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1. Introduction

Reaction-diffusion systems are models that are used widely to
model physical, chemical, biological and ecological processes. Real-
istic models of such processes are typically quite complicated and
can only be dealt with numerically. However qualitative under-
standing of the most important features benefits from analytical
approaches, even if that requires sacrfices in quantitative accuracy.
This may be achieved by using asymptotic methods and/or consid-
ering “toy models”.

One of the first and famous “toy” reaction-diffusion systems
is the model of propagation of an advantageous gene due to
Fisher [1] and Kolmogorov, Petrovsky and Piskunov [2]. We re-
fer to it as Fisher-KPP model. Another early archetypal reaction-
diffusion equation was a model of flame propagation considered by
Zeldovich and Frank-Kamenetsky [3], which later became known
also as Schlogl model [4] and Nagumo equation [5]. We refer to
it as ZFK-Nagumo equation. Both models have monotonic propa-
gating wavefront solutions of similar appearances, but each has its
own distinct mechanism. The Fisher-KPP model shows the transi-
tion from an unstable resting state to a stable resting state, while
the ZFK-Nagumo model shows the transition from one stable rest-
ing state to another stable resting state. Another qualitative differ-
ence between them is that ZFK-Nagumo model exhibits a unique,
up to a constant shift in time or space, propagating front solu-
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tion with a fixed speed and shape, whereas Fisher-KPP model has
a family of solutions with a continuous range of possible speeds.
The importance of these toy models goes well beyond providing
simplest examples. For instance, the ZFK-Nagumo equation can be
considered as the fast subsystem in describing pulse waves in the
FitzZHugh-Nagumo and similar systems using singular perturbation
techniques [6,7].

In the last decades, there has been ever increasing attention
to reaction-diffusion systems which have cross-diffusion of the
dynamic variables in addition or instead of their self-diffusion.
These occur in mathematical modeling of various natural phe-
nomena of biological, physical and chemical nature, such as mu-
tual taxis of interacting species, including e.g. spatial segrega-
tion phenomena between the competing species [8-10], cell types
[11] and human population groups [12], and prey-taxis of preda-
tors and evasion of predators by prey [13-22]; interaction of popu-
lations of organisms or cells with environment, including e.g. slime
mold aggregation [23], tumor angiogenesis [24], amoeboid locomo-
tion [25] and thermoregulation in honey bee colonies [26]; dissi-
pative mechanical processes such as stick-slip motion of geologi-
cal plates [27,28]; as well as the literal cross-diffusion of reacting
chemical species [29-31]. Furthermore, cross-diffusion terms may
appear “mathematically”, via adiabatic elimination of fast but dif-
fusing variables [9,10,21,32,33]. Interesting phenomena have been
described in such systems, where the cross-diffusion plays an es-
sential role alongside with the self-diffusion and reaction part of
the system. This includes e.g. pattern formation via Turing-type
instabilities [8-10,14,17,23,30,34,35] and propagation of waves of
various kinds [11,19,30,33,36,37]. Overall, the literature on cross-
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Fig. 1. (a) The direct numerical simulation of (2) the reaction cross-diffusion system with a no-flux boundary exhibits a propagating pulse with f(u) =u(u—-0.3)(1 —u)
and the values of parameters are € =0.001, D, =5 and D, = 0.5. (b) At small distance and time, the front of the pulse of reaction cross-diffusion system with a cubic

nonlinearity approach to two asymptotic states (uq, vy) and (uy, v,).

diffusion models is too vast for an exhaustive survey here; some
reviews of models and results with further references can be found
e.g. in [30,34,38-42].

The focus of this work is on systems with excitable reac-
tion kinetics, motivated by observations that including cross-
diffusion in addition or instead of self-diffusion led to new phe-
nomena [15,16,18,20,27,28]. For example, propagating waves in
reaction-cross-diffusion systems (RXD) with excitable reaction ki-
netics could penetrate each other on collision, a behavior that is
unusual for excitable systems with self-diffusion only.

The properties of solutions in RXD systems in the above cited
motivating works have been mostly studied numerically. An an-
alytical approach has been attempted in [16]. In that work, fast-
slow separation between reaction kinetics of two reacting species
is assumed. The fast subsystem has piecewise linear kinetics and
linear cross-diffusion, and admits exact analytical solutions in the
form of propagating fronts. Unlike the Fisher-KPP and ZFK-Nagumo
fronts, these front solutions are oscillatory. They can be matched
asymptotically with slow pieces to obtain complete asymptotic de-
scription of propagating pulses. The fast subsystem in this ap-
proach is different from the Fisher-KPP and ZFK-Nagumo equations
in two aspects: that it is two-component and it is piecewise lin-
ear, as opposed to the two “classical” toy models which are both
one-component and with polynomial nonlinearity of the kinetics.
At least two components are of course required to have cross-
diffusion.

In the present work, we investigate the possibility of having ex-
act front solutions in a cross-diffusion system with polynomial ki-
netics, unlike piecewise kinetics of Biktashev and Tsyganov [16].
Our leading idea is to postulate the solutions and deduce the gov-
erning equations from there. For simplicity and as the first step, we
only consider here monotonic fronts, similar to those found in the
ZFK-Nagumo equation. Thus it is clear for the outset that as far as
are motivating numerical observations are concerned, the present
study can only have a methodological value, as the waves observed
in excitable cross-diffusion systems typically have oscillatory fronts
and backs, as illustrated in Fig. 1.

The paper is organized as follows. The problem formulation is
given in Section 2. In Section 3, we consider the possibilities of
chosing polynomial nonlinearity for the reaction term. In Section 4,
we discuss the simplest aspects of stability of possible solutions.
Then we show the correspondent polynomial function suitable for
solutions of the wavefront type. These are presented in Section 5.
We demonstrate the possibility to have a wavefront solution of
the system as generalisation for Fisher-KPP in Section 6 and an-

alyze the choices of the parameters needed to imitate Fisher-KPP
model in Section 7. We return to the question of stability, now for
the selected wavefront solution, in Section 8. Results of numerical
simulation are presented in Section 9. These simulations show that
the wavefronts are unstable. These instabilities are investigated in
Section 10 and the paper is concluded by discussion in Section 11.

2. Problem formulation

Let us consider the reaction-diffusion system in the form

U = f(u) — v+ Duylxx + Dyulixx,
Vr = €(U — V) + Dyyllxx + DypUss, (1)
where

fw) =u@u-a)(1-u),

and the parameters are restricted by 0 < € < 1, o € (0, 1/2).

The system (1) is well studied as a reaction-self-diffusion sys-
tem, with Dy, > 0, Dyy > 0 and Dy, = Dy, = 0. If Dy, # 0 and/or
Dy, # 0, we have reaction-cross-diffusion system. Regarding the
signs of the diffusion coefficients, one common restriction is that
their matrix must be positively semi-definite, so in particular,
Dyy > 0, Dyy > 0. Regarding the signs of the cross-diffusion coeffi-
cients, all sorts of combinations are considered in literature. One of
the ways the cross-diffusion terms as in (1) may appear in appli-
cations is via linearization of terms describing mutual taxis of dy-
namic variables, which may describe populations and/or environ-
mental factors affecting populations. For instance, if u represents a
population which diffuses and moves towards attractant v, which
may be an environmental factor or a prey population and which
itself only passively diffuses, then D,, < 0 and Dy, =0, as e.g.
in [14,19,23,35,36]. A similar combination (up to a change of sign of
one of the dynamic variables) occurs in description of interaction
of geological plates [27,28]. If u and v represent competing species
which seek to avoid each other, this leads to Dy, > 0, Dyy > O,
as in [8,9]. For predator-prey relationship, on the contrary, one
may expect pursuit-evasion behavior, that is, positive prey taxis
for predators, i.e. predators seeking prey and prey escaping from
predators, so if u component represents prey population and v rep-
resents predator population, this means that Dy, > 0 and Dy, < O,
as in [13,14,17,19,22]. Well-posedness of an initial or boundary-
value problem for this system is not self-evident: examples are
known that systems with cross-diffusion are capable of produc-
ing solutions blowing up in final time, see e.g. [40]. Some well-
posedness results have been established, see e.g. [22,43], however
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[43] requires strong ellipticity of the diffusion matrix and [22] re-
quires strong stability properties of the reaction part of the system,
neither of which is true in the case we consider. We work under
assumption that solutions exist and behave “reasonably”; some ev-
idence for that, even if not rigorous, is provided by the fact that the
solutions can be simulated numerically. Clearly the well-posedness
for the particular variants of the system of the form (1) we con-
sider here requires separate study. It is beyond the scope of this
paper.

If € =0, v = 0, the self-diffusion system degenerates to the ZFK-
Nagumo equation [3-5] for u(x, t), with an exact propagating front
solution. A piecewise linear N-shaped variant of f{u) also leads to
exact propagating front solution [5]. Qualitative properties of this
equation, including existence of propagating front solutions, persist
for a generic N-shape, and for 0 < € « 1, these solutions can form
a basis of asymptotic description, see for instance [6,7].

A similar asymptotic approach for 0 < € « 1 was considered
for the cross-diffusion case of (1) in [16]. To make the problem
analytically tractable, the consideration there was restricted to a
piecewise linear N-shaped function flu) and pure cross-diffusion,
with self-diffion totally absent, Dy, = Dy = 0.

In this paper we consider the same system as was dealt with in
[16], namely

Ue
Ut

f) — v+ Dyvx,
€ (U — V) — Dyliyy, (2)

and intend to extend the methodology of Tyson and Keener [6] and
Biktashev and Tsyganov [16] for a polynomial function flu). In ab-
sence of self-diffusion terms and in consideration of the chosen
signs of the cross-diffusion coefficients, we abbreviate Dy, = D,
al‘ld Duy = —Dy.

We start by recapitulation of the approach of Biktashev and
Tsyganov [16] to set the scene and introduce notation and termi-
nology. Direct numerical simulations of (2) with cubic f{u) pro-
duces, in particular, solutions in the form of propagating pulses of
a fixed shape, as illustrated in Fig. 1. For small €, the width of the
pulse grows as O(e~!). This means that in the limit € — 0, the
wave front and the wave back of the pulse go apart. Our hypothe-
sis is that for very small €, the system we are going to construct,
will behave similarly to those discussed in [6] and [16]. Namely,
we expect that a typical propagating wave solution will have the
form of long stretches where u(x, t) remains near an instant equi-
librium of the fast equation, satisfying f{u) ~ v, which are inter-
spersed by fast transitions from one such quasi-equibrium to an-
other. Any such transition is approximated by an € =0 solution
in the form of a wave which propagates with constant speed and
shape and, far behind and far ahead, approaches constants, corre-
sponding to the above mentioned quasi-equilibria. In particular, a
pulse solution such as the one shown in Fig. 1, includes two such
fast transitions, a front and a back. Both the front and back repre-
sent transitions between two distinct equilibrium points, say (uq,
vq) and (uy, v).

In the limit € — 0 the system (2) turns into

U = f(u) — v+ Dy,
Ve = —Dyllyy. (3)

The two equilibria (uq, v1) and (uy, v,), the asymptotic states of the
wave front and the wave back, satisfy f(u;) = v;. Let @i(§) = u(x, t)
and D(§) =v(x,t) be a propagating wave solution of (3), where
& =x—ct and ¢ > 0. Substituting this into the system (3) yields

a2 di L,
D,,d—sﬁc%ﬂ(u)—v:o, (4)
- .
p, UL Ay (5)

a2 @
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As the front asymptotically approaches distinct steady states, we
have

fi(+o0) =12, D(xo0) =11 (6)

dil d
g (£00) = g (ko) =0. 7)

Integrating (5) with respect to & gives

Dy .
- ?“u’ = v, = const. (8)

When £ — 4+ oo, we obtain from (8) that v, = #/; = 7, and then
Eq. (4) turns into

fuip) =v.. (9)

We have from Eq. (6) that ¢i’ = D,ii”, hence 7" = D, il /c. Substi-
tuting this into (5) yields

DyD, " + (Cz - Du)ﬁ/ + C(f(ﬁ) - U*) =0,

ﬁ(:l:OO) = U1, (10)

where I is a wave solution for the reaction cross-diffusion system
(3).

This differential equation is deduced by applying the wave
variable on the reaction-cross-diffusion system (3). Biktashev and
Tsyganov [16] have replaced f(il) by a piecewise linear function.
The fronts that are obtained from the piecewise linear function are
oscillatory fronts and are similar to those seen in numerical sim-
ulations with cubic f(i1). We seek to consider a polynomial func-
tion for f(ii) instead of piecewise linear function, which would still
yield explicit analytical solutions for propagating fronts.

3. Selecting the class of the polynomial reaction term

We aim to identify polynomial functions f(i1) which would
make the differential Eq. (10) analytically solvable. First we write
the Eq. (10) as

A" + Bl = f(i1), (11)
where

2 A ~
A= DD g DC f({i) = f(i) - V..

We apply a reduction of order substitution,

%’ =y(11). (12)
Substituting (12) into (11) gives
y[AY?+yy") +B] = f(@). (13)

We aim that function f(i) is a polynomial. This can be assured if
y(1) is a polynomial.

_ Let us find the possible degree of the polynomials y(ii) and
f(i). Let P, be the set of polynomials of degree n. If y € Py, then

Y[AY? +yy") +B] = f(@) € Pan_a.

If n=1 then f(ﬁ) is linear, which is not of interest for us, as this
cannot produce two distinct solutions for (9). If n = 2 then f(i) is
quartic. This quartic polynomial is comparable to cubic, in that it
can describe bistability, if it has at least three simple roots. There-
fore, y € P, f € P4 is the simplest suitable choice.

The travelling wave differential equation for ZFK-Nagumo can
be solved analytically by a reduction of order [5]. Incidentally, in
that solution y (i) is also quadratic. It is convenient to factorise the
quadratic polynomial y (i),

y(@) = k(i —g)(@-h), (14)
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Fig. 2. The solution @i(£¢) given by (1) forg=1, h=0, k=0.3 and C=0.

for some constants k # 0, g and h. Note that due to (6), (7) and
(12), we have {uqy,uy} = {g, h}.

From (12) and (14), we obtain
" g+hex

== =k C)(g—h), 15

1) = 5o x =k +0)(g—h) (15)
where C is an arbitrary constant. The front wave described by
(15) is illustrated in Fig. 2.

Once @i(£) is known, we can find (§) using (8), as

Pae) (16)

Obviously, the profile of component ¥ represents not a wave front
but a pulse. In accordance with (7), we have

() =v.+

D(£o0) = ,.
4. On the stability of the front solutions: Continuous spectrum

The stability of any front solution we seek shall depend, in par-
ticular, on the stability of its asymptotic spatially uniform steady
states, that is, on the continuous spectrium. This, unlike the dis-
crete spectrum, is easily done analytically. The system (3) can be
written in the matrix form

w; = F(w) + Dwyy,

where

e[ o [, 2]
Suppose w* = [u*, v*]T is an equilibrium, i.e. F(w*) =0. We per-
turb this point,

W=Ww'+W,

and in the linear approximation we have

W = F/(W*)W + DWyy, (17)

where F' = [dF/dw] is the Jacobian matrix. By separation of vari-
ables, particular solutions of (17) bounded in space can be written
as linear combinations of

W(x, t) = M [C1G], e R, A, G, G e C. (18)

Substituting (18) in (17), gives and eigenvalue problem

1 (1% 1 _ 42
[ 1gerle]-o[4] (1)
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where f' = df/0u, and the eigenvalues are

A= %[f’(u*) +/(F/(u))? — 42D, 4M4DuDy], (20)

see Fig. 3. Therefore, if f(u*) is positive, then Re(1;2) >0 and
the steady state (u*, v*) is unstable, and if f(u*) is negative then
Re (A1,2) <0 for all u # 0, and the state is stable in linear approx-
imation. Of course, even if both asymptotic states are stable, the
stability of the whole front solution will still depend on the dis-
crete spectrum; this is outside our scope.

5. Fixing the polynomial reaction term
In this section we will find the particular form of the polyno-

mial function f(@), as well as the parameters A and B that satisfy
(13). To achieve this, we substitute (14) into (13), which gives

k(i —g)(@ — h) {A[kz (20— g— )’ + 2k (@ - g)(a - h)] + B}

= f@). (21)
We take our quartic polynomial f(i) in the following form:
F@@) = o (@ —uy) (@ — up) (@ — us) (8 — uy) (22)

where {uy,u,} = {g, h} and without loss of generality o = +1; a
different scaling of f would just result in a change of the spatial
and temporal scale of the solutions.

By substituting (22) into (21), we obtain

k(i — g) (il — h){A[kZ(za_g— h)’ + 2k% (0 — g) (i - h)] +B}
= o (0 —up)(l—up) (@ —u3)(ld—uyg). (23)

By equating like terms we obtain

na1 . 6k*DyDy __ .
[a%]: == =-0;

R 3
[u3] . 12k Dulcju(ngh) ——0 (ul 4+ Uy + U3+ u4);

A1 . k3DyDy (7g*+22gh+7h?) k(c2—Dy)
[a°] : . + =

= —0 (U1lUy + UylUz + Uylig + Upliz + Uplig + Uslly);  (24)

[ﬁ]] . k3DyDy (g+h)(g>+10gh+h?) _ k(g+h)(—c2+Dy)

C c
= —0 (U UaU3 + UqUaly + Uglsly + UpUslly);
gkh(c2—Dy)
+ —

[aol . k3ghDuDv(gcz+4gh+h2) — —oUujUyUsUy.

This imposes five constraints onto a set of 11 parameters k, g, h,
o, Dy, Dy, uy, uy, usz, ug and c; hence we can describe all solutions
of this system by assigning six of these parameters as free, and
then finding the remaining five parameters as dependent on these
six free parameters. We restrict consideration to real values of pa-
rameters in both groups, except possibly the roots us4. Moreover,
as parameters g and h fix the positions of the pre- and post-front
resting states of the solution (15), it convenient to have these two
among the free parameters; note also that we have already con-
strained o to =+ 1.

6. Possible types of solutions

As discussed in the Introduction, this study is not motivated by
any real-world applications leading to specific examples of reac-
tion cross-diffusion systems. Rather, we are interested in theoret-
ical possibilities achievable within a certain class of models. With
this in mind, we want to see if we can make the reaction cross-
diffusion system with quartic polynomial to look like generaliza-
tions, in one sense or another, of other well-known models, from
the much better studied class of systems with self-diffusion. We
shall say that we “imitate” those models. The models that we want
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Fig. 3. The continuous spectrium of an equilibrium, for (a) f' = f'(u*) <0, (b) f' = f’(u*) > 0, according to (20).

to imitate are Fisher-KPP and ZFK-Nagumo. Those models exhibit
propagating front solutions with asymptotics

u(é - +o0) =0, U - —o0) =1.

If we identify the scalar field u here with the namesake first dy-
namic variable in our system, then this property can be achieved
by letting g=0and h=1 in (15).

We found in the previous section that the stability of a spa-
tially uniform steady state depends on the sign of the derivative of
the quartic polynomial at that state. In terms of stability, to imitate
the ZFK-Nagumo wave, we would need a stable pre-front state and
a stable post-front state, and consequently an unstable equilibrium
in between. To imitate the Fisher-KPP wave front we would need to
have an unstable pre-front state and a stable post-front state, with
either no or two equilibria in between. In this respect, the possibil-
ities for front waves from the reaction cross-diffusion system with
quartic polynomial are constraint by the following proposition.

Proposition 1. If the boundary-value problem (10) with the nonlin-
earity defined by (22) and (23) has a travelling wave front solution of
the form (15), then the two asymptotic resting states {g, h} are either
the two outer roots of the quartic polynomial f(il), or its two inner
roots.

Proof. From (23), among the roots of f(ii) we have {u,up} =
{g. h}, and the other two roots, us3 4, are the roots of the quadratic
in the square brackets, which is equivalent to

2 2 2
ﬁ2—(g+h)ﬁ+g +4gh+fé + B/(Ak?) -0

Hence 1 (us +ug) = 1(g+h). If us 4 € R, u3 # uy, this implies that
either g and h are two inner roots while u; and u4 are the two
outer roots, or vice versa. If uz = uy the g and h are the two outer
roots out of the three, and if u3 4 ¢ R, then g and h the only two,
therefore automatically the outer, roots. O

From Proposition 1, we conclude that of the resting states of
the front wave solution, only one can be stable but not both. That
means, in the considered reaction cross-diffusion system with the
quartic polynomial, it is impossible to imitate ZFK-Nagumo wave
in terms of the stability of the resting states, but there is a chance
to imitate Fisher-KPP wave. We note, however, that for any given
set of parameters of the model, the speed of the front solution is
in any case uniquely fixed by (24), see also (28) below, and this
feature is characteristic of ZFK-Nagumo fronts rather than Fisher-
KPP fronts.

Table 1

Examining possible choices to imitate Fisher-KPP
front. The symbols () and (\,) mean that x(£) is
an increasing or decreasing function, respectively.

Choices Results
g h k X u(+o0)  u(—o0)
[ 1 0 + »~ O 1
1 1 0 (- N\ 1 0
m o 1 () N\ 0 1
v o0 1 - 1 0

7. Choice of signs to imitate Fisher-KPP

We have found that there is a possibility to imitate Fisher-KPP
front wave, in terms of the stability of the pre-front and post-front
equilibria, by reaction cross-diffusion system with quartic polyno-
mial nonlinearity. In this section, we will turn this possibility into
reality, by identifying appropriate parameter choices.

Firstly, let us make sure that solution given by (15) satisfies the

asymptotic boundary conditions of Fisher-KPP front wave,
i(—o00) = 1. (25)
In Section 5 we found that six parameters in (24) can be arbitrary
assigned. We choose k, g and h as three of such free parameters,
in order to satisfy (25). We have already committed ourselves to
the choice {g, h} = {0, 1}, and we require k # 0. Table 1 lists the
resulting four a priori possibilities.

Clearly, choices that comply with (25) are (I) and (III). In both
cases, Eq. (14) gives

y(@) = ki(d - 1),

fi(+00) =0,

k> 0.
(26)

The quartic polynomial f(il) posited in (22) allows o =1 or
o = —1. Remember that the equation for the coefficients at ii* in
(24) states

6k*D,D, = —oc. (27)

If 0 =1 then the solution (15) will not satisfy the condition (25):
since Dy, Dy and c are positive, equation (27) implies k < 0, which
is inconsistent with (26).

So, we must choose o = —1, which together with {g h}=
{uq,uy} ={0, 1} turns the system (24) to

y (@) =2k@-1), y"@{) =2k,

6k°DuDy _
C - k]
12k3D,D
%=1+u3+u4,
k3D,D k3D,D —c2+D
6kDy v Dy Ot Y = U3+ Ug + Usll,

C c C
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k3D,D, k —c2 4D, -

C C

0=0.

Previously, we let variables g, h and k be free parameters. We now
add to that list D, and D,. The rest of the variables will be depen-
dent on those as follows:

c=6k’D,D,, (28)
u; =1 - 1,/3+36p, (29)
ug =3 +1./3+36p. (30)
_ k(D —c?)
== (31)
where
_ k(Dy —c?) (32)
=

The quartic polynomial now has the form
F@) = —a(@ - 1)(@ - u3) (@ — ug), (33)

where u3 and u4 are given by (29) and (30).
We expect that, in principle, if the quartic polynomial is substi-
tuted into the system (3), i.e.

U= —u(w—1)(u—u3)(u—uy) +V, —V+ Dylsy,
Vy = —Duuxx, (34)

then the solution of (34) is a front wave which imitates the front
wave in Fisher-KPP with respects to the stability of the pre-front
and post-front resting states.

The choices of values of the given parameters change the values
of the roots u3 and uy, which leads to one of the following cases.

case I If p e (%,—0—00), then us 4 €e R\ [0, 1] and the restings
states {0, 1} are inner roots.

case II: If p = %, then {us, u4} = {0, 1} and the resting states {0,
1} are the only two roots, both double.

case Ill: If p € (=35, ¢). then us4 € (0, 1), u3 # uy, and the
resting states {0, 1} are outer of four roots.

case IV: If p = — 1, then u3 = uy = 1, and the resting states {0,
1} are outer of three roots.

case V: If pe (—oo,—%), then u; 4 € C\R and the resting
states {0, 1} are the only two roots.

Remember that by virtue of (32) and (28), this means that the
location of the roots u3 4 is determined by the three parameters k,
Dy and Dy.

8. Stability of the resting states

Previously, we have linearised the system (3) for general func-
tion flu) about an equilibrium and derived the formula of the
eigenvalues (20). Substituting the quartic polynomial function
(33) into the function of the eigenvalue yields that, the eigenval-
ues of the equilibrium u; = 0 are given by

)\1‘2 = 1 [U3U4 + \/U32U42 — 4H2Du — 4,“«4DuDv] s (35)

2
while the eigenvalues of the equilibrium u, =1 are given by

Mz = 5[~ - ) (1~ = (T~ )21~ us)? ~ 427D, — 4uiD,D, |
(36)
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Table 2
The stability of the resting states in the front wave depends on the choice of
the roots of the quartic polynomial.

Choice of roots Pre-front  Post-front ~ Matching with Fisher-KPP
Case I: Inner stable unstable X
Case III: Outer unstable stable J
Case IV: Double unstable stable J
Case V: Complex  unstable stable Vv

In the “inner roots” case I, the two roots u3 and u4 have dif-
ferent signs, and are to opposite sides of 1. Thus, from (35) and
(36) we deduce that the pre-front u; =0 is stable and the post-
front u, = 1 is unstable.

The similarity between Fisher-KPP and inner roots case is that
both systems have two consecutive roots of f(u) that coincide with
the resting states of a wave front. The difference between them is
that the pre-front in Fisher-KPP is unstable and the post-front is
stable, while in inner roots case it is the other way round, the pre-
front is stable and the post-front is unstable.

In the “outer roots” cases IIl and IV as well as “the only two
roots” V, wee see from (35) and (36) that the pre-front u; =0 is
unstable and the post-front u; = 1 is stable. This matches the sta-
bility of the equilibria in Fisher-KPP model.

The marginal II gives Re (A12) = 0 so the stability of the resting
states cannot be established in linear approximation, and requires
separate consideration. We leave this outside the scope of this pa-
per.

Table 2 sums up the results of above analysis.

In the next section we will show the result of the numerical
simulation for each case.

9. Numerical simulations
9.1. General settings

We simulate numerically the reaction cross-diffusion system

ur = f(u,v) 4+ Dyvx,
Ve = —Dyliyy, (37)

for —a <x <b and t > 0, where the kinetic term f(u, v) is quartic
polynomial

fluv) =—u(@u—1)u—-us)(u—us) —v,

and u3 and u4 are dependent parameters defined in (29) and (30).
We apply no-flux boundary conditions,

Uy(—a,t) = uy(b, t) = vy(—a,t) = vx(b,t) =0,

and the initial condition taken from the analytical solution, that
is

u(x,0) =1i(x), v(x,0) = D(x),

where i and ¥ are defined in (15) and (16).

We will show the results of the simulation for cases I, III, IV
and V identified above. For each case, we pick an appropriate set of
values of the free parameters to satisfy the correspoinding condi-
tions. Table 3 lists the parameter values used and the correspond-
ing equilibria. Note that the value of D, for Case IV in the table is
given to three decimal places; in fact it was determined from the
exact condition that p = —1/12, which implies

_ 24k%D,
" 72k8D2 ¢
The numerical simulations are done using finite differences,

fully explicit first order for time and second order central for space.
The space discretization interval is [—a, b] = [-37.5,150] and the

(38)
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Table 3
Parameters and equilibria in numerical simulations.
Case 1 1l v \
Figure(s) 4,10, 11 8 6,9 7
k 1 1 1 1
Dy 1.25 0.2 2917 0.4
D, 0.1 0.35 0.1 1.5
Uq 0 0 0 0
f(uy) —-0.75 0.11 0.25 3.656
U 1 1 1 1
f(up) 0.75 -0.11 -025 —3.656
Us 1.5 0.874 0.5 0.5 + 1.845i
f(us) -15 0.083 0
Uy -0.5 0.126 0.5 0.5 — 1.845i
f(us) 1.5 -0.083 0

discretisation steps are Ax =0.15 and At =4 x 10-% unless other-
wise stated. The choice of the discretization steps is motivated by
the numerical stability and accuracy analysis of the scheme, which
will be presented later.

9.2. The inner roots case

As shown above, in this case the pre-front equilibrium u; =0 is
stable, while the post-front equilibrium u, =1 is unstable. Hence
we expect in simulations that the post-front state evolves to an-
other, stable equilibrium. This is indeed what happens in simula-
tions, see Fig. 4.

For the parameters used in this simulations, the unstable equi-
librium u; =1 is surrounded by the pre-front equilibrium u; =0
and the upper stable equilibrium u4 = 1.5. Thus in this case we
expect the post-front state attracted to either of these two stable
equilibria.

In fact, the solution curiously does both, i.e. is first attracted
to the upper stable equilibrium, u4 = 1.5, but does not stay there
for long and departs for the lower stable equilibrium, u; = 0. As
a result, a pulse-shaped solution develops, with the pre-front and
post-front states at u; =0, and the plateau state near ug = 1.5.
This phenomenology is similar to that observed in [16] for ex-
citable (i.e. one stable equilibrium) cross-diffusion systems, inclu-
iding oscillatory front and oscillatory back, both trigger waves from
one stable equilibrium to another — and is of course very far from
the initial condition which is a monotonic front from a stable equi-
librium to an unstable one.

9.3. The result of simulation of distinct real roots, double roots and
complex roots

The behavior of the propagating wave front for the distinct real
roots case and double roots case is quite similar. The simulation
shows that the numerical propagating wave remains close to the
analytical wave for a period of time. Then an oscillation appears
near the onset of the front. After that the oscillation grows as the
time evolves, which causes the numerical solution to break up. The
results of the simulation of distinct real roots case is shown in
Fig. 5 while the results of double roots case is shown in Fig. 6.

For complex roots case, we observe that the instability occurs
earlier than all previous cases (inner roots case, outer roots case
and double roots case). Moreover, the numerical front does not last
as long as those front waves in the other cases, see Fig. 7.

10. The instability of the solution

In the previous sections we have shown the results of direct nu-
merical simulation on reaction cross-diffusion system (37) where
the initial condition is an exact analytical wave solution. This ana-
lytical solution presents a monotonic wave front.
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Table 4

Comparison between the theoretical
instability time Tj,, and time Tyeqy to
break-up in numerics, in the four se-
lected simulations.

Case Tinst Tbreak
Inner roots 43713 30
Outer roots 7805.9 112
Double roots 18732 52

Complex roots  910.7 7

We have considered four cases, corresponding to different posi-
tions of the roots of the quartic polynomial. In all four cases con-
sidered, there are oscillations which appear near the onset of the
wave front. These oscillations grow as time evolves, which obvi-
ously means that the propagating wave front is not stable. We now
would like to address the question whether this was due to dy-
namical instability in the underlying partial differential equations,
or numerical instability, i.e. artefact of the numerical scheme used.

Our plan on how to distinguish numerical instability from the
numerical is as follows. If the instability is numerical, then its fea-
tures shall significantly depend on details of the numerical scheme.
For instance, the oscillations could be reduced by changing the dis-
cretisation steps. Conversely, the dynamical instability the behavior
of the solution may be affected by refining the discretisation steps
only slightly, if the simulation is “resolved”.

A crude theoretical analysis of numerical stability of the scheme
we use can be achieved by removing the kinetic terms from system
(37). In this way, we obtain the following

U = Dy,
Vr = —Dylixx.

For the forward-time, central-space discretization on the grid x
AXZ, t € AtZ, using the standard von Neumann stability analy-
sis, for the Fourier component (u, v)xel% we find the amplification
factor v, such that

[v(q)|> =1+ 16D,D, At2Ax~* sin® (qAx/2), (39)

which means that the numerical scheme is unstable as the con-
dition |v| < 1 will not be satisfied, in principle, for any choice of
discretization steps.

However, let us look at the quantitative aspect of the numerical
instability. Namely, let us estimate the time it takes for the numer-
ical instability to grow to macroscopic value. Supposing, for a crude
estimate, that the seed of the instability comes from round-off er-
rors, so is of the order of machine epsilon ¢, and it will become
significant when it grows to an order of 1. Then, with the amplifi-
cation factor v(q), the number of time steps required for that will
be at least In|1/¢|/max ¢(In|v(q)|). Taking the leading order approx-
imation for the In|v(q)| in (39), we get the time interval required
for the instability to grow to macroscopic size as

In |e*1 | Ax?
8AtD,D,

By substituting the values of parameters we used in our simula-
tion, we see that in all cases Tj,, is much bigger than the time
Tpreak taken for the numerical waves to break up. Table 4 clarifies
more by numbers. We took & = 10-15,

This comparison suggests that even though the numerical
scheme is formally unstable, this instability cannot affect the nu-
merical solutions on the time intervals involved. This means that
there is no need to look for more sophisticated, stable methods to
simulate the solutions presented. This also means that the numer-
ical instability cannot explain the behavior observed in our numer-
ics, and we must consider the possibility of a dynamical instability.

A
inst ~
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Fig. 4. The numerical simulation of reaction cross-diffusion system with quartic polynomial where the resting states of the front coincides with the inner roots of the
quartic. The values of parameters in this simulations are D, = 1.25, D, = 0.1 and k = 1. Here and in the subsequent figures, u* = u*(x,t), ¥ = v*(x,t) is the numerical
solution, whereas i = {i(x — ct), I = ¥(x — ct) is the analytical solution used as the initial condition for the numerics.

So, according to our plan, we have verified the plausibility of
a dynamical instability by repeating the simultions at different
discretization steps. We have repeated each of the simulations,
once with bigger discretization steps and once with smaller dis-
cretization steps. We have found that the behavior of the solu-
tion does not significantly change even after we refine the dis-

cretisation. More precisely, once the oscillations appear, we have
found the growth rate of the oscillation is the same in all dif-
ferent discretisation steps. Fig. 8 illustrates that for the “outer
roots” case: even though the moment of onset of the instabil-
ity depends on the discretization, its growth rate is not affected
by it.
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Fig. 5. The numerical simulation of reaction cross-diffusion system with quartic polynomial where the resting states of the front coincides with the outer roots of the

quartic. The values of parameters in this simulations are D, = 0.2, D, =0.35 and k = 1.

The same thing happened in double roots case and complex
roots case. Change of discretisation steps changes the time of the
onset of the instability, but not the growth rate of the instability,
as can be seen in Figs. 9 and 10.

For the “inner roots” case, the initial condition is a front of in-
vasion of an unstable state into a stable state, and the numerical

simulation show behavior different from other cases: now the in-
stability appears, at first, as the elevation of the u-field right be-
hind the front. So we observe how this instability changes with
different discretization steps. The result is shown in Fig. 11. We
see, again, that the time of the onset of the instability does de-
pend on the discretization steps, but the growth rate remains the
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Fig. 6. The numerical simulation of reaction cross-diffusion system with quartic polynomial where there are double roots and the resting states are simple roots. The values
of parameters in these simulations are D, = 0.1 and k = 1 where D, is given in the formula (38).

same. The subsequent behavior of the solution also remains quali-
tatively similar, involving formation of a propagating pulse with a
plateau and a back — even though shifted in time and differing in
detail, which is of course only expectable for a solution affected by
a dynamical instability.

10

We can conclude that insofar as it may be established by nu-
merical simulations, the analytical front solutions are dynamically
unstable: they yield to solutions with oscillatory fronts, which are
beyond the main scope of the current paper and requires separate
study.
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Fig. 7. The numerical simulation of reaction cross-diffusion system with quartic polynomial where there are two complex conjugate roots. The values of parameters in
these simulations are D, = 0.4, D, = 1.5 and k = 1. The instability make the numerical solution run away at t = 8.
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Fig. 8. The dynamical instability appears for outer roots case. The behavior of the solution does not change even after the steps are refined. The values of parameters are
k=1, D, =02 and D, = 0.35. The discretisation is: (a) Ax = 0.25, At =4 x 107°; (b) Ax =0.15, At =4 x 1076; (c) Ax=0.05, At =1x 107,

11. Discussion

The main purpose of the paper, which has been successfully
achieved, was to demonstrate the feasibility, and provide an ex-
ample, of constructing a PDE model of a certain class which has
desirable analytical solutions. Regardless of the utility of the par-

1

ticular example we have considered, we hope that the technique
we used may be helpful in other problems similarly formulated.
More specifically, our aim has been a reaction-cross-diffusion
system with a polynomial nonlinearity, which would have solu-
tions in the form of a propagating front. We have found that to
achieve that, the nonlinearity must be at least quartic, in which
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Fig. 9. The dynamical instability appears for double roots case. Each column represents the front wave for different discretisation steps. The behavior of the solution does
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Fig. 10. The dynamical instability appears for complex roots case. Each column represents the front wave for different discretisation steps. The behavior of the solution
does not change even if the steps are refined. The values of parameters are k = 1, D, = 1.25 and D, = 0.1. The discretisation is: (a) Ax = 0.25, At =4 x 1075; (b) Ax = 0.15,
At =4 x107%; (c) Ax=0.05, At =1x 1077,

case the system may indeed have solutions in the form of mono-

tonic propagating fronts. The situation is similar to ZFK-Nagumo
model rather than Fisher-KPP model in that for given parame-
ters of the system, the speed and shape of the front solution are
uniquely defined.

We have further established that in terms of stability of pre-

stable).

12

front and post-front equilibria, the proposed model may be likened
to the Fisher-KPP system (one of the equilibria is stable and
the other unstable) but not ZFK-Nagumo (with both equilibria
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Fig. 11. The dynamical instability appears for inner roots case. Each column represents the front wave for different discretisation steps. The behavior of the solution does
not change even the steps are refined. The values of parameters are k=1, D, = 1.25 and D, = 0.1. The discretisation is: (a) Ax =0.25, At =4 x 10~>; (b) Ax =0.15,

At =4 x107%; (c) Ax=0.05, At =1x 1077,

The quartic nonlinearity can be of various diffierent classes de-
pending on behavior of its four roots: when the asymptotic equi-
libria are two inner roots, two outer roots out of four, two outer
roots out of three, the only two simple roots (with the other two
being complex) and two double roots.

We have made simulations of selected examples of the pro-
posed model belonging to different algebraic classes, and in all
of these examples it happened that the analytical solutions are
dynamically unstable, with some of the instabilities distinct from
those related to the unstable pre-front equilibrium. Since the con-
clusion about instability of the solutions is based only on direct

13

numerical simulations of arbitrarily selected examples, it requires
further investigation, both theoretically and numerically, perhaps
including continuation of propagating wave solutions rather than
just direct numerical simulations, and wider parametric searches.
A good survey of the relevant theory can be found in [44], and ex-
amples of numerical tools suitable for this task are AUTO [45] and
WAVETRAIN [46].

Returning to feasibility of proposed PDE system as a model of
real processes, we recall that KPP-Fisher is a viable model despite
the unstable pre-front state. As it is well known, there are two
inter-related reasons for that. One reason is the positivity of the
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equation: non-negative initial conditions guarantee that the solu-
tion will remain non-negative at all times. Since the linearly unsta-
ble pre-front state is 0, i.e. at the border of the domain invariant
under the system, this motivates restriction on the class of per-
turbations considered to those that would respect the positivity.
The other reason is also related to the fact that the pre-front state
is 0, but is of physical rather than mathematical nature: it moti-
vates applications in which the dynamic field represent an essen-
tially non-negative quantity with the meaning of a concentration
of some kind; specifically, in the seminal papers [1,2] it was pop-
ulation density. With that physical sense of the dynamic field, the
magnitude of physically feasible perturbations related to fluctua-
tions must decay as the system gets closer to the pre-front state,
and exactly vanish at that state. This motivates consideration of so-
lutions in specially constructed functional spaces that take this is-
sue into account, in which the solution may be stable — despite
the formal instability of the pre-front state in the sense of generic
dynamical systems theory. In this context, the possibility of, and,
as numerics show, preference for, the non-monotonic fronts is only
possible because the class of model we consider does not possess
the positivity property. Here we note that the models with linear
cross-diffusion cannot have that property in principle, see e.g. [31].

The above consideration motivates possible continuation of the
present work:

o ZFK-Nagumo type fronts, i.e. monotonic fronts with stable pre-
front and stable post-front states, may be sought for in models
with polynomial nonlinearity of degrees higher than four;
Reasonably stable monotonic fronts switching from a zero pre-
front state may be observed in models with nonlinear cross-
diffusion, e.g. “pursuit-evasion” type mutual taxis of the com-
ponents;

As the fronts actually observed in numerical simulations of
cross-diffusion models so far are typically oscillatory, search of
exact solutions of that kind would involve “inventing” an ansatz
more sophisticated than that given by (14) and (15).

All that should be considered in the context that the problem
addressed in this paper is about the “fast subsystem” in (2), and
encompasses just the first step in the singular perturbation theory
in the limit € — 0.
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