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Abstract 

We have used the method of Wannier functions to calculate the frequencies and profiles of spin 

waves localised in one-dimensional (1D) magnonic crystals due to a gradient in the bias magnetic 

field.  This localisation of spin waves is analogous to the phenomenon of Bloch oscillations of 

quantum-mechanical electrons in crystals in a uniform electric field.  As a convenient yet realistic 

model, we consider backward volume magnetostatic spin waves (BVMSWs) in a film of yttrium-

iron garnet (YIG) in a bias magnetic field comprising spatially uniform, cosine and gradient 

contributions.  The spin-wave spectrum is shown to have the characteristic form of a Wannier-

Stark ladder.  The analytical results are verified using those obtained using numerical 

micromagnetic simulations.  The physics of spin-wave Bloch oscillations combines the topics of 

magnonic crystals and graded magnonic index – the two cornerstones of modern magnonics.   
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The concept of elementary excitations is one of the cornerstones of modern physics, 

including such an important and quickly developing part of it as physics of superlattices and 

nanostructures.  Just as the dynamics of crystal structures is determined by the spectrum of 

phonons (quanta of normal modes of collective elastic vibrations of atoms), the dynamics of 

magnetically ordered systems is described using the concept of elementary magnetization 

excitations - spin waves (SWs) - and their quanta - magnons.  SWs determine the high-frequency 

dynamics and relaxation of the magnetisation in magnetic materials, as well as their thermal and 

kinetic properties.1-5 

The behaviour of plane waves in artificial periodic media, e.g. superlattices, is analogous 

to well-investigated case of electron waves in crystals.  For instance, the waves’ band structures 

are similar to the valence and the conduction bands in semiconductors.  Hence, after application 

of the well-developed methods of quantum mechanics and solid-state physics to such new 

artificially nanostructured materials, properties of elementary excitations in photonic,6,7 

acoustic,8,9 and magnonic10-13 crystals were successfully investigated.   

Among other interesting effects, such a well-known phenomenon as Bloch oscillations 

(localization)14 is also not unique to electrons in crystals but can occur for any waves in periodic 

media with graded properties.  Bloch oscillations were observed, for instance, in optical 

(photonic)15,16 and acoustic (phononic)17,18 structures.  A similar phenomenon was investigated in 

arrays of cold atoms19-21 and in the systems with a strong spin-orbit coupling in gradient magnetic 

field.22,23  However, neither experimental24-28 nor theoretical29-31 investigations did give the 

evidence of SW localisation in realistic magnetic nanostructures with graded properties.  Actually, 

the task of studying Bloch oscillations was not posed in these experimental works, so the 

temperature28 and bias magnetic field24-27 gradients were chosen too small for these oscillations to 

be detected.  As to the theoretical studies, the possibility of existence of Bloch localisation in 

magnetic systems was confirmed in principle, but only for models far from realistic, 

experimentally realisable magnonic crystals.  In Ref. 29,32, only nonlinear excitations were 

considered, whose behaviour obeys laws different to those for linear elementary excitations of the 

SW type.  In Refs. 30-31, concrete calculations of the excitations spectra in the form of a Wannier-

Stark ladder were performed.  However, only discrete models with exchange interactions between 

spins were considered.  Yet, for the sizes of realistic nanostructures, the most suitable is the 

phenomenological model of a continuous medium dominated by the magneto-dipolar 

interaction.1,2,33  

In this article, we present results of analytical and numerical calculations that show Bloch 

oscillations and their spectra in the form of Wannier-Stark ladder for the backward volume 
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magnetostatic spin waves (BVMSWs) in magnonic crystals with realistic sizes and geometry.  We 

consider a thin film of yttrium-iron garnet (YIG) in a bias magnetic field parallel to the film's 

surface (along the x  axis). This external bias magnetic field is a sum of three terms: (1) a spatially 

uniform term, (2) cosine term (which forms the analogue of superlattice), and (3) a slowly varying 

linear term. The geometry of the problem is presented in Fig.1.  We assume that the sample is in 

the saturated state and that the static average magnetisation of the film is co-directional with it.  

We treat the magnetisation of the film as the sum of the saturation magnetization and a weakly 

excited term (i.e. a SW), which has two spatial components (𝜇𝑦(𝑥), 𝜇𝑧(𝑥)) exp( 𝑖𝛺𝑡).   

 

  

Fig. 1.  The geometry of the problem is shown. A thin magnetic film of thickness 𝑑 is magnetised 

along the 𝑥 axis by a bias magnetic field comprising spatially uniform 𝐻, cosine ℎ cos(𝐾𝑥), and 

gradient 𝐺𝑥 contributions.  SWs propagate (with a wave vector 𝒌) also along the 𝑥 axis (BVMSW 

geometry).  The period of the cosine field contribution is 𝑎 =3 µm, and so, 𝐾 = 2𝜋/𝑎.  

To find the frequencies of spin waves  , we use the Landau-Lifshitz equation,  

{
𝑖𝛺𝜇𝑦(𝑥) = (𝜔𝐻 + 𝜔ℎ ⋅ 𝑐𝑜𝑠(𝐾𝑥) + 𝛾𝜇0𝐺𝑥)𝜇𝑧(𝑥)

−𝑖𝛺𝜇𝑧(𝑥) = (𝜔𝐻 + 𝜔ℎ ⋅ 𝑐𝑜𝑠(𝐾𝑥) + 𝛾𝜇0𝐺𝑥)𝜇𝑦(𝑥) − 𝜔𝑀ℎ̂(𝜇𝑦(𝑥))
 ,                   (1) 

where the term 𝛾𝜇0𝐺𝑥 describes the field gradient, 𝜔𝐻 = 𝛾𝜇0𝐻, where H  is the spatially uniform 

component of the magnetic field, 𝑀 is the saturation magnetization, 𝜔𝑀 = 𝛾𝑀, 𝜇0 is the 

permeability, 𝛾 is the gyromagnetic ratio, 𝑎 is the period of the cosine static magnetic field, and 

values 𝐾 =
2𝜋

𝑎
 , and 𝜔ℎ = 𝛾𝜇0ℎ correspond to the scale and the amplitude of the field modulation.  

The dynamical dipolar field is 

           ℎ̂(𝜇𝑦) = −
𝜕

𝜕𝑦
∫𝑑𝒓′ (𝜇𝑦 ⋅ 𝛻

′)
1

|𝒓−𝒓′|
  .                                                  (2) 

If 𝐺 = 0, the solution of equation (1) is a standard linear eigenfrequency and eigenfunction 

problem.  In this case, we denote the SW solutions as 𝑚𝑦(𝑘, 𝑥) and 𝑚𝑧(𝑘, 𝑥), and corresponding 

frequencies as 𝜔(𝑘).  In accordance with the Bloch theorem for a periodic potential, we can 
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employ the usual for magnonics, photonics and phononics presentation for elementary excitations, 

representing the two  SW components as   

𝑚𝑦(𝑘, 𝑥) = 𝑒−𝑖𝑘𝑥 ∑ 𝑇𝑛(𝑘)𝑒
𝑖
2𝜋𝑛

𝑎
𝑥

𝑛  ,       𝑚𝑧(𝑘, 𝑥) = 𝑒−𝑖𝑘𝑥∑ 𝐷𝑛(𝑘)𝑒
𝑖
2𝜋𝑛

𝑎
𝑥

𝑛    .            (3)  

Setting 𝐺 = 0 in Eq. (1), we obtain an infinite system of linear algebraic equations for coefficients 

𝐷𝑛(𝑘) and 𝑇𝑛(𝑘)  

{
𝑖𝜔(𝑘)𝑇𝑛(𝑘) = 𝜔𝐻𝐷𝑛(𝑘) +

𝜔ℎ

2
(𝐷𝑛+1(𝑘) + 𝐷𝑛−1(𝑘))

−𝑖𝜔(𝑘)𝐷𝑛(𝑘) = 𝛯𝑛(𝑘)𝑇𝑛(𝑘) +
𝜔ℎ

2
(𝑇𝑛+1(𝑘) + 𝑇𝑛−1(𝑘))

   ,                       (4) 

where 

𝛯𝑛(𝑘) = (𝜔𝐻 + 𝜔𝑀
1−𝑒

−|𝑘−
2𝜋𝑛
𝑎

|𝑑

|𝑘−
2𝜋𝑛

𝑎
|𝑑

)  .                                            (5) 

We consider the case when 
𝜔ℎ

𝜔𝐻
<< 1  . This allows us to approximate the full solution of the 

problem Eq. (4)-(5) by a finite-sized subset of the basis states and leads to the standard 

diagonalization of the characteristic matrix of finite size for Eq. (4).  As a result, we obtain the 

expected picture of the band dispersion 𝜔(𝑘), which is usual for crystals.  

 

Fig. 2.  The SW frequency is shown as a function of the wave number in the first Brillouin zone.  

The cosine static magnetic field with a period of 3 µm has the modulation amplitude of (a) 

𝜇0ℎ = 5 mT and (b) 𝜇0ℎ = 10 mT.  The black dash lines show the calculations by Eq. (4)-(5) with 

the indices 𝑛 varying from 0 - 10 (only the first 7 bands are shown).  The red solid lines show the 

analytical calculations by Eq. (7), i.e. 𝑛 = 0,1.  The grey stripe in panel (a) shows the first band 

gap, which is almost the same in the two approximations.  The grey stripe and the red hatched 

stripe in (b) show the first band gap for numerical and analytical calculations, respectively.  Both 

in panels (a) and (b), the uniform bias magnetic field is 𝜇0𝐻 = 185 mT, the saturation 

magnetization is 𝑀 = 200 kA / m, 𝛾/2𝜋 = 28 GHz/T, and the film thickness is 𝑑 =1 µm.   
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The magnonic bands are ordered in frequency from top to down.  As our numerical 

calculations show (Fig. 2, black dash lines), with parameters chosen here the periodic field 

modulation induces a large first band gap, while the other (higher order) band gaps are significantly 

smaller and the allowed bands are increasingly flat.  So, we can try to limit our model to the first 

and second bands only.  In this approximation, the characteristic equation takes the following 

simple biquadratic form 

(𝜔(𝑘)2 − [𝜔𝐻𝛯0 +
𝜔ℎ

2

2
]) (𝜔(𝑘)2 − [𝜔𝐻𝛯1 +

𝜔ℎ
2

2
]) − [𝛯1 + 𝜔𝐻][𝛯0 + 𝜔𝐻]

𝜔ℎ
2

4
= 0 .      (6) 

The magnonic dispersion relations for the first, 𝜔+(𝑘), and second, 𝜔−(𝑘) , bands can be found 

analytically as 

       𝜔±(𝑘) = 

= √
1

2
{[𝜔𝐻(𝛯0 + 𝛯1) + 𝜔ℎ

2] ± √𝜔𝐻
2(𝛯0 − 𝛯1)2 + (𝜔𝐻(𝛯0 + 𝛯1) + 𝛯1𝛯0 + 𝜔𝐻

2)𝜔ℎ
2}   (7) 

Using Eq. (7), we can find the analytical expression for the gap 𝛥gap between the first and 

the second bands as  

𝛥gap = 𝜔+ (
𝜋

𝑎
) − 𝜔− (

𝜋

𝑎
) ≈ √

𝜔𝐻

𝛯
(𝛯 + 𝜔𝐻)

𝜔ℎ

2𝜔𝐻
  ,                               (8) 

where 𝛯 = 𝛯0 (
𝜋

𝑎
) = 𝛯1 (

𝜋

𝑎
).  In the first approximation by the small parameter 

𝜔ℎ

𝜔𝐻
 , the band gap 

is linear in 
𝜔ℎ

𝜔𝐻
.   

Fig. 2  shows the magnonic dispersion relations in the first Brillouin zone, calculated for a 

uniform bias magnetic field of 185 mT spatially modulated by an additional cosine static magnetic 

field with a period of 3 µm.  The calculations are shown for different amplitudes of the field 

modulations: panel (a) and (b) correspond to the field amplitudes of 𝜇0ℎ = 5 mT and 𝜇0ℎ = 10 mT, 

respectively.  The SW branches are calculated for two different finite-sized subsets of the basic 

states: numerically with the extended scheme by Eqs. (4)-(5), shown by black dashed lines, and 

analytically for the first two bands by Eq. (7), shown by red solid lines.  As expected, the analytical 

result gives a good approximation in the case of 𝜇0ℎ = 5 mT, while the discrepancy between 

analytical and numerical calculations increases for 𝜇0ℎ = 10 mT.   

At the next step, we use the eigenvalues 𝜔(𝑘) given by Eq. (7) and the corresponding 

eigenfunctions 𝑚𝑦(𝑘, 𝑥), 𝑚𝑧(𝑘, 𝑥) given by Eq. (3) calculated for 𝐺 = 0 to construct solutions of 

the problem with a nonzero field gradient.  So, we return to Eq. (1) with 𝐺 ≠ 0.  Our task is to find 

new eigenvalues 𝛺 and new eigenfunctions, 𝜇𝑦(𝑥) and 𝜇𝑧(𝑥).  Now the magnetic excitations in 
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the sample cannot be presented in the form of the expansion (3).  Indeed, firstly, such a 

representation is a consequence of the Bloch theorem, i.e. of the periodicity of the potential, while 

this periodicity is broken when the gradient is nonzero.  Secondly, the matrix elements of the new 

graded potential proportional to 𝐺𝑥 diverge if the eigenfunctions are not localised.  So, we must 

use basis functions that are localised in the real space.  In this case, Wannier functions34,35 are a 

good choice.  

The scheme common in the problem of electron localisation in crystals in a uniform electric 

field is applied to one band with an assumption of non-interacting bands.  Due to the large first 

band gap in our magnonic crystal, an interband tunnelling between the first and second band is 

negligible, which allows us to find the Wannier-Stark ladder spectrum in the isolated first band.  

We determine two sets of Wannier functions for both components of the SW in the usual 

way   

𝑎(𝑥 − 𝑅) =
𝑎

2𝜋
∫ 𝑑𝑘𝑒𝑖𝑘𝑅𝑚𝑦(𝑘, 𝑥)

𝜋/𝑎

−𝜋/𝑎

 

𝑏(𝑥 − 𝑅) =
𝑎

2𝜋
∫ 𝑑𝑘𝑒𝑖𝑘𝑅𝑚𝑧(𝑘, 𝑥)
𝜋/𝑎

−𝜋/𝑎
  ,                                        (9) 

where 𝑚𝑦(𝑘, 𝑥) and 𝑚𝑧(𝑘, 𝑧) are the solutions (3) of the eigenproblem with 𝐺 = 0, described 

above.  𝑅𝑛 = 𝑛 ⋅ 𝑎, where 𝑛 are integers, are coordinates of the external field maxima, which are 

analogues of the atomic positions in a crystal.  The Wannier functions have sharp extrema near the 

corresponding 𝑅 (Fig. 3 (a)). This is the source of orthogonality of Wannier functions 

∫𝑑𝑥 𝑎(𝑥 − 𝑅′)𝑎∗(𝑥 − 𝑅) = 𝑓𝛥(𝑅 − 𝑅′) ,  

∫𝑑𝑥 𝑏(𝑥 − 𝑅′)𝑏∗(𝑥 − 𝑅) = 𝑔𝛥(𝑅 − 𝑅′) ,  

∫𝑑𝑥𝑎(𝑥 − 𝑅′)𝑏∗(𝑥 − 𝑅) = 𝑠𝛥(𝑅 − 𝑅′),                                            (10) 

which we employ below.  It follows from Eq. (1), (4) and (9) that constants 𝑓 and 𝑔 are real, while 

constant 𝑠 is imaginary.   

Further, we represent unknown profiles 𝜇𝑥(𝑧) and 𝜇𝑦(𝑧) as superpositions of Wannier 

functions (9): 

𝜇𝑦(𝑥) = ∑ 𝐴(𝑅)𝑅 𝑎(𝑥 − 𝑅) , 

𝜇𝑧(𝑥) = ∑ 𝐵(𝑅)𝑅 𝑏(𝑥 − 𝑅) .                                                (11) 
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Fig. 3.  (a) Examples of Wannier functions 𝑏(𝑥 − 𝑅𝑖) centred around the 𝑅𝑖 (𝑖 = 0,±1,±2) points, 

calculated using Eq. (9), are shown for 𝜇0ℎ = 10 mT, 𝜇0𝐻 = 185 mT, 𝑎 = 3 µm, 𝑑 = 1 µm, 

𝑀 = 200 kA / m.  (b) The profiles of localised SWs, calculated using Eq. (11),(14) for the central 

level 𝛺0 ≈ √< 𝜔+
2 > of the corresponding Wannier-Stark ladder (𝜇0ℎ = 5 mT – red and black 

and red lines, 𝜇0ℎ = 10 mT – magenta and dark cyan lines), are shown for a field gradient of 

𝜇0𝐺 = 40 mT / mm.   

To obtain the coefficients 𝐴(𝑅) and 𝐵(𝑅), we substitute Eq. (11) into Eq. (1).  At the length scale 

of variation of Wannier functions, 𝐺𝑥 ≈ 𝐺𝑅, and so, integrating both parts of the equations by 𝑥 

and using Eq. (10), we rewrite Eq. (1) as  

{
𝑖𝛺𝑓𝐴(𝑅) = 𝑖

𝑎

2𝜋
∫ 𝑑𝑘𝑒−𝑖𝑘𝑅
𝜋/𝑎

−𝜋/𝑎
𝐵(𝑘)𝜔+(𝑘) + 𝛾𝜇0𝐺𝑅𝐵(𝑅) ⋅ 𝑠

∗

−𝑖𝛺𝑔𝐵(𝑅) = −𝑖
𝑎

2𝜋
∫ 𝑑𝑘𝑒−𝑖𝑘𝑅
𝜋/𝑎

−𝜋/𝑎
𝐴(𝑘)𝜔+(𝑘) + 𝛾𝜇0𝐺𝑅𝐴(𝑅) ⋅ 𝑠

   ,                 (12) 

where 𝜔+(𝑘) is determined by Eq. (7). 

In k-representation, Eq. (12) takes the following form  

{
𝛺𝐴(𝑘) = 𝐵(𝑘)𝜔+(𝑘) − 𝛾𝜇0𝐺

𝑠∗

𝑓

𝜕

𝜕𝑘
𝐵(𝑘)

𝛺𝐵(𝑘) = 𝐴(𝑘)𝜔+(𝑘) + 𝛾𝜇0𝐺
𝑠

𝑔

𝜕

𝜕𝑘
𝐴(𝑘)

   .                                        (13) 

From Eq. (13), we obtain an equation for one of the unknown functions, for instance, for 𝐴(𝑘)  

  𝛺2𝐴(𝑘) = 𝐴(𝑘)(𝜔(𝑘))2 + {
𝑠

𝑔
−

𝑠∗

𝑓
} 𝛾𝜇0𝐺𝛺

𝜕

𝜕𝑘
𝐴(𝑘) .                                 (14) 

This is a differential equation of the first order with constant coefficients, and so, it has a standard 

solution:  

𝐴(𝑘) = �̃� 𝑒𝑥𝑝 (
𝑖

𝛾𝜇0𝐺𝛼
∫

𝛺2−(𝜔+(𝑘
′))

2

𝛺
𝑑𝑘 ′𝑘

0
),                                             (15) 

where 𝛼 = −𝐼𝑚 {
𝑠

𝑔
−

𝑠∗

𝑓
} .   

-9 -6 -3 0 3 6 9
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The dispersion relation can be found from the periodic boundary condition  

𝐴 (𝑘) = 𝐴 (𝑘 +
2𝜋

𝑎
𝑛) ,                                                         (16) 

where 𝑛 are integer.  From Eq. (15) and (16), we obtain a quadratic equation  

𝛺2 − 𝛺 ⋅ 𝑛 ⋅ 𝐺𝑎𝛾𝛼−< 𝜔+
2 >= 0,                                                       (17) 

where < 𝜔+
2 >=

𝑎

𝜋
∫ (𝜔+(𝑘

′))2𝑑𝑘 ′
𝜋

𝑎
0

.     

The solution of Eq. (17) is 𝛺𝑛 =
1

2
[𝑛 ⋅ 𝛾𝜇0𝐺𝑎𝛼 + √(𝑛 ⋅ 𝛾𝜇0𝐺𝑎𝛼)2 + 4 < 𝜔+

2 >] , which 

can be written in the form of the Wannier-Stark ladder,  

𝛺𝑛 ≈ √< 𝜔+
2 >+

1

2
𝑛 ⋅ 𝛾𝜇0𝐺𝑎𝛼 ,                                                 (18) 

if the gradient of external magnetic field is small enough, i.e. (𝛾𝜇0𝐺𝑎𝛼)
2 ≪ 4 < 𝜔+

2 > .    

Eq. (18) shows that an energy band of a magnonic crystal, with initial dispersion relation 

𝜔+(𝑘), in a weakly graded field gives rise to the Wannier-Stark ladder with central level 𝛺0 ≈

√< 𝜔+
2 > and the distance between levels 

1

2
𝛾𝜇0𝐺𝑎𝛼.  For instance, the Wannier-Stark ladder in 

the first band, as calculated using Eq. (18) for 𝜇0𝐺 = 40 mT / mm and 𝜇0ℎ = 5mT, consists of a set 

of levels with the central level at 𝛺0 ≈ 7.498 GHz and with the distance between neighbouring 

levels 𝛿 of about 3.6 MHz.  For the amplitude of the field modulation of 𝜇0ℎ = 10mT and the same 

field gradient, these values become 𝛺0 ≈ 7.586 GHz and 𝛿 ≈ 3.45 MHz.  Fig.3 (b) shows profiles 

of localized SWs that corresponding to the central level of the Wannier-Stark ladder and the two 

values of the amplitude of the field modulation.   

The results of the analytical theory presented above are in agreement with those obtained 

from micromagnetic simulations performed using MuMax software.36  The simulations are run in 

the time domain and their results are converted into the frequency domain using standard Fourier 

techniques.37  Fig. 4 shows the spatial maps of the SW amplitude distributions for different value 

so the magnetic field gradient and excitation by a uniform microwave magnetic field with a 

spectrum centred at 18 GHz and spectral bandwidth of 10 MHz.  This microwave field couples to 

the magnetisation precession where the frequency matches either uniform ferromagnetic resonance 

(FMR) frequency (at about 17.2 GHz) or that corresponding to the band edges in the Brillouin 

zone centre, i.e. 𝑘 = 2𝜋𝑛 𝑎⁄ , where 𝑛 is an integer number.  At zero gradient, only the FMR mode 

is excited and then very weakly.  At finite values of the field gradient, the Wannier-Stark ladder 

spectrum is formed.  However, the individual levels are not very well resolved, owing to the very 

small frequency splitting between the neighbouring levels.   
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Fig. 4.  Spatial maps of the SW amplitude distribution are shown for 𝜇0ℎ = 10 mT, 𝜇0𝐻 = 0.5 T, 

𝑎 = 3 µm, 𝑑 = 1 µm, and 𝑀 = 200 kA / m and the indicated values of the magnetic field gradient.  

The greyscale shows the results of the numerical simulations (darker colour corresponds to greater 

Fourier amplitude of spin waves).  The dashed and dotted lines show the top and bottom boundaries 

of the whole BVMSW band in a uniform film, while the dash-dotted line corresponds to the bottom 

edge of the first magnonic band estimated from the empty-lattice approximation.   

In summary, we have used analytical theory based on the method of Wannier functions and 

numerical simulations to study the spectrum of BVMSW in magnonic crystals subjected to a 

graded magnetic field.  Our results demonstrate that this field gradient can lead to Bloch 

oscillations of localised SWs, with their spectrum having the characteristic form of the Wannier-

Stark ladder.  Here, we have presented results for magnonic crystals formed by applying using a 

cosine-modulated bias magnetic field to a thin film of YIG.  Strictly speaking, such a bias magnetic 

field does not satisfy one of the Maxwell equations, div 𝐁 = 0.  The account of a corresponding 

out-of-plane non-uniform bias magnetic field, which would ensure that the equation is satisfied, 

does not change substantially our theory.  Moreover, the field should be treated as a general 

effective magnetic field, representing e.g. modulated anisotropy or exchange bias.38  We have also 

performed similar calculations and obtained similar results for other 1D magnonic crystals, e.g. 

those formed by arrays of long rectangular strips.  The calculations can be generalised to other SW 

40 mT / mm

0 mT / mm

60 mT / mm

20 mT / mm
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geometries, to the case of dipole-exchange SWs, to graded magnonic crystals formed via spatial 

modulation (periodic and linear) of the magnonic index through other mechanisms,39 and to the 

case of a spatial variation of the lattice constant 𝑎.   
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