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Polaritonic Tamm states induced by cavity
photons
Abstract: We consider a periodic chain of oscillating
dipoles, interacting via long-range dipole-dipole interac-
tions, embedded inside a cuboid cavity waveguide. We
show that the mixing between the dipolar excitations and
cavity photons into polaritons can lead to the appearance
of new states localized at the ends of the dipolar chain,
which are reminiscent of Tamm surface states found in
electronic systems. A crucial requirement for the formation
of polaritonic Tamm states is that the cavity cross-section
is above a critical size. Above this threshold, the degree
of localization of the Tamm states is highly dependent
on the cavity size, since their participation ratio scales
linearly with the cavity cross-sectional area. Our findings
may be important for quantum confinement effects in one-
dimensional systems with strong light-matter coupling.

Keywords: Tamm states, polaritonics, cavity quantum
electrodynamics, one-dimensional systems

1 Introduction
In 1932, Tamm showed the existence of surface states in a
one-dimensional (1-D) crystal lattice [1], due to the abrupt
termination of the periodic crystal at an interfacing sur-
face, such as the vacuum [2–4]. This result highlighted
a surprising failure of the theory of a periodic potential
with cyclic boundary conditions at the elementary level
of the electronic bandstructure, despite its great utility
in explaining the bulk properties of solids [5, 6]. Tamm
surface states have since been shown to have profound con-
sequences for the rich field of surface science, including for
photoluminescence in mesoscopic systems [7], photocur-
rents in superlattices [8], and the absorption spectra of
molecular chains [9–11].
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Over the last two decades, various theories of Tamm
states in the latest condensed matter systems have been
developed [12]. For example, with exciton-polaritons in
multilayer dielectric structures [13], with plasmons at at
the boundary between a metal and a dielectric Bragg mir-
ror [14], and with phonons in graphene nanoribbons [15].
Pioneering experimental work has seen the observance
of Tamm states in magnetophotonic structures [16], in
organic dye-doped polymer layers [17], and latterly in
photonic crystals [18–20].

Due to the rise of topological physics in photonics and
plasmonics [21–26], there is an ongoing interest in finding
and classifying unconventional light-matter states. Indeed,
the latest advances in topological matter have been made
in photon-based systems, leading to the rapidly expand-
ing subfield of topological nanophotonics [28–34]. It is
therefore crucial to also classify and understand surface
states of a non-topological origin, such as Tamm-like edge
states, in systems with strong light-matter coupling. In-
deed, there are recent experimental studies of polariton
micropillars where the localization of both topologically
trivial and topologically non-trivial modes are examined
in detail [35, 36].

In this work, we consider a nanophotonic system which
exhibits Tamm-like edge states: a 1-D chain of regularly
spaced nanoresonators, coupled via dipole-dipole inter-
actions, which are housed inside a cavity waveguide [see
Fig. 1 (a)]. The linear dipolar chain is of some importance,
since it is a simple system where one may study the sub-
wavelength transportation of energy and information [37–
41]. In our theory, we place the dipolar chain inside a
cuboid cavity in order to study the effect of controllable
light-matter interactions. Modulating the cross-sectional
area of the cavity allows one to tune both the light-matter
coupling strength and the light-matter detuning. In the
strong coupling regime the dipolar excitations in the res-
onator chain hybridize with the cavity photons to form
polaritonic excitations [42, 43]. The resulting polaritons,
which display half-light and half-matter properties, can
lead to the emergence of a highly localized edge state
of a non-topological origin: a Tamm-like state. Notably,
neither the dipolar chain nor the cavity photons display

ar
X

iv
:2

00
9.

07
79

0v
1 

 [
ph

ys
ic

s.
op

tic
s]

  1
6 

Se
p 

20
20



2 Downing and Martín-Moreno, Tamm Polaritons

(a) (b)

(c)

Lx

Ly

Lz

ω0ω0ω0

particle pillar rod

d

Fig. 1: Panel (a): a sketch of our system: a chain of dipoles
embedded inside a cuboid cavity waveguide, of dimensions
𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 . Panel (b): Each dipole is modeled as a harmonic
oscillator of resonance frequency 𝜔0. It can be realized by the Mie
resonance in a dielectric nanoparticle, spin waves in a magnetic
micropillar or localized surface plasmons in a metallic nanorod.
Panel (c): the long chain of 𝒩 ≫ 1 oscillating dipoles, regularly
spaced by the center-to-center separation 𝑑.

Tamm states when the light-matter interaction is switched
off. We discuss the properties of the emergent polaritonic
Tamm state, including how its creation requires the cavity
cross-section to be above a critical size, and how its lo-
calization properties scale with the cavity cross-sectional
area.

The presented theory of a chain of oscillating dipoles
embedded inside a cuboid cavity may be realized in a wide
range of dipolar systems, as alluded to in the sketches in
Fig. 1 (b). At the subwavelength scale, exploiting the Mie
resonances in a chain of dielectric nanoparticles is a promis-
ing option, since the system does not suffer from high
losses, and is hence ideal for energy transportation [44–46].
Localized surface plasmons hosted by metallic nanoparti-
cles are another accessible platform [47–49], and there are
several recent experimental studies of plasmonic nanopar-
ticles in cavity geometries [50–53]. Exciting spin waves
in magnetic microspheres is another appealing possibil-
ity [54], since cavity magnons have been well studied
experimentally in recent years [55]. Finally, implementa-
tions with Rydberg [56, 57] and ultracold atoms [58, 59],
as well as helical resonators [60], are also viable settings
for the versatile theory presented here.

The rest of the manuscript is organized as follows: we
describe our model in Sec. 2, we unveil the polaritonic
Tamm states in Sec. 3, and we draw some conclusions
in Sec. 4. The supplemental material contains additional
theoretical details.

2 Model
The Hamiltonian of a chain of oscillating dipoles embedded
inside a cavity reads [61–63]

𝐻 = 𝐻dp +𝐻ph +𝐻dp-ph, (1)

accounting for the dipolar dynamics, the cavity photons
and the light-matter coupling respectively. Importantly,
the couplings in 𝐻dp go beyond the nearest-neighbor ap-
proximation [25, 41], which is essential for a proper treat-
ment of the type of Tamm states discussed in this system.

We sketch in Fig. 1 (c) the model of our system: a
1-D array of dipoles, regularly spaced at the interval 𝑑,
which is encased inside a cuboid cavity of dimensions
𝐿𝑥 ×𝐿𝑦 ×𝐿𝑧 [see panel (a)]. Tuning the size of the cavity
cross-sectional area (𝐿𝑥 × 𝐿𝑦) modulates both the light-
matter coupling strength and the light-matter detuning,
such that polariton excitations may be formed by the
mixing between the cavity photons and dipolar excitations
[which are generally treated as harmonic oscillators, see
Fig. 1 (b) for some physical realizations].

2.1 Dipolar Hamiltonian

The dipolar Hamiltonian [𝐻dp in Eq. (1)] describes a
linear chain of 𝒩 ≫ 1 dipoles [cf. Fig. 1 (c)], oscillating
in the �̂�-direction with transverse polarization (↑↑↑ · · · ),
and coupled to each other via dipole-dipole interactions.
Setting ℏ = 1 throughout, this Hamiltonian reads (see
Refs. [40, 41, 64] for details)

𝐻dp =
∑︁

𝑞

{︂
𝜔0𝑏

†
𝑞𝑏𝑞 + Ω

2 𝑓𝑞

[︁
𝑏†

𝑞

(︁
𝑏𝑞 + 𝑏†

−𝑞

)︁
+ h.c.

]︁}︂
, (2)

where the bosonic creation (annihilation) operator 𝑏†
𝑞 (𝑏𝑞)

creates (destroys) a dipolar excitation of wavevector 𝑞,
where 𝑞 ∈ [−𝜋/𝑑,+𝜋/𝑑] spans the first Brillouin zone. The
dipolar resonance frequency of a single dipole is 𝜔0, which
is associated with the length scale 𝑎 [64]. The weak dipo-
lar coupling constant Ω ≪ 𝜔0 reads Ω = (𝜔0/2)(𝑎/𝑑)3,
exhibiting the inverse-cubic dependence characteristic of
dipole-dipole interactions, and 𝑑 is the center-to-center
separation between the dipoles [64]. In Eq. (2), we have
introduced the lattice sum 𝑓𝑞 = 2

∑︀∞
𝑛=1 cos (𝑛𝑞𝑑)/𝑛3 =

2Cl3(𝑞𝑑), where Cl𝑠(𝑧) is the Clausen function of order
𝑠. Crucially, 𝑓𝑞 takes into account long-range interactions
between all of the resonators, which is known to be im-
portant in dipolar systems [41]. Significantly, going be-
yond the nearest-neighbor approximation also changes the
constraints at the edge of the chain from standard hard-
wall boundary conditions. Namely, the edge resonators
1 and 𝒩 do not just feel the penultimate resonators 2
and 𝒩 − 1 but also those in the bulk. When considering
the nearest-neighbor (nn) coupling approximation, one
should replace the lattice sum 𝑓𝑞 with the standard result
𝑓nn

𝑞 = 2 cos(𝑞𝑑).
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Fig. 2: The polariton dispersion 𝜔pol
𝑞𝜏 in the first Brillouin zone [cf. Eq. (11)], for the cavity heights (a) 𝐿𝑥 = 5𝑎, (b) 𝐿𝑥 = 10𝑎, and

(c) 𝐿𝑥 = 15𝑎. The upper (lower) polaritons with 𝜏 = +(−) are denoted by solid blue (red) lines. The uncoupled photonic (dipolar)
dispersions 𝜔ph

𝑞 (𝜔dp
𝑞 ) are shown as dashed cyan (orange) lines [cf. Eq. (5) and Eq. (3)]. In the figure, the inter-dipole separation

𝑑 = 3𝑎, the dipole strength 𝜔0𝑐/𝑎 = 1/10, and the cavity aspect ratio 𝐿𝑦 = 3𝐿𝑥.

After ignoring the counter-rotating terms in Eq. (2)
[see Ref. [64] for the full treatment], the eigenfrequencies
𝜔dp

𝑞 of the collective dipolar modes follow immediately as

𝜔dp
𝑞 = 𝜔0 + Ω𝑓𝑞. (3)

Equation (3) describes the usual space quantization of
eigenfrequencies into a solitary band. Within the nearest-
neighbor coupling approximation 𝑓𝑞 → 𝑓nn

𝑞 , the spectrum
of Eq. (3) reduces to the more familiar cosine expression,
𝜔dp,nn

𝑞 = 𝜔0 + 2Ω cos(𝑞𝑑). The most noticeable impact of
the above approximation, at the level of the continuum
bandstructure, is a reduction in the dipolar bandwidth
𝐵dp to the nearest-neighbor value 𝐵dp,nn = 4Ω. The
higher “all-coupling” value, which follows from Eq. (3),
is 𝐵dp = (7/2)𝜁(3)Ω ≃ 4.21Ω. Here 𝜁(3) = 1.202 . . . is
Apéry’s constant and 𝜁(𝑠) is the Riemann zeta function.

2.2 Polaritonic Hamiltonian

The photonic Hamiltonian [𝐻ph in Eq. (1)] describes the
cavity photons inside the long cuboid cavity of dimen-
sions 𝐿𝑧 ≫ 𝐿𝑦 > 𝐿𝑥 [see Fig. 1 (a)]. In terms of the
photonic creation (annihilation) operator 𝑐†

𝑞 (𝑐𝑞), it reads
(see Refs. [64, 68, 69] for details)

𝐻ph =
∑︁

𝑞

𝜔ph
𝑞 𝑐†

𝑞𝑐𝑞. (4)

where the cavity photon dispersion 𝜔ph
𝑞 is given by

𝜔ph
𝑞 = 𝑐

√︃
𝑞2 +

(︂
𝜋

𝐿𝑦

)︂2
, (5)

where 𝑐 is the speed of light in vacuum. The cavity width
is 𝐿𝑦 and the cavity aspect ratio 𝐿𝑦 > 𝐿𝑥, such that only
the photonic band of Eq. (5) is relevant for the problem.

The full light-matter coupling Hamiltonian [𝐻dp-ph in
Eq. (1)] reads [see Ref. [64] for the derivation]

𝐻dp-ph =
∑︁

𝑞

{︂
i𝜉𝑞

[︁
𝑏†

𝑞

(︁
𝑐𝑞 + 𝑐†

−𝑞

)︁
− h.c.

]︁
+
𝜉2

𝑞

𝜔0

[︁
𝑐†

𝑞

(︁
𝑐𝑞 + 𝑐†

−𝑞

)︁
+ h.c.

]︁}︂
, (6)

where we have introduced the light-matter coupling con-
stant

𝜉𝑞 = 𝜔0

(︃
2𝜋𝑎3

𝐿𝑥𝐿𝑦𝑑

𝜔0

𝜔ph
𝑞

)︃1/2

. (7)

The diamagnetic term [on the second line of Eq. (6)]
simply leads to a renormalization of the photon dispersion
𝜔ph

𝑞 , as defined in Eq. (5), into

�̃�ph
𝑞 = 𝜔ph

𝑞 +
2𝜉2

𝑞

𝜔0
, (8)

a shift which can be safely disregarded throughout this
work, since it only leads to small quantitative changes to
the results presented here. The paramagnetic term [on
the first line of Eq. (6)] is important and gives rise to the
formation of polaritonic excitations.

Ignoring counter-rotating terms in the polaritonic
Hamiltonian [formed by Eq. (2), Eq. (4) and Eq. (6)],
we may write the resulting rotating wave approximation
(RWA) polaritonic Hamiltonian as follows

𝐻RWA
pol =

∑︁
𝑞

𝜓†ℋRWA
pol 𝜓, ℋRWA

pol =

(︃
𝜔dp

𝑞 i𝜉𝑞

−i𝜉𝑞 𝜔ph
𝑞

)︃
,

(9)
where the polaritonic Bloch Hamiltonian is ℋRWA

pol , and
where we used the basis 𝜓 = (𝑏𝑞, 𝑐𝑞). We arrive by bosonic
Bogoliubov transformation at the diagonal form of Eq. (9)

𝐻RWA
pol =

∑︁
𝑞𝜏

𝜔pol
𝑞𝜏 𝛽

†
𝑞𝜏𝛽𝑞𝜏 , (10)
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where the index 𝜏 = ± labels the upper and lower po-
lariton bands. The polariton dispersion 𝜔pol

𝑞𝜏 in Eq. (10)
reads

𝜔pol
𝑞𝜏 = �̄�𝑞 + 𝜏Ω𝑞, (11)

where the average frequency of the uncoupled dispersions
�̄�𝑞, the effective coupling constant Ω𝑞, and the light-matter
detuning Δ𝑞 are given by

�̄�𝑞 = 1
2
(︀
𝜔ph

𝑞 + 𝜔dp
𝑞

)︀
, Ω𝑞 =

√︁
𝜉2

𝑞 + Δ2
𝑞 ,

Δ𝑞 = 1
2
(︀
𝜔ph

𝑞 − 𝜔dp
𝑞

)︀
. (12)

The bosonic Bogoliubov operators 𝛽𝑞𝜏 in Eq. (10) are
defined by

𝛽𝑞+ = sin 𝜃𝑞𝑏𝑞 − i cos 𝜃𝑞𝑐𝑞, 𝛽𝑞− = cos 𝜃𝑞𝑏𝑞 + i sin 𝜃𝑞𝑐𝑞,

(13)
where the Bogoliubov coefficients are

cos 𝜃𝑞 = 1√
2

(︂
1 +

Δ𝑞

Ω𝑞

)︂1
2
, sin 𝜃𝑞 = 1√

2

(︂
1 −

Δ𝑞

Ω𝑞

)︂1
2
,

(14)
in terms of the quantities defined in Eq. (12).

We plot in Fig. 2 the polariton dispersion of Eq. (11)
for the cavity heights 𝐿𝑥 = {5𝑎, 10𝑎, 15𝑎} in panels (a), (b)
and (c) respectively, where the cavity aspect ratio is fixed
at 𝐿𝑦 = 3𝐿𝑥, and the inter-dipole separation at 𝑑 = 3𝑎.
With increasing cavity cross-sectional area in going from
panel (a) to (b) to (c), the light-matter detuning Δ𝑞 is
reduced [cf. Eq. (12)], leading to increasingly noticeable
deviations of the polariton bands (solid lines) from the
uncoupled dispersions (dashed lines). The upper (lower)
polariton band is given by the red (blue) lines. The pho-
tonic bandstructure is denoted by orange lines, while the
dipolar bands are in cyan. Notably, in panel (a) only a
single polaritonic band is visible on this scale, since the
(mostly photonic) upper polariton band lies significantly
above the frequency scale of 𝜔0. Panel (b) demonstrates
the strong coupling regime and its associated highly re-
constructed polariton dispersion, while panel (c) displays
the usual band anti-crossing behavior as the detuning is
further reduced.

The Bogoliubov operators of Eq. (13) imply the pair
of polaritonic Bloch spinors 𝜓𝑞+ = (sin 𝜃𝑞,−i cos 𝜃𝑞)T and
𝜓𝑞− = (cos 𝜃𝑞, i sin 𝜃𝑞)T. Notably, unlike the celebrated
spinors describing excitations in some topologically non-
trivial systems [21–27], there is not a 𝑞-dependent phase
factor difference (like ei𝛿𝑞 ) between the upper and lower
components of each individual spinor 𝜓𝑞𝜏 . This suggests
the absence of any topological physics, which can be con-
firmed by analyzing the Bloch Hamiltonian. The Hamil-
tonian of ℋpol in Eq. (9) can be decomposed into a 1-D

Dirac-like Hamiltonian

ℋpol
𝑞 = �̄�𝑞𝐼2 − Δ𝑞𝜎𝑧 − 𝜉𝑞𝜎𝑦, (15)

where {𝜎𝑥, 𝜎𝑦, 𝜎𝑧} are the Pauli matrices, and 𝐼2 is the
two-dimensional identity matrix. Despite this Dirac map-
ping, the associated spinors 𝜓𝑞𝜏 indeed lead to a trivial
Zak phase of zero [70, 71]. This triviality follows from the
symmetries of the Bloch Hamiltonian of Eq. (15), which
displays broken inversion (𝜎𝑥ℋpol

−𝑞𝜎𝑥 ≠ ℋpol
𝑞 ) and chi-

ral (𝜎𝑧ℋpol
𝑞 𝜎𝑧 ̸= −ℋpol

𝑞 ) symmetries [72]. This Zak phase
analysis classifies the system as topologically trivial, which
hence implies an absence of topologically-protected edge
states. This fact motivates us to understand the highly
localized, and yet non-topological, states which can never-
theless be supported by this system (as is shown in the
next section).

Perhaps surprisingly, the mixing between the dipolar
and photonic modes into polaritons also gives rise to the
formation of Tamm-like edge states. These localized states
are missing in Fig. 2, since their emergence requires a finite
system (which precludes the use of periodic boundary
conditions).

3 Polaritonic Tamm states
In order to search for the edge states in our system of a
chain of resonators inside a cavity, it is necessary to solve
the eigenproblem of Eq. (1) in real space, thus removing
the periodic boundary condition assumption in the Fourier
space calculation of the previous section. This procedure
leads to the eigenfrequencies 𝜔pol

𝑚 (and 𝜔pol,nn
𝑚 in the

nearest-neighbor approximation), where each eigenstate
is labelled with the index 𝑚. Each eigenstate 𝜓(𝑚) =
(𝜓1, · · · , 𝜓𝒩 ) spans every site in the chain of 𝒩 dipoles.
The localization of the states may be classified by the
participation ratio PR(𝑚), as defined by [73, 74]

PR(𝑚) =

(︁∑︀𝒩
𝑛=1 |𝜓𝑛(𝑚)|2

)︁2

∑︀𝒩
𝑛=1 |𝜓𝑛(𝑚)|4

, (16)

where the summations are over all of the dipole sites 𝑛.
Extended states residing in the bulk part of the spectrum
are characterized by a participation ratio scaling linearly
with the system size, and in the nearest-neighbor approxi-
mation PR(𝑚) ≃ (2/3)𝒩 [64]. Notably, the participation
ratio of edge states does not scale with the system size 𝒩 .

In Fig. 3 (a), we plot the polariton bandstructure
from Eq. (11) with 𝐿𝑥 = 10𝑎 [cf. Fig. 2 (b)], where all-
neighbor coupling 𝜔pol

𝑞𝜏 (nearest-neighbor coupling 𝜔pol,nn
𝑞𝜏 )
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Fig. 3: Panel (a): the polariton dispersion in the first Brillouin zone, with all-neighbor coupling 𝜔pol
𝑞𝜏 (nearest-neighbor coupling

𝜔pol,nn
𝑞𝜏 ) [cf. Eq. (11)]. The upper 𝜏 = + polariton band is denoted by solid blue (dashed pink) lines and the lower 𝜏 = − polari-

ton band is denoted by solid red (dashed green) lines for all (nearest)-neighbor coupling. Horizontal gray line: guide for the eye at the
eigenfrequency which corresponds to the top of the bulk band. Panel (b): the polariton eigenfrequencies with all-neighbor coupling
𝜔pol
𝑚 (nearest-neighbor coupling 𝜔pol,nn

𝑚 ), calculated in real space for a chain of 𝒩 = 1000 dipoles, as a function of the participa-
tion ratio PR(𝑚), where 𝑚 labels the eigenstate [cf. Eq. (16)]. The color scheme is the same as in panel (a). Inset: a zoom in of the
Tamm state, which lies just above the bulk band. Panel (c): the probability density across the dipolar chain, for the polariton eigen-
state at the top of the lower polariton band 𝑚TLB (for the Tamm state 𝑚Tamm), where nearest (all)-neighbor coupling is given by the
thin green (thick red) solid line. In the figure, the inter-dipole separation 𝑑 = 3𝑎, the dipole strength 𝜔0𝑐/𝑎 = 1/10, the cavity height
𝐿𝑥 = 10𝑎, and the cavity aspect ratio 𝐿𝑦 = 3𝐿𝑥.

is denoted by solid lines (dashed lines). The upper (lower)
polariton band is red (blue) for all-neighbor coupling, and
green (pink) for the nearest-neighbor coupling approxi-
mation. The horizontal gray line is a guide for the eye
at the eigenfrequency corresponding to the top of the
lower polariton band (𝜏 = −1). Clearly, the impact on
the continuum bandstructure of going beyond the nearest-
neighbor approximation is negligible, perhaps making the
appearance of edge states in the corresponding finite sys-
tem even more surprising.

Using Eq. (16), Fig. 3 (b) displays the participation
ratio PR(𝑚) for the equivalent problem in real space for
a chain of 𝒩 = 1000 dipoles, and the color scheme is
the same as in panel (a). Strikingly, the participation
ratio of the polariton states in the nearest-neighbor cou-
pling case (green and pink triangles) is essentially uniform
[PRnn(𝑚) ≃ (2/3)1000 ≃ 667], while for the all-neighbor
case the participation ratio of the lower polariton band
(blue circles) is markedly different, especially near to the
top of the lower polariton band (TLB). In particular,
the state at the very top of the lower polariton band in
the nearest neighbor approximation is associated with
PRnn(𝑚TLB) ≃ 667, while in the all-coupling case the
Tamm state just above this band (which we ascribe with
the state index 𝑚Tamm) has PR(𝑚Tamm) ≃ 41 [see the
insert in panel (b) for a zoom in on the Tamm state]. This
last result suggests a highly localized state, induced by
the different boundary conditions in the all-coupling case,
as compared to the standard hard-wall conditions in the
nearest-neighbor approximation.

We plot in Fig. 3 (c) the probability density |𝜓𝑛|2

along the dipolar chain, where the sites are labelled by
𝑛, for the polariton eigenstate at the top of the lower
polariton band, where the nearest (all)-neighbor coupling
is given by the thin green (thick red) line and is associ-
ated with the index 𝑚TLB (𝑚Tamm). This panel clearly
displays the emergence of the Tamm-like edge state in the
all-coupling case, induced by (i) the strong light-matter
coupling in the cavity, and (ii) the all-coupling boundary
conditions. This state is not associated with a topolog-
ical invariant [see the discussion after Eq. (15)], and so
we term it a polaritonic Tamm state. This is in direct
analogy with the non-topological surface states studied
in solid state physics, which also typically arise in 1-D
tight-binding models.

In Fig. 4 (a) and (b), we show the dependence of the
participation ratio PR(𝑚) on the number of dipoles in the
chain 𝒩 , for the cavity heights 𝐿𝑥 = 5.64𝑎 in panel (a)
[the reason for this choice will become apparent in what
follows] and 𝐿𝑥 = 10𝑎 in panel (b). The results for the
Tamm states are denoted by thin blue lines, while the
results for the bulk states are represented by thick red
lines, and the equation of the line is labelled nearby. These
results confirm that the bulk states behave according to
the standard formula PR(𝑚bulk) ≃ (2/3)𝒩 (see Ref. [64]),
and reveals that the exotic state revealed in Fig. 3 (b)
is indeed a highly localized edge state, since it persists
with PR(𝑚Tamm) ≃ constant with increasing 𝒩 . Clearly,
the increased cavity height 𝐿𝑥 in going from panel (a)
to (b) in Fig. 4 has led to an increased participation
ratio of the Tamm states, suggesting weaker localization
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Fig. 4: Panels (a) and (b): the participation ratio PR(𝑚) as a function of the number of dipoles 𝒩 in the chain, where bulk (Tamm)
states are denoted by the thick red (thin blue) lines [cf. Eq. (16)]. We show results for the cavity heights 𝐿𝑥 = 5.64𝑎 [panel (a)] and
𝐿𝑥 = 10𝑎 [panel (b)]. Panel (c): the minimum of the participation ratio min{PR(𝑚)} as a function of the reduced cavity height
𝐿𝑥/𝑎, calculated for 𝒩 = {250, 500, 1000} dipoles. The linear fitting valid for 𝐿𝑥 ≳ 8𝑎 is given by the dashed green line. The critical
cavity size 𝐿Tamm is denoted by the vertical dashed gray line. In the figure, the inter-dipole separation 𝑑 = 3𝑎, the dipole strength
𝜔0𝑐/𝑎 = 1/10, and the cavity aspect ratio 𝐿𝑦 = 3𝐿𝑥.

[explicitly a rise from PR(𝑚Tamm) ≃ 19.0 in panel (a)
to PR(𝑚Tamm) ≃ 40.9 in panel (b)]. This reveals the
simple modulation of the cavity cross-sectional area as a
tool to control the degree of localization of the edge state
(supplementary plots for other cavity sizes are given in
Ref. [64]).

We investigate the cavity size-Tamm state relationship
in Fig. 4 (c), which shows the minimum of the participa-
tion ratio min{PR(𝑚)} as a function of the cavity height
𝐿𝑥, for chains of 𝒩 = {250, 500, 1000} dipoles. It exposes
the identity of the critical length scale 𝐿Tamm ≃ 5.30𝑎, the
cavity height above which the Tamm states first appear
in the system. For subcritical cavities (𝐿𝑥 < 𝐿Tamm) no
edge states are present, as in a regular dipolar chain un-
coupled to cavity photons, since the light-matter detuning
is too great to significantly influence the dipolar modes.
For super-critical cavities (𝐿𝑥 ≥ 𝐿Tamm), we observe the
presence of Tamm-like edge states, which are character-
ized by a participation ratio which grows linearly with
the cavity size for 𝐿𝑥 ≳ 8𝑎. Explicitly, the dependency
here is PR(𝑚Tamm) ≃ 3.62(𝐿𝑥/𝑎) + 5.39, as shown by the
dashed green line in panel (c) [75]. For smaller cavity sizes
𝐿Tamm ≤ 𝐿𝑥 ≲ 8𝑎, there is an interesting nonmonotonous
behavior, and a global minimum of PR(𝑚Tamm) ≃ 19.0
occurs at 𝐿𝑥 = 5.64𝑎 [cf. the results of Fig. 4 (a)]. Of
course, these numbers depend on the chosen inter-dipole
separation ratio 𝑑/𝑎, dimensionless dipole strength 𝜔0𝑐/𝑎,
and cavity aspect ratio 𝐿𝑦/𝐿𝑥.

We have therefore demonstrated an unusual, non-
topological [see the discussion after Eq. (15)] phase transi-
tion demarcating the absence and presence of Tamm-like
edge states, which are induced by cavity interactions and
boundary conditions in the chain beyond those used in
the nearest-neighbor approximation. The observation of
these proposed Tamm states requires careful sweeping

in energy, due to their proximity to bulk states. Such
careful measurements can be performed using the latest
techniques in cathodoluminescence spectroscopy [76] and
optical microscopy and spectroscopy [77]. The detection of
such states in the strong coupling regime provides perspec-
tives for the fundamental understanding of the interplay
between edge states and light-matter coupling, and for
controlling the localization of polariton states in nanoscale
waveguiding structures. Furthermore, while there is a great
quest to find topological nanophotonic states [28–34], our
findings highlight that after the experimental observa-
tion of an edge state, one should also consider possible
non-topological mechanisms of generation.

4 Conclusion
We have presented a theory of polaritonic Tamm states,
forged due to the mixing between the collective exci-
tations in a dipolar chain and cavity photons. Impor-
tantly, the very existence of Tamm states requires the
cavity cross-sectional area to be above a critical value.
In this super-critical regime, the degree of localization
of the Tamm states is highly dependent on the cavity
size, with the participation ratio scaling linearly with the
cavity cross-sectional area. We have also shown the crucial
role played by dipole-dipole interactions beyond the cel-
ebrated nearest-neighbor approximation, without which
the Tamm edge states do not form. The theory demon-
strates the possibility of light trapping in non-topological
one-dimensional structures, which may be important for
waveguiding at the nanoscale. Our results also highlight
how edge states may be generated via non-topological
means, quite distinct from iconic topological models.
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Our proposed model can be implemented in a host
of systems based upon dipolar resonators, including di-
electric and metallic nanoparticles [78]. Our theoretical
proposal therefore offers the opportunity to finely control
the propagation and localization of collective light-matter
excitations at the subwavelength scale, and provides per-
spectives for more complicated and higher dimensional
nanophotonic systems [79, 80].
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