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Thought experiments involving gases and pistons, such as Maxwell’s demon and Gibbs’ mixing, are
central to our understanding of thermodynamics. Here, we present a quantum thermodynamic thought
experiment in which the energy transfer from two photonic gases to a piston membrane grows quadratically
with the number of photons for indistinguishable gases, while it grows linearly for distinguishable gases.
This signature of bosonic bunching may be observed in optomechanical experiments, highlighting the
potential of these systems for the realization of thermodynamic thought experiments in the quantum realm.
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The concept of particle indistinguishability is deeply
entwined in the history of both quantum mechanics and
thermodynamics. The first remarkable example of the
consequences of the difference between distinguishable
and indistinguishable particles is found in Gibbs’ thought
experiment [1] on the extraction of work from the mixing of
gases. Subsequently, the indistinguishability of energy
quanta played a central role in the development of quantum
mechanics through Planck’s reconciliation of Wien’s law
and the Rayleigh-Jeans limit of blackbody radiation. The
indistinguishability of elementary particles, fermions and
bosons, is now recognised as a fundamental principle, with
diverse signatures such as the Pauli blockade [2] or theHong-
Ou-Mandel effect [3], which causes even noninteracting
photons to leave beam splitters in pairs, i.e., to bunch.
The role of the statistics of indistinguishable quantum

particles in thermodynamics has recently gathered renewed
attention. For quantum generalizations of a Szilard engine,
the extractable work is independent of whether the working
substance is bosonic or fermionic [4], but bosonic bunching
can enhance the conversion of information and work [5]
and the performance of thermodynamic cycles [6,7].
Although any two fermions or bosons of the same type

are intrinsically identical, in practice it is often possible to
distinguish such particles via their internal states [8]. In the
case of photons, for example, the distinguishability can
be carried by a degree of freedom such as polarization that
admits coherent superpositions. The distinguishability
between two photons—one vertically polarized and the
other in the state jθi ¼ cos θjVi þ sin θjHi with jVi and
jHi referring to vertical and horizontal polarizations—can
thus be varied continuously, with the photons partially
distinguishable for 0 < θ < π=2.
The possibility of partially distinguishable quantum

gases has provided a natural generalization to Gibbs
mixing [9,10], with many implications for thermodynamics.

For example, it is impossible to perfectly distinguish non-
orthogonal quantum states without breaking the second
law of thermodynamics [11], the accessible information in
Gibbs mixing is limited by the Holevo bound [12], and the
extractablework frommixing, defined as the ergotropy [13],
can decrease with distinguishability [14].
In this Letter, we present a thought experiment that

probes the interplay of distinguishability and particles
statistics in quantum thermodynamics. Drawing inspiration
from ground-breaking thought experiments involving gases
performing work on a membrane attached to a movable
piston [1,15,16], we consider the interaction between
photon gases and a beam-splitter membrane, which gives
the photons access to superpositions of spatial states
located on either side of the membrane. We find that the
photonic bunching results in striking consequences for
how energy is transferred between light and the membrane.
Namely, as a result of the Hong-Ou-Mandel effect, the
energy transfer grows quadratically with the number of
photons for indistinguishable gases, while it grows linearly
for distinguishable gases.
The proposed thought experiment may be realized in

multimode optomechanical systems in which a microscopic

FIG. 1. Illustration of an optomechanics setup to generalize a
variety of classic thermodynamic experiments involving gases
and piston membranes. The classical gases are realized by photon
gases on either side of a movable beam-splitter membrane.
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membrane separates an optical cavity into two parts [17–22],
thus highlighting a new avenue for quantum thermodynamic
experiments. We argue here that such multimode optome-
chanical setups gobeyondprevious proposals in single-mode
systems [23–26], by providing a platform both for studying
quantum signatures of distinguishability and, more broadly,
realizing thermodynamic thought experiments involving the
interaction of gases with membranes.
A setup realizing this variety of quantum mechanical

generalizations of pistonlike experiments is given by an
optomechanical system comprised of a cavity with a
membrane that behaves like a beam splitter and that divides
the cavity symmetrically into a left and a right part, as
sketched in Fig. 1. The photon dynamics resultant from the
membrane can be modeled in terms of the Hamiltonian

HBS ¼
X

p¼H;V

λ

2
ðR†

pLp þ L†
pRpÞ; ð1Þ

where λ is the intercavity coupling strength and the
annihilation (creation) operators of both the horizontally,

Rð†Þ
H and Lð†Þ

H , and vertically, Rð†Þ
V and Lð†Þ

V , polarized
photons in the right and left halves of the cavity are
explicitly modeled in order to study the effect of distin-
guishability [27,28]. The membrane has a motional degree
of freedom (DOF), like a cantilever, and the interaction
between the light field and the motional DOF is given by

HI ¼ −gðNL − NRÞXM; ð2Þ

in terms of the total particle number in the left and right
parts of the cavity (i.e., NL ¼ L†

HLH þ L†
VLV , NR ¼

R†
HRH þ R†

VRV) and the displacement operator XM of
the membrane [29]. This optomechanical coupling will
allow us to discuss the notion of energy (be it work or heat)
transferred to the mechanical DOF in analogy to the
extraction of work in the classical setting.
The full system Hamiltonian H is given by the sum of

HBS and HI [defined in Eqs. (1) and (2)] and the non-
interacting terms for the four photonic modes HC ¼
ωðNL þ NRÞ and single phonon mode HM ¼ ωMM†M.
The eigenfrequencies of both parts of the cavity and of the
mechanical DOF are denoted by ω and ωM, respectively,
and the annihilation (creation) operator Mð†Þ of the
mechanical phonons is related to the displacement operator
via XM ¼ xzpfðM þM†Þ. The prefactor xzpf is the mechani-
cal oscillator’s zero-point uncertainty xzpf ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mωM

p
,

with m the mass of the membrane.
To solve the system dynamics explicitly, despite the

high-dimensional Hilbert space, it is helpful to consider the
equations of motion for the observables of interest in
the Heisenberg picture. The equation of motion for the
displacement XM of the mechanical DOF,

d2XM

dt2
þ 2κM

dXM

dt
þ ω2

MXM ¼ g
m
ðΔNH þ ΔNVÞ; ð3Þ

depends on the photonic mode imbalances ΔNp ¼ L†
pLp −

R†
pRp (for p ¼ H and V) whose dynamics result from the

equations of motion

dLp

dt
¼ −iðωþ gXM − iκÞLp − i

λ

2
Rp; ð4Þ

dRp

dt
¼ −iðω − gXM − iκÞRp − i

λ

2
Lp: ð5Þ

In a thought experiment, the damping rates κ and κM of the
cavity and mechanical modes can be assumed to vanish
such that the number of photons in each gas is conserved
and the piston membrane is frictionless. However, any
experiment would be realized with finite damping.
Solving the coupled differential equations (3)–(5)

exactly is prohibitively difficult, but a perturbative solution
that describes the dynamics of selected observables for any
given initial state can be constructed. Given that the force
exerted by a single photon on the membrane is weak, the
single photon coupling strength gxzpf is small compared to
the intercavity coupling strength λ. It is therefore appro-
priate to solve the dynamics perturbatively in g. With the
membrane cooled to cryogenic temperatures (mean phonon
occupation number n̄th of the order of 10) [30], the higher
order contributions are negligible, as discussed in the
Supplemental Material [31]. Thus, we focus here on the
dynamics to first order; however, similar behavior is
observed to higher orders [31].
The initial state of the left and right parts of the cavity

and the membrane, ρL ⊗ ρR ⊗ σM, is chosen in analogy to
classical thermodynamic thought experiments, and hence
the gases are taken to have the same number distribution
[and therefore the same average photon number hNð0Þi ¼
trL½NLð0ÞρL� ¼ trR½NRð0ÞρR� and variance δNð0Þ]. The
transition between distinguishable and indistinguishable
photon gases can be explored by taking all photons in the
left cavity to be in the polarization state jVi and all photons
in the right in jθi, where θ can be varied continuously
between 0 and π=2. For the membrane, an initial state with
vanishing displacement, trM½XMð0ÞσM� ¼ 0, and vanishing
momentum is inline with the classical thought experiments;
for example, the membrane could be prepared in a ther-
mal state.
The dynamics induced by HBS entangles the mechanical

and optical degrees of freedom, resulting in an energy
transfer from the effective energy of the photons, ðω −
gXMÞNL and ðωþ gXMÞNR, to the membrane. To first
order in the interaction constant g, the quantum mechanical
average of the energy of the membrane is given by
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ΔHMðtÞ ¼ uðtÞδNð0Þ þ vðtÞ½hNð0Þi þ hNð0Þi2cos2ðθÞ�;
ð6Þ

following Eqs. (3)–(5). The scalar prefactors uðtÞ and vðtÞ,
discussed further in Ref. [31], are positive oscillatory
functions (see Fig. 4) that depend on the system parameters
(g;ωM; λ; m; κ, and κM) but not on the initial state of the
gases, which enters through the terms δNð0Þ, hNð0Þi, and
cos2ðθÞ.
For any choice in the number distribution of the photon

gases, the energy transfer to the membrane is larger for
indistinguishable photons than distinguishable photons,
with the difference between these two cases scaling as
hNð0Þi2 cos2ðθÞ. In other words, the energy transfer to the
membrane is quadratically enhanced for indistinguishable
photons. The enhancement is most pronounced for Fock
states where the initial fluctuations in photon number
δNð0Þ vanish or coherent states where the fluctuations
are equal to the average photon number, δNð0Þ ¼ hNð0Þi.
Conversely, for high temperature thermal gases (i.e. gases
with a fixed polarization but a thermally distributed photon
number distribution), the initial fluctuations in photon
number δNð0Þ will be substantial, so there is a substantial
contribution to ΔHM that is independent of θ.
The dependence of the energy transfer ΔHMðtÞ in

Eq. (6) on the distinguishability parameter θ is the opposite
of Gibbs mixing where work extraction is possible for
distinguishable gases but not for indistinguishable gases.
The difference in behavior is perhaps unsurprising as the
present mechanism does not rely on mixing. What seems
striking is the scaling with particle number. Whereas the
extractable work in the Gibbs [1], and indeed the Szilard
[16] and Maxwell’s demon thought experiments [15],
scales linearly with the particle number—i.e., it can be
interpreted as “work per particle”—the present situation
realizes a quadratic scaling, with a potentially strongly
enhanced energy transfer to the membrane.
As we show in the following, this quantum mechanical

enhancement of energy transfer, ΔHM, between light and
the mechanical DOF is a direct consequence of photon
bunching as observed in the Hong-Ou-Mandel (HOM)
effect [3,32]. To this end, it is instructive to inspect the two-
mode second order correlation function [33]

gL;RðtÞ ¼
hNLðtÞNRðtÞi
hNLðtÞihNRðtÞi

: ð7Þ

A vanishing value of gL;R indicates that a measurement
would find all photons in one cavity, whereas large values
of gL;R imply that approximately equal numbers would be
found in both halves of the cavity. A small value of gL;R

thus indicates bunching, whereas a large value indicates
antibunching [31].
The dynamics of gL;R as the light field interacts with the

beam-splitter membrane can readily be obtained to first

order in g. It is depicted in Fig. 2 in the absence of damping
effects (κ ¼ κM ¼ 0) for perfectly distinguishable
(θ ¼ π=2), perfectly indistinguishable (θ ¼ 0), and parti-
ally distinguishable (θ ¼ π=4) gases. In all three subfig-
ures, corresponding to single photon, coherent, and thermal
states of the light field, one can see that, for all times,
distinguishable gases result in the largest values of gL;R and
indistinguishable gases the smallest. Moreover, the time
averaged correlation function [31],

hgL;RðtÞit ¼
1

4
ðγ þ 3 − cos2ðθÞÞ; ð8Þ

where γ ¼ 2 for thermal photons, γ ¼ 1 − ð1=nÞ for an n
photon Fock state, and γ ¼ 1 for coherent state photons,
has the same cos2ðθÞ dependence on distinguishability as
the energy transfer to the membrane, Eq. (6). In other
words, bunching is most pronounced for indistinguishable
gases, as expected.
To understand heuristically how this bunching affects the

membrane dynamics, it is instructive to consider the case of
single photon gases as sketched in Fig. 3. For both
distinguishable and indistinguishable photons, the (quan-
tum) average displacement of the membrane will be zero at
all times. However, the fluctuations in the position of the
membrane, and therefore the energy of the membrane, will
be greater for the case of indistinguishable photons because
the probability for the membrane to be displaced to the
left or right is double that for distinguishable photons.
Moreover, the quadratic scaling of the energy transfer may
be explained by the fact that the HOM effect is a pairwise
interference effect. Since hNð0Þi photons in one gas can
interfere with each of the hNð0Þi photons in the other gas,
the number of pairs of photons that can interfere with one
another scales as hNð0Þi2, and this quadratic scaling carries
over to the energy transfer.
While considering an initial thermal state for the photon

gases realizes a close analogy with classical thermody-
namics, including the process of pumping brings the

FIG. 2. The correlation function gL;R, Eq. (7), as a function of
time for single photon, coherent, and thermal initial states of the
light field in the absence of damping (κ ¼ κM ¼ 0). Perfectly
distinguishable (θ ¼ π=2), partially distinguishable (θ ¼ π=4),
and perfectly indistinguishable (θ ¼ 0) gases are denoted by
solid, dashed, and dotted lines.
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discussion closer to an experimentally realizable situation.
If the cavity is driven on resonance in a pulsed fashion
[34–38], with pulses that are shorter than the tunneling time
λ, the driving processes and tunneling processes occur on
different timescales and can be considered independently.
Accordingly, driving the left modes of the cavity with a
short laser pulse of θ polarized photons and the right modes
with a short pulse of vertically polarized photons will
generate the coherent states jα; θi and jα; Vi in the
respective halves of the cavity [39], leading again to an
enhanced energy transfer to the membrane for indistin-
guishable photons as per Eq. (6) with δN ¼ hNi ¼ jαj2.
In the limit in which the cavity damping is much faster

than the membrane damping, as is the case in experimental
settings such as in Refs. [21,22], the energy of the
membrane, as shown in Fig. 4, tends to an approximately
constant value on the timescale 1=κ ≪ t ≪ 1=κM. In this
limit, the energy transfer to the membrane after being
driven by a single pair of pulses is

ΔHt≫1=κ
M ¼ μjαj2 þ ηðjαj2 þ jαj4cos2ðθÞÞ; ð9Þ

where η ¼ 1.2 × 10−8 Hz and μ ¼ 1.3 × 10−18 Hz for the
experimental parameters listed in Fig. 4. For a pulse con-
taining 6 × 106 indistinguishable photons, the expected
energy transfer to the membrane is of the order of
400 kHZ. This effect could be amplified by driving the
cavity with a train of laser pulses, increasing the viability of
experimentally observing the enhanced energy transfer to the
membrane using currently available measurement proto-
cols [30].
It is natural to ask whether this energy transfer to the

piston membrane, ΔHM, should be interpreted as heat or

work. While the question of how to define work [40–43]
and heat [44,45] in the quantum regime has been discussed
extensively, in essence the distinction reduces to the extent
to which the energy is “useful” energy as opposed to un-
directed fluctuating energy. Since the quantum mechanical
average of the mechanical displacement and momentum
vanishes at all times, the energy transfer ΔHM is entirely
given in terms of the fluctuations resulting from the
entanglement between light fields and mechanical degrees
of freedom [46]. In this vein, one might classify the energy
transfer as heat rather than work.
However, the fact that the quantum mechanical aver-

age over displacement vanishes can be seen as a direct
consequence of the system’s mirror symmetry (i.e.,
exchange of Lp and Rp and simultaneous replacement
of XM with −XM). Given a symmetric initial state, this
symmetry is preserved during the dynamics and neces-
sarily needs to be satisfied in the final state. Nonetheless,
this symmetry could be broken with a measurement
of the photon number in the left or right part of the
cavity. As indicated by the correlations depicted in
Figs. 2 and 3, a suitable measurement will collapse
the symmetric superposition and therefore is likely to
find a pronounced imbalance of photons between the
left and right corresponding to a substantial instantaneous
displacement of the membrane. Indeed, the cross-
correlation function

hΔNðtÞXMðtÞi ¼ νðtÞδN þ ζðtÞ½hNð0Þi þ hNð0Þi2cos2ðθÞ�
ð10Þ

between the photon number difference ΔN ¼ NL − NR
and the displacement of the membrane, with νðtÞ and ζðtÞ
oscillatory prefactors depending only the system param-
eters [31], features the same quadratic enhancement for
indistinguishable photons as found for the energy transfer,

FIG. 4. The average energy of the membrane as a function of
time for coherent states of the light field containing 6 × 106

photons. Perfectly distinguishable, partially distinguishable, and
perfectly indistinguishable gases are denoted by red, purple, and
blue lines. We utilize the following parameters from the exper-
imental settings in Refs. [20,21]: ωM ¼ 350 kHz, ω ¼ 20 THz,
λ ¼ 34 GHz, κ ¼ 85 kHz, κM ¼ 1 Hz, m ¼ 45 ng, and
gxzpf ¼ 3.3 kHz, with similar behavior expected for a range of
parameters.

FIG. 3. The Hong-Ou-Mandel effect in the present optome-
chanical setup. In diagram (a), the photon from the left is reflected
and the photon from the right is transmitted, and vice versa in
diagram (b). In diagram (c), both photons are transmitted, and in
diagram (d), both are reflected. When the photons are perfectly
distinguishable, i.e., j ¼ H and k ¼ V or vice versa, then all four
outcomes (a)–(d) are equally probable. When the photons are
perfectly indistinguishable, i.e., j ¼ H and k ¼ H or j ¼ V and
k ¼ V, then the amplitudes for outcomes (c) and (d) destructively
interfere and the outcomes (a) and (b) are equally probable.
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Eq. (6). This suggests that a reasonably simple Szilard-type
extraction protocol [5], using auxiliary measurements
on the light field, would allow one to find a predictable
displacement of the membrane that increases with the
indistinguishability of the photons in the cavity. The
potential energy associated with this displacement is well
defined and thus could plausibly be interpreted as a work
output.
The bunching enhanced energy transfer to the piston

membrane for indistinguishable photons draws a link
between iconic thermodynamic experiments conceived
by Gibbs, Maxwell, and Szilard, and a paradigmatic
example of the impact of indistinguishability in quantum
optics, the HOM effect. The optomechanical analysis
further gives a flavor of the rich physics that can be
explored by explicitly introducing polarization into opto-
mechanical setups while introducing a new platform for
quantum thermodynamic experiments. For example, a
crucial difference between the present optomechanical
setting and classical thermodynamical experiment is the
inability of the photons to thermalize via mutual inter-
actions. Interactions with dye molecules, on the other hand,
are routinely used to mediate effective interactions between
photons resulting in thermalization [47,48]. One may thus
envision extensions of the presently discussed setup with
thermalization rates as additional parameters, permitting a
broad range of future directions. Other open questions
include the variation of the initial state, optomechanical
coupling regime, and coupling of the photons to the heat
bath. Similarly to the present analysis, such settings can be
discussed as a thought experiment or even realized in
practice with optomechanical systems.
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