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Abstract

The majority of optimization algorithms require proper parameter tuning to
achieve the best performance. However, it is well-known that parameters
are problem-dependant as different problems or even different instances have
different optimal parameter settings. Parameter tuning through the testing
of parameter combinations is a computationally expensive procedure that is
infeasible on large-scale real-world problems. One method to mitigate this
is to introduce adaptivity into the algorithm to discover good parameter
settings during the search. Therefore, this study introduces an adaptive
approach to a heterogeneous ant colony population that evolves the alpha
and beta controlling parameters for ant colony optimization (ACO) to locate
near-optimal solutions. This is achievable by introducing a set of rules for
parameter adaptation to occur in order for the parameter values to be close
to the optimal values by exploring and exploiting both the parameter and
fitness landscape during the search to reflect the dynamic nature of search.
In addition, the 3-opt local search heuristic is integrated into the proposed
approach to further improve fitness. An empirical analysis of the proposed
algorithm tested on a range of Travelling Salesman Problem (TSP) instances
shows that the approach has better algorithmic performance when compared
against state-of-the-art algorithms from the literature.
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1. Introduction

Most metaheuristic optimization algorithms require parameters to be set
before the run in order to solve combinatorial optimization problems. These
parameters can significantly affect the performance of the algorithm and re-
searchers typically spend significant periods of time to tune these parameters
based on experience or to implement parameter settings suggested by the
literature. It is well documented that different problems or even different in-
stances of the same problem requires different parameter settings [1]. Whilst
the tuning of parameters is possible for benchmark problems, on larger real-
world problems it is often not possible to conduct a thorough exploration of
the parameter settings due to the computational complexity involved in the
calculation of the objective function. Furthermore, throughout an optimiza-
tion, different stages of the search process may require different exploration
and exploitation strategies and so the parameters that appear optimal at the
beginning may not be optimal towards the end. As an example in ant colony
optimization, whenever stagnation occurs (e.g. where all ants construct the
same tour in the TSP) exploration of the search space is preferred at this
stage in order to escape from the local optima, whereas over-exploration can
prevent convergence at all and so damage the performance of the algorithm.

It is also widely accepted that the ability to tune or control the param-
eters of the metaheuristics in part plays an important role in achieving a
fast, acceptable result and the results are very dependent on the parameter
settings too. Parameter tuning is a process of finding good parameter values
before the actual run of the algorithm by using multiple (shorter) algorithm
runs whilst varying parameters and monitoring performance. Meanwhile, in
parameter control, an algorithm starts a trial with initial parameters that are
modified or adapted using several strategies as the trial progresses. However,
parameter tuning is a non-trivial task that requires a deep understanding
of the algorithm in use as well as the problem being solved. In addition,
parameter tuning for each and every problem is almost impossible as it is a
time-consuming and computationally expensive process. Whilst the tuning
of parameters is possible for benchmark problems, on larger real-world prob-
lems it is often not possible to conduct a thorough exploration of the param-
eter settings due to the computational complexity involved in the calculation
of the objective function. Equally important in an optimization algorithm
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is that the algorithm must be able to maintain its exploratory nature even
after converging to a set of solutions in order to improve the overall perfor-
mance by being able to continuously explore and exploit the search space
efficiently especially when applied to large problem instances. Having said
that, over-exploration, where the algorithm continuously explores new search
space without really perturbing the solutions found or converging to an op-
timal solution, may occur and this undesirable scenario causes a waste of
valuable computational resources and function evaluations. Hence, enabling
the algorithm to learn and solve the problems via parameter control method
using a self-adaptation strategy can alleviate the costly parameter tuning
procedure as well as create a robust algorithm.

Self-adaptive approaches have been shown to work well in other meta-
heuristics, however, little research has been conducted in regards to the anal-
ysis of parameter adaptation methods in Ant Colony Optimization (ACO).
This work describes a heterogeneous adaptive ant colony approach with which
uses an evolutionary algorithm during the optimisation to adapt the ACO
meta-parameters. Standard ACO makes use of a population of homogeneous
ants that all share the same parameter settings. In this work, both homoge-
neous and heterogeneous ant colonies were deployed to explore and exploit
the parameter space and search space simultaneously to locate near-optimal
solutions. The homogeneous ants are greedy and have high preference to-
wards shorter paths while the heterogeneous ants have individual preferences
or what are known as ’behavioral traits’ with differential preferences either
towards pheromone intensity or the next-hop heuristic. The novel approach
of this study, discussed in the following sections, explores the synergistic
effects of the adaptive evolutionary process and heterogeneity to allow con-
vergence towards colony-level parameter setting through this self-adaptive
approach indirectly enabling the algorithm to locate better solutions. The
approach does not require problem-specific insights while population diver-
sity is preserved by implementing a Gaussian mutation to the selected ants
to prevent the algorithm from stagnation. The study suggests that the pro-
posed approach is able to locate better solutions by exploiting neighbouring
regions as well as improving the convergence speed. Comparison against
state-of-the-art algorithms also indicates effectiveness and robustness of the
heterogeneous adaptive approach when tested on standard TSP benchmarks.

This remainder of the paper is organized as follows. Section 2 discusses
ACO from biological point of view to conventional ACO algorithms. Sec-
tion 3 is an overview of classification of parameter tuning and parameter
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control approaches while Section 4 introduces Heterogeneous Adaptive ACO
(HAACO) algorithm. In Section 5, the system is tested on a range of TSP
instances and some concluding remarks are presented in Section 6.

2. Conventional Ant Colony Optimization (ACO)

There are several successful, conventional ACO algorithms from Ant Sys-
tem to Ant Colony System (ACS) each with significant contributions to the
ACO field of study. These algorithms use a metaheuristic approach to find
good solutions for an optimization problem based on a homogeneous set of
agents, namely ants with the same alpha and beta values. However, as ACO
is intrinsically a distributed method, it lends itself well to the concept of het-
erogeneity where ants possess different traits as they do in natural systems.
[2].

Year Algorithm Author
1992 Ant System Dorigo[3]
1996 Max Min Ant System Stutzle and Hoos [4]
1997 Ant Colony System Dorigo and Gambardella [5]
1997 Rank Based Ant System Bullnheimer et al. [6]
2000 Best-Worst Ant System Cordon et al. [7]

Table 1: Successful Conventional ACO

Table 1 shows a selection of the most successful conventional ACO algo-
rithms. The concept of ACO was introduced in early nineties by [3] with
the algorithm Ant System (AS), based on the natural behaviour of an ant
colony during foraging for food from its nest. [3] showed that the natural
pheromone-following behaviour could be exploited within a metaheuristic
search algorithm that was capable of finding the shortest path. The algo-
rithm required agents, virtual ants, to traverse a graph, exploring paths using
virtual pheromone and the shortest hop distance to guide them. On the com-
pletion of a route, the ants lay pheromone according to the optimality of the
route traversed and the entire graph is subjected to a process of evaporation,
weakening the pheromone globally. As this study uses Max-Min Ant System
(MMAS) as the base algorithm, AS will not be discussed in detail here thus
readers are encouraged to refer to [3] for further detail.

A further improved variant of AS known as Max Min Ant System (MMAS)
was introduced by Stutzle and Hoos [4]. The first contribution of MMAS is
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to limit the pheromone trails to a maximum and minimum values. The
introduction of max-min bounds helps to prevent early convergence of sub-
optimal level and also improves exploration of the search space. MMAS
also implements an occasional pheromone trail re-initialization method to
improve exploration whenever stagnation behaviour occurs. Secondly, only
the best ant, either iteration-best or global-best ant, in each iteration can
deposit pheromone. Empirical studies have indicated that increasing the fre-
quency of global-best deposition can lead to improved performance. MMAS
is the best conventional ACO algorithm Stützle et al. [8] when compared
against elitist AS and ACS and so this study uses MMAS as the base al-
gorithm to implement the heterogeneous adaptive approach. In MMAS and
ACO more generally, the likelihood of an ant selecting a path is calculated
accord to Equation 1. Of particular interest here are the alpha and beta pa-
rameters that give the weighting to the two components that determine the
path desirability, pheromone trail intensity and local heuristic. Alpha and
beta parameters of Equation 1 are modified to implement the heterogeneous
adaptive approach as described later.

P k
ij =

[τij]
α[ηij]

β∑
lεNk

i
[τil]α[ηil]β

(1)

This probabilistic rule implements the ratio between choosing node j
against sum of all unvisited nodes from node i. τij and ηij are pheromone
trail intensity and heuristic information of edge i to j respectively where ηij
is 1/dij with d being the distance of i to j. α and β are the parameters that
determine the importance of pheromone or heuristic. If node j has already
been visited, then the probability of going to node j is 0.

Equation 2 is used to deposit pheromone in every iteration where ρ rep-
resents the evaporation rate (0 < ρ < 1) while τ bestij is 1/Lbest where Lbest can
be iteration-best tour length or global-best tour length which are considered
during pheromone deposition. Readers are suggested to refer to [4] for a
detailed explanation of MMAS.

τij(t) = ρ.τij(t− 1) + ∆τ bestij (2)

Other developed ACO methods include Elitist Ant System (EAS) [9],
Ant-Q [10], Ant Colony System (ACS) [5], and ASRank [6] which each have
strengths and weaknesses in comparison with the MMAS approach. Of closer
interest to the proposed approach is Cordon et al. [7] that incorporates an
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evolutionary algorithm method into ACO. The algorithm, as the name im-
plies, allow the best ant to deposit pheromone while penalizing the worst
ant by having additional pheromone evaporation on the worst path. Best
Worst Ant System (BWAS) also implements pheromone trail mutation in
order to enable diverse solutions. Lastly, as with MMAS, BWAS also imple-
ments pheromone trail re-initialization to τ0 whenever the algorithm is stuck
in local optima.

3. Previous work in Adaptive ACO

Eiben et al. [11] and Hinterding et al. [12] summarize and differentiate
the parameter settings methods commonly used in Evolutionary Algorithms
(EAs) into two main categories which are parameter tuning and parameter
control. A self-adaptive algorithm, which is grouped under the parameter
control methods, is defined as an algorithm where the parameters are encoded
into of chromosomes and the selected parents undergo mutation and crossover
operations to produce offspring. As this study focuses on the parameter
control mechanism, previous work on parameter tuning will not be discussed
here and readers can refer to [13] for further details.

A self-adaptation mechanism in ACO was introduced in [14] by applying
crossover and mutation to evolve the parameters of α and β in relation to the
transition rule based on the routing solutions found. The method was imple-
mented on packet routing in communication network and improvements were
noticed in system’s performance over other methods. However, the efficacy
of the approach is difficult to establish as it was not implemented on com-
mon benchmark problems. A similar adaptive approach was implemented
in Botee and Bonabeau [15] using ACS as base algorithm and evolving as
many as 11 parameters within a certain range of values compared to two
parameters evolved in [14]. Although the authors indicated that improved
performance in terms of final solutions as well as computational time were
achieved from the proposed approach when tested on two small-scale TSP
instances, one potential drawback, discussed in Pellegrini and Favaretto [16],
is that the adaptation of so many parameters might hinder the performance
of the algorithm. Moreover, the evolution of parameters in every iteration is
unlikely to generate enough information about the performance of each ant
when selecting the best and worst ant for replacement. Hence, this study
allows the population to perform for several iterations before a decision is
made based on their mean performance.
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An adaptive method was proposed in [17] and [18] to adjust the pheromone
deposition according to the fitness solution found to direct the algorithm to-
wards better regions. According to the authors, this mechanism improves
the convergence rate and prevents the algorithm from getting stuck in lo-
cal optima. Pilat and White [19] proposed two parameter control methods
that incorporate GA to ACS where the first method used GA to evolve a
colony of ants where three parameters (β, ρ and q0) were encoded into the
genome that represents an ant. The authors suggest that even though the
first study did not improve on the base algorithm, it did give an insight into
improvements that can be made as good solutions can be found within short
period of time. Hence, the authors developed the second method that de-
ploys a meta-level approach running GA alongside the ACS. The same three
parameters as the first study were given a range of values and included in
4 randomly chosen ants in each iteration. Crossover, mutation and replace-
ment occurs among the 4 ants only. The authors concluded that adapting
the parameters is advantageous especially for limited function evaluations. In
addition, the authors also indicated that each problem (each instance in the
same problem) may require different optimal parameter settings in order to
achieve optimal algorithmic performance. Gaertner [20] found that optimal
parameter values are problem-dependant and thus introduced a hybrid ACO
algorithm that is capable of automatically learning the optimal parameter
values of a given TSP instance. The authors used a modified version of AS
that incorporates the control parameter of ACS, q0 and an ant is initialized
by a random parameter combination drawn from the given range. The author
tested the proposed approach on a single 50 city TSP instance and the perfor-
mance was slightly poorer in comparison to ACS with fine-tuned parameter
settings. Another self-adaptive approach that used ACS as base algorithm
was proposed by Yu et al. [21] who used the difference among tour lengths
as an indicator for the α and ρ parameters to be adapted. Results indicate
improved performance over ACS with fixed parameter settings. Yoshikawa
[22] introduced a population of ants consisting of both normal and ’cranky’
ants which prefer paths with lower pheromone values, the opposite of normal
ants. The number of cranky ants in the population is controlled adaptively,
so that when the algorithm is judged to be trapped in local optima, the
number of cranky ants in the population is increased. The authors in [23]
proposed an adaptive local search based ACO where the number of edges for
swapping increases if local search discovers a better tour. The local search
procedure is invoked for tours that are less than a minimum tour length set
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by the authors and the edges for swapping is set at 2 before increasing lin-
early if better tour is found. One disadvantage of the proposed approach
is that the algorithm requires a very high budget of function evaluations in
order to achieve significantly improved performance. In 2010, Zhang and Lin
[24] introduced an adaptive communication method for heterogeneous mul-
tiple ant colonies. After a fixed number of iterations, a sub-colony of ants
with higher evolution co-efficient can choose the sub-colony to exchange in-
formation. Results indicate improved performance in the proposed approach
when compared against the base algorithm. Interestingly, Pellegrini et al.
[25] analyzes the performance of MMAS with both pre-determined (offline
tuning) and parameter adaptation (online parameter control) schemes and
suggested that the former method outperforms the latter when tested on
TSP. However, it is well discussed in the literature that pre-determined pa-
rameter tuning method is time-consuming, computationally expensive and
requires experience in selecting the parameter values as the mechanism in-
volves trial and error method. Both Stutzle et al. [13] and Maur et al. [26]
suggested that pre-scheduled parameter adaptation determined by a formula
has a better performance compared to fixed, static parameter settings. [13]
also suggest that a more detailed analysis is required to fully understand
the contribution and advantage of adaptive methods as well as taking into
account feedback from the current state of the algorithm. Jadon and Datta
[27] proposed an ACO algorithm with an adaptive uniform mutation to es-
cape from local optima. Comparison on several small-scale TSP indicates
improved performance over other methods. Mavrovouniotis [28] proposed
the adaptation of the pheromone evaporation rate as the search progresses
to eliminate pheromone on poor path. The authors also suggested that the
proposed adaptive scheme has better performance when compared to the
fine-tuned algorithms. Li and Li [29] used mean information entropy in AS
to adapt both α and β to control exploration and exploitation of the search
space for construction time-cost optimization. The authors set a low α and
high β to begin with and the α value increases and the β value decreases
over time thus increasing the preference towards pheromone over heuristic
information as the search progresses. However, it has been discussed earlier
that an optimization algorithm may require different strategies at different
stages of the search process therefore the modification of these values on a
fixed schedule over time may not be an optimal approach. Ping et al. [30]
introduced three sub-colony of ants consisting of ordinary ants that has a
high probability in choosing path with high pheromone (high α), abnormal
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ants that choose path with low pheromone (low α) and random ants that
choose paths regardless of pheromone amount on the edges or path (zero
α). Over time, the abnormal and random ants evolve and become ordinary
ants adaptively over the search process, thus at the end, the whole popula-
tion converges to ordinary ants. The authors implies that the heterogeneity
introduced enabled the ants to locate better solutions while the adaptive
approach allows the algorithm to escape from local optima. Most recently,
Sun et al. [31] proposed a hybrid Particle Swarm Optimization (PSO)-ACO
algorithm where PSO is used to find optimal α and β values which is then
fed to the ACO algorithm to optimize task scheduling in cloud comput-
ing. Another study that implements a similar approach is proposed by Mahi
et al. [32] who used PSO to optimize α and β parameters to improve the
performance of ACO. The performance is further improved by a 3-opt local
search. The authors modified the ACO algorithm to allow the ants to only
use heuristic information in building their first tour and all ants were allowed
to deposit pheromone based on the tour solution found. According to the
authors, this approach allows the algorithm to start from a better solution
compared to an ACO that starts with random tours. Therefore, this study
also implements a similar approach by allowing greedy, homogeneous ants to
explore the search space to locate better starting tours (explained later). A
parallel ACO with 3-opt is proposed by Gülcü et al. [33] where the authors
implemented several sub-colonies and created a master-slave communication
paradigm for each sub-colony to share its best tour with other sub-colonies.
The authors suggested that the parallel approach allows the algorithm to
achieve good performance relatively quickly when tested on several TSP in-
stances because of the distributed nature of the approach hence reducing the
computational time. These two studies compare their approaches against a
wide range of alternative approaches and are found to deliver state-of-the-art
performance in the optimisation of the TSP using ACO and as such are used
as the main comparators for the approach described here.

As a conclusion of the review, several variants of ants algorithm have
been proposed to adapt various parameters to balance exploration and ex-
ploitation and to escaping from local optima. However, this often comes at a
cost of additional function evaluations or additional computational processes
that increases computational time. In contrast, we show that the hetero-
geneous adaptive approach described here is able to explore the parameter
space to locate instance-optimal parameter settings that will improve the per-
formance of the algorithm without incurring additional function evaluations.
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Through comparisons with the state of the art algorithms shown above, we
demonstrate that the algorithm also is capable of delivering state of the art
performance via the introduction of Gaussian mutation mechanism.

4. Heterogeneous Adaptive ACO Methodology

4.1. Heterogeneity

Heterogeneity in ACO was introduced in [34] and [35] by modifying Equa-
tion 1 to incorporate the behavioural traits of each ant thus producing Equa-
tion 3. This provides each ant with a different perspective of the search
space by introducing αk and βk which represents the individual behavioural
traits that determine the perceived importance of pheromone and heuristics
respectively. We have shown in our previous study [35] that heterogeneous
ants with parameters randomly drawn from a normal distribution of traits
has better performance when compared against that from a uniform distri-
bution, thus this approach is followed here.

P k
ij =

[τij]
αk [ηij]

βk∑
lεNk

i
[τil]αk [ηil]βk

(3)

4.2. Heterogeneous Adaptive ACO

The heterogeneous nature of the population of ants allows the initial pop-
ulation to explore the most promising areas of the search space initially but
there is no additional mechanism to modify these as the search progresses.
Here we consider the initial population of parameter settings across ants as
the initial population for an evolutionary algorithm which will adapt the
parameters throughout the optimization. Figure 1 illustrates the main idea
of the proposed approach where the parameters adapted in this study are
the α and β values that controls the relative importance of pheromone and
heuristics respectively. As shown in Figure 2, each ant has its own ’behav-
ioral traits’ represented by the α and β values. The ants will have fitness
values associated to them based on the tours they built and both mean best
and mean worst ants are selected based on their mean fitness value over w
iterations. Meanwhile, the use of elitism ensures that the population retains
the fittest individual in the population and where the mean worst ant over w
iterations is replaced by the child of the mean best ant that had undergone
mutation. Through the use of selection, elitism and mutation, the EA can
generate new promising parameter settings during the ACO run as well as
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maintaining diversity in the population. To achieve this, the algorithm re-
quires a representation and this is achieved here through the use of a floating
point representation. It is worth noting that other encodings are possible,
in particular binary encodings although the floating-point encoding here is
preferred due to the ability to test fine-grained changes to the range from
the mutation operation.

Algorithm 1 represents the pseudo code of HAACO which describes the
introduction of both greedy, homogeneous and Gaussian heterogeneous ants
as well as the adaptive mechanism. Once an offspring is produced from the
process of mutation, the offspring then replaces the mean best ant and is
included in the population for exploration and exploitation in next iteration.

4.3. Homogeneous Initialisation

In keeping with the comparator approaches in [32] and [33], an initial-
ization phase using greedy, homogeneous ants was deployed for several it-
erations to act as a guide for the Gaussian heterogeneous ants to explore
and exploit the search space. The greedy, homogeneous ants consist of ants
with a relative importance of 0 towards pheromone (α=0) and a very high
preference towards the heuristic (next-hop distance) (β=10) that indicates
high β during early stages of the search process is desirable. This will allow
the greedy,homogeneous colony to locate good solutions for the heteroge-
neous ants to exploit very early on rather than starting with random tours
as per conventional ACO algorithms. An experiment was conducted to de-
termine the number of iterations required for the colony of homogeneous ants
to locate good solutions. Two different variants of the proposed algorithm
were created where HAACO-5 is the adaptive approach with greedy, homoge-
neous ants that were deployed for 5 iterations while HAACO-10 is the same
algorithm except that the greedy, homogeneous ants were deployed for 10
iterations. It should be noted that this number of greedy tours approximates
those seen in the other approaches, so as to confer no advantage to either
algorithm.

Figure 3a and 3b illustrate the performance of the HAACO with two
different deployment approach as stated above. The result indicates that
allowing the greedy, homogeneous ants to explore the search space for first
5 iterations based on a greedy approach instead of random initial tours pro-
duces good initial solutions. The analysis also suggests that enabling the
homogeneous ants to explore the search landscape for 5 iterations produced
the best performance. From iteration 6 onwards, the algorithm introduces a
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Algorithm 1 Pseudocode of HAACO.

1: Input: Distance Matrix of TSP;
2: Initialize parameters;
3: Initialize ants:
4: for i = 1 : number of ants do
5: AlphaHet(i) = mean α, s.d α;
6: BetaHet(i) = mean β, s.d β;
7: end for
8: AlphaHo=0; BetaHo=10;
9: Start Iteration:

10: for it = 1 : Max Iteration do
11: if it < 6 then
12: Alpha=AlphaHo;
13: Beta=BetaHo;
14: end if
15: if it == 6 then
16: Alpha=AlphaHet;
17: Beta=BetaHet;
18: end if
19: for k = 1 : number of ants do
20: Position each ant on starting node;
21: while TourSize < n+ 1 do
22: Tour Construction;
23: 3-opt local search;
24: Adaptation mechanism;
25: end while
26: end for
27: end for
28: Update Solution;
29: Update Pheromone;
30: Pheromone Evaporation;
31: Check if termination condition is met;
32: if True then
33: Go to End;
34: else
35: Go to 10;
36: end if
37: End
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heterogeneous population of ants randomly drawn from a distribution that
will exploit the good regions found by the greedy homogeneous ants to further
locate better solutions. The population then evolves as the search progresses
where the worst ant in every w iterations are replaced with the child of the
best ant in that same w iterations (explained in following section).

4.4. Adaptive Interval

As the HAACO approach does not employ additional function evalua-
tions, the assessment of the quality of α and β parameter settings is based
on the mean performance of ants with those parameter settings and a fre-
quency of sampling of this information must be specified. Furthermore, a
parameter must be defined to determine how often the evolution of the pa-
rameters takes place. Both of these factors are considered in the adaptive
interval (AI) which is the number of ACO iterations that are completed
between evolutionary steps. Setting this value is important because it deter-
mines how many evolutionary steps are possible within a given ACO run of
fixed length and because it determines the robustness of the sampling that
underpins the objective function calculation. For example, low values of AI
(e.g. 1) indicate that parameter adaptation occurs in each ACO iteration.
This provides many EA iterations but each one will be based on only one
tour from each ant, leading to potentially volatile changes to the best per-
forming ants through time. A more moderate setting such as 5 will yield
1/5 of the evolutionary steps, but based on a more robust sample of 5 tours
generated by the ants. This parameter was analyzed across several TSPs:
eil101.tsp, ch150.tsp and d198.tsp respectively and 5 was selected as the best
performing of these.

Figure 4, 5a and 5b illustrate the boxplots of the proposed approach with
different adaptive interval, w. The figures indicate that w=5 produce the best
performance when compared against other adaptive interval that we have
analyzed in this section. The results show that fast adaptation is preferable
over slow adaptation mechanism where information over 5 iterations are used
to determine or select the best and worst ant for replacement.

4.5. Mutation

Clearly, the algorithm requires a mechanism to explore the parameter
space and to generate new parameter values for evaluation. Meanwhile, the
algorithm also has to preserve the information that it has already gathered
thus drastic alteration is not preferable. This suggests that low amount of
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mutation is desirable to prevent total loss of the fittest individuals over time
especially when small population size is used. In addition, the mutation op-
erator is also capable of preventing premature convergence to non-optimal
solutions by enabling the algorithm to escape from local optima. Therefore,
this study implements an approach where the mean best ant over w itera-
tions will undergo mutation to cause a small,random change to the genotype
before replacing the mean worst ant. The offspring will then re-join the het-
erogeneous population and will then explore the parameter space to locate
the instance-optimal parameter setting. The crossover operator is not used
in this study as suggested in [36] that genetic algorithm with random mu-
tation alone results in better performance of the algorithm when compared
against that of crossover and inversion operator.

4.6. Uniform vs Gaussian Mutation Width

The degree of random change that each application of the mutation oper-
ator can cause is related to the width of the Gaussian distribution used. An
empirical study was conducted to compare the performance of both uniform
and Gaussian mutation operator in order to be implemented in the final setup
of HAACO. Initial experiments were conducted to determine suitable range
for both uniform mutation, M = U [−a, a] and standard deviation, σ for
Gaussian mutation with mean 0, M = G(0, σ). Table 3 and Table 4 show the
results of the initial experiments conducted where the range of [−0.05, 0.05]
produces the best performance for uniform mutation while HAACO with a
Gaussian mutation with standard deviation of 0.05 has an overall best perfor-
mance. In addition to the results, the extent to which the uniform mutation
and the standard deviation, σ of the Gaussian mutation operator was ex-
plored, it was expected that a large mutation width (large range of values for
uniform mutation or high σ for Gaussian mutation) will cause the algorithm
to engage in excessive exploration thus mimicking a random walk and too
small a width (small range of values for uniform mutation or low σ for Gaus-
sian mutation) will cause the algorithm to converge to a local optimum too
quickly and result in very little exploration of the parameter space. Hence, a
suitable mutation width is required in order to achieve a good performance.
The Gaussian mutation operator which is a commonly used operator, is used
in this study due to high probability of creating an offspring that is much
closer to the genes of the parents especially when elitism selection method is
used.
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αmeanworst = αmeanbest +M1[−a, a]/M1(0, σ) (4)

βmeanworst = βmeanbest +M1[−a, a]/M2(0, σ) (5)

The mean best ant which has individual α and β values will undergo
mutation using the equations above where M1 and M2 are two random values
based on the mutation distribution used in the experiments. These values
are then added to the α and β of the mean best ant thus creating a child
of the mean best ant which replaces the mean worst ant. Table 5 compares
the performance of HAACO with both uniform and Gaussian mutation with
optimal settings as discussed above. It can be seen clearly that HAACO
with Gaussian mutation has an overall best performance in terms of best,
average and worst best cost in almost all TSP instances when compared
against HAACO with uniform mutation. Therefore, Gaussian mutation with
mean = 0 and standard deviation, σ = 0.05 will be applied in all experiments
hereafter unless stated otherwise.

5. Experimental Investigation of HAACO

5.1. Experimental Setup

An Intel Core i7 CPU-based computer with Windows 7 equipped with
4GB RAM was used to conduct the experiments and analysis. Matlab version
R2015a was used to implement the base algorithm Max Min Ant system
(MMAS) [4]. The results of the developed base algorithm were shown to
closely replicate the performance to that of the original authors which can
be referred to [34]. The travelling Salesman Problem (TSP) [37] was used as a
benchmark problem using instances taken from TSPLIB. Each TSP instance
contains a number of cities with associated x and y coordinates and the cost
of travelling from one city to another can be calculated using the distance
theorem. Therefore, the final tour cost produced by the proposed algorithm
is the total distance travelled by the ants making a closed loop.

5.2. Experimental Results and Discussion

In this section, the results and analysis of the HAACO approach are
presented. In particular, the ability for the approach explore and exploit
the parameter space to locate instance-optimal parameter settings whilst
generating competitive TSP tours is described. The proposed approach is
compared against two state-of-the-art hybrid ACO algorithms for TSP in
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[33], a parallel ACO algorithm with 3-opt and [32], a hybrid of PSO-ACO-
3opt, as well as two variants of base algorithm, MMAS. MMAS1 is a variant
of MMAS with 3 opt and greedy,homogeneous ants for first 5 iterations while
MMAS2 represents a standard MMAS implemention also augmented with
3 opt. All parameters were set according to [33] and [32] except specific
parameters such as mean α and mean β of heterogeneous ants which were set
as 1 and 5 respectively. All experiments were stopped at 1000 iterations and
iteration-best fitness solutions were improved by 3-opt local search procedure.
All results quoted are from 20 independent trials unless stated otherwise.

Table 6 to 11 represent the performance comparison of HAACO against
[33], [32] and MMAS variants in terms of best cost, average best cost and
worst best cost respectively. A ranking mechanism was used to rank the
performance of each algorithm where a ranking of 1 to 5 where 1 is the best
algorithm in each TSP instance with 5 being the poorest. Referring to Table
6, HAACO has the best performance as it is capable of locating the optimum
or overall best cost in 7/10 instances while it has the second-best cost in the
other two TSP instances. Table 9 supports this claim by indicating the
average ranking of each algorithm and HAACO has an average ranking of
1.4 followed by [33] in second with an average of 1.7. Table 7 shows the
average best cost, corresponding to Table 10 which illustrates the results
via the ranking system. Both HAACO and [33] have similar performance
where both have lowest average best cost in 4/10 instances with an average
ranking of 1.9. Lastly, Table 8 and Table 11 indicate that HAACO has
a better performance in terms of worst best cost with an average ranking
of 1.8 compared to 1.9 by [33]. Importantly, the Friedman statistical test
based on the results in Table 5 with a 90% confidence interval indicates
a p-value of 0.00159 thus suggesting significant difference in terms of the
performance of the proposed algorithm compared to the other approaches.
The improved performance in HAACO can be attributed to the capability of
the algorithm to search the parameter space and quickly converge towards
optimal parameter settings as well as exploiting the neighbouring regions via
the Gaussian mutation. The greedy, homogeneous sub-colony was able to
locate sub-optimal solutions very early in the search process and this acts
as a guide for the Gaussian heterogeneous ants to exploit to locate better
solutions. When considering a limited budget of function evaluations i.e
1000 iterations, this mechanism provides better starting solutions compared
to a random start approach as used in most of ACO algorithms. Figure 6a
and 6b show the comparison of the best cost with and without the use of
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the greedy homogeneous ant colony. Figure 6a shows that the greedy ants
enabled the algorithm to start with better, shorter tours very early on while
Figure 6b illustrates that the algorithm starts off with random tours due to
lack of pheromone information during the early stages.

Figure 7, 8 and 9 illustrate the parameter convergence using the convex
hull and histogram to show the convergence of parameter values during the
optimization. The convex hull forms the perimeter of most outer point in a
Euclidean space while the histograms represent the number of ants within
a particular range. From these figures it can be seen that the initial distri-
bution of heterogeneous ants introduced from iteration 6 onward is followed
by exploration and exploitation of the parameter space by the heterogeneous
ants to locate instance-optimal parameter settings. It can also be noticed
that in general, ants with high beta and low alpha values perform best. This
depicts the exploration phase of the algorithm where the algorithm explores
the fitness landscape to locate good to sub-optimal solutions. In addition to
that, there is less information on the pheromone landscape for the ants to
exploit hence the colony adapts to ants with high beta and low alpha values.
The strategy changes as the search progresses when there is accumulation of
pheromone on the edges hence ants become less reliant on the heuristics and
utilizes the information on the pheromone landscape. Therefore, ants with
higher alpha perform better in later stages hence the colony adapt to this.
This shows that the proposed approach is capable of adapting its strategy
between exploration and exploitation and at the same time exploring the
parameter space to locate instance-optimal parameter settings. Figure 10a,
11a and 12a indicate that the algorithm quickly converges to good solutions
before exploiting these parameter settings to achieve better solutions. The
change from exploration phase to exploitation can be noticed in Figure 10b,
11b and 12b respectively where the algorithm has a high standard deviation
early on before it converges to sub-optimal solutions and further perturbation
is necessary to locate better solutions. The standard deviations also indicate
that the proposed approach did not enter stagnation behaviour in all three
TSP instances. However, the standard deviation of HAACO is almost 0 when
tested on lin105.tsp as indicated in Figure 12b. The reason could be that
the algorithm converges to the optimal solution that was found very early on
during the search process. Lastly, the fast convergence claim is supported by
the average lambda branching factor of HAACO in all three TSP instances
where the number of branches being explored starts to decrease from iter-
ation 200 onwards as can be seen in Figure 10c, 11c and 12c respectively.
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This also indicates the nature of the algorithm which is capable of escaping
from local optima as observed in Figure 10c and 11c where the algorithm still
explores new edges even after a period of convergence and this can be due
to the Gaussian mutation operator that leads the algorithm to new neigh-
bouring regions. In addition, the proposed approach was tested on several
large TSP instances in order to gauge the performance and the ability of the
approach in exploring and exploiting a large search area. Table 12 and 13
both show the comparison results of HAACO against other approaches. The
results are indicative that the proposed approach has a similar performance
as compared to the other two approaches.

The advantage of the algorithm is in its ability to converge to good pa-
rameter settings quickly and exploit those values to obtain optimal settings.
In addition, the small mutation width that was used in this study allows
the ants to move to neighbouring regions rather than execute a large jump
to non-optimal search space. Finally, it is important to note that this algo-
rithm does not incur any additional function evaluation calls to implement
the adaptive approach.

6. Conclusion

This paper introduces and performs experimentation with a new ap-
proach, HAACO which is tested on several TSP instances. Empirical studies
have shown that adapting the parameters of an algorithm have an advantage
over fine-tuned algorithms in their ability to react to the changing features
of a search landscape as it approaches the optimum. The proposed approach
is more feasible than the time consuming task of fine tuning the parame-
ters that usually requires prior knowledge of the algorithm as well as the
problem being solved. The proposed approach allows the algorithm to be
able to adapt or interchange between different strategies i.e exploration and
exploitation throughout the search process. Comparison against two state-of-
the-art algorithms also suggest that the proposed approach is able to search
the parameter space to locate the instance-optimal settings that would then
allow the ants to explore the search space to find better fitness solutions. It
is also noticeable that this approach suits one with a low or small budget
of function evaluations as it is capable of converging to good or sub-optimal
parameters quickly before exploitation of those areas to locate optimal set-
tings. Future work requires the investigation of the approach on larger TSP
instances. In conclusion, this study has explored the possibilities of enabling
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the algorithm to self-adapt its α and β parameters thus allowing the algo-
rithm to explore both parameter space and search space simultaneously to
locate better solutions.
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[32] M. Mahi, Ö. K. Baykan, H. Kodaz, A new hybrid method based on
Particle Swarm Optimization, Ant Colony Optimization and 3-Opt al-
gorithms for Traveling Salesman Problem, Applied Soft Computing 30
(2015) 484–490.
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Table 5: Performance comparison of HAACO with uniform and Gaussian respectively on
several TSP instances. Results are of 20 trials, each trial = 1 000 iterations and those in

bold indicates best of each category.

TSP Opt Best Cost Average Worst Cost
Uni Gau Uni Gau Uni Gau

eil51 426 426 426 428 427.5 431 430
berlin52 7542 7542 7542 7542 7542 7542 7542

st70 675 675 675 679.9 676.5 684 678
eil76 538 538 538 542.6 542.0 547 545
rat99 1211 1212 1211 1214.7 1214.1 1220 1218

kroA100 21282 21330 21282 21554.4 21364.2 21828 21445
eil101 629 631 630 638.5 632.5 645 635
lin105 14379 14379 14379 14453.6 14411.8 14525 14483
ch150 6528 6554 6566 6581.7 6578.8 6599 6595

kroA200 29368 29604 29483 30150.4 29633.2 30973 29755

Figure 1: The iterative procedure of the proposed approach.
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Table 6: Best cost comparison of HAACO against other approaches tested on several
TSP instances. Result in bold indicates best of each category.

TSP Opt HAACO [33] [32] MMAS1 MMAS2
eil51 426 426 426 426 427 426

berlin52 7542 7542 7542 7542 7542 7542
st70 675 675 676 676 675 682
eil76 538 538 538 538 538 538
rat99 1211 1211 1213 1224 1212 1212

kroA100 21282 21282 21282 21301 21315 21379
eil101 629 630 629 631 631 631
lin105 14379 14379 14379 14379 14379 14379
ch150 6528 6566 6570 6538 6554 6566

kroA200 29368 29483 29533 29468 29485 29488

Table 7: Comparison of average best cost of HAACO against other approaches tested on
several TSP instances. Result in bold indicates best of each category.

TSP Opt HAACO [33] [32] MMAS1 MMAS2
eil51 426 427.5 426.35 426.45 429.4 428.5

berlin52 7542 7542 7542 7543.2 7542 7542
st70 675 676.5 677.85 678.2 683.8 685.2
eil76 538 542.0 539.85 538.3 542.8 543.5
rat99 1211 1214.1 1217.1 1227.4 1216.9 1219.4

kroA100 21282 21364.2 21326.8 21445.1 21528.3 2121513.7
eil101 629 632.5 630.55 632.7 640.4 640.9
lin105 14379 14411.8 14393.0 14379.15 14429.2 14433.0
ch150 6528 6578.8 6601.4 6563.95 6603.9 6581.0

kroA200 29368 29633.2 29644.5 29646.05 29799.4 29760.3
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Table 8: Comparison of worst best cost of HAACO against other approaches tested on
several TSP instances. Result in bold indicates best of each category.

TSP Opt HAACO [33] [32] MMAS1 MMAS2
eil51 426 430 427 428 433 432

berlin52 7542 7542 7542 7548 7542 7542
st70 675 678 679 681 691 692
eil76 538 545 542 539 547 551
rat99 1211 1218 1225 1230 1226 1229

kroA100 21282 21445 21382 21554 21917 21810
eil101 629 635 639 638 651 650
lin105 14379 14483 14422 14381 14542 14594
ch150 6528 6595 6627 6622 6675 6617

kroA200 29368 29755 29721 29957 30307 30033

Table 9: Ranking comparison of HAACO against other approaches based on the best
cost when tested on several TSP instances. Result in bold indicates best of each category.

TSP Opt HAACO [33] [32] MMAS1 MMAS2
eil51 426 1 1 1 2 1

berlin52 7542 1 1 1 1 1
st70 675 1 2 2 1 3
eil76 538 1 1 1 1 1
rat99 1211 1 3 4 2 2

kroA100 21282 1 1 2 3 4
eil101 629 2 1 3 3 3
lin105 14379 1 1 1 1 1
ch150 6528 3 4 1 2 3

kroA200 29368 2 5 1 3 4
Average Ranking 1.4 2 1.7 1.9 2.3
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Table 10: Ranking comparison of HAACO against other approaches based on the
average best cost when tested on several TSP instances. Result in bold indicates best of

each category.

TSP Opt HAACO [33] [32] MMAS1 MMAS2
eil51 426 3 1 2 5 4

berlin52 7542 1 1 2 1 1
st70 675 1 2 3 4 5
eil76 538 3 2 1 4 5
rat99 1211 1 3 5 2 4

kroA100 21282 2 1 3 5 4
eil101 629 2 1 2 3 4
lin105 14379 3 2 1 4 5
ch150 6528 2 4 1 5 3

kroA200 29368 1 2 3 5 4
Average Ranking 1.9 1.9 2.3 3.8 3.9

Table 11: Ranking comparison of HAACO against other approaches based on the worst
best cost when tested on several TSP instances. Result in bold indicates best of each

category.

TSP Opt HAACO [33] [32] MMAS1 MMAS2
eil51 426 3 1 2 4 5

berlin52 7542 1 1 2 1 1
st70 675 1 2 3 4 5
eil76 538 3 2 1 4 5
rat99 1211 1 2 5 3 4

kroA100 21282 2 1 3 5 4
eil101 629 1 3 2 5 4
lin105 14379 3 2 1 4 5
ch150 6528 1 4 3 5 2

kroA200 29368 2 1 3 5 4
Average Ranking 1.8 1.9 2.5 4.0 3.9
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Table 12: Comparison of best cost of HAACO against other approaches tested on several
large TSP instances. Result in bold indicates best of each category.

TSP Opt HAACO [33] [32]
rd400 15281 15603 15578 15594
fl417 11861 11960 11972 11947
pr439 107217 108730 108482 108530

pcb442 50778 51780 51962 52131

Table 13: Comparison of average best cost of HAACO against other approaches tested on
several large TSP instances. Result in bold indicates best of each category.

TSP Opt HAACO [33] [32]
rd400 15281 15644.2 15613.9 15691.30
fl417 11861 11979.5 11987.4 11980.4
pr439 107217 108950.6 108702 108965.4

pcb442 50778 52179.8 52202.4 52368.1

Figure 2: Selection of mean best ant and mean worst ant using elitism method.
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(a) (b)

Figure 3: Boxplots representing best cost of HAACO-5 and HAACO-10 respectively when
tested on ch150.tsp and kroA200.tsp.

Figure 4: Boxplots representing best cost of HAACO with different adaptive interval
tested on eil101.tsp. Yellow line indicates the average best cost while red line indicates the
optimum for eil101.tsp
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(a) ch150.tsp (b) d198.tsp

Figure 5: Boxplots representing best cost of HAACO with different adaptive interval tested
on ch150 and d198.tsp. Yellow line indicates the average best cost while red line indicates
the optimum for the TSP instances respectively

(a) Tour of HAACO (b) Tour of het

Figure 6: Comparison of tours made by HAACO and heterogeneous ants when tested on
eil76.tsp (Opt:538)
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Figure 7: Parameter Convergence of HAACO tested on st70.tsp.
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Figure 8: Parameter Convergence of HAACO tested on lin105.tsp.
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Figure 9: Parameter Convergence of HAACO tested on ch150.tsp.
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(a) Convergence of HAACO:
st70.tsp

(b) Standard Deviation:
st70.tsp

(c) Ave lamda branching fac-
tor: st70.tsp

Figure 10: Analysis of HAACO tested on st70.tsp

(a) Convergence of HAACO:
lin105.tsp

(b) Standard Deviation:
lin105.tsp

(c) Ave lamda branching fac-
tor:lin105.tsp

Figure 11: Analysis of HAACO tested on lin105.tsp

(a) Convergence of HAACO:
ch150.tsp

(b) Standard Deviation:
ch150.tsp

(c) Ave lamda branching fac-
tor:ch150.tsp

Figure 12: Analysis of HAACO tested on ch150.tsp
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