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Summary 

De novo mutations (DNMs) in protein-coding genes are a well-established cause of 

developmental disorders (DD)1. However, known DD-associated genes only account for a 

minority of the observed excess of such DNMs1,2. To identify novel DD-associated genes, we 

integrated healthcare and research exome sequences on 31,058 DD parent-offspring trios, and 

developed a simulation-based statistical test to identify gene-specific enrichments of DNMs. We 

identified 285 significantly DD-associated genes, including 28 not previously robustly associated 

with DDs. Despite detecting more DD-associated genes, much of the excess of DNMs of 

protein-coding genes remains unaccounted for. Modelling suggests that over 1,000 novel DD-

associated genes await discovery, many of which are likely to be less penetrant than the 

currently known genes. Research access to clinical diagnostic datasets will be critical for 

completing the map of dominant DDs. 

  

https://paperpile.com/c/E4wcSO/Jud3
https://paperpile.com/c/E4wcSO/Jud3+HvOU
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Introduction 

It has previously been estimated that ~42-48% of patients with a severe developmental 

disorder (DD) have a pathogenic de novo mutation (DNM) in a protein coding gene1,2. However, 

most of these patients remain undiagnosed despite the identification of hundreds of DD-

associated genes. This implies that there are more DD relevant genes to find. Existing methods 

to detect gene-specific enrichments of damaging DNMs ignore much prior information about 

which variants are more likely to be disease-associated; missense variants and protein-

truncating variants (PTVs) vary in their impact on protein function3–6. Known dominant DD-

associated genes are strongly enriched in the minority of genes that exhibit strong selective 

constraint on heterozygous PTVs 7. To identify additional DD-associated genes, we need to 

increase our power to detect gene-specific enrichments for damaging DNMs by both increasing 

sample sizes and improving our statistical methods. In previous studies of pathogenic Copy 

Number Variation , utilising healthcare data has been key to achieve larger sample sizes than 

would be possible in a research setting alone8,9. 

 

Identification of 285 DD-associated genes 

Following clear consent practices and only using aggregate, de-identified data, we 

pooled DNMs in DD patients from three centres: GeneDx (a US-based diagnostic testing 

company), the Deciphering Developmental Disorders study, and Radboud University Medical 

Center. We performed stringent quality control on variants and samples to obtain 45,221 coding 

and splicing DNMs in 31,058 individuals (Supplementary Fig. 1; Supplementary Table 1), 

including data on 24,348 trios not previously published. These DNMs included 40,992 single 

nucleotide variants (SNVs) and 4,229 indels. The three cohorts have similar clinical 

characteristics, male/female ratios, enrichments of DNMs by mutational class, and prevalences 

of known disorders (Supplementary Fig. 2).  

To detect gene-specific enrichments of damaging DNMs, we developed a method 

named DeNovoWEST (De Novo Weighted Enrichment Simulation Test, 

https://github.com/queenjobo/DeNovoWEST). DeNovoWEST scores all classes of sequence 

variants on a unified severity scale based on empirically-estimated positive predictive values of 

being pathogenic (Supplementary Fig. 3-4). We perform two tests per gene: an enrichment 

test on all nonsynonymous DNMs and a test designed to detect genes likely acting via an 

altered-function mechanism, which combines a missense enrichment test with a missense 

clustering test. We then applied a Bonferroni multiple testing correction accounting for the 

number of genes (n=18,762) and two tests per gene. 

We first applied DeNovoWEST to all individuals in our cohort and identified 281 

significantly enriched genes, 18 more than when using our previous method1 (Supplementary 

Fig. 5; Fig. 1a). The majority (196/281; 70%) of these significant genes already had sufficient 

https://paperpile.com/c/E4wcSO/Jud3+HvOU
https://paperpile.com/c/E4wcSO/fq2nz+DrQRw+uoj7v+k6pa
https://paperpile.com/c/E4wcSO/P9T74
https://paperpile.com/c/E4wcSO/YUtt9+D177v
https://github.com/queenjobo/DeNovoWEST
https://paperpile.com/c/E4wcSO/Jud3
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evidence of DD-association to be considered of diagnostic utility (as of late 2019) by all three 

centres, and we refer to them as “consensus” genes. 54/281 of these significant genes were 

previously considered diagnostic by one or two centres (“discordant” genes). Applying 

DeNovoWEST to synonymous DNMs, as a negative control analysis, identified no significantly 

enriched genes (Supplementary Fig. 6). 

To discover novel DD-associated genes with greater power, we applied DeNovoWEST 

to DNMs in patients without damaging DNMs in consensus genes (we refer to this subset as 

‘undiagnosed’ patients) and identified 94 significant genes (Supplementary Fig. 7; 

Supplementary Table 2), of which 33 were putative ‘novel’ DD-associated genes. To ensure 

robustness to potential mutation rate variation between genes, we determined whether any of 

the putative novel DD-associated genes had significantly more synonymous variants in the 

Genome Aggregation Database6 (gnomAD) of population variation than expected under our null 

mutation model (Supplementary Note). We identified 11/33 genes with a significant excess of 

synonymous variants. For these 11 genes we repeated the DeNovoWEST test, increasing the 

null mutation rate by the ratio of observed to expected synonymous variants in gnomAD. Five of 

these genes fell below our exome-wide significance threshold and were removed, leaving 28 

novel genes, with a median of 10 nonsynonymous DNMs (Fig. 1b-c; Supplementary Table 3). 

There were 314 patients with nonsynonymous DNMs in these 28 genes (1.0% of our cohort); all 

these DNMs were inspected in IGV10 and, of 198 for which experimental validation was 

attempted, all were confirmed as DNMs. The DNMs in these novel genes were distributed 

randomly across the three datasets (no genes with p < 0.001, heterogeneity test). Six of the 28 

novel DD-associated genes are corroborated by OMIM entries or publications, including 

TFE311,12 which was described in two recent publications. 

We also investigated whether some synonymous DNMs might be pathogenic by 

disrupting splicing. We identified a small but significant enrichment of synonymous DNMs with 

high values of the splicing pathogenicity score SpliceAI13 (≥ 0.8, 1.56-fold enriched, p = 

0.0037, Poisson test; Supplementary Table 4). This enrichment corresponds to an excess of 

~15 splice-disrupting synonymous DNMs in our cohort, of which six are accounted for by a 

recurrent synonymous DNM in KAT6B known to disrupt splicing14. 

Taken together, 25.0% of our cohort has a nonsynonymous DNM in one of the 

consensus or significant DD-associated genes (Fig. 1d). We noted significant sex differences in 

the autosomal burden of nonsynonymous DNMs (Supplementary Fig. 8). The rate of 

nonsynonymous DNMs in consensus autosomal genes was significantly higher in females than 

males (OR = 1.16, p = 4.4 x 10-7, Fisher’s exact test; Fig. 1e), as noted previously1. However, 

the exome-wide burden of autosomal nonsynonymous DNMs in all genes was not significantly 

different between undiagnosed males and females (OR = 1.03, p = 0.29, Fisher’s exact test). 

https://paperpile.com/c/E4wcSO/k6pa
https://paperpile.com/c/E4wcSO/lbk0B
https://paperpile.com/c/E4wcSO/E13P5+WGkwt
https://paperpile.com/c/E4wcSO/fZzgh
https://paperpile.com/c/E4wcSO/38chW
https://paperpile.com/c/E4wcSO/Jud3
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This suggests the existence of subtle sex differences in the genetic architecture of DD, 

especially with regard to known and undiscovered disorders. This could include sex-biased 

contribution of polygenic, oligogenic and/or environmental modifiers of phenotypic variation and 

thus clinical ascertainment. 

 

Characteristics novel DD-associated genes 

Based on semantic similarity15 between Human Phenotype Ontology terms, patients with 

DNMs in the same novel DD-associated gene were less phenotypically similar to each other, on 

average, than patients with DNMs in a consensus gene (p = 2.3 x 10-11, Wilcoxon rank-sum test; 

Fig. 2a; Supplementary Figure 9). This suggests that these novel disorders less often result in 

distinctive and consistent clinical presentations, which may have made these disorders harder 

to discover via a phenotype-driven approach. Each of these novel disorders requires genotype-

phenotype characterisation, which is beyond the scope of this study. 

Overall, novel DD-associated genes encode proteins that have very similar functional 

and evolutionary properties to consensus genes (Fig. 2b; Supplementary Table 5). Despite 

the high-level functional similarity between known and novel DD-associated genes, 

nonsynonymous DNMs in the more recently discovered DD-associated genes are much more 

likely to be missense DNMs, and less likely to be PTVs (discordant and novel; p = 1.2 x 10-25, 

chi-squared test). Fifteen (54%) of the 28 novel genes only had missense DNMs. Consequently, 

we expect that a greater proportion of the novel genes will act via altered-function mechanisms 

(e.g. dominant negative or gain-of-function). For example, the novel gene PSMC5 

(DeNovoWEST p = 2.6 x 10-15) had one inframe deletion and nine missense DNMs, eight of 

which altered two structurally important amino acids in the AAA+ ATPase domain, and so is 

likely to operate via an altered-function mechanism (Supplementary Fig. 10a-b). None of the 

novel genes exhibited significant clustering of de novo PTVs.  

We observed that missense DNMs were more likely to affect functional protein domains 

than other coding regions. We observed a 2.63-fold enrichment (p = 2.2 x 10-68, G-test) of 

missense DNMs residing in protein domains among consensus genes and a 1.80-fold 

enrichment (p = 8.0 x 10-5, G-test) in novel DD-associated genes, but no enrichment for 

synonymous DNMs (Supplementary Table 6). Four protein domain families in consensus 

genes were enriched for missense DNMs (Supplementary Table 7): ion transport protein 

(PF00520, p = 6.9 x 10-4, G-test Bonferroni corrected), ligand-gated ion channel (PF00060, p = 

4.0 x 10-6), protein kinase domain (PF00069, p = 0.043), and kinesin motor domain (PF00225, p 

= 0.027). Missense DNMs in all four enriched domain families have previously been associated 

with DD (Supplementary Table 8)16–18.  

We observed a significant overlap between the 285 DNM-enriched DD-associated genes 

and a set of 369 previously described cancer driver genes19 (overlap of 70 genes; p = 1.7 x 10-

https://paperpile.com/c/E4wcSO/CiEIB
https://paperpile.com/c/E4wcSO/6pLAH+AlLq8+a8Oxk
https://paperpile.com/c/E4wcSO/VUIMP
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49, logistic regression correcting for shet), as observed previously20,21, as well as a significant 

enrichment of nonsynonymous DNMs in both overlapping and non-overlapping cancer genes 

(Supplementary Table 9). We observe 117 DNMs at 76 recurrent somatic mutations observed 

in at least three patients in The Cancer Genome Atlas (TCGA)22. By modelling the germline 

mutation rate at these somatic driver mutations, we found that recurrent nonsynonymous 

mutations in TCGA are enriched 21-fold in our cohort (p < 10-50, Poisson test, Supplementary 

Fig. 11), whereas recurrent synonymous mutations in TCGA are not significantly enriched (2.4-

fold, p = 0.13, Poisson test). This suggests that this observation is driven by the pleiotropic 

effects of these mutations in development and tumourigenesis, rather than hypermutability. 

 

Recurrent mutations 

We identified 773 recurrent DNMs (736 SNVs and 37 indels), observed in 2-36 

individuals, which allowed us to interrogate systematically the factors driving recurrent germline 

mutation. We considered three potential contributory factors: (i) clinical ascertainment enriching 

for pathogenic mutations, (ii) greater mutability at specific sites, and (iii) positive selection 

conferring a proliferative advantage in the male germline 23. We observed evidence that all three 

factors contribute, but not mutually exclusively. Clinical ascertainment drives the observation 

that 65% of recurrent DNMs were in consensus genes, a 5.4-fold enrichment compared to 

DNMs only observed once (p < 10-50, proportion test). Hypermutability underpins the 

observation that 64% of recurrent de novo SNVs occurred at hypermutable CpG dinucleotides24, 

a 2.0-fold enrichment over DNMs only observed once (p = 3.3 x 10-68, chi-square test). 

To assess the contribution of germline selection to recurrent DNMs, we initially focused 

on the 12 known germline selection genes, which all operate through activation of the RAS-

MAPK signalling pathway25,26. We identified 39 recurrent DNMs in 11 of these genes, 38 of 

which are missense and all of which are known to be activating in the germline (see 

Supplement). As expected, given that hypermutability is not the driving factor for recurrent 

mutation in these genes, these 39 recurrent DNMs were depleted for CpGs relative to other 

recurrent mutations (6/39 vs 425/692, p = 3.4 x 10-8, chi-squared test).  

Positive germline selection can increase the apparent mutation rate more strongly23 than 

either clinical ascertainment (10-100X in our dataset) or hypermutability (~10X for CpGs). 

However, only a minority of the most highly recurrent mutations in our dataset are in genes that 

have been previously associated with germline selection. Nonetheless, several lines of evidence 

suggested that the majority of these most highly recurrent mutations are likely to confer a 

germline selective advantage. Based on the observations above, DNMs under germline 

selection should be more likely to be activating missense mutations, and should be less 

enriched for CpG dinucleotides. Extended Data Table 1 shows the 16 de novo SNVs observed 

nine or more times in our cohort, only two of which are in known germline selection genes. All 

https://paperpile.com/c/E4wcSO/Ihetc+KRknA
https://paperpile.com/c/E4wcSO/3xTqq
https://paperpile.com/c/E4wcSO/cTIHK
https://paperpile.com/c/E4wcSO/lDTDo
https://paperpile.com/c/E4wcSO/Rcjyo+FfeGV
https://paperpile.com/c/E4wcSO/cTIHK
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but two of these 16 de novo SNVs cause missense changes, all but two of these genes cause 

disease by an altered-function mechanism, and these DNMs were depleted for CpGs relative to 

all recurrent mutations. Two of these genes with highly recurrent de novo SNVs, SHOC2 and 

PPP1CB, encode interacting proteins that regulate the RAS-MAPK pathway, and pathogenic 

variants in these genes are associated with a Noonan-like syndrome27. Moreover, two of these 

recurrent DNMs are in the same gene SMAD4, which encodes a key component of the TGF-

beta signalling pathway, potentially expanding the pathophysiology of germline selection beyond 

the RAS-MAPK pathway. Confirming germline selection of these mutations will require deep 

sequencing of testes and/or sperm26. 

 

Incomplete penetrance and pre/perinatal death 

Nonsynonymous DNMs in consensus or significant DD-associated genes accounted for 

half of the exome-wide nonsynonymous DNM burden associated with DD (Fig. 1b). Despite our 

identification of 285 significantly DD-associated genes, there remains a substantial burden of 

both missense and protein-truncating DNMs in unassociated genes (those that are neither 

significant in our analysis nor on the consensus gene list). This residual burden of protein-

truncating DNMs is greatest in genes that are intolerant of PTVs in the general population 

(Supplementary Fig. 12) suggesting that more haploinsufficient (HI) disorders await discovery. 

We observed that PTV mutability (estimated from a null germline mutation model) was 

significantly lower in unassociated genes compared to DD-associated genes (p = 4.5 x 10-68, 

Wilcox rank-sum test Fig. 3a), which leads to reduced statistical power to detect DNM 

enrichment in unassociated genes, consistent with our hypothesis that many more HI disorders 

await discovery.  

A key parameter in estimating statistical power to detect novel HI disorders is the fold-

enrichment of de novo PTVs expected in undiscovered HI disorders. We observed that novel 

DD-associated HI genes had significantly lower PTV enrichment compared to the consensus HI 

genes (p = 0.005, Wilcox rank-sum test; Fig. 3b). Two additional factors that could lower DNM 

enrichment, and thus power to detect a novel DD-association, are reduced penetrance and 

increased pre/perinatal death (due to spontaneous fetal loss, termination of pregnancy for fetal 

anomaly, stillbirth, or early neonatal death). To evaluate incomplete penetrance, we investigated 

whether HI genes with a lower enrichment of de novo PTVs in our cohort are associated with 

greater prevalences of PTVs in the general population. We observed a significant negative 

correlation (p = 0.031, weighted linear regression) between PTV enrichment in our cohort and 

the ratio of PTV to synonymous variants in gnomAD6, suggesting that incomplete penetrance 

does lower de novo PTV enrichment in our cohort (Fig. 3c). 

Additionally, we observed that the fold-enrichment of de novo PTVs in consensus HI DD-

associated genes in our cohort was significantly higher for genes with a low likelihood of 

https://paperpile.com/c/E4wcSO/0f9C7
https://paperpile.com/c/E4wcSO/FfeGV
https://paperpile.com/c/E4wcSO/k6pa
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presenting with a prenatal structural malformation (p = 4.6 x 10-5, Poisson test, Fig. 3d), 

suggesting that pre/perinatal death decreases our power to detect some novel disorders (see 

supplement for details). 

 

Hundreds of DD genes not yet discovered 

 Downsampling of our cohort and repeating enrichment analyses showed that the 

discovery of DD-associated genes has not plateaued (Extended Data Fig 1a). Increasing 

sample sizes should result in the discovery of many novel DD-associated genes. To estimate 

how many haploinsufficient genes might await discovery, we modelled the likelihood of the 

observed distribution of de novo PTVs among genes as a function of varying numbers of 

undiscovered HI DD-associated genes and fold-enrichments of de novo PTVs in those genes. 

We found that the remaining PTV burden is most likely spread across ~1,000 genes with ~10-

fold PTV enrichment (Extended Data Fig 1b). This fold enrichment is three times lower than in 

known HI DD-associated genes, suggesting that incomplete penetrance and/or pre/perinatal 

death is more prevalent among undiscovered HI genes. We modelled the missense DNM 

burden separately and also observed that the most likely architecture of undiscovered DD-

associated genes is one that comprises over 1,000 genes with a substantially lower fold-

enrichment than in currently known DD-associated genes (Supplementary Fig. 13).  

We calculated that a sample size of ~350,000 parent-offspring trios would be needed to 

have 80% power to detect a 10-fold enrichment of de novo PTVs for an average gene. Using 

this inferred 10-fold enrichment among undiscovered HI genes, from our current data we can 

evaluate the likelihood that any gene i is an undiscovered HI gene, by comparing the likelihood 

of the number of de novo PTVs observed in each gene to have arisen from the null mutation 

rate or from a 10-fold increased PTV rate. Among the ~19,000 non-DD-associated genes, 

~1,200 were more than three times more likely to have arisen from a 10-fold increased PTV 

rate, whereas ~7,000 were three times more likely to have no de novo PTV enrichment.  

 

Discussion 

In this study, we have presented evidence for 28 novel developmental disorders by 

developing an improved statistical test for mutation enrichment and applying it to a dataset of 

exome sequences from 31,058 parent-offspring trios. Most of the increased power to detect 

novel disorders comes from the increase in sample size, rather than the improved statistical 

test. These 28 novel genes account for 1.0% of our cohort, and their inclusion in diagnostic 

workflows will catalyse increased diagnosis of similar patients globally. The value of this study 

for improving diagnostic yield extends beyond these 28 novel genes;  the total number of genes 

added to diagnostic workflows of the three participating centres (including newly validated 

discordant genes) ranged from 48-65 genes. We have shown that both incomplete penetrance 



9 
 

and pre/perinatal death reduce our power to detect novel DDs postnatally, and hypothesise that 

one or both of these factors are operating more strongly among undiscovered DD-associated 

genes. In addition, we have identified a set of highly recurrent mutations that are strong 

candidates for novel germline selection mutations, which should result in a higher than expected 

disease incidence that increases dramatically with increased paternal age. 

Our study is approximately three times larger than a recent meta-analysis of DNMs from 

a collection of individuals with autism spectrum disorder, intellectual disability, and/or a 

developmental disorder28. We identified ~2.3 times as many significantly DD-associated genes 

as this previous study when using Bonferroni-corrected exome-wide significance (285 vs 124). 

In contrast to meta-analyses of published DNMs, the harmonised filtering of candidate DNMs 

across cohorts in this study should be more robust to cohort-specific differences in the 

sensitivity and specificity of detecting DNMs. 

We inferred indirectly that developmental disorders with higher rates of detectable 

prenatal structural abnormalities had greater pre/perinatal death. The potential size of this effect 

can be quantified from the recently published PAGE study of genetic diagnoses in a cohort of 

fetal structural abnormalities29. In this latter study, genetic diagnoses were not returned to 

participants during the pregnancy, and so genetic diagnostic information could not influence 

pre/perinatal death. In the PAGE study data, 69% of fetal abnormalities with a genetically 

diagnosable cause died perinatally or neonatally. This emphasises the substantial impact that 

pre/perinatal death can have on reducing the ability to discover novel DDs from postnatal 

recruitment alone, and motivates the integration of genetic data from prenatal, neonatal and 

postnatal studies in future studies. 

To empower our mutation enrichment testing, we estimated positive predictive values 

(PPV) of each DNM being pathogenic on the basis of their predicted protein consequence, 

CADD score3, selective constraint against heterozygous PTVs across the gene (shet)30, and, for 

missense variants, presence in a region under selective missense constraint4. These PPVs 

should also be informative for variant prioritisation in the diagnosis of dominant developmental 

disorders. Further work is needed to see whether these PPVs might be informative for recessive 

developmental disorders, and in other types of dominant disorders. More generally, we 

hypothesise that empirically-estimated PPVs based on variant enrichment in large datasets will 

be similarly informative in many other disease areas. 

We adopted a conservative statistical approach to identifying DD-associated genes. In 

two previous studies using the same significance threshold, we identified 26 novel DD-

associated genes1,31. All 26 are now regarded as being diagnostic, and have entered routine 

clinical diagnostic practice. Had we used a significance threshold of FDR < 10% as used in 

Satterstrom, Kosmicki, Wang et al32, we would have identified 770 DD-associated genes. The 

FDR of individual genes depends on the significance of other genes being tested, so are not 

https://paperpile.com/c/E4wcSO/AIQjF
https://paperpile.com/c/E4wcSO/x92Xr
https://paperpile.com/c/E4wcSO/fq2nz
https://paperpile.com/c/E4wcSO/ON6n2
https://paperpile.com/c/E4wcSO/DrQRw
https://paperpile.com/c/E4wcSO/Jud3+TEr59
https://paperpile.com/c/E4wcSO/T835F
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appropriate for assessing the significance of individual genes, but rather for defining gene-sets. 

There are 184 consensus genes that did not cross our significance threshold in this study. It is 

likely that many of these cause disorders that were under-represented in our study due to the 

ease of clinical diagnosis on the basis of distinctive clinical features or targeted diagnostic 

testing. These ascertainment biases will not impact the representation of novel DDs in our 

cohort. 

Our modelling suggested that likely over 1,000 DD-associated genes remain to be 

discovered, and that reduced penetrance and pre/perinatal death will reduce our power to 

identify these genes through DNM enrichment. Identifying these genes will require both 

improved analytical methods and greater sample sizes. As sample sizes increase, accurate 

modelling of gene-specific mutation rates becomes more important. In our analyses of 31,058 

trios, we observed evidence that mutation rate heterogeneity among genes can lead to over-

estimating the statistical significance of mutation enrichment based on an exome-wide mutation 

model. We advocate the development of more granular mutation rate models, based on large-

scale population variation resources, that correct for all technical and biological complexities, to 

ensure that larger studies are robust to mutation rate heterogeneity.  

We anticipate that the variant-level weights used by DeNovoWEST will improve over 

time. As reference population samples, such as gnomAD6, increase in size, weights based on 

selective constraint metrics (e.g. shet, regional missense constraint) will improve. Weights could 

also incorporate more functional information, such as expression in disease-relevant tissues. 

For example, we observe that DD-associated genes are significantly more likely to be 

expressed in fetal brain (Supplementary Fig. 14). Furthermore, novel metrics based on gene 

co-regulation networks can predict whether genes function within a disease-relevant pathway33. 

As a cautionary note, including more functional information may increase power to detect some 

novel disorders while decreasing power for disorders with pathophysiology different from known 

disorders. Our analyses also suggest that variant-level weights could be further improved by 

incorporating other variant prioritisation metrics, such as upweighting variants predicted to 

impact splicing, variants in particular protein domains, or variants that are somatic driver 

mutations during tumorigenesis. In developing DeNovoWEST, we explored applying both 

variant-level weights and gene-level weights in separate stages of the analysis, however, subtle 

but pervasive correlations between gene-level metrics (e.g. shet) and variant-level metrics (e.g. 

regional missense constraint, CADD) presents statistical challenges to implementation. Finally, 

the discovery of less penetrant disorders can be empowered by analytical methodologies that 

integrate both DNMs and rare inherited variants, such as TADA34. Nonetheless, using current 

methods focused on DNMs alone, we estimated that ~350,000 parent-child trios would need to 

be analysed to have ~80% power to detect HI genes with a 10-fold PTV enrichment. 

Discovering non-HI disorders will need even larger sample sizes. Reaching this number of 

https://paperpile.com/c/E4wcSO/k6pa
https://paperpile.com/c/E4wcSO/APjBH
https://paperpile.com/c/E4wcSO/S5f9c
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sequenced families will be impossible for an individual research study or clinical centre, 

therefore it is essential that genetic data generated as part of routine diagnostic practice is 

shared with the research community such that it can be aggregated to drive discovery of novel 

disorders and improve diagnostic practice.  
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Access to the de-identified aggregate data used in this analysis is available upon request to 

GeneDx. GeneDx has contributed deidentified data to this study to improve clinical 

interpretation of genomic data, in accordance with patient consent and in conformance with the 

ACMG position statement on genomic data sharing (see Supplementary Note for details). 

Clinically interpreted variants and associated phenotypes from the DDD study are available 

through DECIPHER (https://decipher.sanger.ac.uk) 

http://www.ddduk.org/access.html
mailto:christian.gilissen@radboudumc.nl
https://decipher.sanger.ac.uk/
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Clinically interpreted variants from RUMC are available from the Dutch national initiative for 

sharing variant classifications (https://www.vkgl.nl/nl/diagnostiek/vkgl-datashare-database) as 

well as LOVD (https://databases.lovd.nl/shared/variants), where they are listed with "VKGL-

NL_Nijmegen" as the owner 

Clinically interpreted variants from GeneDx are deposited in ClinVar 

(https://www.ncbi.nlm.nih.gov/clinvar). GeneDx's submitter ID is 26957 

(https://www.ncbi.nlm.nih.gov/clinvar/submitters/26957/) 

Genome Aggregation Database (gnomAD v2.1.1; https://gnomad.broadinstitute.org/) 

The Cancer Genome Atlas (TCGA; https://portal.gdc.cancer.gov) 

Developmental Disorders Genotype-Phenotype Database (DDG2P; 

https://www.ebi.ac.uk/gene2phenotype/downloads) 

 

Code Availability 

The DeNovoWEST method is available on GitHub 

(https://github.com/queenjobo/DeNovoWEST) along with code to recreate all figures in the 

manuscript. DOI: 0.5281/zenodo.3909398. Code to run the Phenopy method is also available 

on GitHub (https://github.com/GeneDx/phenopy).  
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Figure 1: Results of DeNovoWEST analysis. (a) Comparison of p-values using the new 

method (DeNovoWEST) versus the previous method (mupit)1, run on the full cohort. Dashed 

lines indicate the threshold for genome-wide significance (one sided, Bonferroni correction). 

Point size is proportional to the number of nonsynonymous DNMs in our cohort (nsyn). The 

number of genes that fall into each quadrant are annotated. (b) The number of missense and 

PTV DNMs in the novel genes. Point size is proportional to the log10(-p-value) from analysis of 

the undiagnosed subset. Point colour corresponds to which test p-value was more significant: 

non-synonymous enrichment test in blue (pEnrich), missense enrichment and clustering test in 

red (pMEC). (c) The distribution of significant p-values from analysis of the undiagnosed subset 

for discordant and novel genes; p-values for consensus genes come from the full cohort 

analysis. The number of genes in each p-value bin is coloured by diagnostic gene group (n = 

285 significant genes; one-sided p-values, Bonferroni corrected). Green represents the 

remaining fraction of cases expected to have a pathogenic de novo coding mutation and grey is 

the fraction of cases that are likely to be explained by other factors. (d) The fraction of cases (n 

= 31,058) with a nonsynonymous mutation in each diagnostic gene group. (e) The fraction of 

cases with a nonsynonymous mutation in each diagnostic gene group split by sex (n = 13,636 

female and 17,422 male). In all panels, black, blue and orange represents consensus, 

discordant and novel genes respectively.  

 

Figure 2: Properties of novel genes. (a) The phenotypic similarity of patients with DNMs in 

novel and consensus genes. Random phenotypic similarity was calculated from random pairs of 

patients. Cases with DNMs in the same novel gene were less phenotypically similar than cases 

with DNMs in the same consensus gene (p = 2.3 x 10-11, two-sided Wilcoxon rank-sum test). (b) 

Comparison of properties of consensus (n = 380) and novel (n = 28) DD genes known to be 

differential between consensus and non-DD genes (95% bootstrapped confidence intervals 

shown). 

 

Figure 3: Factors influencing power. (a) PTV mutability is significantly lower (p = 4.6 x 10-68, 

two-sided Wilcox rank sum test) in genes that are not significantly DD-associated (blue) than in 

DD-associated genes (red). Median depicted with a black horizontal line. (b) Distribution of PTV 

enrichment in significant, likely haploinsufficient, genes by category (118 consensus, 23 

discordant, 8 novel genes). Lower and upper hinges correspond to first and third quantiles. 

Median depicted by a horizontal grey line. The upper and lower whiskers extend 1.5 times the 

inter-quartile range. (c) Comparison of PTV enrichment in our cohort vs the PTV to synonymous 

ratio in gnomAD, for genes that are significantly PTV-enriched in our cohort (without variant 

weighting; n = 156 genes). PTV enrichment bins labelled with log10(enrichment). Dashed line 

indicates regression. Confidence intervals are 95% of the rate ratio. (d) Overall PTV enrichment 

https://paperpile.com/c/E4wcSO/Jud3
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across genes grouped by likelihood of presenting with a structural malformation on prenatal 

ultrasound (145 low, 65 medium, 6 low genes). PTV enrichment is significantly higher for genes 

with a low likelihood compared to other genes (p = 4.6 x 10-5, two-sided Poisson test). Poisson 

95% confidence intervals shown.  

 

Extended Data Table 1: Recurrent Mutations. De novo single nucleotide variants with more 

than 9 recurrences in our cohort annotated with relevant information, such as CpG status, 

whether the impacted gene is a known somatic driver or germline selection gene, and 

diagnostic gene group (e.g. consensus). “Recur” refers to the number of recurrences. “Likely 

mechanism” refers to mechanisms attributed to this gene in the published literature. 

 

Extended Data Figure 1: Exploring the remaining number of DD genes. (a) Number of 

significant genes from downsampling full cohort and running DeNovoWEST’s enrichment test. 

(b) Results from modelling the likelihood of the observed distribution of de novo PTV mutations. 

This model varies the numbers of remaining haploinsufficient (HI) DD genes and PTV 

enrichment in those remaining genes. The 50% credible interval is shown in red and the 90% 

credible interval is shown in orange. Note that the median PTV enrichment in genes that are 

significant and known to operate via a loss-of-function mechanism (shown with an arrow) is 

39.7. 

 

DDD Study consortium authors 

Silvia Borras14, Caroline Clark14, John Dean14, Zosia Miedzybrodzka14, Alison Ross14, Stephen 

Tennant14, Tabib Dabir15, Deirdre Donnelly15, Mervyn Humphreys15, Alex Magee15, Vivienne 

McConnell15, Shane McKee15, Susan McNerlan15, Patrick J. Morrison15, Gillian Rea15, Fiona 

Stewart15, Trevor Cole16, Nicola Cooper16, Lisa Cooper-Charles16, Helen Cox16, Lily Islam16, 

Joanna Jarvis16, Rebecca Keelagher16, Derek Lim16, Dominic McMullan16, Jenny Morton16, Swati 

Naik16, Mary O'Driscoll16, Kai-Ren Ong16, Deborah Osio16, Nicola Ragge16, Sarah Turton16, Julie 

Vogt16, Denise Williams16, Simon Bodek17, Alan Donaldson17, Alison Hills17, Karen Low17, Ruth 

Newbury-Ecob17, Andrew M. Norman17, Eileen Roberts17, Ingrid Scurr17, Sarah Smithson17, 

Madeleine Tooley17, Steve Abbs12, Ruth Armstrong12, Carolyn Dunn12, Simon Holden12, Soo-Mi 

Park12, Joan Paterson12, Lucy Raymond12, Evan Reid12, Richard Sandford12, Ingrid Simonic12, 

Marc Tischkowitz12, Geoff Woods12, Lisa Bradley18, Joanne Comerford18, Andrew Green18, Sally 

Lynch18, Shirley McQuaid18, Brendan Mullaney18, Jonathan Berg19, David Goudie19, Eleni 

Mavrak19, Joanne McLean19, Catherine McWilliam19, Eleanor Reavey19, Tara Azam13, Elaine 

Cleary13, Andrew Jackson13, Wayne Lam13, Anne Lampe13, David Moore13, Mary Porteous13, 

Emma Baple20, Júlia Baptista20, Carole Brewer20, Bruce Castle20, Emma Kivuva20, Martina 

Owens20, Julia Rankin20, Charles Shaw-Smith20, Claire Turner20, Peter Turnpenny20, Carolyn 



18 
 

Tysoe20, Therese Bradley21, Rosemarie Davidson21, Carol Gardiner21, Shelagh Joss21, Esther 

Kinning21, Cheryl Longman21, Ruth McGowan21, Victoria Murday21, Daniela Pilz21, Edward 

Tobias21, Margo Whiteford21, Nicola Williams21, Angela Barnicoat22, Emma Clement22, 

Francesca Faravelli22, Jane Hurst22, Lucy Jenkins22, Wendy Jones22, V. K. Ajith Kumar22, 

Melissa Lees22, Sam Loughlin22, Alison Male22, Deborah Morrogh22, Elisabeth Rosser22, Richard 

Scott22, Louise Wilson22, Ana Beleza23, Charu Deshpande23, Frances Flinter23, Muriel Holder23, 

Melita Irving23, Louise Izatt23, Dragana Josifova23, Shehla Mohammed23, Aneta Molenda23, 

Leema Robert23, Wendy Roworth23, Deborah Ruddy23, Mina Ryten23, Shu Yau23, Christopher 

Bennett24, Moira Blyth24, Jennifer Campbell24, Andrea Coates24, Angus Dobbie24, Sarah Hewitt24, 

Emma Hobson24, Eilidh Jackson24, Rosalyn Jewell24, Alison Kraus24, Katrina Prescott24, Eamonn 

Sheridan24, Jenny Thomson24, Kirsty Bradshaw25, Abhijit Dixit25, Jacqueline Eason25, Rebecca 

Haines25, Rachel Harrison25, Stacey Mutch25, Ajoy Sarkar25, Claire Searle25, Nora Shannon25, 

Abid Sharif25, Mohnish Suri25, Pradeep Vasudevan26, Natalie Canham27, Ian Ellis27, Lynn 

Greenhalgh27, Emma Howard27, Victoria Stinton27, Andrew Swale27, Astrid Weber27, Siddharth 

Banka28, Catherine Breen28, Tracy Briggs28, Emma Burkitt-Wright28, Kate Chandler28, Jill 

Clayton-Smith28, Dian Donnai28, Sofia Douzgou28, Lorraine Gaunt28, Elizabeth Jones28, Bronwyn 

Kerr28, Claire Langley28, Kay Metcalfe28, Audrey Smith28, Ronnie Wright28, David Bourn29, John 

Burn29, Richard Fisher29, Steve Hellens29, Alex Henderson29, Tara Montgomery29, Miranda 

Splitt29, Volker Straub29, Michael Wright29, Simon Zwolinski29, Zoe Allen30, Birgitta Bernhard30, 

Angela Brady30, Claire Brooks30, Louise Busby30, Virginia Clowes30, Neeti Ghali30, Susan 

Holder30, Rita Ibitoye30, Emma Wakeling30, Edward Blair31, Jenny Carmichael31, Deirdre 

Cilliers31, Susan Clasper31, Richard Gibbons31, Usha Kini31, Tracy Lester31, Andrea Nemeth31, 

Joanna Poulton31, Sue Price31, Debbie Shears31, Helen Stewart31, Andrew Wilkie31, Shadi 

Albaba32, Duncan Baker32, Meena Balasubramanian32, Diana Johnson32, Michael Parker32, 

Oliver Quarrell32, Alison Stewart32, Josh Willoughby32, Charlene Crosby33, Frances Elmslie33, 

Tessa Homfray33, Huilin Jin33, Nayana Lahiri33, Sahar Mansour33, Karen Marks33, Meriel 

McEntagart33, Anand Saggar33, Kate Tatton-Brown33, Rachel Butler34,35, Angus Clarke34,35, Sian 

Corrin34,35, Andrew Fry34,35, Arveen Kamath34,35, Emma McCann35, Hood Mugalaasi34,35, Caroline 

Pottinger35, Annie Procter34,35, Julian Sampson34,35, Francis Sansbury34,35, Vinod Varghese34,35, 

Diana Baralle36,37,38, Alison Callaway36,37,38, Emma J. Cassidy36,37,38, Stacey Daniels36,37,38, 

Andrew Douglas36,37,38, Nicola Foulds36,37,38, David Hunt36,37,38, Mira Kharbanda36,37,38, Katherine 

Lachlan36,37,38, Catherine Mercer36,37,38, Lucy Side36,37,38, I. Karen Temple36,37,38, Diana 

Wellesley36,37,38 

 

14 North of Scotland Regional Genetics Service, NHS Grampian, Department of Medical 

Genetics Medical School, Aberdeen, UK 



19 
 

15 Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust, Belfast City 

Hospital, Belfast, UK 

16 West Midlands Regional Genetics Service, Birmingham Women’s NHS Foundation Trust, 

Birmingham Women’s Hospital, Birmingham, UK 

17 Bristol Genetics Service (Avon, Somerset, Gloucs and West Wilts), University Hospitals 

Bristol NHS Foundation Trust, St Michael’s Hospital, Bristol, UK 

18 National Centre for Medical Genetics, Our Lady’s Children’s Hospital, Dublin, Ireland 

19 East of Scotland Regional Genetics Service, Human Genetics Unit, Pathology Department, 

NHS Tayside, Ninewells Hospital, Dundee, UK 

20 Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Clinical 

Genetics Department, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK 

21 West of Scotland Regional Genetics Service, NHS Greater Glasgow and Clyde, Institute of 

Medical Genetics, Yorkhill Hospital, Glasgow, UK 

22 North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children 

NHS Foundation Trust, Great Ormond Street Hospital, London, UK 

23 South East Thames Regional Genetics Centre, Guy’s and St Thomas’ NHS Foundation Trust, 

Guy’s Hospital, London, UK 

24 Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Department of 

Clinical Genetics, Chapel Allerton Hospital, Leeds, UK 

25 Nottingham Regional Genetics Service, City Hospital Campus, Nottingham University 

Hospitals NHS Trust, Nottingham, UK 

26 Leicestershire Genetics Centre, University Hospitals of Leicester NHS Trust, Leicester Royal 

Infirmary (NHS Trust), Leicester, UK 

27 Merseyside and Cheshire Genetics Service, Liverpool Women’s NHS Foundation Trust, 

Department of Clinical Genetics, Royal Liverpool Children’s Hospital Alder Hey, Liverpool, UK 

28 Manchester Centre for Genomic Medicine, St Mary’s Hospital, Central Manchester University 

Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, 

UK 

30 Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Institute 

of Human Genetics, International Centre for Life, Newcastle upon Tyne, UK 

30 North West Thames Regional Genetics Centre, North West London Hospitals NHS Trust, The 

Kennedy Galton Centre and St Mark’s NHS Trust Watford Road, Harrow, UK 

31 Oxford Regional Genetics Service, Oxford Radcliffe Hospitals NHS Trust, Oxford, UK 

32 Sheffield Regional Genetics Services, Sheffield Children’s NHS Trust, Sheffield, UK 

33 South West Thames Regional Genetics Centre, St George’s Healthcare NHS Trust, St 

George’s, University of London, London, UK 

34 Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK 



20 
 

35 Department of Clinical Genetics, Glan Clwyd Hospital, Rhyl, UK 

36 Wessex Clinical Genetics Service, University Hospital Southampton, Princess Anne Hospital, 

Southampton, UK 

37 Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury District 

Hospital, Salisbury, UK. 

38 Faculty of Medicine, University of Southampton, Southampton, UK



21 
 

 


