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Abstract 7 

Rock bolts are a crucial part of underground infrastructure support; however, current methods to locate 8 

and record their positions are manual, time consuming and generally incomplete. This paper describes 9 

an effective method to automatically locate supporting rock bolts from a 3D laser scanned point cloud. 10 

The proposed method utilises a machine learning classifier combined with point descriptors based on 11 

neighbourhood properties to classify all data points as either ‘bolt’ or ‘not-bolt’ before using the Density 12 

Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to divide the results into 13 

candidate bolt objects. The centroids of these objects are then computed and output as simple 14 

georeferenced 3D coordinates to be used by surveyors, mine managers and automated machines. Two 15 

classifiers were tested, a random forest and a shallow neural network, with the neural network providing 16 

the more accurate results. Alongside the different classifiers, different input feature types were also 17 

examined, including the eigenvalue based geometric features popular in the remote sensing community 18 

and the point histogram based features more common in the mobile robotics community. It was found 19 

that a combination of both feature sets provided the strongest results. The obtained precision and recall 20 

scores were 0.59 and 0.70 for the individual laser points and 0.93 and 0.86 for the bolt objects. This 21 

demonstrates that the model is robust to noise and misclassifications, as the bolt is still detected even if 22 

edge points are misclassified, provided that there are enough correct points to form a cluster. In some 23 

cases, the model can detect bolts which are not visible to the human interpreter. 24 
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1 Introduction  25 

Rock reinforcement is a crucial element of underground construction. When operating with any 26 

underground excavation, an understanding of the rock mass characteristics as an engineering material is 27 

critical in ensuring that risks from tunnel collapse are mitigated through the use of ground control 28 

methods. Installation of rock bolts is the most widely used form of ground support (Li, 2017). The design 29 

of such a system is site dependent and based on the mechanical behaviour of the rock mass, the in-situ 30 

stress field and induced stress from the excavation (Hoek and Brown, 1982). In low stress conditions, 31 

compression of the ground is needed to ensure loose blocks do not fall. This can be achieved either by 32 

using spot bolting of discrete blocks or by a systematic bolting pattern. Spot bolting is carried out where 33 

needed without following a set spacing, whereas systematic patterns are used to add a compression arch 34 

to the rock mass, reducing the potential for unravelling. Schach et al (1979) shows that an increase in 35 

bolt spacing leads to less interaction of neighbouring bolts, reducing the size of the compression zone 36 

to a point at which the bolts no longer provide a wide coverage leading to potential fall of ground. To 37 

ensure the required level of compressive cover is produced, it is important that correct installation of 38 

bolt patterns is carried out. Reconciliation of installed bolts is therefore an important part of the ground 39 

management process to ensure safe working underground.  40 

Current methods of documenting rock bolt installation are usually hand sketch based and not 41 

comprehensive (Öberg, 2013) due to the large volume of bolts that have to be recorded and the difficulty 42 

and time-consuming nature of manually surveying such data, along with the associated human error for 43 

this type of repetitive task. Another difficulty is that in many applications the entire surface is covered 44 

with shotcrete after installation, rendering the exact locations of the rock bolts unknown or challenging 45 

to discern (Öberg, 2013). Automatically detecting and recording the 3D coordinates of rock bolts either 46 

retrospectively or at installation would allow for greater quality assurance and quality control, providing 47 

a detailed record of exactly where rock bolts have been installed. These records also would be critical 48 

in a fall of ground situation, where the exact bolting configuration that was installed prior to the incident 49 

must be determined. Advancements in remote sensing techniques and machine learning algorithms 50 

could allow this bolting pattern information to be obtained. However, currently the mining sector is not 51 
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fully utilising these new technologies despite being well placed to employ them due to a widespread 52 

adoption of laser scanners and other high resolution surveying technologies both onboard vehicles and 53 

as standalone survey technologies (Body, 2014). 54 

To date, image based photogrammetric systems for automatically inspecting civil engineering tunnels 55 

have been the primary research focus in this area. A review of these techniques is given in Attard et al., 56 

(2018) and successful implementations for crack detection by Huang et al. (2018) and moisture mark 57 

detection by Zhao et al. (2020), demonstrating the power of remote sensing and machine learning for 58 

underground infrastructure management. However, passive remote sensing methods such as 59 

photogrammetry can be problematic underground, particularly in mines, due to challenges from uneven 60 

illumination and dust (Gikas, 2012). Active systems such as laser scanning circumvent these issues, by 61 

measuring using multiple high speed laser pulses emitted from the instrument itself (Eyre et al., 2016). 62 

The data obtained from a laser scanner is in the form of a 3D point cloud which records the X, Y, Z 63 

coordinates of the reflected point in 3D. Most scanners also record the intensity of the laser return and 64 

some also use cameras to store an RGB colour value for each point. The primary issue with laser 65 

scanners compared to cameras is the size of the data collected and the subsequent difficulty in efficiently 66 

processing it. The raw output from the laser scanner is a large unordered set of 3D coordinates with no 67 

semantic knowledge of the object they are surveying. This 3D point cloud data is currently used by 68 

mines directly for surveying tasks such as change detection, geometric analysis and as-built to design 69 

comparison (van der Merwe and Andersen, 2013). In order for this data to be utilised in a wider range 70 

of applications such as automated machines, mine information databases and infrastructure monitoring 71 

a level of semantic information needs to be added to the data, along with a reduction in the dataset size. 72 

The only directly applicable prior work on this topic is by Martínez-Sánchez et al. (2016). In this paper 73 

they built and trained an autoencoder based model to detect not only the rock bolts from laser scan data, 74 

but also their orientations and the shotcrete thickness. Their work achieved a very high accuracy of 91% 75 

showing that geometric neighbourhood based machine learning algorithms have great potential to solve 76 

this engineering and monitoring problem. Laser scanners also have been used in tunnel inspection (Tan 77 

et al., 2016, Xu et al., 2018) however, these studies have used the laser scan data to generate intensity 78 
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images rather than detecting objects from the 3D point cloud data. Soilán et al., (2019) give a full review 79 

of the use of laser scanners for infrastructure monitoring; whilst there is minimal published work on 80 

detecting discrete objects in an underground environment from laser scanned data, automatically 81 

generating an understanding of a scene from point cloud data has been the topic of much research in 82 

recent years. Most application oriented work in this field focuses on either identifying roadside objects 83 

and road characteristics from surface mobile laser scan data (Yang et al., 2013, Lehtomäki et al., 2016, 84 

Soilán et al., 2017 and Balado et al., 2018) or on ground cover classification from aerial LiDAR data 85 

(Blomley et al., 2016), (Niemeyer et al., 2014) and (Rau et al., 2015). Properties of these types of surface 86 

scenes, such as proliferation of regular vertical objects in streetscapes and a mostly fixed view angle in 87 

aerial LiDAR can be leveraged to aid in detecting these types of objects, unlike in the underground 88 

environment. Underground terrestrial and mobile laser scan data is complex as it is true 3D data, with 89 

the possibility of multiple points sharing the same XY location but possessing different Z values. 90 

Approaches used for identification of discrete objects on roads, such as  Weinmann et al. (2017) for 91 

trees and Lehtomäki et al. (2010) for poles can be considered the closest neighbours, and techniques 92 

from these studies can be adapted to the problem of identifying underground features or objects with 93 

regard to the particular properties of the underground environment.  94 

The classical method for point cloud object detection is described in Weinmann et al. (2015a) and 95 

involves three steps: neighbourhood selection, feature extraction and classification. Other methods that 96 

do not follow this framework include directly classifying using Markov networks (Anguelov et al., 97 

2005), (Agrawal et al., 2009) and (Triebel et al., 2006), spectral hashing (Behley et al., 2010) and most 98 

recently, approaches using deep learning. Whilst deep learning approaches have shown impressive 99 

results (Maturana and Scherer, 2015, Qi et al., 2016, Riegler et al., 2017), the additional model 100 

complexity, computational power, training time and the size of the training data required for successful 101 

deployment make these methods less attractive for an efficient vehicle-based solution. For this 102 

application the classical approach similar to Weinmann et al. (2017) was selected, allowing a low 103 

computational burden which is more appropriate for time critical applications such as those deployed 104 

on underground vehicles and equipment.  105 



5 

 

This paper will describe an automated approach for rock bolt identification from laser scan data using 106 

machine learning. The method is based on the classical point cloud semantic segmentation technique 107 

defined in Weinmann et al., (2015a), but implemented using a more extensive set of features from both 108 

the robotics and remote sensing communities, alongside adaptions for the geometry of underground 109 

environments. The machine learning element of the research compares the two popular classifiers, a 110 

random forest and an artificial neural network. Following the classification, the bolt objects are extracted 111 

via clustering and centroid generation. Section 1 outlines the task and examines related work, Section 2 112 

describes the datasets used for model development, Section 3 details the methodology, Section 4 113 

presents the results, Section 5 discusses the finding and Section 6 concludes the work. 114 

2 Datasets 115 

A large amount of labelled data is required to train a machine learning classifier to detect objects. As 116 

there are no available datasets of labelled laser scanned rock bolts, a dataset was collected and annotated 117 

specifically for this study. The data was collected from a 250m section of underground workings in a 118 

small tin and copper mine. This is a good training area, as the slaty nature of the country rock manifests 119 

itself as a fair to poor quality rock mass, resulting in extensive spot bolting based on observations of 120 

potential block fallouts. The area of interest was surveyed using a terrestrial laser scanning workflow. 121 

The scanner was mounted on a static tripod to perform a scan, next the scanner was moved to a position 122 

approximately 12m further down the tunnel and another scan was taken. This process was repeated for 123 

25 scans. The individual scans were registered together to make a unified dataset in the point cloud 124 

processing software Leica Cyclone. The hardware used was a Leica C10 laser scanner, as used in other 125 

underground studies such as Ganić et al. (2011), Chen et al. (2018) and Long et al. (2018). This 126 

instrument has a specified accuracy of ± 6mm per point (Long et al., 2018) and the scan resolution at 127 

the chosen setting provides a point spacing of 5mm at 5m from the scanner. The scanner was set to 128 

record only laser intensities not optical imagery values. This is due to the poor illumination in the mine 129 

and the additional time required to take photographs with the inbuilt camera. The final dataset is 130 

representative of real world underground scan data, containing laser noise, occlusions and many objects 131 
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that are neither tunnel nor bolt and it has not been manually cleaned and simplified for improved 132 

machine learning results. A sample of the data is shown in Figure 1.  133 

 134 

Figure 1: A view of the underground data. Many challeging objects are present including pipes, brackets, ventilation bagging 135 

and electrical boxes.The colour scheme is taken from the strength of the laser return. 136 

To generate the training data, the rock bolt points were manually separated from all other points and 137 

given the class label 1 ‘bolt’. All other objects were labelled 0 ‘not-bolt’, including confusion objects 138 

such as pipes, brackets and ventilation bagging, alongside the hanging wall, side wall and foot wall 139 

surfaces. This dataset was then split into sections for training, cross-validation and testing, as shown in 140 

Figure 2. The grey areas are unused and have been reserved for future algorithm testing.  141 

 142 

Figure 2: Tunnel showing the areas for training (blue), cross-validation (green) and testing (red).  143 

2.1 Pre-processing 144 

Before the point cloud dataset features can be generated a number of preprocessing steps are carried out, 145 

using the open source software CloudCompare (Girardeau-Montaut, 2016).  Firstly, the point clouds are 146 

shifted from their real-world coordinates to a position near the origin to avoid potential precision loss 147 

from processing very large numbers. Next, denoising is carried out using an algorithm which works 148 

similarly to a low pass filter. This removes points which are further than a set factor of their neighbours 149 

reprojection error onto a plane, where the plane itself is fitted to all points within a specified radius 150 

(Girardeau-Montaut, 2016). The denoising settings used a radius of 10cm and a relative error factor of 151 
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1. The final step in the base dataset creation is density reduction. Point clouds acquired from laser 152 

scanners have a large variation in density due to many factors including an object’s distance from the 153 

scanner, the scan angle, overlap between neighbouring scans and occlusions. Whilst it is difficult to 154 

create new points in areas of low density, it is straightforward to remove points in areas of high density 155 

using resampling techniques. For this application the point cloud was spatially resampled to a density 156 

of 1 point per cm maximum. Figure 3 shows the distribution of point densities before and after 157 

resampling. The resampling algorithm also reduced the total number of points by ~40%. As shown in 158 

Figure 3, the density range is now closer to a normal distribution, but still not constant across the point 159 

cloud. This is because a constant density is undesirable for real world data, as there will always be areas 160 

of low sampling due to occlusions, however, if the majority of the cloud is downsampled to match the 161 

lowest density much of the useful detail can be lost. Following density reduction, the dataset contains 162 

10 million labelled laser scanned points. 163 

 164 

Figure 3: A section of the training data showing the density before (left) and after (right) spatial resampling. The density is 165 

measured as the number of points per square meter of tunnel surface. The graphs below each image show the range of data 166 

densities, before resampling it ranges from 0-40,000 and after it ranges from 0-9,000. 167 

3 Methodology 168 

The workflow for detecting bolts from the laser scanned point cloud dataset has three primary 169 

components: feature descriptor creation, machine learning classification and object creation. An 170 

overview of the processing workflow is shown in Figure 4. 171 
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 172 

Figure 4: Methodology diagram outlining the pipeline used for the task of identification of rock bolts from the laser scan data.  173 
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3.1 Feature creation 174 

Single laser scanned points are not adequate descriptors of the data they represent, as they contain only 175 

3D cartesian coordinates and an intensity value. In isolation, this information is insufficient to describe 176 

what type of object this point belongs to; therefore, the point cloud data must be encoded in a way that 177 

allows a machine learning algorithm to differentiate between object types. This can be achieved by 178 

describing each point in relation to the geometry of its neighbouring points, these descriptors are known 179 

as features. The most popular features in the remote sensing community are based on the eigenvalues of 180 

the point neighbourhood. Early work by Pauly et al. (2003) and Vandapel et al. (2004) introduced the 181 

concept, which was extended by Jutzi and Gross (2009) and Weinmann et al. (2015b). The other 182 

common features are proposed by Rusu (2010) and implemented by him in his Point Cloud Library 183 

(PCL). This approach computes a fast point feature histogram (FPFH) based on the angular variations 184 

between the normals of the points using a Darboux frame (Rusu et al., 2009).  185 

For choosing a point neighbourhood, the dimensions of the object to be detected and the spacing of 186 

points in the point cloud determine the optimum value. A typical mechanically anchored rock bolt 187 

measures 16cm across the faceplate. Computing the number of neighbours per point over the resampled 188 

point cloud using an 8cm radius found the mean number of neighbours to be close to 100, therefore, this 189 

is a suitable neighbourhood size to adequately capture the geometry of a rock bolt. Once the 190 

neighbourhoods have been defined, descriptive features can be constructed for each point using its 191 

neighbours.  192 

Two types of feature sets are calculated for each point in the cloud. The first are the ‘Geometric’ features, 193 

described in Weinmann (2016). These include simple 2D and 3D properties of the neighbourhood 194 

(density, vertical difference, minimum bounding box), eigenvalue based features which describe the 195 

local shape properties of the neighbourhood and 2D accumulation map based features, an overview of 196 

each individual feature is given in Table 1. These features were calculated using python code adapted 197 

from the MATLAB script published by Weinmann et al. (2015a). The 2D accumulation map features 198 

have the highest processing overhead and also are potentially less descriptive for an underground 199 

scenario where the hanging wall and foot wall share the same XY coordinates, to investigate, the feature 200 



10 

 

sets were generated both with and without these features. The geometric feature set is powerful as it is 201 

understandable and can be easily visualised, Figure 5 shows a small section of hanging wall with the 202 

points coloured by the magnitude of different features. It can be seen that certain features are intuitively 203 

better at differentiating between ‘bolts’ and ‘not-bolts’ for a human interpreter; however, some of the 204 

less obvious features may be still be strong descriptors as they can help to separate between false 205 

positives and true positives. 206 

The second type of features used are the fast point feature histogram features (FPFH) proposed by Rusu 207 

(2010). This type of feature representation uses the relationships between the points in the 208 

neighbourhood and their normal vectors to describe the local geometry around the point. This is 209 

calculated for each pair of points by defining a fixed Darboux coordinate frame at one point and using 210 

it to compute the three angles which define the difference between the normal vectors. The complexity 211 

is then reduced by not computing the same neighbourhood pairs for multiple points and instead using a 212 

weighting scheme. Finally, the values are binned into a 33 bin histogram. Full derivation of the FPFH 213 

is found in Rusu (2009). This step was implemented in C++ with the Point Cloud Library (Rusu and 214 

Cousins, 2011). 215 

As the intensity data adds further valuable information about the object, especially underground, two 216 

additional features; the intensity of the point itself and the average intensity of the neighbourhood are 217 

computed and added to the feature set. As all sets of features are computed individually for each point 218 

using the same set K number of neighbours the geometric, FPFH and intensity features can be 219 

concatenated, along with the X, Y, Z data for the point and the true class label. The result is a 65-220 

dimensional vector describing the local geometry in a way that can be statistically interpreted by the 221 

machine learning classifiers in the next stage, shown in Table 1. 222 

 223 

 224 

 225 

 226 



11 

 

Table 1: Composition of the generated 65 dimensional vector including equations, where k = number of neighbours and λn = 227 

eigenvalue n. For classification, the point label column is removed and used as the supervised truth value and the X, Y, Z 228 

coordinates do not contribute to the classification. Eigenvalue equations shown are adapted from Weinmann (2016). For 229 

brevity, each FPFH value is not shown as they are numbered elements from the same histogram, see Rusu et al. (2009) for 230 

mathematical derivations of these features.  231 

No Name Description Equation 

1 X X coordinate of point n/a 

2 Y Y coordinate of point n/a 

3 Z Z coordinate of point n/a 

4 Label Point label n/a 

5 Intensity Reflectance intensity of point n/a 

6 Linearity 
How much variance can be explained by only 

the largest eigenvalue 
(𝜆1 − 𝜆2) 𝜆1⁄  

7 Planarity 
How much variance can be explained by the 

two largest eigenvalues 
(𝜆2 − 𝜆3) 𝜆1⁄  

8 Scattering 
How much neighbourhood variance can be 

explained by the smallest eigenvalue 
𝜆3 𝜆1⁄  

9 Omnivariance Volumetric point distribution √(𝜆1. 𝜆2. 𝜆3)
3

 

10 Anisotropy Directional dependence  (𝜆1 − 𝜆3) 𝜆1⁄  

11 Eigenentropy Order/disorder 
−𝜆1 ln(𝜆1)
− 𝜆2 ln(𝜆2)  − 𝜆3 ln(𝜆3) 

12 Sum EVs 3D Sum of eigenvalues 𝜆1 + 𝜆2 + 𝜆3 

13 Curvature change Local change in curvature  𝜆3 (𝜆1 + 𝜆2 + 𝜆3)⁄  

14 Z values Absolute height of point 𝑍 

15 KNN radius 3D Size of the neighbourhood sphere 𝑟𝑘𝑛𝑛−3𝐷 

16 Density 3D Points per m3 𝑘 + 1 (4 3. 𝜋. 𝑟𝑘𝑛𝑛−3𝐷
3 )⁄⁄  

17 Verticality 
The difference from vertical of the Z 

component of the normal vector  
1 −  𝑛𝑧 

18 Change in Z Maximum height difference 𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛 

19 STD of Z Standard deviation of heights 𝜎𝑍,𝑘𝑛𝑛−3𝐷 

20 KNN radius 2D Size of the neighbourhood circle 𝑟𝑘𝑛𝑛−2𝐷 

21 Density 2D Points per m2 𝑘 + 1 𝜋. 𝑟𝑘𝑛𝑛−2𝐷
2⁄  

22 Sum EVs 2D Sum of eigenvalues from 2D structural tensor 𝜆1−2𝐷 + 𝜆2−2𝐷 

23 EV ratio 2D Ratio of the 2D eigenvalues 𝜆2−2𝐷/𝜆1−2𝐷 

24 2D map  Frequency accumulation map n/a 

25 D_Z Change in Z in accumulation map n/a 

26 Std_Z Standard deviation of Z in accumulation map n/a 

27 EV3d-1 First 3D eigenvalue 𝜆1 

28 EV3D-2 Second 3D eigenvalue 𝜆2 

29 EV3D-3 Third 3D eigenvalue 𝜆3 

30 EV2D-1 First 2D eigenvalue 𝜆1−2𝐷 

31 EV2D-2 Second 2D eigenvalue 𝜆2−2𝐷 

32 Mean_I Mean intensity ∑
(𝑖1+𝑖2…+𝑖𝑘)

𝑘
  

33 FPFH1 FPFH value from bin number 1 n/a 

- - - - - - - - - - 

65 FPFH33 FPFH value from bin number 33 n/a 

 232 
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 233 

Figure 5:  A section of hanging wall showing each point coloured by its feature value. In (a) the areas of high curvature change 234 

clearly correspond to rock bolt locations. In (b) the 3D density appears to be more related to the distance from the scanner 235 

than the bolt location, indicating that is probably not a particularly effective feature for locating rock bolts. The omnivariance 236 

feature shown in (c) is high for the bolts but also high for other areas of discontinuities, especially visible in the vertical lines 237 

near the centre of the image, whereas (d) shows the verticality feature which does not spot rock bolts but does have high 238 

values in the same areas of non-bolt discontinuities that were highlighted in (c). All scales are relative, and the colour scheme 239 

banding runs from blue (lowest) to red (highest) with white as the median value. 240 
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3.2 Classification 241 

Once the data has been transformed into meaningful features it can be classified into categories using a 242 

variety of machine learning techniques. However, prior to classifier training several pre-processing steps 243 

must be carried out to improve the machine interpretability of the data. For the problem of finding rock 244 

bolts, the classifier is trained on large hand-labelled where less than 1% of the observed points are rock 245 

bolts. If this data were directly used for training, even if the classifier always predicted ‘not-bolt’ it 246 

would achieve 99% accuracy. Of the several possible methods of class rebalancing, the one chosen for 247 

this study is down-sampling the majority class. Empirical testing on the cross-validation data found a 248 

full downsampling (99% reduction) to match the minority class is not as effective as a less severe 80% 249 

reduction of the majority class. After downsampling, each feature is standardised by removing the mean 250 

and scaling to unit variance. The final classifier inputs are now a collection of m vectors of dimension 251 

n where m corresponds to the number of laser scanned points and n is the number of features in the 252 

feature set. 253 

For learning the point representations, Weinmann et al. (2015a) tested many of the most popular types 254 

of classifiers including instance based, rule based, probabilistic, max-margin, ensemble and a simple 255 

neural network. They found that the ensemble method random forest performed best, which was the 256 

method also chosen by Chehata et al. (2009), Niemeyer et al. (2014), Landrieu et al. (2017) and Hackel 257 

et al. (2017). For our study, a preliminary test was carried out using multiple machine learning classifiers 258 

including Random Forests (RF), Mult-Layer Perceptron (MLP), Support Vector Machines (SVM), 259 

Quadratic Discriminant Analysis, Linear Discriminant Analysis and Naive Bayes. The Linear and 260 

Quadratic Discriminant Analyses, along with the Naive Bayes proved unable to effectively classify the 261 

bolt points and were not considered further. When comparing the remaining three classifiers, the 262 

Random Forest produced higher accuracies on the minority bolt class than the Support Vector Machines; 263 

these results agree with those found by Bassier et al. (2019), Kogut and Weistock (2019) and Weinmann 264 

et al. (2015). However, the MLP outperformed both the SVM and the RF, this is in contrast to the results 265 

observed by Bassier et al. (2019) and Weinmann et al. (2015). It is hypothesised that this difference may 266 

be due to the larger number of hyperparameters required to produce a stable result from the MLP 267 
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classifier, as discussed by Nygren and Jasinski (2016). Based on this initial testing, the classifiers chosen 268 

for this work were the Random Forest and the MLP. The Random Forest was chosen as it is one of the 269 

highest performing classifiers in the literature and has been proven to be capable of achieving robust 270 

high accuracy classifications for problems of this type. The MLP was chosen as it showed the best 271 

performance in the initial tests and indicated strong generalisation potential when paired with 272 

appropriate hyperparameters. 273 

A random forest is a powerful machine learning algorithm based on a randomised forest of decision 274 

trees (Breiman, 2001). It has a low number of hyperparameters to tune and is resilient to noise in the 275 

data, making it an appropriate choice for remote sensing applications (Pal, 2005). An additional benefit 276 

of the random forest classifier is the ability to output a feature importance ranking, allowing for the 277 

relative contribution of individual features to the final prediction result to be observed (Strobl et al., 278 

2008). The second classifier, an MLP or artificial neural network, is a node-based architecture which 279 

can approximate complex functions by learning weights for every node by a process known as 280 

backpropagation (Hecht-Nielsen, 1992). Recent advances in processing power and vast dataset sizes 281 

have led to deep learning networks many hundreds of layers deep performing increasingly complex 282 

tasks (LeCun et al., 2015).  283 

The structure chosen for the neural network used in this research is informed by the concept of effective 284 

capacity. A deep learning algorithm’s effective capacity is its ability to model complexity; good 285 

performance is achieved when its effective capacity is appropriate for the complexity of the task and the 286 

size of the available training data (Goodfellow et al., 2016). If it has more effective capacity than needed, 287 

it will tend to overfit. The task of finding bolt points from multi-dimensional feature vectors requires a 288 

relatively small effective capacity, as there are limited generalisation requirements. Combined with the 289 

small bespoke training set, an appropriate starting point for the structure was defined as containing no 290 

more than three hidden layers with no more than 40 nodes in each layer. Empirical testing was then 291 

carried out using a variety of values within this parameter space; stable, effective performance was 292 

obtained when the network contained two hidden layers with between 20-30 nodes in the first layer and 293 
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5-10 in the second layer. The final chosen structure contained 25 nodes in the first hidden layer and 5 294 

nodes in the second hidden layer. 295 

To decrease processing time, a Principal Component Analysis (PCA) dimensionality reduction (Wold 296 

et al., 1987) is performed on the data prior to input, reducing the features from 65 to 40 whilst 297 

maintaining 99.4% of the variance. These 40 features are then used as the input to the neural network 298 

and are joined to every neuron in the first hidden layer by a weight, with the value of the neuron being 299 

the weighted sum of all the features, transformed by the non-linear rectified linear unit (ReLU) function. 300 

The second hidden layer has the same structure, with every neuron in each layer connected by weights, 301 

and the final output is a binary (‘bolt’ or ‘not-bolt’) decision. The network learns by backpropagation 302 

using the L-BFGS solver. Both classifications were carried out using the Scikit-learn libraries in Python 303 

(Pedregosa et al., 2011).  304 

During model training, suitable values for hyperparameters of the classifiers were determined using a 305 

dual strategy. Firstly, a randomised search of the probable value space was carried out, using the Scikit-306 

learn model selection tool ‘RandomisedSearchCV’ (Pedregosa et al., 2011).  Taking the results of this 307 

search, empirical testing was then carried out above and below the best random search values to 308 

determine the exact hyperparameters choice. This hyperparameter tuning was carried out on the cross-309 

validation section of the dataset via two-fold cross-validation. For the random forest, it was found that 310 

only the ‘number of estimators’ hyperparameter affected the results to any appreciable degree. 311 

Therefore, to ease repeatability, the random forest hyperparameters were all kept at the Scikit-learn 312 

default values except for the ‘number of estimators’ hyperparameter which was changed to 200.  313 

The neural network hyperparameters examined included the solver, the activation function and the L2 314 

regularisation term. There was no appreciable difference in accuracy observed from using different 315 

solvers, however, the LBFGS converged faster and required fewer additional hyperparameters. Figure 316 

6 shows the results from the empirical testing of the L2 regularisation term and activation function, 317 

showing that the best accuracies are obtained with an L2-regularisation term of 1e-4 and the ReLU 318 

activation function. 319 
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 320 

Figure 6: Results from the neural network manual hyperparameter tuning. 321 

Object creation 322 

The type of machine learning used in this research acts on the features derived for each individual point 323 

in the cloud. Because there is no spatial connectivity, they suffer from noise due to isolated misclassified 324 

points. In the processing pipeline, after the point wise classification, the resulting point cloud is split 325 

using the predicted values and the points that have been labelled as ‘not-bolt’ are now discarded, greatly 326 

reducing the dataset size. The remaining cloud now contains all the correctly predicted bolt points and 327 

the falsely predicted non-bolt points. From visual examination of this remaining cloud, it can be seen 328 

that the point cluster separation is good, with adequate empty space visible between the clusters of 329 

predicted points.  330 

Cloud segmentation was carried out using DBSCAN (Density-Based Spatial Clustering of Applications 331 

with Noise). This algorithm finds core samples and generates clusters from high density areas adjacent 332 

to them, allowing for clusters of any shape (Ester et al., 1996, Schubert et al., 2017). The maximum 333 

distance between neighbourhood samples parameter (ε) was set to 5cm and the minimum cluster size 334 

was set to 10 points. The ε value was chosen based on the heuristic proposed by Ester et al. (1996) of a 335 

suitable value being approximately the distance to the 4th nearest neighbour, in this case 5cm for the 336 

1cm resampled point cloud. The minimum cluster size was set to 10 points; as the ground truth bolt 337 

clusters contained between 20-400 points a number set at 50% of the sparsest bolt cluster was a suitable 338 
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choice of parameter. The Euclidian distance metric was used as the inputs are coordinates in 3D space 339 

and the K-D tree algorithm was used to compute the neighbours as the data dimensionality is low. 340 

The final processing step is to calculate the centroid of each cluster to use as the predicted bolt location. 341 

The final step is to export these cluster centroids as a X, Y, Z file of only a few kilobytes that can be 342 

easily shared with machines and surveyors. This clustering greatly reduces the algorithm’s sensitivity 343 

to misclassifications in the individual points. Provided at least 10 points from a bolt have been classified 344 

correctly the bolt will be detected, reducing missed detections.  345 

4 Results 346 

The performance of the proposed methodology was assessed on both the raw point prediction accuracy 347 

and also on the number of bolts correctly detected. The results were evaluated using the measures of 348 

precision and recall, along with the F1 score. These metrics were chosen as others such as the overall 349 

accuracy are inadequate in cases such as this, where large class imbalances are present in the data. The 350 

precision is defined as the measure of what proportion of the positive predictions are correct; it is the 351 

number of true positives divided by the number of all predicted positives (true positives and false 352 

positives). The recall is a measure of what proportion of actual positives were correctly identified; it is 353 

defined as the number of true positives divided by the number of actual positives (true positives and 354 

false negatives. The F1 score is the harmonic mean of the precision and recall.  355 

The first experiment tested which set of point feature descriptors provided the most accurate results. It 356 

compared the full geometric feature set proposed by Weinmann (2016) consisting of 26 features, a 357 

reduced version of this feature set with the accumulation map features removed (23 features), the FPFH 358 

features (33 bin histogram), the combined feature sets (59 features) and finally the combined features 359 

plus the intensity features (61 features). Table 2 shows the results of the feature set comparison on both 360 

classifiers, with the F1 score used as the performance metric. For this test the PCA reduction was not 361 

carried out on the neural network dataset to more clearly isolate the effect feature sets have on the results. 362 

The random forest classifier also outputted the feature importance rankings, shown in Figure 8 and 363 
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discussed in Section 5. As the combined features with intensity achieved the highest accuracy, this was 364 

the feature set used for the final model which was applied to the unseen test data.  365 

Table 2: F1 scores for differing feature sets. The reduced geometric features refer to the set with the 3 highest computation 366 
time features (accumulation maps) removed. 367 

Feature set 
Geometric 

features full 

Geometric 

features 

reduced 

FPFH 

features 

Combined 

features 

Combined 

features and 

intensity 

No. features 26 23 33 59 61 

Neural network 0.42 0.41 0.51 0.63 0.64 

Random forest 0.49 0.43 0.37 0.56 0.58 

 368 

Once the feature set choice was finalised, the per point prediction results were examined against the 369 

human generated ones for the test data, totalling almost 1.5 million point predictions. These results are 370 

given in Table 3. Figure 7 gives a graphical view of the point prediction results. In this figure the footwall 371 

has been removed and the viewing angle is directly vertical towards the hanging wall. The predicted 372 

bolt points are shown in red, the predicted not-bolt points in blue and the overlaid white squares show 373 

the true bolt locations. The left images show the whole point cloud and the right images show just the 374 

predicted bolt class points after the removal of the not-bolt predictions. In the right-hand images, 375 

anywhere that the red points do not have a corresponding white square overlay indicates incorrect 376 

objects classified as bolts, and any white squares without red points indicate missed bolts. 377 

Table 3: Results from the point-wise classifiers in the test dataset. 378 

Neural network Predict not-bolt Predict bolt  Precision 0.59 

Not-bolt 1471791 6586  Recall 0.70 

Bolt 4071 9370  F1 score 0.64 

      

Random forest Predict not-bolt Predict bolt  Precision 0.72 

Not-bolt 1475540 2837  Recall 0.38 

Bolt 6809 6632  F1 score 0.58 

 379 
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 380 

Figure 7: Graphical view of the point cloud classification. The red points are those that the classifier predicts are bolts, the blue 381 

points are the classifier predicted as not bolts and the white boxes indicate the actual bolt locations. The left-hand images 382 

show the entire classified cloud, whilst the right-hand images show just the points predicted to be bolts. 383 

As can be seen in Table 3, the results, whilst overall positive still contain many misclassified points. To 384 

investigate whether the DBSCAN clustering can extract individual bolt object locations to a greater 385 

degree of accuracy, the extracted centroids were overlaid with the 101 true bolt centroids and the number 386 

of true positives, false positives and false negatives were counted. For this test, the bolt was classed as 387 

detected if the human generated and machine generated centroids were within the bolt faceplate radius 388 

distance 8cm of each other. These results are given in Table 4. 389 

Table 4: Results of bolt detection algorithm. 390 

Neural network Predict Not Bolt Predict Bolt    

Not Bolt n/a 6      Precision 0.94 

Bolt 13 88    Recall 0.87 

   F1 0.90 

     

Random forest Predict Not Bolt Predict Bolt    

Not Bolt n/a 3 Precision 0.95 

Bolt 46    55     Recall 0.54 

   F1 0.69 
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5 Discussion 391 

The feature set test shows that the combined 61 feature set is more effective than either the geometric 392 

or FPFH based features applied separately. Using only the geometric feature set, the random forest 393 

outperforms the neural network; this agrees with the results obtained by Weinmann et al. (2015a) using 394 

the same feature types. Using FPFHs the random forest scores relatively poorly, though the combination 395 

does still improve on the score recorded from just the geometric feature set. These results infer that the 396 

addition of the FPFH features does contribute to the overall accuracy of the random forest, but that they 397 

are less important than the geometric features. To examine the feature contributions further, the feature 398 

importances were calculated using the Gini importance method. This technique measures how much the 399 

Gini impurity is reduced when using a particular feature, averaged across all trees in the forest (Géron, 400 

2017). The feature importances are then normalised so that the sum of all importances equals one. Figure 401 

8 graphs the feature importances across the classification vector, this shows that the more important 402 

features are primarily from the geometric set, though several from the FPFH set also score highly. The 403 

highest ranked features (above 0.05) are scattering, absolute height, mean intensity and anisotropy.  404 

 405 

Figure 8: Graph showing the individual feature importances for the random forest classifier. The green box indicates the 406 

geometric and eigenvalue based features and the amber box indicates the FPFH features. For details on feature numbers see 407 

Table 1. 408 

The neural network classifier cannot output a feature importance ranking; however, from examining the 409 

results it appears that the neural network is utilising more of the FPFH set features, as this was the 410 

highest non-combined score for all classifier and feature set combinations. The intensity features 411 
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provided an improvement of 0.02 to both classifiers’ scores; these intensity features are some of the 412 

simplest to compute and are therefore a strong addition to the feature sets.  413 

The point-wise results are positive despite some misclassifications. This is due to the challenging dataset 414 

and the many confusion objects. Most importantly, they contain enough positively identified points to 415 

enable the DBSCAN algorithm to detect the actual bolt objects. Primarily the incorrectly identified bolt 416 

points (false positives) occurred as isolated points, allowing them to be easily removed by the clustering 417 

operation. Only rarely, as in the instance of pipe mounting steelwork which closely resembles a bolt, 418 

did the algorithm misclassify enough points in close proximity to create a false positive cluster, as seen 419 

in Figure 9, where the cluster inside the red box is large enough to make it through the DBSCAN stage. 420 

The isolated incorrect points visible on the hanging wall in Figure 9 will all be removed by the DBSCAN 421 

process.  422 

 423 

Figure 9: Instance of misclassified cluster of points by the random forest classifier. Blue points are predicted not-bolt, green 424 

points are predicted bolt and the red box indicates a piece of pipe mounting bracket incorrectly classified as a bolt.  425 

At the object extraction stage, as both classifiers had only a few false positives, these were manually 426 

checked in the original highest resolution scan data to determine if there was in fact a bolt present at that 427 

location which had been missed at the labelling stage. From this examination, it appeared that the neural 428 

network correctly identified 5 bolts which were badly scanned and highly obscured that had not been 429 
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picked up at the dataset creation stage. To verify this result, the test area of the tunnel was physically 430 

inspected to determine the ground truth. All bolts visible from the scanner positions were verified, 431 

confirming the 96 human detected bolts and the 5 bolts missed by the human labelling exercise. Bolts 432 

entirely hidden from the scanner position were not included as these were not detectable from the scan 433 

data by a human or an algorithm. 434 

This brought the number of true bolts in the test data up to 101. This demonstrates the value of machine 435 

learning technologies for automated quality assurance and quality control as in these difficult cases the 436 

neural network surpassed the human inspector. The testing dataset was then used to estimate the level 437 

of label noise present in the training dataset. The test dataset label noise was ~5% at the cluster/object 438 

level (5 missed out of 101 total) and ~3% at the individual point level (471 missed out of 13,912 total). 439 

The figures are expected to be far lower for the training dataset as the mislabelled points are all in the 440 

‘not bolt’ class, which has been randomly resampled to contain only 20% of its points. Neural networks 441 

and random forests have been shown to be highly robust to label noise below 10% (Folleco et al. 2009, 442 

Pelletier et al. 2017), therefore, the small number of mislabelled points in the training dataset is not 443 

expected to have has a meaningful impact on the classifier training. Comparing the human result to the 444 

neural network, the human is still superior with a precision of 1 and a recall of 0.95; however, in a real 445 

world inspection case, the human takes much longer to identify the bolts, suffers from fatigue and still 446 

cannot detect every bolt. Figure 10 (a) and (b) show an example a bolt missed by the human operator 447 

but found by the neural network and Figure 10 (c) shows an actual incorrect detection by the neural 448 

network.  449 

The false negatives from the neural network also were examined, and it was found that 10 out of the 11 450 

missed detections were low bolts on the sidewall. From this, we can infer that that the Z values and the 451 

relatively few sidewall bolts compared to roof bolts in the training data are influencing the model’s 452 

decision making. Future work will investigate whether this result can be improved by adding more 453 

sidewall training data examples through augmentation or by removing the features related to absolute Z 454 

value. Future work would also consider reimplementing the pipeline in C++ using the PCL libraries for 455 

increased speed for a production mining environment.  456 
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 457 

Figure 10: Examintation of false negatives and false positives. (a) shows the flase negative bolt zoomed and extracted to a 458 

specific angle and (b) shows how the false negative appearsto a human  in the full tunnel dataset. (c) shows a sharp 459 

discontinuity (false poitive) that has been mistaken for a bolt by the classifier. 460 

6 Conclusion 461 

This paper describes a methodology to automatically detect supporting rock bolts from laser scan data. 462 

After the scans have been extracted from the instrument, the workflow is implemented entirely with 463 

open source software. Our methodology is customised to the underground environment and improves 464 

upon previously published surface applications by utilising a larger feature set and robust clustering to 465 

address the challenges from noise, confusion objects and multiple Z values present in a typical excavated 466 

tunnel. The neural network classifier produced the strongest point-wise classification results, allowing 467 

the DBSCAN algorithm to successfully locate the candidate bolt objects. Further work will focus on 468 

extending this approach to other mining datasets gathered with different types of 3D laser scanners 469 

including low cost mobile solutions. The bolt location output files could be used for multiple 470 

applications including verifying bolting patterns that have been installed to specification, recording spot 471 

bolting locations for geotechnical reference and for linking the onboard hole information recorded by 472 

bolting machines to a real world coordinate. These applications offer mining companies valuable 473 

opportunities to embrace new technologies for improved productivity and safety in a digitally connected 474 

world. 475 
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