
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPLIED DYNAMICAL SYSTEMS © 2020 Society for Industrial and Applied Mathematics
Vol. 19, No. 4, pp. 2829–2846

Sequential Escapes and Synchrony Breaking for Networks of
Bistable Oscillatory Nodes∗
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Abstract. Progression through different synchronized and desynchronized regimes in brain networks has been
reported to reflect physiological and behavioral states, such as working memory and attention. More-
over, intracranial recordings of epileptic seizures show a progression towards synchronization as brain
regions are recruited and the seizures evolve. In this paper, we build on our previous work on noise-
induced transitions on networks to explore the interplay between transitions and synchronization.
We consider a bistable dynamical system that is initially at a stable equilibrium (quiescent) that
coexists with an oscillatory state (active). The addition of noise will typically lead to escape from
the quiescent to the active state. If a number of such systems are coupled, these escapes can spread
sequentially in the manner of a “domino effect.” We illustrate our findings numerically in an ex-
ample system with three coupled nodes. We first show that a symmetrically coupled network with
amplitude-dependent coupling exhibits new phenomena of accelerating and decelerating domino ef-
fects modulated by the strength and sign of the coupling. This is quantified by numerically computing
escape times for the system with weak coupling. We then apply phase-amplitude-dependent cou-
pling and explore the interplay between synchronized and desynchronized dynamics in the system.
We consider escape phases between nodes where the cascade of noise-induced escapes is associated
with various types of partial synchrony along the sequence. We show examples for the three-node
system in which there is multistability between in-phase and antiphase solutions where solutions
switch between the two as the sequence of escapes progresses.

Key words. generalized Hopf normal form, escape phase, escape time, sequential escape, noise-induced transi-
tion
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1. Introduction. A widely observed pattern of activity in the mammalian cortex com-
prises the sequential switching between periods of quiescence (i.e., Down states) and periods
of firing activity (i.e., Up states) [27, 36]. Such Up-Down states in cortical dynamics are
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thought to reflect transitions between attractors in networks of bistable nodes [21, 23]. More-
over, these cortical dynamics involve transitions through different synchronized and desynchro-
nized regimes that reflect physiological and behavioral states, including working memory and
attention [19]. A recent study demonstrates transitions between a ‘synchronized’ state during
sleep and a “desynchronized” state during wakefulness in the population activity in prefrontal
cortical networks of freely moving macaques [30]. Furthermore, dynamic evolution of synchro-
nization has been associated with epileptiform phenomena and, in particular, seizures [24].
Indeed, a study of ECoG (electrocorticography) recordings consisting of focal-onset seizures
[28] reports that in the majority of cases, there is a progression towards synchronization as
the seizures evolve. Characterizing possible scenarios for such dynamic synchronization can
contribute to better understanding of cortical dynamics and improved epilepsy diagnosis and
treatment.

Recently, phase-amplitude coupling has been attracting increased attention due to its po-
tential for understanding the generation of brain activity in health and pathology [35]. Phase-
amplitude coupling has been implicated as a general mechanism for memory consolidation
[11], in pathological synchronization during sleep in Parkinson’s disease [20], and, in gen-
eral, of importance in modeling brain dynamics [17], including the spatiotemporal dynamics
preceding neocortical seizures [12]. Furthermore, phase-amplitude coupling has physiologi-
cal application to hormone dynamics, for example, coupling between ultradian and circadian
rhythms in stress hormones, such as cortisol [38], as well as the well-known amplitude (and
frequency) modulation of luteinizing hormone rhythms during the menstrual cycle [13, 18, 33].

In this paper we focus on transient noise-induced behavior in networks of asymmetric
bistable attractor systems. We consider noise-induced escapes in a system consisting of Hopf
normal forms coupled with amplitude only and phase-amplitude coupling. Models of two
complex coupled Bautin-type elliptic bursters have been shown to exhibit within-burst changes
of synchrony in the absence of noise [4]. This phenomenon is preserved with biologically
motivated (synaptic or gap-junction) coupling functions [34]. Bistability of in-phase and
antiphase solutions of two coupled Wilson–Cowan oscillators near a Hopf bifurcation was
recently shown to have applications to perceptual bistability [32]. Additionally, there have
been various studies of noise-induced transitions in networks of symmetric [7, 8, 31] and
asymmetric [29, 2, 3] bistable attractors. However, to the best of our knowledge, synchrony
changes during sequential escape have not been previously investigated.

We consider networks of nodes zk ∈ C given by the system of Itô stochastic differential
equations (SDEs),

(1.1) dzk(t) =

f(zk) +
∑
j 6=k

Ajk g(zj , zk)

dt+ α dWk(t),

where intrinsic node dynamics are given by f, and interaction between nodes is governed by
the coupling function g and adjacency matrix Aij ∈ R. Each node has an additive independent
identically distributed (i.i.d.) complex valued Wiener process Wk with amplitude α > 0.

We choose f such that each uncoupled node is asymmetrically bistable, where there is
a weakly stable equilibria attractor and a more strongly attracting oscillatory attractor. We
consider noise-induced switching between the two states; starting in the weakly stable state weD
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say a node escapes when it crosses the threshold to the basin boundary of the other state. In
the presence of low noise each node transitions from the weakly stable state to the oscillatory
state. The asymmetry of the system means that transitions back to the weakly stable state
occur on a much longer timescale and can be ignored. This gives a domino-like cascade of
sequential escapes across the network. In our previous work we show that domino-like cascades
are modulated by the strength and the form of coupling [2, 3, 14].

Previously, we considered a simple bistable model where the stable states of f are equilibria
given by an asymmetric case of the Schlögl model [29] with linear diffusive coupling g [2]. We
introduce the fast-domino and slow-domino regimes of sequential escapes. These regimes are
delineated by bifurcations on the basin boundaries of the attractors. In particular, for two
strongly coupled nodes, escape of both nodes is almost simultaneous giving a fast-domino
effect. For weakly coupled nodes we show that although the escapes are predetermined by the
noise, the coupling permutes the potential landscape in a way that induces a delay between
sequential escapes, giving a slow-domino effect. Introducing nondiffusive coupling of Gaussian
form, so-called pulse coupling, we show that the slow-domino effect can also be achieved via a
a global saddle connection bifurcation in which the most likely escape path from one attractor
hits the escape saddle from the basin boundary of another partially escaped attractor [3]. For
networks with both diffusive and nondiffusive couplings we show that in an asymmetrically
coupled network of three nodes the slow-domino regime affects not only the speed of escape
but also the order, making some sequences of escape much more likely than others.

We extend the work of [2] in [14] in which we use a truncated form of a Bautin bifurcation
for f where the strongly attracting stable state is a periodic orbit. Here, the conversion to polar
coordinates provides information on the behavior of both the phase and the amplitude. In this
case, the phase and amplitude decouple, and we consider only the behavior of the amplitude
system, fixing the frequency of the oscillatory dynamics of the nodes throughout. We use first
passage time theory to compute a closed form of the mean escape time for one uncoupled
node. In a two-node system with either bidirectional, unidirectional, or uncoupled nodes we
identify critical values of the coupling at which the qualitative behavior of the sequential
escapes changes. We explain the scalings of mean escape times for each network as a function
of coupling strength using multidimensional Eyring–Kramers escape time theory [9, 16, 26].
In particular, for strong bidirectional coupling we show that the time of the first node to
escape is greatly increased, but the following escape times are greatly reduced, giving the
fast-domino effect.

In this paper, we investigate the interplay of phase and escape in networks of bistable
nodes where the individual node dynamics are given by

(1.2) f(z) = (−ν + iω)z + (2 + iη)z|z|2 − (1 + iδ)z|z|4.

This is a general form of the Bautin model studied in [5, 14] where (1.2) has additional phase
parameters η and δ. The one-node system can undergo a coordinate change (near identity
transform) that effectively removes complicated phase dynamics from the behavior of the
system. The system then behaves as in [14]. In the coupled system (1.1) the phase dynamics
cannot be removed by a coordinate change and will play a crucial role in the behavior of the
system. In [14] all escapes occur at θ = 0 in the two-node case, as phase was constant for all R.D

ow
nl

oa
de

d 
01

/1
5/

21
 to

 1
44

.1
73

.1
77

.5
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2832 J. CREASER, P. ASHWIN, AND K. TSANEVA-ATANASOVA

Here, the phase depends on R, and there will be a genuine interplay between synchrony and
escape. This idealized system was chosen to allow some analysis on the synchronous states.

The layout of the paper is as follows. We present a brief overview of one-node dynamics
in section 2 and then focus on all-to-all coupled systems of at least three nodes. In line with
our previous work, we begin our network analysis by considering amplitude-only coupling in
section 3. We show that the strength and sign of the coupling lead to a new phenomenon of
accelerating or decelerating domino effect, and we numerically compute the escape times for
the system with weak coupling. In section 4 we consider phase-amplitude coupling and explore
the interplay between synchronized and desynchronized dynamics in the system. We analyze
the amplitude and phase dynamics in a neighborhood of the limit cycles of escape states of the
system. We show examples for the three-node system in which there is multistability between
in-phase and antiphase solutions, and we show that solutions switch between the two with
subsequent escapes.

2. Noise-induced transitions of a single node. We start by considering system (1.1) with
(1.2) for k = 1 uncoupled node,

(2.1) dz(t) =
[
(−ν + iω)z + (2 + iη)z|z|2 − (1 + iδ)z|z|4

]
dt+ α dW (t),

where W ∈ C and ν, ω, η, δ ∈ R. As in [14] we restrict 0 < ν < 1 such that the noise-free
system α = 0 has a stable equilibrium and a stable periodic orbit separated by an unstable
periodic orbit. The periodic solutions are eliminated in a saddle node bifurcation at ν = 1,
and for ν > 1 only the stable equilibrium prevails. At ν = 0 there is a subcritical Hopf
bifurcation, and for ν < 0 there are one stable periodic orbit and an unstable equilibrium. We
fix ν = 0.1 throughout this paper, which means that the rate of noise-induced escape from
the stable equilibrium is much higher than from the stable periodic. We are interested in
understanding properties of coupled systems of the form (2.1) for weak noise, i.e., small α. In
practice, we fix on α = 0.035 as a compromise between (1) mean escape times that are long
enough to observe details of successive escapes, and (2) manageable computation time of the
simulations; this trade-off is discussed in section 5. Figure 1(a)–(b) shows one realization of
the single node dynamics for

(2.2) ν = 0.1, ω = 0.3, η = 1.0, δ = 0.4, α = 0.035.

The dynamics’ realizations are computed using the stochastic Heun method in MATLAB
(version 2018b) with the initial condition z = 1 + 0i and step size h = 10−2.

We transform (2.1) into polar coordinates given by z(t) = R(t) exp[iθ(t)] with R(t) ≥ 0
and θ(t) considered modulo 2π. This gives

dR =

[
F (R) +

α2

2R

]
dt+ αdWR,(2.3a)

dθ = Ω(R)dt+
α

R
dWθ,(2.3b)

where we define

F (R) := [−ν + 2R2 −R4]R,(2.4a)

Ω(R) := ω + ηR2 − δR4.(2.4b)D
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Note that (2.3a) is independent of θ as in [14]. Considering (2.3a) as a potential problem for
R(t),

dR = −∂V
∂R

dt+ αdWR,

gives the potential function

(2.5) V :=
νR2

2
− R4

2
+
R6

6
− α2

2
lnR.

The equilibrium and periodic orbits form two minima and one maximum.
For α = 0 we find an equilibrium at Rmin = 0 and for 0 < ν < 1 find periodic orbits at

Rc =

√
1−
√

1− ν, Rmax =

√
1 +
√

1− ν,

where Rc is linearly unstable, and Rmax is linearly stable. Figure 1(c) shows (2.4a) with Rmin ,
Rc, and Rmax for parameters (2.2). In the noise-free case, the potential barrier or gate between
the basins of the two attractors is given by Rc. For α > 0 the potential barrier decreases until
Rmin and Rc undergo a saddle node bifurcation, and for α > ν/2 only Rmax exists, and the
dynamics are dominated by noise. A full treatment of the interplay between the ν and α can
be found in [14].

Unlike in [14], (2.4b) depends on R due to the addition of generic phase terms, and
the system does not decouple. Figure 1(d) shows (2.4b) against R for parameters (2.2). In
particular, the periodic orbits have angular frequencies

Ωc = ω + ηR2
c − δR4

c and Ωs = ω + ηR2
s − δR4

s

that, in general, are different from each other and from the Hopf frequency ω. Note that

dΩ

dR
= 2Rη − 4δR3,

which has zeros for RΩ = ±
√

η
2δ , indicating a change in the distortion (shear) of the phase

space near the periodic orbits. At these zeros the system has radial isochrons; trajectories
initialized along these radial spokes have the same asymptotic phase [37]. For Ω̇ 6= 0 the local
frequency depends on the local amplitude. We note that η and δ must have the same sign.

We define the escape time τ of a realization in the presence of noise as the moment at
which a realization crosses a threshold between Rmin and Rmax. Specifically,

(2.6) τ = inf{t > 0 : |z(t)| > ξ given z(0) = 0},

where we choose the threshold Rc ≤ ξ ≤ Rmax. Escape time τ is a random variable that
depends on the noise realization, and so we can then identify the mean escape time T = E[τ ].
In the case of one node we can use the Eyring–Kramers formula for an asymptotic expression
for T

(2.7) T =
2π√

|V ′′(Rc)|V ′′(Rmin)
exp

[
2(V (Rc)− V (Rmin)

α2

]
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Figure 1. Summary of one-node dynamics (2.1) for parameter values (2.2). Panels (a) and (b) show one
realization of system (2.1) with the periodic orbits Rmin = 0, Rc ≈ 0.23, and Rmax ≈ 1.40 marked in grey.
Panel (c) shows (2.3a) with periodic orbits marked at F (R) = 0, and panel (d) shows (2.3b) with RΩ ≈ 1.12
indicating change of shear dΩ/dR = 0.

as α → 0 [10, 14]. The potential V is given by (2.5); note that V and V ′′ depend on α and
ν but not on ω, η, or δ, and so the change of shear does not affect the escape time. A closed
form expression for the mean escape time for one node with the potential described here is
given in [14].

3. Sequential escapes for amplitude-only coupling. In the case that (1.1) is coupled only
via amplitudes, we can express the coupling as

(3.1) g(zj , zk) = G(|zj |2, |zk|2)zk

and understand sequential escape dynamics purely in terms of the amplitudes only: we assume
G(0) = 0. For simplicity, we consider fully symmetric (all-to-all) coupling so that Ajk = 1
if j 6= k, and Ajk = 0 otherwise. Again we consider the system in polar coordinates zk =
Rk exp[iθk]; then system (1.1),(1.2) with (3.1) becomes

dRk =

−ν + 2R2
k −R4

k +
α2

2Rk
+
∑
j 6=k

G(R2
j , R

2
k)

Rk dt+ α dWRk
,(3.2a)

dθk =
[
ω + ηR2

k − δR4
k

]
dt+

α

Rk
dWθk .(3.2b)

Note that the coupling here is independent of phase dynamics as the coupling function when
converted into polar coordinates only appears in the equation for R.

In the limit of low noise 0 < α � 1 and weak coupling 0 < |G| � 1 for each unit there
will be approximate equilibria at Rk ≈ 0 and periodic orbits close to Rk ≈ Rc and Rk ≈ Rs;
any combination of escaped and nonescaped units is possible. However, we expect behavior
somewhat different from that in [2] for increasing coupling strength. To illustrate this we
consider a specific coupling function.

3.1. Symmetric nodes with amplitude-only coupling. We consider the case of N nodes
with amplitude-only coupling such that G(A1, A2) = cA1A2 in (3.1), i.e.,

(3.3) g(zj , zk) = c|zj |2|zk|2zkD
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for coupling strength c ∈ R. This particular form of G is chosen to ensure there is only
effective coupling between active nodes.

In the noise-free case α = 0 the zeros of

(3.4)
dRk
dt

= Rk

−ν + 2R2
k −R4

k + cR2
k

∑
j 6=k

R2
j


correspond to families of periodic solutions of the form

xAMQN−M := (ρMe
i(φ1+ΩM t), . . . , ρMe

i(φM+ΩM t), 0, . . . , 0)

with M active and N −M quiescent nodes and all permutations thereof; these are neutrally
stable because of the absence of phase coupling. The ρM > 0 are amplitudes, φn are arbitrary
constants, and the angular frequency is

ΩM := Ω(ρM ).

Note that ρM satisfies
−ν + 2ρ2

M + [−1 + c(M − 1)]ρ4
M = 0,

and so the amplitude of the oscillations will increase (or decrease) with the number of escaped
nodes, depending on the sign of c. We can solve this to give

(3.5) ρ±M =

√
1±

√
1− ν + νc(M − 1)]

1− c(M − 1)
.

Recall that 0 < ν < 1 so that the uncoupled systems are bistable. For M = 1 escaped state
(active node) we retrieve ρ+

1 = Rmax and ρ−1 = Rc shown in Figure 1. From (3.5) we find that
solutions xA3 exist for −4.5 < c < 0.5, solutions xA2Q1 exist for −9 < c < 1, and solutions
xA1Q2 exist for all c. Note that the stability of solutions may change with c, and this is not
captured by (3.5). To illustrate this, the full picture of (3.4) for the specific example using
N = 3 and ν = 0.1 is shown in Figure 2; we plot the bifurcation diagram of R1 against c. We
identify additional bifurcations corresponding to changes in stability of solutions for c ≈ −0.8.
This implies that, similar to [2, 14], we will have a weak coupling regime.

More generally, the decoupling of the phase dynamics means that starting from the fully
inactive state xQN , several scenarios of sequential escapes are possible varying c.

• For small c > 0, successive escapes will result in active oscillatory states with larger
amplitude. We expect an accelerating domino transition as the basin to escape from
becomes successively shallower.
• For c� 0, if

Mc+ = min{M ∈ N : c(M − 1) > 1},

then all partially escaped states ρ±M for M ≥Mc+ will be unstable, and so we expect
very fast noise-driven escapes from the Mc+th to the Nth.
• For small c < 0, successive escapes will result in smaller amplitude active oscillations.

We expect a decelerating domino transition where successive escapes become slower as
the basin to escape from becomes successively deeper.D
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Figure 2. Bifurcation diagram for three node-system (3.2a) with (3.3) for α = 0 and ν = 0.1 projected onto
the (R1, c)-plane. Panel (a) shows the full bifurcation diagram in R1 and c. The legend indicates the number of
stable eigenvalues of the equilibria. The lines of existence of solutions elucidated from (3.5) are shown in grey
at c = {−9,−4.5, 0.5, 1}; c = 0 is also marked. Panel (b) shows an enlargement around c = −0.8. Bifurcations
are marked by grey lines; there is a saddle node bifurcation at c = −0.8182, a pitchfork bifurcation at c = −0.9,
and a transverse pitchfork at c = −0.8034.

• For c� 0, if

Mc− = min{M ∈ N : |c|(M − 1) > 1− ν},

then there are no solutions ρ±M for M ≤ Mc− , and in this case the sequence will
terminate before all nodes have escaped.

We illustrate the accelerating or decelerating domino effect by numerically computing the
escape times for the three-node system (1.1),(1.2) with (3.1). For a given threshold ξ we
compute the escape time of the ith node

(3.6) τ (i) = inf{t > 0 : |zi(t)| > ξ given zi(0) = 0}.

The random variable τ (i) depends on ξ, the noise realization, and the influence from other
nodes. We choose ξ to contain the whole basin of attraction of solution starting at z = 0 [6].
To this end we use ξ = 0.75; Figure SM1 in the supplementary material shows that this is
larger than ρ−M for all M in the weak coupling regime considered here c = [−0.6, 0.6]. For
a fixed threshold the independence of the noise processes W means that no two escapes will
occur at precisely the same time, so we can assume an ordering s(i) from 1 to 3 in this three-
node example. We define the ith escape as τ i := τ (s(i)) and the escape time of the kth node
given that k− 1 nodes have escaped as τk|k−1 = τk − τk−1 for integers 0 < k ≤ 3 . The mean
conditional escape time is T k|k−1 = E[τk|k−1] . Here we compute the mean conditional escape
times for the first, second, and third escapes over 1000 realizations of the system computed
using the stochastic Heun method.

Figure 3 shows the distributions and means of the conditional escape times for values of c
in the weak coupling regime. This figure illustrates the accelerating and decelerating domino
effect. Note that although the scale changes in each panel of row (a), the distributions of the
first conditional escape time τ1|0 are similar for all c. The distributions of the second τ2|1D
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SEQUENTIAL ESCAPES AND SYNCHRONY BREAKING 2837

Figure 3. Distributions of conditional escape times of a three-node system with amplitude-only coupling for
different values of coupling strength c. Each distribution was computed using 1000 realizations. This illustrates
that in the weak coupling regime, for c > 0 the domino effect accelerates, whereas for c < 0 the domino effect
decelerates.

and third τ3|2 conditional escape times become narrower in time for c > 0, and their mean
conditional escape times decrease below T 1|0. For c < 0 the distributions of τ2|1 and τ3|2

cover a longer time period than for c = 0, and the mean conditional escape times increase
exponentially. Example realizations for fixed values of c are shown in Figures SM2–SM3 of
the supplementary material.

Note that if we look at escape from M to M + 1, then we pass saddles of the form

(ρMe
i(φ1+Ω1t), . . . , ρMe

i(φM+Ω1t), σMe
i(φM+1+Ω2t), 0, . . . , 0),

where ρM (we omit the ± for ease of notation) and σM need to be computed as solutions of
a quartic equation. As above, the φi are constants, and Ω1 = Ω(ρM ), Ω2 = Ω(σM ). Observe
that typically, Ω1 and Ω2 are incommensurable, meaning these “gates” will typically consist
of invariant tori.

4. Sequential escapes for phase-amplitude coupling. We now consider a case where sys-
tem (1.1),(1.2) can show nontrivial phase dynamics, for N amplitude coupled nodes, modified
by phase-dependent coupling,

(4.1) g(zj , zk) = εeiψ|zk|2zj + c|zj |2|zk|2zk,D
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2838 J. CREASER, P. ASHWIN, AND K. TSANEVA-ATANASOVA

where ε ≥ 0 and ψ modulate the strength and relative phase of the linear diffusive coupling.
Note that we consider multiplicative coupling to ensure that the coupling does not substan-
tially affect the quiescent states. In this section we investigate the effects on the phase and
timings of sequential escapes of the network when changing ε and c and keeping ψ fixed.

As before, we consider an all-to-all fully symmetric network, i.e., Ajk = 1 if j 6= k, and
Ajk = 0 otherwise. Using Ito’s formula we write system (1.1),(1.2),(4.1) in polar coordinates
zk(t) = Rk(t) exp[iθk(t)] for k = 1, . . . , N as

dRk =

[
F (Rk) + ε

(∑
j 6=k

R2
kRj cos(ψ + θjk)

)
+ c

∑
j 6=k

R2
jR

3
k +

α2

2Rk

]
dt+ αdWRk

,(4.2a)

dθk =

[
Ω(Rk) + ε

(∑
j 6=k

RjRk sin(ψ + θjk)
)]

dt+
α

Rk
dWθk ,(4.2b)

where dWRk
and dWθk are independent real valued Wiener processes, and θjk := θj−θk. Note

here that the coupling modulates the frequency and the amplitude of the nodes.

4.1. Symmetric nodes with weak phase dynamics. For typical choices of parameters
where there are stable limit cycles, (4.2a),(4.2b) can be reduced in the case of α = 0 (noise-
free) and ε� 1 (weak phase coupling) [22]. To consider solutions near xAMQN−M , we write

Rk =

{
ρM + εrk for k = 1, . . . ,M,

εrk for k = M + 1, . . . , N.

As before, the amplitude of the stable limit cycle in the amplitude-only coupled (i.e., in c
only) case ε = 0 is ρM . Expanding (4.2a) about this solution to first order in ε, we have for
k = 1, . . . ,M that

(4.3)
d

dt
rk = F ′Mrk +

M∑
j=1, 6=k

[
ρ3
M cos(ψ + θjk) + 2cρ4

Mrj
]

+Mcρ4
Mrk +O(ε),

where F ′M = F ′(ρM ).

If we define r =
∑M

j=1 rj , then by adiabatic elimination,

(4.4) rk =
2cρ4

Mr + ρ3
M

∑M
j=1, 6=k [cos(ψ + θjk)]

F ′M + (3M − 2)cρ4
M

+O(ε).

Summing this over k = 1, . . . ,M gives

r =
2Mcρ4

Mr + 2ρ3
M

∑M
k=1

∑
j<k [cos(ψ) cos(θjk)]

F ′M + (3M − 2)cρ4
M

+O(ε),

which can be solved to give

(4.5) r =
2ρ3

M cos(ψ)
∑M

k=1

∑
j<k cos(θjk)

F ′M + (M − 2)cρ4
M

+O(ε).D
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Substituting (4.5) into (4.4), we have

(4.6) rk = H(θ) + hk(θ) +O(ε),

which gives rk in terms of angles, where

H(θ) :=
2cρ4

M

F ′M + (3M − 2)cρ4
M

2ρ3
M cos(ψ)

∑M
k=1

∑
j<k cos(θjk)

F ′M + (M − 2)cρ4
M

and

hk(θ) :=
ρ3
M

∑M
j=1,6=k [cos(ψ + θjk)]

F ′M + (3M − 2)cρ4
M

.

Similarly, substituting Rk = ρM + εrk into (4.2b) with α = 0 gives phase equations

(4.7)
d

dt
θk = ΩM + ε

Ω′Mrk +
∑
j 6=k

ρ2
M sin(ψ + θjk)

+O(ε2)

for k = 1, . . . ,M where Ω′M := Ω′(ρM ), and so

(4.8)
d

dt
θk = ΩM + ε

[
Ω′M [H(θ) + hk(θ)] + lk(θ)

]
+O(ε2)

and
lk(θ) :=

∑
j 6=k

ρ2
M sin(ψ + θjk).

This can be used, in principle, to calculate the stability of a variety of solutions, including
in-phase and splay phase oscillations; see, for example, (4.11).

4.2. Phase synchrony during escape. The nontrivial phase dynamics can be observed in
system (1.1),(1.2) with (4.1) for N ≥ 3 nodes. We show example realizations of N = 3 nodes
with weak amplitude coupling −0.2 < c < 0.2 for ε > 0 in Figure 4 and for ε < 0 in Figure 5.
Here we fix the parameters

(4.9) ν = 0.1, ω = 0.3, η = 1.0, δ = 0.4, α = 0.035, ψ = π/2.

For each set of c and ε values, we compute the order parameter

(4.10) π1,...,Ne(t) =

∣∣∣∑Ne
k=1 expiθk(t)

∣∣∣
Ne

,

where Ne > 1 is the number of escaped nodes in a given realization. Specifically, when Ne = 2,
π1,2(t) is the order parameter computed between the first and second nodes to escape. When
π = 1 the nodes are synchronized, and when π = 0 the nodes are antisynchronous. Due to
the large fluctuations in synchrony between nodes before escape we do not compute π(t) at
the moment of escape. To capture the phase dynamics of the escapes numerically we compute
π1,2(t(2)) at time point t(2) = τ2 + τ3−τ2

2 between the second and third escape times (asD
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2840 J. CREASER, P. ASHWIN, AND K. TSANEVA-ATANASOVA

Figure 4. Examples of sequential escapes for N = 3 oscillators with coupling (4.1) and parameters (4.9)
for ε = 0.02 and c = −0.2 (a), c = 0 (b), and c = 0.2 (c). The top row shows the real component of z for
each node plotted against time in arbitrary units (a.u.); note that nodes are colored by order of escape, and
the precise times of escape are determined by details of the noise. The bottom row shows the order parameter
between the first two nodes to escape π1,2(t) (olive) and all three nodes π1,2,3(t) (teal). The black dots on each
curve denote the phase points π1,2(t(2)) and π1,2,3(t(3)), respectively. Note that π1,2,3(t(3)) > π1,2(t(2)) and that
nodes tend to synchrony when all have escaped π1,2,3(t(3)) ≈ 1.

defined in section 3.1), and we compute π1,2,3(t(3)) at t(3) = τ3 + 1.5 × 104 after the third
escape. Example realizations shown in Figures 4 and 5 are computed using the stochastic
Heun method with step size h = 10−2 and a different seed for the random process each time.
Figure 4 shows that for ε = 0.02 > 0, realizations tend to synchrony between escaped nodes,
whereas Figure 5 shows that realizations tend to antisynchrony for ε = −0.02 < 0. In the case
ε = 0 there is amplitude-only coupling as described in section 3.1. Therefore the amplitude of
the escaped solutions changes, but synchrony between nodes does not change with the escapes;
example realizations for ε = 0 are shown in Figure SM4 of the supplementary material.

As in section 3.1 we compute numerically the mean conditional escape times T 1|0, T 2|1,
and T 2|3 of the system. In the same way, we note that the order parameter π is a random
variable that depends on the noise realization and the coupling. We define the mean order
parameter P 1,...,Ne = E[π1,...,Ne(t(Ne))] as the expectation of the order parameter at one time
point t(Ne). We numerically approximate P 1,...,Ne for Ne = 2 and Ne = 3 by taking the mean of
the order parameter at time points t(2) and t(3), respectively, computed from 1000 realizations
using the Heun method as above.

Figure 6 shows the mean escape times T 1|0, T 2|1, and T 2|3 and mean order parameters
P 1,2 and P 1,2,3 for parameters (4.9), c ∈ [−0.2, 0.2], and ε ∈ [−0.02, 0.02]. Note that the
mean escape times T (left axis) are unaffected by changes in ε and follow the dependence on
c shown in Figure 3(b). By comparison the mean order parameter for two escaped nodes P 1,2D
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SEQUENTIAL ESCAPES AND SYNCHRONY BREAKING 2841

Figure 5. Examples of sequential escapes for N = 3 oscillators with coupling (4.1) and parameters (4.9)
for ε = −0.02 and c = −0.2 (a), c = 0 (b), and c = 0.2 (c); compare to Figure 4. The top row shows the
real component of z for each node; the bottom row shows the order parameter between the first two nodes to
escape π1,2(t) (olive) and all three nodes π1,2,3(t) (teal). The black dots on each curve denote the phase points
π1,2(t(2)) and π1,2,3(t(3)), respectively. Note that π1,2(t(2)) is similar for all c and and that when all nodes have
escaped for c ≥ 1 they tend to antisynchrony π1,2,3(t(3)) ≈ 0 for c ≥ 0.

remains relatively constant for each ε value and is not influenced by the amplitude coupling
c, whereas the mean order parameter for three escaped nodes P 1,2,3 displays dependence on
both c and ε. Compare the values of P 1,2 and P 1,2,3 to the points π1,2(t(2)) and π1,2,3(t(3)) in
Figures 4 and 5.

4.3. Example of changes in synchrony during escape. Note that (4.8) can be used to
find the stability of the in-phase partially escaped state for M ≥ 2. Consider perturbations
of the form θ1 = Θ + ∆, θk = Θ for k = 2, . . . ,M and note that

d

dt
∆ =

d

dt
[θ1 − θk]

= ε
[
Ω′M [h1(θ)− hk(θ)] + l1(θ)− lk(θ)

]
.

For illustration we choose ψ = 3π
2 , such that H(θ) = 0 and hk(θ) = Dρ3

M

∑M
j=1,6=k sin(θjk),

where

D :=
1

F ′M + (3M − 2)cρ4
M

,

and lk(θ) = −ρ2
M

∑
j 6=k cos(θjk). Then

(4.11)
d

dt
∆ = ε

[
−MΩ′MDρ

3
M sin ∆ + ρ2

M [(M − 2)(cos ∆− 1)]
]
.D
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Figure 6. The mean conditional escape times T k|k−1 and mean order parameter P 1,...,Ne for different
values of c with fixed ε (a) and different values of ε for fixed c (b). The mean first T 1|0, second T 2|1, and third
T 3|2 conditional escape times are shown in black, and the mean order parameter between the first and second
nodes to escape P 1,2 and between all three nodes P 1,2,3 after the third escape are shown in grey. Each point is
the mean over 1000 simulations.

If we linearize this about the in-phase state ∆ = 0, then we find

(4.12)
d

dt
∆ = −εMΩ′MDρ

3
M∆ +O(∆3),

which means that for small ε > 0 the stability of the in-phase solution is determined at this
order of truncation as long as Ω′MD is nonzero, and stability is determined by the sign of this
quantity. In particular, note that a change in the sign of Ω′M as M increases will be associated
with changes in stability of in-phase synchrony as a sequence of escapes progresses. Figure 7
illustrates this change in sign of Ω′M for M = 2, 3 for the three-node network example. In
particular, for c = {−0.2, 0, 0.2}, amplitudes ρ±M > RΩ such that Ω′(ρ+

M ) < 0 for M = 2, 3.
At c ≈ −0.268, ρ±3 = RΩ, and for c = −0.4, Ω′(ρ+

2 ) < 0 and Ω′(ρ+
3 ) > 0, indicating a change

of cluster synchrony between escapes. Finally, ρ±2 = RΩ at c ≈ −0.536, and for c = −0.6,
Ω′(ρ+

M ) > 0 for M = 2, 3.
Changes in cluster synchrony can be observed in the realizations for c = −0.4 shown in

Figure 8. In particular, ε < 0 gives stable antisynchrony of two escaped oscillators which
is replaced by stable synchrony for three escaped oscillators. Using the same parameters
but reversing the sign of ε > 0, the second escape shows stable synchrony for two escaped
oscillators, but the third escape shows stable antisynchrony for the three escaped oscillators.
We note that this change of sign can be achieved instead via shifting R(Ω) by altering η and δ,
as shown in Figure SM5 of the supplementary material. In this case the change of synchronyD
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Figure 7. Graphs of Ω(R) given by (2.4b) with amplitudes ρ±M given by (3.5). For c = −0.6 in panel (a),
gradients Ω′(ρ+

M ) > 0 for M = 2, 3. In panel (b), c = −0.4 such that Ω′(ρ+
2 ) < 0 and Ω′(ρ+

3 ) > 0. In panels
(c)–(e), c ≥ −0.2 and Ω′(ρ+

M ) < 0 for M = 2, 3. The critical values of c are ρ+
3 = RΩ for c ≈ −0.268 and

ρ+
3 = RΩ for c ≈ −0.536.

is not as pronounced. We show the distributions of the conditional escape times shown in
Figure 8 and the order parameters in Figure SM6 of the supplementary material.

5. Discussion. In this paper we investigate the link between synchrony and sequential
escapes and characterize this in terms of the mean order parameter between escaped nodes and
of the mean time between consecutive escapes. The model of sequential escapes we consider
here is an idealized model of coupled systems with bistability between a stable quiescent
equilibrium and a stable active periodic state. The form of coupling we choose allows us to
control coupling dynamics via amplitude and phase of the oscillations. Furthermore, it is
of a sufficiently simple form that one can perform an analysis of synchrony for the partially
escaped states. For more realistic, physically motivated models it is unlikely that this analysis
is possible, but nonetheless we expect qualitative behaviors, such as changes of synchrony
along a sequence of escapes, to still be present.

A classical approach to coupled oscillator theory is to consider only the phase effects
and reduce the system to coordinates that parameterize the limit cycle. In the case of weak
coupling, phenomena such as phase locking are well documented [25, 15]. However, when
the attraction to the limit cycle is weak, such as near a Hopf bifurcation, it is no longer
possible to assume that trajectories stay with epsilon of the limit cycle, and the amplitude
must be taken into account. Aronson, Ermentrout, and Kopell [1] discuss the effect of shear
in symmetrically coupled oscillators near a Hopf bifurcation. They show that for two identical
oscillators with nonscalar coupling there is bistability of asymptotically stable phase-locked
and phase-drift solutions. We extend this idea for three nodes with phase-amplitude coupling
to a noisy context and illustrate how shear relates to the appearance of transient synchronous
and antisynchronous solutions between sequential escapes.

We make some additional remarks on the influence of α (noise level), ε (phase coupling
strength), and c (amplitude coupling strength) on the mean escape time Te and the constant
Ts characterizing exponential decay towards a stable synchronous/antisynchronous state. In
the tractable limit considered here (where all α, ε, and c are small), Te is approximated by
Kramers’ formula (2.7), namely Te ∼ exp(K/α2), with K > 0 the height of the potentialD
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Figure 8. Synchrony changes during sequential escape of N = 3 oscillators with coupling (4.1) for c = −0.4.
Panel (b) shows the mean escape times T (black, left axis) and mean order parameter P (purple, right axis)
for different values of ε ∈ [−0.02, 0.02]; compare to Figure 6(b). Panels (a) and (c) shows example realizations
(top) for ε = −0.02 and ε = 0.02, respectively, with the order parameters (bottom) π1,2(t) (olive) and π1,2,3(t)
(teal). Note that the time-axis contains breaks to aid visualization. The points π1,2(t(2)) and π1,2,3(t(3)) are
marked as black dots, showing the change from antisynchrony after the second escape to synchrony after the
third escape in (a) and from synchrony after the second escape to antisynchrony after the third escape in (c).

barrier to be overcome, while Ts is approximated by the reciprocal of the linear coefficient
in (4.12), i.e., Ts ∼ 1/ε. Hence for small c, in order to expect that transient synchronous
behavior settles to a stable state before the next escape occurs, we need Ts � Te. This means
we will expect to see the transient synchrony fully realized in cases where exp(−K/α2) � ε.
It would be interesting to better understand this interplay between timescales of escape and
timescales of transition to synchrony. This would require further analysis of the temporal
evolution of the order parameter over the timescale of the escape time dynamics.

Although we do not consider applications in this paper, there is a clear implication that
sequential escapes in systems of coupled oscillators can be associated with a wide variety of
changes in synchrony. In particular, it is possible that transitions from quiescent states to
active states may give strong signals in the mean field only for certain states in the sequence.
We note that the instantaneous synaptic coupling term commonly used in biophysical mod-
els is nonlinear due to the sigmoidal function nature of the gating variable. If one considers
a linearization of the gating function, then the instantaneous synaptic coupling term would
look very much like what we have in this article, provided that the synaptic reversal po-
tential is equal to 0. Phase-amplitude coupling has been recently recognized as important
in brain dynamics and, more specifically, information processing [11]. Using dynamic causal
modeling, Fagerholm et al. [17] quantify the separate contributions of phase and amplitude
to the connectivity between neural regions. For seizure onset and progression in epilepsy,D
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our work aligns with experimental evidence indicating that seizures result from the dynamic
interactions between neuronal networks characterized by an evolving degree of heterogeneity
in neuronal firing. Specifically, desynchronization has been shown to precede seizures or found
during their early stages, while in contrast, high levels of synchronization have been observed
before seizures terminate [24, 28], reminiscent of the simulations depicted in Figure 4(a).
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