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Abstract
The rapid eye movements (saccades) used to transfer gaze between targets are examples of an action. The behaviour of
saccades matches that of the slow–fast model of actions originally proposed by Zeeman. Here, we extend Zeeman’s model by
incorporating an accumulator that represents the increase in certainty of the presence of a target, together with an integrator
that converts a velocity command to a position command. The saccadic behaviour of several foveate species, including human,
rhesus monkey and mouse, is replicated by the augmented model. Predictions of the linear stability of the saccadic system
close to equilibrium are made, and it is shown that these could be tested by applying state-space reconstruction techniques to
neurophysiological recordings. Moreover, each model equation describes behaviour that can be matched to specific classes
of neurons found throughout the oculomotor system, and the implication of the model is that build-up, burst and omnipause
neurons are found throughout the oculomotor pathway because they constitute the simplest circuit that can produce the motor
commands required to specify the trajectories of motor actions.
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1 Introduction

The rapid eye movements that transfer gaze from one
object to another are referred to as saccades. These discrete
behaviours show a relatively invariant relationship between
the size of the movement and its peak velocity and duration.
The peak velocity of human saccades typically varies from
30 to 700 ◦ s−1 and their duration varies from 30 to 100ms for
eye movements of 0.5◦–40◦ in amplitude. The peak veloc-
ity progressively saturates with increasing saccade amplitude
after 20◦ and the duration increases linearly with amplitude.
These consistent relationships between the amplitudes, dura-
tions and peak velocities are referred to as the main sequence
(Bahill et al. 1975).

The most direct neural pathway for the control of sac-
cades runs from the retina to the superior colliculus, then on
to the brainstem, and terminates at the oculomotor nuclei.
At the physiological level, neuronal recordings in awake ani-

Communicated by Benjamin Lindner.

B Ozgur E. Akman
o.e.akman@exeter.ac.uk

1 College of Engineering, Computing and Mathematics,
University of Exeter, North Park Road, Exeter EX4 4QF, UK

mals have provided detailed information about the circuitry
involved in the generation of saccades. Themotoneurons that
innervate the extraocular muscles are located in the nuclei of
cranial nerves III, IV and VI and have a burst-tonic pattern
of discharge. The frequency of the burst of activity is cor-
related with eye velocity during the saccade, and the level
of tonic activity is correlated with the eye position at the
end of the saccade. The two components are coordinated by
neural integration of a velocity command produced by burst
neurons in the brainstem. Burst neurons fire during saccadic
movements in a preferred direction (their on direction) and
are silent for movements in the opposite direction (their off
direction). They can be classified into long-lead burst neu-
rons,which steadily increase their firingbefore a saccade, and
medium-lead burst neurons, which only begin firing shortly
before the start of the saccade. In addition to the burst units
in the brainstem, there is also a class of cells referred to
as omnipause neurons. These fire continuously except just
before and during saccades in any direction, during which
time they cease firing (Scudder et al. 2002; Sparks 2002). A
striking feature of these cells is that if they are electrically
stimulated during a saccade, then the saccade halts while the
stimulation is applied, but continues unaffected as soon as
the stimulation ceases (Keller 1974).
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A key insight into the mechanistic behaviour of the sac-
cadic system was that signals from the visual pathway arrive
after the majority of saccades have already terminated and
so cannot be used for saccadic control. This led to the pro-
posal that a local feedback signal from the burst generator
is used to control the saccade. Initially, this local feedback
signal was assumed to be the position of the eye with respect
to the head taken from the output of the neural integrator,
and subsequently, it was assumed to be the displacement of
the eye during the saccade computed by integrating the out-
put of the burst neurons. The essential control loop consists
of a required eye displacement signal that is fed into the
burst neurons, which in turn produce an eye velocity com-
mand. The command is a saturating, nonlinear function of
the motor error, computed as the difference between the cur-
rent eye position and the target eye position. The velocity
command is integrated to obtain an estimate of the current
eye displacement, and this is subtracted from the required
eye displacement to obtain an estimate of the motor error.
More recently, it has been found that the superior collicu-
lus provides signals that specify the kinematics of the eyes
throughout a saccade and not just the endpoints of the move-
ment (Goossens and Van Opstal 2006; Smalianchuk et al.
2018).

The dynamics associatedwith discrete behavioural events,
or actions, of which saccades are an example, have three
distinctive features. Firstly, there is a starting position that
corresponds to a stable equilibrium point of the system.
Secondly, there is a switching mechanism that initiates the
movement by shifting the state of the system away from
the equilibrium. Thirdly, there is a trajectory that returns
the system to the equilibrium. Zeeman (1977) formulated
a generic system of three differential equations that capture
the required features of the trajectory.

In this paper, we test whether this generic system of equa-
tions is applicable to saccadic eye movements, beginning
with the hypothesis that the positive values of the variables
x , y and z in Zeeman’s model correspond to the firing rates
of the long-lead, medium-lead and omnipause cells in the
brainstem, respectively. We then augment Zeeman’s equa-
tions to model the charging process associated with the first
stage of the saccade cycle, during which the specification of
the required eye displacement builds up before themovement
can start (Gancarz and Grossberg 1998). Next, we introduce
an additional equation representing the neural integrator,
enabling us to compare model simulations with experimen-
tal eye movement data. We show that the resulting model
successfully accounts for the saccadic behaviour of several
species for which quantitative data on the oculomotor system
are available and that it is also compatible with the distinctive
properties of the omnipause cells. We conclude by exploring
the testable neurophysiological implications of the model.

Fig. 1 Geometric derivation of the slow–fast description of an action.
a State-space diagram of a one-dimensional system with a stable equi-
librium. b Addition of a transverse vector field generates threshold
behaviour when the state of the one-dimensional system moves beyond
the fold. c Incorporation of an additional fold results in a return to equi-
librium. d A smooth return can be ensured by using a folded surface
(the slow manifold)

2 Methods and results

2.1 Zeeman’s equations

Here, we briefly review Zeeman’s geometric argument for
the derivation of his model of an action. This is based on the
dynamical systems framework, in which the state of the sys-
tem is represented by a point in a state space that moves along
a trajectory determined by the vector field defined on the
space. Zeeman modelled the action’s stable equilibrium by a
one-dimensional system with a stable fixed point, as shown
in Fig. 1a. Secondly, to incorporate the trigger property, he
made a fold in the line representing the one-dimensional sys-
tem and set up a two-dimensional vector field transverse to
the line so that if the state of the system is displaced beyond
the fold, then the vector field carries the state away from the
stable equilibrium. This mechanism is illustrated in Fig. 1b.
Finally, the return to the stable equilibrium was incorporated
by folding the line of the one-dimensional system into an
S-shape so that the state is guided back to the equilibrium
point. The complete cycle is illustrated in Fig. 1c.

Zeeman further noted that in the two-dimensional sys-
tem shown in Fig. 1c, the return to equilibrium requires
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a jump to mirror the jump associated with the trigger. In
three dimensions, however, a folded surface can be used to
obtain a smooth return to equilibrium, as illustrated in Fig.
1d. Zeeman’s generic equations for describing such an action
(Zeeman 1977) are

λẋ = −y − 1,

λẏ = −y − z,

λε ż = −(z3 + yz + x).

(1)

Although this system of equations has only one nonlinearity,
it has the required properties for generating an action with
a smooth return. The unit constant in the equation for the
rate of change of the x variable ensures the system has a
stable equilibrium point at (0,− 1, 1) that is a spiral attractor
and a transverse vector field is generated by the equation for
the z variable. The behaviour of the z variable evolves on a
much faster timescale than that of the x and y variables, so
z is referred to as a fast variable and x and y are referred to
as slow variables. The parameter ε determines the timescale
on which the fast variable evolves. If one assumes that the
magnitude of the derivative of the fast variable is of order 1,
then with a small value of ε, the equation for the fast variable
can be approximated by the cubic equation

0 = −(z3 + yz + x). (2)

This equation describes a folded surface in (x, y, z) space,
referred to as the slowmanifold.An action is deemed to occur
when the state of the system moves over the fold and drops
rapidly back onto the slowmanifold (Figs. 1d, 2a). This rapid
change in state models the switching that occurs at the onset
of an action. Note that the time constant λ in Eq. (1) was not
part of Zeeman’s original description of the equations but has
been added here in order to be able to fit the time course of the
action to those of experimentally recorded eye movements
(Zeeman’s original system corresponds to the case λ = 1).

Zeeman used his two-dimensional model of an action
to describe the generation of the heartbeat and his three-
dimensional model of an action to simulate the nerve impulse
(Zeeman 1977). Although the description of the heartbeat
proved useful for generating synthetic heartbeat waveforms,
that of the nerve impulse was not in agreement with experi-
ments. This was due to the fact that the latter used a value of
0.8 for the parameter specifying the ratio of the slow to the
fast behaviours, and for the distinction between slow and fast
behaviours to be valid, this parameter must be much smaller
than 1 (Stewart and Woodcock 2006).

Another application of the two-dimensional model was
made later by Jirsa and Kelso (2005) who reprised the
geometric argument in order to demonstrate that the two-
dimensional system could underly both oscillatory and
discrete behaviour. The behaviour of both the two- and

three-dimensional systems has subsequently been analysed
in detail. It has been found that in the two-dimensional sys-
tem, the transition between discrete and oscillatory behaviour
is controlled by the fast variable parameter ε (Slowiński et al.
2018), whilst in the three-dimensional system, the form of
the action changes for small actions characterised by trajec-
tories that stay close to the fold line and equilibrium position
(Broer et al. 2013). It is therefore of interest to have another
application of the geometric description of an action where
the predictions of the equations can be explored.

2.2 Extending Zeeman’s equations to include an
accumulator unit

As it stands, Zeeman’s model of an action is incomplete
because it does not include the mechanism involved in mak-
ing the decision to execute an action. Such decisions involve
a trade-off between making a rapid but inaccurate action and
a slow but accurate one. Amechanism that has been shown to
solve this problem in a wide variety of biological situations
consists of an accumulator unit that integrates evidence for an
action until a threshold is reached, at which point the action
is initiated (Marshall et al. 2009). The addition of such a unit
leads to the augmented system of four equations below:

λȧ = H(a)z,

λẋ = −y − 1,

λẏ = −y − z − μa,

λε ż = −(z3 + yz + x).

(3)

Here, a is the accumulator variable, H(a) denotes the Heavi-
side function (H(a) = 0 for a ≤ 0 and H(a) = 1 for a > 0),
andμ is a positive constant that determines how far along the
fold the system is when the action is initiated. Multiplying
H(a) by the z variable is a simple method for ensuring that
every time an action occurs, the accumulator is reset to zero
because in the resting state the value of z is unity and so has
no effect on the accumulator build-up, but once the action
begins it turns negative, driving a back towards 0. Without
this modification, the equations generate cyclical behaviour
because after every action is completed, the accumulator out-
put again rises steadily, forcing the system to the threshold
for an action.

The behaviour of the x , y and z variables for various val-
ues of the parameter μ, corresponding to actions of different
amplitudes, are plotted as phase space trajectories in Fig. 2a.
Also shown in Fig. 2b is the projection of the trajectories onto
the (x, y) plane. In Fig. 2c, the timeseries of the variables are
plotted. These show build-up (x), bursting (y) and pausing
(z) patterns of firing during the action that are characteristic
of the neurons found throughout the saccadic eye movement
pathways (Moschovakis et al. 1996).
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Fig. 2 Example solutions of the augmented Zeeman system of Eq.
(3) generated with λ = 1. Each of the trajectory loops starts from
and finishes at the equilibrium state (0, 0,−1, 1) and corresponds to a
single action. The lengths of the trajectories depend on the values of
the μ parameter, and in this figure the 5 trajectories were generated
by the values μ = 0.721, 0.930, 1.089, 1.224, 1.343. (Action length
increases with μ.) In this, and all other figures, ε = 0.01. a Phase
space plot showing trajectories of the x , y and z variables, in which the
slow manifold is indicated by blue dots. b Projections of trajectories
onto the (x, y) plane. c Time series plots of a, x , y and z, showing the
characteristic behaviour of each variable throughout the range of values
of μ (colour figure online)

2.3 Slow–fast models of saccadic control

To convert the augmented equations (3) into a model of the
brainstem saccade controller, we began by assuming that
the instantaneous level of burst cell firing, specified by the
positive values y+ of the y variable, is linearly related to
the velocity of the eye, as has been found experimentally
(Cullen andGuitton 1997).Accordingly, the oculomotor neu-
ral integrator signal n was modelled as a leaky integrator
of the velocity command y+, with a long time constant Tn ,
reflecting the slow drift of the eyes back to the straight-ahead
position in the dark (Becker and Klein 1973). It follows that
as the value of the n variable corresponds to the position of
the eye, the system of equations obtained by combining the
three slow–fast equations together with an accumulator [Eq.
(3)] and a neural integrator

Fig. 3 Example saccades generated byModel 1, specified by the system
of Eq. (4). The values of μ were the same as those used in Fig. 2.
(Saccade amplitude increases with μ.) The parameters λ = 0.018 and
κ = 500 were selected to produce saccades that matched those of
humans. The position of the eye is given by the output of the oculomotor
neural integrator n and the velocity of the eye is given by its derivative
ṅ. The simulated eye velocity is very similar, but not identical, to the
velocity command κ y+, because the neural integrator is leaky

λȧ = H(a)z,

λẋ = −y − 1,

λẏ = −y − z − μa,

λε ż = −(z3 + yz + x),

ṅ = − n

Tn
+ κ y+,

(4)

gives amodel of saccadic control, whichwe refer to hereafter
asModel 1. The parameter κ scales the velocity signal gen-
erated by the behavioural model to the eye velocity found
experimentally. With the parameter values for the human
found in the next section, the five timeseries for the vari-
able y illustrated in Fig. 2c generate saccades in the range
5◦–25◦ in 5◦ steps as illustrated in Fig. 3.

Experimental measurements of the orbital muscle plant (a
collective term for the eye muscles and orbital tissue) imply
that it can be modelled as a linear mechanical system formed
of two parallel spring and viscous elements connected in
series (Robinson 1964). To ensure that the experimental find-
ing that the saccade velocity profile matches the profile of the
neural signal y+ holds true, the orbital plant has to be sup-
plied with an appropriate combination of a neural velocity
signal, a neural position signal provided by the neural ocu-
lomotor integrator and a slide signal to compensate for the
slower dynamics of the plant. This signal was assumed to be
computed from the velocity command, within the cerebel-
lum (Optican and Miles 1985). Given this assumption, there
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is no need to include the orbital plant in the model because
its dynamics are compensated for subsequent to the output
of the model.

To increase the range of possible behaviours generated by
the system of slow–fast equations, we altered only the lin-
ear behaviour of the Zeeman equations so that the properties
required to describe an action remained unaffected. An addi-
tional parameter θ was used to change the eigenvalues at the
equilibrium point so that the rate at which trajectories spiral
towards the equilibrium could be modified without altering
its location. Model 2 was then defined by the following set
of equations:

λȧ = H(a)z,

λẋ = −y − 1,

λẏ = −y − z − μa,

λε ż = −(θ(z3 + yz) + x),

ṅ = − n

Tn
+ κ y+.

(5)

2.4 Quantitative simulations of main sequence
behaviour

Although main sequence plots obtained from voluntary sac-
cades and the quick phases of optokinetic and vestibular
nystagmus for an individual are highly correlated, implying
a single underlying mechanism, the data show consider-
able variability between recordings. This is because the peak
velocities depend on both the state of alertness of the subject
and the task, being highest when an alert subject is looking
at a clear target and lowest for a drowsy subject making sac-
cades to a remembered target in the dark (Moschovakis et al.
1996). Nevertheless, comparisons of the eye movements of
different species have revealed statistically significant dif-
ferences (Berg et al. 2009). It is therefore a challenge to see
if a single generic model can encompass all the behaviours
found in different saccadic systems. We tested data from five
species (human, rhesus monkey, cat, rabbit and mouse) for
which the time constants of the orbital plant have been deter-
mined.

Over awide range of saccade sizes, both duration and peak
velocity are nonlinearly related to saccade amplitude. Here,
we have used the amplitude range 5◦–25◦, which avoids the
small saccades that are difficult to measure and the large sac-
cades which are beyond the range of animals such as the cat.
Within this reduced range, the main sequence data collected
in experimental studies have most commonly been described
by linear relationships (Fuchs 1967; Takagi et al. 1998—
rhesus monkey; Evinger and Fuchs 1978; Blakemore and
Donaghy 1980; Guitton et al. 1984; Ruhland et al. 2013—
cat; Collewijn 1977—rabbit; Sakatani and Isa 2007; Stahl
2008—mouse). For the purposes of comparison, quantita-

Table 1 Description of the main sequences obtained from published
data for the five species considered in this study

Species Duration (ms) Peak velocity (◦ s−1)

Human 20 + 2A 185 + 16.6A

Rhesus 20 + 1.3A 138 + 28A

Cat 50 + 3A 100 + 12A

Rabbit 52 + 2A 93 + 9A

Mouse 20 + 0.5A 100 + 50A

Saccade duration in milliseconds and peak velocity in degrees per sec-
ond are specified by linear functions of the saccade amplitude A in
degrees. The graphs of these functions are shown as continuous lines in
Figs. 4 and 5

tive descriptions of the main sequence data were formulated
and these are given in Table 1. It is clear from the obser-
vations made in the preceding paragraph that these curves
can only be considered as representative descriptions of the
data. Indeed, all the peak velocity curves lie within the range
found with a large number of recordings made only from
rhesus monkeys (Berg et al. 2009). Our purpose in this sec-
tion was simply to test how well Model 1 and Model 2 could
account for this range of typical behaviours.

The neural integrator time constant Tn is greater than 20s
for the human (Becker andKlein 1973), rhesusmonkey (Can-
non and Robinson 1980) and cat (Robinson 1974)—a value
of 25 s was therefore used for all these species. As no experi-
mentally determined NI value was available for the rabbit, it
was assumed that the time constant was similar to that of the
larger mammals. For the mouse, the NI time constant has a
smaller value of 2.1 s (van Alphen et al. 2001).

For all simulations shown in this paper, we used a value of
0.01 for the parameter ε. We initially ran simulations with an
ε value of 0.1, primarily for speed; the results of the simula-
tions were very similar, except for the values of μ needed to
obtain saccadeswith the correct amplitudes. The values for κ ,
λ andμgiven inTable 2were obtainedbyfitting the equations
to the linear description of the main sequence data through
grid searching, as follows. Firstly, for each animal, a set of
5 values of μ were selected that generated a set of saccades
spanning the amplitude range 5◦–25◦. The parameters λ and
κ were then varied in steps of 0.001 and 20, respectively, and
for each set of parameters, the sums of the squares of the dif-
ferences between the simulated and experimentally derived
durations and peak velocities were calculated. These were
normalised by the variances of the experimentally derived
values for duration and peak velocity, respectively, to give
equal weight to the duration and peak velocity data. The final
values selected for κ andλwere those thatminimised the sum
of the duration and peak velocity scores. Given these values
of κ and λ, the values of μ required to produce saccades of
5◦–25◦ in 5◦ steps were found by successively adjusting the
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Table 2 Parameter values used tofit the datawith the slow–fast saccadic
Model 1, described by Eq. (4)

Species κ λ μ

Human 500 0.018 0.218 + 0.223
√
A

Rhesus 620 0.013 0.230 + 0.232
√
A

Cat 140 0.014 0.150 − 0.050A + 0.619
√
A

Rabbit 270 0.030 0.228 + 0.231
√
A

Mouse 240 0.001 1.511 − 0.035A + 0.376
√
A

κ is the output scale factor used in the equation for the oculomotor
integrator. λ is the time constant introduced to account for interspecies
differences in saccade speed and μ is the factor used to scale the output
of the accumulator unit to obtain a saccade of specific size. A denotes
saccade amplitude in degrees

Table 3 Parameter values used tofit the datawith the slow–fast saccadic
Model 2 described by Eq. (5)

Species κ λ μ θ

Human 500 0.018 0.218 + 0.223
√
A 1.0

Rhesus 840 0.011 0.170 + 0.064
√
A 2.0

Cat 750 0.1 0.495 + 0.374
√
A 0.4

Rabbit 300 0.030 0.192 + 0.123
√
A 1.4

Mouse 1200 0.003 0.094 + 0.023
√
A 5.0

θ is a parameter used to alter the eigenvalues at the fixed point without
altering its position. κ is the output scale factor used in the equation for
the oculomotor integrator. λ is the time constant introduced to account
for interspecies differences in saccade speed, andμ is the factor used to
scale the output of the accumulator unit to obtain a saccade of specific
size. A denotes saccade amplitude in degrees

values of μ that were originally used to sweep over κ and λ.
The procedure used to estimate κ and λ was then repeated to
check that they were the same with the new set of values for
μ.

Theparameter values giving the best fit to the experimental
data for Model 1 are given in Table 2, and the main sequence
fits are shown in Fig. 4a. The error between the modelled
values of duration and peak velocity at 5◦ intervals and the
experimental data was expressed as a percentage of the value
of the experimental data, and the mean of these percentages
is given in Table 4 (left column).

It can be seen that the simulated results replicate the range
of behaviours found in the human, rhesus monkey and rab-
bit, but the model was unable to accurately reproduce the
eye movements of the mouse and cat, giving poorer approx-
imations to the required relations between peak velocity and
duration, as indicated by the significantly higher fitting error
for these species. The fit for all species was best with 15◦ sac-
cades, and the profiles of these saccades are plotted in Fig.
4b. This figure shows that whilst the human, rhesus monkey
and rabbit saccades have the expected symmetrical velocity
profiles, those of the mouse and cat do not.

Fig. 4 Simulations of the main sequence of saccadic eye movements in
five species for Model 1. a Plot of the description of the experimental
data (continuous lines) together with the simulated data (dots) obtained
by using Eq. (4) with the parameter values given in Table 2. The results
for different species are indicated by line colour: human (black solid
line), rhesus (grey solid line), cat (red solid line), rabbit (blue solid line )
and mouse (green solid line). b Simulated eye position (n) and velocity
(ṅ) timeseries for a 15◦ saccade in each species (colour figure online)

The parameter values yielding the best fits with Model
2 were found by repeating the procedure implemented for
Model 1, using the values given in Table 2 for the initial
values of the search, with values of θ separated by intervals
of 0.2. The resulting best-fit parameter values are listed in
Table 3, and the main sequence fits are shown in Fig. 5a.
The error between the simulated and experimental values of
duration and peak velocity is reported in Table 4 (right col-
umn). For all species except the cat, the mean percentage
error is less than 10%, demonstrating that Model 2 can repli-
cate the range of saccadic behaviours found experimentally,
with higher overall accuracy than Model 1. The fit for all
species was again best with 15◦ saccades, and the profiles of
the latter are plotted in Fig. 5b.

2.5 Quantitative predictions of saccadic control
signals

The geometric approach to the saccadic mechanism also
leads to novel techniques for analysing measurements made
on the system. Given a state-space reconstruction of the
behaviour of the system, geometric analysis of the tra-
jectories associated with individual saccades can then be
used to identify equilibria and to approximate the local
behaviour around each equilibrium with a set of first-order
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Fig. 5 Simulations of the main sequence of saccadic eye movements in
five species for Model 2. a Plot of the description of the experimental
data (continuous lines) together with the simulated data (dots) obtained
by using Eq. (5) with the parameter values given in Table 3. The results
for different species are indicated by line colour: human (black solid
line), rhesus (grey solid line), cat (red solid line), rabbit (blue solid line)
and mouse (green solid line). b Simulated eye position (n) and velocity
(ṅ) timeseries for a 15◦ saccade in each species (colour figure online)

Table 4 Mean errors of Models 1 and 2 expressed as a percentage of
the experimentally determined durations and peak velocities

Species Model 1 Model 2

Duration (%) Velocity (%) Duration (%) Velocity (%)

Human 5.7 5.3 5.7 5.3

Rhesus 9.9 9.9 5.5 4.8

Cat 16.9 16.4 12.5 12.3

Rabbit 9.0 4.2 8.0 5.0

Mouse 24.4 27.4 6.1 6.2

linear differential equations derived from the eigenvalues and
eigenvectors of the linearised vector field. This approach has
previously been shown to be applicable to eye movement
recordings (Abadi et al. 1997; Akman et al. 2006; Theodorou
and Clement 2007; Akman et al. 2012).

To apply this approach, for example, to the behaviour of
Model 2, the first step is to compute the time course of the
y variable for saccades of various sizes, as illustrated in Fig.
6a. Next, a two-dimensional delay space representation of
the system trajectory is generated by taking successive pairs
of y values separated by intervals of 10ms, as illustrated in
Fig. 6b. Given this state-space representation, one can use the
collection of delay space points within a small radius of the
equilibrium to construct a local linear model of the system.

Fig. 6 Illustration of how measurements of the velocity command can
be used to find the eigenvalues of the reconstructed linear dynamics of
Model 2, with the parameters for a human (Table 3), close to the equi-
librium position. a Plot of the y variable timeseries used to generate 5
saccades ranging from 5◦ to 25◦ in amplitude. b Corresponding recon-
structed system trajectories in a two-dimensional delay space (colour
figure online)

Close to the resting equilibrium position, the system spirals
in towards the equilibrium so the behaviour is characterised
by a pair of complex conjugate eigenvalues. The eigenvalue
corresponding to the fast movement transverse to the slow
manifold cannot be recovered by this technique because the
points have already contracted onto the manifold. For com-
parison, the eigenvalues calculated directly from Eq. (5) and
the eigenvalues calculated from the delay space reconstruc-
tion are listed in Table 5. Although the simplest delay space
reconstruction (i.e. using an embedding dimension of two)
has been used to illustrate the technique, it can be seen that
the exact and reconstructed eigenvalues are very similar, with
the exception of the real part of the eigenvalue for the cat.
This being the case, one would expect to be able to recover
the eigenvalues of the local linear behaviour from recordings
of medium-lead burst neuron firing rates.
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Table 5 Real and imaginary parts of the complex conjugate pair of
eigenvalues

{
ξ, ξ̄

}
that describe how the state of Model 2, with the

parameters for a human, spirals towards its equilibrium

Species Calculated Reconstructed
Re (ξ ) Im (ξ ) Re (ξ ) Im (ξ )

Human − 13.8 36.7 − 14.1 36.5

Rhesus − 22.6 39.4 − 21.6 40.4

Cat − 2.4 10.9 − 4.5 13.3

Rabbit − 8.3 18.1 − 8.2 18.8

Mouse − 83.3 64.6 − 75.5 68.2

One set of values was calculated directly from Eq. (5) and the other set
was calculated from the trajectories in delay space reconstructed from
the velocity command, y(t)

2.6 Qualitative simulation of omnipause cell
behaviour

Aswell as generating saccades, the brainstemoculomotor cir-
cuitry has a number of features that anymodel of its behaviour
needs to be compatible with. In particular, electrical stimu-
lation and chemical lesions of the omnipause neurons have
characteristic effects on the behaviour of the oculomotor sys-
tem and so provide an important challenge for any model.
Simulating the effects of stimulation or lesions requires fur-
ther simplifying assumptions which may not be valid. Our
goal in this section is therefore simply to show how changes
in the behaviour of Model 2 [Eq. (5)] can occur that mimic
the behavioural changes found experimentally.Another char-
acteristic property of pause cells is that the firing rate of
approximately half of them is negatively correlated with pur-
suit eye velocity (Missal and Keller 2002) and in this section
we also place this behaviour within the context of slow–fast
dynamics.

Because we have used the output of the z variable to reset
the accumulator, alterations to the behaviour of this variable
to simulate experimental manipulations of the pause neurons
sometimes results in failure to reset the accumulator. Hence,
to ensure that only one saccade occurred, we subtracted a
constant of 1/2 from the z variable in the accumulator equa-
tion. Eq. (5) thus becomes

λȧ = H(a)

(
z − 1

2

)
,

λẋ = −y − 1,

λẏ = −y − z − μa,

λε ż = −(θ(z3 + yz) + x),

ṅ = − n

Tn
+ κ y+,

(6)

and the version of Model 2 used in this section consists of
Eq. (6), which we refer to collectively as Model 2*.

Electrical stimulation of the omnipause neurons was
modelled by adding a smoothed pulse of excitation to the
right-hand side of the z equation in (6) that lasted from 30
to 60ms after the onset of a 25◦ saccade. The shape of the
pulse was designed to model an abrupt change in stimulation
but with smooth onset and offset to ensure convergence of
the numerical solution of the equations. A relatively simple
function, g(t), which satisfies these requirements is given by:

g(t) = G

(
1 − (t − τl)

m

τmw + (t − τl)m

)
. (7)

To assess the effect of adding such a pulse, saccades were
simulated with the pulse amplitude, G, varying from 10◦ to
50◦, the pulse onset time τl varying from 120 to 140ms,
the width parameter τw from 10 to 15ms and the steepness
parameter m from 6 to 10. In all cases, the pulse caused a
mid-flight interruption to the saccade. An example simula-
tion is illustrated in Fig. 7b. The effect of the pulse is to force
the state of the system to move rapidly from the negative to
the positive part of the slow manifold, whereupon it moves
relatively slowly along the manifold towards the equilibrium
point specified by the pulse. As the vector fields on the two
portions of themanifold are similar, as soon as the pulse ends,
the state changes along the upper portion of the manifold are
mirrored in the lower portion of the manifold, and the sac-
cade restarts from approximately the same state that it was
in at the time of the pulse onset. This dynamical behaviour is
illustrated in Fig. 7a. The experimental findings on the effect
of electrical stimulation are that the resulting saccades are
hypermetropic (Keller et al. 1996). In our simulation they var-
ied from being hypometropic (saccade amplitude less than
required) to hypermetropic (saccade amplitude more than
required), depending on the pulse parameters. This is because
our simplified model takes no account of the physical inter-
action of the pulse with the neurons and is intended only to
show that mid-flight pausing of saccades is an expected con-
sequence of temporarily increasing the z variable in Model
2*.

Chemical lesioning of the pause cells results in slowing of
saccades, without loss of accuracy (Kaneko 1966). We mod-
elled the damage to the pause units by reducing the z variable
to a half of its original value in the specification of the y
equation in (6). An example of the resulting slowed saccade
is shown in Fig. 7d. Unlike its experimentally observed coun-
terparts, the simulated saccade is no longer accurate. This is
to be expected, however, as the experimentally observed sac-
cades continue to be accurate because the longer durations
give enough time for visual feedback to be used to correct the
amplitude discrepancy (Zee et al. 1976), and this compensa-
tion mechanism is not included in our model. The effect of
the change in the equations is to slow the spiral of the portion
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Fig. 7 Simulations of experimental manipulations of the pause cells
generated using Model 2* [Eq. (6)] with the parameter values for a rhe-
sus monkey (Table 3). Top row: Effect of electrically stimulating the
pause cells during a 25◦ saccade by adding a pulse function specified
by Eq. (7) to the z variable in (6), with the following parameter values:
G = 30, τl = 0.13, τw = 0.0125, m = 8. a Phase space trajectory
of the x , y and z variables—the red line indicates the portion of the
trajectory for which the pulse is on. b Plot of eye position n(t) against
time. The time course of the pulse is overplotted in red (arbitrary units).
Middle row: Effect on a 25◦ saccade of chemically lesioning the pause
cells by halving their contribution to the equation specifying the y vari-
able in Eq. (6). c Phase space trajectory of the x , y and z variables—the
black line illustrates a normal saccade and the red line illustrates the

slowed saccade. d Plot of eye position against time for a normal saccade
(black line) and the slowed saccade (red line). Bottom row: Reduction
of pause cell resting level required for catch-up saccades of amplitude
5◦ to be on target during smooth pursuit, with pursuit velocities of 0, 20,
40, 60 and 80 ◦ s−1. e Plots of the z variable against time generated with
the offsets to the x equation in (6) (1,0.973, 0.95, 0.93, 0.91) required
to reduce the size of the resulting saccade command (5◦, 4.47◦, 4.08◦,
3.76◦ and 3.37◦, respectively). The value of μ used was 0.388 in all
cases. f Corresponding plots of eye position n(t) against time. We have
selected the vertical range to match the size of the saccades so that it
is clear that the offset results in correctly calibrated saccades (colour
figure online)
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of the trajectory lying on the slowmanifold, as shown in Fig.
7c.

If a target is moving slowly and smoothly the pursuit
eye movement system is able to follow it closely, but with
increased target velocity the eye position frequently lags
behind the target position. In such cases small saccades,
referred to as catch-up saccades, are made to bring the eye
position into alignment with the target position. Such a catch-
up saccade must have its amplitude reduced by the distance
travelled by the pursuit component of the eye movement dur-
ing the saccade, and measurements of the main sequence
during pursuit confirm that this reduction occurs (DeBrouwer
et al. 2002). The amplitude of a saccade can be reduced
by changing the constant in the equation for the x variable
in (6), which has a nominal value of 1. If the constant is
reduced, then the equilibrium point is shifted so that the
required amplitude of the saccade signalled by the x variable
is decreased, but so is the value of the z variable correspond-
ing to the pause cell firing. Examples of this compensation
process for pursuit at constant velocity are illustrated in Fig.
7f. The majority of catch-up saccades are less than 5◦, so
this was chosen for the amplitude of the example saccade.
The example pursuit velocities ranged from 0 to 80◦ s−1 in
20 ◦ s−1 steps to match the velocities used in the study of
Missal and Keller (2002). Pursuit was simulated in each case
by adding the velocity value to the right-hand side of the
equation for the oculomotor integrator. The corresponding
reduction in the resting levels of pause cell activity which
results from the shift of the equilibrium point is illustrated
in Fig. 7e. Although the reduction in pause cell activity
was highly correlated with the pursuit velocity, as is found
experimentally, the reduction was much less than that found
experimentally. For targets moving at 40◦ s−1, it was found
that the pause cell firing rate was reduced by 34% on aver-
age (Missal and Keller 2002), whereas in our simulations the
reduction was only 5%. This finding implies that the initial
guess at the form of the slow manifold is not exactly correct
and needs to be experimentally determined.

We conclude that if it is assumed that pause cells are com-
ponents of a circuit embodyingZeeman’smodel for an action,
then the properties of stimulation causing mid-flight halt-
ing, lesioning causing slowing and reduction of firing during
smooth pursuit are all expected features of the behaviour of
the circuit.

3 Discussion and future directions

3.1 Conceptualisation of the saccadic mechanism

Saccadic eyemovements are remarkable for their consistency
throughout life and provide a relatively simple and accessible
example of discrete behavioural events. We have used them

to test a general theory of such events that was developed
by Zeeman (1977) and began by testing whether appropri-
ate extensions of Zeeman’s basic model could replicate the
experimentally determined main sequences of five animal
species. Although Model 1, comprised of Eq. (4), yielded
reasonable simulations of main sequence data in humans,
rhesus monkeys and rabbits, it gave poorer approximations
to the main sequences of the cat and mouse. The greater flex-
ibility of Model 2, comprised of Eq. (5), resulted in good
approximations to the experimental data, except in the case
of the cat. This may in part be due to the greater variabil-
ity of the saccadic trajectories of the cat (Evinger and Fuchs
1978), but no clear indication of the presence of a different
mechanism emerged from this modelling work.

A local feedback mechanism, in which the firing of
the medium-lead burst neurons depends on the difference
between the target displacement of the eye and an inter-
nally generated estimate of current eye displacement, has
proved highly successful in explaining saccadic eye move-
ment behaviour (Scudder et al. 2002; Sparks 2002). To
explain the presence of the omnipause neurons within this
framework, it is assumed that they ensure the burst cells are
quiescent when saccades are not being made. This assump-
tion results in a requirement for a trigger mechanism that
provides a pulse of activity that switches off the pause cells
at the start of a saccade and a latch mechanism that ensures
the pause units are kept silent throughout the duration of the
saccade.

By contrast, within the framework for describing an action
proposed by Zeeman (1977), the task of the brainstem cir-
cuitry controlling saccadic eye movements is to specify a
trajectory corresponding to an action, and the build-up, burst
and pause neurons are components of the simplest generic
circuit which can perform this computation. The idea that the
circuitry specifies the movement trajectory, and not just the
endpoint, has come to the fore with the work of Goossens
and Van Opstal (2006), who found that collicular burst cells
produce the same number of spikes, even when the saccade
is perturbed by a blink, implying that the firing of the burst
cells is directly related to the progress of the saccadic move-
ment along its trajectory. However, although the slow–fast
framework does not explicitly require trigger and latchmech-
anisms, in practice the distinction is not so clear-cut. This
is because the proposed trigger mechanism involves inhibi-
tion of the pause cells by the long-lead burst neurons and
the proposed latch mechanism consists of mutual inhibition
between the burst neurons and omnipause neurons (Van Gis-
bergen et al. 1981), and both of these relationships (inhibition
of the z variable by the x variable and mutual inhibition of
the y and z variables) are also part of the slow–fast model.

Our results on simulation of the main sequence do not
depend on inclusion of the accumulator as we could have
just followed Zeeman’s approach and specified a threshold
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displacement of the state of the system for each size of sac-
cade. But we also wanted to explore how the mechanism
of action generation links in with the decision making pro-
cess of which action to make. Within the dynamical systems
framework, the effect of the accumulator is to move the state
of the system up towards the fold and the size of the saccade
depends only on the position at which the trajectory leaves
the fold. This behaviour is similar to that recently found in
the motor cortex during voluntary movement (Churchland
et al. 2012) in which the preparatory neural activity produces
a specific oscillatory activity, even with discrete actions. If
this analogy holds, then the oscillatory activity corresponds
to the spiral trajectory necessary to move the state round the
fold to the equilibrium position in the Zeeman model.

3.2 Neurophysiological correlates

Ourmodelling of the brainstem saccadic circuitry beganwith
the hypothesis that the variables x , y and z in Eq. (3), upon
which our Models 1, 2 and 2* were built, play roles corre-
sponding to the long-lead burst neurons, medium-lead burst
neurons and pause neurons, respectively. The most direct
interpretation of the model equations is that each term in
Eq. (3) corresponds to a connection between the three types
of neurons. This interpretation leads to the circuit diagram
illustrated in Fig. 8a. The obvious drawback of this interpre-
tation is that the behaviour of the model then requires some
connections to be both excitatory and inhibitory which is
not physiologically realistic. So, we further assumed that the
sign associated with each term specifies whether the corre-
sponding connection is inhibitory or excitatory and assessed
when this is the case and what alterations can be made to the
connections to implement a neurophysiologically plausible
circuit.

One possible exception to the requirement that a connec-
tion must be either excitatory or inhibitory is that of the z
variable to the y variable, which corresponds to the input
from the pause cells to the medium-lead burst cells. Accord-
ing to Eq. (3), when the z variable is negative it increases the
y variable, so the pause cells should also be able to increase
the firing rate of the medium-lead burst cells. A possible
neurophysiological mechanism for this change has been put
forward by Optican (2008), who pointed out that omnipause
neurons produce the transmitter glycine, which could act as
an inhibitor on the burst cells when they are quiescent and
could amplify their response when they are firing.

The x variable both increases or decreases depending on
the sign of the y variable according to Eq. (3), and there is
no evidence for these excitatory and inhibitory connections
from the medium-lead to the long-lead burst neurons. The
requirement for both inhibitory and excitatory connections
can be eliminated by having separate neural pathways for the
positive and negative values of the y variable.

Fig. 8 Possible neural circuits for implementation of slow–fast con-
trol of saccades. a Connections corresponding to Eq. (3). The unfilled
arrows signify that the signal can be either positive or negative. b Con-
nections corresponding to Eq. (8). The filled arrows signify excitatory
connections and the filled circles signify inhibitory connections. c Pos-
sible extension of the circuit in b to include the superior colliculus

One approach to achieving this is by assuming that the
accumulator output feeds directly into the long-lead burst
neurons, rather than indirectly via the medium-lead burst
neurons. As the negative values of the y variable also ensure
that the z variable remains positive during the build-up to
the saccade initiation, the accumulator output must also be
supplied to the pause neurons. In effect, the y variable is
replaced by the difference y − μa between the positive y
and accumulator a variables on the right-hand side of Eq.
(3). Even with these changes, all the y variable effects are a
combination of excitatory and inhibitory effects because the
system settles back to an equilibrium point where the value
of y is −1. This aspect of the behaviour of the y variable
can be eliminated by translating the slow manifold along the
y axis so that the equilibrium point becomes (0, 0, 1). This
translation is equivalent to substituting y − 1 for y through-
out Eq. (3). With these changes, the equations for Model 2
become:

λȧ = H(a)

(
z − 1

2

)
,

λẋ = −(y − μa),
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λẏ = −(y − 1) − z,

λε ż = −(θ(z3 + z(y − 1 − μa)) + x),

ṅ = − n

Tn
+ κ(y − 1)+. (8)

We note that because the offset added to the y variable is
only exactly correct in the steady-state condition, the depth
of inhibition of the accumulator again had to be increased by
subtracting an offset of 1/2 from the z variable to ensure that
the accumulator resets completely, as was done for Model
2*. The behaviour of this system is similar to that of Eq.
(3), as illustrated in Fig. 9. The main sequence behaviour is
also in correspondence, provided that the positive values of
y − 1, rather than y, are used as the signal to the oculomotor
integrator. It can be seen that although both the x and y vari-
ables still show transient changes in sign, these occur after
the action has taken place and are not critical to the slow–fast
model (Fig. 9c). The corresponding circuit diagram is shown
in Fig. 8b.

Aside from the connections from the accumulator, there is
physiological evidence for the majority of the connections in
Fig. 8b. Long-lead burst neurons (x) are found in the central
mesencephalic reticular formation, which lies between the
superior colliculus and the nucleus raphe interpositus, where
the omnipause neurons are situated (Cromer and Waitzman
2006). Labelling studies have further revealed that there are
inhibitory connections from the central mesencephalic retic-
ular formation to the nucleus raphe interpositus (Wang et al.
2013). These connections correspond to the required inhibi-
tionof the z variable by the x variable inEq. (3).Medium-lead
burst cells (y) inhibit the pause cells (z) because the level of
hyperpolarisation of the pause cellsmatches the firing pattern
of burst cells during saccades (Yoshida et al. 1999; Van Horn
et al. 2010). The pause cells inhibit the burst cells, because
stimulation of the pause cells stops an ongoing saccade.
However, there is no evidence at present for a connection cor-
responding to the input from the y variable to the x variable,
and this is a key connection because the x variable performs
the role of carrying a displacement signal that is reset by
integrating the velocity signal carried by the x variable.

The assumptions of an accumulator unit, together with
their abrupt resetting by pause cells, were made simply to
ensure a gradual build up of the sensory input. To illustrate
how a more comprehensive description of the sensory com-
ponent of the saccadic mechanism might be developed, we
present a diagram of a combined brainstem and superior col-
liculus circuit in Fig. 8c. The modification of the circuit to
involve direct input to the x variable from the accumulator has
implications for this combined circuit. Firstly, the required
displacement in the brainstem can be set up independently of
the y variable so the latter variable can be rescaled leading
to faster or slower saccades with the same amplitude. Sec-
ondly, one role of the excitatory input to the pause cells in

Fig. 9 Example solutions of Eq. (8) obtained with λ = 1 and μ =
1.122, 1.334, 1.476, 1.586, 1.677. a Phase space plot showing the tra-
jectories of the x , y − μa and z variables, in which the slow manifold
is indicated by blue dots. By comparison with Fig. 2a, the difference
y − μa between the y variable and the accumulator variable is used to
recreate the behaviour of the original y variable. b Projections of the
trajectories onto the (x, y−μa) plane. c Timeseries plots of a, x , y and
z, showing the characteristic behaviour of each variable throughout the
range of values of μ (colour figure online)

the brainstem may be to ensure that the state of the system
remains on the slow manifold in the build-up to the saccade.

The strength of the linear terms in Eq. (8) could be deter-
mined by finding the predicted eigenvalues, as outlined in
the Results section. A reconstruction of the entire trajec-
tory of the brainstem burst generator could, in principle, be
obtained by using simultaneous recordings from the long-
lead burst neurons, medium-lead burst neurons and pause
cells as coordinates for points in a three-dimensional state
space. If simultaneous recordings of the three neuron types
are not available, then an alternative approach would be to
synchronise recordings from individual neurons by align-
ing them with the associated eye movement recordings. The
reconstructed trajectories are predicted to be similar to those
illustrated in Fig. 9, enabling testing of how well the form
of the slow manifold of the slow–fast saccadic model (5)
matches that of the real oculomotor system.

4 Conclusions

In summary, we have shown that a slow–fast model of the
saccadic system can account for the behaviour of the system,
whilst being compatible with the brainstem physiology. We
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have also provided predictions of the stability of the resting
position at the end of the saccade so that the validity of the
model can be experimentally tested. The experimental testing
is important because the model implies a new role for the
pause cells that does not involve simply shutting down the
burst neurons.
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