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Abstract 36 

Standard metabolic rate (SMR), defined as the minimal energy expenditure required for self-37 

maintenance, is a key physiological trait. Few studies have estimated its relationship with fitness, 38 

most notably in insects. This is presumably due to the difficulty of measuring SMR in a large 39 

number of very small individuals. Using high-throughput flow-through respirometry and a 40 

Drosophila melanogaster laboratory population adapted to a life-cycle that facilitates fitness 41 

measures, we quantified SMR, body mass, and fitness in 515 female and 522 male adults. We 42 

used a novel multivariate approach to estimate linear and non-linear selection differentials and 43 

gradients from the variance-covariance matrix of fitness, SMR, and body mass, allowing traits 44 

specific covariates to be accommodated within a single model. In males, linear selection 45 

differentials for mass and SMR were positive and individually significant. Selection gradients 46 

were also positive but, despite substantial sample sizes, were non-significant due to increased 47 

uncertainty given strong SMR-mass collinearity. In females, only nonlinear selection was 48 

detected and it appeared to act primarily on body size, although the individual gradients were 49 

again non-significant. Selection did not differ significantly between sexes although differences in 50 

the fitness surfaces suggest sex-specific selection as an important topic for further study.  51 

 52 

Key Words: Basal metabolic rate, lifetime reproductive success, linear and nonlinear selection, 53 

multivariate selection, selection gradient, sexual dimorphism.  54 
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Metabolic rate reflects the amount of energy that an organism needs to grow, reproduce, and 55 

survive. Because resources are limited, organisms must allocate their finite energy to competing 56 

demands, which forces allocation trade-offs that ultimately play an important role in shaping life-57 

history strategies. All else being equal, energy allocated to self-maintenance cannot be invested 58 

in other energetic demands such as reproduction. However, reproducing at a high rate may 59 

necessitate a large metabolic machinery that translate into high maintenance costs. As such, 60 

maintenance metabolism is likely to be linked to fitness (Burton et al. 2011), but studies so far 61 

have produced inconsistent results (Pettersen et al. 2018) and we therefore lack a good 62 

understanding of how selection shapes maintenance metabolism. This is perhaps not surprising 63 

given that estimating selection involves challenges such as measuring fitness and maintenance 64 

metabolism appropriately in a large number of individuals and parsing the relative contribution 65 

of highly collinear variables (e.g., body mass and metabolism) to fitness. 66 

Quantifying fitness is technically challenging yet of utmost importance when studying 67 

selection. Lifetime reproductive success of an individual (total number of offspring produced) 68 

can be broken down into three main components: survival, fecundity, and reproductive success 69 

(pre- and postcopulatory). These components of fitness can vary independently and may relate 70 

differently to metabolic rate (Pettersen et al. 2018). For example, a high maintenance metabolism 71 

may be beneficial to survival, but uses energy that otherwise could be invested in reproduction. 72 

Most estimates of selection on maintenance metabolism have, at best, quantified a portion of a 73 

single fitness component such as over-winter survival (Jackson et al. 2001; Artacho and Nespolo 74 

2009; Boratyński et al. 2010; Larivée et al. 2010; Careau et al. 2013; Zub et al. 2014) or output 75 

from a single reproductive event (Earle and Lavigne 1990; Stephenson and Racey 1993; 76 

Johnston et al. 2007; Hayes et al. 2009; Boratyński and Koteja 2010; Schimpf et al. 2012; 77 
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Mariette et al. 2015). A small number of studies have attempted to relate metabolic rate to a 78 

more comprehensive measure of fitness (Blackmer et al. 2005; Pettersen et al. 2016), but we 79 

have limited insight into how total selection acts on this fundamental trait. 80 

Measuring maintenance metabolism can also be challenging as, by definition, it excludes 81 

contributions due to activity, growth, and reproduction (Hulbert and Else 2004; Careau et al. 82 

2015). In ectotherms, the “minimum cost of living” is measured as the standard metabolic rate 83 

(SMR): the metabolic rate of a resting, post-absorptive, and non-reproductive adult at a specified 84 

temperature. Meeting these criteria requires careful methodological considerations and can take 85 

time because individuals must be monitored over a sufficient period such that they relax and rest 86 

within the confinement of a metabolic chamber. Therefore, the criteria to measure SMR can 87 

impose major constrains on achieving sufficient sample sizes to estimate selection with 88 

precision. Small insects offer advantages as it is relatively easy to obtain to a large number of 89 

individuals, but their low metabolic rate makes it difficult to measure SMR precisely. 90 

An additional challenge in estimating selection on metabolic rate is its strong (positive) 91 

collinearity with body mass (White 2011; White and Kearney 2013). Such collinearity can make 92 

it difficult to parse the relative strength of selection between these two traits. Collinearity can be 93 

alleviated by excluding traits that are not of interest, or by working with principal components 94 

(Zuur et al. 2010; Dormann et al. 2013; Chong et al. 2018; Harrison et al. 2019), but such 95 

approaches are not particularly useful when all of the correlated traits are of interest (e.g., 96 

metabolic rate and body mass are both hypothesised to be under selection). Historically, 97 

selection is estimated on SMR after correcting for body mass, usually by taking the residuals of a 98 

linear regression of SMR as function of mass (or by dividing SMR by body mass). However, this 99 

approach removes variation in SMR due to body mass and it is therefore not possible to estimate 100 
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selection on the shared variation, nor does it allow correlational selection to be estimated for 101 

these traits. A preferable approach is to apply the Lande and Arnold (1983) framework to 102 

simultaneously quantify linear and nonlinear selection on both SMR, body mass, and their 103 

interaction. The Lande and Arnold (1983) framework is usually done by fitting a multiple linear 104 

regression with relative fitness as the response variable and the traits of interest (and their 105 

squared terms and second-order interactions for nonlinear selection) as predictors. When doing 106 

so, however, it is difficult to account for various nuisance parameters or other covariates that 107 

only apply to a subset of the traits without ‘doing statistics on statistics’ (i.e., using residuals 108 

from a regression of a trait on its covariates). Such a two-step approach fails to carry forward 109 

uncertainty in estimates and can produce statistical artifacts (Garcia-Berthou 2001; Freckleton 110 

2002; Morrissey 2014). A solution to this challenge is to use a multivariate approach to model 111 

the variance-covariance matrix between fitness, SMR and body mass while correcting one or 112 

more traits for their unique covariates (in the current case for nuisance parameters unique to the 113 

estimation of SMR and relative fitness). Standard selection differentials and gradients can then 114 

be obtained from the residual covariance matrix (see Methods). 115 

Here, our primary goal is to quantify multivariate selection on SMR and body mass. To 116 

do so, we build on the Lande & Arnold (1983) framework, employing multivariate mixed models 117 

to better account for trait-specific covariates. In measuring selection on these traits, we take 118 

advantage of a high-throughput respirometry system and a laboratory population of Drosophila 119 

melanogaster that has been evolving under a life cycle that facilitates a comprehensive measure 120 

of fitness. In this population, newly emerged adult flies interact for four days in a mating 121 

environment at a specific (and fairly low) density, after which females lay eggs for 24h to 122 

produce the next generation. Male fitness is therefore the number of offspring they sire during 123 
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this 4-day period, and female fitness is the number of adult offspring they produce during the 124 

24h window. Our fitness measure therefore includes survival over these four days, fecundity, and 125 

reproductive success of the adult, along with the egg-to-adult survival of the resulting offspring 126 

they produce. This is a more comprehensive fitness measure than previous studies estimating 127 

selection on SMR. The mating environment also features added structural complexity (see 128 

Methods), potentially allowing a greater range of sexual behaviours to be expressed compared to 129 

standard Drosophila populations that are generally maintained at high density in structurally 130 

simple environment (i.e., standard fly vials or bottles). For example, male mating success may 131 

involve searching for females and/or defending a territory, and female can flee when faced with 132 

male courtship, all of which are energetically costly and may thus impact SMR. We have 133 

previously shown in this population that SMR is both repeatable and differentially correlated 134 

with body mass and activity in males vs. females (Videlier et al. 2019). Here we used the same 135 

high-throughput metabolic system to measure SMR, in addition to body mass and fitness, in 136 

close to one thousand separate individuals.  137 

 138 

Methods 139 

STOCK POPULATION 140 

A stock population was established in February of 2016 from a large sample of a laboratory-141 

adapted population of D. melanogaster that was originally collected in Dundas, ON in 2006 142 

(MacLellan et al. 2012). Since then, this stock has been maintained with discrete, non-143 

overlapping generations at 25°C, 50% relative humidity, and with a 12L:12D photoperiod (lights 144 

switch at 7 am/pm) on a standard cornmeal-based food (90 g/L cornmeal, 100 g/L turbinado 145 

sugar, 40 g/L yeast and 12 g/L agar). The population life cycle includes a 4-day ‘mating phase’ 146 
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that takes place in an environment (8 oz. culture bottles) with reduced density (10 males and 10 147 

females/bottle) and increased spatial complexity (i.e., dividers inserted into the food and two 148 

coiled piper cleaners inside the bottle) compared to standard Drosophila maintenance techniques. 149 

Males are discarded after the mating phase and females are allowed to lay eggs for 24 h in 150 

standard glass culture vials (28.5 mm x 95 mm). Additional details are provided in Videlier et al. 151 

(2019). To create a separate marked ‘competitor’ for use in the fitness assays, in November 2016 152 

a brown eye recessive (bw) mutation was introgressed into a copy of the stock population via two 153 

rounds of backcrossing. This population was then synchronized with the stock and was 154 

maintained in the same way and following the same schedule.  155 

 156 

EXPERIMENTAL DESIGN 157 

To quantify selection, both metabolic rate and fitness were measured on individual males and 158 

females from the stock population under conditions that closely mimicked their normal 159 

maintenance routine. The experiment was performed in six temporal blocks over six generations 160 

of the stock population, with each block consisting of three separate temporal sub-blocks of 32 161 

males and 32 females each (i.e., one sub-block per day over three days; see below). 162 

Individuals for use in the assay were raised at four different densities by allowing two, 163 

five, ten or 15 stock females to lay eggs in a vial for 24 hours (10 females/vial matches the 164 

density during normal maintenance). This was done to increase phenotypic variation in size, and 165 

potentially SMR, thereby increasing the power to detect selection. A downside of such a 166 

phenotypic manipulation is that it creates the possibility of a density-induced fitness-trait 167 

covariance that could be mistakenly interpreted as selection (Rausher 1992; Stinchcombe et al. 168 

2002). In our case this appears unlikely (see Fig. S1 and Discussion). To increase sample size 169 
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within each block, virgin collection was performed over three consecutive days corresponding to 170 

8, 9 and 10 days after egg laying, creating three groups corresponding to three different ‘days of 171 

emergence’. (Nine days after egg laying corresponds to the normal maintenance routine of the 172 

stock.) On each day, all newly emerged virgin offspring from the four rearing densities were 173 

pooled and then 45 males and 45 females were randomly selected using light CO2 anaesthesia (in 174 

the late morning). These flies were subsequently stored, separately by sex, in three vials of 15 175 

within the same incubator as the stock population. At approximately 19:00, 32 females and 32 176 

males were randomly chosen for metabolic rate measurement overnight (remaining individuals 177 

were discarded). The following morning, these individuals were weighed (as described below) 178 

and then placed in the complex environment for a three day ‘mating phase’ together with mutant 179 

competitor flies (see below), after which females were transferred to new vials for egg laying. 180 

While the stock population normally experiences a 4-day mating phase, we used three days so 181 

that when the assay females were subsequently transferred to vials for egg laying, they were of 182 

the same age as stock females when they lay eggs during regular maintenance.  183 

 184 

METABOLIC AND BODY MASS MEASUREMENTS  185 

Metabolic rate measurements were performed following Videlier et al. (2019) using a 64-186 

chamber flow-through respirometry system, housed overnight in a separate incubator. The 187 

system consists of four separate units, each comprised of a differential CO2 analyser (Li-188 

Cor7000, Li-Cor Biosciences, Lincoln, NE, USA) and a 16-channel flow management, data 189 

acquisition, and signal processing system (MAVEn; Sable Systems International, North Las 190 

Vegas, NV, USA). Each MAVEn incorporates a flow-distribution manifold, a main board (flow 191 

measurement, regulation, and control plus data acquisition and signal processing), and an activity 192 



9 
 

board (sensors for activity, ambient temperature, humidity, and light intensity). A constant 193 

stream of dry, CO2-free air produced by a purge gas generator (PG14L Peak scientific, Glasgow, 194 

Scotland, UK) was split into four different streams, which were pushed through the reference cell 195 

of each CO2 analyser (Cell A). The air stream was then humidified by flowing through Nafion 196 

tubing (du Pont de Nemours and Company, Wilmington, DE, USA) submerged in distilled 197 

water, and finally was directed into the flow-distribution manifold where it was physically split 198 

into 17 streams (one for each of the 16 chambers and one for the baseline), of which only the 199 

baseline was actively regulated at a flow rate of 20 ml∙min-1. The approximately equivalent flow 200 

rates in the non-baseline channels (range: 15 to 25 ml∙min-1) were maintained by means of 201 

matched flow resistances based on micro-orifice flow restrictors. A second mass flow meter on 202 

the MAVEn’s main board measured the actual flow rate of each selected air stream before it was 203 

automatically directed through the measurement cell (Cell B) of the CO2 analyser. 204 

Before measurement, individuals were chosen randomly from the three sex-specific 205 

holding vials and were gently placed, without anaesthesia, separately into chambers made of 206 

clear plastic tubes (40 mm high by 6 mm diameter). Females and males were placed in odd and 207 

even numbered chambers respectively. Measurements were performed for 12 hours overnight, 208 

between 19:00 and 7:00, which correspond to the period of lowest average locomotor activity in 209 

this population (Videlier et al. 2019). 210 

Data transformation and extraction were done using ExpeData (Sable Systems 211 

International, North Las Vegas, NV, USA). The raw outputs from the activity detectors (one per 212 

chamber) were transformed into an index of locomotor activity by first calculating the 213 

cumulative sum of the absolute difference between adjacent samples and then by differentiating 214 

the resulting channel vs. time (equivalent to calculating the slope of the cumulative activity vs. 215 
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time). The CO2 trace (one for all of the 16 chambers in a given unit) was corrected for drift using 216 

multiple baseline correction measures and was also corrected for a 15 second lag. CO2 217 

production (VCO2) was then calculated by multiplying flow rate by the fractional concentration 218 

of CO2. Considering our sampling scheme (~12 hours respirometry run with a 34 min sampling 219 

cycle), each fly was sampled for 120 seconds per sample over a total of 21 separate measurement 220 

periods. The first 40 seconds of each measurement was ignored to allow the system to fully 221 

equilibrate after changing between chambers. From the remaining 80 seconds we extracted the 222 

lowest 20 seconds continuous bouts of VCO2 using the “nadir” function in ExpeData. In addition 223 

to the average of the lowest 20 seconds continuous bout of VCO2, we also extracted the average 224 

flow rate, water vapor, temperature, light intensity, and locomotor activity. We also extracted the 225 

average locomotor activity over the 20 seconds immediately prior to the VCO2 measurement. For 226 

each respirometry run, the lowest of the 21 extracted VCO2 values was selected per individual as 227 

their standard metabolic rate (SMR).  228 

The following morning, immediately after each metabolic measurement, body mass was 229 

measured by anesthetising individuals with CO2 and then weighing them to the nearest 0.001 mg 230 

with an MX5Microbalance (Mettler Toledo, Columbus, OH, USA) as described in Videlier et al. 231 

(2019). After body mass measurements, individuals were transferred into the fitness assay. 232 

 233 

FITNESS ASSAY  234 

Fitness was measured in a competitive assay in which a single focal individual (male or female), 235 

which previously had its metabolic rate and body mass measured, was placed together with nine 236 

same-sex bw mutant individuals and ten opposite sex bw individuals in the same ‘complex’ 237 

bottle as used during the stock mating phase. Individuals were allowed to interact and mate for 238 
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three days, after which males were discarded. In the female fitness assay, the single focal female 239 

was then transferred to a new vial with fresh media to lay eggs for 24 hours, while in the male 240 

fitness assay we randomly selected eight of the surviving bw females and placed them in pairs in 241 

four separate vials with fresh media for egg laying for 24 hours. Brown eye mutant individuals 242 

for use in these assays were collected at the same time as the focal individuals and prior to use 243 

were housed separately by sex in bottles of 50 individuals within the same incubator.  244 

Female fitness was quantified as the total number of offspring emerging from a vial 245 

across two counts performed eight and 10 days after egg laying. (Counting twice reduces the 246 

chance of missing individuals that die and are lost in the food.) Focal females that died during 247 

the mating phase were assigned a fitness of zero. Male fitness was quantified in the same way 248 

except offspring were phenotyped for eye color and counted separately (wild-type red eyes 249 

indicating they were sired by the focal male, brown eyes indicating they were sired by a bw 250 

competitor male). Male fitness was the total number of wild-type offspring produced, although 251 

results were qualitatively the same if male fitness was calculated as the proportion of offspring 252 

sired by the focal male (unpublished results). Given this, we present only results based on the 253 

absolute number of wild-type offspring to avoid additional statistical complexity when dealing 254 

with proportions. While our measure of fitness will be influenced by variation in egg to adult 255 

survival of offspring, such mortality was likely low as larvae were raised at low density so most 256 

of the variance in fitness likely originates from differences in survival and fecundity (females) or 257 

reproductive success (males; Bateman 1948) of the focal adults themselves.  258 

We attempted to measure all three traits (SMR, mass, and fitness) on 1,088 individuals in 259 

17 blocks (64 individuals per block). However, handling errors, equipment problems, and 260 

unexplained deaths reduced sample sizes slightly). Individuals with missing values for two of the 261 
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traits were excluded as they were not informative for estimating covariances (see below). This 262 

resulted in a total sample size of 1,037 individuals (515 males and 522 females). Of these, 78 263 

individuals had a missing value for one of the traits but were retained because they are 264 

informative for estimating the covariance between the other two traits. Repeating the analyses 265 

below after excluding these 78 individuals did not qualitatively alter our conclusions. 266 

 267 

STATISTICAL ANALYSES 268 

We estimated selection separately in males and females because body mass is sexually 269 

dimorphic and previous work on these populations demonstrated that males and females differ in 270 

how SMR scales with body size and how activity and SMR covary (Videlier et al. 2019). We 271 

applied a modified Lande and Arnold (1983) framework using multivariate models in ASReml-R 272 

(Butler et al. 2018) that allowed us to estimate the covariance between fitness, body mass, and 273 

SMR while correcting SMR for nuisance parameters that only apply to it (see Supplemental 274 

Methods for R code). The model included relative fitness (absolute fitness divided by its mean) 275 

and standardised (mean = 0, sd = 1) body mass and SMR as response variables, and an 276 

unstructured (co)variance matrix at the residual level. The inclusion of one or more fixed effects 277 

on a trait will change its residual variance such that it is no longer one, meaning gradients 278 

calculated from this will not be standardized gradients. To address this, SMR and body mass 279 

were standardized such that their variances (and hence sd) were one after accounting for relevant 280 

fixed effect(s) on each. This was done by dividing each trait not by its variance, but by its 281 

residual variance obtained from a first fitting a model using the unstandardized traits and the 282 

same fixed effects. To control for block and day effects, we fitted a variable that consisted of a 283 

unique combination of block (six levels) and day of emergence (three levels) as a fixed effect 284 
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fitted to all three variables. Fixed effects of temperature, flow rate, and locomotor activity (both 285 

20 s before and during SMR measurement) were fitted to SMR only. Light intensity and water 286 

vapor were not included because preliminary analyses reveal their effect sizes to be very small. 287 

For male fitness, the number of bw females which were used for 24 hours of egg laying was also 288 

fitted as a continuous effect.  289 

Standardized linear selection differentials (S) were estimated as the covariance between 290 

the traits (SMR and mass) and relative fitness from the unstructured residual variance-covariance 291 

matrix in the above model. The vector of standardized linear selection gradients (β) on the traits 292 

was then estimated as: 293 

 294 

Equation 1.     𝜷 = P ିଵ𝑺, 295 

 296 

where S is a vector of selection differentials (on mass and SMR) and P is the 2×2 phenotypic 297 

(co)variance matrix of body mass and SMR (Lande and Arnold, 1983). The (co)variances in P 298 

were taken from the larger 3×3 residual covariance matrix from the multivariate model. 299 

To estimate the nonlinear selection gradients, three new second-order ‘traits’ were 300 

constructed representing the quadratic (mass2 and SMR2) and cross-product terms involving 301 

mass and SMR (i.e., mass×SMR). These terms were then included, alongside relative fitness, 302 

SMR and body mass, in a second multivariate model, yielding a 6×6 phenotypic covariance 303 

matrix at the residual level. The same fixed effects applied to SMR were also applied to the 304 

second-order terms associated with SMR together with all unique pairwise interactions of these 305 

fixed effects. Standardized nonlinear selection gradients (i.e., γ’s) were estimated as: 306 

 307 
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Equation 2     𝜸 = 𝐏𝟐
ିଵCov(𝑤, traits), 308 

 309 

where cov(w, traits) is the vector of covariance between relative fitness and the ‘traits’ (i.e., 310 

SMR, mass, SMR2, mass2, and SMR×mass) from the unstructured residual variance-covariance 311 

matrix and P2 is the 5×5 phenotypic covariance matrix between SMR, mass, SMR2, mass2, and 312 

SMR×mass . As for Eq. 1, P2 was extracted from the full residual covariance matrix from the 313 

multivariate model. Like Eq. 1, Eq. 2 is a specific case of the general formula for the least-314 

squares estimates of the partial regression coefficients via matrix algebra (Kendall and Stuart 315 

1973; Morrissey 2014). The partial regression coefficients for the 2nd order terms were retained 316 

as estimates of nonlinear selection, while those for mass and SMR (representing linear selection) 317 

were discarded as these are taken from the 1st-order model (i.e., Eq. 1; Lande and Arnold, 1983). 318 

Quadratic (but not correlational) gradients were doubled (Stinchcombe et al. 2008). 319 

The overall significance of linear and nonlinear selection were separately tested using a 320 

model comparison approach (Chenoweth et al. 2013). For linear selection, a likelihood ratio test 321 

(LRT) was used to compare the fit of a ‘full’ multivariate model that included relative fitness, 322 

body mass, and SMR and that specified an unconstrained residual covariance matrix, with a 323 

‘reduced’ version of the same model in which the covariances between relative fitness and both 324 

SMR and body mass were set to zero. For nonlinear selection, the full model included the three 325 

second-order terms (i.e., SMR2, mass2, and SMR × mass) and the reduced model constrained the 326 

residual covariances between fitness and the three second-order terms to be zero. To test the 327 

significance of the individual selection differentials and gradients (i.e., β’s and γ’s), the 328 

appropriate multivariate model was bootstrapped 10,000 times to estimate empirical 95% 329 
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confidence intervals as the 0.025 and 0.975 quantiles of the distribution of the bootstrapped 330 

estimates. 331 

Finally, we analyzed selection separately in males and females for the reasons outlined 332 

above but, for completeness, we also compared selection between the sexes. Differences in linear 333 

and nonlinear selection between males and females were separately tested using an analogous 334 

model comparison approach to that above on a pooled dataset that combined the sexes, treating 335 

SMR, mass and fitness in each sex as separate traits. Sex was also included as a fixed effect. The 336 

fit of a model with an unconstrained residual covariance matrix was compared with one that 337 

specified a ‘reduced’ version in which the covariances between relative fitness and traits (both 338 

SMR and body mass for linear selection, and SMR2, mass2, and SMR × mass for nonlinear 339 

selection) were constrained to be the same in males and females. In both models non-estimable 340 

covariances (i.e., between traits in opposite sexes) were fixed to zero.  341 

 342 

Results 343 

In males, there was evidence of linear selection on SMR and body mass overall (LRT: χ2
2 df = 344 

17.37, P < 0.001; Fig. 1A). Selection differentials on both traits were positive and significant 345 

(Table 1). Selection gradients were of somewhat smaller magnitudes than the differentials and 346 

had larger 95% CI’s and hence were not significant (Table 1). Such a pattern is potentially due to 347 

collinearity between body mass and SMR (r = 0.70; Fig. 1). Finally, there was no evidence of 348 

nonlinear selection overall in males (LRT: χ2
3 df = 0.77, P = 0.856; Table 2). 349 

In contrast to males, in females there was no evidence of linear selection overall (LRT: 350 

χ2
2 df = 5.21, P = 0.074). Linear selection differentials were smaller than in males and, although 351 

individually significant for body mass, both selection gradients were weak and non-significant 352 
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(Table 1). There was, however, statistical support for nonlinear selection overall in females 353 

(LRT: χ2
3 df = 8.54, P = 0.036; Fig. 1B), with two of the three nonlinear selection differentials 354 

being significant and the third approaching so (Table 2). The estimated gradients suggest that 355 

this nonlinear selection arose primarily from stabilizing selection on body mass, but the 356 

bootstrapped CI’s span zero for the individual gradients, again suggesting collinearity. 357 

Finally, when pooling males and females, the observed difference between the sexes in 358 

overall linear (LRT: χ2
2 df = 1.62, P = 0.445) and nonlinear selection (LRT: χ2

3 df = 1.05, P = 359 

0.790) were both non-significant. Consistent with this, the 95% CI’s of all linear and nonlinear 360 

selection gradients overlap between the sexes (Tables 1, 2). 361 

 362 

Discussion 363 

Estimating selection on physiological traits such as SMR is challenging, most notably in small 364 

insects, as it involves precisely measuring metabolic rate and fitness in a large number of 365 

individuals. Metabolic rate varies substantially within individuals (Nespolo and Franco 2007; 366 

White et al. 2013; Auer et al. 2016), necessitating careful attention to controlling for covariates 367 

in the design and analysis. Traditionally, selection on metabolic rate has been estimated while 368 

“correcting” for body mass, either by using mass-specific values (i.e., per unit mass) or by taking 369 

the residuals from a regression of metabolic rate on mass. However, such approaches are unable 370 

to separate the traits under selection (i.e., body mass, SMR or both; Hayes 2001; Hagmayer et al. 371 

2020), they ignore the possibility of correlational selection, and they can involve doing ‘statistics 372 

on statistics’ that can fail to propagate uncertainty and may result in statistical bias (Garcia-373 

Berthou 2001; Morrissey 2014). Measuring fitness can also be challenging and past studies have 374 
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tended to rely on components thereof. While useful for understanding how selection arises, this 375 

can provide biased insight into net selection.  376 

Here, we performed high-throughput respirometry on individuals from a laboratory 377 

population of D. melanogaster with a life cycle that facilitated comprehensive measures of 378 

fitness in both sexes. Our fitness measure integrated adult survival, reproductive success, and 379 

fecundity, as well as the viability to adult emergence of resulting offspring, all in an abiotic and 380 

social environment that was extremely similar to that which the population was adapted. Using 381 

these data, we employed a multivariate modelling approach to estimating linear and nonlinear 382 

selection while controlling statistically for nuisance variables specific to each trait. Our results 383 

provide evidence of linear selection on body mass and/or SMR in males, and nonlinear selection 384 

primarily on body mass in females. Despite substantial sample sizes (515 males and 522 385 

females), the partitioning of selection between these two highly correlated traits remained 386 

challenging.  387 

 In males, linear differentials on body mass and SMR were both positive and significant, 388 

indicating direct and/or indirect selection for increased values of these traits. Selection gradients, 389 

which quantify selection on each trait while controlling for the other traits in the model, were of 390 

somewhat smaller magnitudes to the differentials and were slightly stronger for mass compared 391 

to SMR (Table 1). While the individual gradients were not significant based on approximate 392 

95% CI’s, they approached so, in particular for mass (i.e., the lower bound of the 95% CI just 393 

crossed zero). Notably, the 95% CI’s for the gradients are 50% wider than those for the 394 

differentials, reflecting increased uncertainty in partitioning selection in the face of a strong 395 

correlation between these traits (Fig. 1).  396 
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With the above caveat in mind, the point estimates of our gradients suggest moderately 397 

strong directional selection on body mass and SMR in males (median standardized phenotypic 398 

gradients from a review of selection in nature is |0.18|; Kingsolver et al. 2001), and little 399 

evidence of nonlinear selection including correlational (i.e., SMR × body mass gradient; Table 400 

2). It is therefore worth considering why selection may favour increased values of each these 401 

traits independent of the other. For body mass, sexual selection is one possibility if increased 402 

mass leads to greater reproductive success. Increased mating success of larger males has 403 

sometimes, but not always, been observed in Drosophila (e.g., Partridge and Farquhar 1983; 404 

Partridge et al. 1987; Santos et al. 1988; Pitnick 1991; Baxter et al. 2018, but see Markow et al. 405 

1996; Bangham et al. 2002). Larger males may also have higher postcopulatory success (Pitnick 406 

and Markow 1994; Bangham et al. 2002). Compared to standard Drosophila lab stocks, our 407 

population was also adapted to a lower density mating environment with added structural 408 

complexity. This may provide increased opportunity for males to defend food/egg laying 409 

substrates as a way to access females, and larger males tend to have an advantage in such 410 

territorial interactions in Drosophila (Hoffmann 1987; White and Rundle 2014).  411 

With respect to SMR, increased values correspond to males with higher metabolic 412 

maintenance costs, which can be seen as the “idling” cost of an individual’s metabolic 413 

machinery. As such, males with higher SMR may have more energy available to allocate to 414 

costly behaviours or physiological processes. Why might selection favour this? Again, it is 415 

possible that such males have increased mating success if they are better at defending a territory 416 

and/or searching for, pursuing and courting females. These demands may be enhanced in our 417 

lower density, structurally complex mating environment in which females can hide and escape 418 

male courtship. Indeed, similar manipulations of the mating environment in D. melanogaster 419 
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have been shown to reduce the frequency of sexual interactions and mating, and to increases 420 

female feeding rates (Yun et al. 2017; Fig. S1 in Yun et al. 2019). Previous work with the current 421 

population also revealed a positive correlation between resting metabolic rate and locomotor 422 

activity in males (Videlier et al. 2019), suggesting that individuals that perform more 423 

energetically demanding activities tend to have elevated maintenance costs. 424 

In females, nonlinear selection was significant overall, indicating curvature of the fitness 425 

surface. This appeared to arise in large part from stabilizing selection on body mass although the 426 

individual quadratic and correlational gradients were non-significant (Table 2), probably because 427 

collinearity will be even more problematic for 2nd-order traits. Nevertheless, the point estimates 428 

for body mass was negative and substantially larger than that for SMR or the correlational 429 

gradient (Table 2). The non-parametric fitness surface supports this and reveals a fitness peak 430 

within the upper range of mass values (Fig. 1B).  431 

While the fitness surface and selection differentials suggest directional selection for both 432 

body mass and SMR over much of the phenotypic range in females (i.e., for trait values below 433 

the peak), our estimated gradients indicate that this selection on SMR is largely indirect, arising 434 

from its correlation with body mass (i.e., gradients on SMR are weak in Tables 1 and 2). Why 435 

might selection favour increased female body size? Fecundity selection seems likely as there is a 436 

strong positive association between body size and egg production in Drosophila (Lefranc and 437 

Bundgaard 2000; Byrne and Rice 2006). It is less obvious as to why fitness may decline at high 438 

body mass, although this could represent a trade-off in energy allocation if the energetic costs of 439 

further increases in mass come at the expense of greater investment in fecundity. A recent result 440 

in this population suggests the presence of allocation trade-offs in females, as reflected by a 441 

negative correlation between resting metabolic rate and locomotor activity at the beginning of 442 
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the night (Videlier et al. 2019), a time which may correspond to a peak in egg laying 443 

(Manjunatha et al. 2008).  444 

At first glance, the contrasting significance of linear vs. nonlinear selection in males vs. 445 

females suggests sex-specific selection on these traits. However, these differences were not 446 

significant, likely reflecting in part the similarity of the fitness surfaces for overlapping trait 447 

values between the sexes (Fig. 1; the curvature in females occurs at trait values greater than those 448 

observed in males). It is therefore possible that males of a similarly large size would likewise 449 

experience reduced fitness, but in the absence of such phenotypes we do not know. Further 450 

phenotypic manipulation to generate an even broader range of male phenotypes would be 451 

necessary to resolve this. Phenotype manipulations can also be useful in reducing or eliminating 452 

collinearity among traits (Sinervo 1990; Campbel 2009), allowing combinations of traits to be 453 

created that would otherwise be rare or nonexistent. In this case, however, it is unclear how mass 454 

could be manipulated independently of SMR. A potential downside of a phenotypic 455 

manipulation like density is that it can affect all traits, including fitness, and it therefore creates 456 

the possibility of a environmentally- (i.e., density-) induced fitness-trait covariance that can be 457 

mistaken for selection (Rausher 1992; Stinchcombe et al. 2002). Increased density slows 458 

development and thus delays adult emergence in Drosophila. Day of emergence was included as 459 

a fixed effect in all our analyses, so to the extent that density and emergence day covary, our 460 

analysis accounts for density effects. In addition, neither male nor female fitness varied 461 

significantly by day of emergence (Fig. S1), strongly suggesting that the selection we observed 462 

was not the result of a density-induced fitness-trait covariance. 463 

Lande and Arnold (1983) provide a framework for quantifying selection via multivariate 464 

regression but problems arise when unique covariates apply to different traits, including fitness. 465 
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Here we outlined an approach that allows trait-specific covariates by extracting phenotypic 466 

covariance matrices at the residual level from a multivariate model of traits and fitness. Linear 467 

selection differentials are given by the covariance between fitness and each standardized trait, 468 

and linear selection gradients are estimated as the product of the linear selection differentials and 469 

the inverse of a subset of the full phenotypic covariance matrix (P) that excludes fitness as a trait 470 

(Lande and Arnold 1983). The latter is simply the least-squares estimates of the partial 471 

regression coefficients obtained via matrix algebra (Kendall and Stuart 1973), meaning this 472 

approach can be extended to estimating nonlinear gradients simply by including the squared 473 

traits and their second-order interactions in the multivariate model. This is preferable to eq. 14a 474 

in Lande & Arnold (1983), which provides an approximation of the nonlinear gradients under 475 

certain assumptions. To our knowledge, this statistical approach to estimating nonlinear selection 476 

has not been previously employed.  477 

White et al. (2019) recently put forward correlational selection as an explanation for the 478 

widely observed metabolic scaling allometry. For correlational selection to occur, particular 479 

combinations of SMR and mass must be advantageous over other combinations and, over time, 480 

correlational selection change trait covariance (Sinervo and Svensson 2002). In particular, 481 

correlational selection favouring small and large individuals with respectively high and low 482 

mass-specific SMR would the give rise to the widely observed sublinear scaling of SMR with 483 

mass. Using a simulation approach combined with interspecific data, White et al. (2019) 484 

concluded that the scaling allometry between metabolic rate and body mass arose as a 485 

consequence of correlational selection on these traits. In our study, however, we did not detect 486 

correlational selection on SMR and body mass, but more research is needed to estimate the 487 

possibility of non-linear trait-fitness covariance at the genetic level. 488 



22 
 

Finally, as with any observational selection analyses, confounding effects of 489 

environmentally-induced covariances between traits and fitness can be mistaken for selection 490 

(Rausher 1992; Stinchcombe et al. 2002). This includes potential effects of density discussed 491 

above, but also other unidentified environment variables that could affects traits and fitness. The 492 

problem of environmentally-induced covariances can be overcome via a breeding design that 493 

estimates selection at the genetic level. Estimating the quantitative genetic architecture of fitness 494 

and SMR may also provide a direct test of the possibility of sexual conflict over metabolic rate. 495 

 496 
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Table 1. Variance-covariance matrix between relative fitness (w), standardized standard 656 

metabolic rate (SMR), and standardized body mass in A) 515 male and C) 522 female 657 

Drosophila melanogaster extracted from a 3-trait multivariate model. Selection differentials (S) 658 

were estimated as the covariance between w and the trait of interest (values in red), whereas 659 

standardized selection gradients (β) were estimated as β = P-1S (Eq. 1), where S is the vector of 660 

selection differentials (red values) and P is the trait-based phenotypic covariance matrix (blue 661 

values). 95% confidence intervals (CI) are based on 10,000 bootstrap estimates. Bold denotes 662 

significant values. 663 

 664 

  (co)variance matrix   selection differentials   selection gradients 

  w SMR Mass   S 
Lower 

CI 
Upper 

CI 
  β 

Lower 
CI 

Upper 
CI 

A) males                     
w 0.765 0.144 0.154                 
SMR 0.144 1.000 0.701   0.144 0.071 0.214   0.071 -0.040 0.179 
Mass 0.154 0.701 1.000   0.154 0.077 0.225   0.104 -0.008 0.213 
B) females                     
w 0.294 0.048 0.056                 
SMR 0.048 1.000 0.830   0.048 -0.002 0.094   0.005 -0.084 0.093 
Mass 0.056 0.830 1.000   0.056 0.007 0.103   0.052 -0.039 0.142 

  665 



Table 2. Variance-covariance matrix between relative fitness (w), standard metabolic rate (SMR), standardized body mass, and the 666 

three variables from second-orders of SMR and body mass in A) 515 male and C) 522 female Drosophila melanogaster extracted 667 

from a 6-trait multivariate model. Nonlinear standardized selection gradients were estimated as γ = P2
-1cov(w, traits) (Eq. 2), where 668 

cov is the vector of covariance between relative fitness (w) and traits (red values) and P2 is the trait-based 5×5 phenotypic covariance 669 

matrix (blue values). 95% confidence intervals (CI) are based on 10,000 bootstrap estimates. Bold denotes significant values. 670 

 671 

 (co)variance matrix  selection differentials  selection gradients 

  
w SMR Mass SMR2 Mass2 

SMR 
× 

Mass 

 C 
Lower

CI 
Upper

CI 
 γ 

Lower
CI  

Upper 
CI 

A) males                             
w 0.765 0.145 0.154 -0.044 0.023 -0.013                 
SMR 0.145 1.001 0.701 0.216 0.230 0.210                 
Mass 0.154 0.701 1.000 0.197 0.481 0.304                 
SMR2 -0.044 0.216 0.197 3.909 1.982 2.760   -0.044 -0.196 0.102   -0.036 -0.246 0.152 
Mass2 0.023 0.230 0.481 1.982 3.725 2.712   0.023 -0.126 0.171   0.001 -0.154 0.166 
SMR × Mass -0.013 0.210 0.304 2.760 2.712 2.950   -0.013 -0.132 0.109   -0.005 -0.147 0.145 
B) females                             
w 0.294 0.048 0.056 -0.077 -0.133 -0.101                 
SMR 0.048 1.000 0.830 0.565 0.409 0.469                 
Mass 0.056 0.830 1.000 0.454 0.486 0.444                 
SMR2 -0.077 0.565 0.454 3.824 2.516 3.099   -0.077 -0.185 0.022   -0.019 -0.266 0.227 
Mass2 -0.133 0.409 0.486 2.516 3.642 2.993   -0.133 -0.233 -0.038   -0.121 -0.321 0.108 
SMR × Mass -0.101 0.469 0.444 3.099 2.993 3.071   -0.101 -0.194 -0.013   0.024 -0.205 0.233 
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Figure captions 674 

Figure 1. Standard metabolic rate (SMR) as function of wet body mass in A) 515 male and B) 675 

522 female D. melanogaster. The contour map (thin-plate spline) shows how predicted relative 676 

fitness varies as function of SMR and body mass. Points represent individuals.  677 

678 
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 679 

Figure 1.  680 
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Supplemental Materials 681 

 682 

 683 

 684 

Figure S1. Standard metabolic rate (SMR) as function of wet body mass in A) 515 male and B) 685 

522 female D. melanogaster that emerged on day 8 (red squares), day 9 (green dots), or day 10 686 
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(blue triangles) after egg laying. Relative fitness as function of emergence day in C) males and 687 

D) females, showing that neither male nor female fitness varied by day of emergence.  688 

 689 

Supplemental Methods – R code for selection analyses 690 

#This code reproduces the selection analysis presented in the article: 691 

#"Quantifying selection on standard metabolic rate and body mass in Drosophila melanogaster" 692 

#by:Mathieu Videlier, Vincent Careau, Alastair J. Wilson & Howard D. Rundle 693 

#for any question, please contact: 694 

#Mathieu Videlier (mvide050@uottawa.ca) 695 

 696 

#read in the data and select male data only (analyses for females not shown here) 697 

DATA<-read.table(file = "DRYAD_DATA_MV.csv",header=T, sep=",") 698 

MAL_DATA<-subset(DATA, SEX=="1") 699 

MAL_DATA<-MAL_DATA[!is.na(MAL_DATA$MASS),] # Delete records without MASS 700 
and fitness measurements, as these are uninformative 701 

 702 

############  calculate relative fitness 703 

MAL_DATA$RelFit   <-MAL_DATA$MW_WTnb/mean(MAL_DATA$MW_WTnb, 704 
na.rm=T) 705 

############ Factors 706 

MAL_DATA$Sspop    <-factor(MAL_DATA$Sspop) 707 

MAL_DATA$BLOCK    <-factor(MAL_DATA$BLOCK) 708 

MAL_DATA$B_S      <-factor(MAL_DATA$B_S) 709 

############ Scaling independent variables (fixed effects) 710 

MAL_DATA$logACT20 <-scale(log(MAL_DATA$ACT20+1)) 711 

MAL_DATA$logACT20p<-scale(log(MAL_DATA$ACT20p+1)) 712 

MAL_DATA$TEMPz    <-as.numeric(scale(MAL_DATA$TEMP)) 713 
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MAL_DATA$FRCz     <-as.numeric(scale(MAL_DATA$FRC)) 714 

MAL_DATA$NbFemTotz<-as.numeric(scale(MAL_DATA$NbFemTot)) 715 

 716 

 717 

 718 

############################# LINEAR SELECTION  ########################### 719 

### multivariate model for LINEAR SELECTION 720 

#Linear selection in both sexes is estimated using a multivariate model with 721 

#the relative fitness(Relfit), the standard metabolic rate (SMR) and body mass (MASS). 722 

#Following Lande (1983), the differential selections (S) are the covariances 723 

#between Relfit and SMR or MASS at the residual level. The selection gradients (ß) 724 

# are the conditional covariances according to equation 1, where P^-1^ is the 725 

#inverse of the 2x2 phenotypic matrix between SMR and MASS and S the vector of 726 

#the selection differentials. 727 

#ß= P^{-1} *S 728 

#The analysis follows different steps: 729 

#  - Step 1: Standardization of the variables SMR and MASS 730 

#  - Step 2: Creation of the multivariate model 731 

#  - Step 3: Extraction of covariances as selection differentials 732 

#  - Step 4: Calculation of the selection gradients using equation 1 733 

 734 

###### Step 1: Standardization of the variables SMR and MASS 735 

#In the multivariate model, each variable is adjusted for various fixed effects. 736 

#Therefore their residual variance will be different than 1. However, to estimate 737 

#standardized linear selection gradients, traits must have a variance equal to 1. 738 

#Thus, we first run a temporary multivariate model with unstandardized variables 739 

#to get the residual variance in MASS and SMR after correcting for the fixed effects. 740 
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#The residual variances from this temporary model will allow us to standardize 741 

#the "residual" variance for SMR and MASS to 1. 742 

library(asreml) 743 

MAL_MODEL.temp<-asreml(cbind(RelFit,SMR,MASS)~at(trait):B_S+ 744 

at(trait,1):NbFemTotz+ 745 

at(trait,2):ACT20z+at(trait,2):ACT20pz+at(trait,2):TEMPz+at(trait,2):FRCz, 746 

                 residual=~units:us(trait), 747 

                 na.action = na.method(y=c("include"), x=c("include")),data=MAL_DATA) 748 

summary(MAL_MODEL.temp) 749 

#residual variance in SMR: 750 

RES.SMR<-summary(MAL_MODEL.temp)$varcomp[4,1] 751 

#residual variance in MASS: 752 

RES.MASS<-summary(MAL_MODEL.temp)$varcomp[7,1] 753 

#new traits: 754 

MAL_DATA$SMRz<-(MAL_DATA$SMR-755 
mean(MAL_DATA$SMR,na.rm=T))/sqrt(RES.SMR) 756 

MAL_DATA$MASSz<-(MAL_DATA$MASS-757 
mean(MAL_DATA$MASS,na.rm=T))/sqrt(RES.MASS) 758 

 759 

###### Step 2: Creation of the multivariate model 760 

#Multivariate model contains the relative fitness and standardized SMR and MASS 761 

#as response variables, in addition to several fixed effects. 762 

#Block_Day (B_S) is fitted for each variable. 763 

#Male relative fitness is specificity fitted with number of females used (NbFemTot). 764 

#SMR is specificity fitted with temperature (TEMP), flow rate (FRC) and locomotor activity 765 
(ACT20, ACT20p). 766 

MAL_MODEL<-asreml(cbind(RelFit,SMRz,MASSz)~at(trait):B_S+ 767 

at(trait,1):NbFemTotz+ 768 
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at(trait,2):ACT20z+at(trait,2):ACT20pz+at(trait,2):TEMPz+at(trait,2):FRCz, 769 

    residual=~units:us(trait), 770 

    na.action = na.method(y=c("include"), 771 
x=c("include")),data=MAL_DATA) 772 

summary(MAL_MODEL) 773 

#Note: the residual variance in SMR and MASS are exactly 1 774 

 775 

###### Step 3: Extraction of covariances as selection differentials 776 

MAL_Matrix<-matrix(NA, ncol=3, nrow=3) 777 

MAL_Element<-summary(MAL_MODEL)$varcomp$component[2:7] 778 

MAL_Matrix[upper.tri(MAL_Matrix, diag=T)==T]<- as.numeric (MAL_Element) 779 

MAL_Matrix[lower.tri(MAL_Matrix)==T]<-t(MAL_Matrix[upper.tri(MAL_Matrix)==T]) 780 

 781 

###### Step 4: Calculation of the selection gradients using equation 1 782 

MAL_P   <-MAL_Matrix[-1,-1] 783 

MAL_COV <-MAL_Matrix[1,2:3] 784 

library(MASS) 785 

MAL_BETA<-ginv(MAL_P)%*%MAL_COV 786 

 787 

 788 

########################## NON-LINEAR SELECTION  ########################## 789 

#Non-linear selection is estimated using a multivariate model with: 790 

#relative fitness(Relfit) 791 

#standard metabolic rate (SMR) 792 

#wet body mass (MASS) 793 

#and the second order terms of SMR and MASS (quadratic terms): 794 

#SMR^2^, 795 

#MASS^2^ 796 
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#SMR x MASS 797 

#The non-linear selection gradients  are the conditional covariances between 798 

#the relative fitness and the second order terms according to equation 2, 799 

#where P2^-1^ is the inverse of the 5x5 phenotypic matrix between 800 

# SMR, MASS, SMR^2^, MASS^2^, SMRxMASS and the vector of covariances between 801 
relative fitness and traits. 802 

#γ=P_2^{-1} Cov(w,traits) 803 

#To estimate non-linear selection, we follow a similar approach as linear selection. 804 

#  - Step 1: Creation of the second order variables 805 

#  - Step 2: Creation of the multivariate model 806 

#  - Step 3: Extraction of covariances estimates 807 

#  - Step 4: Calculation of the non- linear selection gradients 808 

 809 

#### Estimation of non-linear selection in MALES 810 

###### Step 1: Creation of the second order variables 811 

#To integrate a larger multivariate model with the second order terms of SMR and MASS, 812 

#we need to create new variables from the multiplication of SMR and MASS, each with 813 

#itself and with each other, in addition to their independents variables. 814 

MAL_DATA$SMRQ   <-MAL_DATA$SMRz *MAL_DATA$SMRz 815 

MAL_DATA$MASSQ  <-MAL_DATA$MASSz *MAL_DATA$MASSz 816 

MAL_DATA$INT    <-MAL_DATA$MASSz *MAL_DATA$SMRz 817 

## 818 

MAL_DATA$ACT20Q       <-MAL_DATA$ACT20z *MAL_DATA$ACT20z 819 

MAL_DATA$ACT20p.ACT20 <-MAL_DATA$ACT20pz *MAL_DATA$ACT20z 820 

MAL_DATA$TEMP.ACT20   <-MAL_DATA$TEMPz *MAL_DATA$ACT20z 821 

MAL_DATA$FRC.ACT20    <-MAL_DATA$FRCz *MAL_DATA$ACT20z 822 

MAL_DATA$ACT20pQ      <-MAL_DATA$ACT20pz *MAL_DATA$ACT20pz 823 

MAL_DATA$TEMP.ACT20p  <-MAL_DATA$TEMPz *MAL_DATA$ACT20pz 824 



37 
 

MAL_DATA$FRC.ACT20p   <-MAL_DATA$FRCz *MAL_DATA$ACT20pz 825 

MAL_DATA$TEMPQ        <-MAL_DATA$TEMPz *MAL_DATA$TEMPz 826 

MAL_DATA$FRC.TEMP     <-MAL_DATA$FRCz *MAL_DATA$TEMPz 827 

MAL_DATA$FRCQ         <-MAL_DATA$FRCz *MAL_DATA$FRCz 828 

 829 

###### Step 2: Creation of the multivariate model 830 

#the multivariate model contains the relative fitness and standardized SMR and MAss 831 

#as response variables, in addition to several fixed effects. Block_Day (B_S) is 832 

#fitted for each variable. Male relative fitness is corrected for number 833 

#of females used (NbFemTot). SMR is corrected for temperature (TEMP), 834 

#flow rate (FRC) and locomotor activity (ACT20, ACT20p). The second order terms 835 

#need to be fitted with similar fixed effects in addition to all possible second 836 

#order terms between different fixed effects 837 

 838 

MAL_MODEL_Q<-asreml(cbind(RelFit,SMRz,MASSz,SMRQ,MASSQ,INT)~at(trait):B_S+ 839 

at(trait,1):NbFemTotz+ 840 

at(trait,2):ACT20z+at(trait,2):ACT20pz+at(trait,2):TEMPz+at(trait,2):FRCz+ 841 

at(trait,4):ACT20z+at(trait,4):ACT20pz+at(trait,4):TEMPz+at(trait,4):FRCz+at(trait,4):ACT20Q842 
+at(trait,4):ACT20p.ACT20+at(trait,4):TEMP.ACT20+at(trait,4):FRC.ACT20+at(trait,4):ACT2843 
0pQ+at(trait,4):TEMP.ACT20p+at(trait,4):FRC.ACT20p+at(trait,4):TEMPQ+at(trait,4):FRC.TE844 
MP+at(trait,4):FRCQ+at(trait,4):ACT20z:B_S+at(trait,4):ACT20pz:B_S+at(trait,4):TEMPz:B_S845 
+at(trait,4):FRCz:B_S+ 846 

at(trait,6):ACT20z+at(trait,6):ACT20pz+at(trait,6):TEMPz+at(trait,6):FRCz, 847 

     residual=~units:us(trait), 848 

      na.action = na.method(y=c("include"), x=c("include")),data=MAL_DATA) 849 

 850 

summary(MAL_MODEL_Q) 851 

 852 

###### Step 3: Extraction of covariance estimates 853 
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MAL_MATRIX_Q<-matrix(NA,ncol=6,nrow=6) 854 

MAL_Element_Q<-summary(MAL_MODEL_Q)$varcomp$component[2:22] 855 

MAL_MATRIX_Q[upper.tri(MAL_MATRIX_Q, diag=T)==T]<-as.numeric(MAL_Element_Q) 856 

MAL_MATRIX_Q[lower.tri(MAL_MATRIX_Q)==T]<-857 
t(MAL_MATRIX_Q)[lower.tri(MAL_MATRIX_Q)==T] 858 

MAL_MATRIX_Q 859 

 860 

###### Step 4: Calculation of the non-linear selection gradients 861 

MAL_P_Q   <-MAL_MATRIX_Q[-1,-1] 862 

MAL_COV_Q <-MAL_MATRIX_Q[1,2:6] 863 

MAL_GAMMA <-ginv(MAL_P_Q)%*%MAL_COV_Q 864 

MAL_GAMMA <-MAL_GAMMA*c(1,1,2,2,1) 865 

 866 

#please contact us (see above) if you need more information about: 867 

# the bootstrap method 868 

# the likelihood ratio tests 869 

# that we used in the paper (not provided here) 870 

 871 


