
A spatial emergent constraint on the sensitivity of soil carbon
turnover to global warming

Rebecca M. Varney1, Sarah E. Chadburn1, Pierre Friedlingstein1,2, Eleanor J. Burke3, Charles D.

Koven4, Gustaf Hugelius5, and Peter M. Cox1

1College of Engineering, Mathematics and Physical Sciences, University of Exeter,

Laver Building, North Park Road, Exeter, EX4 4QF, UK
2LMD/IPSL, ENS, PSL Université, École Polytechnique, Institut Polytechnique de Paris, Sorbonne

Université, CNRS, Paris France
3Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, UK
4Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley,

California 94720, USA
5Department of Physical Geography & Bolin Centre of Climate Research, Stockholm University,

Stockholm 10691, Sweden

Abstract

Carbon cycle feedbacks represent large uncertainties in climate change projections, and the

response of soil carbon to climate change contributes the greatest uncertainty to this. Future

changes in soil carbon depend on changes in litter and root inputs from plants and especially

on reductions in the turnover time of soil carbon (τs) with warming. An approximation to the

latter-term for the top one metre of soil (∆Cs,τ) can be diagnosed from projections made with

the CMIP6 and CMIP5 Earth System Models (ESMs), and is found to span a large range

even at 2◦C of global warming (-196 ± 117 PgC). Here we present a constraint on ∆Cs,τ, which

makes use of current heterotrophic respiration and the spatial variability of τs inferred from

observations. This spatial emergent constraint allows us to halve the uncertainty in ∆Cs,τ at

2◦C to -232 ± 52 PgC.
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Introduction

Climate-carbon cycle feedbacks [1] must be understood and quantified if the Paris Agreement

Targets are to be met [2]. Changes in soil carbon represent a particularly large uncertainty [3, 4,

5, 6, 7], with the potential to significantly reduce the carbon budget for climate stabilisation at

2◦C global warming [8]. Previous studies have investigated the response of soil carbon to climate

change based-on both observational studies [9] and Earth System Models (ESMs) [10]. ESMs

are coupled models which simulate both climate and carbon cycle processes. Projects such as the

Coupled Model Inter-comparison Project (CMIP) [11, 12], have allowed for consistent comparison

of the response of soil carbon under climate change from existing state-of-the-art ESMs. However,

the uncertainty due to the soil carbon feedback did not reduce significantly between the CMIP3

and CMIP5 model generations [6], or with the latest CMIP6 models (see Supplementary Figure 1

and Figure 2), such that the projected change in global soil carbon still varies significantly amongst

models [13].

This study uses an alternative method to obtain a constraint on the ESM projections of soil carbon

change. In previous studies, emergent constraints based on temporal trends and variations have

been used successfully to reduce uncertainty in climate change projections [14]. Our approach

follows the method used in Chadburn et al. 2017 [15], where a spatial temperature sensitivity

is used to constrain the future response to climate change - which we term as a spatial emergent

constraint. Our study combines the Chadburn et al. 2017 [15] method with the soil carbon turnover

analysis of Koven et al. 2017 [16] to get a constraint on the sensitivity of soil carbon turnover to

global warming.

Soil carbon (Cs) is increased by the flux of organic carbon into the soil from plant litter and roots,

and decreased by the breakdown of that organic matter by soil microbes which releases CO2 to the

atmosphere as the heterotrophic respiration flux (Rh). If the vegetation carbon is at steady-state,

litter-fall will equal the Net Primary Production of plants (NPP). If the soil carbon is also near to a

steady-state - and in the absence of significant fire fluxes and other non-respiratory carbon losses -
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the litter-fall, NPP, and Rh we all be approximately equal to one another. Even over the historical

period, when atmospheric CO2 has been increasing and there has been a net land carbon sink, this

approximation holds well (see Supplementary Figure 4).

In order to separate the effects of changes in NPP from the effects of climate change on Rh, we

define an effective turnover time [17] for soil carbon as τs = Cs/Rh. The turnover time of soil

carbon is known to be especially dependent on temperature [3]. A common assumption is that τs

decreases by about 7% per ◦C of warming (equivalent to assuming that q10 = 2) [18]. However,

this sensitivity differs between models, and also between models and observations.

We can write a long-term change in soil carbon (∆Cs), as the sum of a term arising from changes

in litter-fall (∆Cs,L), and a term arising from changes in the turnover time of soil carbon (∆Cs,τ):

∆Cs = ∆Cs,L(t) + ∆Cs,τ(t) ≈ ∆(Rh τs) ≈ τs,0 ∆Rh(t) + Rh,0 ∆τs(t) (1)

Model projections of the first-term (∆Cs,L) differ primarily because of differences in the extent

of CO2-fertilisation of NPP, and associated nutrient limitations. The second-term (∆Cs,τ) differs

across models because of differences in the predicted future warming, and because of differences in

the sensitivity of soil carbon decomposition to temperature (which includes an influence from faster

equilibration of fast-turnover compared to slow-turnover carbon pools under changing inputs [13]).

This study provides an observational constraint on the latter uncertainty. As the vast majority of the

CMIP6 and CMIP5 models do not yet represent vertically resolved deep soil carbon in permafrost

or peatlands, we focus our constraint on carbon change in the top 1 metre of soil. To ensure a

fair like-for-like comparison we also exclude the two CMIP6 models that do represent vertically-

resolved soil carbon (CESM2 and NorESM2), although this has an negligible effect on our overall

result. Our study therefore applies to soil carbon loss in the top 1 metre of soil only. Below we

show that it is possible to significantly reduce the uncertainty in this key feedback to climate change

using current-day spatial data to constrain the sensitivity to future warming.
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Results and Discussion

Proof of concept For each ESM, we begin by calculating the effective τs using time-averaged

(1995-2005) values of Cs and Rh at each grid-point, and applying our definition of τs = Cs/Rh. We

do likewise for observational datasets of soil carbon in the top 1 metre [19, 20] and time-averaged

(2001-2010) heterotrophic respiration [21], as shown in Figure 1. Figure 1(c) shows the map of

inferred values of τs from these observations, with a notable increase from approximately 7 years

in the warm tropics to over 100 years in the cooler high northern latitudes.

Similar maps can be diagnosed for each of year of data, for each ESM, and for each future scenario,

giving time and space varying values of τs for each model run. This allows us to estimate ∆Cs,τ,

via the last term on the right of equation 1. For each ESM, the Rh,0 value is taken as the mean

over the decade 1995-2005, to overlap with the time period of the observations and to maintain

consistency across CMIP generations. Individual grid-point τs values are calculated for each year

before calculating area-weighted global totals of ∆Cs,τ. The uncertainty of ∆Cs,τ stems from the

uncertainty in soil carbon turnover (τs), and the uncertainty due to differing climate sensitivities of

the models. In this study, we aim to quantify and constrain the uncertainty in τs. To isolate the

latter uncertainty, we consider ∆Cs,τ for differing levels of global mean warming in each model.

The resulting dependence of global total ∆Cs,τ on global warming is shown in Figure 2(a), for each

of the ESMs considered in both CMIP6 and CMIP5 (seven CMIP6 ESMs and nine CMIP5 ESMs),

and for three Shared Socioeconomic Pathways (SSP): SSP126, SSP245 and SSP585 (CMIP6) [22],

or the equivalent Representative Concentration Pathways (RCP): RCP2.6, RCP4.5, and RCP8.5

(CMIP5) [23]. In all cases ∆Cs,τ is negative, which is consistent with the soil carbon turnover time

decreasing with warming. The more surprising thing to note is the huge range in the projections,

with a spread at 2◦C global mean warming of approximately 400 PgC, regardless of future SSP/RCP

scenario. Figure 2(b) plots the fractional change in soil carbon ∆Cs,τ/Cs,0, showing that there is a

large range of effective q10 sensitivities between the model projections.

Unfortunately, we do not have time-varying observational datasets of Cs and Rh that might allow
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us to directly constrain this projection uncertainty. Instead we explore whether the observed spatial

variability in τs (as shown in Figure 1(c)) provides some observational constraint on the sensitivity

of τs to temperature. In doing so, we are motivated by Chadburn et al. 2017 [15] who used the

correlation between the observed geographical distributions of permafrost and air temperature to

constrain projections of future permafrost area under global warming. Similarly, we use ESMs to

test whether the spatial variation in τs reveals the sensitivity of soil carbon turnover to temperature.

The spatial patterns of τs in CMIP5 simulations and observations were previously shown in Koven

et al. 2017 [16], and here we test whether such relationships can be used to estimate the response

of soil carbon to future climate change, using a combination of CMIP6 and CMIP5 models.

Figure 3(a) is a scatter plot of log τs against temperature, using the τs values shown in Figure

1(c) and mean temperatures from the WFDEI dataset over the period 2001-2010 [24]. The thick

black-dotted line is a quadratic fit through these points. Also shown for comparison are equivalent

quadratic fits for each model (colourful lines), using the model log τs and mean near-surface air

temperature (T) values for each grid-point, over an overlapping period with the observations (1995-

2005). There is a spread in the data points due to variation in soil moisture, soil type, and other

soil parameters [25]. The model specific spread in the data can be seen for the CMIP6 and CMIP5

models in Supplementary Figures 2 and 3 respectively. Although models do not account for every

possible factor contributing to this spread, the spread of points in the models is generally similar

to the observations. However, differences between the best-fit functions relating τs to T are evident

between the models, and between the models and the observations [16].

This suggests that we may be able to constrain ∆Cs,τ using the observed τs vs T fit from the

observations, but only if we can show that such functions can be used to predict ∆Cs,τ under climate

change. In order to test that premise, we attempt to reconstruct the time-varying ∆Cs,τ projection

for each model using the time-invariant τs vs T fit across spatial points (Figure 3(a)), and the

time-invariant Rh,0 field. The change in soil carbon turnover time (∆τs(t)) for a given model run

is estimated at each point based-on the τs vs T curve, and the time-varying projection of T at that

point. A local estimate of the subsequent change in soil carbon can then be made based-on the
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farthest right-hand term of Equation 1 (Rh,0 ∆τs), which can be integrated up to provide an estimated

change in global soil carbon in the top 1 metre (∆Cs,τ).

Figure 3(b) shows the result of this test for all models and all respective SSP/RCP scenarios. The

axes of this plot show equivalent variables which represent the global ∆Cs,τ, change between the

mean value for 2090-2100 and the mean value for 1995-2005. The y-axis represents the actual

values for each model as shown in Figure 2, and the x-axis represents our estimate derived from

spatial variability (as in Figure 3(a)). As hoped, actual vs estimated values cluster tightly around a

one-to-one line with an r2 correlation coefficient value of 0.90. Although some hot-climate regions

will inevitably experience temperatures beyond those covered by current-day spatial variability,

these tend to be regions with low soil carbon, so this does not have a major impact on the success

of our method.

Spatial Emergent Constraint This gives us confidence to use the τs vs T fit and Rh,0 from

observations to constrain future projections of ∆Cs,τ. To remove the uncertainty in future ∆Cs,τ due

to the climate sensitivity of the models, we investigate a common amount of global mean warming

in each model. Figure 4(a) is similar to Figure 3(b) but instead for the more policy-relevant case

of 2◦C of global warming. As before, the y-axis represents the modelled ∆Cs,τ, and the x-axis is

our estimate derived from spatial variability. Once again, the actual and estimated values of ∆Cs,τ

cluster around the one-to-one line (with r2 = 0.87). The model range arises partly from differences

in the initial field of heterotrophic respiration (Rh,0), and partly from differences in ∆τs (compare

first row to penultimate row of Table 1).

The vertical green line in Figure 4(a) represents the mean estimate when the τs vsT relationship and

the Rh,0 field from the model are replaced with the equivalents from the observations. The spread

shown by the shaded area represents the relatively small impact on ∆Cs,τ of differences in modelled

spatial climate change patterns at 2◦C of global warming. In order to estimate the remaining

uncertainty in∆Cs,τ, we treat this spread as equivalent to an observational uncertainty in an emergent

constraint approach [26]. We apply a standard statistical approach [27, 28] to estimate the probability
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density function of the y-axis variable (model ∆Cs,τ), accounting for both this observational spread

and the quality of the emergent relationship. To test the robustness to the choice of observations

we have repeated the analysis with different datasets to represent heterotrophic respiration, which

produces strongly-overlapping emergent constraints, and completing the analysis with both CMIP6

and CMIP5 models shows that the result is also robust to the choice of model ensemble (see Table

1).

Figure 4(b) shows the resulting emergent constraint (blue line), and compares to the unweighted

histogram of model values (grey blocks), and a Gaussian fit to that prior distribution (black line).

The spatial emergent constraint reduces the uncertainty in ∆Cs,τ at 2◦C of global warming from

-196 ± 117 PgC to -232 ± 52 PgC (where these are mean values plus and minus one standard

deviation for the top 1 metre). This same method can be applied to find constrained values of ∆Cs,τ

for other values of global warming. Figure 4(c) shows the constrained range of ∆Cs,τ as a function

of global warming. This rules out the most extreme projections but nonetheless suggests substantial

soil carbon losses due to climate change even in the absence of losses of deeper permafrost carbon.
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Figure 1: Spatial variability of soil carbon turnover time inferred from observations. Maps

of (a) observed soil carbon (Cs) to a depth of 1m. (kg C m−2) [19, 20], (b) observed heterotrophic

respiration (Rh,0) (kg C m−2 yr−1) [21], and (c) inferred soil carbon turnover time (log τs) (yr).
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Figure 2: Uncertainty in future changes in soil carbon due to reduction in turnover time. ∆Cs,τ

vs ∆T plot diagnosed from sixteen Earth System Models (seven CMIP6 ESMs and nine CMIP5

ESMs), for three different future scenarios: SSP126, SSP245, SSP585, or RCP2.6, RCP4.5,

RCP8.5, respectively. (a) The change in soil carbon due to the change in soil carbon turnover time

against change in global mean temperatures; (b) The fractional change in soil carbon due to the

change in soil carbon turnover time against change in global mean temperatures, and compared to

different effective q10 sensitivities.
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Figure 3: Using spatial variability of soil carbon turnover time to estimate ∆Cs,τ. (a) Scatter-

plot of the relationship between log τs and mean air temperature from observations [19, 20, 21, 24]

(black points), and a quadratic fit (black-dotted line) representing the observational temperature

sensitivity of log τs. The equivalent quadratic fits for the ESMs are shown by the coloured lines; (b)

The proof of principle for our method, showing an actual vs estimated comparison, representing

the modelled versus the relationship-derived values of the ∆Cs,τ, where the change is considered

between the start (1995-2005) and the end (2090-2100) of 21st century and is assumed to relate to

the top 1 metre of soil.
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Figure 4: Emergent constraint on∆Cs,τ as a function of global warming. (a) Actual vs estimated

scatter plot for ∆Cs,τ for 2◦C of global warming. The vertical green line defines the observational

constraint which is derived using observational data and the future spatial temperature field of

each model (decadal average), and the shaded region represents the corresponding uncertainty

(±1 standard deviation). The horizontal blue line represents our emergent constraint, with the

shaded region showing the corresponding uncertainty (±1 standard deviation) which results from

the differing future spatial warming patterns seen in the future spatial temperature fields across the

ESMs, and the emergent relationship between the model data points (black line). (b) Probability

density function showing the Gaussian distribution of ∆Cs,τ values from the unweighted prior

model ensemble (black line) and the emergent constraint (blue line). (c) Constrained ∆Cs,τ values

at different levels of global warming (blue), including the likely (±1 standard deviation) uncertainty

bounds (shaded blue). Different effective global q10 values shown for comparison; our emergent

constraint is consistent with an effective q10 ≈ 2.5 ± 0.6.
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Table 1: Sensitivity study of spatial emergent constraint. The table presents the sensitivity

of the emergent constraint on ∆Cs,τ to model ensemble: CMIP5, CMIP6, or CMIP5 and CMIP6

combined (columns), and to the observational dataset for heterotrophic respiration (rows). The

penultimate row presents the constraint using the observational τs v T fit and model Rh,0, opposed

to observational Rh,0, to isolate the uncertainty reduction from these different components. For

comparison, the last row shows the mean and standard deviation of the unconstrained model

ensemble.

Constrained ∆Cs,τ at 2◦C global mean warming

Combined CMIP6 CMIP5

CARDAMOM Rh −232 ± 52 −238 ± 62 −227 ± 48

MODIS NPP −201 ± 53 −206 ± 63 −196 ± 49

Raich 2002 Rs −243 ± 50 −249 ± 59 −238 ± 46

CARDAMOM Rh (Observational τs v T fit, model Rh,0) −227 ± 95 −220 ± 75 −230 ± 109

Unconstrained ∆Cs,τ −196 ± 117 −216 ± 109 −180 ± 121
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Methods

Obtaining spatial relationships: In this section we explain how the quadratic relationships repre-

senting the spatial log τs-temperature sensitivity shown in Figure 3(a) (and Supplementary Figures

2, 3, and 6) were derived, for both the Earth System Models (ESMs) in CMIP6 and CMIP5, and

using the observational data. This is similar to the method used in Koven et al. 2017 [16].

Obtaining spatial relationships for CMIP Models: The CMIP6 models used in this study are

shown in the Table 2, and the CMIP5 models used in this study are shown in Table 3.

To obtain model specific spatial log τs-temperature relationships, the following method was used.

A reference time period was considered (1995-2005), this was taken as the end of the CMIP5

historical simulation to be consistent within CMIP generations and to best match the observational

data time frame considered. Then, monthly model output data was time averaged over this period,

for the output variables ‘soil carbon content’ (Cs) in kg m−2, ‘heterotrophic respiration carbon flux’

(Rh) in kg m−2s−1, and ‘air temperature’ in K. The variables Cs and Rh were used to obtain values

for soil carbon turnover time (τs) in years, using the equation τs = Cs/(Rh ∗ 86400 ∗ 365). The

model temperature variable units were converted from K to ◦C.

For each model, these values of log τs were plotted against the corresponding spatial temperature

data to obtain the spatial log τs-temperature plot. Then, quadratic fits (using the python package

numpy polyfit) are calculated for each model, which represent the spatial log τs relationship and

sensitivity to temperature. These model specific relationships are shown by the colourful lines in

Figure 3(a) in themainmanuscript, and in Supplementary Figure 2 for CMIP6 and in Supplementary

Figure 3 for CMIP5.

Obtaining spatial relationships for observations: Following Koven et al. 2017 [16], we es-

timated observational soil carbon data (to a depth of 1m) by combining the Harmonized World

Soils Database (HWSD) [19] and Northern Circumpolar Soil Carbon Database (NCSCD) [20] soil

carbon datasets, where NCSCD was used where overlap occurs. To calculate soil carbon turnover

time, τs, using the following equation: τs = Cs/Rh, we require a global observational dataset
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for heterotrophic respiration. In the main manuscript, CARDAMOM (2001-2010) heterotrophic

respiration (Rh) is used [21]. In this study, we completed a sensitivity study on the choice of

observational heterotrophic respiration dataset, see below. The WFDEI dataset is used for our

observational air temperatures (2001-2010) [24]. Then, these datasets can be used to obtain the

observational log τs-temperature relationship, using the same quadratic fitting as with the models.

This represents the ‘real world’ spatial temperature sensitivity of log τs, and is shown by the thick-

dotted-black line in Figure 3(a) of the main manuscript. A comparison of the derived observational

relationships can be seen in Supplementary Figure 6.

Observational sensitivity study: To calculate soil carbon turnover time, τs, using the following

equation: τs = Cs/Rh, we require a global observational dataset for heterotrophic respiration. In the

main manuscript, CARDAMOM (2001-2010) heterotrophic respiration is used [21]. We completed

a sensitivity study to investigate our constraint dependence on the choice of observational dataset.

The other observational datasets considered are as follows: NDP-08 ‘Interannual Variability in

Global Soil Respiration on a 0.5 Degree Grid Cell Basis’ dataset (1980-1994) [29], ‘Global spa-

tiotemporal distribution of soil respiration modelled using a global database’ [30], and MODIS net

primary productivity (NPP) (2000-2014) [31]. Supplementary Figure 4 shows scatter plots showing

one-to-one comparisons of these observational datasets against one another, and Supplementary

Figure 5 shows the corresponding comparisons of the equivalent log τs values calculated from each

dataset.

The CARDAMOM Rh dataset is used in the main manuscript for the following two main reasons:

firstly, we calculate τs using heterotrophic respiration which allows for consistency between models

and observations, and secondly, the dataset does not use a prescribed q10 sensitivity [21]. Instead,

the CARDAMOM Rh dataset was derived by explicitly assimilating observations into a process-

based diagnostic land-surface model. To test the robustness of our results, we also repeated

our analysis with MODIS NPP and Raich 2002, for both CMIP6 and CMIP5 together, and as

separate model ensembles. Supplementary Figure 6 shows the observational log τs-temperature

relationships, derived using each of these observational datasets. The results are presented in Table
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1 which shows the constrained values of ∆Cs,τ at 2◦C global mean warming.

We decided not to complete the paper analysis using the Hashimoto dataset since not only is it

inconsistent with the three other datasets considered, it also shows an arbitrarymaximum respiration

level (Supplementary Figure 4), which likely results from the assumed temperature-dependence of

soil respiration in this dataset which takes a quadratic form [30]. The quadratic form is justified

based on a site-level study in which it is used to fit temporal dynamics. However, the parameters

for the quadratic function that are fitted in the Hashimoto study are very different from those in the

site-level study, which therefore suggests that the same relationship does not apply to the global

distribution of mean annual soil respiration.

Equation for the soil carbon turnover time component of soil carbon change: The equation

used in this study for the component of the change in soil carbon (∆Cs) due to the change in soil

carbon turnover time (∆τs) was derived in the following way. Starting with the equation for soil

carbon (based on the definition of τs):

Cs = Rh τs (2)

As discussed in the main manuscript, we can write this change in soil carbon (∆Cs), as the sum of

a term arising from changes in litter-fall (∆Cs,L), and a term arising from changes in the turnover

time of soil carbon (∆Cs,τ):

∆Cs = ∆Cs,L(t) + ∆Cs,τ(t) ≈ ∆(Rh τs) ≈ τs,0 ∆Rh(t) + Rh,0 ∆τs(t) (3)

Hence, the equation for the component of soil carbon change due to the change in τs is:

∆Cs,τ = Rh,0 ∆τs (4)

In this study we use Rh from the reference period (‘present day’), which we call Rh,0, to allow us to

investigate the response of ∆Cs,τ as a result of the response of τs to climate change.

Modelled future temperature: The proof of principle figure (Figure 3(b)) compares projections

at the end of the 21st century (2090-2100) warming, for each future SSP scenario (SSP126, SSP245,
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SSP585) [22] or equivalent future RCP scenario (RCP2.6, RCP4.5, and RCP8.5) [23], with our

reference period from the historical simulation (1995-2005), for each CMIP6 ESM and CMIP5

ESM respectively.

To consider specific ◦C of global warming (Figure 4), the future spatial temperature profiles at

these specific global mean warming levels, for example: 1◦C, 2◦C, and 3◦C global mean warming,

were calculated as follows. The temperature change is calculated from our reference period (1995-

2005), and then a 5-year rolling mean of global mean temperature is taken to remove some of

the interannual variability. Once the year that the given temperature increase has been reached is

obtained, a time average including -5 and +5 years is taken, and the spatial temperature distribution

of that model averaged over the deduced time period is used for the calculations of future τs.

Anomaly correction for future temperature projections: Due to the uncertainty associated with

climate sensitivity, which results in each model projecting different future warming scenarios for

the same amount of climate forcing, a spatial future temperature anomaly was projected using each

model and each respective future SSP/RCP scenario separately. To calculate this, the temperature

at the reference time frame (1995-2005), which overlaps the WFDEI observational temperature

data time frame (2001-2010), is subtracted from the future temperature profile for each model

(as calculated above), to calculate the temperature change. Then, this temperature anomaly is

added onto the observational temperature dataset to give a model-derived future ‘observational’

temperature for each model.

Proof of concept for our method: The concept of our method relies on the idea that the spatial

temperature sensitivity can be used to project and constrain the temporal sensitivity of τs to

temperature, and subsequently global warming. To test the robustness of this method, ∆Cs,τ

calculated using model ∆τs, and temperature sensitivity relationship-derived ∆τs, are compared.

The change in soil carbon turnover time (∆τs) was either calculated using model output data to

obtain model-derived ∆τs as follows:

∆τs = τ
f
s − τ

h
s (5)
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where,

τs = Cs/Rh (6)

Or calculated using the derived quadratic log τs-temperature relationships to obtain relationship-

derived ∆τs, which is based on the following equation:

∆τs = exp(p(T f)) − exp(p(Th)) (7)

Where, T is near surface air temperature, and T f represents a future temperature, and Th represents

historical (present day) temperature from our reference period (1995-2005). The exponentials

(exp) are taken to turn log τs values to τs values. p(T) represents the quadratic log τs-temperature

relationship as a function of temperature to obtain our estimated log τs.

These ∆τs values are then put back into the equation 4 (with model-specific Rh,0) to obtain the

corresponding ∆Cs,τ values. The proof of principle figure (Figure 3(b)) investigates the robustness

of our method, where projections of model and relationship-derived values of ∆Cs,τ are compared,

and an r2 value of 0.90 is obtained. The correlation of the data was also tested when investigating

different levels of global mean warming to obtain the constrained values (Figure 4). The r2 values

for were as follows: 1◦C is 0.84, 2◦C is 0.87, and 3◦C is 0.87.

Calculating constrained values: To obtain the constrained values of ∆Cs,τ, the model-derived

future ‘observational’ temperature for each model is used together with the observational derived

log τs-temperature relationship, to project values for future τs. Then this together with relationship-

derived historical τs deduced using the observational temperature dataset, can be used to calculate

∆τs. Finally global ∆Cs,τ can be obtained by multiplying ∆τs by the observational dataset for Rh,0

(using equation 4), and then calculating a weighted-global total. As each model-derived future

‘observational’ temperature is considered separately, we obtain a range of projected observational-

constrained ∆Cs,τ values.

We have now obtained a set of x and y values, corresponding to the relationship-derived and

modelled values of ∆Cs,τ respectively, for each ESM. Where we have an x and y value for each
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model, representing the modelled ∆Cs,τ (y), and the model specific relationship-derived ∆Cs,τ (x).

We also have a xobs value representing the mean observational-constrained ∆Cs,τ value, and a

corresponding standard deviation due to the uncertainty in the modelled spatial profiles of future

temperatures. We follow the method used in Cox et al. 2018, which can be seen in the ‘Least-

squares linear regression’ section and the ‘Calculation of the PDF for ECS’ section of the methods

from this study [32]. Using this method, we obtain an emergent relationship between our x and

y data points, which we can use together with our xobs and corresponding standard deviation to

produce a constraint on our y-axis. This is shown in Figure 4(a). From this we obtain a constrained

probability density function on ∆Cs,τ, with a corresponding uncertainty bounds which we consider

at the 68% confidence limits (±1 standard deviation). Figure 4(b) show the probability density

functions representing the distribution of the range of projections, before and after the constraint.

This method allows us to calculate a constrained probability density function on ∆Cs,τ at each ◦C of

global mean warming, using the data seen in Figure 4(a) for 2◦C warming, and our corresponding

constrained values for 1◦C and 3◦C warming. Figure 4(c) shows the resultant constrained mean

value of ∆Cs,τ obtained for each ◦C of global mean warming, and the corresponding uncertainty

bounds at the 68% confidence limits (±1 standard deviation).

Calculating effective q10 for change in soil carbon: Simple models of soil carbon turnover are

often based on just a Q10 function, which means that τs depends on temperature as follows:

τs = τs,0 exp ((−0.1 log q10)∆T) (8)

We compared the results for ∆Cs,τ that would be derived from a simple Q10 function with our

emergent constraint results for ∆Cs,τ, to estimate an effective q10 sensitivity of heterotrophic

respiration.

To do this, we can obtain an equation for ∆τs derived from equation 8. This is done by considering

the following, where τs,0 is an initial τs, we can substitute in τs in temperature sensitivity form to

obtain an equation for ∆τs in temperature sensitivity form:

∆τs = τs − τs,0 (9)
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∆τs = τs,0 exp ((−0.1 log q10)∆T) − τs,0 (10)

Then, we can substitute this ∆τs into equation 4 and simplify to obtain an equation relating ∆Cs,τ

and ∆T :

∆Cs,τ = Rh,0τs,0[ exp ((−0.1 log q10)∆T) − 1] (11)

∆Cs,τ = Cs,0[ exp ((−0.1 log q10)∆T) − 1] (12)

This equation was used to calculate different ∆Cs,τ-∆T sensitivity curves based on different values

on q10, for example q10 = 2, with different amounts of global mean warming to represent ∆T , and

initial observational soil carbon stocks Cs,0. These curves can be seen on Figures 2(b) and 4(c).

Note that there is no direct relationship between the effective q10 for soil carbon change shown in

Figures 2(b) and 4(c), and the spatial τs-T relationships in Figure 3(a). Our q10 value is an effective

q10 value that indicates the sensitivity of global soil carbon (in the top 1 metre) to global mean

temperature.

Data availability: The datasets analysed during this study are available online:

CMIP5 model output [https://esgf-node.llnl.gov/search/cmip5/], CMIP6 model out-

put [https://esgf-node.llnl.gov/search/cmip6/], The WFDEI Meteorological Forcing

Data [https://rda.ucar.edu/datasets/ds314.2/], CARDAMOM Heterotrophic Respira-

tion [https://datashare.is.ed.ac.uk/handle/10283/875], MODIS Net Primary Production

[https://lpdaac.usgs.gov/products/mod17a3v055/], Raich et al. 2002 Soil Respiration

[https://cdiac.ess-dive.lbl.gov/epubs/ndp/ndp081/ndp081.html], Hashimoto et al. 2015 Het-

erotrophic Respiration [http://cse.ffpri.affrc.go.jp/shojih/data/index.html], and the datasets for

observational Soil Carbon [https://github.com/rebeccamayvarney/soiltau_ec].

Code availability: The Python code used to complete the analysis and pro-

duce the figures in this study is available in the following online repository

[https://github.com/rebeccamayvarney/soiltau_ec].
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Table 2: CMIP6 Models

Model Institute

ACCESS-ESM1-5 Australian Community Climate and Earth Systems Simulator, Australia

BCC-CSM2-MR The Beijing Climate Center, China

CanESM5 Canadian Centre for Climate Modelling and Analysis, Canada

CNRM-ESM2-1 CNRM/CERFACS, French Centre National de la Recherche Scientifique, France

IPSL-CM6A-LR Institut Pierre-Simon Laplace, France

MIROC-ES2L Atmosphere and Ocean Research Institute and

Japan Agency for Marine-Earth Science and Technology, Japan

UKESM1-0-LL NERC and Met Office Hadley Centre, UK
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Table 3: CMIP5 Models

Model Institute

BNU-ESM College of Global Change and Earth System Science, China

CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada

CESM1-CAM5 National Science Foundation, Department of Energy, NCAR, USA

GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory, USA

GISS-ES-R NASA Goddard Institute for Space Studies, USA

HadGEM2-ES Met Office Hadley Centre, UK

IPSL-CM5A-LR Institut Pierre-Simon Laplace, France

MIROC-ESM Atmosphere and Ocean Research Institute and

Japan Agency for Marine-Earth Science and Technology, Japan

NorESM-M Norwegian Climate Centre, Norway
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Supplementary Information is linked to the online version of the paper.
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