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Abstract  

Resilience in urban drainage infrastructure management has 
gained traction in the last few years, where systems need to adapt 
and recover from failure in face of deep uncertain threats. Green 
infrastructures, on-site nature-based stormwater strategies, are a 
promising concept that has proven to be effective in increasing the 
overall resilience performance in sewer systems. However, the 
improvement is not always significant or guaranteed. There is a 
lack of understanding of the local effects of these infrastructures 
and the spatial components of the impact on resilience in the 
network.  

In this work, the spatial interactions between GI placement and 
improvements in the centralized sewer networks resilience were 
studied, whilst considering a wide range of design storms. 
Resilience is assessed using two metrics: flood volume and flood 
duration. The scenarios simulated were baseline scenarios with no 
green infrastructure for each rainfall (scenarios type 1) and a 
placement scheme using critical component analysis (scenarios 
type 2). The spatial interactions were analysed through three main 
points, the magnitude of the impact, the number of affected nodes 
and the location of the impact in the network. This analysis was 
applied in a case-study in the United Kingdom.  

Regarding the magnitude of the impact, even though at a 
system level the impact is not high, at a node level the impact can 
be significant. Also, the impact is higher in shorter duration and 
lower return period storms. Regarding the number of affected 
nodes, most of the nodes remain unchanged. When all the 
scenarios are considered, there are as many nodes with an 
increase, as there are with a decrease in flooding volume and 
duration. Regarding the location of the impact, the nearest nodes 
to the outlet show the highest reduction in flood volume and flood 
duration. Subcatchments upstream the network and with highest 
areas seem to be the most impactful in the flood volume change. 
For flood duration, the subcatchments with smaller areas and 
generally in a middle region in the network cause the highest 
changes.  

This study is a first approximation to understand spatial 
considerations regarding the impact on resilience based on 
different green infrastructure location in the network. 
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1. Introduction 

Urban drainage systems in high- and middle-income countries are 
generally provided through centralized networks with combined 
sewers [1,2]. General issues on traditional management restrict the 
ability to meet the current and future challenges of the sector, such 
as urbanisation, climate change, population growth and ageing 
infrastructure [3,4].  

As an alternative to traditional urban stormwater management, 
green infrastructures (GI) are on-site ‘nature-based’ sustainable 
stormwater strategies that enable reversing hydrological and water 
quality impacts of urbanisation [5,6]. They have gained 
importance due to their multi-functionality, their flexibility and 
their potential in increasing resilience in urban drainage systems 
[5,7]. Previous research and applications of GI have proven these 
infrastructures to be effective, however, there are still various 
gaps in research and technical challenges [8,9]. This study 
specifically targets the gaps in, 1) the assessment of the impact of 
resilience in the sewer system considering local effects under a 
range of rainfall events, and 2) the spatial interactions between 
resilience improvements and GI placements in the network.  

Improving the resilience of urban drainage infrastructure is a 
topic of interest and the integration of green infrastructures with 
the traditional urban drainage systems with this purpose are at 
heart of government policies and industry practices [9,10]. 
Sweetapple et al. [11] demonstrated a positive impact on the 
overall resilience performance in the system, although the 
improvement is not always significant or guaranteed. Using a 
cellular automata surface model, Wang et al. [12] proposed a 
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resilience metric for assessing flood resilience and the impact of 
adaptation measures on resilience in the system as a whole, and at 
a subcatchment level. These studies show the importance of 
resilience assessment in the implementation of green 
infrastructures, and how their impact is not always 
straightforward. However, they do not consider local effects and 
spatial considerations for the improvement of resilience based on 
GI location in the urban drainage system.  

Determining the most appropriate strategy for the placement of 
green infrastructure, either in new developments or retrofitting in 
existing drainage systems, poses a challenging problem. This is 
due to their complexity, the uncertainty in their operation now and 
in the future (i.e. climate change, urbanisation and population 
growth), the lack of standardized performance assessment, and the 
unique characteristics of each drainage system [7,9,13,14,15]. 
Following an optimisation approach, Liu et al. [16] used a multi-
criteria analysis for the support of GI scheme selection and Wang 
et al. [17] used an analytic hierarchy process module combined 
with iteration module for the optimal location of storage tanks. 
Based on biophysical factors and socio-demographic factors, 
Kuller et al. [18] proposed a planning support tool for spatial 
suitability of GI. This tool was later integrated by Bach et al. [19] 
in the UrbanBEATS model, which integrates stormwater 
management with urban planning to support the implementation 
of WSUD. In a simpler manner and focusing on local effects in 
the network, Zischg et al. [20] generated maps which allowed the 
identification of effective placements for green infrastructure. 
However, although the placement in the network was considered 
key in their studies, the implications on resilience and spatial 
interactions in the sewer systems were not reported. 

This paper aims to gain understanding of the spatial 
interactions in the network in terms of resilience improvements by 
the implementation of GI. By this, it is expected to gain insight 
into the sensitivity to location of GI considering the effect of 
different return periods and duration storms.  

2. Methodology 

2.1 Simulation model 

The modelling platform used in this study is the EPA Stormwater 
Management Model (SWMM), as it is a widely used model in the 
urban drainage system field that can simulate rainfall-runoff and 
contaminant transport. Primarily developed for urban areas, 
SWMM is a hydrological and hydraulic model that can be used 
for a single event and continuous simulation of runoff quantity 
and quality [21].  

In this study, the kinematic wave theory is used for flow 
routing computations and the modified Horton method is used to 
simulate infiltration in pervious areas.  

2.2  GI scenarios 

Two main types of scenarios are studied: type 1) no green 
infrastructure, type 2) placement scheme using critical component 
analysis. These are explained below.  

1. Scenarios type 1 or baseline scenarios, correspond to the 
catchment before the installation of GI, where the 
catchment is simulated for its characterisation. These 
scenarios are used as a baseline to assess the impact of GI 
in the system. 

2. Scenarios type 2, in a similar way to the critical 
component analysis described by Johansson & Hassel 
[22] and the sensitivity analysis used by Zischg et al. [20], 

an exhaustive exploration of the system state is performed 
to estimate the consequences of green infrastructures in 
the sewer system. The idea behind this is to identify 
strategic locations that produce the largest or most 
relevant consequences in the network, allowing the 
identification of the spatial criticalities in terms of 
resilience improvement for the sewer system’s function. 
For this, different scenarios evaluate the effect of a 
uniform green infrastructure with the same parameters, 
size and type at different locations in the catchment. The 
only factor changed is the location where the green 
infrastructure is placed. The parameters to characterize 
the GI used in all the scenarios, are presented in Table 1. 
The values used are typical values used in literature 
[12,21]. 

To understand the effect of different return periods and storm 
durations in the performance of the GI. Different design rainfall 
events are used for all the scenarios mentioned above.  

 
Table 1: Summary of GI characteristics, based on [12,21] 

Parameter Layer Value/Description 

Type - Bio-retention Cell 

Area - 500 m2 – If the area of the 

subcatchment studied is less than 

500 m2, then the area of the GI is 

equal to the total area of the 

subcatchment.  

Berm height Surface 150 mm 

Surface roughness  Surface 0.1 (Manning’s n) 

Thickness Soil 1200 mm 

Soil Capillary suction 50 mm 

Porosity  Soil 0.5 (volume fraction) 

Field capacity  Soil 0.2 (volume fraction) 

Wilting point Soil 0.1 (volume fraction) 

Conductivity  Soil 137 mm/h 

Conductivity slope Soil 12.5 

Suction head Soil 50 mm 

Height Storage 600 mm 

Void ratio: 0.2 

Seepage: 12.5 

Void ratio  Storage  0.2  

Seepage factor Storage 12.5 mm/h 

2.3  Resilience assessment 

In this study, resilience is defined as ‘“the degree to which the 
system minimises the level of service failure magnitude and 
duration over its design life when subject to exceptional 
conditions” [23]. The two main components of resilience are then, 
magnitude and duration. Two metrics are used to illustrate the 
dynamic of system performance are defined below: 

1. Failure magnitude: it is represented as the total flood 
volume, which refers to the overflows from all the 
network nodes.  

2. Failure duration: is the total duration of the flooding at 
the node, which is the time taken to from the occurrence 
of flooding to the recovery of normal performance.  

These two indicators are commonly used in surface flooding 
and urban drainage system hydraulic performance [17], and they 
are used for the computation of the flood resilience index 
developed by Mugume et al. [24].  
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Each metric is computed for every node using SWMM and 
Python packages, pySWMM [25] and SWMM toolbox [26]. For 
the system, the flood magnitude is the summation of all the flood 
in all the nodes, while the flood duration is the mean of the flood 
durations of all the nodes.  

To compare and contrast different scenarios, the change 
between the baseline scenarios (type 1) and the scenarios type 2 is 
calculated using Equations (1) and (2) for flood volume and flood 
duration respectively: 

 

%𝐹𝑉𝐶 = 100 ×
𝑇𝐹𝑉𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 2−𝑇𝐹𝑉 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1

𝑇𝐹𝑉𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1
 (1) 

 

% 𝐹𝐷𝐶 = 100 ×
𝑇𝐹𝐷𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 2−𝑇𝐹𝐷 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1

𝑇𝐹𝐷 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1
  (2) 

 

where %FVC refers to the percentage of flood volume change 
and %FDC is the percentage of flood duration change. In 
Equation (1), TFV is total flood volume, and in Equation (2) TFD 
is the total flood duration. These are applied at a system level and 
a node level. At a node level, to avoid errors due to neglectable 
flooding values, only the nodes with flooding volumes higher than 
15 L are considered. 

2.4  Spatial interactions 

To understand the spatial interactions in the network of resilience 
improvement and the implementation of green infrastructures 
three main characteristics are studied based on the two metrics 
proposed: a. the magnitude of the impact, b. the number of 
affected nodes, and c. the location of impact in the network. These 
points are explained below. 

a. Magnitude of the impact: a comparison of the impact of 
GI between the baseline scenario (type 1) and the results 
of the different placement scenarios (type 2) is performed.  

b. Affected nodes:  the number of nodes that have a 
difference in the flood volume and the flood duration is 
considered. This is a way to understand the extent of the 
impact of GI in the network. To account this, the 
percentage of the total of nodes affected with an increase, 
decrease and those who remain unchanged regarding the 
flood volume and flood duration are compared.  

c. Location: this section looks at where in the network the 
impact of green infrastructure occurs. In SWMM, 
flooding occurs specifically in the nodes, meaning that 
flooding events are on or alongside the sewer network. 
For this reason, the network spatial analysis is used 
instead of planar spatial methods. When distances are 
considered, the shortest path distances are used instead of 
Euclidean distances [27]. For calculating the shortest-path 
distance, the origin is the outlet of the subcatchment were 
the green infrastructure was installed, and the end is the 
node that is being studied. The shortest-path distance is 
then, the sum of the pipes’ lengths between the two 
nodes. It is assumed that there is no predetermined 
direction in the flow. For calculating the shortest-path 
distances, the Python package Networkx is used [28]. To 
compare different scenarios effectively, the normalized 
distance has been used, which is the shortest path distance 
between the node and the outlet of the subcatchment 
studied divided by the average of the shortest path 
distances of all the nodes to the outlet of the 

subcatchment studied. In addition, the GI placements with 
highest impact in the network is discussed.  

3. Case-study application 

3.1  Study area 

The case-study presented is a satellite town of Exeter, located in 
the South West of England. The watershed consists of 220 sub-
catchments with a total area of 73.3 ha, serving a population of 
approximately 4000 inhabitants (Figure 1). The combined sewers 
consist of 487 conduit links and junction nodes, 3 storage tanks. 
The percentage of impervious area in the subcatchments is 
between 0% and 100%, and the elevation ranges between -0.9m 
and 17.2m. The parameterization was based on GIS data and 
recommended values from technical design guides, planning 
regulations and literature [2, 29,30,31]. 

 

 
Figure 1: Layout of the case-study. Basemap by OpenStreetMap 
contributors [Public Domain], via OpenStreetMap Planet dump 
(https://planet.openstreetmap.org). 

3.2 Rainfall events 

Different desiring rainfall events with different durations and 
return periods were generated according to the Wallingford 
procedure [32]. The storm profile is built using the 50 % summer 
profile used in the FSR/FEH rainfall-runoff method, as 
recommended by the procedure [2, 33]. 

 The return periods used were 2-, 10- and 100-year rainfall 
events, whereas the durations selected were 10, 30 and 60 minutes 
(Figure 2). In this paper, the storms are identified as My_D, where 
y refers to the return period and D is the storm duration.  

https://planet.openstreetmap.org/
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Figure 2: Design rainfalls used in the study 

 

4. Results and discussion 

4.1 Impact magnitude 

4.1.1 System’s magnitude impact. 

 Figure 3 shows the GI impacts at a system level, presented as the 
%TFV and %TFD in different storms.  

Firstly, there is a great variation in the impact, which shows 
that there is a sensitivity to GI placement in the network. The 
mean of the differences between the baseline scenario and the 
type 2 scenarios, in each storm is negative, however, there are 
outliers showing the opposite effect. This means that there are 
locations that show an augmentation in flood volume and flood 
duration, which is the opposite effect expected by the application 
of GI. This will be further discussed in section 4.3. 

Secondly, when comparing the effects on flood volume and 
flood duration, Figure 3 shows that in average, the effect in the 
flood volume is greater than in the flood duration. Although the 
variation of the flood volume is greater, the outliers shown in the 
flood duration are more prominent. 

Finally, the inclusion of a GI one subcatchment at a time, only 
generates small effects at a system level, both for the flood 
volume and flood duration. This can be contrasted with Table 1, 
where even though effects at a system level are small, the effects 
at a node level are important. This is further discussed in the 
following subsection.  

 

 
Figure 3: Variations at a system level in the %TFV and %TFD, 
based in the impact GI in the network. 

 

4.1.2 Nodes’ magnitude impacts.  

Table 2 shows the variation in the impact of the implementation 
of GI at a node level, presented as the percentage difference 
between the scenarios type 2 and the  
baseline scenario (type 1).  

In contrast to what happens at a system level, the effects of the 
implementation of GI are important at a node level. The change 
can be more than 85% and 55%, in flood volume and flood 
duration respectively. The mean of the change remains low due to 
the large number of unchanged nodes in all the scenarios 
considered5. This is further discussed section 4.2.  
Table 2: Ranges in the %FVD and %FDC, based on the impact of 
GI at a node level in the network.  

 
4.1.3 Different Rainfalls. 

 Figure 3 and Table 2 show that when the mean in the change is 
considered, the GI impact is higher in shorter duration storms and 
smaller return period. However, generally, the range of values is 
higher for higher return periods storms.  

4.2 Affected nodes 

4.2.1 Unchanged, with an increase and with a decrease in the 

%FVC and %FDC at a node level. 

 Figure 4 shows the variation in the proportion of nodes that are 
affected by the implementation of the GI in scenarios type 2, 
differentiating rainfall events.   

Most of the nodes remain unchanged, which as mentioned 
before, demonstrates that the implementation of the GI does not 
cause a general impact in the network, but it is restricted to some 
nodes in the network.  

There are as many nodes with a decrease in flood volume and 
duration, as there are with an increase when considered all 
scenarios simulated. This does not consider the magnitude, but it 
is interesting to consider that even though the implementation of 
GI has a positive impact in certain areas of the network, this might 
generate a decrease in the performance in other areas. This is an 
important aspect to consider when choosing the right location of 
GI.  

As the duration of the storms increases, there is an increase in 
the number of affected nodes. This is accentuated as the return 
period of the storm increases. 
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Figure 4: Affected nodes: unchanged, with a decrease and with an 
increase in the %FVC and %FDC, considering all the scenarios 
type 2 and design storms. 

 

4.2.2 Affected nodes at different rainfalls.  

When considering the kernel distribution estimation (KDE) plot (a 
non-parametric way to estimate the probability density function) 
and the rug plot (where each vertical line indicates an observation) 
for the difference flood volume between scenarios type 2 and the 
baselines (scenario type 1), it is noted that for different storm 
periods there is a similar pattern as the storm duration changes 
(Figure 5). As the duration of the storm increases, there is an 
increase in the nodes that have a higher flood volume change. 
This means that shorter storms tend to have more nodes affected, 
but with lower volume decrease/increase. A similar pattern is 
observed for difference in flood duration.   

 

 
Figure 5: Distribution of affected nodes considering flood volume 
(L). 

4.3 Location 

4.3.1 Distance vs. magnitude impact.  

Figure 6 presents the heatmaps showing the magnitude of 
%FVC and the normalized distance considering each node (y 
axis) and scenario type 2, where the GI were implemented one 
subcatchment (x axis). This means that each pixel in the plot 
corresponds to the value of %FVC or normalized distance for 
each node at each scenario type 2.   

When comparing the two heatmaps, it can be seen that there is 
a clear relationship between %FVC and the normalized distance. 
The nodes nearer to the outlet where the GI has been implemented 
are the nodes where a change in the flood volume is considerable. 
A similar phenomenon is seen in all storms considered in the 
study, as well as when considering %FDC.  

 

 
Figure 6: Heatmaps generated from the %FVC results of storm 
M100_60 (left) and normalized distance (right).  

 

4.3.2. Distance distribution & magnitude impact.  

Figure 7 shows the kernel distribution estimation plot, which 
allows seeing the bivariate distribution of the %FVC versus the 
normalized distance. It can be seen that medium impacts due to 
the implementation GI which cause a decrease in the flooding 
volume are concentrated in nodes which are nearest to the outlet 
of the subcatchment where the GI was implemented. However, in 
higher distances, there is another conglomeration of points, which 
indicate the increase in flooding. This could indicate that the 
increase in flooding due to the implementation of GI tends to 
occur downstream in the network. A similar trend is observed 
when considering %FDC.  
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Figure 7: KDE plot %FVC vs. normalized distance, including all 
the scenarios type 2 and design storms.  

 

4.3.3 Scenarios type 2 with the largest magnitude impact and their 

location. 
 Figure 8 shows the GI placements that generate the 10 highest 
flood volume reduction at node level for different storms. The 2-
year return period storm differs mostly from the 10-year and 100-
year return period storms. The subcatchments upstream in the 
network seem to be more impactful in higher return period and 
duration storms, whereas the subcatchments closer to downstream 
show higher decrease in the flood volume at lower return periods 
and shorter duration storms. There is greater coherence between 
different storms, as the same subcatchments are the most 
impactful in different storm. The subcatchments shown are in 
most cases the subcatchment with highest surfaces areas. Figure 9 
showing the highest increase in volume location, show the 
opposite and thee subcatchments are not the same in different 
storms.  

When considering flood duration, the GI placements that cause 
the highest decrease are different than the subcatchments 
considered in flood volume (Figures 10 and 11).   

 
Figure 8: GI placement that cause highest flood volume reduction 
at node level for different storms. Basemaps by OpenStreetMap 
contributors [Public Domain], via OpenStreetMap Planet dump 
(https://planet.openstreetmap.org). 

 

 
Figure 9: GI placement that cause highest flood volume increase 
at node level for different storms. Basemaps by OpenStreetMap 
contributors [Public Domain], via OpenStreetMap Planet dump 
(https://planet.openstreetmap.org). 

https://planet.openstreetmap.org/
https://planet.openstreetmap.org/
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The subcatchments where the GI placement cause the highest 
change in flood duration, contrary to the ones causing the highest 
decrease flood volume, are placed in a middle position in the 
network and have the smallest areas. However, there is more 
coherence between the subcatchments that have highest increase 
in flood duration and flood volume.  

 

 
Figure 10: GI placement that cause highest flood duration 
decrease at node level for different storms. Basemaps by 
OpenStreetMap contributors [Public Domain], via OpenStreetMap 
Planet dump (https://planet.openstreetmap.org). 

 

 
Figure 11: GI placement that cause highest flood duration increase 
at node level for different storms. Basemaps by OpenStreetMap 
contributors [Public Domain], via OpenStreetMap Planet dump 
(https://planet.openstreetmap.org). 

4.4 Limitations & future research 

The results presented cannot be generalized, due to the unique 
characteristics of each sewer system. However, this study 
represents an initial approach to spatial considerations of 
resilience regarding the network and green infrastructure 
placement. This approach can be used in other networks to enable 
a deeper understanding of spatial interactions between GI 
placements and resilience impacts in the network.  

All the implemented GI are of the same type, parameters and 
area, so that the only variable changed in scenarios type 2 is 
location. However, GI include a wide diversity of strategies, and 
this should be considered in further studies to understand if 
alternative GI would bring different impacts on resilience.  

Further steps in the implementation of this research will 
include spatial analysis tools, which will enable further spatial 
considerations of resilience. This would include in depth 
characterization of the urban form (i.e. imperviousness, land 
availability and slope), to have a further understanding of the 
interactions between these factors and the impacts of resilience at 
a node level. Furthermore, considerations of costs, land use and 
social aspects, as well as water quality indicators, could be 
integrated into the study to have further insight.  

 

5. Conclusions 

In this work, the impact of green infrastructures in centralized 
sewer systems and the spatial interactions in their impact on 
resilience has been studied.  

Regarding the magnitude of the impact, the effect of GI in the 
sewer system seems to be localised and limited to a relatively 
small number of nodes. Some locations have significantly higher 

https://planet.openstreetmap.org/
https://planet.openstreetmap.org/
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impacts than others, and in some cases, there is an increase in 
flood volume and duration. The impact is higher in shorter 
duration and lower return period storms.  

When considering nodal impact, a large proportion of nodes 
are not affected regarding flood volume and duration. In addition, 
when considering all the scenarios and storms, there are as many 
nodes with an increase in the metrics considered as there are with 
a decrease. This indicates that the placement of GI in respect to 
the network is critical to achieve an increase in performance (a 
decrease in flooding).  

When considering location aspects, it can be seen that there is 
an important relationship between the most impacted nodes and 
their distance to the outlet of the subcatchment where the GI is 
placed. The nearest nodes to the outlet show the highest reduction 
in flood volume and flood duration.   

Finally, when considering the metrics’ highest increase and 
decrease for the different scenarios type 2, subcatchments 
upstream the network and with highest areas seem to be the most 
impactful in the flood volume change. This is different from the 
most impactful subcatchments in flood duration, where the 
subcatchments with smaller areas and generally in a middle region 
in the network cause the highest changes.  

This study represents a first step towards the considerations of 
spatial interactions of resilience in the network and the GI 
implementation. Further research will consider other networks and 
will include relevant metrics, allowing a more holistic view on the 
topic. 
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