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Highlights: 35 

● Model integrates social values to simulate coastal management outcomes 36 

● Coastal recreation benefits and management priorities vary spatially 37 

● Land-sea management provides best strategy overall and at most local beach sites  38 

● Some beaches require unique strategies to maximize benefit 39 

● Snorkelers prefer sites with better visibility, fish abundance, and diversity 40 

Abstract 41 

Coastal zones are popular recreational areas that substantially contribute to social welfare. 42 

Managers can use information about specific environmental features that people treasure, and 43 

how these might change under different management scenarios, to spatially target actions to 44 

areas of high current or potential value. We explored how snorkelers’ experience would be 45 

affected by separate and combined land and marine management actions in West Maui, 46 

Hawaiʻi, using a Bayesian Belief Network (BBN) and a spatially explicit ecosystem services 47 

model. The BBN simulates recreational attractiveness by combining snorkeler preferences for 48 
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coastal features with expert opinions on ecological dynamics, snorkeler behavior, and 49 

management actions. A choice experiment with snorkelers elucidated their preferences for sites 50 

with better ecological and water-quality conditions. Linking the economic elicitation to the 51 

spatially explicit BBN to evaluate land-sea management scenarios provides specific guidance 52 

on where and how to act in West Maui to maximize ecosystem service returns. Improving 53 

coastal water quality through sediment runoff and cesspool effluent reductions, and enhancing 54 

coral reef ecosystem conditions, positively affected overall snorkeling attractiveness across the 55 

study area, but with differential results at specific sites. The highest improvements were attained 56 

through joint land-sea management, driven by strong efforts to increase fish abundance and 57 

reduced sediment, however, the effects of management at individual beaches varied.  58 

 59 
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1 Introduction 64 

The opportunity for recreation is an important coastal ecosystem service, particularly in places 65 

where coral reefs support thriving tourism and leisure sectors (Brander et al., 2007; Moberg and 66 

Folke, 1999; Spalding et al., 2017). This predominantly non-consumptive service sustains 67 

residents living near coral reefs and fuels a multi-billion-dollar global tourism industry 68 

(Pendleton, 1994; Spalding et al., 2017). People directly enjoy reefs when SCUBA diving, 69 

snorkeling, and fishing, while activities such as swimming, sunbathing, beachcombing, and 70 

surfing at the coast may also be reef-dependent. Particular characteristics of coral reef 71 

ecosystems, like complex structure and diverse fauna, directly impact snorkeling, diving, fishing, 72 

and even surfing user experiences (Brander et al., 2007; Principe et al., 2012). Globally, a 73 

series of studies have documented abiotic, biotic, and social features of reefs that make them 74 

valuable to people for recreation (Beharry-Borg and Scarpa, 2010; Cooper et al., 2009; Inglis et 75 

al., 1999; Pendleton, 1995) including conditions of the reef and fish, presence of charismatic 76 

megafauna, water clarity, pollution, and crowding. While visitation, visitor spending, and 77 

associated economic impacts may be easier to measure, the recreational attractiveness of reefs 78 

may be more difficult to directly measure (Principe et al., 2012).  79 

 80 

Human impacts directly affect the attributes that make reefs most valuable for recreation. 81 

Anthropogenic stressors, both global and local, can cause widespread coral mortality that leads 82 

to rapid and hard-to-reverse shifts away from coral dominated systems (Hughes et al., 2007; 83 

Nyström et al., 2008), with cascading effects on fish abundance and diversity (Pratchett et al., 84 

2008). Specifically, corals are threatened by extreme sea temperature anomalies that cause 85 

coral bleaching, where corals expel their algal symbionts, and if temperatures stay high for too 86 

long, this can lead to widespread mortality (Brown and Roughgarden, 1997; Hoegh-Guldberg, 87 
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1999). Pollution can smother corals (in the case of sediment), exacerbate coral disease (in the 88 

case of pathogens from sewage), cause algal outbreaks (in the case of nutrients), have 89 

sublethal effects that alter reef genetics, and kill coral outright (in the case of toxins, including 90 

sunscreen) (Anthony et al., 2015). Further, unsustainable levels of fish harvest can unbalance 91 

the system (Jackson et al., 2001), leading to cascading effects on important ecological 92 

processes such as herbivory (Hughes et al., 2010; Mumby and Steneck, 2008). Given the 93 

multiple and potentially synergistic and cumulative effects of stressors on reef ecosystems (Ban 94 

et al., 2014; Darling and Coté, 2008), research is needed to guide management actions aimed 95 

at understanding the boundaries for success, and the tradeoffs that exist among multiple 96 

stressors for preventing declines and enhancing recovery that leads to delivery of reef-based 97 

recreational ecosystem services (Jouffray et al., 2019; Weijerman et al., 2018). 98 

 99 

A detailed understanding of recreationalists’ preferences for coral reef conditions can help 100 

managers focus their efforts to preserve or enhance reefs so they can deliver valued ecosystem 101 

services. The recreational value of coral reefs has been widely researched in the ecological-102 

economics literature, but, apart from a handful of exceptions where spatial methods were used 103 

(Ghermandi and Nunes, 2013; Ruiz-Frau et al., 2013; Spalding et al., 2017; van Riper et al., 104 

2012), studies have predominantly used environmental valuation methods that are point-in-time 105 

estimates with no spatial component. Furthermore, these approaches rarely link values to 106 

specific attributes in ways that enable simulation of threats and management scenarios (one 107 

exception is van Beukering and Cesar (2004). Recreational valuation studies have historically 108 

relied on methods like contingent valuation, where respondents were asked to state their 109 

willingness to pay for certain beach attributes (Ahmed et al., 2007; Loomis and Santiago, 2013; 110 

Petrosillo et al., 2007), choice experiments, where respondents were asked to make 111 

hypothetical trade-offs amongst attributes (Beharry-Borg and Scarpa, 2010; Nunes et al., 2015; 112 

Schuhmann et al., 2013), or travel cost, where respondents’ actual recreational behavior was 113 
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used to model willingness to pay (Ahmed et al., 2007; Ariza et al., 2012; Carr and Mendelsohn, 114 

2003; Loomis and Santiago, 2013; Zhang et al., 2015). For a review of valuation studies in 115 

islands see Oleson et al. (2018). Despite this effort, most coral reef valuation studies have not 116 

been contextualized in a manner that enables place-based management scenario analysis. 117 

 118 

Massive efforts are dedicated to coastal management globally. Are these efforts targeting the 119 

conditions and places most valuable to society? Are they addressing stressors in ways that can 120 

support continued delivery of ecosystem services? The aim of this study is to develop an 121 

applied valuation methodology that provides specific and useful management guidance to 122 

coastal managers. Information on the perceived value of specific areas for recreation - and how 123 

these might change under different scenarios - could help communities to ensure persistence of 124 

important values and services. Specifically, we assess the benefits to recreationalists and 125 

recreation-dependent communities of potential land and marine management strategies so that 126 

managers can prioritize which actions to take, and where these actions will yield the greatest 127 

benefits. To be relevant, our approach needs to include features of the nearshore environment 128 

that land and marine management could directly or indirectly affect, as well as physical and 129 

social features that influence the value of a site, such as access and crowding. It has to be 130 

ecologically sound, based on the best scientific understanding of coral reef dynamics, while also 131 

being grounded on the user experience. Our methodology rests on a Bayesian Belief Network 132 

(BBN) to integrate multiple types of information, including expert judgment about ecological 133 

dynamics, management, and snorkeler behavior, and snorkelers’ stated preferences elicited 134 

through a choice experiment. While BBNs have been used in studies of coral ecology (Franco et 135 

al., 2016; Graham et al., 2008), this is the first study to use BBNs to assess ecosystem services 136 

in coral reef systems. An ecosystem services approach is relatable to decision makers, visitors, 137 

and residents as it ties ecological conditions to human preferences and wellbeing outcomes 138 

(Tallis and Polasky, 2009; Wainger and Mazzotta, 2011; Wainger and Boyd, 2009). The novel 139 
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ecological-economic method we developed has the advantages of being able to model and 140 

provide spatially nuanced and policy-grounded information for conservation and resource 141 

management planning. In our spatially explicit case study we identify areas where management 142 

returns are highest, as well as specific management measures that would have the largest pay-143 

off for popular beaches on the northwest part of the island of Maui, Hawaiʻi, USA.  144 

 145 

The rest of the paper is organized as follows. In a models and methods section, we describe the 146 

site, then step through our approach, which integrates different methods and datasets, and 147 

builds scenarios. We detail the survey instrument, choice experiment, Bayesian Belief Network 148 

modeling, and scenario modeling. In each of these sub-sections we detail the method and the 149 

results, as the results are then used as inputs to the subsequent sub-section (i.e. the choice 150 

experiment results inform the BBN, which underpin the scenarios). Our discussion section 151 

focuses on the management implications, modeling innovations, and study limitations. 152 

2 Models and Methods 153 

2.1 Site characteristics 154 

Over 167,000 people are residents of Maui island, in the state of Hawai‘i, USA (U.S. Census 155 

Bureau, 2017). Nearly three million (2.7 million) tourists visited Maui in 2017, spending $4.68 156 

billion (Hawaii Tourism Authority, 2016). Our case-study focuses on West Maui (Figure 1). West 157 

Maui’s coasts are a popular recreation destination for tourists and residents, many of whom are 158 

attracted to the calm, clear waters and historically high-quality coral reefs. World-famous 159 

beaches in the West Maui region serve as launching spots for recreation. Today, land 160 

previously farmed as sugar or pineapple plantations for over a century is kept as fallow or being 161 

converted for residential use, while resort development continues along the coast. 162 
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Unfortunately, West Maui’s coral reefs have declined in the past fifteen years as a result of 163 

fishing and pollution from land (Sparks et al., 2015).  164 

 165 

 166 

Figure 1 Map of study site with beaches, land use, cesspools, and coral reef cover depicted. Watershed boundary 167 

and land use from (State of Hawaiʻi Office of Planning, 2019)) and predicted coral cover from (Weijerman et al., 168 

2018). 169 

2.2 Survey instrument 170 

We used a tablet-based survey to collect responses from 290 recreational snorkelers in West 171 

Maui between August and September 2015. We intercepted resident and tourist snorkelers at 172 

beaches and in resort areas (Figure 1), distributing our sampling effort across five watersheds 173 

running north to south (Honolua (5% of respondents), Honokahua (8%), Kahana (22%), 174 

Honokōwai (8%), and Wahikuli (57%) based on visitation, which we estimated using a crowding 175 
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model based on social media photo uploads (Wood, Guerry et al. 2013). The survey instrument, 176 

approved by University of Hawaiʻi’s Institutional Review Board (2016-31181), was tested on 177 

beach goers on a nearby island. The survey included questions related to demographics, 178 

knowledge, values, experience, and preferences for attributes of snorkeling sites. We focused 179 

on snorkelers, as snorkeling is a common activity for both residents and tourists, and snorkelers 180 

tend to be aware of environmental conditions. The design enabled us to explore possible 181 

differences between residents and tourists. The survey instrument is included as supplementary 182 

information (SI_S1). 183 

 184 

Full descriptive statistics are provided in Table SI_T1. Just over half (53%) of the respondents 185 

were female. Eighty-one were permanent Maui residents, twenty were seasonal residents, and 186 

180 were visitors. The median respondent age was 45, higher than the median in the county 187 

(37), the median annual household income was $87,500, also higher than the average in Maui 188 

County ($72,762), and the sample was more educated than average (26.3% of 167,000 189 

residents have a college degree vs. 60% in the sample) (U.S. Census Bureau, 2017). While 190 

Maui residents are ethnically diverse, the sample was skewed towards Caucasians (65% vs. 191 

35% in Maui (U.S. Census Bureau, 2017)), likely reflecting both the tourists and the 192 

demographic who snorkels at the beaches surveyed. Most respondents reported additional 193 

snorkeling experience in locations other than Maui (240), and 40 said they had experience 194 

snorkeling on Maui. Ten noted they had no snorkeling experience and were planning on going. 195 

Snorkelers with experience had a median of 20 events. Nearly a third of all respondents (92) 196 

were also SCUBA divers.  197 

2.3 Choice experiment 198 

Following examples such as Schuhmann et al. (2013), we used a discrete choice experiment to 199 

determine snorkeler preferences for environmental attributes that may be affected by 200 
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management and/or climate change. Snorkelers were asked to choose among three different 201 

beaches characterized by different travel costs and attributes. These attributes represent a 202 

subset of those important for snorkeler satisfaction that were cited during interviews with experts 203 

and local snorkelers, and reported in the literature (Beharry-Borg and Scarpa, 2010; Loomis and 204 

Santiago, 2013; Peng and Oleson, 2017). Due to known cognitive limitations when evaluating 205 

trade-offs in choice experiments (Johnston et al., 2017), we restricted the number of 206 

environmental attributes included in our choice experiment to: water quality, visibility, fish 207 

abundance and diversity, coral cover, and chance of seeing sea turtles, as well as price, which 208 

represents both transportation costs to access the beach and the opportunity value of time 209 

(Fezzi et al., 2014). We set three levels for each environmental attribute (Table 1), while travel 210 

cost had six levels. The levels of all attributes were depicted in photos (Figure SI_F1). Each 211 

respondent faced 10 choice tasks. We validated these levels by asking respondents about their 212 

perceptions of snorkeling on Maui.  213 

 214 

A complete factorial design for our choice experiments includes all possible combinations of 215 

attributes and levels and would use 4,374 choice tasks (3*3*3*3*3*3*6 =4,374). From the total 216 

possible combinations, 100 choice tasks with two alternative combinations of attributes and one 217 

fixed status quo were generated in a series of ten different choice set versions (ten choice tasks 218 

per version) in SSI Web 10.0 Sawtooth Software. Snorkelers were asked to decide between a 219 

baseline site that represented the lowest conditions at zero cost (considered the opt-out), and 220 

two alternative sites with improved conditions. 221 

 222 

Table 1 Attributes and levels for choice experiment 223 

Attribute Low 

(Base condition) 

Moderate High Citation/Justification 
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Bacterial warning 12 days/year 6 days/year 0 days/year (Hawaiʻi Department of 

Health, 2019) and DOH 

experts 

Visibility 15 feet 30 feet 60 feet NOAA experts  

Coral cover <15% 26% >45% (Sparks et al., 2015) 

Fish abundance 75/125m2 115/125m2 150/125m2 (Friedlander et al., 

2005; Williams et al., 

2008)   

Fish diversity 8 species 17 species 28 species 

Turtle sighting P(sighting) = 0% <50% >50% NOAA experts  

Price $0, $10, $50, $100, $175, $250 Estimate of cost for 

extra time and 

transportation 

DOH = Department of Health 

NOAA = National Oceanic and Atmospheric Administration 

 224 

We analyzed the choice experiment data by specifying a random utility model (RUM), following 225 

the method established by McFadden (1974). Under this framework, the utility that respondent j 226 

receives from visiting option i can be written as: 227 

 228 

(1) Uij = ∑ 𝜃  + γcosti + βSQi + εij ,       (1) 229 

 230 

Where θki indicates the part of utility for each of the five attributes (k) characterizing option i, 231 

costi is the cost of access, γ is the marginal utility of money, SQi is a dummy variable indicating 232 

whether the option is the status quo, β is the parameter allowing for “status-quo bias,” and εij is 233 

the random component encompassing the unobserved (to the researcher) part of the utility that 234 

person i associates to option j. The θ coefficients illustrate the relative importance of attributes 235 

and their levels, and the willingness of respondents to trade one attribute level for another. To 236 
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allow for maximum modelling flexibility, we model each attribute via dummy variables, with the 237 

worst level for each attribute selected as the baseline (for example, for the attribute “bacterial 238 

warnings” the baseline level is 12 days per year).  239 

  240 

Again following (McFadden 1974), by assuming the random error εij to be identically and 241 

independently distributed as a type I extreme value (i.e., Gumbel), and indicating with Vij the 242 

observed portion of the utility (i.e., Vij = Uij – εij), we can write the probability of choosing 243 

alternative i as:  244 

 245 

𝑃 =
 ( )

∑  ( )
          (2) 246 

 247 

This conditional logit specification includes all the parameters in (1) and can be estimated via 248 

maximum likelihood. 249 

Results of the choice experiment 250 

We used the results of the choice experiment (below) to construct/parameterize the BBN model 251 

described below. Results of the choice experiment are summarized in Table 2. All attribute 252 

coefficients are significant. Interviewed snorkelers preferred sites with better ecological and 253 

water quality conditions, especially high and moderate visibility (coefficients 0.747 and 0.615), 254 

followed by high coral cover (0.497), high chance of sighting turtles (0.469), high bacteriological 255 

quality (0.465), and finally high fish diversity (0.379) and abundance (0.344). In many cases, 256 

most of the value to snorkelers lay in improving conditions to the moderate level from the base 257 

level; any additional improvement to the high level was less valued. This diminishing return is 258 

particularly strong in the visibility characteristic, suggesting that people were happy with being 259 

able to see 30 feet (+0.615) but the additional gains from visibility up to 60 feet were less valued 260 
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(+0.132). In contrast, fish diversity and abundance showed roughly linear preferences from base 261 

conditions through moderate to high. Notably, there were few differences amongst groups. 262 

Residents had similar preferences as tourists and seasonal residents, with one exception 263 

(residents prioritized visibility more), although the low sample size of residents prevents 264 

comparison of many of the attributes (Table SI_T2). 265 

 266 

Table 2 Choice experiment results. Z-value is the number of standard deviations from the mean value. 267 

Attribute Estimate Std. error z-value  

Bacteria: 0 days 0.465 0.066 7.046 *** 

Bacteria: 6 days 0.243 0.063 3.834 *** 

Visibility: 30 feet (9.14 m) 0.615 0.063 9.707 *** 

Visibility: 60 feet (18.29 m) 0.747 0.065 11.378 *** 

Coral cover: high 0.497 0.065 7.628 *** 

Coral cover: medium 0.304 0.061 4.962 *** 

Fish number: high 0.344 0.062 5.478 *** 

Fish number: medium 0.149 0.065 2.27 * 

Fish diversity: high 0.379 0.065 5.849 *** 

Fish diversity: medium 0.144 0.063 2.282 * 

Turtles: high 0.469 0.064 7.369 *** 

Turtles: low 0.234 0.066 3.543 *** 

Cost -0.006 0.000 -19.164 *** 

Status quo -0.658 0.112 -5.868 *** 

     

pseudo R2 0.27    

Log likelihood -2281.83    
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   Notes: parameters need to be interpreted as differences with the baseline category, which is 268 

omitted from the model. For example, for bacteria the baseline category is 12 days in which 269 

bathing is unsafe because of potential contamination, for visibility it is 15 feet. All attributes 270 

are in Table 1. 271 

2.4 Bayesian Belief Network 272 

A BBN graphs the causal structure of variables in an inference or modeling problem, and uses 273 

conditional probability distributions to define relationships between variables (Aguilera et al., 274 

2011; Ames et al., 2005). Combining diverse sources of information within a BBN is particularly 275 

important when one cannot include all attributes characterizing choices within a stated 276 

preference exercise, for well-known issues of cognitive burden (Johnston et al., 2017). BBNs 277 

have been used inter alia to model ecosystem services (Dee et al., 2017; Landuyt et al., 2013); 278 

and as a tool for planning (Gonzalez-Redin et al., 2016); pollution impact assessment (Spence 279 

and Jordan, 2013); guiding adaptive management (Nyberg et al., 2006); and assessing 280 

ecological water quality (Forio et al., 2015).  281 

 282 

Our BBN model estimates spatially explicit relative snorkeling attractiveness in the West Maui 283 

study area by integrating attributes of ecological, water, and social quality such as coral cover, 284 

fish richness, pollution, depth, and accessibility. The model’s area of interest (AOI) consisted of 285 

West Maui shoreline from Honolua Bay to south of Black Rock Point, extending to 30m depth 286 

(Figure 1). The model variables, structure, and strength of relationships between variables were 287 

informed by a literature review, experts (Kuhnert et al., 2010), and the choice experiment 288 

described in the section above. Past valuation studies were useful in identifying important 289 

attributes for beach users, particularly divers and snorkelers (Grafeld et al., 2016; Parsons and 290 

Thur, 2008; Pendleton, 1994; Schuhmann et al., 2013; Wielgus et al., 2002).  291 

 292 
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Ultimately, the BBN had 11 attribute parent nodes that interact, as illustrated by the arrows, in 293 

order to determine snorkeling attractiveness (“Snorkeling Quality” in Figure 2). Each of these 294 

parent nodes have spatial data associated with them (Table 3) (SI, Figure SI_F2A-K). The 295 

current status of each attribute (i.e., prior probabilities) in West Maui is represented by the 296 

colored bars within the parent nodes; these represent the average status across the entire AOI 297 

and are divided into bins (Table 3, Figure 2). Parent nodes are aggregated into four 298 

intermediate nodes (social quality, water quality, visibility, and ecological quality) that determine 299 

snorkeling quality. The grouping of parent nodes into intermediate nodes simplifies the 300 

conditional probabilities of the BBN model and thus reduces the cognitive load required to 301 

determine the relationships. The selection of parent nodes and arrangement of intermediate 302 

nodes constitutes the causal structure of the model. We tested a number of model structures via 303 

interviews with 15 experts, including marine scientists with two Division of Aquatic Resources 304 

staff (DAR, the state agency charged with coral reef management), a lifeguard working in the 305 

area, ten avid snorkelers, and two snorkel tour operators. 306 

 307 

Table 3 Attributes in the Bayesian Belief Network (BBN) 308 

Attributes Data source 

Measurement & Bins in 

BBN 

Data 

resolution 

Access 

(Hawaiʻi Mapping Research Group, 

2016; Wedding et al., 2018) 1-4 (classification)  10m 

Exposure (Wedding et al., 2018) 

<5,300, >5,300 (wave energy, 

J*s/m)  500m 

Crowding (Wood et al., 2013) 

<3, 3-6, >6 (Photograph user 

days)  60m 

Cesspool discharge 

data from (Barnes et al., 2019) using 

methods from (Wedding et al., 2018) 

0-0.004, 0.004-0.008, >0.008 

(kg N/m2)  500m 
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Sediment dispersion 

updated, using methods from Wedding 

et al., (2018) 0-3, 3-10, >10 (ton/ha)  30m 

Bathymetry 

(Hawaiʻi Mapping Research Group, 

2016) 0-10, >10 (m depth)  5m 

Coral cover (Weijerman et al., 2018) <20, 20-35, >35 (% cover)  60m 

Fish abundance (Weijerman et al., 2018) 

<0.76, 0.76-1.06, >1.06 

(count/m2)  60m 

Fish species richness (Weijerman et al., 2018) <8, 8-17, >17 (count/grid cell)  60m 

Habitat diversity (Friedlander and Kendall, 2006) 

<0.37, 0.37-0.74, >0.74 

(ranking)  60m 

Turtle chance as a 

function of habitat 

(National Centers for Coastal Ocean 

Science, 2007) 

0-0.35, 0.35-0.99, 0.99-1 (% 

likelihood of viewing)  50m 

Note: Probability of spotting turtles calculated as a function of habitat. High probability - coral dominated 

hard bottom habitat; Medium probability - algal dominated habitat (including macroalgae, turf, and 

crustose coralline algae (CCA)), both hard and soft bottom; Low probability - everything else - primarily 

uncolonized soft bottom or unknown/unclassified. 

 309 

The next step was to set the relative importance of each variable via conditional probability 310 

tables. The conditional probability distribution defines the relative importance of each parent 311 

node. For instance, the intermediate node “water quality” is determined based on the value of 312 

two parent nodes, cesspool discharge and sediment dispersion. The water quality outcome is 313 

determined by specifying the likelihood that water quality is high, moderate, or low, given levels 314 

of cesspool discharge and sediment dispersion (the values of each column always sum to 1). 315 

An example conditional probability table for the water quality node is presented in Table 4. The 316 

thickness of the arrows in Figure 2, which illustrate each variable’s relative importance to the 317 

outcome, denoting average Euclidian influence, are based on the conditional probabilities 318 

(Koiter, 2006). Water quality is a relatively simple intermediate node, with only two 319 
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determinants; as the relationships become more complicated, the number of columns in the 320 

tables expand very rapidly.  321 

 322 

Table 4 Water quality (intermediate node) conditional probability table given parent nodes Cesspool discharge and 323 

Sediment dispersion. 324 

Water Quality          

Cesspool Discharge High Moderate Low 

Sediment Dispersion High Moderate Low High Moderate Low High Moderate Low 

High 0 0 0.1 0 0.2 0.3 0.4 0.8 0.9 

Moderate 0.05 0.1 0.1 0.6 0.6 0.6 0.4 0.2 0.1 

Low 0.95 0.9 0.8 0.4 0.2 0.1 0.2 0 0 

 325 

We populated the conditional probability tables based on our data from the choice experiment 326 

and additional survey questions, as well as through consultation with coral reef managers and 327 

experts. The choice experiment focused on a limited number of the variables (six) in the BBN to 328 

elicit their relative importance for snorkelers in West Maui. For instance, from the choice 329 

experiment results we understand that snorkelers in West Maui highly valued improved visibility, 330 

more than reductions in the probability of bacteriological water quality below recreational water 331 

standards. Features of social quality (like access and crowding) were assessed in the survey. 332 

Interviews with experts elicited the relative importance of the other variables. Conditional 333 

probability tables for all variables are in Table SI_T4a and strength of influence in Table SI_T4b.  334 

 335 

The model’s output is a score (from 0 to 100) of the quality or attractiveness of each grid cell for 336 

recreational snorkelers. A score of 100 indicates a very high-quality snorkeling site within the 337 

study area, and 0 very poor. This score range is specific to the AOI and normalized to the range 338 

of outcomes and scenarios in this analysis. The score is binned into five levels (0-20 very low; 339 
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21-40 low; 41-60 moderate; 61-80 high; and 81-100 very high). To explore assumptions of the 340 

model, we ran various hypothetical scenarios to see if the results were consistent with 341 

expectations. For instance, we set the value of model inputs that the choice experiment or 342 

experts told us were highly important (e.g., turtle-sighting likelihood, fish species richness, or 343 

visibility) to the highest possible values and evaluated the model’s sensitivity to changes in 344 

these inputs, as opposed to those deemed to be less important (e.g., crowding or habitat 345 

diversity). We generated results for the entire study area, as well as for subsetted areas within 346 

the highly and moderately accessible areas surrounding popular beaches. We ran models for 347 

current conditions and a set of management scenarios (described below) at 50 m resolution 348 

using the Artificial Intelligence for Ecosystem Services (ARIES) modeling platform (Villa et al., 349 

2014). 350 

 351 

 352 
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 353 

Figure 2 Bayesian Belief Network describing a site’s snorkeling quality. Nodes shaded in light blue indicate variables 354 

included in the choice experiment. Arrow thickness denotes average Euclidian influence per the conditional 355 

probability tables (strength of influence for each relationship is included in SI Table SI_T4b). The most influential 356 

relationship (Sediment Dispersion on Visibility) is about 10 times the value of the weakest relationship (Crowding on 357 

Social Quality). The colored bars indicate current conditions across all pixels in the AOI in Figure 1. Note that this 358 

means that most pixels are far away from the coast or near a rocky shoreline, causing the access to be very low for 359 

most of them. 360 
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3 Scenario modeling 361 

A primary objective of this paper is to determine what management actions would be most 362 

effective and where their implementation would have the strongest effects. Therefore, we 363 

modeled a number of land and marine management scenarios. Land management options 364 

target sediment and effluent reduction from cesspools. Marine-based management included 365 

reducing fishing, and the effect of changes in coral cover and associated fish abundance and 366 

richness. Target levels for these reductions were based on the goals stated in official watershed 367 

management plans (Group 70, 2015a, 2015b; Sustainable Resources Group International, 368 

2012a, 2012b) and telephone, email, and in-person interviews with the watershed management 369 

coordinator, environmental consultants who prepared the watershed management plans, the 370 

State aquatic resource manager, and a Federal coral reef ecologist familiar with the area. We 371 

used four different levels for each scenario to represent increasing levels of investment in each 372 

type of management.  373 

Land-based management 374 

In the watersheds upstream of West Maui’s coral reefs, former agricultural lands currently 375 

remain fallow and access roads unfixed, stream banks continue to erode, and no cesspools are 376 

upgraded (Oleson et al., 2017; Stock et al., 2016; Whittier and El-Kadi, 2014). Land-based 377 

management scenarios represent realistic and aspirational levels of local pollution abatement. 378 

We modeled the following individually and in combination: reduce sediment input by 10%, 15%, 379 

20%, and 25%; reduce cesspool input by 10%, 25%, 50%, and 100%. Notably, we did not 380 

adjust input layers for known cesspool upgrades, and we ignored discharge from the Kahekili 381 

wastewater treatment plant. 382 
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Marine-based management 383 

We also constructed a second set of management scenarios based on improvements to coral 384 

reef benthic habitat and associated changes in coral reef fish communities. Local coral reef 385 

experts agreed that increasing coral cover by 5%, 10%, 15%, and 20% above current levels 386 

were reasonable aspirations in this area, particularly given historical coral cover levels and 387 

improvements in managed areas (Williams et al., 2016). To estimate how fish biomass would 388 

change under different marine management scenarios, we draw upon a previously published 389 

hierarchical, linear Bayesian model of how multiple biophysical and human population drivers 390 

influence fish biomass throughout the main Hawaiian Islands (Gorospe et al., 2018). Data from 391 

the same study show that increases in coral cover would also result in increases in reef 392 

complexity (Figure SI_F3). Therefore, although reef complexity was not a component of our 393 

snorkeler choice experiments, we use both coral cover and complexity to estimate changes in 394 

reef fish biomass. Finally, applying a linear model to data from West Maui fish surveys, we 395 

translate modeled fish biomass into the more snorkeler-relevant metrics of fish abundance 396 

(Figure SI_F4A) and fish species richness (Figure SI_F4B). Overall, this allowed us to derive a 397 

complete picture of how the reef attributes in the BBN (coral cover, fish abundance, and fish 398 

species richness) collectively changed (Table 5). All data for the above analyses came from fish 399 

and benthic surveys conducted by the NOAA Pacific Islands Fisheries Science Center's 400 

Ecosystem Science Division in 2012, 2013, and 2015 (Pacific Islands Fisheries Science Center, 401 

2019).  402 

 403 

Table 5 Model-predicted fish biomass, abundance, and species richness based on hypothetical, absolute increases in 404 

percent coral cover achievable with management. Using field data from throughout the main Hawaiian Islands, a 405 

hierarchical, linear Bayesian model (Gorospe et al. 2018) was used to predict fish biomass based on increases in 406 

coral cover and associated increases in reef complexity. Modeled fish abundance and richness outcomes are 407 

presented for different levels of absolute coral cover change over baseline, where the baseline is the current mean for 408 
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the Maui-Lahaina area. When coral reef cover increases over the baseline, the model predicts coral reef complexity 409 

increase (Figure SI_3), fish biomass, fish abundance, and fish richness. For instance, moving from baseline coral 410 

cover and complexity to a scenario where coral cover increases to baseline+5%, fish biomass would increase from 411 

5.89g/m2 to 7.10g/m2, fish abundance from 0.028 fish/m2 to 0.039 fish/m2 (scenario is 139% of baseline), and fish 412 

richness from 6.13 to 6.97 species (scenario is 114% of baseline).  413 

Coral Cover  
Model-linked 

Fish Biomass 
Fish Abundance Fish Richness 

(% absolute 

change over 

baseline at a 

site) 

(g/m2) (# fish/m2) 
(% of 

baseline) 

(# 

species) 

(% of 

baseline) 

Baseline  5.89 0.028 NA 6.13 NA 

+5 7.10 0.039 139% 6.97 114% 

+10 8.33 0.050 178% 7.83 128% 

+15 9.63 0.062 220% 8.74 143% 

+20 10.97 0.074 263% 9.68 158% 

 414 

Combined marine-land management 415 

As a third set of management scenarios, we combined all management outcomes into a single 416 

scenario, where both land-based pollution was reduced and benthic habitat and fish 417 

communities were rehabilitated at increasing levels. 418 

Scenario results 419 

Baseline snorkeling attractiveness was estimated using the BBN under current conditions and is 420 

mapped in Figure 3. Popular snorkeling destinations such as Kaʻanapali Beach have high 421 

snorkeling attractiveness, as expected, due to low exposure, sediment, and cesspool effluent, 422 



23 
 

and good ecological quality. But not all popular beaches score high. For instance Honolua Bay 423 

has a lower than expected score, explained by high sediment, exposure, and crowding, which 424 

reduce its attractiveness, despite low cesspool discharge, high fish richness and abundance, 425 

and high probability of viewing turtles.  426 

 427 

Using the BBN to estimate the effects of 20 management scenarios on recreation for the entire 428 

AOI and a subsetted area of high and moderate accessibility, we found that improving local 429 

water quality through controlling sediment and cesspool effluent and enhancing coral reef 430 

conditions (i.e., coral cover, fish abundance, fish diversity as “combined marine”) positively 431 

affected snorkeling attractiveness across our study AOI (Figure 4; Table SI_T5). Reducing 432 

sediment alone had stronger effects on overall attractiveness than cesspool-related pollution 433 

reductions. Increasing fish abundance had the strongest effects on snorkeling quality of all 434 

ocean-related actions, while combined marine management (coral, fish abundance, and fish 435 

richness improvements) resulted in slightly larger quality improvements than combined land 436 

management (sediment and cesspool pollution reduction). Results of coral reef restoration 437 

scenarios cannot be evaluated independently, as fish abundance and richness estimates are 438 

directly tied to coral cover improvements, though we present the 12 decomposed results in 439 

Figure 4 to illustrate the relative benefits. The greatest improvements across the entire AOI and 440 

the accessible areas came from combining both land- and marine-based management.  441 

 442 

Results of land-based scenarios suggest that sediment reductions have the most value to 443 

people, more so than cesspool effluent reductions. Reducing sediment by 25% - the highest-444 

level erosion reduction scenario - improved the recreational value more than completely 445 

removing cesspools (7.1% vs. 4.3% improvement in the snorkeling attractiveness score for the 446 

highly and moderately accessible areas). A coordinated effort to control both sediment and 447 

cesspool effluent at the highest levels can improve the value by 11.4% in accessible areas. 448 
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Increasing coral cover to baseline plus 20%, fish abundance to 263% of baseline, and richness 449 

by 158% of baseline in a combined strategy would increase snorkeling quality by 15.7% in 450 

accessible areas. Combining all land and marine-based management activities at the highest 451 

levels resulted in a 27.7% improvement in snorkeling quality in more accessible areas, 15.7% 452 

from marine management and 11.5% from land management. 453 

 454 

 455 

Figure 3 Baseline snorkeling quality at current conditions (initial data inputs), binned as 0-20 very low; 21-40 low; 41-456 

60 moderate; 61-80 high; and 81—100 very high. Area of interest (AOI), high-moderate access area, and beach site 457 

areas depicted. Beach sites indicated by yellow dots and numbers (see beach names in Table 6). 458 
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 459 

 460 

 461 

Figure 4 Improvement in snorkeling quality by management action/combination. Results show improvements across 462 

the entire area of interest (AOI) in lighter shading, and nearshore areas with high to moderate accessibility in darker 463 

shading. The sequence of four sets of bars for each management action shows progressively greater improvements 464 

for that activity, as described in the methods and Supplemental Information. 465 

Zooming in on popular local beaches illustrates how site-specific conditions determine the 466 

effects of management outcomes within the most accessible areas around those beaches. 467 

While results across the entire AOI and the most accessible areas suggest that reducing 468 

sediment is more impactful than cesspool-related action (Figure 4), this is not always true when 469 

we look at the area around popular beaches individually (Figure 3). The current recreation value 470 

of each beach area, along with results for five of the management scenarios with the largest 471 

improvements in outcomes are summarized in Table 6 for the high-access areas within 300m 472 

around eleven key beaches (see Table SI_T6 for details and Figure SI_F5A-FF for maps). In 473 
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some beaches, reducing cesspool effluent has more value than reducing sediment, and in 474 

others, land management has no effect on recreation. As expected from the overall results, 475 

marine management has the highest outcomes for the majority of examined beaches, higher 476 

even than both land management actions together.  477 

 478 

Table 6 Snorkeling attractiveness score in highly accessible areas around each beach (listed in order north to south) 479 

under baseline conditions, and relative improvements due to high-impact management scenarios: 1. reduce sediment 480 

by 25%; 2. eliminate cesspools; 3. do both [“Land”]; 4. improve coral cover to baseline + 20%, fish abundance to 481 

263% of baseline, and fish species richness to 158% of baseline [“Marine”]; and 5. do both “Land” and “Marine” 482 

simultaneously [“Combined”]).  483 

  
Baseline 

snorkeling 

attractiveness 

score 

Snorkeling attractiveness score improvement due to 

management scenario 

Map Beach Sediment Cesspool Land Marine 
Combine

d 

1 Honolua Bay  25.5 1.1 0.0 1.1 7.2 8.3 

2 Mokulē‘ia Beach  32.5 0.0 0.0 0.0 3.7 3.7 

3 Oneloa Bay  66.2 3.3 0.0 3.3 11.3 14.9 

4 Hanaka‘ō‘ō Beach 75.4 3.1 4.2 6.4 5.1 10.8 

5 Kapalua Beach 65.4 6.6 0.0 6.6 13.9 20.7 

6 Nāpili Bay  36.3 6.9 5.0 10.9 4.3 14.9 

7 Keonenui 36.9 6.8 11.1 17.6 16.2 33.3 

8 Kahana Beach 39.7 3.7 0.0 3.7 6.3 9.1 

9 Honokōwai Beach Park 34.6 0.0 1.3 1.3 7.4 8.8 

10 Kā‘anapali Beach 78.8 6.0 3.7 9.7 10.9 20.8 

11 Wahikuli State Wayside Park 57.0 0.0 10.3 10.3 14.9 26.5 

4 Discussion 484 

Management implications 485 

State agencies charged with protecting the environment often focus on ecological outcomes, but 486 

the ecosystem services approach used here translates ecological conditions into terms more 487 
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relatable to decision makers, visitors, and residents by tying them to human wellbeing and 488 

preferences (Tallis and Polasky, 2009; Wainger and Mazzotta, 2011; Wainger and Boyd, 2009). 489 

In an era of increasingly scarce management resources and compounding threats, it is all the 490 

more important to ensure that management has net benefits. Hawaiʻi’s economy and the 491 

Hawaiian lifestyle are tightly linked to ocean recreation, and people have positive willingness to 492 

pay for improvements to coastal amenities (Peng and Oleson, 2017; Penn et al., 2016, 2014). 493 

Our results underscore and add to the current trend globally to integrate science and 494 

management across the land-marine interface to address stressors to the ocean more 495 

holistically (Alvarez-Romero et al., 2011; Halpern et al., 2009; Pressey et al., 2007; Tallis et al., 496 

2008; Toft et al., 2013) and efficiently (Klein et al., 2010). We introduce the human dimension to 497 

this trend: the benefits of integrated management also apply to maximizing returns to society 498 

through recreational ecosystem services. 499 

 500 

Our approach identifies and prioritizes the many opportunities to conserve, improve, and restore 501 

recreation quality along West Maui’s coast, including which actions yield the greatest 502 

improvements in snorkeling attractiveness and where these benefits will occur. Combined 503 

efforts to address land and marine problems achieve the best outcomes overall and for most 504 

beaches (Figure 4, Table 6). This aligns with recent studies in Hawai‘i that have shown that 505 

addressing just one or the other (i.e., either land- or marine-based) stressors leads to sub-506 

optimal ecological outcomes, and may even threaten ecological regime shifts (Jouffray et al., 507 

2019; Weijerman et al., 2018). Focusing on particular beaches adds specificity to our 508 

management recommendations, highlighting the crucial need for tools to be applied at an 509 

appropriate scale. Guided by the broader scale analysis, management recommendations for 510 

West Maui as a whole are different than those coming from the local scale analysis. For 511 

instance, at some of the beaches, controlling effluent from cesspools would be more impactful 512 

than mitigating sediment (Table 6). Fortunately, recent evidence suggests that many of 513 
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cesspools in West Maui were upgraded by homeowners over the ensuing years since the data 514 

were collected (Barnes et al., 2019), but the importance of effluent for recreational quality, and 515 

the link between wastewater and coral degradation (Wear and Thurber, 2015), raises the need 516 

for future analysis to also consider the effects of various wastewater treatment plants along the 517 

coast. 518 

 519 

While the best results will generally come from integrated management, it is notable that marine 520 

management had higher payoffs overall than land management (Figure 4), driven by strong 521 

preferences for improvements in the various marine attributes, but mainly the modeled 522 

improvements in fish abundance (Table 2). The fact that fish abundance can greatly improve the 523 

delivery of recreational ecosystem services may help coastal managers, who face challenges 524 

managing for coral cover, given bleaching and other hard-to-mitigate threats, while the tools to 525 

manage fishes can be easier to implement. Further, in many places, the jurisdiction of a 526 

resource management agency may not cover both land and sea, as in the case of Hawaiʻi, 527 

where the Division of Aquatic Resources has jurisdiction over fisheries but not watershed and 528 

land management, which is the responsibility of other divisions within the Department of Land 529 

and Natural Resources, as well as other government departments, and water quality is the 530 

purview of the Department of Health.   531 

 532 

The benefits of the various management actions should ideally be weighed against their costs to 533 

determine whether action is justified, and which are the most cost-effective. These benefits may 534 

extend well beyond the recreational benefits measured here, and a full cost-benefit analysis 535 

would need to consider all costs and benefits (De Groot et al., 2013). Our results show positive 536 

preferences for improving ecosystem services, and given the scale of recreational users in 537 

Hawaiʻi, willingness to pay is likely more than sufficient to justify taking action, but we do not 538 

attempt to estimate the magnitude of social benefit. Different management actions will have 539 
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variable costs, and implementing the most cost effective (i.e., most benefit per cost) actions first 540 

will generate the greatest economic return on investment. Cesspool upgrades in the area could 541 

costs millions of dollars, while sediment reduction efforts could entail tens of millions of dollars 542 

of land restoration and infrastructure investments (Group 70, 2015a, 2015b; Sustainable 543 

Resources Group International, 2012b, 2012a). Fisheries management could have high 544 

enforcement expenses and opportunity costs for fishers and related businesses. Importantly, 545 

these costs could differ depending upon the watershed in question. Spatially explicit cost 546 

estimates to couple with the ecosystem services benefits modeled here would help decision-547 

makers prioritize the most cost-effective actions (Naidoo et al., 2006). 548 

 549 

Modeling innovations and limitations 550 

Our efforts contribute to an ongoing research program to evaluate ecosystem services spatially 551 

through time using big data techniques and artificial intelligence to inform management (Villa et 552 

al., 2014). An increasing number of tools use BBNs in ecosystem services modeling, including 553 

plug-ins to GIS (Landuyt et al., 2015) and stand-alone modeling platforms like ARIES, used 554 

here (Villa et al., 2014). Our innovation of linking an economic elicitation method to inform the 555 

BBN provides additional rigor to the model structure and parameterization. Specifically, we 556 

embedded the results of a choice experiment along with an expert elicitation into the BBN’s 557 

structure and conditional probability tables. This enabled us to model how recreational 558 

attractiveness changes with improvements in specific, interrelated conditions. We grounded our 559 

management scenarios by eliciting reasonable outcomes for sediment and cesspool reduction 560 

and coral reef restoration from land and reef managers, and building an ecological model, 561 

based on a Hawaiian archipelago-wide dataset, to evaluate how fish conditions would change 562 

given improvements in coral cover.  563 

 564 
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The approach has some limitations. Preferences elicited from the choice experiment helped 565 

inform the conditional probabilities in the BBN. There was a design flaw that forced answers in 566 

the choice experiment, which affected the absolute, but not relative, value of the various 567 

attributes. For this reason, we do not report willingness to pay results. Our survey sample likely 568 

underrepresented residents and younger snorkelers, although no demographics exist compare. 569 

If managers are interested in examining how different management scenarios would affect 570 

different groups (e.g., tourists vs. residents; younger vs. older), then a broader survey could be 571 

conducted to build conditional probabilities (and perhaps alternate BBN structures) for these 572 

groups. Within a BBN’s structure, intermediate nodes can temper or enhance the strength of 573 

influence of any given parent node on a subsequent node. For instance, in the choice 574 

experiment, snorkelers preferred fish abundance and fish species richness about the same, but 575 

in the end, fish abundance had much greater effect on overall snorkeler quality. Examining the 576 

arrows in Figure 2 that represent the strength of influence (also Table SI_4b, fish species 577 

richness has a strong influence on the biodiversity intermediate node, but the biodiversity node’s 578 

smaller contribution to the ecological quality diminishes the contribution of fish species richness 579 

to the overall snorkeling quality. Intermediate nodes are important for keeping conditional 580 

probability tables tractable, but they can have side effects of amplifying or diminishing the 581 

importance of other variables. The aim is that the combined structure and conditional 582 

probabilities are a faithful representation of the system; validation is important for ensuring this 583 

(Marcot et al., 2006). While we used expert opinion and our own intuition to validate and test 584 

assumptions of the model based on the chosen conditional probabilities, new capabilities within 585 

ARIES for BBN structural learning algorithms would be a useful, additional step (Willcock et al., 586 

2018). 587 
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5 Conclusion 588 

Natural resource managers need to know how potential management strategies are likely to 589 

impact people’s wellbeing. Ecological-economic models such as the one developed here can 590 

help managers choose what actions to take where, based on the outcome’s societal value. For 591 

recreational ecosystem services, the use of a BBN to combine survey-based data of the relative 592 

value of important environmental and socioeconomic features with expert opinion and spatial 593 

modeling to enable scenario analysis can provide a new path forward for integrating social and 594 

natural science with management. Such integrated modeling of coupled nature-human systems 595 

can benefit the management of recreational resources, particularly in settings with complex 596 

combinations of stressors and human uses, such as recreation and management at the land-597 

sea interface. 598 
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