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Abstract:  

Permafrost soils store huge amounts of organic carbon, which could be released if climate change 

promotes thaw. Currently, modelling studies predict that thaw in boreal regions is mainly sensitive 

to warming, rather than changes in precipitation or vegetation cover. We evaluate this conclusion 

for North American boreal forests using a detailed process-based model parameterised and 5 

validated on field measurements. We show that soil thermal regimes for dominant forest types are 

controlled strongly by soil moisture and thus the balance between evapotranspiration and 

precipitation. Under dense canopy cover, high evapotranspiration means a 30% increase in 

precipitation causes less thaw than a 1ºC increase in temperature. However, disturbance to 

vegetation promotes greater thaw through reduced evapotranspiration, which results in wetter, 10 

more thermally conductive soils. In such disturbed forests, increases in precipitation rival warming 

as a direct driver of thaw, with a 30% increase in precipitation at current temperatures causing 

more thaw than 2ºC of warming. We find striking non-linear interactive effects on thaw between 

rising precipitation and loss of leaf area, which are of concern given projections of greater 

precipitation and disturbance in boreal forests. Inclusion of robust vegetation-hydrological 15 

feedbacks in global models is therefore critical for accurately predicting permafrost dynamics; 

thaw cannot be considered to be controlled solely by rising temperatures. 
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Introduction	
The boreal forest in North America is largely underlain by discontinuous and sporadic permafrost 

(Helbig et al., 2016) and contains huge stores of soil organic carbon (Tarnocai et al., 2009). 

Ecosystem properties are known to influence many components of the physical processes involved 5 

in permafrost thaw (Loranty et al. 2018). Thaw can be limited by greater canopy leaf area, which 

reduces radiation at the soil surface (Marsh et al., 2010). Moss cover is an effective insulator when 

dry in summer and increases conductive heat loss when wet or frozen in the shoulder seasons and 

winter (O'Donnell et al., 2009). Soil organic matter also has a similar influence as mosses on 

thermal conductivity and hence permafrost thaw (Johnson et al., 2013).  10 

Permafrost beneath the boreal forest is sensitive to environmental change because it is close to its 

climatic limit, and may only exist as it is protected by these ecosystem interactions (Shur and 

Jorgenson, 2007). Permafrost-ecosystem feedbacks are poorly understood, particularly related to 

disturbance and vegetation-active layer thickness interactions (Grosse et al., 2016). The 

complexity of these interactions means there are disagreements between model simulations of 15 

current permafrost extent and its climate sensitivity (Koven et al., 2013; McGuire et al., 2016). 

Permafrost thaw has considerable potential to provide positive feedback to climate change because 

high-latitude soil C is the largest single climate-sensitive pool in the terrestrial carbon cycle 

(Schuur et al., 2015). Therefore, uncertainty about thaw magnifies biases and errors in predictions 

of the Earth system. 20 

As well as facing a future of increased precipitation and warming (Knutti and Sedláček, 2012), 

boreal forests are experiencing greater frequency and intensity of fires (Turetsky et al., 2011; Genet 

et al., 2013; Brown et al., 2015).  Fires disrupt vegetation cover and combust mosses and soil 

organic matter (Harden et al., 2006). The reduction in leaf area index (LAI) itself by fire could 

increase active layer thickness (ALT, the maximum depth of seasonal thaw each year) directly, by 25 

decreasing shading and therefore increasing energy inputs to the land surface. Additionally, the 

LAI effect could be indirect, with reduced vegetation cover lessening both intercepted precipitation 

and transpiration, leading to increased soil moisture and increased soil thermal conductivity (Fisher 

et al., 2016).  
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Recently, field data from Canadian boreal forests across sites of contrasting fire disturbance 

showed that ALT is strongly influenced by landscape ecological characteristics, including LAI, 

moss layer thickness, and organic layer thickness, in that order (Fisher et al., 2016), but critically 

that these influences were mediated by soil moisture. The over-arching influence of soil moisture 

suggests that changes in precipitation and evapotranspiration will be hugely important in 5 

determining thaw rates, but this sensitivity has not been critically evaluated. Indeed, other model 

evaluations suggest that permafrost is an order of magnitude more sensitive to air temperature than 

to precipitation changes (McGuire et al., 2016). Given the boreal forest in permafrost regions faces 

a warmer, wetter future, and with more fire, determining the relative importance of direct and 

indirect mechanisms and understanding the combined impact of fire-precipitation-warming 10 

changes is essential if future rates of thaw are to be projected successfully. 

Here we use a process-based model (NEST) (Zhang et al., 2013) to determine the mechanisms 

linking soil moisture and LAI to ALT, simulating the impacts of vegetation-soil disturbance by 

fire and climate change on ground thermal regimes for North American boreal forests. Field data 

provide critical parameters for the model, and allow a validation of the model’s capacity to 15 

simulate permafrost, soil temperature and moisture dynamics realistically across key forest types. 

We use model experiments to diagnose thaw depth patterns in relation to LAI and its changes after 

burning. Finally we determine sensitivity of thaw to changes in soil drainage, air temperature, 

precipitation, and disturbance (fire) impacts on soil and vegetation. We then discuss the 

implications for thaw under expected global changes.  20 

 

Methods	
Field data 

Field sites were located in the discontinuous permafrost zone in the Northwest Territories, Canada. 

The sites, near Yellowknife, cover varying fire histories, substrates and tree canopies, and 25 

included: two black spruce (Picea mariana) sites at Mosquito Creek (62° 42’ 2.3′′N, 116° 8’ 

8.8′′W), one burned in 2008 (MS-B), and one unburned (MS-U); and two sites at Boundary Creek, 

a black spruce site (BS, 62° 31’ 36.3′′N, 114° 57’ 41.3′′W) and a paper birch (Betula papyrifera) 

site (BB, 62° 31’ 37.7′′N, 114° 57’ 38.9′′W). For all sites the local terrain sloped gently and surface 

soils had limited lateral drainage. A stratified survey of ecological and soil states within each site 30 
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during 2014 recorded the finer scale patterns of covariation between ALT, vegetation and edaphic 

characteristics (Fisher et al., 2016). Survey plot locations were selected ensuring that the full range 

of ground cover, tree canopy cover and moss and organic layer thicknesses were represented at 

each site. Plots were homogeneous over an area of at least 2 m x 2 m, with sampling within the 

central 1 m2.  5 

Overstory LAI was determined using hemispherical images (Nikon D5000 DSLR camera), 9 per 

plot, processed with CAN-EYE software. Understorey LAI was collected with a LAI-2000 optical 

plant canopy analyser (LI-COR, Lincoln, USA), as the difference of estimates generated above 

and below the understorey canopy. Total LAI varied from 1.7 to 2.7 for the unburned sites; the  

overstorey LAI ranged from 0.68 to 1.49, similar to other black spruce sites in the region (Morse 10 

et al., 2016). Black spruce mortality at the burn site was complete, with many standing dead stems. 

Regeneration of shrubs since the fire had restored LAI to ~50% of the unburned site (Table 1). 

Moss thickness was determined by careful cutting of the moss layer, avoiding compression, and 

then direct measurement from the top of the moss layer to the depth at which decomposing moss 

had no discernible structure. This approach focused on quantifying the insulative properties of 15 

mosses present. Soil organic matter thickness was measured using a soil corer, from the base of 

the moss layer to the base of the O horizon. The mean topsoil organic layer thickness ranged 

between 0.46 and 0.57 m (Table 1). We compared the burned black spruce site in Mosquito Creek 

(MS-B) to the neighbouring unburned site to estimate that the fire consumed the entire moss layer 

and, on average, 11 cm of the soil organic layer, typical of early-season burns in boreal North 20 

America (Turetsky et al., 2011).  Thaw depth was recorded through inserting a graduated stainless-

steel rod inserted until impeded by frozen soil, with a custom-built temperature probe (British 

Rototherm Co. Ltd., Port Talbot, UK) used to confirm the depth of penetration of the 0°C isotherm. 

Active layer thickness measured in August, was within the range recorded in the region (Morse et 

al., 2016). 25 

Soil temperature profiles were recorded through the growing season with five thermistors per site 

inserted in tubes sealed at the bottom and filled with antifreeze. Thermistors were left at a given 

depth to equilibrate until a constant value of resistance was displayed in a multimeter (model: 

Fluke 289) and values were converted to degree Celsius (accuracy determined at ±0.05°C). Soil 

moisture profiles were monitored using a PR2 profile probe (sensors at 10, 20, 30 and 40 cm, 30 

Page 5 of 29 AUTHOR SUBMITTED MANUSCRIPT - ERL-109028.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 

6 
 

Delta-T Devices Ltd, Cambridge, UK) inserted in access tubes installed in the profile using an 

auguring kit to minimize disruption of the soil structure. The manufacturer reported accuracy 

is 0.06 m3 m-3 (6%) (at 0 to 40°C). The access tubes were initially placed as deep as thaw depth 

allowed and further inserted deeper as the soil thawed. Values of volumetric soil moisture (m3 m-3) 

were recorded from a HH2 meter (Delta-T Devices Ltd, Cambridge, UK). 5 

 
Modelling 

The Northern Ecosystem Soil Temperature (NEST) model was used to isolate and diagnose the 

mechanisms of ALT variation. NEST is a process-based model developed to quantify the impacts 

of climate change on ground thermal regimes in high latitudes (Zhang et al., 2003). NEST 10 

integrates the effects of key factors on ground thermal dynamics, including atmospheric climate, 

vegetation, snow, soil composition and ground condition, soil moisture, soil thawing and freezing 

and associated changes in liquid water, soil thermal conductivity and heat capacity (see supplement 

for model details and a model schematic).  

For model climate forcing, daily minimum and maximum temperature, precipitation and rainfall 15 

were accessed from Yellowknife Airport climate station (beginning from 1943, WMO ID 71936). 

Daily water vapour pressure, solar radiation, and wind speed during 1953-2005 were accessed 

from Environment Canada and the National Research Council of Canada (2007), which provide 

hourly data based on station observations. For the other periods (1943-1952, 2006-2016), water 

vapour pressure and solar radiation were estimated based on their relationships with daily air 20 

temperature developed using the data during 1953-2005 (Zhang et al., 2012).  The thickness of 

moss and soil organic layers in each model simulation was set based on field measurements at each 

site, determined from soil cores (Table 1 and see supplementary material).  
 
 25 
Ecological and Climate Sensitivity Experiments 

After model validation, we undertook a series of model experiments to diagnose and understand 

the processes that control the dynamics of ALT. We used modelling at the burned and unburned 

black spruce sites in Mosquito Creek (MS-B and MS-U) to understand how fire affects ALT 

through changes in vegetation and/or soils. Beginning from the same initial conditions, we 30 

introduced perturbations from 2008 based on observed differences in soil organic layer and 

vegetation between burned and unburned sites. The experiments comprised (i) changes to both 

Page 6 of 29AUTHOR SUBMITTED MANUSCRIPT - ERL-109028.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 

7 
 

vegetation, moss and organic layer (i.e. nominal disturbance case); (ii) change to the vegetation 

but not the moss, soil organic layer nor albedo; (iii) change to the moss, organic layer and albedo 

but not the vegetation; and (iv) nothing changed, i.e. no fire, as a control for moss, organic layer, 

vegetation and albedo. The experiments allowed quantification of the relative importance of 

different effects of fire on ecosystem states and thereby onto thaw. To investigate the sensitivity 5 

of ALT to LAI recovery post-fire, we imposed different successional trajectories in LAI. These 

included the observed recovery to LAI=0.9 by 2014 (Table 1), a recovery at half this rate, and no 

recovery of LAI at all. 

To explore the direct and indirect effects of shading on energy balance, we then investigated the 

sensitivity of ALT to changes in vegetation cover (LAI) and soil moisture. Because climate varies 10 

day by day and year by year, we ran the model from 1942 to 2016 and analysed the averages during 

this period. Firstly, we varied LAI from 0 to 4, from no canopy to dense foliar cover for the black 

spruce site in Boundary Creek (BS). Then we repeated this sensitivity experiment thrice, with the 

following different adjustments: (i) keeping the soil at saturation (i.e. field capacity) all the time; 

(ii) increase soil draining by modifying surface lateral water flow parameters so the water table 15 

was kept below 0.4 m depth; and (iii) removing any LAI shading effects on solar radiation received 

on the land surface or snow surface if snow exists (the canopy still intercepts solar radiation). 

These experiments evaluated the importance of LAI interactions with soil moisture (i and ii) versus 

radiation controls (iii).  

To understand the climate sensitivity of thaw in a boreal landscape we investigated the sensitivity 20 

of ALT to variations in air temperature and precipitation under different LAI based on the 

Boundary Creek black spruce site (BS). In northern Canada, the forecast for 2100 is for 

temperature increases of 2-7ºC and precipitation rises of 10-30% (Bush and Lemmen, 2019). For 

our tests, daily air temperature was adjusted across the forcing data by changes from -2º to +5ºC, 

spanning the magnitude of expected temperature changes (certain to be increases) in coming 25 

decades (Bush and Lemmen, 2019). Precipitation forcing was adjusted by a factor of 0.5-1.5 

reflecting greater uncertainty in forecasts of precipitation in coming decades (Bintanja and Andry, 

2017). Other climate variables (e.g., diurnal temperature range, the timing of the precipitation, 

relative humidity and solar radiation) were left unmodified. The precipitation was treated as 

rainfall if daily mean air temperature >0ºC, otherwise it was treated as snowfall.  30 

Page 7 of 29 AUTHOR SUBMITTED MANUSCRIPT - ERL-109028.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 

8 
 

 

Results	
 
Model Validation 

For soil temperature, the calibrated model was able to explain effectively the patterns observed 5 

through the soil profile and across the growing season (June to August) at all the sites (Figure 1). 

Across the spruce and birch sites, the mean coefficient of determination (R2) was 94%, regression 

slopes were close to one (range: 0.9-1.15), and intercepts close to zero (range: -0.26–0.31), with a 

mean root mean square error (RMSE) of 1.5ºC (Table 2). The simulations matched the 

observations of evolving soil temperature in both unburned and burned black spruce sites at 10 

Mosquito Creek, and resolved the differences in profiles down to 1 m. Some mismatches did occur 

in upper soil layers, for which data are more prone to local perturbations.  

For soil moisture, the model explained 73% of variability in mean observations over time, although 

there was clear bias (slopes ranged from 0.41 to 0.63) and mean RMSE was 0.14 m3 m-3 (Table 

2). The model reproduced well the moisture conditions found in the lower profile (Figure 2) but 15 

tended to over-estimate surface soil moisture (0.05 m depth). Both model and data suggested lower 

soil moisture values in the unburned sites (Figure 2, top panel), although the model values were 

systematically larger than the observed values at 0.05 and 0.15 m depth. Soil moisture data were 

more varied across the sampling locations at each site than model simulations, likely linked to the 

natural variability of the samples. 20 

The evolution of summer thaw depth in the model was comparable with observations, with a mean 

R2 of 0.76, and mean RMSE of 0.093 m (Table 2). In terms of timing, rapidity of thaw and peak 

thaw depth, the model produced outputs similar to observations for both burned and unburned sites 

(Figure 3). Transitions between modelled soil layers account for the step-like outputs. For the 

burned site (Figure 3B), the model output was within the range of the five measurement locations, 25 

except for the initial measurement. For all sites the model tended to overestimate thaw depth in 

early summer by ~10 cm, but this bias was reduced by late summer. 

While there are indications of bias in model outputs compared to observations (Figure 2), the 

dynamics of soil variables, and their absolute differences between burned and unburned sites, are 

comparable for both observations and models. If model process sensitivity is close to linear (e.g. 30 

between soil moisture and thermal conductivity), then simulating the magnitude of 
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changes/differences realistically is most important for representing the process interactions and 

feedbacks on ALT. The capacity of the modelling to explain the difference in ALT for burned and 

unburned sites over time based purely on local parameters supports this validity assumption 

(Figure 3). The error (over-estimation) in soil moisture is systematic and has a limited effect on 

soil thermal conditions and surface energy fluxes, and therefore does not affect the conclusions of 5 

the paper. Overall the NEST model has been shown capable of simulating the soil biophysical 

dynamics of typical coniferous and broadleaf boreal forests of North America. 
 
Key Determinants of Fire Impacts  

Our model experiments on the black spruce sites at Mosquito Creek show that the imposition of 10 

observed LAI loss from a fire in northern Canada is responsible for the majority of the observed 

increase in ALT and for soil warming post-fire, compared to lesser effects of observed losses of 

moss and organic layer thickness (Figure 4). The effect of organic layer thinning post-fire, while 

important, is secondary in this case, because the post-fire combined moss and soil organic layer is 

still thick at our burned site (0.46 m) despite the largely complete removal of the moss layer.  15 

Critically, our analysis indicates that ALT sensitivity to LAI arises mainly through the effects of 

vegetation on soil moisture. Reduced LAI post-fire increases soil moisture in surface soils (Figure 

2), which boosts thermal conductivity and soil thaw. Dry organic soils, very effective insulators, 

are found under high LAI canopies, due to interception of precipitation and higher rates of 

transpiration. Fire reduces LAI, reduces interception and transpiration, leading to wetter soils 20 

which conduct heat to depth more effectively, boosting soil thaw. ALT dynamics are also highly 

sensitive to vegetation recovery after fire. Our modelling reveals that near-surface permafrost 

becomes unstable after fire removal of LAI, so thaw can reach a depth of 5 m depth and begin to 

enter bedrock after five years if LAI does not recover (Figure 5). Ecological succession is then 

critical for stabilising permafrost post-fire, allowing re-establishment of a thin (<0.5 m) active 25 

layer as surface soils dry with recovery of LAI, transpiration and interception (Figure 5). 

Conversely, shortened fire return periods and/or more intense fires can imperil permafrost by 

reducing mean LAI over extended periods. 
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Separating Soil Moisture and Shading Effects 

We undertook additional model experiments for black spruce forests, forcing shading and soil 

moisture regimes, to determine their impact on ALT. Our results show that the vegetation (LAI) 

effect on ALT is mainly through changes in soil moisture, rather than the direct effect of shading 

on energy balance. Modelled soil moisture is responsive to LAI control on water input 5 

(interception) and output (evapotranspiration). Soil moisture is greatest at low LAI and declines 

rapidly with increasing LAI (black curves in Figure 6A), due to rising interception and 

evapotranspiration. Surface moisture stabilizes in the model under greater LAI (>2), as soil drying 

restricts water uptake in the model. The experiment with removal of shading had only small effects 

on moisture (dashed black curves in Figure 6A. There is a similar response for ALT, also declining 10 

with increases in LAI; the response is initially rapid, then gradually stabilizes at greater LAI 

(Figure 6B). The experiments that remove shading again had little effect on ALT. In experimental 

conditions with increased lateral drainage, soil moisture is low and largely independent of LAI 

(red curves in Figure 6A). In this case, representative of steeply sloping terrain, ALT decreases 

less and more gradually with increased LAI due to a limited potential for vegetation to influence 15 

soil drying (red curves in Figure 6C). The modelling shows that ALT is lower in these more freely 

draining conditions due to drier soils. These drier soils thaw less deeply (63-96% of the thaw under 

observed, local conditions), with greatest divergence at low LAI. Equally, if soil moisture is 

experimentally kept constant and saturated for all LAI (blue curves in Figure 6A, representative 

of low-lying wetland conditions) ALT is increased relative to observed conditions (compare Figure 20 

6B and C) and is less sensitive to LAI (Figure 6C).  

Both the modelling and field observations (Fisher et al., 2016) show that the LAI-soil moisture 

interaction is the more important biophysical determinant of ALT. With artificial removal of 

shading effects of plants on the land surface (dashed curves in Figure 6), ALT still remains highly 

sensitive to change in LAI. The plant shading effects on ALT account for just 10% of overall LAI 25 

effects under field observed conditions, 32% for steeper sloping landscapes (high lateral drainage 

conditions), and 56% for saturating conditions (LAI decoupled from evapotranspiration). When 

LAI controls soil moisture dynamics in the model, as observed in the field, this LAI-soil moisture 

interaction is the more important biophysical determinant of ALT. Shading effects on ALT became 

relatively, but not absolutely, more important only under conditions of increased lateral drainage; 30 

and absolutely more important when soil moisture was kept saturated. In short, the LAI loss effect 
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on soil moisture is the main driver of ALT deepening following disturbance in the landscapes we 

studied.  

 

Sensitivity of thaw to air temperature and precipitation 

To determine the climate sensitivity of ALT and soil moisture,  we modelled predicted changes in 5 

air temperature and precipitation. We found that the deepening of thaw with rising mean annual 

air temperatures was non-linear and strongly amplified by reductions in LAI and increasing annual 

precipitation. Fundamentally, the thaw responses to changes in surface temperature and 

precipitation are interactive. This interaction is multiplicative rather than independent or additive. 

The non-linear response is greatest in low LAI conditions (Figure 7), when soil moisture is more 10 

sensitive to precipitation changes. There is an interactive effect between changes in precipitation 

and changes in air temperature regardless of LAI, but this interaction is much stronger in a 

disturbed landscape, where LAI = 1 (Figure 7, right panels), than in landscapes with typical canopy 

cover (LAI = 2.5, Figure 7 left panels). At LAI=2.5 a 30% increase in precipitation increases the 

effect of 3ºC warming on ALT by 32%. At an LAI=1 (fire disturbed landscape, Figure 7 left 15 

panels), the temperature-precipitation interaction is much stronger, with a 30% increase in 

precipitation magnifying the thaw effect of 3ºC warming by >300% (Table 3). The non-linear 

interactions demonstrated here at low LAI are striking (Table 3). In disturbed forests (LAI=1), 

increases in soil moisture linked to rising precipitation rival warming as a direct driver of thaw, 

with a 30% increase in precipitation at current temperatures causing more thaw than 2ºC of 20 

warming. Contrastingly, in undisturbed forest (LAI=2.5), a 30% increase in precipitation causes 

less thaw than a 1ºC increase in temperature (Table 3). The increased sensitivity of soil moisture 

to precipitation under lower LAI is clearly simulated (Figure 7). 

 

Discussion	25 

Our biophysical model, evaluated across a range of North American boreal ecotypes, including 

both spruce and birch forests, and disturbance states linked to fire, reveals the complex interaction 

of climate and vegetation in driving variation in thaw depth. The model provides new insights into 

the ecological protection of permafrost through vegetation-soil moisture interactions (Shur and 

Jorgenson, 2007). In agreement with Fisher et al. (2016), the modelling shows that organic soil 30 
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moisture is the critical intermediate variable between LAI and thaw (Figure 6A). Our finding that 

the thaw impacts of surface temperature and soil moisture changes are multiplicative is 

mechanistically consistent with the Stefan solution—a standard theoretical equation used by 

permafrost scientists to estimate thaw (Burn, 2004). The efficacy of evaporation in reducing thaw 

in a boreal region was previously shown in a numerical microclimate model by Smith and 5 

Riseborough (1983), but this did not draw attention to the effects of evaporation or transpiration 

on soil thermal conductivity. Our modelling supports and elucidates the conclusion of these 

authors, showing that to understand thaw we not only need to be tracking changes in air 

temperature but also changes in LAI and soil moisture. 

The role of soil thermal conductivity on active-layer thickness is clearly related to heat transfer, 10 

but previous studies have tended to focus on the differences in conductivities of the active layer 

during freezing and thawing seasons (i.e. thermal offset) and the role of the offset in limiting 

active-layer depth and maintaining permafrost in organic-rich soils in the discontinuous, sporadic 

and isolated permafrost zones (Williams and Smith, 1989; French, 2017). Our study highlights and 

analyses the sensitivity of the thermal conductivity of the active layer to changes in soil moisture 15 

during the thawing season, linked to post-fire changes in evapotranspiration (Figure 1, Figure 2). 

Such work provides essential mechanistic understanding of the processes that drive permafrost 

thaw in the boreal zone.  

The vegetation-soil moisture interactions on ALT demonstrated by our model experiments (Figure 

6) have major implications for simulating future rates of permafrost thaw. Changes to 20 

evapotranspiration caused by vegetation disturbance increase the sensitivity of permafrost thaw to 

precipitation relative to temperature changes (Figure 7), challenging the conclusions from the 

model evaluations in McGuire et al. (2016). Our simulations show that when both air temperature 

and precipitation increase, there is an interactive amplification of active layer thickening due to 

changes in snow cover and soil moisture conditions. This interaction is particularly strong at low 25 

LAI (Figure 7) due to the reduced capacity to intercept and transpire water, so that moisture 

accumulates in the active layer, increasing thermal conductivity and driving deeper thaw.  

These interactions of precipitation, LAI and air temperature on ALT are of particular concern given 

that climate models suggest that air temperature and precipitation will rise across high latitudes 

through this century (Knutti and Sedláček, 2012). On one hand, warming will increase rates of 30 
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transpiration, potentially drying soils further, and may also increase plant growth, LAI, and upper 

organic layer accumulation. These factors may strengthen ecosystem protection of permafrost by 

reducing soil moisture and therefore thermal conductivity. However, greater amounts of 

precipitation eliminate this increase in protection (Table 3). The thaw response to warming may 

be substantially greater than current predictions if LAI is reduced (Figure 7). Furthermore, 5 

warming is predicted to stimulate fire ignition, intensity and spread by drying fuel and increasing 

fuel production, and could increase tree mortality through increased drought (Gauthier et al., 2015; 

van der Werf et al., 2017). Such disturbances, along with increased storm damage, pest outbreaks 

and forest harvesting will reduce LAI, changing soil moisture and thermal conductivity, and 

thereby disrupt ecological protection of permafrost and promote permafrost thaw (Gauthier et al., 10 

2015; Zhu et al., 2016).  

This study is focused on North American boreal ecosystems, for which our study sites are highly 

relevant and broadly generalisable. Black spruce (Picea mariana) forest is the most widespread 

type in interior Alaska, covering ~40% of boreal Alaska (Van Cleve et al., 1983). Spruce (white 

and black) are by far the most dominant forest cover type across Canada, covering 53% of its 15 

forested area (Government of Canada, 2013). Paper birch and poplar are also important 

components of Alaskan boreal forests and the second most widespread cover type in Canadian 

forests. And 25% of boreal forest cover in North America is located on discontinuous permafrost 

(Helbig et al., 2016). While the ecological principles we outline may be consistent with Eurasian 

boreal forests, potential differences related to phenology of their dominant species and the more 20 

common distribution of these forests on continuous permafrost (Helbig et al., 2016) require further 

investigation. 

Because our sites had relatively thick organic matter (>0.46 m, Table 1) as compared to other 

boreal surveys (e.g. 0.23 m mean thickness in Turetsky et al. (2011) and in Lafleur et al.  (2015)), 

we may have found a stronger vegetation disturbance effect relative to organic layer thinning than 25 

the norm. Importantly, our results show that even areas of greater soil C thickness, such as we 

studied, are vulnerable to thaw despite the thicker organic layer (Figure 3). This vulnerability 

results because SOM, regardless of observed variations in thickness, is only an effective insulator 

when its soil moisture is low, for instance through drying by evapotranspiration (Figure 7). Post-

fire changes in soil moisture and evapotranspiration, which in turn alter soil thermal dynamics to 30 

impact ALT, will occur regardless of observed variations in SOM thickness. Thus, our conclusion 
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that the dominant sensitivity on ALT is through LAI change over SOM change should remain 

broadly valid for much of the 1.4M km2 of boreal forest on discontinuous permafrost in North 

America (Tarnocai et al., 2009), particularly those with thick organic horizons and larger C stocks. 

Model validation showed a tendency to over-predict surface soil moisture (Figure 2), so the extent 

of predicted impacts may be slightly less than the model forecasts. However, the effects of LAI on 5 

soil moisture (and thus thermal conductivity) and ALT are strong enough that our conclusions are 

valid. 

The soil thermal regimes for dominant boreal forest types are controlled strongly by soil moisture 

and thus the balance between evapotranspiration and precipitation. Disturbance to vegetation leads 

to greater thaw, as lower LAI leads to reduced evapotranspiration, and wetter, more thermally 10 

conductive soils. In such disturbed forests, increasing precipitation rivals warming as a direct 

driver of thaw. There are important non-linear interactive effects on thaw between rising 

precipitation and loss of leaf area. Ultimately, warming will thaw boreal permafrost, interacting 

with soil organic layer thickness and snow depth. But we conclude that future rates of thaw cannot 

be predicted accurately without considering hydrological changes linked to increases in vegetation 15 

disturbance frequency and precipitation amounts, which are likely and will interact strongly and 

multiplicatively to substantially accelerate thaw (Abbott et al., 2016). By identifying the dominant 

role through which vegetation controls permafrost dynamics, we emphasise that Earth System 

Models should evaluate the representation of these key processes to strengthen their applicability.  

 20 
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Figures	

 

  

 5 
Figure 1. Modelled and measured soil temperature profiles for the unburned (top panels) and 
burned (bottom panels) black spruce forest sites in Mosquito Creek across four dates during the 
growing season. The curves are modelled (the dates are shown below each column) and the 
crosses are measured on the corresponding date at different locations within the study site. In all 
cases depth is from the soil surface at burnt sites and from the moss surface at unburnt sites 10 
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Figure 2. Modelled and measured soil moisture profiles for the unburned (top panels) and burned 
(bottom panel) black spruce forest sites in Mosquito Creek across four dates during the growing 
season. The curves are modelled (the dates are shown under each column) and the crosses are 5 
measured on the corresponding date at five locations within the study site. In all cases depth is 
from the soil surface in burnt site and from the moss surface in unburnt site. 
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Figure 3. Modelled and measured thaw depths for unburned (A) and burned (B) black spruce 
forest sites in Mosquito Creek. The curves are model outputs and the crosses are independent 
observations at five locations within the study sites. 5 
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Figure 4. Model predictions over 16 years of peak active layer thickness (ALT) under various 
removal scenarios of soil, moss and vegetation LAI cover for boreal sites in Northwest 5 
Territories, Canada. The no fire case (thick black line) uses soil and vegetation parameters from 
an unburned black spruce site. The fire case (red line) uses data from a site that burned in 2008. 
LAI was reduced to 0 post-fire and recovered linearly to 0.9 by 2014. Modelling assumed no 
recovery in soil or moss thickness post-fire.  

  10 
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Figure 5. Model predictions of ALT (m) under different conditions of vegetation recovery during 
eight years after fire disturbance in 2008. Different LAI scenarios are indicated: black = no fire 5 
disruption; blue dash = LAI recovered to observed value (0.9) after 8 years; green short dash = 
LAI recovered to 0.45 after 8 years; red = no LAI recovery (0 after 8 years). 
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Figure 6.  The sensitivity of ALT (active layer thickness) to changing LAI (leaf area index) and 
attribution of the underlying mechanisms. Model simulations partition the ALT-LAI coupling 
between soil moisture and land surface shading effects. (A) Sensitivity of mean soil moisture at a 
depth of 0.1-0.2 m from June to September to LAI variation for the local, Mosquito Creek black 
spruce, calibration and two hydrological experiments. Solid blue line and dashed blue curves are 5 
the same, hence the latter is not visible. The curves represent the averages of the modelled years 
1942-2016.  (B) The sensitivity of ALT to LAI variation under locally observed conditions, so 
that modelled soil moisture is a function of LAI. (C) Two experiments with adjusted hydrology: 
The blue curves repeat the sensitivity experiments with soils saturated under all conditions; i.e. 
soil drying from evapotranspiration is prevented. The red curves show the sensitivity with 10 
increased draining included; surface soils drain laterally, leading to drier soils, independent of 
LAI and associated evapotranspiration. The dashed line shows how sensitivity changes with 
shading effects removed. 
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Figure 7. Modelled sensitivity of active layer thickness (top row, ALT) and surface layer soil 
moisture (lower row), averaged from 1942 to 2016, to variations in air temperature under 5 
different precipitation changes (shown as separate curves, legend in top left panel). The left-hand 
panels show results for LAI = 2.5, and the right-hand panels for LAI = 1.0. 
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Table 1 

 
Site	 Dominant	species	 Leaf	

area	
index	

Above	
ground	
biomass	
(kg	m-2)	

Veg.	
Height	
(m)	

Organic	
matter	
thickness	
(cm)	

Moss	
thickness	
(cm)	

N	

Boundary	
Creek	
Birch	(BB)	

Paper birch 
(Betula 
papyrifera). 
Sparse	black 
spruce	(Picea	
mariana) 
understorey, thick 
birch litter layer.	

2.66	
(0.61)	

10.3	 20	 57	(23)	 0	 24	

Boundary	
Creek,	
Spruce	
(BS)	

Black spruce 
(Picea mariana). 
Understorey of 
moss and shrubs	

2.37	
(0.55)	

5.95	 10	 51	(24)	 5	(3)	 24	

Mosquito	
Creek,	
burned	
(MS-B)	

Shrub	birch	
(Betula	
glandulosa),	
Rhododendron	
groenlandicum	
and	Vaccinium	
vitis-idaea	
established	post-
fire	(2008).	Many	
standing	dead	
Picea	mariana	
trees.		

0.94	
(0.48)	

0.0	 2	 46	(17)	 1	(1)	 30	

Mosquito	
Creek,	
unburned	
(MS-U)	

Black spruce 
(Picea mariana). 
Understorey of 
moss,	shrubs	and	
forbs.	

1.70	
(0.46)	

5.87	 12	 57	(15)	 7	(6)	 30	

Canopy and soil characteristics of the study site locations during a survey in summer 2014. For 5 
extensive surveys across each site (N = sample number), we report the mean (standard deviation) 
for LAI, above ground biomass (calculated from stem survey, all stems >3 cm diameter at breast 
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height), estimate height of vegetation (m), organic matter thickness (cm) and moss thickness 
(cm). 
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Table 2 

 
Site	 Variable	 R2	 slope	 intercept	 RMSE	

Boundary	Creek	
(BB),		

Betula	papyrifera	

soil	temperature	(oC)	 0.94	 1.15	 -0.28	 1.74	

soil	moisture	(m3	m-3)	 0.78	 0.52	 0.07	 0.05	

Thaw	depth	(cm)	
0.60	 0.55	 25	 6.2	

Boundary	Creek	
(BS),		

Picea	mariana	

soil	temperature	(oC)	 0.95	 1.06	 0.31	 1.53	

soil	moisture	(m3	m-3)	 0.85	 0.63	 0.19	 0.13	

active	layer	thickness	
(cm)	

0.68	 0.52	 23.3	 8.8	
Mosquito	Creek	
burned	(MS-B),		

Picea	mariana	
(charred	snags)		

soil	temperature	(oC)	 0.94	 0.97	 0.02	 1.32	

soil	moisture	(m3	m-3)	 0.53	 0.47	 0.3	 0.16	

active	layer	thickness	
(cm)	

0.99	 0.7	 38.6	 16.4	
Mosquito	Creek	
unburned	(MS-U),	

Picea	mariana	

soil	temperature	(oC)	 0.94	 0.9	 0.01	 1.52	

soil	moisture	(m3	m-3)	 0.76	 0.41	 0.23	 0.22	

active	layer	thickness	
(cm)	

0.76	 0.48	 22.8	 5.9	
Evaluation statistics for NEST model simulations of temperature and moisture estimates through 
soil profiles (up to 1 m depth for temperature, up to 0.4 m depth for moisture), and of thaw 5 
depth, from late June to late August 2014 at four sites in Northwest Territories, Canada. The 
statistics include coefficient of determination (R2), slope and intercept of regression of modelled 
on measured values, and the root mean square error (RMSE) of model outputs. Dominant 
vegetation is noted for each site, although for the burned site the vegetation was heavily 
disturbed. The observations used in the statistics were mean values for multiple samples at each 10 
site. 
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Table 3.  

	 LAI=1	  LAI=2.5		
DP (%) 

 	 	  
DP (%) 

 	 	

DT (ºC) 0 10 30 50 
 

0 10 30 50 
0 1.00 1.06 1.20 1.26 

 
1.00 1.01 1.04 1.05 

1 1.05 1.12 1.29 1.40 
 

1.05 1.06 1.10 1.11 
2 1.10 1.19 1.46 1.67 

 
1.13 1.15 1.17 1.20 

3 1.21 1.35 1.88 2.38 
 

1.24 1.26 1.31 1.33 
4 1.35 1.56 2.79 30.57 

 
1.36 1.38 1.45 1.52 

5 1.64 2.13 45.64 85.36 
 

1.51 1.56 1.72 1.87 
Relative adjustment in active layer thickness under changes in mean annual air temperature (DT, 5 
rows) and mean total precipitation (DP, columns) for boreal vegetation with LAI=1 (left hand 
columns) and LAI = 2.5 (right hand columns) as simulated by the NEST model. The numbers are 
determined as the ratio of ALT for each scenario compared to the baseline ALT (DT=0, DP=0).   
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