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1  | INTRODUC TION

Social structure and population dynamics are closely intertwined 
(Shizuka & Johnson, 2019). The social structure of populations is 
critical in shaping key ecological processes, such as the spread of 
information and infections (Allen et al., 2013; Aplin et al., 2015; 
White et al., 2017), and in driving patterns of evolutionary change 
(Fisher & McAdam, 2017). On the one hand, social relationships 
will be influenced by demographic changes; for example, individ-
uals may interact more with others at higher population densities 
(O'Brien et al., 2018). On the other hand, social relationships may 
influence key demographic processes, such as reproductive rates 

(McDonald, 2007), dispersal (Blumstein et al., 2009) or survival (Ellis 
et al., 2017). Hence, the interplay between demography and social 
structure is of immediate relevance to tackling numerous important 
questions in behavioural and evolutionary ecology, and yet long-
term demographic data are rarely associated with detailed social 
analyses.

Many long-term studies of wild animals involve the collection of 
data based on capture–mark–recapture (CMR) approaches, where 
individuals are given a unique identifier when first captured, allow-
ing identification if subsequently recaptured. If CMR data are spa-
tiotemporally referenced (i.e. the location, time and date of each 
capture are recorded), then under the assumption that co-located 
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Abstract
1. Long-term capture–mark–recapture data provide valuable information on the 

movements of individuals between locations, and the contemporary and/or co-
located captures of individuals can be used to approximate the social structure of 
populations.

2. We introduce an r package (CMRnet) that generates social and movement net-
works from spatially explicit capture–mark–recapture data. It also provides func-
tions for network and datastream permutations for these networks. Here we 
describe the package and key considerations for its application, providing two 
example case studies.

3. The conversion of spatially explicit mark–recapture data into social and movement 
networks will provide insights into the interplay between demography and behav-
iour in wild animal populations, with important applications in their management 
and conservation.
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individuals tend to be social associates, co-captures could be used 
as a proxy for social associations (e.g. Gimenez et al., 2019; Perkins 
et al., 2009). Information on co-location also permits inference of a 
spatial network of the movement of individuals within a population 
(Jacoby & Freeman, 2016). Networks constructed using CMR data are 
less precise than those which use specific behavioural observations or 
bio-logging approaches. However, CMR data may allow networks to 
be constructed in situations where these approaches are not feasible, 
and particularly over the entire timeline of longer-term studies where 
the addition of further time input and costs may be impractical.

We present an r package (CMRnet) for the construction and anal-
ysis of social (co-capture) and movement networks from spatiotem-
porally referenced CMR data. We provide an overview of how the 
package functions and some of the key considerations when using it 
to analyse real-world populations.

2  | FUNC TIONS TO CONSTRUC T AND 
PERMUTE MARK–REC APTURE NET WORKS

The r package CMRnet (https://github.com/matth ewsil k/CMRnet) 
outlined briefly here, and in Supporting Information S1, provides 
tools to construct and analyse networks from CMR data where in-
dividual identities are associated with times and locations (Figure 1). 
Three types of network can be constructed using CMRnet: co- 
capture networks (i.e. spatiotemporal co-occurrence of captured  
individuals as a proxy for social associations); movement networks 

that link locations used by the same individual and multiplex move-
ment networks. Multiplex networks are a type of multilayer net-
work in which inter-layer edges can only connect the same actor  
(in this case, the same location) in each layer (Kivelä et al., 2014; Silk 
et al., 2018). Constructing multiplex movement networks makes it 
possible to consider the movements of different types of individual 
as separate network layers, and so can help consider the roles of 
phenotypes, life-history stages and even among-individual variation, 
in structuring the movement network using multilayer measures (see 
Kivelä et al., 2014).

For most datasets, co-capture networks are constructed 
using the function DynamicNetCreate(), movement networks 
using MoveNetCreate() and multiplex movement networks using 
MultiMoveNetCreate(). When networks are being constructed for 
data with higher temporal resolution, then equivalent functions are 
available that use times as well as dates for interaction and network 

F I G U R E  1   A simple example of how CMRnet takes spatially 
referenced mark–recapture data (a) to produce (b) social and (c) 
movement networks. In the example social network generated 
here (b), the network window equates to the whole data collection 
period and the interaction window is 1 (hence only captures 
occurring on the same day result in an edge in the network). Edges 
are weighted by the number of co-occurrences. In the example 
movement network generated here (c), the interaction window is 
set at 35 days (so only captures in adjacent months are recorded as 
movements)

TA B L E  1   Additional arguments used in the network 
construction functions in CMRnet

Argument
Network 
type Purpose

mindate= Both The start date of the period over 
which networks are constructed 
(format: ‘YYYY-MM-DD’)

maxdate= Both The end date of the period over 
which networks are constructed 
(format: ‘YYYY-MM-DD’)

intwindow= Both The maximum period of time over 
which two individuals can be 
considered as co-captured in a 
social network, or the maximum 
gap between captures that 
produce an edge in a movement 
network (in days)

netwindow= Both The period of time over which 
each network is constructed  
(in months)

overlap= Both The extent of overlap between 
adjacent network periods 
(in months), for example, 
overlap = 2 would see the 
second network period start 
2 months before the end of the 
first

spacewindow= Social only The maximum distance between 
locations that can be classed as a 
co-capture (based on coordinate 
system provided by the user)

nextonly= Movement 
only

Determines whether an edge is 
only drawn to the next capture 
of an individual or to all captures 
within the interaction window 
(TRUE/FALSE)

index= Both Whether to use counts (FALSE) 
or association indices (TRUE) as 
edge weights

https://github.com/matthewsilk/CMRnet
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F I G U R E  2   The two types of permutation procedure provided by CMRnet: (a) node feature swaps (node permutations) and (b) datastream 
permutations (edge rewiring). (a) Node feature swaps can be used to account for non-independence while breaking the association 
between a feature of interest (in this case node colour) and network position. Swaps can be constrained to occur only between particular 
combinations of individuals (indicated here by the green dashed line). (b) Datastream permutations swap either individual identities (for co-
capture networks) or locations (for movement networks) between capture events, potentially leading to changes in network structure. They 
can also be constrained (e.g. by capture date in this case) to produce different null models (see Supporting Information S1 for more detail)
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windows (see Supporting Information S1). Both co-capture and 
movement networks require data to be formatted as in Figure 1, 
with an additional column indicating layer ID if multiplex move-
ment networks are being constructed. Additional arguments are 
then supplied to the network construction functions to define the 
time periods over which networks are constructed and the precise 
definitions of nodes and edges within them (Table 1). The resulting 
co-capture networks are undirected and weighted (with differ-
ent options for edge weights possible; see Table 1 and Supporting 
Information). The resulting movement networks are directed and 
weighted, linking locations at which the same individual has oc-
curred or been captured, either consecutively or within a pre-set 
time period. Multiplex movement networks are stored as a stack 
of adjacency matrices representing the connections in each layer. 
The package includes basic plotting functions and the function cmr_ 
igraph() to convert output from the main functions into lists of igraph 
networks for onward analysis (see Supporting Information S1).

The CMRnet package also contains tools to construct permuted 
networks for CMR data for use as null models in subsequent sta-
tistical analyses (Figure 2). Selecting the appropriate permutation 
approach is an important challenge in network analysis (Weiss 
et al., 2020) and different procedures are valuable to address differ-
ent questions. The cmrNodeswap() and cmrRestrictedNodeswap() 
functions conduct node feature swaps on CMRnet objects that can 
be used to test hypotheses relating network position (of an individ-
ual in a co-capture network or group in a movement network) to 
traits of that individual or group. Swaps can be conducted so that 
they are unconstrained within each network window (the former), 
or constrained to occur between particular combinations of nodes 
(the latter; in our first case study, we constrain swaps to occur be-
tween individuals that have been captured at the same locations). 
The DatastreamPermSoc() and DatastreamPermSpat() functions 
conduct datastream permutations (Bejder et al., 1998; Farine, 2017) 
for both social and movement networks constructed using the pack-
age. These approaches can be used to test whether co-capture or 
movement networks are different to a particular reference model 
while accounting for variation in sampling effort. A naive reference 
model in this case would be a comparison to random, but we allow 
temporal or spatial constraints to be imposed on these datastream 
permutations to enable more sophisticated comparisons. More de-
tails on the permutation approaches are provided in Supporting 
Information S1.

3  | C A SE STUDIES

We present two case studies in Supporting Information S2 to illus-
trate the use of the package and highlight some important consid-
erations. We use data from a long-term study of European badgers 
Meles meles in the UK (McDonald et al., 2018) to (a) test the hy-
pothesis that there are age and sex differences in the position of 
individuals in the co-capture network and (b) examine the multiplex 
structure of badger movement networks.

4  | KE Y CONSIDER ATIONS WHEN USING 
CMR n e t

The generation of co-capture and movement networks using 
CMRnet relies on a series of underlying assumptions that it is impor-
tant to be aware of when using the software.

4.1 | Defining nodes

The definition of nodes is trivial for co-capture networks gener-
ated using the package. However, for movement networks, the 
definition of nodes can involve some subjectivity. Movement net-
works are constructed using pre-determined locations as nodes. 
For some study systems, animals will be captured at clearly defined 
locations (e.g. burrow systems, breeding colonies, etc.) and nodes 
can be defined easily. These types of datasets lend themselves 
naturally to analysis using CMRnet. In other instances, capture 
locations may be less clearly associated with distinct landscape 
features and the definition of nodes in the movement network will 
therefore be more challenging. It may be possible to treat each 
capture location as a distinct node, to group locations based on 
shared environmental features or with existing behavioural knowl-
edge. However, caution should be exercised when doing so and 
sensitivity analyses should be considered to assure the robustness 
of conclusions.

4.2 | Defining edges

Several important assumptions may underlie the definition of edges 
within the networks generated, particularly for co-capture net-
works in which the user infers a likely association or interaction 
from the data. We advocate a question-driven approach for defin-
ing the spatial and temporal tolerance used in defining co-captures. 
For example, researchers using network approaches to study wild-
life disease could set interaction windows that reflect the ability of 
the pathogen of interest to persist in the environment, therefore 
defining edges of immediate relevance to transmission (Godfrey 
et al., 2009). However, uncertainty caused by the assumption that 
co-capture equates to a relevant interaction should be acknowl-
edged and sensitivity analyses should be considered. In some con-
texts, other solutions may be preferable, one example being the use 
of Gaussian mixture models to define what constitutes a co-capture 
(Psorakis et al., 2012).

4.3 | Scale

Co-captures or detected movements can occur with different 
probabilities in different study systems. Regardless of whether a 
user is studying co-capture or movement networks, it is essential 
to select spatial or temporal windows that are meaningful for the 
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research questions of interest. If networks generated using these 
windows are very sparse, other approaches should be preferred 
to using networks. Conversely, if individuals are recorded suf-
ficiently regularly, as might be the case during intensive resight-
ing of flocks of banded birds (Farine & Milburn, 2013; Napper & 
Hatchwell, 2016), then very short interaction windows can be used 
to ensure edges only connect individuals seen at the same loca-
tion at the same time. At this point, co-capture network construc-
tion from CMR data becomes analogous to using the Gambit of 
the Group assumption to construct association networks (Franks 
et al., 2010). In these contexts, existing social network software 
such as asnipe (Farine, 2013) may be preferred.

4.4 | Capture effort

The detection of co-captures and movements in CMR datasets 
will depend on capture effort. Spatial or temporal variation in cap-
ture effort could therefore lead to spurious differences in network 
structure being detected if not adequately controlled (Gimenez 
et al., 2019). Care should be taken when using the network ap-
proaches described here when this is likely to be the case. In these 
situations, the use of permutation-based approaches becomes more 
important; datastream permutations can be used to produce null 
models that account for any spatial or temporal variation in trapping 
effort.

4.5 | Detection

A related challenge is variation in detectability among individuals. 
Systematic variation in detectability can cause bias in the infer-
ence of associations in co-capture networks (Gimenez et al., 2019), 
or may cause unwanted differences between layers in multiplex 
movement networks (e.g. if inter-group movements are more likely 
to be detected in males than females, then the network layer of 
male movements may appear more connected than that of females 
even if it is not). The risk of this bias should be acknowledged and 
using these approaches naively when differences in detectability 
are aligned with the research question should be avoided. The use 
of permutation approaches can help deal with these biases but will 
require system-specific constraints (beyond the generic functions 
provided). In the longer term, the integration of demographic mod-
els (with their ability to handle missing observations and account 
for differences in detection) with existing social network models 
should be a priority.

4.6 | Computational limitations

Long time series and short or highly overlapping network windows 
will be computationally demanding, especially when using data-
stream permutations and should be a consideration when using 

the package. We provide some tips in Supporting Informations 
S1 and S2.

5  | CONCLUSIONS

Using network approaches to analyse CMR data offers real potential 
to provide insights into the social and spatial behaviour of animals. 
CMRnet can be used to construct and analyse social and movement 
networks from these datasets, to allow the integration of network 
structure with demographic studies (Shizuka & Johnson, 2019) and en-
able the application of network approaches over longer time periods 
than is possible using more time- or cost-intensive approaches. The 
potential to extend insights from social and movement networks to 
larger temporal scales and far greater diversity of study systems will 
be highly beneficial in understanding the wider ecological implications 
of animal behaviour.
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