mean Control (Red) Tag Returns across different 
release dates as shown by their proximity to the start of the 
shooting season. X axis values not square-rooted (as they were in 
the model) to enable easier visual interpretation. 
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Figure 2. 3 Graphs showing Tag Returns (y axis) for each of the 
Treatment types (x axis) from each pen separated by shoot size 
classification (Large, Medium, Small). For each pen, Blue lines 
indicate higher Enhanced Tag Returns, Red lines indicate higher 
Control Tag Returns, and Green lines indicate no statistically 
significant difference in Tag Returns between Treatments.    
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2.3.1.4 Year to Year survival 

Two shoots in the 2017/2018 shooting season and 2 shoots in the 2018/2019 

shooting season recorded tags from previous years in their game bags, reporting a 

total of 16 tags of the 4400 tagged pheasants released. The numbers were too low 

for any meaningful statistical comparison, but overall three times more Enhanced 

tags from previous years were recovered than Control tags (Table 2.8).  

 

Year of 
Release 

Season 
Recovered 

Enhanced 
Tags 

Control 
Tags 

Number 
Released 

2016 2017-2018 2 0 800 

2016 2017-2018 4 1 1000 

2017 2018-2019 4 2 1800 

2017 2018-2019 2 1 800 

Total   12 4 4400 
Table 2. 8 Second year tags collected from four release shoots across two years. 

 

 

2.3.2 Biometric analysis 

2.3.2.1 Body Weight – Weight GLM 

Enhanced and Control pheasants did not differ in body mass on the day of release 

(Estimate = 42.3, P = 0.377), but Enhanced pheasants then gained weight more 

slowly post-release such that they were lighter for their age when shot (Estimate = -

0.8, P = 0.023, Fig 2.5). The model predicted that Enhanced birds gained 1.37g/day 

after release whereas Control birds gained 2.19g/day after release. Overall, birds in 

2017 were lighter than those in 2016 (Estimate = -0.816, P = 0.023).  
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2.3.2.2 Breast Muscle - %BM GAM 

In Year 1, Enhanced Pheasants’ percentage breast muscle weight was higher than 

that of Control Pheasants’ (Estimate = 1.1807, P = 0.044, Fig 2.6). The model 

predicted that this resulted in a +7.306% (± 2.617%) increase in Enhanced 

percentage breast muscle weight by the final day of shooting (day 175). In Year 2, 

pheasants percentage breast muscle weight was higher than Year 1 for both Control 

and Enhanced pheasants (Estimate = 2.591, P= <0.001 Fig. 2.6), but Enhanced 

pheasants’ percentage breast muscle weight was no longer significantly different to 

Control pheasants’ (P = 0.285). The effect of days since release did not differ 

significantly between Treatments as an independent variable in the GLM (P = 0.552) 

or as a smoothed independent variable in the GAM (Enhanced: P = 0.769. Control: P 

= 0.999). It is worth noting that Enhanced pheasants were harvested at a higher rate 

than Control in Year 1 at the site where dissected birds were collected but were not 

harvested at a higher rate than Control at that site in Year 2. This may mean that 

there is a relationship between larger Breast Muscle size and increased harvests. 

 

2.3.2.3 Heart - % Heart GAM 

Enhanced pheasants had higher percentage heart weight than Control (Estimate = 

0.025, P = 0.001, Fig 2.7). The model predicted that this resulted in a +4.461% (± 

1.672%) increase in Enhanced percentage heart weight by the final day of shooting 

(day 175). The effect of days since release did not differ significantly between 

treatments as an independent variable in the GLM (P = 0.660) or as a smoothed 

independent variable in the GAM (Enhanced: P = 0.686. Control: P = 0.998). Year 

also did not significantly affect percentage heart weight between Treatments (P = 

0.426).  
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2.3.2.4 Tarsus Diameter - Tarsus Diameter GAM   

In Year 1, Enhanced pheasants had larger Tarsus Diameter Ratios than Control 

(Estimate = 0.0004, P = 0.036, Fig 2.8), meaning that they had larger tarsi relative to 

body weight. The model predicted that this resulted in a +6.2% (± 2.82%) increase in 

Enhanced tarsi diameter by the final day of shooting (day 175). In Year 2, both 

Control and Enhanced percentage tarsus diameters ratios increased (Estimate = 

0.00036, P=0.03, Fig 2.7), but Enhanced percentage tarsus diameter ratios were no 

longer significantly greater than Control (P = 0.765). The effect of days since release 

did not differ between Treatments (P = 0.362). Again, it is worth noting that 

Enhanced pheasants were harvested at a higher rate than Control in Year 1 at the 

site where dissected birds were collected but were not harvested at a higher rate 

than Control at that site in Year 2. This may mean that there is a relationship 

between larger tarsus diameters and increased harvests. 

 

2.3.2.5 Cloacal Fat (Year 2 only) - % CF GLM 

Enhanced pheasants’ percentage cloacal fat did not differ statistically from Control 

(Estimate = -0.205, P = 0.628), but overall percentage cloacal fat did increase with 

increased Days Since Release (Estimate 0.01, P = <0.001). 

 

2.3.2.6 Total Body Fat (Year 1 only) - % TBF GLM 

Enhanced pheasants’ percentage total body fat did not differ significantly from 

Control (Estimate = 0.835, P = 0.976), nor did it change significantly with increased 

Days Since Release (Estimate = 0.115, P = 0.424). 
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2.3.2.7 Tarsus Length (Year 1 only) - % TL GLM 

Tarsus Length Ratio did not differ significantly between Treatments (Estimate = 

0.004, P = 0.117. Nor did it differ significantly with increased Days Since Release 

(Estimate -1.911e-05, P = 0.919). 
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Figure 2. 5 Predicted mean breast muscle weight as a percentage 
of total body weight between Treatments and Year (Control Year 1 
= Red, Control Year 2 = Orange, Enhanced Year 1 = Blue, 
Enhanced Year 2 = Green) over days since the pheasants were 
released. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 4 Predicted mean weight gain in Enhanced and Control 
pheasants over time across Years 1 and 2 (Control Year 1 = Red, 
Control Year 2 = Orange, Enhanced Year 1 = Blue, Enhanced Year 
2 = Green). 
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Figure 2. 6 Predicted mean heart weight as a percentage of total 
body weight between Treatments (Control = Red, Enhanced = 
Blue) over days since the pheasants were released. 

 

Figure 2. 7 Predicted mean Tarsus Diameter Ratio between 
Treatments and across Years 1 and 2 (Control Year 1 = Red, 
Control Year 2 = Orange, Enhanced Year 1 = Blue, Enhanced Year 
2 = Green) over days since the pheasants were released. 
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2.4 Discussion 

 

By combining both a more natural diet and the provisioning of perching material, we 

show that deploying the Enhanced Rearing methodology within a commercial 

pheasant rearing environment can lead to greater pheasant harvests. However, 

although this could bring increases in harvest of 16-17%, such benefits were not 

encountered across all shoots, but instead only became apparent on shoots that 

released birds earlier. Our model predicted that for a pen that harvested the mean 

quantities of Enhanced and Control birds, Enhanced birds harvests would surpass 

Control for pens that released at least 40 days before the legal start of the shooting 

season. They were also only shot at a higher rate in my sample in pens on Small 

and Large shoots and not on the Medium sized shoots. Birds reared under enhanced 

conditions gained weight at a rate of 0.82g/day less than Control birds post-release. 

This effect was consistent between years. Enhanced pheasants were also shown to 

have consistently larger hearts between years but only larger breast muscles and 

tarsus diameters in the year when they were shot at a higher rate than Control on the 

site where dissected birds were collected.  

 

The provisioning of perching material likely enabled pheasants to develop 

roosting behaviours that fostered a greater tendency to spend time off the ground 

following release (Whiteside, Sage and Madden, 2016). This would limit their 

exposure to terrestrial predators, specifically the red fox which is their primary 

predator (Sage et al., 2018), and in doing so increase harvest rates because more 

birds survive to the point of harvest. The greatest effect may have come from 

increased roosting at night, when foxes are most active and pheasants most 
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vulnerable, and the provisioning of perches has been shown to increase nocturnal 

roosting in captive-reared chickens (Olsson and Keeling, 2000). Beyond the benefits 

brought from increased roosting, the provisioning of perching material has also been 

shown to increase spatial working memory in both pheasants (Whiteside, Sage and 

Madden, 2016) and chickens (Gunnarsson, Yngvesson and Keeling, 2000). This in 

turn could have positive impacts on navigation in the wild (Cristol et al., 2003), 

foraging efficiency (Garber, 1990), and more efficient habitat use (Howery, Bailey 

and Laca, 1999), all of which would improve pheasant survival to harvest.  

 

The Enhanced Rearing process also involved increasing dietary variety. A 

more natural early life diet increased vigilance behaviours and reduced foraging 

times post-release (Whiteside, Sage and Madden, 2015), both of which further 

reduce the risk of predation by decreasing exposure times and increasing the 

likelihood of identifying and subsequently evading a predator (Lima, 1987; 

Guillemain et al., 2007). However, the same dietary improvements as I carried out 

did not increase the number of pheasants harvested in the year of release in 

Whiteside, Sage, and Madden’s (2015) study, but rather only increased year-to-year 

survival. Although there was an indication that this occurred in my study (from >1 

year tag returns), my dietary enhancements may have also increased immediate 

pheasant harvests through reinforcing benefits brought about by enriching their 

environment with perches. Combining dietary and environmental enrichment has 

been shown previously to have positive effects on improving natural foraging 

behaviours in captive reared animals beyond what dietary improvements can do 

alone (Brown, Davidson and Laland, 2003), and combining both may have further 

increased any benefits to the pheasant’s neural plasticity that were brought about by 
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a single one of the enrichments alone (Gro et al., 2013). This would be of particular 

importance to pheasants post-release, as they are placed into an entirely novel 

environment where their very survival depends on the development of skills that they 

have had no previous experience with, namely predator avoidance.  

 

I detected no effect of stocking density on either overall harvest rates or 

differential harvest of Enhanced or Control birds. This is surprising because previous 

studies have shown that increased stocking densities reduced harvest rates (Turner, 

2007). A possible explanation for this null result is that most of my study sites 

practiced high stocking density. Half of my study pens released pheasants with less 

than 5m² of pen area per bird and only 1 operated a density lower than the 700 birds 

per hectare GWCT recommendation (Sage and Swan, 2003). However, a more 

recent meta-analysis of shooting across the entire UK found no evidence of release 

density negatively affecting harvest rates (Robertson et al., 2017). 

 

Shoots that released their birds earlier in the year reported larger Enhanced 

harvests. We suspect that this occurred because the longer the birds were in the 

wild, the greater their exposure to predation and thus the longer the advantages 

gained by Enhanced Rearing would have to contribute to survival, increasing their 

relative harvest rates. This does not explain why Control pheasants were harvested 

at a higher rate on late releases though, but this result may also explain the different 

harvest rates from release sizes, with the broad release times in my study being 

Large and Small shoots releasing earlier and the Medium shoots releasing later. An 

additional explanation for this difference between release sizes is dispersal. Shoots 
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investing in larger releases also invest in significant habitat management to support 

and maintain those additional birds, while most habitat management on the Small 

and Medium shoots in my study was via providing strips of game cover alone. 

Pheasant home ranges are smaller when more ideal habitat is present (Leif, 2005), 

and increasing pheasant roosting behaviours may have made the birds more 

selective in their habitat choice, leading to greater dispersal if ideal habitat was in 

shorter supply. This may have negatively affected Medium shoots but not Small as 

the limited amount of high-quality habitat that occurs naturally within the landscape 

could have been sufficient to support Small shoots’ lower releases sizes. However, 

both Whiteside, Sage, and Madden’s improved diet study (2015) and provisioning of 

perching material study (2016) examined dispersal and found that it was not affected 

by improving rearing condition. Although, it is worth noting that these studies were 

both carried out on what would be classified as a Large shoot in my study, potentially 

reducing dispersal as theories above. A study of Enhanced pheasant dispersal 

would be required to definitively assess this theory.  

  

Several of the morphological differences between Treatments on the 

carcasses collected from Site 3, namely increased tarsus diameter and breast 

muscle, were present in Year 1 but not Year 2. Likewise at Site 3, Enhanced 

pheasants were harvested at much higher rates than Control in Year 1 but not Year 

2, implying that these morphological changes are indicative of higher harvest levels. 

Increased movement to and from roosts in trees and shrubby cover would have 

strengthened breast muscles (Butler, 1991). Likewise, the thickening of the tarsus 

would have occurred from spending greater time gripping onto rearing perches and 

then branches instead of simply sitting on the ground  (Enneking et al., 2012; 
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Whiteside, Sage and Madden, 2016). However, increased breast muscles may have 

further improved Enhanced harvests by increasing wing-assisted incline running 

(WAIR). WAIR is the primary method of immediate predator escape used by 

Galliformes (Dial, 1990), whereby strong bursts from the wings are used to give an 

immediate boost to running speeds to escape predation. This would have increased 

Enhanced bird fitness even further, feeding into their advantage from lowered 

predation levels and earlier releases. Also, WAIR’s bursts of muscle activity are 

more reliant on immediate muscle strength than circulatory capacity (Butler, 1991; 

Nespolo et al., 2018), and this might explain why despite Enhanced pheasants 

having larger hearts in both years, harvest rates were only higher in the year when 

breast muscles were larger. 

 

The same rates of reduced weight gain over time post-release in Enhanced 

birds were also present in both years, implying that it too did not affect harvest rates. 

This is despite wild pheasants also weighing less than pen-reared birds but having 

far higher survival rates (Musil & Connelly, 2009; Robertson et al, 1993). The model 

also predicted that on the actual day of release, Control birds were not significantly 

heavier than Enhanced. However, this result in of itself is in direct contrast to both 

Whiteside, Sage, and Madden (2016) and Santilli and Bagliacca (2017), who found 

that pheasant reared with perching material were heavier on release. This alludes to 

there being another mechanism present in the combination of both diet and perching 

material causing reduced weight gain. This reduction in weight of Enhanced 

pheasants might prove detrimental to the game meat industry.  
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At Site 3, the increased harvest of Enhanced birds was only evident in Year 1 

(2016), as were the effects of larger breast muscles and thicker tarsi. This implies 

that for Enhanced Rearing to be effective, these two morphological traits must also 

be present. Figure 2.6 and 2.8 appear to show that the breast muscle and tarsi of 

Site 3’s Control birds in 2017 were more similar to those of Enhanced birds as 

opposed to Enhanced birds never developing those morphologies, which may have 

caused the similarity in their harvest rates that year. This may have been caused by 

the increased perching material provided during the rearing of 2017 increasing 

roosting behaviours in the Enhanced birds above that of the levels seen in 2016 to 

the point where Control birds began to copy the behaviour once they were brought 

together in the release pens. Improved foraging behaviours have been shown to be 

learnt via social transmission in hens and jungle fowl (Nicol, 2004), and Whiteside, 

Sage, and Madden (2016) showed that within a few weeks of release levels of 

perching behaviours of those pheasants reared without perching material had risen 

to match those reared with perching, proving that perching behaviours can be 

learned relatively swiftly. This effect of Control birds learning to roost swiftly in Year 2 

may have occurred at Site 3 alone because it is the GWCT’s Loddington Estate, 

where pheasant management is carried out to a far higher standard than at most 

shoots, such as by providing extensive roosting space for all the pheasants within 

each release pen. This in turn could foster the swifter transmission of roosting 

behaviours between Enhanced and Control pheasants if Enhanced pheasants were 

exhibiting more perching behaviours in Year 2 due to increased perching during 

rearing. This also indicates that because the differences in weight and heart mass 

were present in both years, that they were more likely driven by enhancements that 
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could not be transmitted between Enhanced and Control pheasants post-release, 

namely improved diet during rearing which was consistent between years.  

 

Although rearing birds under Enhanced conditions can improve harvest rates, 

this is likely dependant on certain aspects of management, including the date of 

release, overall shoot management, the provisioning of preferred habitats, and 

accompanying predator control. As such, it may be that only Large shoots operating 

extensive game management and Small shoots that benefit from the natural carrying 

capacity of the shot land benefit from such enhancements. The Shooting Benchmark 

Survey 2018 (Game and Wildlife Conservation Trust, 2018) collected data from 130 

shoots that released a total of 1.6 million birds, putting the average release of 

participating shoots at 12,308 birds, and it is the rise of large commercial shoots that 

caused the 9-fold increase in pheasant release numbers between 1961-2011 to the 

current 39-57 million level (Parrott, 2015; Aebischer, 2019). These are exactly the 

kinds of high-density releases where Enhanced Rearing could lead to reduced 

release numbers, and they are also where the greatest concentration of negative 

effects are found, both ethically and environmentally (Sage, Ludolf and Robertson, 

2005; Sage et al., 2009; Fischer et al., 2013; Capstick, Sage and Hoodless, 2019). 

Considering just these 130 shoots that partook of the survey, a saving of 16% on a 

harvest of 35% of the 1.6 million birds released could permit the release of 200,000 

fewer birds annually, yet would result in a 1.5% increase the pheasant harvest. 

 

The adoption of Enhanced Rearing is only feasible if it is economically viable.  
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This cost to procure timber battens to build the A-frame perches used in year 

2 and the cost of buying live mealworm and the birdseed mix was calculated as 

£0.30 per bird when rearing Enhanced pheasants in sheds of 300 using the same 

material suppliers as used in our investigation. As all enhancement were carried out 

at the game rearer’s premises and not at the shoots themselves, this cost would be 

consistent between shoots of any size so long as the pheasants were still reared in 

sheds of 300. The overall cost of rearing, releasing, and managing a pheasant is on 

average £12.41 per bird (Game and Wildlife Conservation Trust, 2018). This means 

that a potential 16% increase in pheasant harvests would be accompanied by only a 

2.4% increase in cost. Also, although it could be argued that the decrease in weight 

gain might adversely affect the pheasant meat industry, this cost would be negligible 

considering that 46% of the gamebird meat is exported from shoot free of charge, 

12% of shoots actively pay for carcasses to be collected, and average payments per 

bird are only between £0.20-£0.30 (Game and Wildlife Conservation Trust, 2018). 

Furthermore, it might be possible to market the Enhanced bird meat in a way that 

highlights its positive environmental and ethical aspects and thus support a premium 

price, such as has been seen in organic food with increasing uptake over the past 

decades (Lockie et al., 2002). However, there may be other costs from Enhanced 

Rearing. Changes in morphology could result in changes in flight performance, 

affecting the sporting aspect of shooting. This will be investigated in Chapter 3 of this 

thesis. Rearing pheasants in a manner that improved their foraging ability or 

selectivity could also have additional impacts on invertebrate prey populations in the 

habitats within which the pheasants are released and forage. This aspect will be 

investigated in Chapter 4 of this thesis.  

 



 

102 
 

2.5 Conclusion 

We have demonstrated that rearing pheasants under conditions that are more 

naturalistic can lead to an increase in their harvest rates, although this is only evident 

on shoots that release earlier or that release 0-600 and >2000 birds. This work 

confirms earlier, more limited studies that pheasant survival to harvest is affected by 

their early life experiences (Whiteside, Sage and Madden, 2015, 2016; Santilli and 

Bagliacca, 2017). Assuming, conservatively, that Enhanced Rearing could be 

applied to 20 million of the 39-57 million pheasants released each year (Aebischer, 

2019), then improved survival to harvest of 16% would decrease the number of 

pheasants needed to be released annually by 3.2 million. In addition to reducing both 

the negative environmental impacts of high density releases (Sage, Ludolf and 

Robertson, 2005; Sage et al., 2009; Capstick, Sage and Hoodless, 2019) and (at 

least some of) the accompanying ethical concerns over releasing gamebirds for 

shooting, this would result in an annual net saving of £34.67 million for the shooting 

industry as a whole when also taking into account the cost of Enhanced Rearing. 

Considering that 42% of commercial shoots made a loss in 2018 (Game and Wildlife 

Conservation Trust, 2018) such savings alone could be enough for the methodology 

to be widely adopted. 
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Chapter 3: Does enhanced rearing alter the flight performance of pheasants 

and does the flight performance of a pheasant impact the likelihood of being 

shot? 

 

Abstract 

Various morphological, developmental, and environmental factors can affect the 

flight performance of a bird. For recreational hunters who shoot flying birds, 

specifically driven pheasants, flight performance is of special interest as it is widely 

believed that hunters prefer to shoot pheasants deemed to be more challenging and 

safe, that is higher flying birds. Previous studies have shown that wild pheasants fly 

higher than pen-reared birds, and this preferable flight performance may be 

replicated by rearing pheasants under conditions closer to those of wild pheasants. 

We reared 2800 pheasants under either Control (matching normal commercial 

practice) or Enhanced (provided with perching and an enriched diet) conditions and 

assessed their flight performances (angle of ascent after being flushed from cover) 

during two shooting seasons on one commercial pheasant shoot. We asked: First, 

does being reared under Enhanced conditions affect flight performance? Second, did 

flight performance affect the likelihood of being shot? Third, does the relative flight 

performance of the pheasant population overall change over the course of the 

shooting season? Birds reared under Enhanced conditions exhibited improved flight 

performance. Pheasants with higher flight performance were more likely to be shot at 

the beginning of the shooting season but by the end of a season the birds with the 

highest flight performance were the least likely to be shot. Finally, the average flight 

performance of the pheasant population did not change significantly over the course 

of the shooting season. This implies that, despite flight performance affecting the 
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likelihood of being shot, the effect is not large enough to impact the average flight 

performances of the remaining pheasant population over the course of the shooting 

season. 
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3.1. Introduction 

Within bird species various factors, such as fat content (Price, 2010) or 

cardiovascular capacity (Nespolo et al., 2018), can alter flight performance, and such 

differences may arise because of differential early life experiences, especially for 

birds reared in captivity (Liukkonen-Anttila, Saartoala and Hissa, 2000). Examples 

can be seen with pheasants (Phasianus colchicus) bred from wild stocks flying both 

higher and for longer than their pen-reared counterparts (Robertson, Wise and 

Blake, 1993), wild northern bobwhites (Colinus virginianus) flying faster and further 

than their captive reared counterparts (Perez, Wilson and Gruen, 2002), and in wild 

greater prairie-chickens (Tympanuchus cupido) who have also been shown to fly 

further than their pen-reared counterparts (Hess, 2004). The Enhanced Rearing 

studied in Chapter 2 of this thesis outlines how the addition of perching material and 

improved diet led to overall greater harvest rates in pheasants as well as 

morphological changes. The primary aim of the enhancements were to more closely 

mimic the rearing of wild pheasants within the restrictions of commercial pheasant 

rearing, as wild pheasants survive better post-release than pen-reared birds (A. P. 

Leif, 1994), but these rearing alterations may have also affected flight performance.  

The morphological effects of Enhanced Rearing were reduced mass gain over 

time and increased relative heart mass, breast muscle mass, and tarsus thickness. 

Differences in such morphologies might lead to differences in flight performance via 

several means. Most obviously, even small changes in mass have been shown to 

significantly impact flight performance, with an increase of 7% of mass decreasing 

flight speed by 30% in zebra finches (Taeniopygia guttata) (Metcalfe and Ure, 1995). 

Larger hearts can increase flight capacity by increasing blood circulation to flight 

muscles (Nespolo et al., 2018). Stronger breast muscles can improve the ability for 
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the rapid take off that is seen in the types of flight that pheasants carry out (Tobalske 

and Dial, 2000). Conversely, smaller pectoral muscles can in some cases lead to 

more efficient flight (Dietz et al., 2007). As total body mass, relative breast muscle, 

and heart mass were morphological features affected by Enhanced rearing, it follows 

that they may have altered Enhanced pheasants flight performances.  

 

If Enhanced rearing did affect flight performance, it has two potential 

consequences; one for our interpretation of the benefits of rearing and releasing 

Enhanced pheasants, and one for the shooting industry itself in terms of sporting 

quality.   

 

Firstly, changes to flight performance could introduce errors in analysing 

harvested pheasants via tag returns from shot birds. This may occur in one of two 

ways. Previous studies have shown that higher birds are shot at preferentially when 

multiple birds are presented simultaneously (Peter A. Robertson, Wise, and Blake., 

1993), but it is also likely that low flying birds are proportionally more likely to be hit 

as they are easier targets. If Enhanced Rearing does alter flight performance and 

flight performance affects harvest rates, this could alter the composition of the 

harvest to disproportionately favour either Enhanced or Control birds and may not 

reflect how many are actually surviving in the wild to the point of being shot. This 

would distort our findings in Chapter 2 where we calculated survival improvements to 

harvest by comparing numbers of shot birds. To address this, it is necessary to 

measure differences in flight performance between Enhanced and Control pheasants 

and how flight performance impacts the likelihood of being shot by those who 
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partake in shooting (hereafter ‘guns’). Robertson, Wise, and Blake’s (1993) study 

into pheasant flight performance saw no significant differences between harvest 

rates of higher flying wild pheasants and lower flying pen-reared birds, implying that 

flight performance does not affected overall harvest rates. However, this may not be 

the case in our study as there are 24 years separating the two studies, over which 

time release numbers have significantly increased while harvest rates have 

decreased (Robertson et al., 2017). This can be demonstrated directly by Robertson, 

Wise, and Blake’s 48.6% release/harvest rate compared to Chapter 2’s 18.3%, and 

such changes in the shooting industry may have also caused changes in shooting 

preferences. Additionally, this increase in release numbers has been driven by the 

rise of commercial shooting (Parrott, 2015; Game and WIldlife Conservation Trust, 

2019), resulting in a broader participation of less experienced guns. This decrease in 

average skill levels might have also impacted shooting preferences. Because of 

these reasons, the finding of Robertson, Wise, and Blake (1993) should be retested 

within modern shooting conditions. 

 

Secondly, changes in flight performance induced by our novel rearing 

methods could directly affect the actual sport of shooting. As there is a perceived 

preference to shoot higher birds (Whitby, 2017; Sporting Gun, 2018; Gentleman’s 

Journal, 2019), providing higher flying birds could increase the sporting enjoyment of 

the guns. Conversely, having lower flying birds could reduce this sporting enjoyment 

and result in reduced incomes for commercial shoots who adopt Enhanced Rearing. 

Additionally, if higher-flying birds are being shot preferentially, overharvest of them 

early in the season might lower the flight performance of the surviving pheasant 

population as a whole later in the shooting season. On commercial shoots, guns 
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typically pay for the number of birds that they shoot, and as such may choose to 

pass up the chance to shoot a low bird in the hope that a more challenging high bird 

will be presented. This could mean that harvest rates are not maximised and some 

released pheasants do not fulfil the purpose for which they were bred, essentially 

being wasted. 

 

To investigate any relationships between Enhance Rearing, flight 

performance, and likelihood of being shot, we first observed whether Enhanced 

Rearing alters pheasant flight performance, with the prediction that birds reared 

under Enhanced conditions that better matched wild rearing conditions would fly 

higher. We then observed the flight performances of the pheasant population as a 

whole over the course of the shooting season with the prediction that higher flying 

birds would be more likely to be hit than low ones. We then observed whether the 

flight performances of pheasants presented to the guns changed over the course of 

the shooting season regardless of whether the bird was hit or not. This was 

important because a shift in the relative proportions of differing flight performances 

would impact the numbers available to be shot and so could influence the likelihood 

of a particular flight performance score being shot at. It was our prediction that if 

preferential shooting of high birds was significant, it would leave predominantly low-

flying birds later in the season.   
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3.2. Methods 

 

3.2.1 Data collection 

Data was collected on pheasant flight performance from the Game and Wildlife 

Conservation Trust’s (GWCT) research site at Loddington over 2 years across 13 

shoot-days. In 2016, Loddington released 500 pheasants reared under Enhanced 

conditions and 500 reared under Control conditions alongside 1500 other pheasants 

that were not part of my study. In 2017 this was increased to 800 Enhanced and 800 

Control birds of the 2500 total. All birds released were males, in line with the GWCT 

stocking policy, and the guns were instructed to only shoot males. Briefly, Enhanced 

birds were reared in the same manner as Control birds with the addition of access to 

elevated perches from one week old and a diet of age-appropriate commercial feed 

pellets supplemented with 1% live mealworms and 5% mixed bird seed. For full 

details of the Enhanced rearing methodology, see Chapter 2. Enhanced and Control 

pheasants were marked using patagial wing tags to differentiate between treatments.  

 

Driven pheasant shooting, such as that carried out at Loddington, is achieved 

by the guns standing in a line, separated from one another by 10-40m, across an 

area that the pheasants will be pushed towards. Each location where shooting takes 

place is known as a ‘drive’, and most shoot-days consist of between 5-8 drives. 

Once in position, beaters then walk through the habitat where the pheasants are 

likely located and push the pheasants into flight towards the line of guns. On larger 

shoots where many pheasants are present at a high density, pheasants frequently 

cluster under suitable shelter and so a group of them are disturbed together, 

constituting a ‘flush’, and hence several birds fly towards the guns simultaneously. 

On smaller shoots, the presence of fewer pheasants means that they often fly 
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individually. Loddington would be classified as a larger shoot. Natural pheasant flight 

behaviour once flushed is to climb with a burst of energy at a steady angle for a few 

seconds until a maximum height is reach, whereupon they cease wing-beating, set 

their wings, and glide with occasional wing beats until landing.  

 

On each shoot-day at Loddington we (AH) stood in a location that allowed for 

a clear side-on view of where the majority of pheasant would be flushed from on 

each drive in order to most accurately visually estimate the angle of incline of take-

off and follow the pheasant’s flight path. Flight performance was classified as one of 

four flight scores based on the average angle of climb the bird achieved once flushed 

before starting its glide, similar to techniques in Robertson, Wise, and Blake (1993). 

The four flight scores comprised angles of: 0-12.5° = 1, 12.5-25° = 2, 25-37.5° = 3, 

and >37.5° = 4. All scores were estimated visually and made blind to the identity of 

the bird, its rearing background, and whether it went on to be shot. All measures 

were made by AH to ensure consistency. Accuracy of scoring was confirmed in a 

separate truthing project by estimating the angle of clay pigeons thrown at known 

angles to mimic flushed pheasants. One hundred clay targets were scored which 

were thrown at an angle of ascent known to the trap operator but unknown to the 

scorer. Each clay was scored following the methods used to score the live bird flight. 

True Scores were then compared to Estimated Scores using a Spearman correlation 

test in R V3.6.1. Our Estimate Scores and the True Scores exhibited a strong 

correlation (S = 8700.1, P = <0.0001, rho = 0.948). The angle of assent was used as 

a metric for flight performance as steeper angles of incline require greater effort to 

achieve and the initial acceleration to achieve flight is greater than that used to 

sustain it (Berg and Biewener, 2010). As such, angle of assent allows for rapid 
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scoring of individuals that can be easily repeated and is a viable measure of overall 

flight strength and performance.  

 

Only the first pheasant from each flush was scored. Strong winds could have 

had an effect on pheasant flight performance (Liechti, 2006; Spear and Ainley, 

2008), and so on any drive where winds were >15mph, no flight scoring was 

conducted. Once scored, the bird was visually tracked until either passing safely 

over the guns or being shot, with the bird’s fate noted with its score. Any bird that 

had not begun its glide at the time of being shot was discounted, as its average 

angle of flight could have changed if it had continued its climb. For birds that were 

shot, we rapidly retrieved the carcass (so long as it was safe to do so) to check for 

tags to confirm their rearing condition. Over the course of two shooting seasons, we 

collected Flight Scores for 429 birds that were not shot and 505 birds that were shot, 

of which 60 of the shot birds were reared under Control conditions and 50 reared 

under Enhanced conditions. Data collection provided the following variables for the 

analysis. Flight Score = score of 1-4. Treatment = if the pheasant was tagged, 

whether it was Enhanced or Control. Fate = if the bird was shot (hit or escape). Days 

Since Release = the number of days between Loddington’s pheasant release and 

the day the bird was shot. Year = if the score was taken in Year 1 (2016) or Year 2 

(2017).  
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3.2.2 Data analysis 

All statistical analysis was carried out in R version 3.6.1 (R Core Team, 2018) using 

the lme4 (Bates et al., 2015), mgcv (Wood, 2011), gam (Wood, 2017), and MuMin 

(Barton, 2019) packages. 

 

3.2.2.1 Does Rearing Condition affect flight performance?  

This analysis included 110 flight-scored pheasants known from tags to have been 

reared under either Enhanced or Control conditions. A Generalised Additive Model 

was produced with Flight Score as the dependant variable and Treatment, Year, and 

their interaction as independent variables and Days Since Release used as a 

smoothed independent variable. A GAM was chosen because it integrated variable 

effects of Flight Score over time. Flight Score was able to be treated as an ordinal 

dependant variable by using the ocat family of model structures. This allowed us to 

account for the relatively continuous nature of each Flight Sore. This structure 

allowed for the relatively low number of Scores 1 and 4 to be incorporated into the 

model, it produced a single measurement on the overall effect of treatment between 

all scores, and it predicted likelihoods (0.0-1.0)  of each Treatment scoring each of 

the four Flight Scores over the course of the shooting season. Model reduction was 

then carried out to removed non-significant independent variables and reduce model 

AIC, as reducing model AIC is considered an appropriate method of improving model 

accuracy (Akaike, 1974). Both Year and its interaction with Treatment were removed 

to produce a final minimal model with the lowest AIC. The final minimal model 

structure can be seen in Table 3.1.  
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3.2.2.2 Does flight performance affect the likelihood of being shot? 

We tested whether fate (being shot vs. surviving the drive) was explained by an 

individual’s flight score and whether this probability differed over the shooting 

season, which we tested by including Days Since Release and the interaction with 

Flight Score. We also included Year and its interaction with Days Since Release as a 

fixed factor to control for any differences in the birds or shooting abilities between 

years. The results of this model answer whether Flight Score affects the likelihood of 

a bird being shot. If there is a consistent effect of Flight Score predicting the 

likelihood of being shot over the entire shooting season, then it could lead to 

disproportionate representations of a particular or multiple Flight Scores within the 

harvest. However, such consistency may facilitate a correction factor that could be 

applied to tag records to account for any disproportionate representation. This model 

will not be able to differentiate if any effect of Flight Score on likelihood of being shot 

is driven by the preferences of the guns to shot at pheasants at a particular height or 

driven by their skill and ability at shooting pheasants of a particular height. This 

analysis included all birds scored regardless of their rearing origin, so we could 

include all 935 scores (1=n106, 2=352, 3=n345, 4=n132). A GLM was created with 

Fate as a binomial dependant variable, with the result being either Hit or Escaped. A 

GLM was selected over a GAM as it would produce single values for any of the 

relationships between Flight Score and Days Since Release, as opposed to using 

Day Since Release as a smoothing factor in a GAM, and these single values were 

considered more appropriate for direct comparisons. Unlike the previous model that 

was specifically designed to incorporate ordinal dependant variables, here Flight 

Score was an independent variable. As such, it was first added as an Ordered 

Categorical variable (in effect an ordinal variable). However, this did not change the 
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model predictions or AIC when compared to adding it as a simple Categorical 

variable, merely the manner in which those results were presented in the model 

output. As treating the Flight Scores as Categorical allowed for a far easier 

descriptive comparison between scores, this was chosen for the analysis. A logit link 

function was used in the binomial model structure due to the relatively similar 

number of Hits (n = 488) and Escapes (n = 447). Model reduction was then carried 

out to removed non-significant independent variables and interactions to reduce 

model AIC. In this instance, the Dredge package was used due to the high number 

of independent variables and interactions. 

 

3.2.2.3 Does the abundance of a particular Flight Score change over time?  

The number of birds of each Flight Score from each shoot-day was divided by the 

total number of birds scored that day, producing a Flight Score Proportion for each 

Flight Score for each of the 13 shoot-days. This Flight Score Proportion was then 

used as the dependant variable in a LMER, where Flight Score and the interactions 

between Flight Score and Days Since Release were used as independent variables 

and Shoot-Day was the random effect. Again, treating the Flight Scores as 

Categorical as opposed to an ordinal Ordered Categorical did not change model 

predictions or AIC, merely the manner in which the results were presented in the 

output, and so for ease of descriptive comparisons in the results section, Flight 

Score was considered as a Categorical variable. Year and its interactions were also 

added to the model but then removed after being shown to have an insignificant 

effect and to increase model AIC. Model Structure can be seen in Table 3.1. 
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Model Name  
Dependant 

Variable  
Independent Variables 

Flight Treatment GAM 
Flight Score 

(Ordinal) 

Treatment 

Smoothed: Days Since 
Release 

Shooting Likelihood GLM Fate 

Flight Score (Categorical) 

Days Since Release  

Year 

Interaction: Score, Days Since 
Release 

Interaction: Year, Days Since 
Release 

Time-Flight Performance 
LMER 

Flight Score 
Proportion 

Flight Score (Categorical) 

Interaction: Flight Score 
(Categorical), Days Since 
Release 

Random Effect: Shoot-Day 
Table 3. 1 Final model structures for the three investigations after the complete models were reduced 
to those with the lowest AIC.  

 

 

 

 

 



 

116 
 

3.3 Results 

3.3.1 Does Treatment affect Flight Performance? – Flight Treatment GAM 

Pheasants reared under Enhanced conditions flew higher than those reared under 

Control conditions (Estimate = 0.8359, P = 0.0282, Fig 3.1) and this effect was 

consistent across the two years of study (Estimate = 0.263, P = 0.558).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 1 The likelihood and standard errors of a bird exhibiting a particular Flight Score as the 
shooting season progressed, depending on the conditions under which the bird had been reared, 
Control birds = RED Enhanced birds = BLUE.  
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3.3.2 Does flight performance affect the likelihood of being shot? - Shooting 

Likelihood GLM 

At the start of the shooting season, low birds (Score 1) were less likely to be shot, 

but birds scoring between 2-4 were shot in equal measure (Fig 3.2). Score 4 (the 

intercept), Score 3 (Estimate = -1.774, P = 0.073) Score2 (Estimate = -

1.700P=0.093), Score 1 (Estimate -5.025, P = <0.001). In 2016, as Days Since 

Release increased, the likelihood of hitting the pheasants decreased across all flight 

scores, with Score 4 decreasing the most per day (Estimate = -0.043004, P = 

<0.001), then Score 2 (Estimate -0.028, P = 0.054), then Score 3 (Estimate -0.027, P 

= 0.046), and Score 1 the least (-0.008, P = 0.001). (Figure 3.2). In 2017, the 

likelihood of successfully shooting pheasants exhibiting any particular Flight Score 

relative to any other did not change from Year 1. However, at the start of the 

shooting season, birds exhibiting all scores were equally less likely to be shot than in 

Year 1 (Estimate -5.025, P = <0.001), but their likelihood of being shot then equally 

increased over time compared to Year 1 (Estimate = 0.040, P = <0.001). (Figure 

3.2).  

Consequently, in both years the lowest flying birds (Score 1) were least likely 

to be shot at the beginning of the shooting season, but the highest flying birds (Score 

4) were least likely to be shot by the end. 
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Figure 3. 2 Predicted mean likelihood and standard errors of each Flight Score being shot over the 
course of the shooting season of Year 1 and Year 2 with 0.0 = not shot and 1.0 = shot. Score 1 = 
Red, Score 2 = Orange, Score 3 = Green, Score 4 = Blue.  

 

 

3.3.3 Does the abundance of flight scores change over the shooting season? Time-

Flight Performance GLM  

The distribution of each Flight Score Proportion did not change significantly across 

the shooting season: Score 1 (Estimate = -.00137 , P = 0.0835), Score 2 (Estimate =  

0.00105 , P = 0.183), Score 3 (Estimate =  0.000398, P = 0.610), Score 4 (Estimate 

= -0.0000724, P = 0.926). (Fig 3.3). Mean values of each Flight Score Proportion 

were Score 1 = 0.099, Score 2 = 0.361, Score 3 = 0.372, Score 4 = 0.167. 
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Figure 3. 3 Total numbers of each flight score as a proportion of all scored birds over the course of 
the shooting season (points) and mean of each Flight Score Proportion across the shooting season 
with standard errors (lines) , with a proportion of 1 = 100% of scored birds belonging to that specific 
Flight Score on that Shoot-Day. Score 1 = Red, Score 2 = Orange, Score 3 = Green, Score 4 = Blue. 
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3.4. Discussion 

Pheasants reared under Enhanced conditions, designed to better match natural 

‘wild-type’ birds (Chapter 2) flew at a steeper angle when flushed during driven game 

shooting. Whilst the likelihood of a bird being shot is increased with higher Flight 

Scores at the start of the shooting season, as the season progresses this effect 

disappears such that at the end of the season the highest-flying birds were those 

least likely to be shot. Due to this shift, it is unlikely that higher or lower flying birds 

would have been consistently disproportionately harvested over the entire shooting 

season. The proportion of birds flying with each Flight Score did not differ across the 

season in either year. This shift in the likelihoods of individual Flight Scores being 

shot did not occur because of changes in the prevalence of those Flight Scores 

within the population, because the proportion of birds flying with each Flight Score 

did not differ across the season in either year. 

 

Enhanced Rearing produced birds that consistently exhibited improved flight 

performance scores across both years, perhaps because such Enhanced birds 

exhibited slower rates of mass gain and larger heart mass relative to body size in 

both years (Chapter 2). Prolonged flight, as opposed to flight designed for rapid 

predator avoidance (Askew and Marsh, 2002), is reliant on a constant flow of 

oxygenated blood to the flight muscles and could benefit more from the larger heart 

mass relative to body mass than it would by simple increases in breast muscle 

(Butler, 1991; Nespolo et al., 2018). Support for this is shown by Enhanced birds 

having larger relative breast muscles in 2016 alone but larger relative heart mass in 

both years (Chapter 2), corresponding to higher Flight Scores being consistent in 
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both years. Additionally, the lighter mass over time of Enhanced birds (Chapter 2) 

which was again consistent between years would put them closer to their wild 

counterparts, which also weigh less than standard pen-reared birds and also fly 

higher (Musil & Connelly, 2009; Robertson, Wise, and Blake, 1993).  

 

The flight performance of birds is expected to affect how attractive they are to 

shoot (at) and also affect the probability with which they can be shot, and thus flight 

performance may affect their representation in any harvest records. I found mixed 

support for this assumption. Robertson, Wise, and Blake (1993) found that guns 

preferentially shot at higher flying birds. I confirmed this at the beginning of the 

shooting season in my study. However, by the end of the shooting season we found 

that the effect of flight performance on likelihood of being shot had shifted, with the 

highest-flying birds now being the least likely to be shot. An example would be that in 

Year 1, on 80 days after release (the beginning of the shooting season) the 

likelihood of a Score 4 being hit was predicted as being 90.5%, but by 180 days after 

release the likelihood of Score 4 being hit was predicted as being 11.5%. This is 

despite the proportion of Score 4 within each shoot’s sample (average of 16.7%) not 

changing significantly over the course of the shooting season.  

Additionally, although the overall likelihood of being shot over time differed 

between years, the difference in likelihood of one Flight Score being shot when 

compared to another Flight Score did not differ between years. Robertson, Wise, and 

Blake’s (1993) study was also conducted over the course of the entire shooting 

season, but they do not appear to have tested to see if the relationships they found 

changed over the course of that shooting season. This makes it unclear if the shift in 
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the likelihood of a particular Flight Score being shot over time that is shown in our 

study has developed over the 24 years since Robertson, Wise, and Blake’s (1993) 

study, if it was present to some degree before but remained untested, or if it was 

specific to this particular site.  

A possible explanation for this shift over the shooting season would be that at 

the beginning of the shooting season there were simply more pheasants available to 

shoot at, allowing guns to preferentially pick their birds. Although the relative Flight 

Scores of the population as a whole did not to change over time, the actual number 

of birds presented to the guns would reduce over the season due to both harvesting 

and natural attrition (Sage et al., 2018), reducing the total pool of higher flying birds 

to shoot at if the guns wished to shoot the same number of birds in total as they did 

at the beginning of the season. This would explain why Scores 1, 2, and 3 converge 

in likelihood of being shot by the end of the shooting season, but it would not explain 

why the highest flying birds at Score 4 become the least likely to be shot at the end 

of the season. Another possible explanation would be that most shoots, primarily 

those commercial in nature, rely solely on a fresh injection of birds released the 

following year (Bicknell et al., 2010) and have no incentive to conserve stocks over 

winter/spring once the hunting season has ended. Consequently, they often 

encourage their guns to ‘clear-up’ what birds remain towards the end of the season 

to reduce the cost of maintaining the birds when very few would survive to contribute 

to the next season’s harvest (Turner, 2007). This practice could shift preferences 

away from the harder to hit higher birds and towards shooting any lower bird that 

could be hit safely by the end of the season.  
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Biases in sampling techniques are not uncommon in the study of animals in 

the wild, such as animals that are trapped being disproportionately bold (Carter et 

al., 2012). This can potentially lead to errors in data analysis, particularly when those 

individuals within groups most likely to be sampled share specific morphological or 

behavioural traits in addition to that which increased the likelihood of their initial 

sampling (Biro, 2013). Methods for dealing with such sampling errors exist, such as 

incorporating heterogeneous capture probabilities into models to offset any biases 

(MacKenzie and Kendall, 2002) (MacKenzie and Kendall, 2002). However, before 

these corrections can be added, the scale of the sampling bias, if indeed there is one 

present, must be established.  

In the case of this study, if Enhanced birds were flying higher and higher-flying 

birds were consistently shot preferentially, it might skew harvest rates such as those 

collected in Chapter 2. However, the preference for shooting the highest-flying birds 

in our study was not consistent and in fact inverted so that by the end of the season 

the highest fliers were least likely to be shot and the three lower Flight Scores were 

all equally as likely to be shot. This reduces the likelihood that higher flying birds may 

have contributed disproportionately to the harvest.  

The fact that the switch between Score 1 and Score 4 becoming the least 

likely to be shot did not occur until after halfway through the shooting season might 

imply that Score 4 harvests could be positively skewed. However, there are several 

arguments against this. The first is that the instances of Score 1 (n 106) and Score 4 

(n 132) were far lower than the instances of Score 2 (n 352) and Score 3 (n 345). 

This means that the Score 4 likelihood dropping below Scores 2 and 3 in the first half 

of the shooting season will likely have a greater effect on skewing results against 

Score 4 than Score 4 gained from remaining more likely to be shot than Score 1 for 
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longer into the season. In short, the lower instances of Scores 1 and 4 mean that 

they would have had a far smaller impact on any potential skewing of results when 

compared to the far more numerous Scores 2 and 3 which remained almost 

identical.  

Another argument against the higher-flying Enhanced pheasants being 

disproportionately favoured is that any disproportionate favouring should have 

caused differences between Enhanced harvest rates of the Large and Small shoot 

classifications in Chapter 2. This is because the concept of ‘picking’ which birds to 

shoot is only applicable if there are many pheasants to choose from, and on Small 

shoots far fewer pheasants are released and pheasants tend to be flushed singly or 

in very low numbers, with the guns almost always outnumbering the birds available 

to be shot. If changes in shooting preferences had caused a significant discrepancy 

in the results of Chapter 2, then Enhanced harvests should have been proportionally 

higher on Large shoots where birds could be ‘picked’ than they were on Small shoots 

where all safe birds presented to the guns are typically shot at. This was not the 

case. Additionally, Robertson, Wise, and Blake (1993) also showed that, despite the 

preferences to shoot higher birds, the harvest rates of those birds that flew higher 

was not significantly greater than those that flew lower. Comparatively, this result 

should be even more pronounced in our study, where the preferences for the highest 

birds were only present at the start of the shooting season.  

The effects of flight performances on likelihood of being shot were not only 

inconsistent but appear to reverse. This means that a single ubiquitous correction 

factor that would account for Enhanced pheasant’s higher flight performance cannot 

be applied. However, due to the reversal of the effect of flight performance on 
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likelihood of being hit, we feel that it is unlikely that a correction factors is even 

required. 

 

We also showed that the Flight Score Proportions did not alter significantly 

over time despite changes over time in the likelihood of particular Flight Scores being 

shot. First, this means that there were no changes in the abundance of any Flight 

Score over time that may have impacted the likelihood of particular Flight Scores 

being shot preferentially. Second, this means that shoot managers can provide a 

standardised mix of different bird heights consistently across the season and could 

also allow them to more efficiently plan which drives to use.  

 

3.5. Conclusion  

Enhanced rearing increased pheasant flight performance, producing birds that take 

off at a steeper angle and thus are expected to fly higher. This improved 

performance, likely facilitated by the Enhanced birds being lighter and with relatively 

larger hearts, is likely to be desirable to those both managing shoots and those 

carrying out shooting themselves. After personal correspondence with various game 

keepers and figures within the shooting industry, the production of higher-flying birds 

alone was enough to encourage the Enhanced rearing methodology, showing that 

this unforeseen desirable effect may make Enhanced rearing more likely to be 

adopted. It is a widely held belief that producing higher flying birds makes for better 

sport (Whitby, 2017; Sporting Gun, 2018; Gentleman’s Journal, 2019). However, our 

findings show that this often-reported preference for higher birds is not supported by 

the actual actions of those carrying out shoots, though whether this is from a change 
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in preference or ability we cannot determine. If the shift in the likelihood of particular 

flight scores being shot is due to changes in shooting preferences, as opposed to 

shifts in their ability, knowing about this shift could also allow shoots to reorganise 

their drives to better suit these preferences and increase participant’s enjoyment, 

with pheasants flushed from higher drives at the beginning of the season and lower 

drives towards the end. The possible shift in shooting preferences and the fact that 

average flight score distributions don’t change over the course of the shooting 

season also removes any perceived need for shoots to release higher numbers of 

pheasants to ensure that there are still higher flying birds present at the end of the 

season. There is also an additional benefit from the shift in the likelihood of particular 

flight scores being shot. At the Loddington shoot, where the study was carried out, or 

on other shoots where there may be a significant population of wild-born pheasants, 

these wild birds may be disproportionately likely to survive a shooting season 

compared to pen reared birds. Wild pheasants die of natural causes at a reduced 

rate over time than pen-reared birds (Leif, 1994), meaning that by the end of the 

shooting season a higher proportion of the available birds are of wild stock than at 

the beginning. Because wild birds fly higher (Peter A. Robertson, Wise, and Blake., 

1993) and because the likelihood of shooting a higher bird is lowest at the end of the 

season, the change in shooting preferences would disproportionately favour wild 

birds to survive to the end of the shooting season and into the breeding season, 

further bolstering populations of wild pheasants.  
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Chapter 4: The impact of pheasants on the invertebrates and habitats within 

the release pen 

 

Abstract 

Each year tens of millions of pheasants (Phasianus colchicus) are released into 

woodland release pens to acclimatise the birds to the natural environment before 

being given access to the surrounding habitat. This study investigated immediate 

effects of pheasant releases on invertebrates and habitats in and immediately 

around release pens and asked if releasing pheasants with improved foraging 

abilities (Enhanced pheasants) might cause additional negative effects. The interior 

fauna and flora of forty-nine release pens were compared to pen exteriors via pitfall 

trapping and habitat surveys prior to, 4 weeks after, and 9 weeks after pheasant 

release. Due to significant differences in overall invertebrate abundance between the 

two years of the study, the different effects of pheasant releases on high or low 

invertebrate populations could be investigated. 

 

Prior to release, there were no differences between invertebrate populations 

inside or 25m outside the pen in either year. When invertebrates were more 

abundant, total invertebrate biomass and slug and detritivore counts were lower 

inside the pen 4 weeks post-release. When invertebrates were less abundant, the 

main effects were only seen 9 weeks post-release, with higher total invertebrate 

biomass and total invertebrate, slug, and beetle counts within pens. 

 

Chronic effects of releasing pheasants in previous years caused pen interiors 

prior to release to have higher bare ground. Interior bare ground increased further 
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and ground vegetation decreased both 4 and 9 weeks after pheasant release. Prior 

to release, higher density releases in previous years lowered pen interior 

invertebrate biomass, lowered detritivores counts both inside and outside of pens, 

and raised slug counts both inside and outside of release pen. Releasing Enhanced 

pheasants showed no additional negative effects on invertebrates or habitats than 

are caused by the release of traditionally reared pheasants.   

 

In conclusion, the effects of pheasants on invertebrates within the release pen 

(be they negative or possibly positive) appears largely dependant on the overall 

abundance of invertebrates, but chronic effects on invertebrates that are present 

prior to release, both within and outside the release pen, appear driven by the 

density at which pheasant were released in previous years.  
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4.1 Introduction 

The release of pheasants (Phasianus colchicus) and their associated management 

can have a wide and mixed range of effects on native flora and fauna in and around 

their woodland release sites (Mustin et al 2017). For birds, tit species are less 

abundant in pheasant release woods while woodpigeons (Columbia palumbus), 

warblers, finches, and ground feeders are more abundant (Davey, 2008; Draycott, 

Hoodless and Sage, 2008). For mammals, pheasant releases are correlated with 

lower common shrew (Sorex Araneus) populations while wood mice (Apodemus 

sylvaticus) are more abundant (Davey, 2008). For invertebrates, butterflies are found 

at significantly higher numbers in pheasant release woodlands while ground-active 

invertebrate biomass and larger carabid numbers are found in lower numbers 

(Robertson, Woodburn and Hill, 1988; Pressland, 2009; Neumann et al., 2015). 

When focussing specifically on rides within pheasant release woods, game 

management had no effect on butterfly abundance (Capstick et al. 2019b). 

 

In general, the management of woodlands for pheasants is beneficial for 

wildlife  (Robertson, Woodburn and Hill, 1988; Draycott, Hoodless and Sage, 2008), 

while the release of pheasants themselves tends to have negative effects (Sage et 

al., 2009; Capstick, Sage and Hoodless, 2019). These effects occur close to where 

birds congregate, such that areas nearer to pens have increased bare ground and 

fewer stable perennials (Sage et al., 2009), evidence of increased dominance of 

species associated with high-nutrient soil within release pens (Capstick, Sage and 

Hoodless, 2019a), and lower average floral species diversity within release pens 

(Sage, Ludolf and Robertson, 2005). Although highly localised, these negative 

effects are likely to be widespread nationally, with an estimated 1 in 12 woodlands in 
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the UK believed to contain pheasant release pens (Sage, Ludolf and Robertson, 

2005). The extent of the negative effects may be influenced by the density of 

pheasant releases, with pen stocking densities of no more than 0.07 birds/m2 

recommended by the Game and Wildlife Conservation Trust (GWCT) to prevent 

chronic habitat degradation within pens (Sage and Swan, 2003). Degradation of 

hedgerows within 250m of release pens is associated with releases greater than 

1000-1500 birds (Sage et al., 2009), stocking densities above 0.1 birds/m2 causes 

shifts in pen floral community (Sage, Ludolf and Robertson, 2005), and negative 

effects such as shifting in floral communities and soil nutrient build-up persist for 

more than 10 years within abandoned release pens with stocking densities >0.1 

birds/m2 (Capstick, Sage and Hoodless, 2019a).  

 

These negative effects on flora may extend to woodland fauna populations 

within or near the release pen. The wild pheasant’s diet during their first few weeks 

of life is comprised almost exclusively of invertebrates (Warner, 1979), and variations 

in arthropod densities can account for 75% of the variation in pheasant chick survival 

(Hill, 1985). After these first weeks, their natural diet begins to vary to include seeds 

and plant material (Dalke, 1937), but invertebrates still feature within the diet 

(Hoodless et al., 2001; Doxon and Carroll, 2010). Captive-reared pheasants are 

typically 6-8 weeks old at release. While they are provided with feed by game 

keepers (grains and pellets), they may also forage on natural fauna and flora. 

Around 39-57 million pheasants are released each year into UK woodlands 

(Aebischer, 2019), and consequently even low individual levels of predation could 

affect invertebrate populations. Limited negative long-term effects of high-density 

releases have also been demonstrated. Within release pens stocked at >1000 
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birds/ha, spring populations of large carabids were lower within the release pen 

(Neumann et al., 2015). There was also a general shift in invertebrate communities 

away from woodland assemblages and towards arable assemblages, but overall 

abundances of other invertebrate taxa differed little between pen interior and exterior 

in spring (Neumann et al., 2015). However, that particular study was conducted in 

the spring, by which time released gamebirds have typically left the release pen and 

indeed only around 16% of them are still alive after the winter hunting season 

(Turner, 2007). Therefore, effects of their predation or disturbance at this time may 

be less noticeable than when they were initially released into the pen in late summer, 

although one study considering invertebrate biomass at this time found no overall 

decreases immediately following release (Pressland 2009).   

 

Negative impacts upon invertebrates within the release pen may be driven 

directly, by predation, or indirectly, by changes in habitat structure caused by the 

pheasants, as has been seen in grassland invertebrates from the effects of grazing 

sheep (Bromham et al, 1999). Prior to release, release pen interiors have increased 

bare ground, lower vegetation below 50cm, and increased phosphate and potassium 

levels in the soil compared to comparable areas of woodland without release pens 

(Sage, Ludolf and Robertson, 2005). Increased soil nutrients lead to floral 

communities of non-woodland specialist outcompeting the woodland specialists, 

which then alters the invertebrate community to more closely match the ground flora 

associated with woodland edges and arable fields (Neumann et al., 2015). Such 

habitat perturbations may have long term effects on invertebrate populations, with 

woodlands that hold release pens having lower invertebrate biomass than non-

releasing woodlands overall (Pressland, 2009). This hints at chronic negative effects 
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that accumulate over time, although these differences may simply reflect differences 

in the woodlands being chosen as the site of release pens.  

 

Direct effects of predation by pheasants on invertebrate prey may be 

exacerbated by the feeding strategies of the released birds. Recent work has 

attempted to rear pheasants in more naturalistic conditions in order to improve both 

individual welfare and survival post-release (Whiteside, Sage and Madden, 2015). 

They fed young pheasants with a diet containing live invertebrates which increased 

their ability to catch novel invertebrate prey and their diet diversity when in the wild 

and may explain their better survival after the shooting season. The Enhanced 

Rearing technique that has been tested in Chapter 2 also provided pheasants with 

live invertebrates during rearing. Enhanced Rearing has shown positive effects on 

harvest rates, but if these Enhanced pheasants are widely released and are more 

successful predators of invertebrates in the release pen, the negative effects on 

invertebrates may be greater than anticipated.  

 

Therefore, we tested how invertebrate populations in release pens were 

affected by the release of Enhanced and standard pheasants. Because invertebrate 

populations are highly seasonal and may be ephemeral, changing in their size 

across time, simply comparing pre- and post-release measures may be hard to 

interpret. Instead, comparing measures made simultaneously within and outside the 

pen may be more informative. Invertebrate populations are highly susceptible to 

climatic conditions (Rae et al., 2006). Differences in these conditions between years 

might also distort the relationships between pheasants and the invertebrate 

communities. An example would be hotter and drier years resulting in increased total 
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invertebrate biomass (Morecroft et al., 2002), possibly reducing the proportional 

effects of pheasant predation. Therefore, we compared invertebrate abundance 

within and outside of release pens immediately prior to release, 4 weeks after 

release when the birds were typically still within the pen, and 9 weeks after release 

when birds had largely dispersed out of the pen into the surrounding landscape. We 

explored whether any effects were more likely to be driven by the density at which 

pheasants were released, with the prediction that effects would be greater when 

more birds were released into a pen. We considered whether the predatory 

behaviour of the pheasants was an important determinant of changes in invertebrate 

populations, with the prediction that pens holding birds reared under Enhanced 

methods with experience of catching live prey would host greater invertebrate 

decreases. We then explored whether changes in invertebrate populations could be 

explained by indirect effects of the released pheasants altering vegetation structure 

which in turn may affect invertebrate populations. Finally, we explored whether these 

effects were consistent across two years. Given the paucity of prior research, we 

made no predictions as to which taxonomic groups would be especially affected, but 

rather consider this to be an exploratory study in which we initially looked at overall 

invertebrate populations and then refined our analyses, focussing on some common 

invertebrate groupings.  

 

 

4.2 Methods 
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4.2.1 Study area  

We monitored 49 pheasant release pens across 12 sites in Herefordshire and 

Worcestershire and 1 additional site in Leicestershire across 2016 and 2017. Some 

pens were surveyed in both years, resulting in a total of 65 pen surveys. The areas 

surrounding the release woods were predominantly arable or pastoral fields. 

Stocking density of the release pens ranged from 0.0216 birds per m2 to 0.731 birds 

per m2, with a mean of 0.257 per m2 (Fig 4.1). The stocking density (Density) of each 

pen was calculated by dividing the number of birds released in each pen by the pen 

area (m2) calculated using a GPS (Garmin Etrex Handheld GPS). Twenty one of the 

release pens were stocked with traditionally reared pheasants only, while the 

remaining 28 were stocked with birds reared under Enhanced conditions comprising 

50% of the released birds in 22 pens, 40% in 3 pens, 33% in 1 pen, 18.18% in 1 pen, 

and 100% in 1 pen. Briefly, Enhanced birds were reared with access to elevated 

perches from one week old and a diet of age-appropriate commercial feed pellets 

supplemented with 1% live mealworms and 5% mixed bird seed. For full details of 

the Enhanced rearing methodology, see Chapter 2. 
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4.2.2 Study design  

At each release pen, we conducted three surveys. At each survey, we conducted a 

habitat survey (see below) followed by pitfall trapping to sample inverebrate 

populations from inside (Interior) and outside (Exterior) of release pens. Survey 1 

was conducted 2-4 weeks prior to pheasant release between 1 July and 19 August 

2016 in Year 1 and 5 June and 14 August 2017 in Year 2. This allowed us to 

determine baseline differences in invertebrate populations between Interior and 

Exterior transects prior to pheasant releases. Survey 2 was conducted 4 weeks after 

pheasants had been released into the pens between 12 August and 30 September 

2016 and 26 July and 30 September 2017, and during which time the pheasants 

typically remained entirely within the pen. This allowed us to explore the relationship 

 

 

Figure 4. 1 Frequency of stocking Densities of release 
pens in this study in birds/m2. Red line indicating 
GWCT recommended pen stocking density (Sage and 
Swan, 2003). Blue line indicating stocking densities 
that above which point can alter floral composition 
and still affect pen habitat 10 years after the pen is no 
longer in use (Capstick, Sage and Hoodless, 2019). 
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between Interior and Exterior invertebrate populations and habitat scores compared 

to the baseline established in Survey 1. Survey 3 took place 9 weeks after the initial 

pheasant release between 16 September and 29 October in Year 1 and 6 August 

and 4 November in Year 2, by which time pheasants had typically dispersed out from 

the pen into the surrounding landscape. Due to logistical issues, we were unable to 

conduct Survey 3 at 6 release pens in 2016. We collected all three surveys from all 

pens in 2017.  

 

4.2.3 Invertebrate surveys 

Neumann et al’s (2015) and Oliver and Beattie’s (1996) methodologies formed the 

basis for our invertebrate sampling, with surface activity of invertebrates assessed 

using transects of pitfall traps. A transect consisting of five Interior traps was placed 

along the most central point within each release pen while an Exterior transect of five 

traps was placed 25m outside of the release pen parallel to the pen fence. In the first 

year (2016) we were concerned that local wildlife, particularly badgers, might disturb 

pitfall traps outside the pen, so we added an extra trap to each Exterior transect. 

Subsequently, this did not generally occur in that year, so we only placed 5 traps on 

Exterior transects in the second year (2017). Due to the small size of many of the 

release pens only 5m spaces were left between traps instead of 20m recommended 

by studies such as Woodcock (2005). This could have potentially resulted in over-

trapping of local invertebrate populations and trapping itself decreasing invertebrate 

abundances (Ward, New and Yen, 2001). However, as this 5m distance was 

standardised between Interior and Exterior transects, any negative consequences 

should have been equal across locations. As many of the woodlands within which 

the release pens were located were also relatively small, with the smallest at ~2700 
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m2, the Exterior transects were placed 25m from the release pens to ensure that the 

same woodland was surveyed. Although this close proximity increased the likelihood 

that the Exterior transects would be directly affected by the relatively nearby release 

pens, it also minimised potential variation in additional variables between Interior and 

Exterior transects (e.g. soil moisture, flora composition, topography, etc). All traps 

that were disturbed or destroyed by wildlife between surveys were replaced within a 

metre of the original site for subsequent surveys to ensure consistency. 

 

Pitfall traps consisted of buried plastic cups (200ml) with the lip level with the 

soil. Covers were placed 3-5cm above each pitfall trap to prevent rainfall flooding 

samples and to deter other animals from scavenging each trap’s contents. Each trap 

was filled to one third with a liquid comprising 89.05% water, 10% ethylene glycol 

and 0.5% Morrisons own-brand washing liquid. The traps were not baited. The traps 

were typically left for 7 days before collection. All trap contents from a single transect 

were pooled together. Samples were washed and sieved after collection to separate 

invertebrates from detritus and additional unwanted organic matter. The number of 

traps that survived each survey varied because of damage by wildlife, and some 

transects had to be collected on either six or eight days after being placed, rather 

than the standard seven, for logistical reasons. Therefore, we standardised each 

Invertebrate Measure by correcting for trapping effort per transect, using Invertebrate 

Measure/per trap/per day for the analysis.  

 

We condensed our catch data from the pitfall traps into six Invertebrate 

Measures. We used the Total Biomass and Total Count of all individuals captured as 

a crude indicator of the entire invertebrate population. We then used counts for four 
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common taxonomic groupings to allow us to investigate whether pheasants had 

differential impacts on particular invertebrate populations. These populations were 

primarily chosen because previous research (Neuman et al, 2015) showed that 

pheasant releases reduced the abundance of larger carabids and increased the 

abundance of spiders and woodlice. Additionally, little if any research has been 

previously carried out on the effect of pheasants on slug populations, so slugs were 

also specifically investigated to expand the current knowledge base. Slugs are of 

particular interest as they are a major farmland pest (Martin, 1991; Frank, 1998; 

Newzeland, 2002), and as pheasants are largely released in and around arable land, 

any effect that pheasants might have on slugs could be directly beneficial or 

detrimental to farming. As such, the populations that were separately counted were: 

Slugs (Gastropda, excluding snails), Beetles (Coleoptera), Arachnids consisting of 

spiders and harvestmen (Arachnida), and Detritivores consisting of woodlice and 

millipedes (Oniscidea and Diplopda).  

 

4.2.4 Habitat surveys  

We estimated habitat cover within a 10m radius of the central trap on each transect 

considering categories of: Bare Ground (exclusively exposed soil), Ground 

Vegetation (flora of a height 0-1m excluding mosses), and Shrubby Cover 

(vegetation between 1-2m). Each habitat classification was scored independently of 

the others, and as mosses and ground detritus (deadwood, manmade waste, etc) 

were not counted and the presence of Shrubby Cover effectively made the survey 

areas 3-dimensional, the combined percentage covers of all three classification for 

each transect do not equal 100%. 
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In Year 1, these habitats were visually classified on a scale of 1-4: 1 = (<5% 

habitat cover), 2 = (5%-30% habitat cover), 3 = medium (30%-60% habitat cover), 

and 4 = high (60%-100% habitat cover) in line with the Game and Wildlife 

Conservation Trust’s pheasant release pen surveying method used for the National 

Game Marking Scheme, as this method had been previously used before by the 

surveyor (AH) and has been shown to produce reliable and repeatable results. In 

Year 2, this scoring methodology was altered to a rough estimate of direct 

percentage cover to provide a finer scale of accuracy for each percentage cover 

score. To make these measures comparable between years, Year 1 scores were 

converted to rough percentage covers at the midpoint between their score bands 

resulting in: 1 = 2.5%, 2 = 17.5%, 3 = 45%, and 4 = 80%. These results formed the 

three % Habitat Score variables. 

We confirmed that our visual habitat estimates were accurate by directly 

quantifying ten 1x10m woodland transects using a 1x1m quadrat to measure cover 

of each type with a precision of 5%. Prior to conducting each transect, we (AH) 

visually estimated cover using the methods above for the transect as a whole. We 

then correlated our estimates against our actual measured percentages for each of 

the four cover types. Each of our estimates was strongly positively correlated with 

our measures (Bare Ground: R = 0.907, N = 10, P  < 0.001; Ground Vegetation: R = 

0.913, N = 10, P < 0.001; Shrubby Cover: R = 0.944, N = 10, P < 0.001). 

 

4.2.6 Statistical analysis 

All analyses were conducted in R version 3.6.1 (R Core Team, 2018) using the lme4 

(Bates et al, 2015) and MuMIn packages (Barton, 2009). Generalised Linear Mixed 

Effect Models with a Gamma distribution and Log link function were used to analyse 
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each Invertebrate Measure. Pen Identity was included as a random effect to ensure 

that Interior and Exterior scores for the same pens were matched. Gamma 

distributions were used because, despite the raw data appearing to be closer to an 

asymmetrical inverse gaussian distribution. This strong asymmetry was caused by 

some transects having collected far greater numbers of invertebrates than others. 

However, when these larger samples occurred they did so at the pen scale, with the 

Interior and Exterior samples of the same pen matching much more closely relative 

to one another. The addition of the random effect into the model design linked the 

results of each individual pen, reducing any effect of asymmetry in the data 

distribution and allowing for the effective use of a gamma distribution in the model 

family. Additionally, when an inverse gaussian family was used the models 

consistently failed to converge and produced results with far higher AIC values. Non-

convergence rarely occurred directly within the Gamma distributed models, but near-

non-convergence was still an issue. Rescaling variables can at times reduce this 

issue, but doing so here either significantly increased model AIC, increased non-

convergence, or produced negative variables that the Gamma model structure could 

not analyse, and so rescaling was only used when it was considered necessary to 

reduce overdispersion. To counter the near-non-convergence, the number of 

adaptive Gauss-Hermite quadrature points (nAGQ) was lowered to 0. This may 

slightly reduce the overall accuracy of the models, but it removed issues regarding 

non-convergence. We encountered further problems because some Invertebrate 

Measures were 0 within some transects, a value that could not be analysed by the 

models. To counter this, the value of 0.000001 was added to each of the 

Invertebrate Measure/per trap/per day classifications that held a 0. This is less than 

0.01% of any of the mean values of these dependant variables. However, it did 
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increases the overdispersion of the Slug Count, Arachnid Count, and Detritivore 

Count models. To counter this, these dependant variables were square rooted for 

the analysis which reduced overdispersion.  

 

Four sets of models were constructed, each specific to one of four questions: 

First, to what extent does the release of pheasants impact the Invertebrate Measures 

and Habitat Scores within the release pen? Second, does the density at which the 

pheasants are released effect the Invertebrate Measures and Habitat Scores within 

the release pen? Third, to what extent does the percentage of released pheasants 

that were reared under Enhanced conditions effect the Invertebrate Measurements 

and Habitat Scores within the release pen? Fourth, to what extent do the Habitat 

Scores relate to Invertebrate Measures? This final question would help identify if 

changes to the Invertebrate Measures were driven directly by the release of 

pheasants or indirectly by the changes to habitat that the release might cause. We 

were unable to include all variables and their interactions in a single model (5 main 

effects + 20 two & three way interactions) because we had too few sample sites to 

permit this to be conducted robustly.  

 

For our first set of models describing differences in Invertebrate Measures 

and Habitat Scores relating to pheasant releases, we included Invertebrate 

Measures and Habitat Scores as dependent variables, with a different one of the 

nine measures (Total Biomass, Total Count, Slug Count, Beetle Count, Arachnid 

Count, Detritivore Count, Bare Ground, Ground Vegetation, Shrubby Cover) in each 

model. We were specifically interested in differences between Interior and Exterior 

transects, so we considered interactions between transect location and other 
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variables of interest. We expected Invertebrate Measures to vary across the three 

survey periods as invertebrate populations fluctuated naturally over time, so survey 

number was included in the three-way interaction. We wished to explore whether 

effects differed between years, so year was included in the three-way interaction. 

This is of particular interest due to climatic differences commonly occurring between 

years. During our study, 2017 was both a drier and hotter year overall compared to 

2016 but was also predominantly wetter and slightly colder over the actual survey 

period (Table 4.8). This described model structure will now be referred to as the 

Base Model. 

 

 

  Year Jul Aug Sep Oct Nov Annual 

Rainfall 
(mm) 

2016 35.1 64.8 59 28.3 95.6 781.4 

2017 79.9 68.2 84.5 46 54.9 741.2 

             

Temp 
(°C) 

2016 16.7 16.8 15.7 10.4 5.4 10.01 

2017 16.6 15.5 13.3 12.1 6.5 10.33 
 

Table 4. 1 Average rainfall (mm) and temperature (°C) within the UK midlands for the survey period 
and average temperature and total rainfall for the entire year 

 

For our second set of models, we were interested in the effect of Density on 

each of the Invertebrate Measures and Habitat Scores. As such, the Base Model 

structure was again used, but with the addition of the two-way interaction between 

Density and Survey Number to determine broad effects on invertebrates of changes 

in release pen stocking density over the three survey periods, and the three-way 

interaction between Trap Location, Survey Number and Density, to determine if the 

effects of Density from the two-way interaction differed between pen Interior and 

Exterior. This model structure is referred to as the Density Model. 
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For our third set of models, we were interested in the effect of the percentage 

of Enhanced birds released into the pen on each of the Invertebrate Measures and 

Habitat Scores. As such, the Base Model structure was again used, but with the 

addition of the two-way interaction between Percentage Enhanced and Survey 

Number to determine broad effects on invertebrates of changes in the percentages 

of Enhanced pheasants released over the three survey periods, and the three-way 

interaction between Trap Location, Survey Number and Percentage Enhanced, to 

determine if the effects of Percentage Enhanced from the two-way interaction 

differed between pen Interior and Exterior. This model structure is referred to as the 

Enhanced Model structure. For both the Density Models and the Enhanced Models, 

only the results from the coefficients involving Density and Percentage Enhanced 

were reported, as these were the focus of the models and constituted the only 

additions to the model structure beyond the Base Model.  

 

For the fourth set of models, we were interested in the effect of each of the 

Habitat Scores on the Invertebrate Measures. This resulted in a model structure that 

had Invertebrate Measures as the Dependant Variable and each of the three Habitat 

Scores (Bare Ground, Vegetation 0-1m, or Vegetation 1-5m) as independent 

variables. We were also interested if any of the effects differed between Year, and so 

the two-way interaction between Year and each of the Habitat Scores was also 

added. Survey number was also included as an independent variable to account for 

overall changes in Invertebrate Measures between surveys. This model structure is 

referred to as the Invertebrate-Habitat Model. The definitions of all variables entered 
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into all models can be found in Table 4.2 while the final model structures can be 

found in Table 4.3.  

 

Separate analyses were conducted on each of these Invertebrate Measures, 

but as the individual Count variables are subdivision of Total Count, we recognise 

that the threshold for significance using P values should be reduced to account for 

multiple comparisons. However, as this was primarily an exploratory study, we 

retained the convention of significance being assumed when P < 0.05 while 

acknowledging that this increases the likelihood of Type 1 errors. For the Density 

Models, % changes in dependant variables were calculated by finding the difference 

in values when Density was increased from 0.2 to 0.3 pheasants per m². This value 

was selected as the mean stocking density of all pens was 0.258 pheasants per m². 

For the full range of stocking densities see Figure 4.1. Results within the Enhanced 

Model were calculated by finding the difference in dependant variable values when 

Enhanced Pheasant % was increased from 0% to 50%, which represented the 

median difference for our samples between pens with or without Enhanced birds. 

 

All results presented in the final model tables are shown as % changes in their 

respective dependant variable. The results that were deemed significant (P = <0.05) 

were marked in bold and underlined in the results tables. Definitions of each table 

heading can be found in Table 4.4.  
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Variable Name Variable Description 

Survey Number 
Whether the dependant variable was 
collected during Survey 1, 2, or 3.  

Trap Location 
Whether the dependant variable was 
collected from Interior or Exterior 
transects. 

Percentage Enhanced 
The percentage of Enhanced pheasants 
released into the pen.  

Density 
The density of pheasants released into the 
pen (pheasants/m² of pen area). 

Year 
The year of the survey, either 2016 (Year 
1) or 2017 (Year 2) 

Table 4. 2 Independent variables definitions used in the four model structures (excluding Habitat 
Scores for Invertebrate-Habitat Models). 

  

 

Model 
Name  

Dependant 
Variable  

Independent Variables 
Random 
Effect 

Base Model 

Invertebrate 
Measures 
and Habitat 
Scores 

Survey Number 

Pen Name 
Survey Number : Year 

Survey Number : Trap 
Location : Year 

Density 
Model 

Invertebrate 
Measures 
and Habitat 
Scores 

Survey Number 

Pen Name 

Survey Number : Year 

Density : Survey Number 

Survey Number : Trap 
Location : Year 

Trap Location : Survey 
Number : Density 

Enhanced 
Model 

Invertebrate 
Measures 
and Habitat 
Scores 

Survey Number 

Pen Name 

Survey Number : Year 

Percentage Enhanced : 
Survey Number 

Survey Number : Trap 
Location : Year 

Trap Location : Survey 
Number : Percentage 
Enhanced 

Invert-
Habitat 
Model 

Invertebrate 
Measures 

Survey Number 

Pen Name 
% Bare Ground : Year 

% Ground Vegetation : 
Year 

% Shrubby Cover : Year 
Table 4. 3 GLMM model structures for Base, Density, Enhanced, and Invert-Habitat Models. 
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Contained 
within 
Model 

Result 
column 
headings  

Question being tested and result metrics 

Base 
Exterior 
Survey 
difference  

Did the value assigned to the dependant 
variable on Survey 1 change significantly in 
Surveys 2 and 3 on the pen Exterior? Results 
in % change of dependant variable in Survey 
2 or 3 when compared to Survey 1 on pen 
Exterior. Survey 1 left blank as it cannot be 
compared to itself. 

Base 

Between 
Year 
Exterior 
Survey 
Difference 

Did the dependant variable for each 
Survey differ significantly in Year 2 when 
compared to the same Survey in Year 1 on 
pen Exterior? Results in % change of 
dependant variable between Exterior Surveys 
of Year 2 compared to the same Survey of 
Year 1. 

Base 
Interior 
Year 1 

Did the Interior dependant variable differ 
significantly from Exterior for each Survey in 
Year 1? Results in % change in Interior 
dependant variable compared to Exterior for 
each Survey in Year 1. 

Base 
Interior 
Year 2 

Did the Interior dependant variable differ 
significantly from Exterior for each Survey in 
Year 2? Results in % change in Interior 
dependant variable compared to Exterior for 
each Survey in Year 2. 

      

Density 
Exterior 
Density 

Did increasing the Density of pheasants 
released significantly affect the dependant 
variable on pen Exteriors for each Survey. 
Results in % change of dependant variable on 
pen Exterior when pheasant per m² was 
increased by 0.1. 

Density 
Interior 
Density 

Did increasing the Density of pheasants 
released significantly change the Interior 
dependant variable when compared to the 
Exterior. Results in % change of Interior 
dependant variable compared to Exterior 
when pheasants per m² was increased by 0.1. 

      

Enhanced 
Exterior 
Enhanced 

Did increasing the percentage of Enhanced 
Pheasants released into in the release pen 
significantly change the Exterior dependant 
variable? Results in % change of Exterior 
dependant variable when Percentage 
Enhanced is increased from 0% to 50%. 
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Enhanced 
Interior 
Enhanced 

Did increasing the percentage of Enhanced 
pheasants released into the pen significantly 
change the Interior dependant variable when 
compared to the Exterior. Results in % 
change of Interior dependant variable 
compared to Exterior when Percentage 
Enhanced is increased from 0% to 50%.  

      

Invertebrate-
Habitat 

% Bare 
Ground 

What was the effect on the dependant 
variable of increasing the percentage of Bare 
Ground? Results in % change of dependant 
variable from an increase in Bare Ground of 
10%. 

Invertebrate 
-Habitat 

% Ground 
Vegetation 

What was the effect on the dependant 
variable of increasing the percentage of 
Ground Vegetation? Results in % change of 
dependant variable from an increase in 
Ground Vegetation of 10%. 

Invertebrate 
–Habitat 

% Shrubby 
Cover 

What was the effect on the dependant 
variable of increasing the percentage of 
Shrubby Cover? Results in % change of 
dependant variable from an increase in 
Shrubby Cover of 10%. 

Table 4. 4 Heading definitions for Base, Density, Enhanced, and Invertebrate-Habitat Models  
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4.3 Results  

 

4.3.1 Coarse-scale seasonal and yearly changes in Invertebrate Measures (Base 

Model) 

Invertebrate Measures were typically lower with successive Surveys within a year, 

although counts of Arachnids and Detritivores did not differ between Surveys 1, 2, 

and 3 (Table 4.5). All Invertebrate Measures were significantly lower in Year 2 when 

compared to the same Survey in Year 1 with the exception of Total Count and Total 

Biomass values in Survey 3 which did not differ and Arachnid Count and Detritivore 

Count which did not differ between Years across all Surveys (Table 4.5).  

 

4.3.2 To what extent does the release of pheasants impact the Invertebrate 

Measures? 

There were no differences in any Invertebrate Measures between Interior and 

Exterior transects during Survey 1 in either year (Table 4.5).  

Some Invertebrate Measures differed between Interior and Exterior transects 

during Survey 2, but these were not consistent across years (Table 4.5). In Year 1, 

Interior Invertebrate Measures were lower than Exterior Measures for Total Biomass 

(-41.1% ±7.8, P = 0.0009, Fig 4.2), Slug Count (-36.1% ±8.73, P = 0.0205, Fig 4.4), 

and Detritivore Count (-49.2% ±9.33, P = 0.0090, Fig 4.5) in Survey 2. In Year 2, 

Interior Measures were lower than Exterior Measures for Arachnid Count (-66.3% 

±7.16, P = 0.0002, Fig 4.4) in Survey 2. 

 Some Invertebrate Measures differed between Interior and Exterior transects 

during Survey 3, but these were not consistent across years (Table 4.5). In Year 1, 

there were no differences in any Invertebrate Measures between Interior and 
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Exterior transects in Survey 3 (Table 4.5). In Year 2, there were higher Total 

Biomass (51.7% ±19.3, P = 0.0082, Fig 4.2), Total Counts (65.8% ±19.2, P = 0.0002, 

Fig 4.3), Slug Counts (59.7% ±21.5, P = 0.0138, Fig 4.4), and Beetle Counts (72.0% 

±23.8, P = 0.0020) in Interior compared to Exterior transects in Survey 3 (Table 4.5).  

 

4.3.3 Does the density at which the pheasants are released affect the Invertebrate 

Measurements? (Density Model) 

Our models revealed that increasing stocking density by 0.1 pheasants/m2 was 

accompanied by a higher Slug Counts (23.8% ±17.2, P = 0.0010) and a lower 

Detritivore Count (-24.9% ±15.5, P = 0.0271) at Survey 1 across both pen Interior 

and Exterior transects equally (Table 4.6). The increased stocking density was also 

accompanied by lower Total Biomass from Interior transects during Survey 1 (-

13.2% ±11.4, P = 0.0193) (Table 4.6). No other Invertebrate Measures differed 

significantly in any other Survey due to Density (Table 4.6).  

 

4.3.4 Does the percentage of released pheasants that were reared under Enhanced 

conditions affect the Invertebrate Measurements? (Enhanced Model) 

Our model revealed that an increase of Enhanced pheasant stocking from 0% to 

50% was accompanied by increased Beetle Counts (43.3% ±22.4, P = 0.0484) from 

Interior compared to Exterior transects in Survey 1 (Table 4.7). No other Invertebrate 

Measures differed in any other Survey.  

 

4.3.5 How do patterns of pheasant release affect Vegetation Coverage? 

Within any one year, Exterior Habitat Scores did not change significantly between 

Surveys. Between years, Bare Ground and Shrubby Cover were higher both inside 
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and outside release pens across all three surveys in Year 2 when compared to Year 

1, whereas there were no differences between years in Ground Vegetation (Table 

4.5).  

 

There was a consistently greater extent of Bare Ground around Interior 

transects compared to Exterior ones in Survey 1 (303% ±55.2, P < 0.0001), Survey 2 

(1160% ±172, P < 0.0001), and Survey 3 (1170% ±189, P < 0.0001) in Year 1 and 

Survey 1 (45.0% ±19.4, P = 0.0173), Survey 2 (129% ±30.7, P < 0.0001) and Survey 

3 (153% ±33.9, P < 0.0001) in Year 2. (Table 4.5). There was consistently less 

Ground Vegetation surrounding Interior transects compared to Exterior ones 

recorded in Survey 2 (-75.2% ±3.22, P < 0.0001) and Survey 3 (-76.2% ±3.37, P < 

0.0001) in Year 1 and Survey 2 (-70.0% ±3.82, P < 0.0001) and Survey 3 (-71.0% 

±3.69, P < 0.0001) in Year 2, (Table 4.5). There was a greater area of Shrubby 

Cover around Interior transects compared to Exterior ones in Survey 1 (77.4 % 

±20.8, P = <0. 0001), Survey 2 (77.4% ±20.8, P < 0.0001) and Survey 3 (86.6% 

±23.4, P < 0.0001) in Year 1. However, this difference was absent during Survey 1 

and 2 in Year 2 and the difference was then reversed, with a smaller area of Shrubby 

Cover around Interior transects compared to Exterior ones, during Surveys 3 (26.2% 

±8.42, P = 0.0096) in Year 2 (Table 4.5).  

 

Our model revealed that an increase in stocking density by 0.1 pheasants/m2 

was accompanied by a lower Exterior Shrubby Cover on Survey 1 (-12.1% ±10.3, P 

= 0.0169) and lower Interior Shrubby Cover in Survey 2 (-23.7% ±10.2, P = 0.0191) 

and Survey 3 (-25.8% ±11,4, P = 0.0152) (Table 4.6). Increasing the percentage of 
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Enhanced pheasants from 0% to 50% decreased Shrubby Cover in both Interior and 

Exterior transects in Survey 1 (-28.5% ±9.35, P = 0.0343), Survey 2 (-29.5% ±9.23, 

P = 0.0277), and Survey 3 (-33.3% ±9.17, P = 0.0132) (Table 4.7) but caused no 

significant differences between Interior and Exterior Habitat Scores in any Survey. 

 

4.3.6 How does Vegetation Coverage relate to Invertebrate Measures? 

Levels of ground coverage by vegetation were not consistently related to 

Invertebrate Measures. In Year 1, we found no relationship between Ground 

Vegetation coverage and any Invertebrate Measure, but in Year 2 our model 

revealed that a 10% increase in Ground Vegetation was accompanied by decreases 

in Total Biomass (-6.58% ±12.59, P = 0.0237) (Table 4.8). In neither Year 1 nor Year 

2 was Bare Ground or Shrubby Cover coverage related to any Invertebrate Measure 

(Table 4.8).  
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Base 
Model 

  
Exterior Survey 

difference  

Between Year 
Exterior Survey 

Difference 
Interior Year 1 Interior Year 2 

  
Survey 
Number 

1 2 3 1 2 3 1 2 3 1 2 3 

Total 
Biomass 

% 
Change 

- -66.9 -90.6 -62.5 -60.1 -9.36 -17.7 -41.1 -18.9 11.3 -4.29 51.7 

% Std 
Error 

- 4.29 1.34 4.77 5.07 11.5 10.7 7.63 11.5 14.2 12.2 19.3 

Total 
Count 

% 
Change 

- -49.6 -81.8 -45.3 -49.8 24.1 -13.9 -23.8 6.12 14.7 5.02 65.8 

% Std 
Error 

- 5.95 2.34 6.34 5.81 14.4 10.2 8.99 13.7 13.3 12.2 19.2 

Sqrt Slug 
Count 

% 
Change 

- -54.8 -67.9 -70.3 -37.8 -33.7 -4.2 -36.1 -13.2 6.55 -1.8 59.7 

% Std 
Error 

- 6.17 4.87 4 8.37 8.91 13.1 8.73 13.2 14.3 13.2 21.5 

Beetle 
Count  

% 
Change 

- -45.6 -82.3 -54 -49.8 57 -14.6 -5.82 14.6 39.9 30.4 72 

% Std 
Error 

- 7.67 2.74 6.37 6.96 21.8 12 13.3 17.8 19.4 18.1 23.8 

Sqrt 
Arachnid 
Count 

% 
Change 

- -20.7 -45.4 9.65 -0.854 -11.9 -11.8 -6.34 -9.72 -16 -66.3 -37.7 

% Std 
Error 

- 17.1 13 23.3 21 18.7 19 20.2 21.6 17.8 7.16 13.2 

Sqrt 
Detritivore 
Count 

% 
Change 

- 3.96 -22.1 50.8 7.15 -11.3 -15.7 -49.2 -2.94 -11.8 -30.9 -12.4 

% Std 
Error 

- 19.1 15.9 27.3 19.4 16 15.5 9.33 19.8 16 12.5 15.8 

Bare 
Ground 

% 
Change 

- 0 0.773 438 564 522 303 1160 1170 45 129 153 

% Std 
Error 

- 13.7 15 72.1 88.8 83.4 55.2 172 189 19.4 30.7 33.9 

Ground 
Veg 

% 
Change 

- 0 0.744 -3.1 -13.9 -6.25 -24.2 -75.2 -76.2 -23.2 -70 -71 

% Std 
Error 

- 13 14.3 12.4 11 11.9 9.84 3.22 3.37 9.79 3.82 3.69 

Shrubby 

% 
Change 

- 0 -0.31 152 140 135 77.4 77.4 86.6 -9.33 -20.5 -26.2 

% Std 
Error 

- 11.7 12.5 28.8 27.4 26.9 20.8 20.8 23.4 10.4 9.07 8.42 

 

Table 4. 5 Results of Base Models showing statistically significant (P < 0.05) changes in dependant 
variables in percentage increases or decreases across the various model criteria defined in table 4.3. 
Non-significant results (P > 0.05) are shown as NS. Exterior Survey difference = % change of 
dependant variable in Survey 2 or 3 when compared to Survey 1 on pen Exterior. Between Year 
Exterior Survey Difference = % change of dependant variable between a Survey of Year 2 
compared to the same Survey of Year 1 on pen Exterior. Interior Year 1 = % change in Interior 
dependant variable compared to Exterior for each Survey in Year 1. Interior Year 2 = % change in 
Interior dependant variable compared to Exterior for each Survey in Year 2. 
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Density Model Exterior Density Interior Density 

  
Survey 
Number 

1 2 3 1 2 3 

Total 
Biomass 

% Change 10.2 -0.00491 2.57 -14.1 -3.23 6.17 

% Std Error 14.7 13.3 -85 9.66 7.58 12.1 

Total 
Count 

% Change 2.26 4.88 6.86 -4.91 -5.94 5.81 

% Std Error 12.4 12.7 -85.9 10 8.78 14.2 

Sqrt Slug 
Count 

% Change 23.8 0.572 2.56 -11.5 2.99 -0.0883 

% Std Error 17.2 14 -84.1 12.8 9.06 13.5 

Beetle 
Count 

% Change 1.31 8.79 7.19 -8.8 -11.4 8.22 

% Std Error 14.6 15.6 -83 11.4 12.6 18.3 

Sqrt 
Arachnid 
Count 

% Change 3.95 -0.833 5.96 0.921 1.15 6.32 

% Std Error 23.1 22.1 -73.8 19.6 21 22.8 

Sqrt 
Detritivore 
Count 

% Change -17.7 -1.92 -5.55 12.2 7.03 3.79 

% Std Error 15.6 18.7 -80 18.1 10.3 21.2 

Bare 
Ground 

% Change 11.4 11.4 12.3 -57.3 -157 -186 

% Std Error 15.5 15.5 -83.1 52.6 163 176 

Ground 
Veg 

% Change 0.425 -3.95 -5.49 2.46 1.06 1.58 

% Std Error 13.5 12.9 -86.2 10.4 3.4 3.62 

Shrubby 
% Change -12.1 -9.43 -8.58 -11.8 -23.7 -25.8 

% Std Error 10.4 10.7 -88.4 20.2 19.4 21.7 

 

Table 4. 6 Results of Density Models showing statistically significant (P < 0.05) changes in dependant 
variables in percentage increases or decreases across the various model criteria defined in table 4.3. 
Non-significant results (P > 0.05) are shown as NS. Exterior Density = % change of dependant 
variable on pen Exterior when pheasant per m² was increased by 0.1. Interior Density = % change of 
Interior dependant variable compared to Exterior when pheasants per m² was increased by 0.1. 
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Enhanced Model   Exterior Enhanced Interior Enhanced 

  
 Survey 
Number 

1 2 3 1 2 3 

Total Biomass 

% 
Change 

-20.1 -9.65 -24.4 16.2 13.2 12.6 

Std. 
error 

11.8 13.3 -88.1 13.2 9.38 13.6 

Total Count 

% 
Change 

-16.9 21.6 -24.9 26.7 14.5 14.5 

Std. 
error 

10.9 15.9 -89.5 12.9 10.7 15.6 

Sqrt Slug Count 

% 
Change 

-22.6 -0.0894 -3.64 -8.16 14.5 2.86 

Std. 
error 

11.6 15 -84.4 14 10.6 14.3 

Beetle Count 

% 
Change 

-10.6 -0.143 -31.7 38 29.2 20.7 

Std. 
error 

14 15.6 -88.5 15.8 16.6 20.3 

Sqrt Arachnid Count 

% 
Change 

-9.26 8.38 -13 14.6 10.6 6.03 

Std. 
error 

6.14 7.33 -93.7 6.72 6.15 7.46 

Sqrt Detritivore 
Count 

% 
Change 

15.6 -3.99 40.6 19.2 28.1 30.9 

Std. 
error 

25.1 20.8 -67.1 19 13.8 26.3 

Bare Ground 

% 
Change 

13.6 30.5 22.5 190 -268 -233 

Std. 
error 

17.3 19.8 -80.2 70.1 176 192 

Ground Veg 

% 
Change 

12.3 4.72 -7.54 -24.5 -4.23 0.286 

Std. 
error 

16.6 15.5 -85.5 9.77 3.42 3.75 

Shrubby 

% 
Change 

-28.5 -29.5 -33.3 -6.44 4.68 31.2 

Std. 
error 

9.35 9.23 -90.8 22.9 23.5 27.3 

Table 4. 7 Results of Enhanced Models showing statistically significant (P < 0.05) changes in 
dependant variables in percentage increases or decreases across the various model criteria defined 
in table 4.3. Non-significant results (P > 0.05) are shown as NS. Exterior Enhanced = % change of 
Exterior dependant variable when Percentage Enhanced is increased from 0% to 50%. Interior 
Enhanced = % change of Interior dependant variable compared to Exterior when Percentage 
Enhanced is increased from 0% to 50%. 

 

  



 

155 
 

 

 

Invertebrate-
Habitat Models 

  % Bare Ground % Ground Veg % Shrubby Cover 

Study Year 
Survey 
Number 

Year 1 Year 2 Year 1 Year 2 Year 1 Year 2 

Total Biomass 

% 
Change 

-5.5 -3.76 0.746 -6.58 -2.47 -3.42 

Std Error 18.9 19.8 19.6 19.2 20.8 21.9 

Total Count 

% 
Change 

-0.194 0.898 1.98 -3.41 -3 -1.93 

Std Error 18.5 19.2 18.4 18.3 19.2 20.6 

Insect Count 

% 
Change 

0.0313 -1.68 3.59 -3.88 -2.36 -2.65 

Std Error 19 19.5 19.2 19 20 21.4 

Slug Count 

% 
Change 

0.584 2.97 1.61 -3.29 -2.97 -3.65 

Std Error 22.1 23.3 21.7 21.8 22.7 24 

Beetle Count 

% 
Change 

2.65 -0.0383 2.17 0.66 0.665 -0.507 

Std Error 29.8 30.2 28.8 30.3 31.4 33.2 

Arachnid Count 

% 
Change 

2.65 -0.0383 2.17 0.66 0.665 -0.507 

Std Error 29.8 30.2 28.8 30.3 31.4 33.2 

Detritivore 
Count 

% 
Change 

-6.26 -2.2 -4.12 -7.04 -2.34 3.13 

Std Error 24.7 26.9 24.6 25.5 27.7 31.3 

 

Table 4. 8 Results of Invert-Habitat Models showing statistically significant (P < 0.05) changes in 
dependant variables in percentage increases or decreases across the various model criteria defined 
in table 4.3. Non-significant results (P > 0.05) are shown as NS. % Bare Ground = % change of 
dependant variable from an increase in Bare Ground of 10%. % Ground Vegetation = % change of 
dependant variable from an increase in Ground Vegetation of 10%. % Shrubby Cover = % change of 
dependant variable from an increase in Shrubby Cover of 10%. 
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Figure 4.2 Release pen Interior and Exterior Total 
Invertebrate Biomass changes between Surveys 
across Years 1 and 2. Light Blue = Year 1 Interior, 
Light Red = Year 1 Exterior, Dark Blue = Year 2 
Interior, Dark Red = Year 2 Exterior. 

 

Figure 4.3 Release pen Interior and Exterior Total 
Invertebrate Count changes between Surveys 
across Years 1 and 2. Light Blue = Year 1 Interior, 
Light Red = Year 1 Exterior, Dark Blue = Year 2 
Interior, Dark Red = Year 2 Exterior. 
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Figure 4.4 Release pen Interior and Exterior Slug 
Count changes between Surveys across Years 1 
and 2. Light Blue = Year 1 Interior, Light Red = 
Year 1 Exterior, Dark Blue = Year 2 Interior, Dark 
Red = Year 2 Exterior. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Release pen Interior and Exterior 
Arachnid Count changes between Surveys across 
Years 1 and 2. Light Blue = Year 1 Interior, Light 
Red = Year 1 Exterior, Dark Blue = Year 2 Interior, 
Dark Red = Year 2 Exterior. 
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Figure 4.6 Release pen Interior and Exterior 
square rooted Detritivore Count changes 
between Surveys across Years 1 and 2. Light 
Blue = Year 1 Interior, Light Red = Year 1 
Exterior, Dark Blue = Year 2 Interior, Dark Red 
= Year 2 Exterior. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Release pen Interior and Exterior 
square rooted Beetle Count changes between 
Surveys across Years 1 and 2. Light Blue = Year 
1 Interior, Light Red = Year 1 Exterior, Dark Blue 
= Year 2 Interior, Dark Red = Year 2 Exterior. 
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Figure 4.8 Release pen Interior and Exterior 
Bare Ground % Cover changes between 
Surveys across Years 1 and 2. Light Blue = 
Year 1 Interior. Light Red = Year 1 Exterior. 
Dark Blue = Year 2 Interior. Dark Red = Year 2 
Exterior. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.9 Release pen Interior and 
Exterior Ground Vegetation % Cover 
changes between Surveys across Years 1 
and 2. Light Blue = Year 1 Interior, Light 
Red = Year 1 Exterior, Dark Blue = Year 2 
Interior, Dark Red = Year 2 Exterior. 
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4.4. Discussion  

The effects on invertebrates of releasing pheasants into woodland pens were 

inconsistent, varying within and between years, and different according to the 

taxonomic grouping considered. Generally, we detected no differences between 

Invertebrate Measures made on Interior and Exterior transects during Survey 1, 

before pheasants had been released into the pen. This suggests that there were no 

inherent differences in invertebrates between areas inside and outside the release 

pens in the absence of pheasants. When pheasants were inhabiting the pens, during 

Survey 2, we detected some lower Invertebrate Measures recorded on Interior 

transects compared to Exterior ones. These were more evident during 2016 with 

differences between transect locations in Total Biomass, Slug Count, and Detritivore 

Count. In 2017, we only detected differences in Arachnid Count at this time. As the 

released pheasants spread away from the pens and out into the surrounding 

landscape, during Survey 3, we found some evidence that Invertebrate Measures 

inside the pen were now higher than those outside the pen. These differences were 

not evident in 2016, but in 2017 we found that Total Biomass, Total Count, Slug 

Count, and Beetle Count were higher on Interior transects compared to Exterior 

ones. Increasing pen stocking Density only affected Invertebrate Measures prior to 

release, lowering Interior Total Biomass and Interior and Exterior Detritivore Counts 

and causing higher Interior and Exterior Slug Counts. Increased stocking of 

Enhanced pheasants caused higher Beetle Counts and lower Shrubby Cover prior to 

release. 

 

Invertebrate Measures, apart from Arachnid and Detritivore Counts, declined 

both inside and outside the release pen over the period of our surveys within each 
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year, with the largest declines typically occurring between Surveys 1 and 2. This 

period corresponds to the introduction of pheasants into the pen. These absolute 

declines, regardless of transect location, could indicate that the release of pheasants 

has immediate, widespread effects on invertebrate populations in woods where 

pheasants are released. However, pheasants typically do not leave their release 

pens during these first few weeks (Hill and Robertson, 1988b), so we doubt whether 

these absolute declines are due to direct predation. Instead, declines outside the pen 

may occur because predation on invertebrates within the pen produces vacant 

niches that draw invertebrates in from outside and the pen may act as a population 

sink, so reducing their abundance outside. Alternatively, and we believe far more 

likely, absolute declines in Invertebrate Measures reflect non-pheasant related 

declines in populations as the year progresses (Wolda, 1988), with Survey 1 typically 

conducted in July-August and Surveys 2 and 3 typically occurring between 

September and November. Carabids, which constituted 92.3% of the total Beetle 

Count, are most active in late summer, with some species being 3 times as active 

then than in winter (Cartellieri and Lövei, 2003), and predatory arthropod populations 

have been shown to peak in June/July (Kovanci, Kovanci and Gencer, 2007). These 

seasonal differences would seem to match the patterns shown here. Arachnids and 

detritivores were consistent between surveys, but this may have been due to low 

count values making changes harder to detect. This may also explain why Arachnid 

and Detritivore Counts were also both the only Invertebrate Measures that were not 

significantly lower in 2017 than 2016 across the entire survey period. With the 

exception of Arachnid and Detritivore Counts, all 2017 Invertebrate Measures were 

significantly lower than those made in 2016 across the entire survey period. Similar 

differences between years were found for Habitat Scores, with higher Exterior Bare 
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Ground and Shrubby Cover in 2017, putting those habitat percentage covers closer 

to those levels found within the pen prior to release. We suspect that one 

explanation for these between-year differences is climatic variation, with 2017 being 

both a drier and hotter year overall compared to 2016 but also being predominantly 

wetter and slightly colder over the actual survey period (Met Office, 2019). Wetter 

and colder weather may have reduced invertebrate movement and decreased the 

likelihood of them falling into the pitfall traps (Saska et al., 2013). Conversely, 

changes in climate may have made food less available and reduced the carrying 

capacity of the woodlands to support as many invertebrates (Dempster and Pollard, 

1981), reducing their overall abundance. The different effect that we found between 

years may indicate that the effects of pheasant releases on both invertebrates and 

habitat can be mediated by additional natural processes such as changes in annual 

temperature and rainfall. Possible mechanisms for this could be increased bare 

ground and reduced invertebrate abundance shifting pheasant foraging strategies or 

reduced invertebrate movement making them less vulnerable to predation.  

 

The Interior transects of pens had consistently more Bare Ground compared 

to neighbouring Exterior transects during all three Surveys in both years. This 

difference was matched by lower coverage by Ground Vegetation recorded during 

Surveys 2 and 3. These results suggest that either scratching by pheasants during 

foraging (Hill and Robertson, 1988) or simple trampling may remove ground 

vegetation within release pens. Shrubby Cover, being raised off the ground, is less 

likely to be directly affected by these behaviours, and this may explain why we see 

no post-release decreases in measures of this vegetation type in 2016, but in 2017, 

the release of pheasants caused Interior Shrubby Cover to decrease in Surveys 2 & 
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3. This effect could have been exaggerated by the wetter and colder weather during 

the release period in 2017 causing pheasants to spend more time roosting off the 

ground in Shrubby Cover to remain dry, resulting in damage to Shrubby Cover 

foliage.  

 

An indirect effect of pheasant releases is changes in habitat structure (Sage, 

Ludolf and Robertson, 2005; Sage et al., 2009), and although we also detected 

changes in habitats following release of pheasants, we found very limited evidence 

that this explained differences in Invertebrate Measures. No direct relationship was 

found between either Shrubby Cover or Bare Ground and any Invertebrate 

Measures. The only evidence that we found of habitat cover directly relating to 

Invertebrate Measures was for Ground Vegetation, with increased Ground 

Vegetation being associated with lower Total Biomass in 2017, but this relationship 

was inconsistent and not observed in 2016. This association with lower Total 

Biomass but not lower Total Count implies that increased Ground Vegetation is 

negatively affecting larger invertebrates. This could be because movement through a 

denser ground layer may be harder for larger invertebrates which, in a year where 

food items may be less available due to colder and wetter weather and greater 

distance must be travelled between foraging patches due to increased bare ground 

(Hassell and Southwood, 1978), would put larger invertebrates at a disadvantage to 

smaller more mobile invertebrates. 

 

There were no differences between Invertebrate Measures inside and outside 

of release pens prior to release when not accounting for stocking density, indicating 
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an absence of chronic between-year effects on invertebrates despite chronic effects 

being evident for vegetation cover. Pressland (2009) showed that pheasant releases 

do exert a chronic effect on invertebrate biomass, reducing it at the woodland scale, 

with evidence of lower levels of biomass prior to release. Although we did not study 

non-release woodlands, our study does show that this effect of reduced biomass 

from the presence of pheasants does not appear to be higher in general within the 

release pens. However, at pens where the density at which pheasants have been 

released in previous years was high, we detected lower Total Biomass within the 

release pen prior to release. This will be further discussed later with the other effects 

of density.  

 

The reduced Total Biomass, Slug Count, and Detritivore Count within the 

pens 4 weeks post-release in 2016 show that pheasants can have a direct negative 

effect on invertebrates. The cause is likely direct predation, as adult pheasants will 

readily consume arthropods, molluscs, and even small vertebrates (Hill and 

Robertson, 1988b), and so despite pheasant diet having shifted away from being 

primarily base on invertebrates to grains and shoots by the time of release (Hill, 

1985), they are likely still predating enough invertebrates to have a detrimental 

impact at a population level. The lower Interior Total Biomass but not Total Count 

seen in Survey 2 also implies that either the presence of pheasants is making the 

invertebrate population as a whole reduce in weight, or far more likely, that the 

largest individuals are being most negatively affected. In addition to larger 

invertebrates offering greater nutritional value to pheasants, less ground vegetation 

would make larger invertebrates more visually conspicuous and put them at higher 

risk of predation (Berger, Walters and Gotthard, 2006). Additionally, Neumann et al 



 

165 
 

(2015) found that higher pheasant densities reduced larger carabid populations 

within release pens in spring, indicating that larger invertebrates are more negatively 

affected by pheasant releases at both the long and short term.  

 

These immediate effects of pheasant release on invertebrates shown in 2016 

were not repeated in 2017, but instead, there were lower Interior Arachnid Counts, 

possibly caused by the combination of increased Interior Bare Ground with the now 

reduced prey numbers reducing the success of trap/ambush predator strategies of 

an arachnid population that itself had not declined on the pen Exterior (Nyffeler, 

1996; Jocque et al., 2011). Interior Total Biomass and Slug Count may not have 

been detected as being lower post-release in 2017 despite their being so in 2016 

because the reduced values of these Invertebrate Measures decreased our ability to 

detect change, with Survey 2 Total Biomass and Slug Count being 60.1% and 37.8% 

lower respectively in 2017 than in 2016. This, however, does not explain the lack of 

an effect seen in Detritivore Count in Survey 2 of 2017, as Detritivore Count did not 

decline between years. 

 

By 9 weeks post-release in 2016, the differences seen 4 weeks post-release 

had disappeared, despite the changes to habitat still being present. It is between 

Surveys 2 and 3 that the pheasants disperse from the release pens and out into the 

wider habitat, substantially reducing their concentrations within the pen. As such, the 

removal of these differences between the surveys further strengthens the argument 

that they were caused directly by the presence of pheasants. The fact that Total 

Biomass, Slug Count, and Detritivore Count now did not differ at all could be caused 
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by one of or a combination of either the Invertebrate Measures within the pen 

recovering in the absence of pheasants, or those Invertebrate Measures outside the 

pen now becoming lower due to pheasants now being present as they disperse from 

the pen. Total Biomass and Total, Slug, and Beetle Counts were all significantly 

higher within the release pens in Survey 3 of 2017 whereas in 2016 there were no 

significant differences between any Invertebrate Measures collected from pen 

Interior and Exterior transects at this time. A possible explanation for this would be 

that food availability was the cause of the overall population declines in 2017. If the 

trampling of plant material and the accumulation of faeces within the release pen 

caused by pheasants (Sage, Ludolf and Robertson, 2005) increased the amount of 

food available to invertebrates, then it may explain why a greater number were 

present inside the pen once the predation pressure of pheasants had been lowered 

due to them largely dispersing away. This effect may not have been seen in 2016 if 

food sources were more widely available outside of the release pen. Detritivore 

Count was not higher on pen Interior in Survey 3 of 2017, but the freshly trampled 

plant matter would likely still be too fresh and a less favourable food source for 

woodlice (Zimmer, 1997), which constituted 71.08% of the mean Detritivore Count in 

this study. If more invertebrates had been drawn to pen Interiors in 2017 after 

release, it may have also played a part in there no longer being significant 

differences between Interior and Exterior Invertebrate Measures in Survey 2 of 2017.   

 

We found little evidence that, within the range that we sampled, the density at 

which pheasants were stocked had any immediate effect on Invertebrate Measures, 

with stocking density failing to explain any of the additional variance in differences 

between Interior and Exterior transects recorded during Surveys 2 or 3. However, we 
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did detect some evidence of a chronic effect of stocking density with lower Interior 

transect Total Biomass recorded at pens where a high density of pheasants was 

later released. Clearly, this couldn’t be an anticipatory effect, but instead, because 

stocking densities at pens are often consistent from year to year as game keepers 

simply repeat what they have done previously, we suspect that there may be 

cumulative consequences of repeated high density releases. Neumann et al (2015) 

found that spring populations of larger carabid beetles were lower inside release 

pens that had previously released pheasants at high densities, but our findings imply 

that a history of higher density releases lowers the quantity of all larger invertebrates 

prior to release, not just carabids, as shown by the decline in Total Biomass without 

a corresponding decline in Total Count, suggesting that the mean individual size is 

smaller. As this is only apparent before release, this change is likely due to the 

longer-term effects of pheasant releases, such as degradation of habitat (Sage, 

Ludolf and Robertson, 2005; Capstick, Sage and Hoodless, 2019), as opposed to 

direct predation. We also found that increased stocking density led to higher Slug 

Counts and lower Detritivore Counts prior to release that did not differ significantly 

between Interior and Exterior transects, though these effects were only present in 

Survey 1. This lower Detritivore Count both inside and outside of the release pen 

prior to release does not support findings by Neuman et al (2015) who found that 

spring populations of woodlice were higher within release pens that released 

pheasants at higher densities. We are unable to demonstrate a mechanism that 

might be causing this reduction in Detritivore Count (which was primarily woodlice) 

both inside and outside of the pen prior to release. Higher release densities in 

previous years causing higher Slug Counts both inside and outside of the pen prior 

to subsequent releases is also an unusual result considering that the release of 
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pheasants, at least when slugs were more abundant in 2016, reduced slug 

abundance within the release pen. This implies that over the short term, pheasants 

negatively affect slug populations, but over the long term, increased pheasant 

densities may increase slug populations within and immediately around the release 

pens before pheasants are once again released. This may be because increased 

pheasant release densities has been shown to increase grasses, annuals, and 

perennials associated with fertile or disturbed soils within release pens (Sage, Ludolf 

and Robertson, 2005), and it is likely that increased pheasant densities also increase 

the number of these plants in the areas immediately around the release pens in the 

same manner that they do to the hedgerows near to pens (Sage et al., 2009). Such 

high-nutrient and disturbance-tolerant species would grow faster than the shade-

tolerant and low-nutrient specialist species of flora found within most woodlands 

(Aerts, 1999), and as such could provide more readily available sources of food for 

slug populations. Stocking density also had some effects on habitat composition, 

specifically, increased density leading to lower Shrubby Cover in Interior transects in 

Surveys 2 and 3. This is likely due to a higher number of pheasants using the 

Shrubby Cover as roosting, resulting in greater deterioration. The absence of this 

difference in Survey 1 indicates that the level of deterioration is recoverable between 

years. The densities of pheasant releases in this study were all relatively high, with 

only 3 of the 65 releases having stocking densities lower than the 0.07 birds/m2 700 

recommended by the GWCT (Sage and Swan, 2003), and only 9 pen densities being 

lower than the 0.1 birds/m2 required to reduce shifts in floral compositions and long 

term habitat degradation (Sage, Ludolf and Robertson, 2005; Capstick, Sage and 

Hoodless, 2019).  Therefore, it is possible that we encountered a ceiling effect where 

maximal degradation occurred at (almost) all pens because there were very few 
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pens where release densities were low enough to exert little pressure. This may 

indicate why we did not find expected significant relationships between higher 

stocking density and habitat degradation in the form of increased Bare Ground and 

reduced Ground Vegetation. 

 

We found little evidence that the rearing methods used to produce the 

pheasants, specifically if they had prior experience of and hence greater competence 

at predating live invertebrates, immediately influenced any Invertebrate Measures. 

The two effects from increasing the percentage of Enhanced pheasants released 

that were deemed significant by our model were present prior to release during 

Survey 1, with the effect on Beetle Count no longer present post-release and the 

effect on Shrubby Cover changing little post-release. Enhanced birds were only 

released during the years of our study, in 2016 and 2017. Therefore the likelihood of 

them having exerted an effect in Survey 1, implying a chronic effect, was low. 

Instead we believe these effects are spurious with little biological relevance. Overall, 

we can conclude that the release of pheasants reared under Enhanced conditions in 

which they might be expected to become more efficient predators of live invertebrate 

prey (Whiteside, Sage and Madden, 2015) did not have immediate disproportionate 

negative effects on the invertebrate (or plant) community post-release when 

compared to pheasants reared under more conventional methods.  

 

4.5 Conclusion 

Young wild-reared pheasants are prolific insectivores (Hill, 1985), and so unnaturally 

large numbers of such individuals, such as occur in artificial release pens, may be 

expected to dramatically reduce invertebrate populations. However, we found little 
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consistent evidence to suggest that this is a ubiquitous process, with those effects 

that we did detect often restricted to particular taxonomic groups in a particular year. 

We did not explicitly look at effects on particular species, but this would be 

informative, especially if releases occur in areas where species of conservation 

concern are found (Callegari, Bonham and Holloway, 2014). These differential 

effects on particular groupings could be due to direct predation, with pheasant 

targeting preferred, more available, or more conspicuous prey, rather than declines 

occurring because the local vegetation has been disturbed. More detailed study of 

pheasant foraging behaviour and prey choice could help explain why some 

invertebrate groups may be especially vulnerable to predation. We also found that 

relatively higher numbers of some taxonomic groups can be found within the release 

pens once pheasants have largely dispersed into the surrounding environment. This 

suggests that either pheasants actually make pens more attractive habitats to certain 

invertebrate groupings, or that the effects of depredation by pheasants increases 

once they leave the pen such that Exterior populations are more strongly affected by 

the released birds than Interior populations. We suspect that this second possibility 

is less likely for two reasons. First, as the year progresses, the proportion of 

invertebrate matter in pheasant diets decreases to <10% of their diet in 

October/November (Dalke, 1937; Lachlan and Bray, 1973, Hill and Robertson, 

1988), suggesting that they may depredate insects less at his time. Second, as the 

birds disperse, they forage at a lower density (both because they occupy a far larger 

area of ground and because they die in fairly large numbers) (Madden, Hall and 

Whiteside, 2018), so their depredations (which are already at a lower level) are likely 

to be diluted. Instead, we suspect that the trampling, disturbance, and accumulation 

of faecal matter in pens may provide an attractive habitat for some particular 
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invertebrate groups or make them more susceptible to trapping. Our study reveals 

that effects of pheasant release may be especially marked in particular years, 

perhaps when invertebrate populations are especially high. This may be because 

any differences are simply more detectable as margins of error decrease. 

Alternatively, differing conditions may alter pheasant foraging behaviour, perhaps 

offering them alternative non-invertebrate food such a fruits or nuts, or altering the 

movement patterns or conspicuousness of invertebrates. Our data were restricted to 

just two years, so we cannot differentiate these potential explanations. Extending 

such studies to more years could reveal when invertebrate populations may be 

expected to be especially vulnerable to pheasant releases. It could also permit a 

better understanding of accumulated or chronic effects of releases within an area 

where pheasant releases are repeated each year.  
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Chapter 5: How accurate is monitoring pheasant populations via differing 

patagial wing tags? 

 

Abstract 

Determining animal population numbers and age demographics are essential for 

planning effective management of harvested populations. Individuals may be marked 

either after capture or, if reared in captivity, before their release into the wild. They 

are then counted at harvest or later captures to determine harvest rates or 

population estimations. It is critical that marking techniques are robust and either 

reliable or have a well understood error pattern so that correction factors can be 

applied. Released pheasants are commonly marked using patagial tagging, offering 

a cheap and simple method of marking large numbers of pheasants. Typically, the 

Multi-Tag has been used by both researchers and shoots because it is cheap, easily 

used, and readily available. However, it may be susceptible to damage or loss. We 

compared the durability of Multi-Tags against the more durable Plastags, with one of 

each placed in the wings of 2500 released pheasants, of which 866 were later shot 

or captured. We calculate that average underestimations of tag counts for the 

shooting season following tagging were 14.7% for fully intact Multi-Tags, 5.2% for 

intact Multi-Tags and Multi-Tag nubs, and 1.3% for Plastags. This may encourage 

shoot owners using Multi-Tags to either release more birds than necessary or spend 

resources tailoring their management to accommodate more immigrant or wild 

pheasants. Rates of Multi-Tag losses between years were too high for the reliable 

application of a correction factor. Consequently, we suggest that Plastags, rather 

than Multi-Tags, should be used to study year-to-year survival of gamebirds.  
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5.1 Introduction 

In order to effectively manage land for gamebirds, data is required on lifespan, 

habitat use, and most importantly, population sizes (Tapper, 1988; Aebischer and 

Ewald, 2004). This is of particular relevance for species that are released for hunting, 

such as pheasants (Phasianus colchicus), where the collection of more data can 

allow game managers to adjust the efficiency of their management strategies, 

permitting them to reduce release sizes but maintain harvests (Robertson and 

Rosenberg, 1988; Turner, 2007). On pheasant shoots, such careful refinement of 

release sizes can limit the negative environmental, ethical, and economic effects of  

large scale releases (Sage, Ludolf and Robertson, 2005; Sage et al., 2009; Capstick, 

Sage and Hoodless, 2019).  

 

 Several types of information about the harvested population that could inform 

future management decisions can be collected. Most simply, the proportion of the 

population that has been harvested can be calculated (Robertson and Rosenberg, 

1988; Robertson et al., 2017). For wild populations, collecting this information 

involves conducting surveys before harvest begins, noting numbers, sex, age and 

(typically breeding) location of individuals of the focal species, and then comparing 

the numbers and other attributes of those harvested with the original population 

estimates (Robinson et al., 2008). For systems that release game to be harvested 

later, such as pheasant and red-legged partridges (Alectoris rufa) shot in the UK or 

salmonids released for angling (Tapper 1999), individuals can be accurately 

counted, aged, sexed, and marked upon release, depending on the marking method. 

These marks can then be retrieved at harvest. More detailed conclusions can be 

drawn from interpretations of these data. First, the overall efficiency of the harvest 
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can be determined (Turner, 2007), providing information on how many animals 

should be released in subsequent years to reach specific harvest quotas. Second, 

marking can inform managers as to the effectiveness of different management 

strategies, mapping populations declines and highlighting possible causes (Peek, 

Lovaas and Rouse, 1967). Detailed management decisions may depend on 

information such as the age (Draycott, Pock and Carroll, 2002) or sex (Leif, 2005) 

structure of a population, or understanding of patterns of movement prior to and 

during harvest (Guthery, 1983). Third, marking data can allow managers to identify 

release areas that are not productive, allowing them to improve or remove them from 

future releases and further improve efficiency. Fourth, by considering the numbers 

and age/sex structure of unmarked individuals, the game manager of a release-

based harvest system may gain insights into the health of the wild population based 

on the contribution it make to the harvest (Barnett-Johnson, 2007). Such data can 

inform the game manager about consequent management decisions about the scale, 

composition, and locations for future releases.  

 

However, the utility of such data is entirely dependent on the reliability of the 

marking system. Unreliable marking can cause underestimations of harvest 

efficiency and lead to larger releases; can cause the continued use of poorly 

performing releases sites increasing ‘wastage’ in released animals; reduce the 

accuracy of information on immigration and dispersal; and inflate estimates of the 

wild animals currently within the landscape. Because of these reasons it is essential 

that methods of marking released animals are either reliable or the rate of errors are 

known so that correction factors can be applied.  
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 Pheasants are commonly artificially reared and released in the UK to facilitate 

game shooting. This activity is practiced across the lowland UK and involves the 

annual release of 39-57 million birds (Aebischer, 2019). Consequently, accurate 

information about populations and harvest outcomes are critical to good 

management of this resource. A range of methods exist for monitoring gamebird 

populations sizes. At the most basic, population estimates can be obtained for free-

living birds by direct counts (Potts, 1986; Tapper, 1988; Walsh et al., 2004) or 

counting vocalisations (Rice, 2003), but this often requires experienced workers and 

extensive time to collect sufficient data (Carney and Petrides, 1957). Such 

population counts can then be compared to harvest records, but this may be too 

simplistic for detailed analysis and effective gamebird management, as it gives no 

information on the age or provenance of the birds. Much more detailed information 

may arise from the deployment of radio-tags on the birds and monitoring them in real 

time. For pheasants, this has been used to provide good data on movement and 

survival both on chicks (Hill, 1985) and adults (Whiteside and Guthery, 1944; Sage 

et al., 2018). However, this method requires large amounts of effort in capturing, 

applying radio tags, and then manually monitoring the birds while also having 

significant costs; therefore few individuals can be followed. An alternative method 

that balances costs, numbers of individuals considered and data richness, and is 

suitable for populations that are reared and then released, is to mark individuals on 

release with some form of passive tag that can be retrieved at harvest.  

 



 

176 
 

 Tags can convey information about the origin or release point of the bird and 

deployment records which describe the released population can be compared 

against recovered tags from the harvested population. Marking gamebirds for visual 

identification for research has been used since 1956 (Ash, 1956), with examples of 

commonly used current methods being neck bands (Gerald A . Bartelt and Donald H 

., 1980) and wing tagging (Whiteside, Sage and Madden, 2016). Patagial tags, with 

large numbered markers for identification at distance, allow for small scale studies of 

gamebird group dynamics, mortality, and dispersal  (Whiteside, Sage and Madden, 

2015; Whiteside, Langley and Madden, 2016). However, using tags that are visible 

from a distance best serves studies into individual birds as opposed to populations 

as a whole, and although methods such as coloured leg banding can have some use 

for large scale releases, they also require greater time, effort, and cost to deploy  

(Gullion, Eng and Kupa, 1962). Small tags that identify individuals and their origins, 

but don’t facilitate visual identification at a distance, allow gamebirds to be identified 

after being shot or recaptured and can result in extensive population level datasets. 

Passive Integrated Transponders (PIT) tags can work very effectively in this respect 

and have shown low levels of deterioration after harvests (via shooting) (Carver, 

Vincent A, Burger, Loren W., Brennan, 1999). However, their main drawback is cost 

(Jamison et al., 2000), with current prices of PIT tags at $3.00 each (Oregon RFID, 

2018). For gamebirds that are released by the (tens of) thousands, such costs are 

excessive. A more cost-effective solution is the use of simple coloured and dated 

patagial tags which can be easily fitted to young or mature gamebirds. The 

application of patagial tags is far swifter than other tagging method, with a pair of 

experience taggers able to tag up to 12 birds per minute depending on the type of 

tag used (my own research). The tags can be applied to 6-8 week old pheasant 
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poults immediately prior to their delivery to shoots, and there is little issue of the tag 

causing harm to the bird as it grows, which has been found for some bird species for 

similarly purposed leg bands (Berggren and Low, 2005; Trefry, Diamond and 

Jesson, 2012). Such patagial tags can be metal or plastic and can convey additional 

information via number or date stamping or colour coding to facilitate individual ID, 

year of release, or location of release. Tags can easily be counted by non-specialists 

inspecting shot pheasants and, with coordinated tagging operations, tags being 

detected on neighbouring shoots can reveal patterns of dispersal (Whiteside, Sage 

and Madden, 2015). Although the application of patagial tags has been shown to 

increase the rate of nest desertions in breeding Least Terns (Sternula antillarum) in 

Texas (Brubeck, Thompson and Slack, 1981), the rate of nest failure in seabirds 

(Trefry, Diamond and Jesson, 2012), and potentially increasing the rate of predation 

of hen harriers (Circus cyaneus) (Zuberogoitia et al., 2012), there have been no 

significant ill effects recorded in studies where pheasants have received simple 

coloured or dated patagial tags (Sage, Putaala and Woodburn, 1996; Sage et al., 

2003; Turner, 2007).  

 

 The Multi-Tag/Quick-Tag (MT) is the design most commonly used for mass 

tagging of pheasants prior to release (Fig 5.1). These simple, lightweight plastic tags 

are 33mm in length and are cheap (~£0.0325 per tag, Perdix Wildlife Supplies, 

Warwickshire, UK, 2018). They have been used extensively in the Game and Wildlife 

Conservation Trust’s National Game Marking Scheme (NGMS) (Game and Wildlife 

Conservation Trust, 2019). This project has been running since 2009 and supplies 

MTs to shoots and game rearer so that they can record the number of tagged birds 

released from each individual pen within each shoot-day’s harvest. This allows for 
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the collection of harvest at a national level, as well as enabling participating shoots 

themselves to analyse their management practices. MTs can carry additional 

information in the form of numbers written on a large plastic tail or use of different 

colours perhaps conveying the year or point of release. This permits the recording of 

year-to-year survival or patterns of dispersal from release point to recovery. 

However, initial research into Enhanced Rearing techniques tested during this thesis 

found that the rate of deterioration of the MTs over time appeared markedly high. 

Deterioration either came from the MTs falling off completely or through damage 

resulting in the detachment of the plastic tail leaving just the small coloured plastic 

bars (nubs) within the wing. This loss of (a large and conspicuous) part of the tag 

makes it much harder to locate, increasing the likelihood of human error while 

recording tag returns and, because the tail was printed with the date of release, it 

prevents acquisition of year-to-year survival records.  

 

 We were aware of an alternative patagial tag, the Plastag (Plastag B, 

available from Roxan Ltd, Selkirk, UK, 2018). This tag is significantly more durable 

than the MT and attaches to the bird via a pin that pierces the patagial skin and 

binds the two ends of the tag together. It is 56mm in length before the pin seals the 

ends together. Once sealed it is 28mm (Fig. 5.1). However, it is also more than three 

times as expensive than MTs, with the price for each tag at £0.103 (Roxan 

International, 2018).  

 

This study explores if the use of this more durable patagial tag can be used to 

calculate the rate of deterioration over time for the MTs so that a correction factor 
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can be added to datasets created using MTs, increasing the accuracy of both 

research and information collected by game managers which could lead to more 

reliable research outcomes and more effective gamebird management. Additionally, 

it also seeks to assess the overall viability of MTs for long term data collection and if 

the Plastag would be a preferable alternative for future studies. 

 

 

 

5.2 Methods 

 

5.2.1 Tag Application 

We released 2,500 male pheasants at Loddington Estate, Leicestershire in 2017. 

Birds were purchased from a commercial game rearer and delivered to Loddington 

when 7 weeks old. All pheasants were tagged on delivery with a Multi-Tag (MT) in 

one wing and a Plastag in the other, with the placement side randomised. 

Loddington is one of the GWCT’s research sites and releases only male birds as part 

of their release strategy, tagging them each year to gather data on their release and 

harvest rates.   

 

 Multi-Tags were applied using a tagging gun (Available from: Perdix Wildlife 

Supplies, Warwickshire, UK, 2018) by piercing the patagial skin above the muscle 

tissue to inject the lower bar of the tag through the patagial skin. The bar is then 

released from the needle and is unable to pass back through the injection hole. This 

leaves the lower bar beneath the wing and the upper bar with the date-flap 
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protruding vertically above the wing. Depending on the skill of the worker and the 

movement of the bird, MT application took ~5-10 seconds per tag, but this could be 

highly variable as the tagging gun commonly jammed, substantially delaying tag 

deployment.  

 

 Plastags were applied using an applicator clamp (available from Roxan Ltd, 

Selkirk, UK, 2018) on the opposite wing to the MT. The clamp ensured that the tag’s 

spike pierced the patagial skin and locked the upper and lower sides of the tag in 

place. Plastag application took ~10-15 seconds per tag with no instances of delays 

due to jamming. Tags were applied by 4 workers with experience in various tag 

applications ranging from moderate to very experienced. All tags were checked to 

ensure that each was securely in place after application. 
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5.2.2 Tag Retrieval  

We collected tags from birds during 13 scheduled driven shoots at Loddington that 

occurred on a weekly or biweekly basis between 80 and 175 days after release. An 

additional collection of tag data was carried out after the shooting season between 

206-238 days after release during a separate pheasant trapping and measurements 

project carried out by the GWCT. During trapping, pheasants were lured into 

enclosed cages (2mx2mx1m) through tapering entrance tunnels by baiting the 

A) B) 

C) D) 

Figure 5. 1 A) Multi-Tag tag individually (left) and joined together within application bracket 
(right); B) Plastag unsealed (left) and sealed (right); C) Pheasant with one Multi-Tag fitted to 
wing (Photo provided by the GWCT); D) Pheasant with Plastag fitted to wing.  
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interior of the traps with grain. The tapering nature of the tunnels prevented 

pheasants from then exiting the cage. Cages were checked three times per day and 

closed at night. In total, we collected data from 832 birds that had been shot and a 

further 34 birds that were captured.  

 

 All birds were checked for the presence of tags by one or two individuals 

experienced in tag detection and counting. MTs were recorded as either being 

present, being damaged to the point that the dated flat had been removed leaving 

just the tag nub, or that they were missing entirely. The nub category was included 

separately because nubs can still provide useful data if they are of specific colours 

allocated to years or pens, but they are much more likely to be missed during a 

cursory search. Additionally, with the date flap lost any information (e.g. date or ID 

numbers) on it is also lost. Plastags we scored as either intact or missing. No 

instances of the equivalent of a nub were recorded for the Plastags. If both MT and 

Plastags were missing, we could infer that the bird had been previously marked 

because the Plastag leaves a noticeable circular scar of roughly 3mm which is 

visible after careful inspection of the pheasant wing even if the Plastag had fallen 

out. We carefully checked all pheasants that appeared to have neither tag to 

determine whether they had indeed never been tagged (and so were of no further 

interest to this study) or if they had actually lost both tags. No pheasants were found 

to have lost both tags, but in addition to multiple instances of Plastags being missing 

with an intact MT remaining, there was one case of a MT nub being present with a 

corresponding scar from a missing Plastag. Therefore, we are confident that we 

detected accurate deterioration rates for both tag types.  
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5.2.3 Statistical Analysis 

Results were analysed in R version 3.6.1 (R Core Team, 2018) using binomial 

Generalised Linear Models with a logit link function in the package lme4 (Bates et al, 

2015). Three separate models were produced. The dependant variable for the first 

was the presence (including nubs) or absence of MTs. The dependant variable for 

the second was the presence of intact MTs compared to their absence and those 

reduced to nubs. The dependant variable for the third model was the presence or 

absence of Plastags. The single independent variable in each model was Days 

Since Release, showing the number of days since the shot pheasant had been 

tagged and released, which ranged from 80 to 238. This produced models that 

determined whether there was a significant decrease in the probability of detecting 

an intact tag over time, and if so, by how much per day after release.  

A single model was also produced with tag presence or absence as the dependant 

variable and Tag Type (Intact MT, MT Nub, and Plastag), Days Since Release, and 

the Tag Type:Days Since Release interaction as independent variables. However, 

this model structure had lower AIC when the interaction was removed, thus 

predicting that all tags deteriorated at the same rate over time but that they each had 

a different likelihood of being tagged on 0 Days Since Release. As each bird was 

individually tagged at 0 days since release with 100% reliability, this result was a 

physical impossibility. As such, the individual models were selected for the analysis 

as they demonstrated the real-world effect of tags deteriorating at differing rates over 

time.  

Although our data only extended to 238 days after tagging, we used the model to 

predict tag durability beyond this point to the start of the following shooting season 
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(estimated here as 450 days after initial tagging) to estimate a broad rate of 

deterioration between years. As this extends far beyond data collection, the 

predictions and standard errors become increasingly unreliable and should only be 

taken as a rough estimate, used to make further comparisons between tag 

classifications but not to determine correction factors.    

 

5.2.4 Applying a Correction Factor to Account for Tag Loss to Reported Tag Returns 

from Simulated Shoots 

In order to explore how tag failures may distort our understanding of harvest 

efficiencies, we calculated a correction factor and applied it to tag returns from 

simulated shoots. We generated correction factors from the decay curves obtained 

above. We then applied this to four simulated shoots that shot 5, 10, 15, or 20 times 

a season. As the results from this section will be given in the % difference between 

the number of tagged birds harvested and the expected number of tagged birds had 

tags not been lost, the number of birds shot on each shoot-day did not matter as 

long as it was consistent between shoot-days, e.g. 100 tagged birds shot each 

shoot-day. The simulated shooting season was 100 days long, ranging from 80-179 

days after release, and was broken into 5 blocks of 20 days. The correction factor for 

a specific number of days after release was applied to the corresponding shoot-days 

within those blocks. For the 5 shoot-days simulation, the decay rate of Day 1 of each 

of the 5 blocks was applied. For the decay rate of 10 shoot-days simulation, the 

decay rate of Day 1 and Day 11 of each of the 5 blocks was applied. For the decay 

rate of 15 shoot-days simulation, the decay rate of Day 1, Day 6, and Day 11 of each 

of the 5 blocks was applied. For the decay rate of 20 shoot-days simulation, the 

decay rate of Day 1, Day 6, Day 11, and Day 16 of each of the 5 blocks was applied. 
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We repeated this for each of the three tag decay rates. This allowed us to compare 

how harvest calculations depended on different tagging techniques (MT vs Plastags) 

and different search strategies (cursory inspections in which only fully intact MTs 

would be detected vs detailed searches where any part of a MT may be detected). 
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5.3 Results 

Of the 866 harvested or recaptured pheasants, 13 were missing their Plastags (but 

still had their Multi-tags), 1 was missing it Plastag (but retained an MT nub), 51 were 

missing the MT completely (but still had their Plastags), and 132 were missing the 

MT dated flap leaving just the nub (and still had their Plastags). 

 

5.3.1 Tag decay rates 

The probability that any part of a MT tag remained in a bird exhibited an accelerating 

decline as the shooting season progressed (Estimate = -0.0145, Std Error = 

0.00425, P = 0.0006, Fig 5.2), with a probability of 97.6% (Std Error ±0.77%) that the 

tag remained from application to the first day of the shooting season, but only 90.2% 

(Std Error ±1.78%) probability that it remained on the last day of the shooting 

season. The probability of it remaining until the beginning of the following shooting 

season (450 days after initial tagging) was 15.5% (Std Error ±17%) (Fig 5.2).  

 

 The probability of the information-bearing flap of a MT tag remaining in a bird 

exhibited an accelerating decline as the shooting season progressed (Estimate = -

0.0196, Std Error = 0.00298, P = <0.0001, Fig 5.2), with a probability of 94.9% (Std 

Error ±1.06%) that the tag remained fully intact from application to the first day of the 

shooting season, but only 72.7%  (Std Error ±2.7%) probability that it remained fully 

intact on the last day of the shooting season. The probability of it remaining fully 

intact until the beginning of the following shooting season (450 days after initial 

tagging) was 1.32% (Std Error ±1.18).  
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 The probability that the Plastag remained intact did not significantly decay 

over time (Estimate -0.0136, Std Error = 0.00793, P = 0.0861, Fig 5.2), implying that 

the likelihood of any part of a Plastag remaining in a bird was constant as the 

shooting season progressed. Despite this lack of significance, Plastag decay rates 

were still predicted and graphically presented to enable visual comparison. The 

model predicted a probability of 99.3% (Std Error ±0.403%) that the Plastag 

remained from application to the first day of the shooting season, and a 97.4% (Std 

Error ±0.912%) probability that it remained on the last day of the shooting season. 

The probability of the Plastag remaining until the beginning of the following shooting 

season (450 days after initial tagging) was 49.1% (Std Error ±60.2%).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

188 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.2 Applying correction factor to hypothetical shoots  

We calculated a correction factor that accounted for the increasing probability of total 

MT loss over the duration of the shooting season, such that for the number of tags 

collected on a specific number of days since application we could estimate how 

many other tags should have been recovered but had been lost. When we applied 

the correction factor to a range of simulated shoots that differed in the number of 

days that they shot over a season, we found that on average tag returns within the 

first season after tags had been applied were underestimated by 14.7% (Std Error 

Figure 5. 2 Decreasing tag durability from day of tagging to the end of data collection 
(238 days after tagging) with the likelihood of a tag classification being present 
ranging from 1.0 = 100% likelihood to 0.0 = 0% likelihood (Plastags = Blue. MT Nub 
+ Intact MTs = Orange. Intact MTs alone = Red). Dashed line represents the end of 
the shooting season. Clear circular dots represent days when data was collected. 
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±1.17%) for counting only fully intact MTs, 5.2% (Std Error ±0.83%) for those that 

counted both Intact MTs and MT nubs, and 1.3% (Std Error±0.45%) for those that 

used Plastags (Table 5.1).  

 

 

 

Shoot-days 
per season 

  
 Intact 
MTs 

 Intact + Nub 
MTs 

 
Plastags 

5 
% Underestimation 13.4 4.88 1.24 

% Std Error 1.13 0.806 0.436 

10 
% Underestimation 14.9 5.26 1.34 

% Std Error 1.17 0.819 0.456 

15 
% Underestimation 14.9 5.25 1.33 

% Std Error 1.17 0.839 0.455 

20 
% Underestimation 15.7 5.46 1.38 

% Std Error 1.20 0.860 0.468 

Average  
% Underestimation 14.7 5.2 1.3 

% Std Error 1.17 0.83 0.45 
Table 5. 1 % underestimation of total tag counts across shoots of differing numbers of shoot-days for 
Intact Multi-Tags, Intact + Nub Multi-Tags, and Plastags. 

 

 

5.4. Discussion 

The pattern of tag retrievals clearly shows that Plastags are more durable than Multi-

Tags (MT), both when MTs are intact with the date flap remaining and when MTs are 

damaged with just the nub remaining. The decreasing survival of MTs over and 

beyond the shooting season indicated that losses persisted and indeed accelerated 

with time. This suggests that the tags were susceptible to ‘wear and tear’, becoming 

progressively weaker over time. This pattern of accelerating losses was not seen 

with Plastags, suggesting that their loses were primarily incurred soon after release, 

perhaps due to inappropriate application, and that those tags which were well-fitted 
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persisted for several hundred days. The rates of loss that we detected and the 

associated noise in such measures suggests to us that after >1 year MTs provide a 

very poor method to record release data about a bird, with a rough estimate of only 

1.32% (±1.18%) retaining an intact dated flap by the start of the following shooting 

season. As such, MTs should not be used in long term (>1 year) monitoring studies. 

Plastags remain at a much higher rate 49.1% (±60.2%), but the high standard error 

means that more work should be carried over time periods beyond that of this 

investigation to gain more accurate rates of tag decay between years. By applying 

these predicted rates of tag loss to model harvest returns, we estimate that current 

calculations of harvest rates of released birds using MTs may be up to 14.7 (±1.17%) 

lower than actual rates if a cursory inspection is made of harvested carcases (in 

which the nubs may be missed), although this may improve to 5.2% (±0.83%) if a 

more detailed inspection is made (such that all nubs of MTs are detected). When 

more robust Plastags are deployed, it leads to a much lower error of 1.3% (±0.45%). 

Therefore, using inappropriate tags for population monitoring can distort the 

understanding of a game manager about the efficiency of their release program and 

may encourage them to release excessive birds in future years to try to boost 

harvest rates. It may also lead to an overestimation of the immigration of gamebirds 

into a specific shoot from neighbouring shoots that do not tag their birds and/or the 

contribution that wild-born, untagged birds make to the harvest.  

  

 Our study shows that, depending on the tag used, patagial tagging can 

perform even better than the far more costly PIT Tags (Oregon RFID, 2018). PIT 

Tags, which are being used increasingly for marking animals (Harper and Batzli, 

1993; Yates, 1997), show 5% deterioration over 12 weeks when applied to 6 week 
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old gamebirds that were harvested in the same manner as those in our study (Carver 

et al. 1999). Our study shows that, over the same time period, deterioration rates are 

5.4% for intact MTs, 2.6% for MT nubs, and just 0.8% for Plastags. However, 

although Plastags are far cheaper than PIT Tags, they themselves are more than 

three times more expensive than MTs, but this must be put into a broader context. 

MTs cost £3.25 for 100 (Perdix Wildlife Supplies, Warwickshire, UK, 2018), while the 

cost for the same number of Plastags is £10.32 (Roxan Ltd, Selkirk, UK, 2018). 

However, the cost of 100 pheasants to a shoot as of 2018 is ~£1241.00 (Game and 

Wildlife Conservation Trust, 2018). When taken into account, the increase in cost of 

tagging from 0.262% to 0.832% of the total cost of rearing, releasing, and 

maintaining each bird is negligible, yet providing better tags could lead to more 

accurate data on harvest levels and pheasant dispersal patterns. Such 

improvements in data accuracy could lead to more efficient pheasant management 

by the shoot releasing the birds, ultimately reducing the number of birds required to 

meet desired harvest rates and reducing overall costs. Indeed, an improvement in 

predictive power that enables a shoot to release just one fewer bird would fully 

recover the costs of tagging 100 birds via either method. 

 

 Inaccurate data is not just costly and detrimental to the individual shoot, but it 

could confound findings from studies with a broader scope, such as the National 

Game Marking Scheme (NGMS). The deterioration of tags shown in this study would 

not affect investigations that compared tag return rates from different pens within the 

same shoot (such as that carried out in Chapter 2), as all tags will likely have been 

affected by the same rate of deterioration if they were tagged on the same day. 

Where our correction factor would become useful is in absolute measures of harvest, 



 

192 
 

where tag returns are compared to total harvest counts or against tag returns from 

shoots that released significantly earlier or later. Studies like the NGMS aim to 

provide figures on the number of birds released at a shoot that contribute to that 

shoot’s harvest, with non-tagged birds assumed to be immigrants from other shoots 

or wild birds. By applying our correction factor, the number of wild or immigrant birds 

within the harvest will be reduced. This will improve both the accuracy of results and 

potential management that said results could inform. It would also improve the 

national release/harvest rates, the calculation of which is one of the primary aims of 

the NGMS. Using the preliminary overall yearly tag/harvest rates of the NGMS 

(GWCT, unpublished) and applying the average values for Intact MTs and MT nubs 

from Table 5.1, we can make rough estimates at the increases in the NGMS’s 

national tag/harvest rates that the correction factor would produce (Table 5.2). 

Additionally, overestimating wild pheasant populations would not only provide 

inaccurate data on the health of wild populations, but it could also lead to less 

efficient management of released pheasants, potentially resulting in smaller harvest 

rates and larger release sizes. This would be caused by shoots diverting resources 

away from supporting their released birds to accommodate wild birds that simply do 

not exist, such as providing supplementary feed to improve pheasant breeding 

success (Draycott et al., 2005) or increasing habitat designed to retain territorial 

males during the breeding season (Hoodless et al., 1999). 
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Year 
Recorded 

tag/harvest %  

Corrected 
tag/harvest % if 
only recording 

Intact MTs 

Corrected 
tag/harvest % if 
recording Intact 
MTs and nubs 

2009 27.8 31.9 29.2 

2010 28.1 32.2 29.6 

2011 29.1 33.4 30.6 

2012 31.6 36.2 33.2 

2013 36.8 42.2 38.7 

2014 17.8 20.4 18.7 

2015 12.4 14.2 13.0 

Table 5. 2 Table 5.2 Preliminary yearly result of the NGMS showing the percentage 
of released tagged pheasants that were then harvested, the percentages corrected 
for recording only fully intact MTs, and the percentages corrected for recording both 
intact MTs and MT nubs. 

 

Conclusion 

We conclude, based on our findings, that MTs should not be used for monitoring the 

contribution of previous year’s birds to the harvest and only used on those birds 

tagged that year, and then only when a correction factor is applied. One such study 

that used MTs was Turner (2007) who measured both first and second year bird 

contribution to harvests, primarily in relation to the effect that pen stocking density 

has on first year harvest contribution. Turner presumed that there may be durability 

issues with MTs and so she placed one MT in each wing. By using our average 

value from Table 5.1 we calculate that this double tagging method would have been 

effective for first-year tags, with an average underestimation calculated at only 

2.16%. This means that, by double tagging, the effect of tag decay between tagging 

and the first shooting season can be largely counteracted. However, Turner then 

calculated that <1% of previous year’s birds contributed to the harvests using MTs, 

although it was acknowledged that this would likely be an underestimation due to tag 

deterioration. Even taking our model’s year-to-year tag deterioration rate as a very 

rough estimate, as we suggest, we can indeed say with a high degree of certainty 
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that Turner’s <1% figure may be significantly underestimated. The effect that this 

might have would be that a shoot believing that their harvest relied little on previous 

year’s birds would put little if any effort into management to retain pheasants after 

their first shooting season, as this would simply not be cost effective. If in reality the 

contribution of older birds were significantly higher, then efforts to support those 

birds between years might be encouraged, not only reducing the number of 

pheasants that would need to be released the next year directly but also potentially 

bolstering the wild breeding populations of gamebirds with benefits for other 

farmland species brought about by the associated habitat management (Donald, 

Green and Heath, 2001).  

Although a theoretical correction factor for year-to-year tag deterioration could be 

developed for MTs from our models, the fact that our data collection does not extend 

beyond 238 days after release means that any predictions of tag durability made 

beyond this point will grow less accurate with every successive day. With the start of 

the second shooting season occurring roughly 450 days after release, our 

predictions of tag durability at this point are likely inaccurate and serve only as a 

broad estimate. Indeed, from personal experience on a 2500 release shoot that 

harvests ~150 pheasants per shoot day, we are aware that multiple MTs from 

previous years appear in the pheasant harvest at a rate of ~2 per shoot-day. A 

correction factor derived directly from our models would equate each of these tags 

as representing 76 previous year’s birds in the actual harvest, a number which is far 

higher than the actual numbers of untagged pheasants harvested on each of those 

shoot-days. As such, we can only recommend that our correction factor be applied to 

data that falls within the period of time of our data collection, here between 80-238 

days after tagging. We also recommend that any future studies wishing to make 
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reliable estimates of the contribution of previous year’s birds to the harvest use tags 

that have been proven to be more durable, such as the Plastag. However, the 

Plastag itself is not 100% reliable, and so we suggest that any future studies that 

wish to record patagial tags over longer periods of time (>1 year) should carry out a 

similar investigation as we have here over this longer time period. This could be 

done by placing Plastags or their equivalent in one wing and an even higher quality 

tag in the other wing to calibrate reliable correction factors. An example of an 

extremely durable tag would be Darvic colour rings, which have been used 

extensively in research and monitoring of shorebirds and have been found to be 

viable for up to 17 years (Ward, 2000). 
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Chapter 6: Can aging pheasants via the Proximal Primary Method be 

improved? 

 

Abstract  

Determining the age demographics of animal populations is essential when 

designing and monitoring different management strategies. Various methods exist 

for determining the age of pheasants (Phasianus colchicus), but the accuracy, effort 

required, and times of year when they can be effectively used can vary greatly. The 

Proximal Primary Method (PPM) involves removing one of the proximal primary 

feathers from a pheasant and measuring the shaft’s length and diameter to 

differentiate between juvenile birds who have yet to moult their first adult set of 

primary feathers and mature birds that have. This method requires a known-age 

subsample to calibrate, but can be used on living or dead pheasants, can be carried 

out accurately any time of year outside of the breeding season, and can have data 

collected quickly by non-specialists. This study investigated if PPM could be 

improved by adding feather mass as an additional variable and by using machine 

learning to train a classification algorithm based on the known-age subsample. 

 

Adding Mass significantly increased PPM’s ability to age pheasants overall by 

1.3%, and specifically increased accuracy of aging mature birds by 1.5% and 

juveniles by 1.1%. However, using machine learning produced less accurate results 

that other methods of PPM both when using pre-existing machine learning 

algorithms and a custom-built ensemble model. We recommend that feather mass 

be added to feather shaft diameter and length for future PPM investigations due to 

the ease at which it can be measured during traditional PPM feather processing. 
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6.1 Introduction 

Determining the age structure of populations of animals is essential for effective 

management. Animals of different ages can have different ecological requirements, 

such as the need for nesting habitat for animals old enough to breed (Newton, 1994) 

or young animals having differing diets (Hamilton and Barclay, 1998). As such, 

understanding the age demographics of a population can be crucial for increasing 

the efficiency of management carried out to support that population. With regards to 

released game species, identifying the most appropriate management is often even 

more important as, to accommodate hunting interests, far greater numbers are being 

release than the land could support naturally (Díaz-Fernández et al., 2013), and so 

maximising the efficiency of management is essential for providing the numbers of 

those animals that are required to sustain hunting practices. For pheasants 

(Phasianus colchicus), determining the number of older pheasants in the landscape 

is particularly important for selecting appropriate management to both increase the 

land’s capacity to support older birds and to improve the likelihood of breeding 

success. Examples of this can be seen in predator control significantly reducing nest 

predation (Draycott et al., 2008), breeding success increasing by providing 

supplementary feed in spring (Draycott et al., 2005), and increased densities of male 

territories when supplementary feed is provided (Hoodless et al., 1999). As only 16% 

of released pheasants survive to the end of their first shooting season (Sage et al., 

2018) and as little as <1% of birds released in previous years contribute to the 

harvest of later years (Turner, 2007), much of pheasant management is designed 

solely to increase survival of individuals from their release to the end of the shooting 

season. However, some shoots actively try to increase the numbers of pheasants 

surviving between years to bolster the harvests directly, by having more of the 

previous year’s birds available to harvest, and indirectly, by increasing the number of 
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pheasants available to breed and bolster wild bred pheasant populations. Both 

effects would result in fewer pheasants needing to be released to achieve the same 

harvest rates. By determining the age demographics of pheasant populations, shoot 

managers can measure, evaluate, and increase the efficiency of the management 

they are carrying out to maximise their ability to strengthen adult populations with the 

limited resources they have available. Additionally, aging the wild pheasant 

population can provide a useful measure of the overall health of the wild population 

by determining how many are surviving to adulthood.  

The poor survival of pheasants that are reared and released by humans (A. P. 

Leif, 1994), and the fact that surviving adults generally share common requirements 

regardless of age, means that fine-scale differentiation of pheasant ages is of little 

use. Thus, it is acceptable to classify individual pheasants into one of two crude age 

groups; juveniles younger than one year and matures (adults) older than one year 

(Woodburn et al., 2009). Tagging is the process of marking pheasants in some way, 

such as patagial tagging, so that when they are harvested or recaptured at a later 

date, data about the birds, such as release location or date of release, can be 

recorded and used to inform researchers and managers. However, as Chapter 5 

discussed, the use of inappropriate tag types can lead to high rates of tag loss. This 

can lead to poorer data collection that can miss-inform researchers and managers 

regarding the status of pheasant populations, particularly for data on year-to-year 

survival rates which are dependent on tags remaining intact over long periods of 

time. Additionally, pheasants must have already been tagged prior to data collection 

for tagging to work. In a wild population, a population that was not tagged, or 

pheasants that have lost their tags, other methods of aging must be found. Several 
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relatively accurate methods for aging pheasants have been developed, each with 

their own strengths and weaknesses (Table 6.1).  

 

Method Precision Accuracy Restrictions  Reference  

Weight of eye lens Pre and post 7-8 
months of age. 

No accuracy 
given. Merely 
that lens 
weights 
between age 
classes 
differed 
significant.  

Must be carried out 
on dead pheasants. 
Requires specialist 
knowledge and 
equipment. 

(Dahlgren, 
Twedt and 
Trautman, 
1965) 

Can the beak support 
the weight of the birds? 

Pre and post 12 
months of age. 

86.6-94.4% for 
Mature. 85.1 - 
100% Juvenile.  

Must be carried out 
on dead pheasants. 
Less effective on 
heavier birds, which 
pen-reared birds 
are. Current 
accuracy only tested 
for wild pheasants 
70+ years ago.  

(Linduska, 
1943, 1945) 

Spur Length pre and post 7-8 
months of age. 

80% Mature. 
99% Juvenile. 

Only useful on 
males. No use past 
December. 

(Gates, 1966) 

Burse of Fabricus depth pre and post 7-9 
months. 

90%. No Use past 
January. Not 
recommended on 
live birds. Requires 
specialist 
knowledge. 

(Linduska, 
1943) 

Proximal Primary 
Feather 

Pre-Post first 
breeding 
season. 

92-98% Males. 
90-92% 
Females.  

Requires a known-
age sub-sample to 
calibrate.  

(Greenberg, 
Etter and 
Anderson, 
1972; 
Woodburn et 
al., 2009) 

Full body metrics 
including: weight, tarsus 
length, head length, 
spur length, proximal 
primary diameter and 
length. 

Pre-post first 
breeding 
season. 

95% Males. 
83-94% 
Females.  

Requires the 
collection of many 
biometrics. Requires 
specialist 
knowledge. 
Requires known-age 
subsample to 
effectively calibrate.  

(Woodburn et 
al., 2009) 

 

Table 6. 1 Techniques previously deployed for aging pheasants 
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Eye lens weight provides an accurate indicator of pheasant age of below or 

above 7-8 months (Robert B . Dahlgren, 1965) but requires the bird to be dead and 

specialised equipment and analysis, such as storing the eye in formalin solution for 

3-12 weeks before extracting the lens, 72 hours of oven drying, and weighing to an 

accuracy of 0.0001g (Robert B . Dahlgren, 1965). Testing the strength of the jaw is a 

technique that can be used on dead birds by non-specialists, with juvenile beaks 

being less durable and unable to support the weight of the pheasant’s body when 

lifted by the lower mandible (Linduska, 1945). However, this method was last tested 

on wild pheasants over 70 years ago, and birds from pen-reared stocks are not only 

heavier in general (Robertson, Wise and Blake, 1993) but it has been suggested that 

the current release and captive breeding systems have led to pheasants becoming 

larger over time (Robertson et al., 2017). Heavier pen-reared pheasants would likely 

impact the accuracy of aging pheasants based on the amount of weight that their 

lower mandible can support, and as this method has not been re-tested in the past 

74 years or on pen-reared stocks, the current accuracy of the jaw strength test 

cannot be confirmed. Measuring spur lengths is common for aging males and can be 

done on live birds, with errors of 20% for mature birds and 1% for juvenile (Gates, 

1966), but this method is rarely used on its own due to fluctuations between 

populations (Stokes, 1957) and its lack of reliability into winter as the shorter juvenile 

spurs lengthen and begin to overlap with the longer spurs of mature birds (Woodburn 

et al., 2009). A fairly reliable method that has been tested multiple times and used as 

a baseline against which other aging methods are tested is the depth of the Bursa of 

Fabricius (Linduska, 1943; Kirkpatrick, 1944; Siegel-causey, 1990). In juveniles, this 

small cavity is usually between 15-40mm deep (Woodburn et al., 2009), but it is 
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either completely sealed or very shallow in adults. However, the effectiveness of this 

method drops significantly by January due to juvenile depth overlapping with mature, 

and again, this method requires specialists to collect the data as well as analyse it. 

The collection of several biometric values to use as a baseline from a known-age 

sub-sample can accurately estimate pheasant age for an unknown age sample via 

multivariate discriminant function analysis (Woodburn et al., 2009). Such biometrics 

include body weight, tarsus length, head length, spur length, ratio of body weight to 

tarsus length and head length, and proximal primary feather length and diameter. 

Using these metrics, pheasants have been aged with 95% accuracy in males and 

83-94% in females (Woodburn et al., 2009). This method can be carried out on dead 

or living pheasants, but the collection of so many specific biometrics requires 

significant time and specialist knowledge from the surveyor and usually requires a 

known-age subsample to calibrate the age classification (Woodburn et al., 2009). 

This known-age subsample is necessary, as opposed to a single measure for all 

pheasant populations, as the variance in biometrics between populations can be 

large depending on various factors. Such factors include differing pheasant strains 

varying significantly in weight and morphology (Bagliacca et al., 2008) and differing 

rearing techniques impacting various morphological features (see Chapter 2). 

Because of this, a known-age subsample of each individual population must be 

known to produce a biometric baseline to compare the larger unknown sample 

against (Woodburn et al., 2009).  

 

Woodburn et al (2009) found that the length of the proximal primary feather 

and its diameter at the shaft cuticle scar-line (Fig. 1) alone were accurate predictors 

when used in multivariate discriminant function analysis. This is because, as a post-
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juvenile feather, the proximal primary is fully grown by 10-11 weeks of age and 

retained until the bird’s first breeding season (Westerskov, 1957). However, despite 

having post-juvenile feathers, the pheasant is still not fully grown by the age of 10-11 

weeks. When the feather is moulted again by the mature bird, the feather that 

regrows is larger than that grown by the 10-11 week old (Wishart, 1969). Other 

studies have also found length and diameter of the proximal primary feather shaft 

can provide accurate age predictions (Wishart, 1969; Greenberg, Etter and 

Anderson, 1972). This method can be performed on live or dead pheasants, and (as 

with collecting a broader range of biometrics) if a known age subsample has already 

been taken, extensive samples of proximal primary feathers can then be collected by 

someone with limited experience and sent to specialists for analysis, greatly 

increasing the scope of data collection and reducing time and cost. However, it does 

require that feathers be dried in some manner prior to measuring to remove excess 

moisture (Woodburn et al., 2009). The need for the known-age subsample is the 

method’s primary weakness, but other methods, such as depth of bursa (Linduska, 

1943; Siegel-causey, 1990), can be used to accurately age the subsample and 

collect the necessary data to form a baseline for juvenile and mature proximal 

primary feather lengths and diameters, allowing the proximal primary feathers alone 

to be collected to age any additionally sampled pheasants from that same 

population. The Proximal Primary Method (PPM) has the potential to provide a fast 

method of sampling data that can be largely carried out by non-specialists once a 

small sub-sample has been accurately aged, but in no previous study has the feather 

mass been taken as an additional variable to diameter and length. Additionally, the 

three primary studies that examine PPM (Wishart, 1969; Greenberg, Etter and 

Anderson, 1972; Woodburn et al., 2009) only provide overall accuracies for the 
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methodology and not individual accuracies for juvenile and mature birds, such as 

have been done for spur length (Gates, 1966). Due to this, we are unable to 

determine if the method is biased towards one age classification.  

 

The current methods of PPM already have a high degree of accuracy (90-

98%), but increasing the accuracy by even a little could prove extremely useful when 

sampling from populations with high numbers of released pheasants due to their 

disproportionate number of juvenile birds (Turner, 2007). In Woodburn et al’s (2009) 

four unknown-age samples, they predicted that mature pheasants composed 32%, 

13%, 17%, and 17% of their samples. However, even if Turner’s (2007) prediction of 

<0.1% mature pheasants in the harvest were underestimated by a factor of 10 (due 

to tag losses), mature pheasants from this type of shoot would still only constitute 

1% of the harvest. This means that even a very small percentage misclassification of 

juveniles could have a disproportionate effect on the numbers of predicted mature 

birds. That is why increasing PPM’s accuracy, specifically for correctly identifying 

juveniles, could prove crucial for determining the overall juvenile/mature populations 

of an entire population and analysing any effects that changes in management might 

have on mature populations.  

 

From personal experience, we are aware that feathers from mature birds 

often feel structurally stronger when being handled, with greater amounts of pressure 

needing to be applied on the lower shaft before any ‘give’ is felt, but no previous 

research has been carried out to test this. As one of the greatest strengths of PPM is 

that feather length and diameter can be collected swiftly and by non-specialists, we 
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suspected that if the increase in feather shaft strength were linked with an increase 

in density, then it may cause a corresponding increase in feather mass, which can 

be swiftly and easily recorded using accurate digital scales. Why feather mass has 

been overlooked from previous studies, we do not know.  

 

Supervised learning is a common form of machine learning that uses criteria 

of known-groups as training datasets to calibrate Machine Learning Algorithms 

(MLAs) that can then be deployed to classify unknown-groups (testing groups) based 

on those same criteria (Kotsiantis, Zaharakis and Pintelas, 2007). This method offers 

novel advances in data analysis over traditional methods by considering 

multidimensional metrics and non-linear relationships between variable to improve 

the accuracy at which they can be placed into groups. Machine learning can be used 

to classify organisms based on morphological characteristics, with examples being 

identifying healthy and defective zebrafish (Danio rerio) embryos (Jeanray et al., 

2015), judging the maturity of palm oil (Elaeis guineensis) fruit based on fruit thorn 

characteristics (Alfatni et al., 2014), and classifying species of algae (Balfoort et al., 

1992). We believe that similar techniques could be used within the context of PPM to 

classify the age of a pheasant based on the metrics of feathers from known-age 

samples. Various machine learning algorithms have been developed that can offer 

different rates of accuracy in classification, and the method through which 

supervised learning is carried out allows for swift and direct comparisons between 

different algorithms to determine which is most effective (Acevedo et al., 2009). Each 

MLA examines the values of the predictors of each sample within a larger training 

dataset, determines which predictor values most accurately classify the most 

samples into their correct group, and then applies those classification values to a 
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smaller testing dataset to classify the samples within the larger testing dataset. 

Different MLAs use different methods of determining their classification values. 

Generalized Linear Models (GLMs) are a common MLA that use basic linear 

regression for first-order variables or non-linear trends for higher order variables to 

classify the training data into their correct groups. Those same regression formulae 

are then applied to the predictor values within the testing dataset to classify each 

sample within the testing dataset. Another commonly used MLA is Random Forests 

(Segal, 2004). This technique classifies groups by selecting a series of predictor 

values that most accurately separate the training dataset and then uses those values 

to form decision trees. The testing dataset is then passed through those decision 

trees, with the results classifying each sample within the dataset into a specific 

group. K-Nearest Neighbour (KNN) is another commonly used MLA (Guo et al., 

2003). This approach uses the differences between training predictor values to 

calculate ‘distances’ between predictor values that separate the different groups. The 

‘distances’ in the values of the testing dataset are then calculated and compared to 

those established by the training data to determine which groups they fall into. 

Additionally, ensemble machine learning is a technique of constructing a set of 

classifying values based on the results of running multiple MLAs and then taking a 

weighted vote for final classifications from their predictions (Dietterich, 2000). The 

potential advantage of ensemble models is that the model might obtain better 

predictive performance by contrasting various MLAs than any of the constituent 

MLAs alone. Supervised machine learning has been shown to produce swift, 

automated results for morphological classifications on par with those that have 

previously required individual manual classification (Culverhouse et al., 2003; 

Jeanray et al., 2015), and could potentially improve classification accuracies over 
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previous methods used for PPM. As stated, even small improvements to the 

accuracy of PPM could prove important for assessing the age demographics of an 

entire pheasant population when juveniles greatly outnumber matures, and so it is 

worth exploring novel methods of data analysis to try and achieve these higher 

accuracies. 

 

In this study we will use supervised machine learning with a known-age 

sample to investigate Question 1) Can aging pheasants via the Proximal Primary 

Method (PPM) be improved by adding the mass of the feather to the traditionally 

used diameter and length. We will then ask Question 2) can a custom-built ensemble 

MLA further increase the accuracy over the commonly used, predefined MLAs of 

GLM, Random Trees, and KNN, and can the ensemble model or the best performing 

predefined MLA provide greater accuracy for aging pheasants via PPM than 

previously established methods. Improving the accuracy of PPM will enable 

researchers and game managers to gain a more accurate account of the age 

demographics of sampled populations, allowing for better planning and evaluation of 

the efficiency of management that favours supporting either juvenile or mature 

pheasants.  
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6.2 Methods 

 

6.2.1 Data Collection 

Samples were collected over two shooting seasons (2016/2017 and 2017/2018) from 

two shoots that released the same strain of pheasants reared at the same game 

rearer. Previous studies have shown that the year the feather was collected had no 

effect on PPM accuracy as long as they came from similar populations, as ours did 

(Greenberg, Etter and Anderson, 1972; Woodburn et al., 2009), and our analysis 

using GLMs also showed that Year did not significantly affect Mature (Estimate = -

0.358, P = 0.184) or Juvenile (Estimate = -0.125, P = 0.237) feather Length, Mature 

(Estimate = -0.015, P = 0.797) or Juvenile (Estimate = -0.00661, P = 0.793) feather 

diameter, or Mature (Estimate = -0.0125, P = 0.311) or Juvenile (Estimate = -

0.00605, P = 0.16) feather mass. Feathers were taken from only male birds, as the 

primary collection site only released males. These males had previously been 

tagged at released when 7 weeks old, meaning that we were certain of their age. 

This resulted in known-age proximal primary feather samples from 44 Mature and 

146 Juvenile male pheasants. Feathers were dried and lightly cleaned using paper 

towels before being placed between paper towels and put into dry storage for at 

least 12 months prior to analysis. However, a far swifter drying techniques was used 

by Woodburn et al (2009) by placing the feathers in an oven for 24 hours at 50◦C 

prior to measuring. This method is faster than our own and allows for feathers to be 

processed shortly after collection. Feathers then had any remaining material, usually 

mud, lightly brushed off. Any feathers that had excess material that could not be 

easily removed were discarded, as were those that had suffered damage. This left 

40 Mature feathers and 116 Juvenile. We collected three measurements from each 

feather. First, feather length was measured to the nearest 1.0mm by straightening 
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the feather and measuring from tip to tip along a ruler (Figure 6.1). Second, shaft 

diameter was taken at the cuticle tissue scar-line near the base of the barb in the 

same place as the vein (Figure 6.1), in line with other studies measuring feather 

diameter (Wishart, 1969; Woodburn et al, 2009). Shaft diameter was measured to 

the nearest 0.01mm using a measured tapering aperture that varied in length from 

2.0mm to 4.5mm, upon which the feather was slid along at the cuticle scar-line as 

described in Robertson (1985). Finally, feather mass was measured to the nearest 

0.01g using Triton T3 electron scales. With a known-age sample as a baseline, a 

range of machine learning algorithms were tested to train data models to predict 

pheasant binomially as either Juvenile (0) or Mature (1). All analysis was carried out 

in R version 3.6.1 (R Core Team, 2018) using the ‘caret’ (Kuhn, 2008) and 

SUPERLEARNER (Van Der Laan, Polley and Hubbard, 2007) packages.  

 

 

 

 

 

 

 

 

 

Figure 6. 1 A) cuticle scar-line (Red) where feather diameter was measured. B) length of feather that 
was measured from tip to tip (Yellow) 

  

 A) 



 

209 
 

6.2.2 Statistical analysis 

Prior to testing any machine learning algorithms, the data for feather Diameter, 

Length, and Mass was normalised so that they would be directly comparable to one 

another for the analysis. This was done via percentage normalisation, with the 

highest value in each category scored as 1.0 and all other measurements scored 

below that level relative to their own value, e.g. a feather with a Length measuring 

90% that of the longest feather would score 0.90.  

 

The ‘caret’ package was used to test three different MLAs. Caret is a package 

that allows for the streamlining of predictive models and enables a range of 

predefined MLAs to be test in a directly comparable manner by simply entering 

which of the predefined MLAs the user wishes to test (Kuhn et al., 2013). The three 

model algorithms that were tested were Random Trees, KNN, and Generalized 

Linear Models (GLM). These were run twice, first with Diameter and Length as 

predictive variables and a second time with Diameter, Length, and Mass. This was 

done because the MLA that best predicts pheasant age using two variables may not 

be the same MLA that best predicts pheasant age using all three variables. Once the 

best MLA was established for two and three variables, they could then be compared. 

The data used to train each model was a random selection that accounted for ~75% 

of the Mature and Juvenile samples resulting in 31 Mature feathers and 87 Juvenile, 

while data that the models were then tested against consisted the remaining ~25% of 

each age class, resulting in 9 Mature and 29 Juvenile. Other studies have used a 

66.6% training dataset with a 33.3% testing (Jeanray et al., 2015), but such studies 

have had a greater total number of samples from which to train their data. Due to our 

smaller sample size, we increased the size of the training sample to ~75% so that a 
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greater range of mass, length, and diameter values would be included during MLA 

training, hopefully increasing model accuracy.  

 

The 2 and 3 variable models for GLM, Random Trees, and KNN are classified 

as V2.GLM, V3.GLM, V2.RT, V3.RT, V2.KNN, V3.KNN respectively (Table 6.1). 

These models were then run 310 times each using randomly selected training and 

testing datasets to test each over a range of samples, resulting in 11780 predictions 

(38x310). In comparison, another study using supervised learning to classify animals 

based on morphological characteristics ran their models between 5-75 times to 

gather more stable estimations (Jeanray et al., 2015). We ran our models a far 

higher number of times as we believed the differences in accuracy and Kappa 

caused by adding feather mass may be small, similar to that added by length 

(Woodburn et al., 2009), and so an increased sample size would provide greater 

statistical power to determine if the effect of adding Mass was significant. The Kappa 

statistic was used as a finer scale measure of overall model accuracy instead of 

simple accuracy. Kappa controls for the accuracy of a random classifier as 

measured by the expected accuracy and takes into account issues of class 

imbalances and is well suited to binomial data skewed towards one outcome (Ben-

David, 2008). As there is a clear imbalance between the number of Juveniles and 

Mature feathers and our data is binomial, Kappa was considered a more reliable 

measure of accuracy. Kappa is scored between 0-1, and although there is no 

standardized way of interpreting the values of Kappa (The Data Scientits, 2016), 

Landis and Koch (1977) suggest Kappa values indicate the level of agreement 

between predictions and true values as follows: 0.0-0.2 = slight agreement , 0.21-

0.40 = fair agreement, 0.41-0.60 = moderate agreement, 0.61-0.80 = substantial 
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agreement, and 0.81-1.00 = almost perfect agreement. For our purposes will be 

directly comparing the Kappa results between one another. 

 

The Kappa outputs of each of the 310 model runs for each MLA were then 

placed into GLMs to investigate if Kappa was significantly affected by the MLA used. 

In this way we could determine which of the two-variable models scored the highest 

Kappa, which of the three-variable models scored the highest Kappa, and then 

compare the Kappa scores of these two best models to determine if adding feather 

mass caused a significant increase to model Kappa. Additionally, we placed each 

MLA’s total 11780 estimates and their corresponding true values into a single 

confusion matrix. This provided us with the total number of correctly identified 

Juvenile feathers, correctly identified Mature feathers, incorrectly identified Juvenile 

feathers, and incorrectly identified Mature feathers for each MLA. From these we 

could establish individual percentage accuracies for each classification to determine 

if our models were bias towards correctly identifying one age class over the other.   

 

To answer Question 2, the ‘SuperLearner’ package was used. SuperLearner 

is a cross-validation package that estimates multiple machine learning model 

performances and creates an optimal weighted average of those models known as 

an ensemble (Kennedy, 2017). SuperLearner ran multiple pre-defined MLAs on the 

training data, assigned weighted values to each of the MLA predictions based on 

their accuracy, and then predicted the classifications of the testing data using those 

same weights.  
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Length, Diameter, and Mass were used as the predictors. A total of 41 

different MLAs from the SuperLearer archive of predefined MLAs were tested. Those 

that increased model Kappa were retained while those that reduced it were removed 

until the structure that produced the highest Kappa was left. Those MLAs were: 

SL.lm, SL.randomForest, SL.ranger, SL.rpartPrune, and SL.step. The only MLAs 

that were consistently given any weight for predictions were SL.lm, an MLA that used 

linear regression on the predictors to classify the samples into groups, and SL.step, 

a MLA that carries out both forward and backwards stepwise regression on the 

predictors to classify the samples into groups. The remaining three MLAs were all 

variations on the Random Forests MLA that defines groups based on decision trees 

as described above. However, despite the Random Forest variation MLAs not 

appearing to influence the classification of the feather due to no weight being 

assigned to them in the ensemble model, removing SL.randomForest, SL.ranger, 

and SL.rpartPrune from the ensemble model reduced model Kappa. As such, they 

were retained. Every run of a new randomised training dataset assigned different 

weight to the predictions of SL.lm and SL.step that defined the extent to which that 

MLAs predictions would influence the ensemble model’s final prediction, but the 

range typically fell within 0.15 -0.35 for SL.lm and 0.65-0.85 for SL.step, with 1.00 

being the model output results used for 100% of the predictions and 0.00 being the 

model outputs being used for 0% of the predictions. Models using this structure shall 

be referred to as the Ensemble Models.  

 

The cut-off thresholds within the Ensemble Models is a value between 0.0-1.0 that 

defines the point that the model separates two classifications, in this instance 

whether a feather is classified as belonging to a Juvenile or Mature pheasant. This 
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threshold can be manually altered very easily, allowing for the models to favour the 

identification of one classification over the other. As such, we were able to test the 

effects of shifting the cut-off threshold on our final Ensemble Model. The cut-off 

thresholds we tested ranged between from 0.10-0.90 and increased in increments of 

0.10, producing 9 versions of the Ensemble Model that were structurally identical in 

which MLAs were included within them but with different cut-off thresholds. By 

shifting the cut-off threshold, the likelihoods of any one feather within one 

classification truly belonging to that classification could be increased, though the 

samples sizes would decrease. By combining low and high threshold results, a 

dataset can be created with three classifications: High Certainty Juvenile (all those 

classified as Juvenile at a threshold of 0.10), High Certainty Mature (all those 

classified as a Mature at a threshold of 0.90), and Uncertain (all feathers that did not 

fall into the High Certainty Mature or High Certainty Juvenile categories).  

 

6.3 Results 

 

6.3.1 Which models have the highest Kappa for the two-variable and three variable 

models after 310 model runs?  

For the two-variable models, V2.GLM was used as the intercept in the GLM used to 

compare MLAs (Estimate = 0.530, Std Error = 0.00887, P = <0.0001). V2.RT’s 

Kappa is significantly lower than V2.GLM (Estimate = -0.085, Std Error = 0.0126, P = 

<0.0001). V2.KNN’s Kappa was not significantly different to V2.GLM (Estimate = 

0.00733, Std Error = 0.0126, P = 0.56) (Table 6.2).  
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For the three-variable models, V3.GLM was used as the intercept in the GLM 

used to compare MLAs (Estimate = 0.573, Std Error = 0.00832, P = <0.0001). 

V3.RT’s Kappa is significantly lower than V3.GLM (Estimate = -0.114, Std Error = 

0.0117, P = <0.0001). V3.KNN’s Kappa was significantly lower than V3.GLM 

(Estimate = -0.0237, Std Error = 0.0117, P = 0.0444) (Table 6.2).  

 

When the Kappa values of the two equally best performing two-variable 

models (V2.GLM and V2.KNN) were tested against that of the best performing three-

variable model (V3.GLM), V3.GLM had significantly higher Kappa than both 2V.GKM 

(Estimate = 0.0437, Std Error = 0.0121, P = <0.0003) and V2.KNN (Estimate = 

0.0363, Std Error = 0.012, P = 0.00329). Using V2.KNN as a benchmark, as it had 

the highest Kappa of the two-variable models, adding feather mass increased Mean 

Total accuracy by 1.3%, Mature classification accuracy by 1.5%, and Juvenile 

classification accuracy by 1.1% (Table 6.2). 

 

6.3.2 Can an ensemble model be produced that is more accurate than the pre-

defined MLAs used in Question 1?  

Kappa for the highest three-variable MLA (V3.GLM) was significantly higher than that 

of the Ensemble Models with the highest Kappa (Ensemble 0.50) (Estimate = 

0.0247, Std Error = 0.0122, P = 0.044), showing that overall Kappa was not 

improved by the creation of an Ensemble Model (Table 6.2). Altering the cut-off 

threshold of the Ensemble Models shifts the likelihood of correctly identifying one 

classification at the expense of correctly identifying the other, with a maximum 

Juvenile accuracy of 98.6% in Ensemble 0.10 and a maximum Mature accuracy of 

85.7% in Ensemble 0.90 (Table 6.3). However, these decreases in respective 
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accuracies were caused by the narrowing of the boundaries that classify an age 

group, resulting in those feathers that are classified from low accuracy groups having 

higher overall likelihood of truly belonging to that group due to the increased 

requirements to be classified as that group (Table 6.3). This is demonstrated by the 

likelihood of a Juvenile classified feather truly being Juvenile from Ensemble Model 

0.10 being 98.6% and a Mature classified feather truly being Mature from Ensemble 

Model 0.90 being 85.7% (Table 6.3).    

 

6.3.3 Using the Ensemble Model, how many feathers can be classified as High 

Certainty Mature, High Certainty Juvenile, and Uncertain, and what are the 

accuracies of these higher certainty classifications?  

 

Using Ensemble 0.10 and Ensemble 0.90, we created a dataset of; 574 High 

Certainty Matures, with the likelihood of each of those feathers truly being Mature at 

85.7%; 4,414 High Certainty Juveniles, with the likelihood of each of those feathers 

truly being Juvenile at 98.6%; and 6792 feathers classified as Uncertain.  

 

 

Model 
Mean 
Kappa 

Kappa 
Std 
Error 

Mean 
Total % 
Accuracy 

Mean 
Total % 
Accuracy 
Std Error 

Juvenile 
% 
accuracy 

Mature 
% 
accuracy 

V2.GLM 0.530 0.00888 84.6 0.273 93.8 55.1 

V2.KNN 0.537 0.0126 85.1 0.386 94.7 54.4 

V2.RT 0.445 0.0126 80.9 0.386 89.3 53.7 

V3.GLM 0.574 0.00832 86.4 0.261 95.8 55.9 

V3.KNN 0.550 0.0118 85.4 0.369 94.6 55.9 

V3.RT 0.460 0.0118 81.1 0.369 94.6 55.9 

Ensemble 0.50 0.549 0.0087 85.5 0.265 94.7 54.4 
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Table 6. 2 Mean Kappa, mean overall accuracy, and absolute accuracy for individual age class 
results for the 3 two-variable MLAs, the 3 three-variable MLAs, and the bester performing three-
variable Ensemble Model after 310 model runs. 

 

Model 
Mean 
Kappa 

Kappa 
Std 

Error 

Juvenile 
% 

Accuracy 

Mature 
% 

Accuracy 

% likelihood of a 
randomly selected 

feather from within 
the total group of 
Juvenile predicted 

feathers truly being 
Juvenile 

% likelihood of a 
randomly selected 

feather from within 
the total group of 
Mature predicted 

feathers truly being 
Mature 

V3.GLM 0.574 0.00832 94.6 55.9 87.4 76.2 

              

Ensemble 0.10 0.300 0.00789 48.4 97.8 98.6 37.0 

Ensemble 0.20 0.416 0.0112 68.9 84.3 93.4 45.7 

Ensemble 0.30 0.482 0.0112 83.0 69.5 89.7 55.9 

Ensemble 0.40 0.521 0.0112 90.5 60.3 88.0 66.3 

Ensemble 0.50 0.549 0.0112 95.2 54.4 87.1 77.7 

Ensemble 0.60 0.523 0.0112 96.7 48.9 85.9 82.2 

Ensemble 0.70 0.469 0.0112 97.6 42.0 84.4 84.4 

Ensemble 0.80 0.367 0.0112 98.1 30.4 82.0 83.2 

Ensemble 0.90 0.274 0.0112 99.1 17.6 79.5 85.7 
Table 6. 3 Mean Kappa, absolute % accuracy for individual age classes, and % likelihood of a any 
individual feather from within each individual age class belonging in the correct age class for the best 
performing MLA and 9 Ensemble Models of differing cut-off thresholds. 
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Figure 6. 2 Mean Kappa results (circles) and upper and lower standard errors (triangles) for the 3 two-
variable MLAs, the 3 three-variable MLAs, and the bester performing three-variable Ensemble Model 
after 310 model runs. 
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6.4 Discussion 

KNN and GLM were both equally as accurate at predicting pheasant age based on 

just feather Diameter and Length, with KNN having marginally higher Kappa. When 

feather Mass was added, the GLM MLA produced the most accurate predictions and 

increased overall accuracy by 1.3%, and specifically increased Mature accuracy by 

1.5% and Juvenile accuracy by 1.1%. Creating a new Ensemble Model did not 

increase the overall accuracy above that of the predefined GLM MLA. However, by 

shifting the cut-off threshold of the Ensemble Model, we were able to demonstrate 

that it is possible to raise the criteria by which one of the ages are classified at the 

expense of the other, and in doing so increase the likelihood of those feathers that 

are placed in that classification truly belonging to that classification. This resulted in 

the likelihood of Juvenile classified feather truly being Juvenile in Ensemble Model 

0.10 being 98.6% and the likelihood of a Mature classified feather truly being Mature 

from Ensemble Model 0.90 being 85.7%.    

 

Previous studies have shown higher rates of overall accuracy when using 

methods other than machine learning for PPM, with Greenberg, Etter, and Anderson  

(1972) deriving overall aging accuracies of 92-98% for males and 90-92% for 

females and Woodburn et al (2009) deriving 95-98% for males and 83-91% for 

females, though we did not test female feathers in our investigation. However, in 

neither of these studies do they provide classification accuracies for Juvenile and 

Mature classes individually, merely an overall accuracy of the entire sample. In our 

study, we were able to derive separate likelihoods for each age classification, with 

our best two-variable PPM model correctly classifying Juveniles (95.8%) to a greater 

degree than correctly classifying Matures (55.9%). Because of this, we can only say 
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that the spur length techniques (that did provide individual Juvenile and Mature 

accuracies) (Gates, 1966) was superior to ours at correctly classifying each age 

group. However, our model’s bias towards correctly identifying Juveniles could be 

beneficial, for reasons we will discuss below. 

 

What this study has shown is that adding the mass of the feather significantly 

increases the accuracy of the predictions using MLA by 1.3% overall, and specifically 

by 1.5% for correctly identifying Mature pheasants and 1.1% for correctly identifying 

Juvenile. As such, adding feather mass will likely increase the accuracy of PPM 

predictions using other methods, such as discrimination analysis (Woodburn et al., 

2009). This increase may appear relatively small, but Woodburn et al (2009) showed 

that adding feather length as a second variable in their discriminant analysis only 

increased accuracy by between 1-3% over using diameter alone. Although the 

increase we demonstrated was small, it was statistically significant.  

 

We must then ask if the effort and time required to collect the feather mass 

can be justified, given the small increase it produced. As feather drying can be 

achieved much swifter using an oven than our dry storage method (Woodburn et al., 

2009), the only additional time required for the collection of feather mass 

demonstrated by our methodology is to remove any excess mud and then weight the 

feather, a process that takes only a matter of seconds. As such, we deem this easily 

collected additional variable as worthy of adding to the standard methodology for 

PPM. Regarding PPM in general, the method allows for accurate separation of 

Juvenile and Mature birds up until the bird’s first breeding season, meaning that data 
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can continue to be collected to the end of the shooting season and on into spring, 

unlike bursal depth or spur length (Linduska, 1943; Gates, 1966). In our experience, 

5-10 proximal primary feathers can be collected every minute. This allows for rapid 

data collection, as many feathers can be collected easily from both live and dead 

birds. This is beneficial when taking very large samples, such as from high-release 

pheasant harvests. Although processing the individual feathers for length, diameter, 

and mass takes time, this can be done at any point after collection and drying and 

does not rely on storing many dead pheasants or time spent and stress induced 

upon pheasants by prolonged handling of live birds (Chloupek et al., 2009). In this 

way, PPM is superior to other aging methods. 

 

Due to the disparity between Juvenile and Mature birds that is often seen in 

harvests (Turner, 2007), even relatively small increases to aging accuracy could 

have significant effects on estimating the true number of Mature birds in the harvest. 

This disparity would also make it preferable to choose a model that overestimates 

the Juvenile population as opposed to overestimating the Mature population, as a 

1% increase in Matures classified as Juveniles would affect the true total of Juvenile 

and Mature numbers less than a 1% increase in Juveniles classified as Matures. An 

example would be assessing the effectiveness of different predator control methods, 

as rates of predation are very high for pheasants (Sage et al., 2018). Higher rates of 

incorrectly classified Juveniles could increase apparent Mature numbers far above 

their true levels, and so any positive effects that a particular predator control 

technique might be having on bolstering the true Mature population many not be 

detected, resulting in that management technique appearing ineffective regardless of 
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whether it was or was not in reality. By increasing the accuracy of PPM by adding 

feather Mass, the true effect of the management would be easier to identify. 

 

The creation of the High Certainty Juvenile and Mature dataset was done as 

an aside to the main investigation of this project. However, the use of such a 

technique would have benefits. An example of this would be when investigating 

individual pheasants from large datasets, such as establishing differences in weight 

between Juvenile and Mature birds harvested from a large pheasant shoot. In this 

case researchers could have a much higher degree of certainty of the true age of the 

pheasants they were studying and have access to a large sample size, offsetting the 

reduction in high certainty classifications. 

 

 

6.5 Conclusion 

It is our recommendation that any future work using PPM to age pheasants add the 

mass of the feather along with length and diameter. This will increase the accuracy 

of PPM by itself and likely increase the overall accuracy if PPM is just one of a range 

of biometric variables that are being used to age pheasants. Although the increase in 

accuracy was relatively small, even small increases can be very beneficial for 

judging the effectiveness of management techniques when the numbers of Mature 

birds in the sample are much smaller than those of Juveniles. The MLAs tested in 

this study do not achieve the overall accuracies of previous methods that have been 

tested, both using pre-established MLAs and ensemble models. However, MLAs 

could also be applied if a wider ranges of biometrics are collected in the same way 
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that discriminant analysis is carried out, which may produce results with greater 

accuracy.  
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7. General Discussion 

 

7.1 Thesis overview 

 

I found that the Enhanced Rearing conditions improved harvest rates relative to 

Control pheasants by 16-17% on shoots releasing <601 pheasants or >2000 

(Chapter 2). When release date was considered instead of release size, earlier 

releases harvested more Enhanced pheasants. Our model predicted the mean per-

pen harvest sizes of Enhanced birds surpassing Control on release that occurred 40 

days (August 22nd) prior to the legal start of the shooting season, with Enhanced 

pheasants harvests relative to Control increasing by 1.44% with each addition day 

prior to August 22nd that the release occurred (Chapter 2). Birds reared under 

Enhanced conditions gained weight at a rate of 0.82g per day slower than those 

reared under Control conditions after release, and they had relatively larger breast 

muscles (+7.3%), hearts (+4.46%) and tarsi (+6.2%) compared to Control birds 

(Chapter 2), with the increases to breast muscle and tarsi only occurring when 

Enhanced harvest rates were higher. Such differences in morphology, specifically 

weight and heart mass, may explain why Enhanced pheasants had increased flight 

performance when compared to Control birds when being hunted (Chapter 3). 

Despite being exposed to live prey early in life, resulting in Enhanced pheasants 

becoming better predators of such prey and having a more varied diet post-release 

(Whiteside et al. 2015), we found no evidence that Enhanced pheasants caused 

greater declines in invertebrate populations in release pens immediately following 

release when compared with Control birds (Chapter 4). However, pheasant releases 

in general did lead to some, inconsistent, declines in specific invertebrate measures 
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in some years (Chapter 4). Like previous studies on the ecology and behaviour of 

released pheasants, much of our work relied on recovery of ID tags. We found that a 

commonly deployed tag type was very prone to damage and loss, introducing errors 

in estimates of recovery rates which increased with time so that by the end of the 

shooting season 27.3% of tags were missing their dated flap and 9.2% of tags were 

missing completely (Chapter 5). This also meant that after one year, these tags 

provided data on survival that was likely to be very inaccurate (Chapter 5). Such tag 

data could be improved by incorporating a correction factor to account for tag loss, or 

better still using a different tag type that we tested that had a failure rate of only 2.6% 

by the end of the shooting season (Chapter 5). We tested one way to improve a 

method of aging untagged birds (or those whose tags have been lost) (Woodburn et 

al. 1990) by considering the mass of their proximal primary feathers as well as length 

and diameter measures and using machine learning methods to enhance 

classification accuracy (Chapter 6). We could improve aging accuracy of juveniles by 

1.5% and Mature birds by 1.1%.  

Therefore, my thesis has acted as a case study to demonstrate how altered 

management procedures relating to the rearing and release of pheasants can and 

should be evaluated before being recommended for wider use. This reduces the 

chances of unintended negative ecological and ethical consequences arising 

following the introduction of novel methods and could help convince breeders that 

such methods are likely to bring tangible benefits in an economically viable manner.  
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This discussion summarises and examines the implications of our findings 

under three broad headings. 1) Wider implications of our findings; 2) Limitations of 

our findings; 3) Future directions for work. 

 

 

7.2 Wider implications of our findings 

 

In Chapter 2, we estimated the effects of Enhanced Rearing if it were applied to the 

release of 20 million pheasants. Although 39-57 million pheasants are released 

annually (Aebischer, 2019), my results are likely to be only relevant to a number 

lower than this as the benefits did not occur on shoots releasing 601-2000 birds. 

There is no substantive data on the number of pheasant shoots in the UK or how 

many each shoot releases, and as such, 20 million was chosen as a conservative 

figure as it would account for ~35-50% of pheasants released annually, despite the 

effects occurring on larger shoots which would account for the majority of released 

pheasants. Another reason for this conservative figure is that it is likely that these 

novel rearing techniques may take time to percolate into the practices of game-

rearers. Research relating to game management can find difficulty in filtering into 

wider circulation. A primary example of this is that Greenall’s (2007) found that some 

(though how many was not specified) of the gamekeeper in their study into the social 

attitudes of gamebird shooting were unaware of the existence of ‘The Code of Good 

Game Rearing Practice' despite it being produced by the British Association for 

Shooting and Conservation, the Game and Wildlife Conservation Trust, and the 

Game Farmers’ Association. Another example of a lack of implementation of 
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knowledge is that it is widely understood that pen stocking densities, particularly 

those over 0.1 birds per m2, can be detrimental to the environment in and around 

release pens (Sage, Ludolf and Robertson, 2005; Sage et al., 2009; Neumann et al., 

2015; Capstick, Sage and Hoodless, 2019), but despite such research being fairly 

widely available by those involved in shooting (Greenall, 2007), stocking densities 

have not decreased. This can be seen in mean stocking densities across 53 pens in 

Sage, Ludolf, and Robertson’s (2005) paper being 0.180 birds per m2 while mean 

stocking densities in the 49 pens in Chapter 4 (12 years later) being 0.257 per m2. It 

is this lack of the implementation of novel information that led to us using a 

conservative figure for our estimations of the overall impact of Enhanced Rearing 

 

For some shoots, managing pheasants and the habitats into which they live 

and/or are released into in a way that benefits the environment is a high priority 

(Stoate and Szczur, 2001; Draycott, Pock and Carroll, 2002; Sage, 2007), but for 

those of a commercial nature, making a profit is often the overarching goal. 

Considering that 42% of commercial shoots made a loss in 2017/2018 (Game and 

Wildlife Conservation Trust, 2018), making positive environmental changes are less 

likely to be adopted if they add additional economic costs. In this respect at least, 

Enhanced Rearing is economically viable as the additional costs of rearing are 

significantly outweighed by the gains to harvest rates, and so Enhanced Rearing 

holds the potential to become widely adopted if the information can filter to game 

managers and rearers. However, this leads to a potentially conflicting application of 

our research. Simply put, if a shoot is commercial in nature, they may choose to 

release fewer birds and maintain the level of shooting, which is our intention, or they 

could exploit this methodology and so maintain releases at current levels while using 
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Enhanced birds and benefit from an increase in the amount of shooting. This could 

result in an increase in survival of Enhanced birds without a corresponding decrease 

in release size, resulting  in an even higher density of pheasants in the landscape 

post-release, causing greater detrimental effects than those already seen from high 

density releases (Sage, Ludolf and Robertson, 2005; Sage et al., 2009; Neumann et 

al., 2015; Capstick, Sage and Hoodless, 2019). However, it is worth noting that if the 

levels of shooting were to likewise increase to take advantage of the higher number 

of available pheasants, the higher densities would begin to decline through the 

shooting season. Greenall (2007) found that self-regulation by shoots to prevent bad 

practices were highlighted as an important objective by those working on shoots, the 

owners of shoots, and those carrying out shooting, but they also found that those 

within the shooting community believed that those shoots that concentrate on short-

term profits would continue to shoot excessively large numbers of pheasants or 

refuse to alter their practices to more acceptable formats. Considering the high 

number of commercial shoots that did not make a profit in 2018 (Game and Wildlife 

Conservation Trust, 2018), it is likely that maximising short-term profits ranks high in 

the objectives of commercial shoots, the very types of shoots that have driven the 

huge increase in pheasant release numbers over the past decades (Robertson et al., 

2017). In short, we cannot determine the manner in which our results will be 

implemented. We can merely provide the tools for releasing fewer pheasants and 

hope that they are put to the use for which they were intended.    

 

Taking the mean pen stocking densities found in Chapter 4, a reduction of 

16% in release numbers would reduce stocking densities from 0.257 per m2 to 0.216 

per m2. This is still around double the 0.1 pheasant per m2 of release pen believed to 
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alleviate many negative effects and recommended in the Code of Good Shooting 

Practice (Sage, Ludolf and Robertson, 2005; Neumann et al., 2015; Capstick, Sage 

and Hoodless, 2019). However, the negative effects on soil chemistry and ground 

flora both during a pen’s use and after pens have been abandoned continue to 

increase with higher stocking densities (Sage, Ludolf and Robertson, 2005; Capstick, 

Sage and Hoodless, 2019), as do some of the negative effects on invertebrates 

(Neumann et al., 2015). As such, although Enhanced Rearing would not reduce 

stocking densities to the point where no or little damage is done, it would likely still 

reduce the amount of damage to the pen environments caused by pheasant 

releases. We can demonstrate this using our own models for interior total 

invertebrate biomass (Chapter 4), with our model estimating that the density 

reduction of 0.257 birds per m2 to 0.216 birds per m2 would increase total 

invertebrate biomass by 3.36% inside the pen prior to release. In this way we can 

show how the reduction of release densities caused by Enhanced Rearing could 

directly reduce one of the negatives effects of pheasant releases. Increasing the 

invertebrate biomass within release pens could be beneficial for conservation if 

invertebrates of conservation concern are located close to release pens (Callegari, 

Bonham and Holloway, 2014), if animals that rely on them as prey are of 

conservation concern, such as hedgehogs which are in a steep national decline (Hof, 

2009), or if bolstering the invertebrate populations aids in the rate of turnover of 

organic matter and nutrient cycling (Edwards, Reichle, and Crossley, 1973). 

 

We also found that increased pheasant stocking densities increase slug 

abundance both inside and outside of release pens. Implementing a 16% decrease 

from our mean pen stocking density again could lead to an 8.37% decrease in slug 
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abundance in and immediately around release pens. This could benefit neighbouring 

arable farming, as 12 and 24 slugs per m2 of wheat during autumn can cause 12% 

and 20% losses in seedlings number respectively and 46% and 70% losses 

respectively during winter (Barratt, Byers and Bierlein, 1994). As such, Enhanced 

Rearing could not only be cost-effective for shoots but also benefit farms where 

release pens are in close proximity to arable crops, both increasing crop yields and 

reducing the need for pesticides. 

 

The release of Enhanced birds could have two potential effects on predator 

populations. First, the release of gamebirds may increase inter-annual generalist 

avian predator population growth (Pringle et al., 2019), and it is possible that the 

same occurs with fox population. A reduction in release numbers could lead to 

declines in such predators in the long term, due to decreased food abundance. The 

direct effects of declines in populations of common generalist predator species, such 

as jays and magpies, would be of little conservation concern, but for species of 

specific conservation concern that feed on pheasants, such as red kite (Milvus 

milvus) (Pain et al., 2007), the loss of an abundant and easily attainable food source 

could be detrimental. However it is worth noting that species such as red kites often 

feed on wounded or un-collected birds that have already been shot (Pain et al., 

2007), and as releasing Enhanced pheasants would not decrease the actual number 

of birds being shot (and subsequently the numbers being wounded or un-collected) 

then it should only decrease the availability of pheasants as a prey item to animals 

that are actively hunting fit, living birds. A reduction of generalist predator numbers 

may also have positive effects for other prey species, such as reducing the negative 

effects that crows can have on the productivity of other bird species (Madden, Arroyo 
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and Amar, 2015; Sage and Aebischer, 2017) and the effects that fox predation can 

have on small mammals (Reynolds and Tapper, 1995). In this way, Enhanced 

Rearing could have additional indirect benefits for wildlife.   

 

The second effect that the release of Enhanced birds might have on predators 

is a reduction in predator control. Predator control as a management strategy is 

usually carried out when predators are having a significant negative effect on the 

gamebird population (Tapper, Potts and Brockless, 1996). The primary manner in 

which Enhanced Rearing is likely to have improved pheasant survival is by 

increasing the propensity of birds to roost off the ground, reducing their mortality due 

to predation (Whiteside, Sage and Madden, 2016; Santilli and Bagliacca, 2017). By 

reducing losses due to predation, shoot managers may be less motivated to carry 

out predator control. This could potentially be detrimental to other species which 

benefit from such predator control (Sage and Aebischer, 2017). However, as 

predator control can prove a divisive issue with regards to the ethics of shooting and 

land management in general (Talbot, 2003), this could help reduce tension between 

those for and against pheasant releases; though the differing opinions on the actual 

shooting of pheasants would still be present. Additionally, reducing predator control 

would save shoots funds and resources that could be redirected towards other 

aspects of management.  

 

Regarding ethics, moral arguments prove an important component in 

legitimizing hunting practices in the opinions of conservation practitioners, game 

managers, and the public (Fischer et al., 2013), and although hunting practices that 
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are considered ‘moderate’ and ‘measured’ foster far less contention between pro and 

anti-shooting groups, there is a lack of perceived legitimacy for ‘excessive’ hunting 

practices (Fischer et al., 2013). The release of 39-57 million pheasants each year 

(Aebischer, 2019) on shoots where hundreds of birds may be shot per shoot-day 

may, for some, place pheasant shooting squarely into the excessive category. 

Additionally, any argument justifying the current levels of commercial pheasant 

shooting as a method of providing game meat are questionable, as the current 

market for game meat is so saturated that the price shoots make per bird sold to 

game dealers decreased by 50-60% between 2011-2017 (Game and Wildlife 

Conservation Trust, 2018). The rearing, release, management, and shooting of 

pheasants is done as a sport above all else, and the practice of releasing gamebirds 

has been shown to be disliked by the majority of the public when it was studied in 

Denmark (Gamborg, Jensen and Sandøe, 2016). From a UK perspective, Greenall 

(2007) found that gamekeepers were the only stakeholders involved in shooting that 

did not have concerns about large-scale releases and excessive harvests, and those 

who ran small shoots had a tendency to dislike larger commercial shoots that could 

sometimes undertake unacceptable practices. To quote directly, ‘Some shoot 

owners were annoyed that those who adopt negative practices benefited financially 

and would not change their ways even if it meant the demise of gamebird shooting’ 

(Greenall, 2007). One method that would reduce the negative impacts, both 

environmentally and ethically, of large-scale pheasant releases is banning releasing 

pheasants altogether and only shooting wild pheasants. Surprisingly, Greenall 

(2007) showed that the only group involved in shooting that would readily accept a 

total ban on the rearing and releasing of gamebirds was gamekeepers, as they 

would find it preferable to re-focus their profession to supporting wild populations for 
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shooting. This, coupled with the responses from other stakeholder that Greenall 

(2007) found, shows that at almost all levels within the shooting community itself 

there is a desire to improve shooting practices, and Enhanced Rearing offers a 

method through which release sizes can be reduced if it is used responsibly.   

 

There is also a broader environmental aspect to consider regarding the 

potential impacts of our Enhanced Rearing methodology. Direct figures on the CO2 

footprint of rearing and releasing pheasants under current commercial conditions 

could not be found, but would involve the heating of sheds, feed production, 

transportation to rearers and then shoots, building and maintaining release pens, 

constant filling of feed hoppers around shot land, and any gamekeeping practices 

that involve the use of motorised transport. The closest approximation we could find 

that did have an established carbon footprint would be commercially reared broiler 

chickens, as parallels can be drawn between their intensified rearing systems and 

those that pen-reared pheasants undergo before release (Meluzzi et al., 2008; 

Meluzzi and Sirri, 2009). However, it is worth noting that this would not take into 

account the post-release management for pheasants and the possible increases that 

might cause for pheasant CO2 footprints, but as stated, broiler chickens are the 

closest analogue we could locate. The CO2 footprint of rearing a broiler chicken 

under intensive conditions can range from 2.5-8.1kg of CO2 per bird depending on 

the rearing method (Röös, Sundberg and Hansson, 2014), but a commonly used 

measurement is 6.9kg (Greeneatz, 2019; Business Insider, 2015). Taking our figure 

of Enhanced Rearing being used meet harvest rates equivalent to the release of 20 

million traditionally reared birds, a reduction in 3.2 million pheasants being reared 

and released each year (including the additional CO2 from 1% live mealworm to 
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Enhanced diets) would result in 21.35 million Kg less CO2 being put into the 

atmosphere each year (Oonincx and de Boer, 2012), equivalent to ~4650 fewer 

typical passenger vehicles (USEPA, 2017).  

 

As shown in Chapter 2, Enhanced Rearing can lead to an increase in the 

number of pheasants surviving between years. Although the raw data involved is 

relatively small, with just 12 Enhanced tags and 4 Control tags counted in the 

harvest the following year from a total of 2100 of each treatment released, we know 

from Chapter 5 that these results will be significantly underestimated, possibly by 

greater than a factor of 10 when Multi-Tags were used, though we are not confident 

enough in our projections to state a definitive figure. More pheasants surviving 

between years means that there is likely a larger population surviving into the 

breeding season, which in itself could lead to more pheasants breeding and further 

decrease release requirements to meet desired harvest levels. However, pheasant 

breeding success in the wild is dependent on more than pheasants simply surviving 

to the breeding season. To accommodate greater breeding populations, 

management techniques will need to shift towards providing sufficient herbaceous 

and wood habitat (Leif, 2005), high levels of predator control during the nesting 

periods (Draycott et al., 2008), and providing supplementary feed beyond the 

shooting season and into spring (Draycott et al., 2005). Many of these practices are 

stipulated or encouraged in the Code of Good Shooting Practice (Game and WIldlife 

Conservation Trust, 2012). Motivating/stimulating such shifts in management would 

likely be costly and time consuming, and those shoots that have the funds to invest 

heavily in such pheasant management strategies are usually the commercial shoots. 

These are the sites where, relative to the high numbers released each year, the 
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small increases in harvest rates caused by increased wild populations and increased 

year-to-year survival will have little cost-effective benefit, and so the management 

required to maximise them may be unlikely to be adopted. This means that larger 

shoots may readily adopt Enhanced Rearing for the immediate benefits it brings to 

increased harvests of that year, but they may not take full advantage of the benefits 

it could bring to improving year-to-year survival and increasing wild-bred pheasants. 

However, shoots that specifically wish to increase the numbers of wild pheasants on 

their land would likely already be carrying out management practices that could take 

advantage of the potential benefits Enhanced Rearing brings to improve wild 

breeding rates.   

 

Our findings regarding tag durability have two broader implications. First, 

previous studies using Multi-Tags to study population dynamics over a single 

shooting season post-release (GWCT, unpublished; Turner, 2007) may have 

reached inaccurate conclusions. Within-site comparisons where tags from the same 

site are compared to each other, such as those in Chapter 2, should be less affected 

by this, as tags deterioration rates would be fairly consistent between pens, but for 

any study where tagged birds are compared to non-tagged birds or absolute tag data 

is used by itself, tagged birds could be underrepresented by ~14.7%. As discussed 

in Chapter 5, this can lead to inaccuracies in determining how many immigrant or 

wild birds are in the harvest, and we have highlighted this using the National Game 

Marking Scheme as a case study, where overall tag counts are used as a measure 

of the total release/harvest ratio (GWCT,unpublished). Data and research from the 

GWCT is often used as a source of information by the UK government when it is 

seeking advice regarding policy decisions in relation to gamebird management 
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(GWCT, 2019). By increasing the accuracy of the data that the GWCT can provide, 

either by deploying our correction factor or using more robust tags, researchers may 

be better able to inform policy decisions regarding gamebird management nationally. 

Second, these effects of tag deterioration become more marked for studies of >1 

year, and the errors about our correction factor become large and indeed overlap. 

Therefore, we suggest that researchers interested in gathering data from year-to-

year survival should purchase better quality tags. This increase in cost could reduce 

the number of shoots that tag their birds. However, the resulting data on year-to-year 

survival of pheasant will be far more robust and allow for more accurate research 

conclusion and land management that is better tailored to the support the pheasants 

that are present. Additionally, if shoots are already investing in management 

specifically designed to encourage year-to-year survival, then the additional cost of a 

more reliable tag that can better record the efficiency of that management would 

likely be of little consequence. 

  

Our work at improving the accuracy of aging pheasants using the Proximal 

Primary Method by adding the mass of the feather to the diameter and length 

measurements revealed that small improvements could be achieved (1.57% for 

juveniles and 1.1% for Mature). If the process of gaining the mass value were 

particularly time consuming, then it might not be worthwhile. Feather drying must 

always be done to accurately to collect feather length and diameter (Woodburn et al., 

2009), but an oven can be used for drying instead of the 12 months of dry storage 

that we carried out (Woodburn et al., 2009). As such, the additional effort required for 

the collection of feather mass comes only from the time taken to brush/scrape any 

excess mud from the feather, place the feather on a set of good quality digital scales, 
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and record the weight, and so we believe that collecting mass data is worthwhile for 

improving the accuracy of PPM, considering the speed at which the measurement 

can be taken. Where PPM can be applied most effectively is when the feathers/birds 

of the smaller known-age subsample can be robustly classified via a broad set of 

biometrics. This subsample can then be used to calibrate PPM approaches that can 

be applied to a far larger sample of feathers that can be swiftly collected. 

Additionally, PPM itself can be used as part of a broader set of biometric classifiers 

(Woodburn et al., 2009), and so adding feather mass would also likely increase the 

accuracy of this methods of aging. Our rates of increased accuracy were determined 

using machine learning, a process that, to the best of our knowledge, has not been 

used for ageing pheasants before. Despite our rates of accuracy via machine 

learning being lower than those of previously established method, machine learning 

may still prove a useful tool for aging pheasants when a broad range of biometrics 

are added and not just feather metrics, though this would require additional study.  

 

 

7.3 Limitations of our findings  

 

Even though we did extend the work of Whiteside, Sage, and Madden (2015, 2016) 

to a commercial rearing setting, our study relied on data from just 8 shoots (2 of 

which took part in both years), ranging from total releases of 400-10,000. This limited 

the scope of our investigation, as no very-larger commercial shoots (>10,000 bird 

releases) were included. This limitation was a matter of necessity. In order for us to 

carry out Enhanced Rearing, we first had to find a game rearer willing to implement 
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our changes to their rearing practices. Then we had to approach those who 

purchased their pheasants from that rearer in the hopes that some would be willing 

to take part in our investigation. To the best of our knowledge, the 10,000 pheasant 

release was the largest supplied by our game rearer. In the absence of data from 

very-large shoots, our conclusion that Enhanced Rearing could be as effective on 

such very-large shoots is inferred from Enhanced Rearing being effective on shoots 

releasing between 2001-10,000 birds. We believe that Enhanced Rearing will be as 

effective on such very-large shoots, as those shoots classified as Large within our 

project invested significant time and resources in their pheasant management in the 

same manners that very-large shoots do. However, effects such as disease rates 

from higher density releases (Gethings, Sage and Leather, 2015) or increased rates 

of predator control from the employment of multiple fulltime gamekeepers many alter 

the impacts of Enhanced releases on very-large shoots in some way. Without 

studying Enhanced releases on such very-large shoots, we can only theorise, albeit 

with some confidence, that Enhanced Rearing would also be as effective upon them.  

 

We also cannot say how many shoots would fall into the Medium category or 

would release their pheasants too late in the season for Enhanced Rearing to have a 

beneficial effect. This is because such data on UK shoots simply does not exist. Data 

from the 2013 Great British Poultry Registry (Animal Health and Veterinary 

Laboritories Agency, 2013), states that a total of 50,287,533 game birds (primarily 

pheasants) were kept on ~8111 sites in the UK in 2013, but this covers both 

releases, rearers, and any other locations keeping more than 50 gamebirds. It gives 

no further detail on the distribution of the gamebirds amongst those sites or when 

they were released. The Shoot Benchmark Survey (Game and Wildlife Conservation 
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Trust, 2018) was carried out over 130 shoots that released a combined total of 1.6 

million gamebirds, but again, no data was presented on the distribution of release 

sizes, and averaging them would put release sizes at ~12,300 gamebirds per shoot, 

greater than any of our releases in Chapter 2. The average release from our Chapter 

2 study was 2040 pheasants across 8 shoots, but in reality only 2 shoots released 

>2000 birds. Additionally, six of the shoots used in Sage et al’s meta-analysis (2018) 

ranged from 8,000-27,000, the largest release of the sites surveyed in Chapter 4 

totalled 60,000, and we know anecdotally of some shoots that release >100,000 

pheasants. The GWCT, who are likely the most well-informed body in the world 

regarding UK pheasant management, also have no truly accurate figures on the 

number of pheasants releases, the numbers released at each site, or the dates when 

the pheasants are released (personal comms). Simply put, we do not know 

definitively where Enhanced Rearing will and will not work. Along with concerns over 

the rate at which Enhanced Rearing might be adopted, this was the reason for us 

only applying it to 20 million of the 39-57 million pheasants released each year 

despite larger shoots accounting for the majority of released pheasants. Another 

limitation was that, due to the relatively small number of shoots that we released 

upon, we were not able to investigate if specific management practices would have 

impacted Enhanced and Control harvests in different manners. Examples of such 

management practices are; if levels of game cover provided by the shoots varied, 

would it affect harvests based on differences in dispersal between Enhanced and 

Control pheasants; if Control pheasants were suffering more from predation than 

Enhanced, would the type and quantities of predator control alter the numbers of 

Control birds that survive to contribute to the harvest to a greater degree than 

Enhanced birds; and are there specific landscape features (e.g. area of woodland, 
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types of crops planted, etc) that have different impacts upon the contribution that 

Enhanced and Control pheasants make to the harvest? We partially overcame this 

with the shoot size classification, with those classified as Small, Medium, and Large 

based on release size also having similar occasional, part-time, and professional 

game keeping respectively, with gamekeeping effort used as a broad measure for 

the quantity and quality of overall pheasant management carried out (Sage et al., 

2018). If we had been able to increase the number of sites to encompass a broader 

spectrum of variables relating to harvest sizes, we may have been able to highlight 

areas where Enhanced Rearing may or may not have worked as effectively. Ideally, 

we would have been able to experimentally manipulate the types of management 

each shoot carried out, allowing us to tailor each site for more effective comparisons, 

but this was simply not possible. 

 

Regarding Chapter 3, we investigated, first, if the flight performance of 

Enhanced birds differed from Control birds, and second, if flight performance 

predicted a bird’s likelihood of being shot. Understanding these two points would 

allow us to, if necessary, add a correction factor to the harvest results to account for 

any one treatment type being consistently shot at a disproportionate rate. We found 

that Enhanced birds had consistently higher flight performances and that flight 

performance affected the likelihood of a bird being shot. However, because the effect 

of flight performance on likelihood of being shot varied so much over time (high birds 

were more likely to be shot early in the season whereas they then became the least 

likely to be shot later in the season), we could not apply a simple ubiquitous 

correction factors to harvest results. It may have been possible to produce a 

correction factor that shifted over time, in line with the effect of flight performance on 
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likelihood of being shot, but to do this we would have also required the specific tag 

counts from each shoot for each shoot-day. However, 4 out of our 8 sites provided 

only the total tag counts for the entire shooting season, making it impossible to apply 

such a correction factor to all shoots. Additionally, we would have had to of known if 

the effects we recorded at the Large class of shoot, where the data was collected 

from, applied to Medium and Small shoots also. 

We could also not differentiate if the change in likelihood of being shot was 

due to changes in shooting preferences or changes in the ability of those shooting. 

On smaller shoots, often only one bird is available to be shot at a time, and so there 

is no ‘picking’ of birds, as every safe bird is shot at, regardless of height. Conversely, 

on very-large shoots where many more birds are presented to the guns, the rate of 

‘picking’ birds might be even higher. Consequently, if we were to repeat the study of 

the effect of flight performance on likelihood of being shot over a range of shoots that 

presented varying number of birds to the guns in each flush and the same pattern 

occurred, this would indicate that the effect was due to a shift in ability and not 

preference. This would also allow us to determine if different correction factors 

needed to be applied to different sized shoots.  

 

Our limitations thus far have been in regards to our work regarding pheasants 

specifically. However, there were also limitations to our invertebrate analysis in 

Chapter 4 regarding the distances between the exterior pitfall trap transects and the 

release pens. Additionally, the distance between the traps within the transects 

themselves was only 5m when other studies recommend 20m (Woodcock, 2005).  

These two limitations may have caused two effects. First, the close proximity of the 
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exterior transect to the release pen may have caused mixing between interior and 

exterior invertebrate populations (Melzer and Kaiser, 1988), making any differences 

between the two locations harder to detect. Second, the close proximity of the 

individual traps may have resulted in over-trapping of invertebrate populations and 

reduced total sample sizes (Ward, New and Yen, 2001). However, previous studies 

have shown that depletion of invertebrate samples in pitfall traps from similar 

distances to those we carried out were insignificant (Ward, New and Yen, 2001; 

Baker and Barmuta, 2006). The reason for these limitations was that many of the 

release pens that we surveyed were small, as were the woodlands within which they 

were situated (smallest ~2700 m2). We did not have the space to put greater 

distance between either the interior and exterior transects or the traps constituting 

those transects without going outside the woods into very different habitats, primarily 

that of arable and pasture farmland which have differing invertebrate communities to 

woodland (Neumann et al., 2015). This limitation was unavoidable given the high 

number of relatively small release pens and woodlands within which they were 

located in our study, but as the distances both between transects and the traps 

within them were kept consistent between all sites, any effects that might have been 

caused should have been standardised between transect and prevented from 

producing spurious results. This limitation could have been avoided if alternate 

sampling techniques had been used, such as vacuum trapping and sweep-net 

sampling (Doxon, Davis and Fuhlendorf, 2011). However, given the difficulty with 

which many of the pens were accessed, the distances equipment needed to be 

carried on foot, and the numbers of surveys required on each site visit, the 

lightweight and easily mobile nature of the pitfall trapping equipment made the 

technique very useful for this investigation. 
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The final limitation that we shall highlight is based on the equipment used as 

opposed to specific study design, and that limitation is the fact that the patagial tags 

that we used deteriorate, primarily the Multi-Tags. This limited the data we were able 

to collect on year-to-year survival for our Enhanced and Control pheasants, and it did 

so most severely for the birds reared and released in Year 1, as these were tagged 

with Multi-Tags. However, although this might have affected our between year 

analyses of annual survival, this limitation did not affect direct comparisons between 

Enhanced and Control pheasants released in the same year, because both 

treatments always used the same tag type, so deterioration rates were equal across 

treatments. To avoid these errors, future studies should use Plastags to mark 

individuals. 

 

 

7.4 Future directions for work  

 

7.4.1 Where is releasing Enhanced pheasants most effective?  

Several factors that could impact the effectiveness of releasing Enhanced pheasants 

are worth further study, all of which can be investigated by releasing Enhanced 

pheasants over a greater number of sites. 

First, we found that on Medium releases (601-2000 pheasants) and shoots 

that released late, Control pheasants actually contributed more to the harvest. While 

there is a plausible explanation relating to the lateness of release (see Chapter 2), it 

was not possible to properly separate these two factors within our analysis, as 
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Medium releases were also typically those that released their bird later. We believe 

release date had this effect due to later releases not providing enough time for the 

benefits to survival from Enhanced Rearing to make a significant effect. We 

theorised that the Mediums shoots may have shot fewer Enhanced birds because 

they provided less ideal habitat relative the number of birds they release, either 

preventing Enhanced birds from taking advantage of their improved behaviours and 

morphologies or increasing their dispersal in search of more ideal roosting habitat. In 

order to determine if it is later releases, release size, or a combination of both that 

led to instances of Control pheasants contributing more to the harvest, Enhanced 

Rearing needs to be tested over a greater number of Mediums sites with varying 

release dates.  

Second, different shoots carry out different types of management. If 

Enhanced birds are both behaving and surviving differently to traditionally reared 

birds, the impacts of these management techniques may differ, and these 

differences must be known in order to maximise the effectiveness of Enhanced 

Rearing. An example of this would be varying levels of predator control between 

sites. High levels of predator control have been shown to decrease mortality of 

pheasant by 29% (Sage et al., 2018), but if Enhanced birds are suffering less from 

predation, predator control may be less effective. Nest predation rates have also 

been shown to be significantly lower on sites carrying out predator control  (Draycott 

et al., 2008), resulting in greater breeding success and increased wild populations. 

This could mean that, in the absence of predator control, increasing the number of 

pheasants that survive to the breeding season due to Enhanced Rearing may not 

actually increase the number of wild pheasants if the majority of those surviving birds 

are predated during the breeding season (Sage et al. 2018). Indeed, where predator 
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control has been carried out extensively for another gamebird species, the grey 

partridge (Perdix perdix), there have been 75% increases in August populations and 

a 3.5 fold increase in total population in subsequent years due to far more birds 

surviving to breed (Tapper, Potts and Brockless, 1996). Predator control is just one 

management technique that could differ between sites. Others include the type and 

quantity of game cover provided, if supplementary feeding is carried out beyond the 

shooting season, and reduced pesticide levels to provide more invertebrate food 

sources for pheasant chicks. By releasing Enhanced birds across many sites with 

varying management practices and over multiple years, it will be possible to 

determine which management practices lead to the most benefits to both harvest 

rates and increasing wild stocks.  

 

Third, we were unable to involve shoots that release very-large numbers of 

pheasants (>10,000) in our study because our game rearer did not supply to any, yet 

if Enhanced Rearing were applied to such shoots and achieved the same results as 

were seen at the Small (<601) and Large (>2000) releases (as we suspect it would), 

then such very-large shoots offer the greatest opportunity for reducing release 

numbers. Now that we have shown that Enhanced Rearing is not only effective at 

increasing harvest rates but also cost-effective, the likelihood of commercial shoots 

agreeing to participate is higher and offers the opportunity for data to be gathered at 

the sites where Enhanced Rearing could be most effective.  

 

Rolling Enhanced Rearing out over large numbers of other sites would be a 

major undertaking, requiring many shoots, multiple game rearers, and likely the 
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backing of an organisation such as the GWCT. However, due to our research the 

GWCT have already taken aspects of our Enhanced Rearing methodology (namely 

the provisioning of perching material) and have found a commercial game rearer 

willing to implement it and shoots wiling to tag their birds and report the results. 

Using our work as a baseline, such projects can begin to build a far larger dataset 

than the one gathered during this PhD. With a deeper understanding of where and 

why Enhanced Rearing can be effective, it could be possible to begin shifting current 

release practices to adopt it, increasing harvest rates and reducing the need for high 

density releases. 

 

7.4.2 Can improved roosting behaviours be transferred between Enhanced and 

Control pheasants? 

Chapter 2 highlighted that increases in harvest rates were only present when 

morphologies associated with increased roosting (increased breast muscle weight 

and tarsi diameter) were also present. These morphological differences between 

Enhanced and Control pheasants were absent at the single site where we collected 

such measures in Year 2, but it appears that, instead of the Enhanced birds failing to 

develop these morphologies, the Control birds had also developed them in the time 

between their release and the start of the shooting season. This lack of 

morphological difference may help explain why we found no difference in harvest 

rates between treatments at that site that year, as it implies that the Control birds 

may have developed the roosting behaviours associated with those morphologies. 

Whiteside, Sage, and Madden (2016) found that by 6 weeks after release, the 

pheasants that had not been reared with perches were exhibiting night-time roosting 

behaviours on par with those pheasants that had been given perches, possibly 
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implying that the behaviour could be learnt post-release, as has been seen with 

improved foraging behaviours in hens and jungle fowl (Nicol, 2004). Our results give 

more weight to this argument in that the Enhanced pheasants of Year 2 were reared 

with almost double the perching material of Year 1. By increasing the availability of 

perching material, the development of natural roosting behaviours in Enhanced birds 

may have been greater (Heikkilä et al., 2006). If more Enhanced birds were 

exhibiting increased roosting behaviours in Year 2, it may have led to the Control 

birds being exposed to greater instances of that behaviour and mimicking the 

roosting to a greater degree via social learning once in the release pens. Similar 

adoption of novel behaviours from visual exposure alone have been shown in young 

chicken regarding pecking stimuli (Suboski and Bartashunas, 1984). If this were the 

case, then it could have resulted in Control birds developing enough roosting 

behaviours to increase their survival, producing their equal contribution to the 

harvest in Year 2. Moreover, the Control birds would have had to develop these 

behaviours and morphologies to such as degree that by the time they were given 

access to the outside of the release pens (~4 weeks post-release) and were exposed 

to predators, their survival rates would already have to closely match those of 

Enhanced birds. Additionally, the corresponding morphological changes would have 

had to develop to an equal level by the start of the shooting season (~11 weeks after 

release), when the first dissections occurred. If this effect of swift knowledge 

transmission due to increased perching during rearing is occurring, it may only be 

necessary to rear a proportion of the released pheasants under Enhanced conditions 

and still achieve the same increases to harvest rate. This could be tested within a 

controlled environment, as opposed to large-scale pheasant releases for shooting, 

with groups of pheasants reared with differing levels of perching materials being 
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placed with groups of those reared in the absences of perching material. By 

monitoring the rate that roosting behaviours were developed by the perch-deprived 

birds, it would be possible to investigate if providing different quantities of perching 

material to a sub-population during rearing affected the rate at which perching 

behaviours were developed by the perch-deprived population.  

 

7.4.3 To what extent do the effects of pheasants on invertebrates differ when 

invertebrate abundances differ?  

Chapter 4 showed a different effect of pheasant releases on invertebrates in release 

pens in each year of the study, and a key difference between those years was that 

the overall invertebrate abundance of 2016 was much higher than 2017. When 

overall abundance was high in 2016, there was lower total invertebrate biomass, 

slug counts, and detritivore counts within the pen by 4 weeks post-release, with 

these effects disappearing by 9 weeks post-release. When overall abundance was 

low in 2017, there was only lower arachnid counts within the release pen by 4 weeks 

post-release which again disappeared by 9 weeks post-release, but additionally by 9 

weeks post-release, the pen interiors had higher total invertebrate biomass, total 

invertebrate counts, slug counts, and beetle counts. This implies that the effects that 

pheasants have on invertebrates within the release pen, be they negative in the 

short term or positive in the longer term, are mediated by overall invertebrate 

abundance. Further Investigation of this could be important for understanding the 

wider implications that gamebird releases have on invertebrate communities 

(Pressland, 2009), and particularly if releases occur in areas where invertebrates of 

conservation concern are present (Callegari, Bonham and Holloway, 2014). 



 

248 
 

To investigate this, a range of pitfall transects could be carried out in a similar 

fashion to Chapter 4 at sites over several years. These would build a dataset of 

varying overall invertebrate abundances upon which the effects of the release of 

pheasants can be measured. Additionally, the diet/foraging behaviours of pheasants 

could be studies to investigate if pheasants that are exposed to fewer invertebrates 

due to lower invertebrate abundances simply do not develop invertebrate predation 

behaviours, as such behaviours do increase when young pheasants are exposed to 

invertebrates during rearing (Whiteside, Sage and Madden, 2015).   

 

 

7.5 Thesis conclusion 

 

This thesis has further researched and demonstrated a viable method of reducing 

pheasant release numbers in a cost-effective manner, now within a commercial 

rearing environment, that does not reduce the number of pheasants harvested. This 

has pushed forward knowledge regarding the sustainability of the shooting industry 

environmentally, ethically, and economically. The work we have carried out has laid 

the groundwork for future studies to continue using our Enhanced Rearing 

methodology to further refine where it will be most applicable and where it might be 

improved. We have also investigated potential impacts of releasing Enhanced 

pheasants, specifically looking at flight performance that is likely of interest to the 

hunters and effects on invertebrate communities where the birds are released, and 

found that no additional negative effects arise from the releasing of Enhanced birds 

when compared to the effects of releasing traditionally reared pheasants. This 
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suggests that the methodology could be widely adopted without fear of detrimental 

consequences to either the environment that the pheasants are released into or the 

activity of shooting itself. Such studies of pheasant behaviour and ecology rely on 

robust methods of data collection. We have refined two such methods. We showed 

that a widely used patagial tag is not viable for long term data studies and created a 

correction factor that can be applied to future studies and retrospectively to account 

for losses of that tag, increasing the accuracy of both past and future datasets and 

the conclusions drawn from them. We also found a way of improving the accuracy of 

aging pheasants, allowing for greater certainty in future studies that require 

pheasants to be separated based on age.  

The primary outcome of this thesis is showing that by rearing pheasants 

under subtly and cheaply enhanced conditions, the birds can be released at lower 

densities without detrimental effects to shooting yet the same harvest rates could be 

attained. It is our hope that the outcomes of our research will be used responsibly to 

reduce the negative effects that large-scale pheasant releases can have on the 

environment.  
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