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Abstract 14 

Rainfall variability change under global warming is a crucial issue that may have a 15 

substantial impact on society and the environment, as it can directly impact biodiversity, 16 

agriculture, and water resources. Observed precipitation trends and climate change 17 

projections over Brazil indicate that many sectors of society are potentially highly 18 

vulnerable to the impacts of climate change. The purpose of this study is to assess model 19 

projections of the change in rainfall variability at various temporal scales over sub-regions 20 

of Brazil. For this, daily data from 30 CMIP5 models for historical (1900-2005) and future 21 

(2050-2100) experiments under a high-emission scenario are used. We assess the change 22 

in precipitation variability, applying a band-passfilter to isolate variability on daily, 23 

weekly, monthly, intra-seasonal, and ENSO time scales. For historical climate, simulated 24 

precipitation is evaluated against observations to establish model reliability. The results 25 

show that models largely agree on increases in variability on all timescales in all sub-26 

regions, except on ENSO timescales where models do not agree on the sign of future 27 

change. Brazil will experience more rainfall variability in the future i.e., drier or more 28 

frequent dry periods and wetter wet periods on daily, weekly, monthly and intra-seasonal 29 

timescales, even in sub-regions where future changes in mean rainfall are currently 30 
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uncertain. This may provide useful information for climate change adaptation across, for 31 

example, the agriculture and water resource sectors in Brazil. 32 

Keywords: rainfall, variability, climate change, climate extremes, Brazil. 33 

1. Introduction 34 

Brazil has important physical features as well as natural and human systems, such as the 35 

Amazon, the largest rainforest in the world (Marengo et al., 2018), the semiarid region of 36 

Northeast Brazil (NEB) that occupies an area of about 18 % of the area of Brazil and is 37 

the world’s most densely populated dry land region  (ALVALÁ et al., 2017), the La Plata 38 

basin in southeastern South America, which is the fifth largest watershed in the world and 39 

an environment of great economic and demographic significance (Llopart et al., 2014), 40 

and the Pantanal region, one of the worlds largest wetlands, located in a large floodplain 41 

in the center of the upper Paraguay river basin (Marengo et al., 2015). Furthermore, the 42 

South America Monsoon System (SAMS) plays a vital role in the precipitation over many 43 

Brazilian regions, affecting the economy through impacts on the agriculture and 44 

hydrology sectors (Marengo et al., 2012). In addition, geographic features along with 45 

remote oceanic-climatic drivers, such as El Nino Southern Oscillation ENSO and Atlantic 46 

sea surface temperatures (SST), as well as local drivers such as soil moisture and moisture 47 

recycling from vegetation, contribute to a wide variety of climate conditions and their 48 

variability over Brazil. 49 

During recent decades Brazil has experienced extreme rainfall events on a range of time 50 

scales, with subsequent impacts on natural and human systems. For example, drought in 51 

2005, 2010, 2015-16 (Lewis et al., 2011; Marengo et al., 2018) and flood in 2009, 2013 52 

and 2014 in Amazônia (Marengo et al., 2016, 2018), drought in semiarid Northeast Brazil 53 

in 2012-2017 (Brito et al., 2018; Cunha et al., 2018), and drought and water crisis during 54 

2014-15 in South America’s largest city, São Paulo (Nobre et al., 2016). About 70% of 55 

the disasters are hydro-meteorological in nature, particularly droughts and floods (Santos, 56 

2007). The frequency and severity of other natural disasters include flash floods and 57 

landslides have increased, affecting millions in the last decade (CEPED UFSC, 2013). 58 

For example, during the Santa Catarina floods in 2008 a landslide killed 113 people 59 

(Xavier et al., 2014), Alagoas and Pernambuco experienced the most intense rainy season 60 

in 20 years affecting 1 million people, and Rio de Janeiro 2011 flash floods and landslides 61 
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killed 1000 people (Marengo et al., 2013). Several studies have shown that Brazil can be 62 

profoundly impacted by changes in extremes of rainfall and temperature in the present 63 

and in the future. This is mostly noted in the north, northeast and southern regions 64 

(Marengo et al., 2010b, 2010a; Torres et al., 2012; Christensen et al., 2013; Sillmann et 65 

al., 2013). 66 

In recent years, several studies have been conducted using projections of future 67 

precipitation change over Brazil derived from global and regional climate models (Alves 68 

and Marengo, 2010; Marengo et al., 2010a; Blázquez et al., 2012; Joetzjer et al., 2013; 69 

Chou et al., 2014a; Vera and Díaz, 2015; Gulizia and Camilloni, 2015; Sánchez et al., 70 

2015; Yoon, 2016; Cavalcanti and Silveira, 2016; Ambrizzi et al., 2019; Solman and 71 

Blázquez, 2019; Díaz et al., 2020). They found a consistent pattern of intense rainfall 72 

increases in southern and southeastern Brazil and more dry spells and drought in 73 

Amazonia and Northeast Brazil.    74 

Global and regional projections based on Coupled Model Intercomparison Project 75 

(CMIP5; Taylor et al., 2012) using the high emission Representative Concentration 76 

Pathway RCP8.5 (van Vuuren et al., 2011) generally agree on future regional warming 77 

over all Brazilian regions. However, there is much less agreement about mean 78 

precipitation changes. Nevertheless, on average, the models largely agree on a 79 

precipitation decrease in much of Amazonia and Northeast Brazil in the future. They also 80 

agree on increased precipitation in southern Brazil around La Plata basin (Malhi et al., 81 

2009; Chou et al., 2014a, 2014b; Ambrizzi et al., 2019), while there are more 82 

uncertainties over the South America Monsoon region. 83 

Torres and Marengo (2013) evaluated the uncertainties in the projections of precipitation 84 

changes (future minus present) in South America from CMIP3 and CMIP5 models and 85 

concluded that, in general, the models were be able to reproduce the climatological 86 

patterns of precipitation, such as the seasonal mean and annual cycle. In these studies, 87 

none of the models showed an overall superior performance in reproducing the present 88 

climate. The skill of the models varied according to the region, time scale, and variables 89 

analyzed. 90 

Changes in the variability of Brazil rainfall coupled with land use changes, notably 91 

deforestation, desertification and urbanization, would greatly increase Brazilian 92 
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vulnerability to climate change. For example, extreme events combined with the mean 93 

increase in temperature, as observed during the 2005, 2010 and 2015-16 Amazon 94 

droughts, caused a decrease in river flow, an increase in tree mortality and in the number 95 

of fires (Aragão et al., 2007, 2018; Marengo et al., 2008; Phillips et al., 2009).  96 

In this context, it is noted that most of the studies have focused on changes of average 97 

annual or seasonal rainfall, or differences between the rainy and dry seasons. However, 98 

none of these studies have analyzed the future change of daily to interannual precipitation 99 

variability of Brazil under a high emissions scenario. Future changes in rainfall variability 100 

(intensity and frequency), may have significant impacts on Brazilian society. Therefore, 101 

describing and understanding these patterns in the long-term trends is important. In 102 

addition, despite the great environmental and socioeconomic implications, they are not 103 

yet fully explored in the literature. 104 

A number of previous studies have examined present-day and future changes in rainfall 105 

variability on global or regional scales, primarily at the daily or monthly timescale (Lau 106 

et al., 2013; Pendergrass and Hartmann, 2014). Model projections generally show 107 

increased daily and monthly precipitation variability, with an increase in both the number 108 

of dry periods (Polade et al., 2015), conditional wet-period rainfall intensity (Giorgi et 109 

al., 2011; Polade et al., 2015), and extreme daily rainfall values (O’Gorman, 2015; Pfahl 110 

et al., 2017). This increased variability is due to both warming and the plant physiological 111 

response to CO2 (Skinner et al., 2017). Recently, Brown et al., (2017) introduced a 112 

framework for assessing rainfall variability change across timescales from daily to 113 

decadal. They applied this method to the Australian, Indian and East Asian monsoon 114 

regions, where they found increased variability on daily to decadal timescales. 115 

(Pendergrass et al., 2017) also found a global increase in precipitation variability across 116 

a range of timescales. 117 

The current study is motivated by the opportunity to increase our knowledge about 118 

climate variability in Brazil. Specifically, the purpose of this study is to assess model 119 

projections of the future change in rainfall variability and extremes over subregions of 120 

Brazil. For this, daily data from global climate model (GCM) projections carried out as 121 

part of the CMIP5 program (Taylor et al., 2012) under a high-emission scenario, 122 

Representative Concentration Pathway 8.5 (RCP8.5) are used. We assess the future 123 
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change in precipitation variability by applying a band pass-filter approach (Brown et al., 124 

2017). For this, we use the method proposed by Brown et al., (2017) and apply it 125 

regionally to the daily precipitation data from observed datasets and simulated from the 126 

CMIP5 global climate model under a high-emission scenario. A fuller description of this 127 

method can be found in the next section. 128 

2. Observations, simulations, and analysis methods 129 

a) Observations 130 

Various gridded observational datasets for precipitation are available in the literature and 131 

have been widely used for regional climate studies and model assessment in the study 132 

region. For instance, Carvalho et al., (2012) analyzed the South American monsoon from 133 

multiple precipitation datasets. They concluded that, in general, most of them have an 134 

adequate estimation of the major regional features mainly because they adopt the same 135 

approach based on satellite information and rain gauge observations. In this study we 136 

have used two independent gridded observational datasets as a reference because they 137 

provide high spatial resolution and long-term daily precipitation records required for the 138 

current study. 139 

Daily rainfall time series was obtained from the INPE/CPTEC merged satellite and rain-140 

gauge product (Rozante et al., 2010) with a spatial resolution of 0.2o for the period 1998-141 

2018 (hereafter called MERGE). The dataset combines Tropical Rainfall Measuring 142 

Mission (TRMM) satellite precipitation estimates with rain gauge observations over the 143 

South American regions using a successive correction algorithm, which provides better 144 

estimates of land surface precipitation over areas with sparse observations. The second 145 

observational dataset used is the Climate Hazards Group InfraRed Precipitation with 146 

Station data (CHIRPS) (Funk et al., 2014, 2015). CHIRPS is a relatively new rainfall 147 

product with a spatial resolution of 0.05°, starting from 1981 to near present. This dataset 148 

integrates satellite imagery with in situ rain gauge station data to create gridded rainfall 149 

time series. This dataset has a good performance in several regions of the world 150 

(Maidment et al., 2015; Zambrano et al., 2017; Zittis, 2018; Espinoza et al., 2019; Rivera 151 

et al., 2019).  152 

b) Simulations 153 
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We also have used daily precipitation data from 30 global coupled climate models for 154 

historical (1950-2000) and future (2050-2100) under a high-emission scenario, 155 

Representative Concentration Pathway 8.5 (RCP8.5) for CMIP5 (Table 1; Taylor et al., 156 

2012). All data (models and observation) were regridded to 2.5 degree horizontal 157 

resolution, in order to perform a fair comparison across different products. All models 158 

results are from the experiment using the r1i1p1 ensemble member. 159 

Table 1 – List of CMIP5 models used in this study 160 

c) Analysis 161 

The main focus of this analysis is to assess the future change in precipitation variability 162 

for 30 coupled models from the CMIP5 archive over Brazil applying a band pass-filtered 163 

technique developed by Brown et al., (2017) using the following bands: “daily” (1-5 164 

days), “weekly” (5-10 days), “monthly” (25-35 days), “intraseasonal” (30-80 days), and 165 

“ENSO” (2-8 years) to isolate variability on these time scales. For historical climate, 166 

simulated precipitation is first evaluated against observations to establish model 167 

reliability. The period 2050-2100 is used for RCP8.5 models. The present-day period is a 168 

hybrid though, to match up the same time period between models and observation. For 169 

all timescales except ENSO this is 1998-2018 for CHIRPS, Merge and models (which 170 

concatenate historical and RCP8.5 runs to get this time period). For ENSO is used 1981-171 

2018 for CHIRPS and models. 172 

A fast Fourier transformation was used to transform detrended data from observations 173 

and historical and future model experiments into the frequency (spectral) domain. Data 174 

detrending technique is applied to precipitation time series in order for the bandpass filter 175 

to cleanly separate different timescales of variability and avoid long-term trend introduce 176 

errors into the filtered time-series. For each frequency band of interest, all frequencies 177 

outside that band were set to zero and the remaining data were transformed back to the 178 

time domain. 179 

The band-pass filtering was performed separately on each observational/model grid-180 

point, and the standard deviation of each band-pass filtered time-series was calculated at 181 

each grid-point. The standard deviations were then spatially averaged over several key 182 

areas of Brazil, as highlighted in Figure 1 during the peak rainy season and following 183 

domains: (NAZ) northern Amazon (JFMAM, 5oS-5oN, 70oW-45oW), (SAZ) southern 184 
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Amazon (NDJFM, 12.5oS-5oS, 70oW-45oW), (NEB) northeast Brazil (FMAM, 15oS-2oS, 185 

45oS-34oW), (SAM) South America Monsoon (NDJFM, 20oS-10oS, 55oW-45oW), (LPB) 186 

La Plata Basin (NDJFM, 35oS-20oS, 65oW-45oW). These regions were used in several 187 

previous regional syntheses of observed and model projection analyses (Marengo et al., 188 

2003; Raia and Cavalcanti, 2008; Nobre et al., 2016; Alves et al., 2017). These areas were 189 

selected because they exhibit a well-identified seasonal cycle of precipitation and 190 

represent sub-continental regions of broadly climatic coherency in all the domains and 191 

reflecting the relevance of these areas to the studies of the Brazilian biomes, climatic, 192 

hydrological, and social systems. 193 

3. Results 194 

Several studies have evaluated the performance of CMIP5 models in simulating 195 

precipitation variability over South America for the present-day (Yin et al., 2012; Jones 196 

and Carvalho, 2013b; Knutti and Sedlacek, 2013; Torres and Marengo, 2013). The 197 

climate model performance to represent the mean climate variability is discussed 198 

compared to observed (MERGE and CHIRPS datasets), and the CMIP5 ensemble mean 199 

precipitation for the historical period (Figure 2).  200 

The results show that the multi-model ensemble reproduces the observed climatology 201 

features of precipitation over South America, such as spatial variability of the 202 

precipitation over central South America reasonably (Figure 2a-c). However, even with 203 

substantial progress made during the last decade in the development of climate models, 204 

the results show systematic errors (dry biases) in simulating precipitation variability over 205 

the Amazon and La Plata remains in CMIP5 models. Similar results were also noted by 206 

previous studies (Jones and Carvalho, 2013b; Gulizia and Camilloni, 2015). The dry-day 207 

fraction (Figure 2g-i) patterns are smoothed in the ensemble mean compared to the 208 

observations patterns, especially across NEB and SAM regions. Also, for conditional wet-209 

day rainfall (days with rainfall > 1mm/day), the multi-model ensemble tends to 210 

underestimate intense rainfall (Figure 2j-l). 211 

While the focus is on band-pass-filtered analysis over several key areas of Brazil, first we 212 

present a broader geographical perspective, showing the future changes in mean rainfall, 213 

unfiltered daily rainfall variability, dry-day fraction and conditional wet-day intensity in 214 

the models (Figure 3). The dry-day threshold is 1mm/day. The wet-day intensity is the 215 
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mean precipitation on days with rainfall above the dry-day threshold. The rainfall 216 

variability on all timescales is defined using the standard deviation. The dry-day fraction 217 

(%) is the percentage of days in each season that have rainfall less than the dry-day 218 

threshold.  219 

In general, model projections show that precipitation changes will occur in rainfall 220 

amount, intensity, and frequency. Some regional differences are noted, with some areas 221 

having significant increases, and others decrease. A wetter mean climate is projected for 222 

southern Brazil, and a drier mean climate for the Amazon and northeastern Brazil. Despite 223 

model disagreement on mean rainfall changes over many parts of Brazil, there is strong 224 

model agreement on an increase in the standard deviation of daily precipitation across all 225 

of Brazil, though the reason for this may differ by region. There are widespread increases 226 

in the intensity of wet days for the period 2050-2100 as compared to present-day in 227 

southern Brazil, and even in areas where significant decreases in rainfall are projected, 228 

like northeast Brazil (Figure 3d). On the other hand, the percentage of dry days is 229 

projected to increase more than 8 %/year, a result the models agree on (Figure 3c) in parts 230 

of northern Brazil. The multi-model mean changes indicate that southern Brazil will have 231 

higher rainfall variability (Figure 3b and d), as well as high mean rainfall amounts (Figure 232 

3a) in future climate. 233 

 234 

The analysis is now extended to assess the skill and projected changes by climate models 235 

to simulate the rainfall variability for a range of time scales from daily to ENSO. The 236 

variability over each of the Brazil selected areas was calculated using band-pass-filtered 237 

daily anomalies for 50 years of the historical (HIST) and future climate (RCP8.5) 238 

simulations, following the method described in section 2 and for wet season months only 239 

(January-May, JFMAM, for northern Amazonia (NAZ), February-May, FMAM for 240 

northeast Brazil (NEB), and November-March, NDJFM for southern Amazonia (SAZ), 241 

South America Monsoon (SAM) and La Plata basin (LPB).  242 

 243 

Figure 4 shows a set of box plots of the standard deviation of daily rainfall anomalies in 244 

each of the time bands for the spread of model variability in the HIST simulation (blue 245 

boxes), the RCP8.5 simulation (pink boxes) and the difference RCP8.5 minus HIST (grey 246 
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boxes) as well as for observational gridded datasets from CHIRPS (red squares) and 247 

MERGE (blue squares) observations overlaid on the HIST box plots. Note that the value 248 

for the ENSO time band is multiplied by 5 in Figure 4 for more precise visualization. 249 

On short time scales (daily (1-5 days) and weekly (5-10 days)) the models show most 250 

substantial variability in their respective wet seasons over all regions and, as a whole, 251 

there is a lack of model agreement in rainfall variability, with the observations lying 252 

outside the interquartile range, particularly in daily rainfall variability and in the northern 253 

Amazonia. On the other hand, the model variability and observations show reasonably 254 

good agreement at the weekly, monthly (25-35 days) and intra-seasonal (30-80 days) time 255 

bands for all regions investigated in this study, i.e, we note that the observation values 256 

fell within the inter-quartile range of GCMs.  257 

This result may be because CMIP5 ensemble have shown improvements to the simulation 258 

of regional patterns of precipitation compared to previous generation of climate models 259 

(Sperber et al., 2013), particularly due to substantial improvement in representations of 260 

sub-grid scale processes, such as convection (Neale et al., 2008) or representation of cloud 261 

physics (Khairoutdinov et al., 2005), in conjunction with an increase in atmospheric 262 

resolution (Ploshay and Lau, 2010; Delworth et al., 2012). It is also likely to be because 263 

the models are better able to capture large-scale patterns of circulation and variability than 264 

individual smaller scale synoptic and convective rainfall events (Flato et al., 2013). 265 

However, although the previous results suggest with confidence that models reproduce 266 

regional rainfall variability on a wide range of time scales, several studies have shown 267 

that GCMs don’t simulate rainfall variability well on daily-to-weekly time scales, 268 

particularly in the tropics (Westra et al., 2014).  269 

These results pose a challenge for interpreting the sign of projections of changes in mean 270 

rainfall due to future climate change because this suggests that the coarsest-resolution 271 

models do not replicate mesoscale circulations induced by regional features that are 272 

associated with convective precipitation and subgrid convection parameterization 273 

schemes (Watson et al., 2017). Furthermore, it is essential to note that the lack of adequate 274 

and robust observational information on precipitation, especially over northern 275 

Amazonia, also poses great difficulties in validating climate model outputs. Another 276 

possible cause of the aforementioned model-observation disagreement may be the 277 
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horizontal resolution differences, since the biases usually are highly sensitive to model 278 

spatial resolution.  279 

 280 

There are significant regional differences. For instance, southern Amazonia (Figure 4b) 281 

has more variability compared with northern Amazonia (Figure 4a) and this difference is 282 

associated with the annual cycle of rainfall where rainfall in northern peaks in March-283 

May and that in southern peaks in December-February. These differences are also 284 

associated with land atmosphere interactions and sea surface variability over both the 285 

Atlantic and Pacific oceans (Marengo et al., 2001; Fu and Li, 2004). More recent, 286 

Espinoza et al., (2019) also show climatic differences between regions, for instance, while 287 

southern Amazonia exhibits negative trends in total rainfall and extremes, the opposite is 288 

found in Northern Amazonia. 289 

Strong interannual rainfall variability is a major climatological feature in northeast Brazil 290 

(NEB). It is influenced by the SST in the tropical Pacific and Atlantic oceans (Marengo 291 

et al., 2020). Furthermore, the mean precipitation during the wet season (FMAM) is 292 

primarily influenced by north-south displacements of the Intertropical Convergence Zone 293 

(ITCZ) (Hastenrath, 2012). In Figure 4c, the variability for the NEB rainy season is 294 

shown. It is interesting to note that a large model spread is observed for all timescales. 295 

Another feature noted is reasonable agreement between models and observations for all 296 

except mean and ENSO time-scales. Concerning median change (gray boxes), for NEB, 297 

coherently positive values were found for all time scales, indicating an increase in rainfall 298 

variability. On the other hand, some models do project a decrease in rainfall variability 299 

for the NEB.  300 

Additionally, both South America Monsoon (SAM) (Figure 4b) and La Plata basin (LPB) 301 

(Figure 4e) areas overall show similar rainfall variability characteristics for all-time 302 

bands. However, there are significant regional differences in the intensities and variability 303 

(interquartile range), particularly among mean, daily (1-5 days) and weekly (5–10 days) 304 

time scales. Frontal systems and the South Atlantic Convergence Zone (SACZ) (Raia and 305 

Cavalcanti, 2008; Jones and Carvalho, 2013a) particularly affect the rainfall variability 306 

within the rainy season in the SAM, between December and February. On the other hand, 307 

the LPB is associated with incursions of frontal systems and Mesoscale Convective 308 
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Complexes (MCCs) (Silva and Berbery, 2006). It is also noteworthy that the main feature 309 

of rainfall variability in these regions occurs in a dipole pattern because, when it is wet 310 

over the SAM region, the LPB is relatively dry, and vice-versa, which appears in all 311 

timescales, from intraseasonal to interdecadal (Grimm and Saboia, 2015). In general, the 312 

models are able to simulate the observed rainfall variability for various time bands, 313 

although the model rainfall variability may be somewhat underestimated at daily and 314 

weekly timescales. The median change (gray boxes) in SAM and LPB rainfall variability 315 

is positive for almost all time scales, indicating that rainfall variability is increased in 316 

more than half of climate models. Negative values at the lower tail are present for all time 317 

scales, especially in the SAM region, indicating that some models project reduced future 318 

rainfall variability. 319 

Though this study provides a clear picture of how rainfall over Brazil will respond to 320 

climate change and offer robust policy-relevant climate projections, there remain many 321 

outstanding issues that illustrate the need of future work to address them. These include 322 

the impact of internal variability (Hawkins and Sutton, 2009), potential effects of different 323 

stressor, such as land-use change and fires (Spracklen et al., 2018), ocean-atmosphere 324 

feedbacks (Cai et al., 2020) and high-resolution simulations, based on Regional Climate 325 

Models (RCMs) (Giorgi et al., 2012) and Convection-Permitting Models (CPMs) 326 

(Coppola et al., 2020), which could lead to a better representation of both the spatial 327 

patterns and magnitudes of mean climate and climate extremes, especially in regions of 328 

strong surface heterogeneity. 329 

Figure 5 illustrates similarities and differences in rainfall variability change for each of 330 

the Brazilian sub-regions. Overall, all projected changes are fairly similar across different 331 

regions, i.e., an increase in rainfall variability, generally about 10% for all study regions 332 

and for all time scales, which is consistent with previous studies that found climate models 333 

generally project large rainfall changes over the twenty-first century under global 334 

warming (Brown et al., 2017; Pendergrass et al., 2017). While significant inter-model 335 

uncertainty in the future projections is observed on the daily and weekly time scale, 336 

models project an increase in the median change in variability for all sub-annual time 337 

bands in most regions – in other words, rainfall variability is increased in the majority of 338 

models for all timescales except “ENSO” variability. Despite ENSO variability being a 339 

key feature for Brazilian climate (Grimm, 2011) there is also no consistent signal of 340 
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ENSO precipitation change, consistent with Power and Delage (2018). Similarly, there is 341 

no consistent signal of mean precipitation change in most regions.  342 

In summary, the results varies with regions, however, model projections indicate that the 343 

response of precipitation variability due to global warming could be substantially 344 

increased in most of the sub-regions (Figure 5), leading to an increase in extremes over 345 

the coming century (Figure 3). This is consistent with previous research showing 346 

projected hydroclimatic changes (Junquas et al., 2012; Collins et al., 2013; Hegerl et al., 347 

2015; Ambrizzi et al., 2019) which can have multiple and significant impacts on the 348 

hydrological cycle and a variety of sectors (Magrin et al., 2014). 349 

 4. Summary and Conclusions 350 

This study assesses the rainfall variability and future change across Brazilian regions from 351 

the model projections of climate change available through the CMIP5 under the RCP8.5 352 

scenario for a range of time scales from daily to ENSO. Band-pass-filtering was used to 353 

isolate variability on each time scale, and the range of model rainfall standard deviations 354 

was calculated for historical (HIST) and future (RCP8.5) climates.  355 

In general, a comparison of the various climate model data used in this assessment 356 

provides a consistent picture of the large-scale projected precipitation changes across 357 

Brazil. This analysis suggests Brazil will experience more rainfall variability in the future 358 

i.e., the numbers of dry periods are increased, and the intensity of rainfall when it does 359 

rain is increased. However, the number/length of wet periods are not increased, primarily 360 

over the Amazonia, northeast Brazil and La Plata basin (Figure 3) areas already pointed 361 

as socio-climatic hotspots (Torres et al., 2012) . 362 

There is also a model consensus on the change in rainfall variability at all sub-annual 363 

timescales. GCMs robustly project increased rainfall variability (measured by the mean 364 

standard deviation) from daily to intra-seasonal timescales over all study areas (Figure 365 

5). In most regions, the increase in precipitation variability is at least as large and in many 366 

cases greater than the increase in mean precipitation, even in regions where the future 367 

change in mean rainfall is currently uncertain. Similar results are found by Pendergrass 368 

et al., (2017) and are attributed to a robust emergent aspect of the water cycle that is 369 

changing as a result of anthropogenic warming.  370 

Overall, CMIP5 model projections indicate that both the frequency and intensity of the 371 
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strong ENSO events will increase under high emissions scenarios (Cai et al., 2018; Wang 372 

et al., 2019). However, the results show that there is no robust change in precipitation 373 

variability at ENSO timescales over Brazil, in contrast with the results of Brown et al., 374 

(2017) for the Indian, East Asian, and Australian monsoon regions. 375 

This may provide useful information to policymakers for advising some suitable 376 

adaptation and mitigation policies to cope with anticipated climate variability and climate 377 

change, especially in the agriculture and water resource sectors in Brazil as well on the 378 

risk of fire and natural disasters of hydro meteorological nature.  379 

On the other hand, at the regional scales, in recent years there have been an increasing 380 

number of observed studies that showed the precipitation distribution, including both 381 

spatial pattern and extreme rainfall is change under the ongoing anthropogenic warming 382 

(Meehl et al., 2007; Zhang et al., 2013; Zhang and Zhou, 2019). These studies have also 383 

demonstrated local land surface-atmospheric processes have played an important role in 384 

driving intensity and frequency of rainfall variability at a regional scale. However, a 385 

comprehensive assessment of land surface feedbacks on climate variability and climate 386 

change in the current climate models is still a challenge, mainly due to the low spatial 387 

resolution of the models. 388 

Thus, further work is required to investigate the local and regional drivers of these 389 

changes, for instance, land use and cover change and fire, associated with climate model 390 

improvements and long-term regional climate observations to better understand the 391 

underlying rainfall variability and change in Brazil. Further research is recommended to 392 

explore a wider set of plausible outcomes include use of high-resolution simulations, such 393 

as Regional Climate Models (RCMs) and Convection-Permitting Model (CPM), 394 

potentially providing more useful information to policymakers than is currently available 395 

for advising on suitable adaptation and mitigation policies to cope with anticipated 396 

climate variability and climate change, especially in the agriculture and water resource 397 

sectors in Brazil as well on the risk of fire and natural disasters of hydro meteorological 398 

nature. 399 
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 743 
Figure 1. Topography (m) and selected land areas for the computation of change in precipitation variability 744 

during the peak rainfall season: (NAZ) northern Amazon (JFMAM, 5_S–5_N, 70_– 45_W), (SAZ) 745 

southern Amazon (NDJFM, 12.5_–5_S, 70_–45_W), (NEB) Northeast Brazil (FMAM, 15_–2_S/45_S–746 

34_W), (SAM) South America Monsoon (NDJFM, 20_–10_S/55_–45_W), (LPB) La Plata Basin (NDJFM, 747 

35_–20_S/65_–45_W)  748 

 749 
 750 
 751 
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 752 
Figure 2. CMIP5 ensemble mean versus observed for South America for the 20th-century climate: (a, b, c) 753 

mean annual precipitation (mm_day
−1

), (d, e, f) standard deviation (mm_day
−1

), (g, h, i) dry-day fraction 754 

(%), and (j, k, l) conditional wet-day mean rainfall (mm_day
−1

). First column: CMIP5 ensemble mean; 755 
second and third columns: Observations (MERGE and CHIRPS datasets, respectively). Historical period 756 
1950–2000 is used for CMIP5, 1998–2019 for MERGE, and 1981–2018 for CHIRPS. Highlighted are 757 
regions that correspond to northern Amazon (NAZ), southern Amazon (SAZ), Northeast Brazil (NEB), 758 
South America Monsoon (SAM), La Plata Basin (LPB) and are considered for detailed analysis  759 
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 761 
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 763 
Figure 3. Projected multi-model mean annual precipitation change (%) (a), change in daily standard 764 

deviation (%) (b), change in dry-day fraction (threshold of 1 mm_day
−1 

for designating dry days) (%) (c) 765 
and change in conditional wet-day mean rainfall (%) (d). Units are in percentage (%) and change is for 766 
the period 2050–2100, relative to 1950–2000. Stippling indicates areas where the sign of change is 767 
consistent among at least 80% of the models used in this analysis  768 
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 772 
Figure 4. Mean and standard deviation (mm_day

−1
) of rainy season for HIST (blue), RCP8.5 (pink), and 773 

difference (grey) for (a) northern Amazonia—NAZ, (b) southern Amazonia—SAZ, (c) Northeast 774 
Brazil—NEB, (d) South America Monsoon—SAM, and (e) La Plata Basin—LPB regions (values are ×5 775 
for annual, and interannual bands). Observations from MERGE (blue squares) and CHIRPS (red squares) 776 
data sets are shown as dark blue squares. The boxes show median and upper and lower quartiles, the 777 
whiskers indicate values within 1.5 interquartile ranges of the lower and upper quartiles, and the circles 778 
indicate outliers beyond this range  779 
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 782 

 783 
Figure 5. Precipitation variability change by timescales among Brazilian sub-784 
regions: Northern Amazonia (orange), southern Amazonia (purple), Northeast 785 
Brazil (green), South America Monsoon (red), and La Plata basin (yellow). The boxes 786 
show median and upper and lower quartiles, the whiskers indicate values within 1.5 787 
interquartile ranges of the lower and upper quartiles, and the circles indicate outliers 788 
beyond this range  789 
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