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This paper reports the complex dynamics of a class of two-dimensional maps containing hidden
attractors via linear augmentation. Firstly, the method of linear augmentation for continuous
dynamical systems is generalised to discrete dynamical systems. Then three cases of a class of
two-dimensional maps that exhibit hidden dynamics, the maps with no fixed point and the maps
with one stable fixed point, are studied. Our numerical simulations show the effectiveness of the
linear augmentation method. As the coupling strength of the controller increases or decreases,
hidden attractor can be annihilated or altered to be self-excited, and multi-stability of the map
can be controlled to bistable or monostable.
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1. Introduction

Since the concept of hidden dynamics for dynamical systems was proposed [Leonov & Kuznetsov, 2013], the
complexity of hidden attractors has been studied extensively [Dudkowski et al., 2016a]. Special continuous
systems which contain hidden attractors have been investigated by many researchers, e.g. the continuous
systems with no equilibria [Wei, 2011; Jafari et al., 2013; Wang et al., 2016; Dantsev, 2018; Zhan et al.,
2018] and the continuous systems with only stable equilibria [Wang & Chen, 2012; Molate et al., 2013;
Wei & Zhang, 2014; Lai et al., 2018]. In particular, the continuous systems with different types of infinite
equilibria have been studied, such as the ones with any number of equilibria [Wang & Chen, 2013], with
a line of equilibria [Jafari & Sprott, 2013; Li et al., 2014b; Zhou & Yang, 2014; Li et al., 2014a], with the
curves of equilibria [Chen & Yang, 2015; Barati et al., 2016; Gotthans et al., 2016; Pham et al., 2016; Wang
et al., 2017], with the planes of equilibria [Jafari et al., 2016a; Bao et al., 2017], and with the surfaces of
equilibria [Jafari et al., 2016b; Singh et al., 2018]. On the other hand, several special maps which have
hidden attractors have also been studied, e.g. the maps with no fixed point [Jafari et al., 2016c; Jiang et
al., 2016a,b; Panahi et al., 2018; Wang et al., 2018], the maps with only stable fixed points [Jiang et al.,
2016a,b], and the maps with different types of infinite fixed points [Chen et al., 2017; Liu et al., 2017; Jiang
et al., 2019; Bao et al., 2020; Zhang et al., 2020]. In practice, hidden attractors have been found in real-
world applications, such as electrical circuits [Leonov & Kuznetsov, 2013; Dudkowski et al., 2016a; Pham et
al., 2017], downhole drilling [Leonov & Kuznetsov, 2013; Dudkowski et al., 2016a; Leonov et al., 2016], and
vibration-driven robots [Liu & Páez Chávez, 2017b]. In these systems, hidden dynamics can be utilised for
control purposes if the hidden attractor is more efficient in the point of view of energy consumption [Liu
& Páez Chávez, 2017b], while it could also cause catastrophic failures if the hidden dynamics is harmful to
the system, e.g. the cause of severe stick-slip oscillations in downhole drilling [Liu et al., 2019]. Therefore,
better understanding and control of hidden attractors become crucial.

As explained, since the nonlinear systems with hidden attractors can produce many unexpected re-
sponses, such as the stick-slip motion in downhole drilling [Liu et al., 2020], controlling hidden dynamics
has received great attention from the research community. Many control methods have been studied, such
as passive control [Sambas et al., 2019], adaptive control [Wei et al., 2014; Jahanshahi et al., 2019], adaptive
backstepping control [Vaidyanathan et al., 2018], adaptive sliding mode control [Mobayen, 2018; Wei et al.,
2018], and delayed feedback control [Feng & Wei, 2015; Wang et al., 2015]. In [Wei et al., 2014], an adaptive
control law was designed to stabilise the extended Sprott E system with hidden attractors. In [Feng & Wei,
2015], a delayed feedback controller was used to control the bifurcation of a generalized Sprott B system
with hidden attractors. Wang et al. [Wang et al., 2015] developed a delayed feedback control scheme for a
class of 3D jerk systems with only one stable equilibria, and analysed the Hopf bifurcation observed in the
controlled system. In [Vaidyanathan et al., 2018], Vaidyanathan et al. investigated the adaptive backstep-
ping control of a 4-D chaotic hyperjerk system containing a hidden chaotic attractor. In [Mobayen, 2018],
a novel adaptive sliding mode control technique was proposed for stabilising the perturbed Chameleon hid-
den chaotic flows. Wei et al. [Wei et al., 2018] studied the control problem of hidden chaos in a self-exciting
homopolar disc dynamo by using a nonlinear feedback control, a sliding mode control, and the combination
of both controllers. Recently, an adaptive radial-basis function neural network-based control method was
proposed to stabilise a class of four-dimensional chaotic system with hidden attractors [Jahanshahi et al.,
2019]. Sambas et al. [Sambas et al., 2019] studied a passive control method for stabilising a new chaotic
system with line equilibrium which displays hidden chaotic attractors.

More recently, linear augmentation has been widely adopted for control purposes. In [Sharma et al.,
2011], Sharma et al. proposed a general linear augmentation control strategy to stabilise the fixed points
of nonlinear oscillators. Then they used the method to drive a bistable system to a desired attractor by
annihilating the other one [Sharma et al., 2013]. In [Sharma et al., 2014], they studied a simple scheme
of linear augmentation for controlling the dynamical behaviour of a drive-response system through either
suppression of oscillations or annihilation of one of its coexisting attractors. Karnatak [Karnatak, 2015]
studied the stabilisation of desired stationary solutions of oscillatory systems using linear augmentation
from a more general sense. In the paper, some simple examples were given to prove the effectiveness of the
proposed scheme, and a careful analysis for the potential pitfalls associated with the scheme was presented.
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Liu and Páez Chávez [Liu & Páez Chávez, 2017a] studied the control of coexisting attractors in an impacting
system via a new control law based on linear augmentation. It has found that the proposed control law can
effectively switch between coexisting attractors without altering the system’s main parameters and avoiding
grazing-induced chaotic responses. In [Thounaojam & Shrimali, 2018], the authors studied the phase-flip
in relay oscillators by considering both time delay and conjugate couplings, and also implemented linear
augmentation to control the dynamics of the relay oscillators. In [Fonzin Fozin et al., 2019a,b,c; Tabekoueng
Njitacke et al., 2020], Kengne’s team investigated the control of multi-stability of several complex systems
by using linear augmentation.

In the present work, we aim to control hidden dynamics and multi-stability of a class of new two-
dimensional maps which have been found recently by Jiang et al. [Jiang et al., 2016a]. The main contribu-
tions of this paper are: (1) the generalisation of linear augmentation from continuous dynamical systems
to nonlinear maps; (2) the first time that linear augmentation is used to control the hidden dynamics and
multi-stability of nonlinear maps; (3) a new method to show the evolution and categories of attractors
in nonlinear maps. Furthermore, the proposed method is easy to be implemented and does not require
the change of systems parameters of the original map. The method to display the hidden and self-excited
attractors of nonlinear maps using bifurcation diagrams and the sampling method are general and effective,
which can be used for studying other maps. The rest of this paper is organized as follows. In Section 2,
the method of linear augmentation for controlling general maps is given, and the mathematical model of
the augmented map which is a class of two-dimensional maps coupled with a linear map is studied. In
addition, the existence and stability of fixed points of the augmented map are studied. In Section 3 and 4,
controlling the hidden dynamics and multi-stability of the two-dimensional maps without fixed points and
with only one stable fixed point are studied. Finally, some conclusions are drawn in Section 5.

2. Problem statement

Consider a class of nonlinear maps

Xk+1 = F (Xk), (1)

where F denotes a nonlinear function, X ∈ Rn represents the state of the nonlinear maps, and k is the
step of the nonlinear maps.

Inspired by the idea of linear augmentation for continuous dynamical systems, we propose the method
of linear augmentation for discrete dynamical systems as follows. The equation of the nonlinear maps via
linear augmentation is given as {

Xk+1 = F (Xk) + εUk,
Uk+1 = δUk − ε(Xk −B),

(2)

where ε describes the coupling strength between the nonlinear and the linear maps, U ∈ Rm is the state of
the linear coupling map, Uk+1 = δUk, where δ is the decay parameter. The linear map approaches to zero
if the decay parameter |δ| < 1 and the coupling with the nonlinear map ε(Xk −B) = 0. Here, B is another
coupling parameter of the augmented map which can be used to locate the position of fixed points.

To study the effectiveness of the proposed control method for nonlinear maps, the following definitions
of hidden and self-excited attractors are recalled.

Definition 2.1. [Leonov et al., 2016] An attractor is called a hidden attractor if its basin of attraction does
not intersect with small neighborhoods of the equilibria (fixed points) of the system (map), otherwise it is
called a self-excited attractor.

Remark 2.1 In some special cases, e.g. [Jafari et al., 2016c; Jiang et al., 2016a,b; Panahi et al.,
2018; Wang et al., 2018], we can distinguish between hidden and self-excited attractors directly by using
Definition 2.1. For example, there is no fixed point or a single stable fixed point in the map, so the existing
attractors except the fixed points are all hidden. One can also observe attractor’s basin of attraction for
which is hidden if it does not contain any fixed points, otherwise is self-excited. The shortcoming of this
method is that it is not applicable to high-dimensional maps since their basins of attraction are difficult
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to be visualised. If fixed points exist, we can use the sampling method [Dudkowski et al., 2016b; Brzeski &
Perlikowski, 2019; Faghani et al., 2020] to determine whether the attractor is hidden or self-excited. This
can be done by taking many initial points from the small neighbours of these fixed points randomly. If all
these initial points do not tend to one attractor, this attractor is hidden, otherwise it is self-excited.

In [Jiang et al., 2016a], a class of new two-dimensional maps was presented to show three cases of
existence of hidden attractors. The difference equations of these two-dimensional maps can be written as{

xk+1 = yk,
yk+1 = a1xk + a2yk + a3x

2
k + a4y

2
k + a5xkyk + a6.

(3)

where ai ∈ R, i = 1, 2, · · · , 6 are real coefficients, (xk, yk), k ∈ N , are the states of the map, (x0, y0) is the
initial value of the map.

The fixed point of map (3) can be obtained by solving the following equation{
x = y,
y = a1x+ a2y + a3x

2 + a4y
2 + a5xy + a6.

(4)

Then the problem of finding the fixed point can be converted to solve the following equation with respect
to y,

(a3 + a4 + a5)y
2 + (a1 + a2 − 1)y + a6 = 0. (5)

If a3 + a4 + a5 ̸= 0, ∆ = (a1 + a2 − 1)2 − 4(a3 + a4 + a5)a6 is denoted as the discriminant of Eq. (5).
By coupling a linear augmentation to the second equation of map (3), we obtain the following aug-

mented map, xk+1 = yk,
yk+1 = a1xk + a2yk + a3x

2
k + a4y

2
k + a5xkyk + a6 + εuk,

uk+1 = δuk − ε(yk − b),
(6)

where ε, δ and b are the real parameters of the linear augmentation.
The fixed point of the augmented map (6) can be obtained by solving the following equationx = y,

y = a1x+ a2y + a3x
2 + a4y

2 + a5xy + a6 + εu,
u = δu− ε(y − b).

(7)

Likewise, the problem of finding the fixed points of the augmented map (6) can be converted to solve
the following equation with respect to y,

(a3 + a4 + a5)y
2 + (a1 + a2 − 1− ε2

1− δ
)y + (a6 +

ε2b

1− δ
) = 0. (8)

If a3+a4+a5 ̸= 0, ∆̄ = (a1+a2−1− ε2

1−δ )
2−4(a3+a4+a5)(a6+

ε2b
1−δ ) can be denoted as the discriminant

of Eq. (8).
Assume that the augmented map (6) has a fixed point (x∗, y∗, u∗). The Jacobian matrix of the aug-

mented map at this fixed point can be written as

J =

 0 1 0
a1 + 2a3x

∗ + a5y
∗ a2 + 2a4y

∗ + a5x
∗ ε

0 −ε δ

 , (9)

and the corresponding characteristic equation of the Jacobian matrix is given as

det(λI − J) = λ3 + pλ2 + qλ+ r = 0, (10)

where p = −tr(J) = −(a2 + 2a4y
∗ + a5x

∗ + δ), q = ε2 − a1 − 2a3x
∗ − a5y

∗ + a2δ + 2a4δy
∗ + a5δx

∗,
r = − det(J) = δ(a1+2a3x

∗+ a5y
∗), tr(J) = a2+2a4y

∗+ a5x
∗+ δ is the trace of the Jacobian matrix and

det(J) = −δ(a1 + 2a3x
∗ + a5y

∗) is the determinant of the Jacobian matrix.
It should be noted that the fixed point (x∗, y∗, z∗) is stable if the roots λ1, λ2, λ3 of the characteristic

equation (10) satisfy |λ1,2,3| < 1, where | · | denotes the modulus of a complex number. If three eigenvalues
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of the Jacobian matrix lie inside the unit circle, the fixed point is stable. If one of them lies outside the unit
circle, the fixed point is unstable. It is well known that there are only three codimension-1 bifurcations
of fixed points in nonlinear maps [Kuznetsov, 1998]. If one of the three eigenvalues is +1, saddle-node
bifurcation will occur. If one of the three eigenvalues is −1, period-doubling bifurcation may appear. Let
j be the imaginary unit satisfying j2 = −1. If two of the three eigenvalues are e±jθ, 0 < θ < π, i.e., there
is a pair of conjugate complex eigenvalues and the modulus of the conjugate complex eigenvalues is 1,
Neimark-Sacker bifurcation may take place.

3. Controlling two-dimensional maps with no fixed point via linear augmentation

According to [Jiang et al., 2016a], when Eq. (5) has no solution, map (3) has no fixed point. Next, we will
show the effectiveness of the linear augmentation by considering two cases, no fixed point I (NFI) and no
fixed point II (NFII) as follows.

3.1. No Fixed Point I

If a3 + a4 + a5 = 0, a1 + a2 − 1 = 0 and a6 ̸= 0, Eq. (5) has no solution, and map (3) has no fixed point. In
this case, for any existing attractors, they must be hidden as their basins of attraction do not contain any

fixed point. We can choose ε, δ and b such that ε2

1−δ ̸= 0 and a6 +
ε2b
1−δ ̸= 0, and then Eq. (7) has a single

solution. Thus, the augmented map (6) has a single fixed point.
For the first example of NFI, we choose a1 = 1, a2 = 0, a3 = 0.51 , a4 = 1, a5 = −1.51, and a6 = −0.74,

and the equations of the map (NFIc in [Jiang et al., 2016a]) can be written as{
xk+1 = yk,
yk+1 = xk + 0.51x2k + y2k − 1.51xkyk − 0.74.

(11)

Based on [Jiang et al., 2016a], map (11) has a single chaotic attractor. Since a3+a4+a5 = 0, a1+a2−1 = 0
and a6 = −0.74, there is no fixed point in map (11). Therefore, this chaotic attractor is hidden.

By coupling linear augmentation to the second equation of map (11), we obtain the following augmented
map, xk+1 = yk,

yk+1 = xk + 0.51x2k + y2k − 1.51xkyk − 0.74 + εuk,
uk+1 = δuk − ε(yk − b).

(12)

Since map (12) is a three-dimensional map, it is difficult to distinguish between hidden and self-
excited attractors by observing their basins of attraction. The usual random bifurcation diagrams can
show the hidden and self-excited attractors if the initial points are chosen randomly as many as possible.
The procedure to draw these bifurcation diagrams can be described as follows: (1) To take as many as
possible initial points randomly for the initial branching parameter; (2) To plot the solutions of each initial
point once it converges to an attractor; (3) To increase or decrease the branching parameter, and repeat
the previous steps. However, by using this method, we cannot distinguish between hidden and self-excited
attractors. So, in the present work, a new class of random bifurcation diagram is constructed to display
the self-excited attractors by using the sampling method [Dudkowski et al., 2016b; Brzeski & Perlikowski,
2019; Faghani et al., 2020]. The new procedure can be described as follows: (1) To obtain the fixed points
of map (11) by solving Eq. (8) for the initial branching parameter; (2) To take as many as possible initial
points from the small neighbours of the fixed points randomly if they exist; (3) To plot the solutions of
each initial point once it converges to an attractor, which is self-excited; (4) To increase or decrease the
branching parameter, and repeat the previous steps. Next, we will demonstrate the evolution of self-excited
attractors of map (11) by presenting their new bifurcation diagram. By comparing the results obtained from
the traditional and the new random bifurcation diagrams, we can easily identify the differences between
the hidden and self-excited attractors of map (12) defined by Definition 2.1.

Bifurcation diagram of the augmented map (12) calculated for δ = 0.5 and b = 0.5 by using ε as the
branching parameter is shown in Fig. 1(a), where the random initial values were taken from the small
neighbour (< 0.001) of the fixed point, and the self-excited attractors and stable fixed points are denoted
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by SA and SFP, respectively. Figs. 1(b) and (c) present the bifurcation and Lyapunov exponent diagrams
of the augment map (12) with respect to ε, where stable solutions (excluding the stable fixed point), stable
fixed points and unstable fixed points (UFP) are marked by black, red and blue dots, respectively. The
regions that have no attractors and hidden attractors are marked as NA and HA, respectively.

Fig. 1. (Colour online) (a) Bifurcation diagram of the augmented map (12) calculated for δ = 0.5 and b = 0.5 by using
ε as the branching parameter, and random initial values taken from the small neighbour (< 0.001) of the fixed point. (b)
Bifurcation and (c) Lyapunov exponent diagrams of the augmented map (12) calculated for δ = 0.5 and b = 0.5 by using ε as
the branching parameter and random initial values taken from xk, yk, uk ∈ [−5, 5]. Stable solutions (excluding the stable fixed
point), stable fixed points (SFP) and unstable fixed points (UFP) are marked by black, red and blue dots, respectively. The
regions that have no attractors (NA), self-excited attractors (SA) and hidden attractors (HA) are divided by dashed lines. The
largest Lyapunov exponent (Le1), the second largest Lyapunov exponent (Le2) and the smallest Lyapunov exponent (Le3) are
denoted by red, blue and black dots, respectively.
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Phase portraits of the augmented map (12) on the x − y plane calculated for δ = 0.5, b = 0.5, and
different ε are presented in Fig. 2, where different attractors denoted by red, blue and black dots were
obtained by using appropriate initial values. If ε = 0, there is no coupling between the nonlinear and
the linear maps. So the state (x, y) of the augmented map (12) has a single chaotic attractor which is
the same as the attractor of the two-dimensional map (11) as shown in Fig. 2(a). Since there is no fixed
point, this chaotic attractor is hidden. As can be seen from Fig. 1, as ε increases from 0, there exists an

unstable fixed point. If ε is small, (a1 + a2 − 1 − ε2

1−δ ) is very tiny, and the values of the unstable fixed
points are large negative as shown in the additional window of Fig. 1(b). As ε increases, a reverse period-
doubling cascade was encountered leading the chaotic attractor to a period-2 orbit. Figs. 2(b)-(c) present
the phase-portraits of some periodic orbits. According to Fig. 1(a), if ε is small, the fixed point cannot
be used for locating attractors, so these attractors can be considered as hidden [Jafari & Sprott, 2013].
As ε increases, these attractors become self-excited, and a small regime of multi-stability was observed.
Based on Fig. 2(d), our numerical simulation indicates that a period-12 and a period-2 orbits coexist,
and both of them are self-excited. With the increase of ε, the augmented map (12) undergoes a reverse
period-doubling bifurcation at ε = 0.68, and the period-2 orbit shown in Fig. 2(e) bifurcates into a stable
fixed point as depicted in Fig. 2(f). At ε = 1.17, the map encounters a Neimark-Sacker bifurcation (where
λ1 ≈ −0.4435, λ2,3 ≈ 0.5278 ± 0.8499j, and |λ2,3| ≈ 1), and the stable fixed point bifurcates into a
quasi-periodic attractor forming a circle in three dimensional view, as presented in Fig. 2(g). Then the
quasi-periodic attractor bifurcates into a chaotic attractor, as shown in Figs. 2(h) and (i), and disappears
completely at ε = 1.2. As the bifurcation of the augmented map (12) is symmetric along ε = 0, the
bifurcation for which ε decreases from 0 will not be studied again here.

For the second example of NFI, we choose a1 = 1, a2 = a3 = 0, a4 = 0.38, a5 = −0.38, and a6 = −1.60,
and the equations of the map (NFIf in [Jiang et al., 2016a]) can be written as{

xk+1 = yk,
yk+1 = xk + 0.38y2k − 0.38xkyk − 1.6.

(13)

According to [Jiang et al., 2016a], map (13) has a period-2 orbit and a single chaotic attractor. Since
a3 + a4 + a5 = 0, a1 + a2 − 1 = 0 and a6 = −1.6, there is no fixed point in the map, so the period-2 orbit
and the chaotic attractor are all hidden.

By coupling a linear augmentation to map (13), we can obtain the following augmented map,xk+1 = yk,
yk+1 = xk + 0.38y2k − 0.38xkyk − 1.6 + εuk,
uk+1 = δuk − ε(yk − b).

(14)

Bifurcation diagram of the augmented map (14) with respect to ε calculated using δ = 0.5, b = 0.5, and
the random initial values taken from the small neighbour (< 0.001) of the fixed point (if exists) is presented
in Fig. 3(a). Bifurcation and Lyapunov exponent diagrams of the map with respect to ε calculated by using
the random initial values taken from xk, yk, uk ∈ [−5, 5] are shown in Figs. 3(b) and (c), respectively.

Phase portraits of the augmented map (14) on the x − y plane calculated for δ = 0.5, b = 0.5, and
different ε are presented in Fig. 4, where different attractors denoted by red, blue and black dots were
obtained by using appropriate initial values. When ε = 0, there is no coupling between the nonlinear
and the linear maps, so the state (x, y) of the augmented map (14) displays a period-2 orbit and a single
chaotic attractor as shown in Fig. 4(a). According to Definition 2.1, both the period-2 orbit and the
chaotic attractor are hidden. It can be seen from Fig. 3(b) that as ε increases from 0, a small window of

unstable fixed points was observed. If ε is small, (a1 + a2 − 1 − ε2

1−δ ) is very tiny, and the values of the
unstable fixed points are large negative as presented in the additional window of Fig. 3(b). Figs. 4(b)-
(d) demonstrate the evolution of the unstable fixed points after encountering a reverse period-doubling
bifurcation cascade which leads the chaotic attractor to periodic orbits. As can be seen from Fig. 3(a),
when ε is small, the fixed point cannot be used for locating attractors, so the attractors of the augmented
map (14) are hidden. In Fig. 4(c), the coexistence of the multiple hidden attractors, a period-36 orbit,
a period-6 orbit, and a period-2 orbit, is presented. As ε increases, these attractors become self-excited.
Self-excited attractors were also recorded in Fig. 4(e), where a period-10 and a period-2 orbits coexist. At
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Fig. 2. (Colour online) Phase portraits of the augmented map (12) calculated for δ = 0.5, b = 0.5, (a) ε = 0 (chaos) (b)
ε = 0.12 (period-8 orbit), (c) ε = 0.22 (period-4 orbit), (d) ε = 0.325 (period-12 and period-4 orbits), (e) ε = 0.34 (period-2
orbit), (f) ε = 0.68 (stable fixed point), (g) ε = 1.168 (quasi-periodic orbit), (h) ε = 1.18 (chaos), and (i) ε = 1.19 (chaos) on
the x− y plane. Different attractors denoted by red, blue and black dots were obtained by using appropriate initial values.

ε = 0.84, the self-excited period-2 orbit bifurcates into a stable fixed point through a reverse period-doubling
bifurcation as demonstrated in Fig. 4(f). At ε = 1.23, the map undergoes a Neimark-Sacker bifurcation
(where λ1 ≈ −0.5053, λ2,3 ≈ 0.4973± 0.8677j, and |λ2,3| ≈ 1), and the stable fixed point bifurcates into a
quasi-periodic attractor forming a circle as shown in Fig. 4(g). Then this quasi-periodic attractor becomes
a chaotic attractor before a high-periodic orbit is encountered, which disappears completely at ε = 1.273.
Again, as the bifurcation structure is symmetric along ε = 0, the bifurcation when ε decreases will not be
studied here.

3.2. No Fixed Point II

According to the study in [Jiang et al., 2016a], if a3 + a4 + a5 ̸= 0 and ∆ < 0, Eq. (5) has no solution,
and map (3) has no fixed point. Again, if there exists an attractor, it must be hidden since the basin of
attraction of this attractor does not contain any fixed point. Since a3 + a4 + a5 ̸= 0, we can choose ε, δ
and b such that ∆̄ ≥ 0, then Eq. (5) has real solutions. Thus, the augmented map (6) has fixed points. To
demonstrate this, we choose a1 = 0.6, a2 = a3 = 0, a4 = 0.49, a5 = −1, and a6 = −1.46, and the equations
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Fig. 3. (Colour online) (a) Bifurcation diagram of the augmented map (14) calculated for δ = 0.5 and b = 0.5 with respect
to ε by using random initial values taken from the small neighbour (< 0.001) of the fixed point. (b) Bifurcation and (c)
Lyapunov exponent diagrams of the map calculated for δ = 0.5 and b = 0.5 by using ε as the branching parameter and
random initial values taken from xk, yk, uk ∈ [−5, 5]. Stable solutions excluding stable fixed point, stable fixed points (SFP)
and unstable fixed points (UFP) are marked by black, red and blue dots, respectively. The regions that have no attractors
(NA), self-excited attractors (SA) and hidden attractors (HA) are divided by dashed lines. The largest Lyapunov exponent
(Le1), the second largest Lyapunov exponent (Le2) and the smallest Lyapunov exponent (Le3) are denoted by red, blue and
black dots, respectively.

of the map (NFIIe in [Jiang et al., 2016a]) can be written as{
xk+1 = yk,
yk+1 = 0.6xk + 0.49y2k − xkyk − 1.46.

(15)
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Fig. 4. (Colour online) Phase portraits of the augmented map (14) calculated for δ = 0.5, b = 0.5, (a) ε = 0 (chaos and
periodic-2 orbit), (b) ε = 0.16 (period-6 and period-2 orbits), (c) ε = 0.19 (period-36, period-6 and period-2 orbits), (d)
ε = 0.35 (period-2 orbit), (e) ε = 0.58 (period-10 and period-2 orbits), (f) ε = 0.85 (stable fixed point), (g) ε = 1.232 (quasi-
periodic orbit), (h) ε = 1.25 (chaos), and (i) ε = 1.272 (period-24 orbit) on the x − y plane. Different attractors denoted by
red, blue and black dots were obtained by using appropriate initial values.

Since a3+ a4 + a5 = −0.51 and ∆ = −2.8184, there is no fixed point, and the map has a chaotic attractor,
so this chaotic attractor is hidden.

By coupling the linear augmentation to the second equation of map (15), the following augmented map
can be obtained, xk+1 = yk,

yk+1 = 0.6xk + 0.49y2k − xkyk − 1.46 + εuk,
uk+1 = δuk − ε(yk − b).

(16)

To show the self-excited attractors of the augmented map (16), we repeated the same bifurcation
analysis and bifurcation and Lyapunov exponent diagrams in NFI for map (16) with respect to ε, and
presented them in Fig. 5. Once ε = 0, there is no coupling between the nonlinear and the linear maps.
So the state (x, y) of the augmented map (16) has a single chaotic attractor which is the same as the
attractor of the two-dimensional map (15), as demonstrated in Fig. 6(a). As can be seen from Fig. 5, as ε
increases from 0, there is a reverse period-doubling bifurcation cascade leading the chaotic attractor to the
period-2n orbits (where n = 1, 2, · · · ), which are presented in Figs. 6(b)-(d). It should be noted that in the
regions that no fixed point was found, their attractors are all hidden. With the increase of ε, ∆̄ is changed
from zero to positive, and there exists one unstable fixed point (UTP) and two unstable fixed points (UFP)



Controlling Hidden Dynamics and Multi-Stability of Two-Dimensional Maps 11

accordingly. From Fig. 5(a), we can observe that the period-2 orbits are changed from hidden to self-excited.
As ε increases further, a reverse period-doubling bifurcation of the fixed points occurs at ε = 0.76, and the
unstable fixed point is converted to a stable fixed point (SFP), as presented in Fig. 6(e). At ε = 1.172, the
augmented map (16) undergoes a Neimark-Sacker bifurcation (where λ1 ≈ −0.3138, λ2,3 ≈ 0.4072±0.9136j,
and |λ2,3| ≈ 1), and the stable fixed point bifurcates into a quasi-periodic attractor which forms a circle
(see Fig. 6(f)). Thereafter, tiny regimes of the high-periodic orbits and the chaotic attractors are observed,
which are depicted in Figs. 6(g)-(i). As the bifurcation of the augmented map (16) is symmetric along
ε = 0, the study of the bifurcation phenomenon when ε decreases from 0 is omitted here.

Fig. 5. (Colour online) (a) Bifurcation diagram of the augmented map (16) with respect to ε ∈ [−1.5, 1.5], calculated for
δ = 0.5, b = 0.5, and initial values randomly taken from the small neighbour (< 0.001) of the fixed points. (b) Bifurcation and
(c) Lyapunov exponent diagrams of the augmented map (16) with respect to ε ∈ [−1.5, 1.5], calculated for δ = 0.5, b = 0.5,
and initial values randomly taken from xk, yk, uk ∈ [−5, 5]. Stable solutions excluding the stable fixed point are denoted by
black dots, stable fixed points (SFP) and unstable fixed points (UFP) are marked by red and blue dots, respectively. The
regions that have no attractors (NA), self-excited attractors (SA), and hidden attractors (HA) are divided by dashed lines.
The largest Lyapunov exponent (Le1), the second largest Lyapunov exponent (Le2), and the smallest Lyapunov exponent
(Le3) are indicated by red, blue and black dots, respectively.
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Fig. 6. Phase portraits of the augmented map (16) calculated for δ = 0.5, b = 0.5, (a) ε = 0 (chaos) (b) ε = 0.13 (period-8
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4. Controlling two-dimensional maps with one stable fixed point via linear
augmentation

When a3 + a4 + a5 = 0 and a1 + a2 − 1 ̸= 0, Eq. (5) has a single solution y = − a6
a1+a2−1 , and map (3)

has a fixed point (x∗, y∗), where x∗ = y∗ = − a6
a1+a2−1 . If the fixed point (x∗, y∗) is stable, and the basins

of attraction for the other attractors do not contain any fixed point, these attractors are hidden. Since

a3 + a4 + a5 = 0, we can choose ε, δ, and b such that (a1 + a2 − 1− ε2

1−δ ) ̸= 0, and then Eq. (5) has a real
solution. Thus, the augmented map (6) has a single fixed point. To demonstrate the control efficiency of
the linear augmentation, we choose a1 = −0.84, a2 = a3 = 0, a4 = 0.15, a5 = −0.15, and a6 = −5.85, and
the equations of the map (SFIb in [Jiang et al., 2016a]) can be written as

{
xk+1 = yk,
yk+1 = −0.84xk + 0.15y2k − 0.15xkyk − 5.85.

(17)

Since a3 + a4 + a5 = 0 and a1 + a2 − 1 ̸= 0, map (17) has a single stable fixed point. According to [Jiang
et al., 2016a], there is also a coexisting chaotic attractor. By coupling the linear augmentation, map (17)
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can be rewritten as xk+1 = yk,
yk+1 = −0.84xk + 0.15y2k − 0.15xkyk − 5.85 + εuk,
uk+1 = δuk − ε(yk − b).

(18)

Fig. 7(a) presents the self-excited attractors of the augmented map (18) by randomly taking the initial
values from the small neighbour (< 0.001) of the fixed points. Figs. 7(b) and (c) show the bifurcation and
the Lyapunov exponent diagrams of the augment map (18) with respect to ε by randomly taking the initial
values from xk, yk, uk ∈ [−5, 5], respectively. In Figs. 7(b) and (c), stable solutions (except the stable fixed
points) are denoted by black dots, stable fixed points (SFP) and unstable fixed points (UFP) are marked
by red and blue dots, respectively. The regions that have no attractors (NA), self-excited attractors (SA),
and hidden attractors (HA) are divided by dashed lines.

When ε = 0, there is no coupling for the nonlinear map and the linear map. So the state (x, y) of the
augmented map displays a hidden chaotic attractor and a stable fixed point, which are the same as the
attractors of the two-dimensional map (17), as shown in Fig. 8(a). It can be seen from Fig. 7, as ε increases
from 0, there is a reverse period-doubling bifurcation cascade leading the chaotic attractor to the period-
3n orbits (where n = 1, 2, · · · ). The phase-portraits of the period-12, the period-6 and the period-3 orbits
recorded in this cascade are presented in Figs. 8(b)-(d). In particular, Fig. 8(b) displays the coexistence
of a period-18 orbit, a period-12 orbit and a stable fixed point at ε = 0.048, which are all hidden except
the stable fixed point, since the augmented map (18) has a single stable fixed point. With the increase of
ε, the period-3 orbit ceases to exist at ε = 0.221, and only the stable fixed point is left, as demonstrated
in Fig. 8(e). As ε increases further, the augmented map (18) undergoes a Neimark-Sacker bifurcation at
ε = 0.742 (where λ1 ≈ 0.2848, λ2,3 ≈ −0.0276 ± 0.9997j, and |λ2,3| ≈ 1), and the stable fixed point loses
its stability bifurcating into a quasi-periodic attractor which forms a circle (see Fig. 8(f)), and disappears
completely at ε = 0.752. Based on Fig. 7(a), we know that this quasi-periodic attractor and the chaotic
attractors are all self-excited. As the bifurcation structure is symmetric along ε = 0, the bifurcation of the
map when ε decreases from 0 will also not be repeated here.

5. Conclusion

This paper presented the generalisation of linear augmentation which was used for controlling continuous
dynamical systems to nonlinear maps, and investigated a class of two-dimensional maps containing hidden
attractors by using the generalised linear augmentation. Four examples of the maps were considered, and
the difference between these examples are as follows. For the first example, its hidden attractors were
controlled to the self-excited periodic orbits, then to the period-2 orbits, and finally to the stable fixed
points. For the second example, its hidden chaotic attractors were controlled to the self-excited periodic
orbits before vanishing, and the coexisting period-2 orbits were controlled to the stable fixed points. The
hidden attractors of the third example were controlled to the self-excited period-2 orbits, and then to
the stable fixed points. For the last example, its hidden chaotic attractors were controlled to the hidden
period-3 orbits before vanishing, and the coexisting stable fixed points bifurcated to the self-excited quasi-
periodic attractors. According to the coupling strength of linear augmentation, hidden attractors of the
map can be annihilated or converted to self-excited, and multi-stability of the map can be controlled to
bistable or monostable. Furthermore, we also checked all the cases for the two-dimensional maps containing
hidden attractors proposed in [Jiang et al., 2016a], and their hidden dynamics and multi-stability can be
controlled by choosing the parameters of the linear augmentation properly. Comparing with the other
methods for controlling hidden dynamics or multi-stability in nonlinear maps, the proposed method can
be easily implemented and does not require to change the parameters of the original map. It is general
and effective to explore self-excited attractors and hidden attractors of nonlinear maps by constructing the
traditional and new random bifurcation diagrams. The obtained results in the present work have broad
applications, which can be applied to different disciplines including but not limited to economics, biology,
and engineering. Our future work will focus on the investigation of linear augmentation for controlling high
dimensional maps and the nonlinear maps with extreme multi-stability.
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Fig. 7. (Colour online) (a) Bifurcation diagram of the augmented map (18) calculated for δ = 0.5 and b = 0.5 by using
ε ∈ [−0.9, 0.9] as the branching parameter and random initial values taken from the small neighbour (< 0.001) of the fixed
point. (b) Bifurcation and (c) Lyapunov exponent diagrams of the augmented map (18) with respect to ε calculated for δ = 0.5
and b = 0.5 and random initial values taken from xk, yk, uk ∈ [−5, 5]. Stable solutions (excluding stable fixed points), stable
fixed points (SFP) and unstable fixed points (UFP) are marked by black, red and blue dots, respectively. The regions that have
no attractors (NA), self-excited attractors (SA) and hidden attractors (HA) are divided by dashed lines. The largest Lyapunov
exponent (Le1), the second largest Lyapunov exponent (Le2) and the smallest Lyapunov exponent (Le3) are denoted by red,
blue and black dots, respectively.
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