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Abstract
We obtain the asymptotic main term of moments of arbitrary derivatives of L-functions in the
function field setting. Specifically, we obtain the first, second, and mixed fourth moments.
The average is taken over all non-trivial characters of a prime modulus Q ∈ Fq [T ], and the
asymptotic limit is as deg Q −→ ∞. This extends the work of Tamam who obtained the
asymptotic main term of low moments of L-functions, without derivatives, in the function
field setting. It is also the function field q-analogue of the work of Conrey, who obtained the
fourth moment of derivatives of the Riemann zeta-function.
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1 Introduction

The moments of families of L-functions are part of an important area of research in analytic
number theory. The moments of the Riemann zeta-function, averaged over the critical line,
have applications to areas such as zero density estimates and the proportion of zeros on the
critical line [12]. Furthermore, the Lindelöf hypothesis can be expressed in terms of such
moments. One can also study moments over families of L-functions that are evaluated at the
central point, which has applications to the non-vanishing of L-functions at the central point.

In 1916, Hardy and Littlewood [13] proved that

1

T

∫ T

0

∣∣∣∣ζ
(
1

2
+ i t

)∣∣∣∣
2

dt ∼ log T

as T −→ ∞. In 1926, Ingham [16] expanded on this by proving that

1

T

∫ T

0

∣∣∣∣ζ
(
1

2
+ i t

)∣∣∣∣
4

dt ∼ 1

2π
log4 T

as T −→ ∞. In 1979, Heath-Brown [14] obtained lower order terms for the fourth moment
above. Results for moments of powers greater than 4 have resisted the attempts of mathe-
maticians for many years. Indeed, at this time, we can only conjecture such results. In 2000,
Keating and Snaith [18] conjectured, using random matrix theory, the asymptotic main term
for all even moments:

1

T

∫ T

t=0

∣∣∣ζ
(
1

2
+ i t

) ∣∣∣2kdt ∼ ak
G2(1 + k)

G(1 + 2k)
(log T )k

2
(1)

as deg T −→ ∞, where

ak :=
∏

p prime

(
1 − 1

p

)k2 ∞∑
m=0

dk(pm)2

pm
, (2)

dk(a) is the number of ways of expressing a as a product of k factors, and G is the Barnes
G-function. The factor of ak above does not occur in a natural way via the method in [18].

Indeed, randommatrix theory allows us to conjecture the factor G2(1+k)
G(1+2k) , and the fact that we

must then include the factor ak can be seen from other results. However, this was addressed
by Gonek, Hughes, and Keating [11] where they developed a method for conjecturing the
main term of the even moments of ζ(s) in such a way that all factors appear naturally. They
give an Euler–Hadamard hybrid formula for the ζ(s). That is, they express ζ(s) as, roughly, a
partial product over primes multiplied by a partial product over the zeros of ζ(s). The former
contributes the factor ak , while random matrix theory is used to conjecture that the latter

contributes the factor G2(1+k)
G(1+2k) .

With regards to moments over families of L-functions, we briefly consider the family of
Dirichlet L-functions, as that is the focus of this paper. Paley [22] is accredited to proving
that

1

φ∗(q)

∑∗

χ mod q

∣∣∣L
(
1

2
, χ

) ∣∣∣2 ∼ φ(q)

q
log q

as q −→ ∞. Here, the sum is over all primitive characters of modulus q; φ∗(q) is the
number of primitive characters of modulus q; φ is the totient function; and L(s, χ) is the
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Dirichlet L-function associated to the character χ . Extending the work of Heath-Brown [15],
Soundararajan [24] proved that

1

φ∗(q)

∑∗

χ mod q

∣∣∣L
(
1

2
, χ

) ∣∣∣4 ∼ 1

2π2

∏
p|q

(1 − p−1)3

1 + p−1 (log q)4. (3)

More recently, Young [26] obtained lower order terms for the fourth moment above. By
adapting the method of [11], Bui and Keating [6] conjectured the main term of all even
moments of Dirichlet L-functions at 1

2 :

1

φ∗(q)

∑∗

χ mod q

∣∣∣L
(
1

2
, χ

) ∣∣∣2k ∼ ak
G2(1 + k)

G(1 + 2k)

∏
p|q

( ∞∑
m=0

dk(pm)2

pm

)−1

(log q)k
2
.

We note a similarity between the above and (1). The reason for this is that the family of
Dirichlet L-functions and the Riemann zeta function share the same symmetry [7, Section
1], which we briefly touch upon later.

We must also remark that derivatives of L-functions are an important area of study. The
derivative of ζ(s) plays a key role in obtaining positive lower bounds for the proportion
of non-trivial zeros of ζ(s) on the critical line [4,9,20]. Furthermore, discrete moments of
ζ ′(s), where one averages over the zeros of ζ(s), can be used to understand the number of
simple zeros of ζ(s) on the critical line (see [12] for a brief explanation of this and other
related results). The derivatives of Dirichlet L-functions are of interest because this family
of L-functions shares the same symmetry as the Riemann zeta function, and so there are
analogies between their derivatives as well. Moments of derivatives of Dirichlet L-functions
at central point of 1

2 have applications to the non-vanishing of these derivatives at that point.
More generally, for some results on the moments of derivatives of automorphic L-functions
and applications, we refer the reader to [21]. We now reference two results that we require
for comparisons that we will make later. Conrey, Rubinstein, and Snaith [10] conjectured,
using random matrix theory, that, for positive integers k,

1

T

∫ T

t=0

∣∣∣ζ ′
(
1

2
+ i t

) ∣∣∣2kdt ∼ akbk(log T )k
2+2k (4)

as deg T −→ ∞, where ak is as in (2) and values for b1, b2, . . . , b15 are explicitly given. In
particular,

b1 = 1

3
, b2 = 61

25 · 32 · 5 · 7 .

This is consistent with a rigorously established result of Conrey [8]:

1

T

∫ T

t=0

∣∣∣ζ ′
(
1

2
+ i t

) ∣∣∣4dt ∼ ak
61

25 · 32 · 5 · 7 (log T )8. (5)

Conrey also showed that

π2

6
C2,m ∼ 1

16m4 (6)

as m −→ ∞, where

C2,m = lim
T−→∞ T−1

(
log

(
T

2π

))−4m−4 ∫ T

t=1

∣∣∣ζ (m)

(
1

2
+ i t

) ∣∣∣4dt .
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There is another setting in which one can study L-functions: The function field setting.
Here, our L-functions are defined as sums over monic polynomials from an appropriate
polynomial ring. For details and notation, see Sect. 2. There are many analogies between
the classical setting and the function field setting, including an analogue of the Riemann
hypothesis (one of the conjectures of Weil), which has been proved (first by Deligne). L-
functions in function fields also play a crucial role in our understanding of the symmetries of
families of L-functions in both the classical and function field settings. Indeed, for families of
classical L-functions, onemust consider their functionfield analogue, forwhichwe can obtain
indications as to their symmetry because, in this setting, we have a spectral interpretation of
the zeros of the L-functions. For details, we refer the reader to the work of Katz and Sarnak
[17], as well as Conrey and Farmer [7].

We now give a brief description of some of the results regarding moments of L-functions
in the function field setting. Tamam [25] obtained a special case of the function field analogue
of (3):

1

φ(Q)

∑∗

χ mod Q

∣∣∣L
(
1

2
, χ

) ∣∣∣4 = 1 − q−1

12
(deg Q)4 + O

(
(deg Q)3

)

as deg Q −→ ∞ with Q being prime. Andrade and Yiasemides [3] generalised this to the
full analogue of Soundararajan’s result, by removing the restriction that Q be prime. As we
will soon see, this current paper considers another generalisation of Tamam’s result. Namely,
we still impose that Q is prime, but we consider arbitrary derivatives of the L-functions
instead of the L-function itself. A function field analogue of [6] can be found in the thesis
of Yiasemides (yet to be published), where conjectures of all even moments of Dirichlet
L-functions in function fields are given, as well as an extension of this to the first derivatives
of the L-functions. With regards to moments of the family of quadratic Dirichlet L-functions
in function fields, we refer the reader to the work of Andrade and Keating [1,2], and to the
work of Bui and Florea [5] for an approach to conjecturing higher moments via the method
of the Euler–Hadamard hybrid formula.

These are but a few of the many results regarding moments of L-functions in function
fields. For an introduction to number theory in function fields, we refer the reader to the book
by Rosen [23].

2 Notation and statement of results

Henceforth, q will represent an integer prime power, not equal to 2. For all such q we have a
finite field of order q , denoted by Fq . The polynomial ring over this finite field is denoted by
Fq [T ], but, as we are working with a general prime power q �= 2, we will simply writeA for
Fq [T ]. The subset of monic polynomials is denoted byM. The degree of a polynomial is the
standard definition, although we do not define it for the zero polynomial. Hence, the range
deg A ≤ n, for any non-negative integer n, does not include the case A = 0. For A ∈ A\{0}
we define the norm of A as |A| := qdeg A, and for A = 0 we define |0| := 0.

Generally, we reserve upper-case letters for elements of A, and the letters P and Q are
reserved for prime polynomials. Note that primality and irreducibility are equivalent as A
is a Euclidean domain. In this paper, the term “prime” is taken to mean “monic prime”. We
denote the set of monic primes in A by P . The expression deg Q −→ ∞ should be taken to
mean “deg Q −→ ∞ with Q being prime”. For A, B ∈ A we denote the highest common
factor and lowest common multiple by (A, B) and [A, B], respectively.
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For a subsetS ⊆ Awe define, for all non-negative integers n,Sn := {A ∈ S : deg A = n}.
We identify A0 with Fq\{0} = Fq

∗. For a k-times differentiable function f (x), we defined
f (k)(x) to be its k-th derivative.
We use the “big O” and “little o” notation, and subscripts demonstrate the dependencies

of the implied constant. That is, suppose we have functions f (x) and g(x) with the same
domain D. Then,wewrite f (x) = O

(
g(x)

)
or f (x) � g(x) if and only if there is exists some

positive constant c such that | f (x)| ≤ c|g(x)| for all x ∈ D. If, instead, we have functions
fk(x) and gk(x) that depend on some parameter k, then we write fk(x) = O

(
gk(x)

)
or

fk(x) � gk(x) if and only if there exists some positive constant c such that for all k and
all x ∈ D we have | fk(x)| ≤ c|gk(x)|. Also, if only fk(x) is dependent on k, and g(x) is
not, then we write fk(x) = Ok

(
g(x)

)
or fk(x) �k g(x) if and only if for all k there exists

some positive constant ck such that for all x ∈ D we have | fk(x)| ≤ ck |g(x)|. Usually, the
parameter that our functions may depend on will be the prime power q , and our implied
constant will in fact be independent of q . The expression “ f (x) ∼ g(x) as x −→ ∞” is
taken to mean limx−→∞ f (x)

g(x) = 1.

Definition 2.1 (Dirichlet character) Let R ∈ M. A Dirichlet character on A of modulus R
is a function χ : A −→ C

∗ satisfying the following properties for all A, B ∈ A:

(1) χ(A) = χ(B) if A ≡ B(mod R);
(2) χ(AB) = χ(A)χ(B);
(3) χ(A) = 0 if and only if (A, R) �= 1.

We denote a sum over all characters of modulus R by
∑

χ mod R . Also, note that we can
view χ as a function onA/RA, which follows naturally from point (1) above. This will allow
us to use expressions such as χ(A−1) when A ∈ (A/RA)∗.

We say χ is the trivial character of modulus R if χ(A) = 1 for all A ∈ A satisfying
(A, R) = 1, and we denote such characters by χ0 (the dependence on the modulus R is not
shown with this notation, but when used it will be clear what the associated modulus is).
We define the even characters to be those characters χ satisfying χ(a) = 1 for all a ∈ F

∗
q .

Otherwise, we say that the character is odd. It can be shown that there are φ(R) characters
of modulus R and φ(R)

q−1 even characters of modulus R, where φ is the totient function. This
follows from the fact that a finite abelian group is isomorphic to its dual. Specifically, we
refer the reader to Theorem 9.1 and Corollary 9.3 of [19], where one should take the abelian
group in the theorem to be (A/RA)∗ and the subgroup in the corollary to be F∗

q .
Now, suppose χ is a character of modulus R ∈ M and further suppose that S | R. We say

that S is an induced modulus of χ if there exists a character χ1 of modulus S such that

χ(A) =
{

χ1(A) if (A, R) = 1

0 otherwise.

We say that χ is primitive if there is no induced modulus of strictly smaller degree than R.
Otherwise, χ is said to be non-primitive. We denote the number of primitive characters of
modulus R by φ∗(R). We note that all trivial characters of modulus R ∈ M\{1} are non-
primitive as they are induced by the character of modulus 1. We also note that if Q is prime,
then the only non-primitive character of modulus Q is the trivial character of modulus Q. In
particular, if Q is prime then φ∗(Q) = φ(Q) − 1 ∼ φ(Q) as deg Q −→ ∞. We denote a

sum over all primitive characters χ of modulus R by
∑∗

χ mod R
, and if Q is prime then it

is equivalent to write
∑

χ mod Q
χ �=χ0

.
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Definition 2.2 (Dirichlet L-function) Let χ be a Dirichlet character of modulus R. We define
the associated Dirichlet L-function as follows: For all Re(s) > 1,

L(s, χ) :=
∑
A∈M

χ(A)

|A|s =
∞∑
n=0

Ln(χ)(q−s)n,

where

Ln(χ) :=
∑
A∈M

deg A=n

χ(A).

This has an analytic continuation toC for non-trivial characters, and toC\{1+ 2nπ i
log q : n ∈ Z}

for trivial characters.

Definition 2.3 (Riemann Zeta-function in Fq [T ]) When χ is the Dirichlet character of mod-
ulus 1, then the associated Dirichlet L-function is simply the Riemann zeta-function on A,
namely

ζA(s) :=
∑
A∈M

1

|A|s .

We now state the main results of this paper.

Theorem 2.4 For all positive integers k, we have that

1

φ(Q)

∑
χ mod Q
χ �=χ0

L(k)
(
1

2
, χ

)
= −(− log q)k

q
1
2 − 1

(deg Q)k

|Q| 12
+ Ok

(
(log q)k

(deg Q)k−1

|Q| 12

)
.

Theorem 2.5 For all positive integers k we have that

1

φ(Q)

∑
χ mod Q
χ �=χ0

∣∣∣∣L(k)
(
1

2
, χ

)∣∣∣∣
2

= (log q)2k

2k + 1
(deg Q)2k+1 + O

(
(log q)2k(deg Q)2k

)
.

Theorem 2.6 For all non-negative integers k, l we have that

1

φ(Q)

1

(log q)2k+2l

∑
χ mod Q
χ �=χ0

∣∣∣L(k)
(
1

2
, χ

) ∣∣∣2
∣∣∣L(l)

(
1

2
, χ

) ∣∣∣2

=(1 − q−1)(deg Q)2k+2l+4

×
∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

fk
(
a1 + a3, a1 + a4, 1

)
fl
(
a2 + a4, a2 + a3, 1

)
da1da2da3da4

+ Ok,l

(
(deg Q)2k+2l+ 7

2

)
,

where for all non-negative integers i we define

fi
(
x, y, z

) = xi yi + (z − x)i (z − y)i .
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Notice the similarity between the conjecture (4) for k = 1, 2 and Conrey’s result (5), and
the corresponding special cases of our results:

1

φ(Q)

∑
χ mod Q
χ �=χ0

∣∣∣∣L ′
(
1

2
, χ

)∣∣∣∣
2

∼ (log q)2
1

3
(deg Q)3

and

1

φ(Q)

∑
χ mod Q
χ �=χ0

∣∣∣∣L ′
(
1

2
, χ

)∣∣∣∣
4

∼ (log q)4(1 − q−1)
61

25 · 32 · 5 · 7 (deg Q)8.

This is not surprising given that the Riemann zeta-function and the family of Dirichlet L-
functions share the same symmetry, as mentioned previously.

We also prove the following result:

Theorem 2.7 For all non-negative integers m we define

Dm := lim
deg Q−→∞

1

(1 − q−1)(log q)4m

1

φ(Q)

1

(deg Q)4m+4

∑
χ mod Q
χ �=χ0

∣∣∣L(m)

(
1

2
, χ

) ∣∣∣4

=
∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

(
(a1 + a3)

m(a1 + a4)
m + (1 − a1 − a3)

m(1 − a1 − a4)
m)

× (
(a2 + a3)

m(a2 + a4)
m + (1 − a2 − a3)

m(1 − a2 − a4)
m)

da1da2da3da4.

(7)

We have that

Dm ∼ 1

16m4

as m −→ ∞.

We note the similarity between our result and (6). Note that the factor of ζ(2) = π2

6 in (6)
corresponds to the factor of ζA(2) = 1

1−q−1 in our definition of Dm .

3 Preliminary results

The following results are well known and, for many, the proofs can be found in Rosen’s book
[23].

Lemma 3.1 Let χ be a non-trivial Dirichlet character modulo R ∈ M. Then,
∑

A∈A/RA
χ(A) =

∑
A∈(A/RA)∗

χ(A) = 0.

Lemma 3.2 Let χ be an odd Dirichlet character. Then,
∑
a∈Fq

χ(a) =
∑
a∈Fq ∗

χ(a) = 0.
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Lemma 3.3 Let R ∈ M. Then,

∑
χ mod R

χ(A) =
{

φ(R) if A ≡ 1(mod R)

0 otherwise,

and, if we also have R �= 1,

∑
χ mod R
χ even

χ(A) =
{

φ(R)
q−1 if A ≡ a(mod R) for some a ∈ (Fq)

∗

0 otherwise.

Corollary 3.4 Let R ∈ M. Then,

∑
χ mod R

χ(A)χ(B) =
{

φ(R) if (AB, R) = 1 and A ≡ B(mod R)

0 otherwise,

and, if we also have R �= 1,

∑
χ mod R
χ even

χ(A)χ(B) =
{

φ(R)
q−1 if (AB, R) = 1 and A ≡ aB(mod R) for some a ∈ (Fq)

∗

0 otherwise.

Lemma 3.5 We have that

ζA(s) = 1

1 − q1−s
,

and this gives an analytic continuation of ζA to C\{1 + 2nπ i
log q : n ∈ Z}. We also have the

following Euler product for Re(s) > 1:

ζA(s) =
∏
P∈P

(
1 − |P|−s)−1

.

Lemma 3.5 can be generalised to the following:

Lemma 3.6 Let R ∈ M and let χ be a Dirichlet character of modulus R. If χ = χ0 then we
have

L(s, χ0) =
⎛
⎝∏

P|R
1 + |P|−s

⎞
⎠ ζA(s).

If χ �= χ0 then we have

L(s, χ) =
∑
A∈M

deg A<deg R

χ(A)

|A|s .

We can now see how the analytic continuations given in the introduction are obtained.

Lemma 3.7 For Re(r),Re(s) > 1, we have that

∑
R,S∈M
(R,S)=1

1

|R|r |S|s =
( ∑
R∈M

1

|R|r
) ( ∑

S∈M

1

|S|s
) (

1 − q1−r−s) .
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Proof We have that

∑
R,S∈M

1

|R|r |S|s =
∑
G∈M

∑
R,S∈M
(R,S)=G

1

|R|r |S|s =
∑
G∈M

1

|G|r |G|s
∑

R,S∈M
(R,S)=1

1

|R|r |S|s

=
( ∑
G∈M

1

|G|r+s

) ⎛
⎜⎜⎝

∑
R,S∈M
(R,S)=1

1

|R|r |S|s

⎞
⎟⎟⎠ .

From this we easily deduce that

∑
R,S∈M
(R,S)=1

1

|R|r |S|s =
⎛
⎝ ∑

R,S∈M

1

|R|r |S|s

⎞
⎠

( ∑
G∈M

1

|G|r+s

)−1

=
( ∑
R∈M

1

|R|r
) ( ∑

S∈M

1

|S|s
) (

1 − q1−r−s) .

��

4 First moments

To prove Theorem 2.4 we will require the following lemma.

Lemma 4.1 For all positive integers k we have that
deg Q−1∑
n=0

nkq
n
2 = 1

q
1
2 − 1

(deg Q)k |Q| 12 + Ok

(
(deg Q)k−1|Q| 12

)
.

Proof We have that

deg Q−1∑
n=0

nkq
n
2 = 1

q
1
2 − 1

deg Q−1∑
n=0

(
nkq

n+1
2 − nkq

n
2

)

= 1

q
1
2 − 1

deg Q−1∑
n=0

(
(n + 1)kq

n+1
2 − nkq

n
2

)

− 1

q
1
2 − 1

deg Q−1∑
n=0

(
(n + 1)kq

n+1
2 − nkq

n+1
2

)

= 1

q
1
2 − 1

(deg Q)k |Q| 12 + O

⎛
⎝k−1∑

i=0

(
k

i

)
(deg Q)i

deg Q−1∑
n=0

q
n+1
2

⎞
⎠

= 1

q
1
2 − 1

(deg Q)k |Q| 12 + Ok

(
(deg Q)k−1|Q| 12

)
.

��
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Proof of Theorem 2.4 We can easily see that

L(k)(s, χ) = (− log q)k
deg Q−1∑
n=1

nkq−ns
∑
A∈M

deg A=n

χ(A),

from which we deduce that

1

φ(Q)

∑
χ mod Q
χ �=χ0

L(k)
(
1

2
, χ

)
= (− log q)k

φ(Q)

deg Q−1∑
n=1

nkq− n
2

∑
A∈M

deg A=n

∑
χ mod Q
χ �=χ0

χ(A)

= − (− log q)k

φ(Q)

deg Q−1∑
n=1

nkq− n
2

∑
A∈M

deg A=n

1

= − (− log q)k

q
1
2 − 1

(deg Q)k

|Q| 12
+ Ok

(
(log q)k

(deg Q)k−1

|Q| 12

)
.

For the second equality we used Lemma 3.3, and for the last equality we used Lemma 4.1
and the fact that φ(Q) = |Q| − 1 (since Q is prime). ��

5 Secondmoments

Proof of Theorem 2.5 For positive integers k we have that

L(k)
(
1

2
, χ

)
= (− log q)k

deg Q−1∑
n=1

nkq− n
2

∑
A∈M

deg A=n

χ(A)

= (− log q)k
∑
A∈M

deg A<deg Q

(logq |A|)kχ(A)

|A| 12
,

and so

1

φ(Q)

∑
χ mod Q
χ �=χ0

∣∣∣∣L(k)
(
1

2
, χ

)∣∣∣∣
2

= (log q)2k

φ(Q)

∑
A,B∈M

deg A,deg B<deg Q

(logq |A| logq |B|)k
|AB| 12

∑
χ mod Q
χ �=χ0

χ(A)χ(B).

We now apply Corollary 3.4 to obtain that

1

φ(Q)

∑
χ mod Q
χ �=χ0

∣∣∣∣L(k)
(
1

2
, χ

)∣∣∣∣
2

= (log q)2k
∑
A∈M

deg A<deg Q

(logq |A|)2k
|A| − (log q)2k

φ(Q)

∑
A,B∈M

deg A,deg B<deg Q

(logq |A| logq |B|)k
|AB| 12

.
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For the first term on the RHS we have that

∑
A∈M

deg A<deg Q

(logq |A|)2k
|A| =

deg Q−1∑
n=0

n2k = 1

2k + 1
(deg Q)2k+1 + O

(
(deg Q)2k

)
,

where the final equality uses Faulhaber’s formula. For the second term we have that

1

φ(Q)

∑
A,B∈M

deg A,deg B<deg Q

(logq |A| logq |B|)k
|AB| 12

= 1

φ(Q)

⎛
⎝

deg Q−1∑
n=0

nkq
n
2

⎞
⎠

2

≤ 1

φ(Q)

⎛
⎝(deg Q)k

deg Q−1∑
n=0

q
n
2

⎞
⎠

2

� 1

φ(Q)

(
(deg Q)k |Q| 12 )2 � (deg Q)2k .

The result now follows. ��

6 Fourthmoments: expressing as manageable summations

Before proceeding to the main part of the proof for the fourth moments, we need to express
the fourth moments as more manageable summations.

A generalisation of the following theorem appears in Rosen’s book [23, Theorem 9.24 A].

Theorem 6.1 (Functional Equation for L(s, χ)) Let χ be a non-trivial character with mod-
ulus Q ∈ P . If χ is an odd character, then L(s, χ) satisfies the functional equation

L(s, χ) = W (χ)q
deg Q−1

2 (q−s)deg Q−1L(1 − s, χ),

and if χ is an even character, then L(s, χ) satisfies the functional equation

(q1−s − 1)L(s, χ) = W (χ)q
deg Q
2 (q−s − 1)(q−s)deg Q−1L(1 − s, χ);

where we always have

|W (χ)| = 1.

Lemma 6.2 Letχ be an odd character of modulus Q ∈ P , and let k be a non-negative integer.
Then,

(log q)−2k
∣∣∣L(k)

(
1

2
, χ

) ∣∣∣2

=
∑

A,B∈M
deg AB<deg Q

(
fk

(
deg A, deg B, deg Q

) + gO,k
(
deg A, deg B, deg Q

))
χ(A)χ(B)

|AB| 12

+
∑

A,B∈M
deg AB=deg Q−1

hO,k
(
deg A, deg B, deg Q

)
χ(A)χ(B)

|AB| 12
,

where

fk
(
deg A, deg B, deg Q

) = (deg A)k(deg B)k + (deg Q − deg A)k(deg Q − deg B)k,
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gO,k
(
deg A, deg B, deg Q

) = (deg Q − deg A − 1)k(deg Q − deg B − 1)k

− (deg Q − deg A)k(deg Q − deg B)k,

hO,k
(
deg A, deg B, deg Q

) = −(deg Q − deg A − 1)k(deg Q − deg B − 1)k .

Remark 6.3 The “O” in the subscript is to signify that these polynomials apply to the odd
character case. It is important to note that gO,k

(
deg A, deg B, deg Q

)
has degree 2k − 1,

whereas fk
(
deg A, deg B, deg Q

)
has degree 2k (hence, the later ultimately contributes the

higher order term); and that all three polynomials are independent of q .

Proof The functional equation gives us that

deg Q−1∑
n=0

Ln(χ)(q−s)n = W (χ)q
deg Q−1

2 (q−s)deg Q−1
deg Q−1∑
n=0

Ln(χ)(qs−1)n

= W (χ)q− deg Q−1
2

deg Q−1∑
n=0

Ln(χ)(q1−s)deg Q−n−1.

Taking the kth derivative of both sides gives

(− log q)k
deg Q−1∑
n=0

nk Ln(χ)(q−s)n

= (− log q)kW (χ)q− deg Q−1
2

deg Q−1∑
n=0

(deg Q − n − 1)k Ln(χ)(q1−s)deg Q−n−1.

Let us now take the squared modulus of both sides. In order to make our calculations slightly
easier, we restrict our attention to the case where s ∈ R. We obtain

(log q)2k
2 deg Q−2∑

n=0

⎛
⎜⎜⎝

∑
i+ j=n

0≤i, j<deg Q

ik jk Li (χ)L j (χ)

⎞
⎟⎟⎠ (q−s)n

= (log q)2kq− deg Q+1

2 deg Q−2∑
n=0

⎛
⎜⎜⎝

∑
i+ j=n

0≤i, j<deg Q

(deg Q − i − 1)k(deg Q− j − 1)k Li (χ)L j (χ)

⎞
⎟⎟⎠ (q1−s)2 deg Q−n−2.

Both sides of the above are equal to
∣∣L(k)(s, χ)

∣∣2. By the linear independence of

powers of q−s , we have that
∣∣L(k)(s, χ)

∣∣2 is the sum of the terms corresponding to
n = 0, 1, . . . , deg Q − 1 from the LHS and n = 0, 1, . . . , deg Q − 2 from the RHS. This
gives
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(log q)−2k
∣∣L(k)(s, χ)

∣∣2

=
deg Q−1∑
n=0

( ∑
i+ j=n

0≤i, j<deg Q

ik jk Li (χ)L j (χ)

)
(q−s)n

+ q− deg Q+1
deg Q−2∑
n=0

( ∑
i+ j=n

0≤i, j<deg Q

(deg Q−i−1)k(deg Q− j−1)k Li (χ)L j (χ)

)
(q1−s)2 deg Q−n−2.

We now substitute s = 1
2 and simplify the right-hand-side to obtain

(log q)−2k
∣∣∣L(k)

(
1

2
, χ

) ∣∣∣2

=
deg Q−1∑
n=0

⎛
⎜⎜⎝

∑
i+ j=n

0≤i, j<deg Q

ik jk Li (χ)L j (χ)

⎞
⎟⎟⎠ q− n

2

+
deg Q−2∑
n=0

⎛
⎜⎜⎝

∑
i+ j=n

0≤i, j<deg Q

(deg Q − i − 1)k(deg Q − j − 1)k Li (χ)L j (χ)

⎞
⎟⎟⎠ q− n

2

=
deg Q−1∑
n=0

⎛
⎜⎜⎝

∑
i+ j=n

0≤i, j<deg Q

[
i k j k + (deg Q − i − 1)k(deg Q − j − 1)k

]
Li (χ)L j (χ)

⎞
⎟⎟⎠ q− n

2

−
∑

i+ j=deg Q−1
0≤i, j<deg Q

(deg Q − i − 1)k(deg Q − j − 1)k Li (χ)L j (χ)q− deg Q−1
2 .

Finally, we substitute back Ln(χ) = ∑
A∈M

deg A=n
χ(A) to obtain the required result. ��

Definition 6.4 For all s ∈ C and all non-trivial even characters, χ , of prime modulus we
define

L̂(s, χ) := (q1−s − 1)L(s, χ). (8)

Lemma 6.5 For all non-trivial even characters, χ , of prime modulus and all non-negative
integers k we have that

L(k)
(
1

2
, χ

)
= 1

q
1
2 − 1

L̂(k)
(
1

2
, χ

)
+ 1

q
1
2 − 1

k−1∑
i=0

(− log q)k−i pk,i

(
q

1
2

q
1
2 − 1

)
L̂(i)

(
1

2
, χ

)

= 1

q
1
2 − 1

k∑
i=0

(− log q)k−i pk,i

(
q

1
2

q
1
2 − 1

)
L̂(i)

(
1

2
, χ

)
,

where, for non-negative integers k, i satisfying i ≤ k, we define the polynomials pk,i by
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pk,k

(
q

1
2

q
1
2 − 1

)
= 1,

pk,i

(
q

1
2

q
1
2 − 1

)
= − q

1
2

q
1
2 − 1

k−1∑
j=i

(
k

j

)
p j,i

(
q

1
2

q
1
2 − 1

)
for i < k.

Remark 6.6 Because 1 ≤ q
1
2

q
1
2 −1

< 4 for all prime powers q , we can see that the polynomials

pk,i

(
q
1
2

q
1
2 −1

)
can be bounded independently of q (but dependent on k and i of course). The

factors (− log q)k−i are of course still dependent on q , as well as k and i . These two points
are important when we later determine how the lower order terms in our main results are
dependent on q .

Proof We prove this by strong induction on k. The base case, k = 0, is obvious by Defini-
tion 6.4. Now, suppose the claim holds for j = 0, 1, . . . , k. Differentiating, k + 1 number of
times, the Eq. (8) gives

L̂(k+1)(s, χ) = (q1−s − 1)L(k+1)(s, χ) + q1−s
k∑
j=0

(
k + 1

j

)
(− log q)k+1− j L( j)(s, χ).

Substituting s = 1
2 and rearranging gives

L(k+1)
(
1

2
, χ

)
= 1

q
1
2 − 1

L̂(k+1)
(
1

2
, χ

)
− q

1
2

q
1
2 − 1

k∑
j=0

(
k + 1

j

)
(− log q)k+1− j L( j)

(
1

2
, χ

)
.

We now apply the inductive hypothesis to obtain

L(k+1)
(
1

2
, χ

)

= 1

q
1
2 −1

L̂(k+1)
(
1

2
, χ

)

− q
1
2

q
1
2 −1

k∑
j=0

(
k + 1

j

)
(− log q)k+1− j 1

q
1
2 − 1

j∑
i=0

(− log q) j−i p j,i

(
q

1
2

q
1
2 −1

)
L̂(i)

(
1

2
, χ

)

= 1

q
1
2 − 1

L̂(k+1)
(
1

2
, χ

)

+ 1

q
1
2 − 1

k∑
i=0

(− log q)k+1−i

⎛
⎝− q

1
2

q
1
2 − 1

k∑
j=i

(
k + 1

j

)
p j,i

(
q

1
2

q
1
2 − 1

)⎞
⎠ L̂(i)

(
1

2
, χ

)
.

The result follows by the definition of the polynomials pk,i . ��

Lemma 6.7 For all non-negative integers k, and all non-trivial even characters χ of modulus
Q ∈ P , we have that
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1

(log q)2k(q
1
2 − 1)2

∣∣∣L̂(k)
(
1

2
, χ

) ∣∣∣2

=
∑

A,B∈M
deg AB<deg Q

(
fk

(
deg A, deg B, deg Q

) + gE,k
(
deg A, deg B, deg Q

))
χ(A)χ(B)

|AB| 12

+
∑

deg Q−2≤n≤deg Q

∑
A,B∈M
deg AB=n

hE,k,n
(
deg A, deg B, deg Q

)
χ(A)χ(B)

|AB| 12
,

where

fk
(
deg A, deg B, deg Q

) = (deg A)k(deg B)k + (deg Q − deg A)k(deg Q − deg B)k,

and gE,k
(
deg A, deg B, deg Q

)
, hE,k,n

(
deg A, deg B, deg Q

)
are polynomials of degrees

2k − 1 and 2k, respectively, whose coefficients can be bounded independently of q.

Proof Let us define L−1(χ) := 0, and recall from Lemma 3.6 that Ldeg Q(χ) = 0. We can
now define, for n = 0, 1, . . . , deg Q,

Mn(χ) := Ln(χ) − qLn−1(χ).

Then, the functional equation for even characters can be written as

−
deg Q∑
n=0

Mn(χ)(q−s)n = W (χ)q− deg Q
2

deg Q∑
n=0

Mn(χ)(q1−s)deg Q−n . (9)

Note that both sides of (9) are equal to L̂(s, χ). We proceed similarly to the odd character
case. First we differentiate, k number of times, the Eq. (9); and then we take the modulus
squared of both sides. Again, in order to make our calculations slightly easier, we restrict our
attention to the case where s ∈ R. We obtain

(log q)2k
2 deg Q∑
n=0

⎛
⎜⎜⎝

∑
i+ j=n

0≤i, j≤deg Q

ik jkMi (χ)Mj (χ)

⎞
⎟⎟⎠ (q−s)n

= (log q)2kq− deg Q
2 deg Q∑
n=0

⎛
⎜⎜⎝

∑
i+ j=n

0≤i, j≤deg Q

(deg Q − i)k(deg Q − j)kMi (χ)Mj (χ)

⎞
⎟⎟⎠ (q1−s)2 deg Q−n .

Now we take the terms corresponding to n = 0, 1, . . . , deg Q from the LHS and n =
0, 1, . . . , deg Q − 1 from the RHS to obtain

L̂(k)(s, χ) = (log q)2k
deg Q∑
n=0

⎛
⎜⎜⎝

∑
i+ j=n

0≤i, j≤deg Q

ik jk Mi (χ)Mj (χ)

⎞
⎟⎟⎠ (q−s)n

+ (log q)2kq− deg Q
deg Q−1∑
n=0

⎛
⎜⎜⎝

∑
i+ j=n

0≤i, j≤deg Q

(deg Q − i)k(deg Q − j)k Mi (χ)Mj (χ)

⎞
⎟⎟⎠ (q1−s)2 deg Q−n .
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Substituting s = 1
2 and simplifying the RHS gives

L̂(k)
(
1

2
, χ

)
= (log q)2k

deg Q−1∑
n=0

⎛
⎜⎜⎝

∑
i+ j=n

0≤i, j≤deg Q

(
i k j k + (deg Q − i)k(deg Q − j)k

)
Mi (χ)Mj (χ)

⎞
⎟⎟⎠ q− n

2

+ (log q)2k
∑

i+ j=deg Q
0≤i, j≤deg Q

ik jkMi (χ)Mj (χ)q− deg Q
2 .

(10)

Now, we want factors such as Ln(χ) in our expression, as opposed to factors like Mn(χ).
To this end, suppose p(i, j) is a finite polynomial. Then,

deg Q−1∑
n=0

⎛
⎜⎜⎝

∑
i+ j=n

0≤i, j≤deg Q

p(i, j)Mi (χ)Mj (χ)

⎞
⎟⎟⎠ q− n

2

=
deg Q−1∑
n=0

⎛
⎜⎜⎝

∑
i+ j=n

0≤i, j≤deg Q

p(i, j) (Li (χ) − qLi−1(χ))
(
L j (χ) − qL j−1(χ)

)
⎞
⎟⎟⎠ q− n

2

=
deg Q−1∑
n=0

⎛
⎜⎜⎝

∑
i+ j=n

0≤i, j≤deg Q

p(i, j)Li (χ)L j (χ)

⎞
⎟⎟⎠ q− n

2

+
deg Q−3∑
n=0

⎛
⎜⎜⎝

∑
i+ j=n

0≤i, j≤deg Q

p(i + 1, j + 1)Li (χ)L j (χ)

⎞
⎟⎟⎠ q− n−2

2

−
deg Q−2∑
n=0

⎛
⎜⎜⎝

∑
i+ j=n

0≤i, j≤deg Q

p(i, j + 1)Li (χ)L j (χ)

⎞
⎟⎟⎠ q− n−1

2

−
deg Q−2∑
n=0

⎛
⎜⎜⎝

∑
i+ j=n

0≤i, j≤deg Q

p(i + 1, j)Li (χ)L j (χ)

⎞
⎟⎟⎠ q− n−1

2 .

Grouping the terms together gives

deg Q−1∑
n=0

( ∑
i+ j=n

0≤i, j≤deg Q

p(i, j)Mi (χ)Mj (χ)

)
q− n

2

=
deg Q−1∑
n=0

( ∑
i+ j=n

0≤i, j≤deg Q

[
qp(i + 1, j + 1) − q

1
2 p(i, j + 1)

− q
1
2 p(i + 1, j) + p(i, j)

]
Li (χ)L j (χ)

)
q− n

2
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−
∑

i+ j=deg Q−2
0≤i, j≤deg Q

qp(i + 1, j + 1)Li (χ)L j (χ)q− deg Q−2
2

+
∑

i+ j=deg Q−1
0≤i, j≤deg Q

(
q

1
2 p(i, j + 1) + q

1
2 p(i + 1, j) − qp(i + 1, j + 1)

)
Li (χ)L j (χ)q

deg Q−1
2 .

In the case where

p(i, j) = i k j k + (deg Q − i)k(deg Q − j)k

we have that

qp(i + 1, j + 1) − q
1
2 p(i, j + 1) − q

1
2 p(i + 1, j) + p(i, j)

= (q
1
2 − 1)2

(
fk(i, j, deg Q) + gE,k(i, j, deg Q)

)
,

where gE,k(i, j, deg Q) is a polynomial of degree 2k −1 whose coefficients can be bounded
independently of q .

We can now see that (10) becomes

1

(log q)2k(q
1
2 − 1)2

L̂(k)
(
1

2
, χ

)

=
deg Q−1∑
n=0

⎛
⎜⎜⎝

∑
i+ j=n

0≤i, j≤deg Q

(
fk(i, j, deg Q) + gE,k(i, j, deg Q)

)
Li (χ)L j (χ)

⎞
⎟⎟⎠ q− n

2

+
deg Q∑

n=deg Q−2

⎛
⎜⎜⎝

∑
i+ j=n

0≤i, j≤deg Q

hE,k,n(i, j, deg Q)Li (χ)L j (χ)

⎞
⎟⎟⎠ q− n

2 ,

wherehE,k,n(i, j, deg Q) is a polynomial of degree kwhose coefficients can be bounded inde-
pendently of q . Finally, we substitute back Ln(χ) = ∑

A∈M
deg A=n

χ(A) to obtain the required

result. ��

7 Fourthmoments: handling the summations

We now demonstrate some techniques for handling the summations that we obtained in
Sect. 6.

Lemma 7.1 Let Q ∈ P , and let p1
(
deg A, deg B, deg Q

)
and p2

(
deg A, deg B, deg Q

)
be

finite polynomials (which, for presentational purposes, we will write as p1 and p2, except
when we need to use variables other than deg A, deg B, deg Q). Then,
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1

φ(Q)

∑
χ mod Q
χ �=χ0

⎛
⎜⎜⎝

∑
A,B∈M

deg AB<deg Q

p1 χ(A)χ(B)

|AB| 12

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∑
C,D∈M

degCD<deg Q

p2 χ(C)χ(D)

|CD| 12

⎞
⎟⎟⎠

=
∑

A,B,C,D∈M
deg AB<deg Q
degCD<deg Q

AC=BD

p1 p2

|ABCD| 12
+

∑
A,B,C,D∈M
deg AB<deg Q
degCD<deg Q
AC≡BD(mod Q)

AC �=BD

p1 p2

|ABCD| 12
− 1

φ(Q)

∑
A,B,C,D∈M
deg AB<deg Q
degCD<deg Q

p1 p2

|ABCD| 12
.

Proof This follows by expanding the brackets and applying Corollary 3.4 . ��
Lemma 7.2 Let p

(
deg A, deg B, degC, deg D, deg Q

)
be a finite homogeneous polynomial

of degree d. Then,

∑
A,B,C,D∈M
deg AB<deg Q
degCD<deg Q

AC=BD

p
(
deg A, deg B, degC, deg D, deg Q

)
|ABCD| 12

=(1 − q−1)(deg Q)d+4

×
∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

p
(
a1 + a3, a1 + a4, a2 + a4, a2 + a3, 1

)
da1da2da3da4 + Op

(
(deg Q)d+3).

Remark 7.3 The subscript p in Op should be interpreted as saying that the implied constant
is dependent on the coefficients of p.

Proof Consider the function f defined by

f (t1, t2, t3, t4) =
∑

A,B,C,D∈M
AC=BD

t1deg At2deg Bt3degC t4deg D

|ABCD| 12
(11)

with domain |ti | < 1
2q

− 1
2 . Note that AC = BD if and only if there exist G, H , R, S ∈ M

satisfying (R, S) = 1 and A = GR, B = GS, C = HS, D = HR. Hence,

f (t1, t2, t3, t4)

=
∑

G,H ,R,S∈M
(R,S)=1

t1degGRt2degGSt3deg HSt4deg HR

|GHRS|

=
∑

G,H ,R,S∈M

t1degGRt2degGSt3deg HSt4deg HR

|GHRS|

− q−1
∑

G,H ,R,S∈M

t1degGR+1t2degGS+1t3deg HS+1t4deg HR+1

|GHRS|
=

∑
a1,a2,a3,a4≥0

t1
a1+a3 t2

a1+a4 t3
a2+a4 t4

a2+a3

− q−1
∑

a1,a2,a3,a4≥0

t1
a1+a3+1t2

a1+a4+1t3
a2+a4+1t4

a2+a3+1,

(12)
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where the second equality follows by similar means as in the proof of Lemma 3.7.
Now, for i = 1, 2, 3, 4 we define the operator �i := ti

d
dti

. For non-negative integers

k1, k2, k3, k4 we can apply the operator �1
k1�2

k2�3
k3�4

k4 to (11) and (12) to obtain

∑
A,B,C,D∈M

AC=BD

(deg A)k1(deg B)k2(degC)k3(deg D)k4

|ABCD| 12
t1
deg At2

deg Bt3
degC t4

deg D

=
∑

a1,a2,a3,a4≥0

(a1 + a3)
k1(a1 + a4)

k2(a2 + a4)
k3(a2 + a3)

k4 t1
a1+a3 t2

a1+a4 t3
a2+a4 t4

a2+a3

− q−1
∑

a1,a2,a3,a4≥0

(a1 + a3 + 1)k1(a1 + a4 + 1)k2(a2 + a4 + 1)k3(a2 + a3 + 1)k4

× t1
a1+a3+1t2

a1+a4+1t3
a2+a4+1t4

a2+a3+1

= (1 − q−1)
∑

a1,a2,a3,a4≥0

(a1 + a3)
k1(a1 + a4)

k2(a2 + a4)
k3(a2 + a3)

k4

× t1
a1+a3 t2

a1+a4 t3
a2+a4 t4

a2+a3

+ q−1
∑

(a1,a2)=(0,0),(0,1),(1,0)
a3,a4≥0

(a1 + a3)
k1(a1 + a4)

k2(a2 + a4)
k3(a2 + a3)

k4

× t1
a1+a3 t2

a1+a4 t3
a2+a4 t4

a2+a3 .

From this we can deduce that if p
(
deg A, deg B, degC, deg D, deg Q

)
is a finite homoge-

neous polynomial of degree d , then

∑
A,B,C,D∈M

AC=BD

p
(
deg A, deg B, degC, deg D, deg Q

)
|ABCD| 12

t1
deg At2

deg Bt3
degC t4

deg D

= (1 − q−1)
∑

a1,a2,a3,a4≥0

p
(
a1 + a3, a1 + a4, a2 + a4, a2 + a3, deg Q

)
t1
a1+a3 t2

a1+a4 t3
a2+a4 t4

a2+a3

+ q−1
∑

(a1,a2)=(0,0),(0,1),(1,0)
a3,a4≥0

p
(
a1 + a3, a1 + a4, a2 + a4, a2 + a3, deg Q

)
t1
a1+a3 t2

a1+a4 t3
a2+a4 t4

a2+a3 .

Now, we can extract and sum the coefficients of t1i1 t2i2 t3i3 t4i4 for which i1 + i2 < deg Q
and i3 + i4 < deg Q to obtain

∑
A,B,C,D∈M
deg AB<deg Q
degCD<deg Q

AC=BD

p
(
deg A, deg B, degC, deg D, deg Q

)
|ABCD| 12

= (1 − q−1)
∑

a1,a2,a3,a4≥0
2a1+a3+a4<deg Q
2a2+a3+a4<deg Q

p
(
a1 + a3, a1 + a4, a2 + a4, a2 + a3, deg Q

)

+ q−1
∑

(a1,a2)=(0,0),(0,1),(1,0)
a3,a4≥0

2a1+a3+a4<deg Q
2a2+a3+a4<deg Q

p
(
a1 + a3, a1 + a4, a2 + a4, a2 + a3, deg Q

)

= (1 − q−1)

∫
a1,a2,a3,a4≥0

2a1+a3+a4<deg Q
2a2+a3+a4<deg Q

p
(
a1 + a3, a1 + a4, a2 + a4, a2 + a3, deg Q

)
da1da2da3da4
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+ Op
(
(deg Q)d+3) + Op

(
(deg Q)d+2)

= (1 − q−1)(deg Q)d+4
∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

p
(
a1 + a3, a1 + a4, a2 + a4, a2 + a3, 1

)
da1da2da3da4

+ Op
(
(deg Q)d+3).

��
Lemma 7.4 Let p

(
deg A, deg B, degC, deg D, deg Q

)
be a finite polynomial of degree d.

Then,

∑
A,B,C,D∈M
deg AB<deg Q
degCD<deg Q
AC≡BD(mod Q)

AC �=BD

p
(
deg A, deg B, degC, deg D, deg Q

)
|ABCD| 12

�p (deg Q)d+3.

Proof Because deg AB, degCD < deg Q, we have that

p
(
deg A, deg B, degC, deg D, deg Q

) �p (deg Q)d .

Hence,

∑
A,B,C,D∈M
deg AB<deg Q
degCD<deg Q
AC≡BD(mod Q)

AC �=BD

p
(
deg A, deg B, degC, deg D, deg Q

)
|ABCD| 12

�p (deg Q)d
∑

A,B,C,D∈M
deg AB<deg Q
degCD<deg Q
AC≡BD(mod Q)

AC �=BD

1

|ABCD| 12
= (deg Q)d

∑
0≤z1,z2<deg Q

q− z1+z2
2

∑
A,B,C,D∈M
deg AB=z1
degCD=z2

AC≡BD(mod Q)
AC �=BD

1.

(13)

Now, Lemma 7.9 from [3] tells us that for non-negative integers z1, z2 we have

∑
A,B,C,D∈M
deg AB=z1
degCD=z2

AC≡BD(mod Q)
AC �=BD

1

{
�ε

1
|Q|

(
qz1qz2

)1+ε if z1 + z2 ≤ 19
10 deg Q

� 1
φ(Q)

qz1qz2(z1 + z2)3 if z1 + z2 > 19
10 deg Q.

(14)

Hence, for ε < 1
38 we have

∑
0≤z1,z2<deg Q

q− z1+z2
2

∑
A,B,C,D∈M
deg AB=z1
degCD=z2

AC≡BD(mod Q)
AC �=BD

1

� 1

|Q|
∑

0≤z1,z2<deg Q
z1+z2≤ 19

10 deg Q

(
q

1
2+ε

)z1+z2 + 1

φ(Q)

∑
0≤z1,z2<deg Q
z1+z2>

19
10 deg Q

q
z1+z2

2 (z1 + z2)
3
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� |Q|
φ(Q)

(deg Q)3 � (deg Q)3.

The result follows by applying this to (13). ��
Remark 7.5 In her paper, Tamam [25, Lemma 8.5] states a similar result as (14) above.
However, in her proof she claims that d(N ) � deg N , which is not the case. Addressing this
is non-trivial and was done in [3], as stated above.

Lemma 7.6 Let p
(
deg A, deg B, degC, deg D, deg Q

)
be a finite polynomial of degree d.

Then,

1

φ(Q)

∑
A,B,C,D∈M
deg AB<deg Q
degCD<deg Q

p
(
deg A, deg B, degC, deg D, deg Q

)
|ABCD| 12

�p (deg Q)d+2.

Proof Because deg AB, degCD < deg Q, we have that

p
(
deg A, deg B, degC, deg D, deg Q

) �p (deg Q)d .

Hence,

1

φ(Q)

∑
A,B,C,D∈M
deg AB<deg Q
degCD<deg Q

p
(
deg A, deg B, degC, deg D, deg Q

)
|ABCD| 12

�p
(deg Q)d

φ(Q)

⎛
⎜⎜⎝

∑
A,B∈M

deg AB<deg Q

1

|AB| 12

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∑
C,D∈M

degCD<deg Q

1

|CD| 12

⎞
⎟⎟⎠

= (deg Q)d

φ(Q)

⎛
⎜⎜⎝

∑
n,m≥0

n+m<deg Q

q
m+n
2

⎞
⎟⎟⎠

2

� (deg Q)d+2.

��
From Lemmas 7.1 to 7.6 we can deduce the following:

Lemma 7.7 Let Q ∈ P , and let p1
(
deg A, deg B, deg Q

)
and p2

(
degC, deg D, deg Q

)
be

finite homogeneous polynomials of degree d1 and d2, respectively. Then,

1

φ(Q)

∑
χ mod Q
χ �=χ0

⎛
⎜⎜⎝

∑
A,B∈M

deg AB<deg Q

p1 χ(A)χ(B)

|AB| 12

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∑
C,D∈M

degCD<deg Q

p2 χ(C)χ(D)

|CD| 12

⎞
⎟⎟⎠

= (1 − q−1)(deg Q)d1+d2+4

×
∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

p1
(
a1 + a3, a1 + a4, 1

)
p2

(
a2 + a4, a2 + a3, 1

)
da1da2da3da4

+ Op1,p2

(
(deg Q)d1+d2+3).
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Similarly, the following can be proved:

Lemma 7.8 Let Q ∈ P , and let p1
(
deg A, deg B, deg Q

)
and p2

(
degC, deg D, deg Q

)
be

finite homogeneous polynomials of degree d1 and d2, respectively. Then,

1

φ(Q)

∑
χ mod Q
χ even
χ �=χ0

⎛
⎜⎜⎝

∑
A,B∈M

deg AB<deg Q

p1 χ(A)χ(B)

|AB| 12

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∑
C,D∈M

degCD<deg Q

p2 χ(C)χ(D)

|CD| 12

⎞
⎟⎟⎠

= q−1(deg Q)d1+d2+4

×
∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

p1
(
a1 + a3, a1 + a4, 1

)
p2

(
a2 + a4, a2 + a3, 1

)
da1da2da3da4

+ Op1,p2

(
(deg Q)d1+d2+3).

The proof of Lemma 7.8 is similar to the proof of Lemma 7.7. From [3], we use Lemma
7.10 instead of Lemma 7.9.

We can similarly prove the following:

Lemma 7.9 Let Q ∈ P , let p1
(
deg A, deg B, deg Q

)
and p2

(
degC, deg D, deg Q

)
be finite

homogeneous polynomials of degree d1 and d2, respectively, and let a ∈ {0, 1, 2}. Then,

1

φ(Q)

∑
χ mod Q
χ �=χ0

⎛
⎜⎜⎝

∑
A,B∈M

deg AB=deg Q−a

p1 χ(A)χ(B)

|AB| 12

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∑
C,D∈M

degCD=deg Q−a

p2 χ(C)χ(D)

|CD| 12

⎞
⎟⎟⎠

= Op1,p2

(
(deg Q)d1+d2+3),

and

1

φ(Q)

∑
χ mod Q
χ even
χ �=χ0

⎛
⎜⎜⎝

∑
A,B∈M

deg AB=deg Q−a

p1 χ(A)χ(B)

|AB| 12

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∑
C,D∈M

degCD=deg Q−a

p2 χ(C)χ(D)

|CD| 12

⎞
⎟⎟⎠

= Op1,p2

(
(deg Q)d1+d2+3).

8 Fourthmoments of derivatives

We are now equipped to prove the fourth moment result.

Proof of Theorem 2.6 We have that

1

φ(Q)

∑
χ mod Q
χ �=χ0

∣∣∣L(k)
(
1

2
, χ

) ∣∣∣2
∣∣∣L(l)

(
1

2
, χ

) ∣∣∣2

= 1

φ(Q)

∑
χ mod Q
χ odd

∣∣∣L(k)
(
1

2
, χ

) ∣∣∣2
∣∣∣L(l)

(
1

2
, χ

) ∣∣∣2 + 1

φ(Q)

∑
χ mod Q
χ even
χ �=χ0

∣∣∣L(k)
(
1

2
, χ

) ∣∣∣2
∣∣∣L(l)

(
1

2
, χ

) ∣∣∣2.

(15)

123



The fourth moment of derivatives of Dirichlet...

Using Lemma 6.2, we have, for the first term on the RHS, that

1

φ(Q)

1

(log q)2k+2l

∑
χ mod Q
χ odd

∣∣∣L(k)
(
1

2
, χ

) ∣∣∣2
∣∣∣L(l)

(
1

2
, χ

) ∣∣∣2

= 1

φ(Q)

∑
χ mod Q
χ odd

⎛
⎜⎜⎝

∑
A,B∈M

deg AB<deg Q

(
fk + gO,k

)
χ(A)χ(B)

|AB| 12
+

∑
A,B∈M

deg AB=deg Q−1

hO,kχ(A)χ(B)

|AB| 12

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

∑
C,D∈M

degCD<deg Q

(
fl + gO,l

)
χ(C)χ(D)

|CD| 12
+

∑
C,D∈M

degCD=deg Q−1

hO,lχ(C)χ(D)

|CD| 12

⎞
⎟⎟⎠ .

(16)

By using Lemmas 7.7 and 7.8, we have that

1

φ(Q)

∑
χ mod Q
χ odd

⎛
⎜⎜⎝

∑
A,B∈M

deg AB<deg Q

(
fk + gO,k

)
χ(A)χ(B)

|AB| 12

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∑
C,D∈M

degCD<deg Q

(
fl + gO,l

)
χ(C)χ(D)

|CD| 12

⎞
⎟⎟⎠

= 1

φ(Q)

∑
χ mod Q
χ �=χ0

⎛
⎜⎜⎝

∑
A,B∈M

deg AB<deg Q

(
fk + gO,k

)
χ(A)χ(B)

|AB| 12

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∑
C,D∈M

degCD<deg Q

(
fl + gO,l

)
χ(C)χ(D)

|CD| 12

⎞
⎟⎟⎠

− 1

φ(Q)

∑
χ mod Q
χ even
χ �=χ0

⎛
⎜⎜⎝

∑
A,B∈M

deg AB<deg Q

(
fk + gO,k

)
χ(A)χ(B)

|AB| 12

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∑
C,D∈M

degCD<deg Q

(
fl + gO,l

)
χ(C)χ(D)

|CD| 12

⎞
⎟⎟⎠

= (1 − 2q−1)(deg Q)2k+2l+4

×
∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

fk
(
a1 + a3, a1 + a4, 1

)
fl
(
a2 + a4, a2 + a3, 1

)
da1da2da3da4

+ Ok,l

(
(deg Q)2k+2l+3

)
.

Strictly speaking, Lemmas 7.7 and 7.8 require that the polynomials fk + gO,k and fl + gO,l

are homogeneous, which is not the case. However, these polynomials can be written as sums
of homogeneous polynomials, with the terms of highest degree being fk and fl , respectively.
We can then apply the lemmas term-by-term to obtain the result above.

We now have the main term of (16). Indeed, for the remaining terms we can apply the
Cauchy–Schwarz inequality and Lemmas 7.7, 7.8, and 7.9 to see that they are equal to

Ok,l

(
(deg Q)2k+2l+ 7

2

)
. Hence,

1

φ(Q)

1

(log q)2k+2l

∑
χ mod Q
χ odd

∣∣∣L(k)
(
1

2
, χ

) ∣∣∣2
∣∣∣L(l)

(
1

2
, χ

) ∣∣∣2

= (1 − 2q−1)(deg Q)2k+2l+4

×
∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

fk
(
a1 + a3, a1 + a4, 1

)
fl
(
a2 + a4, a2 + a3, 1

)
da1da2da3da4

+ Ok,l

(
(deg Q)2k+2l+ 7

2

)
.

(17)
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We now look at the second term on the RHS of (15). By using Lemma 6.7 and similar
means as those used to deduce (17), we can show for all non-negative integers i, j that

1

φ(Q)

1

(log q)2i+2 j

1

(q
1
2 − 1)4

∑
χ mod Q
χ even
χ �=χ0

∣∣∣L̂(i)
(
1

2
, χ

) ∣∣∣2
∣∣∣L̂( j)

(
1

2
, χ

) ∣∣∣2

= q−1(deg Q)2i+2 j+4

×
∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

fi
(
a1 + a3, a1 + a4, 1

)
f j

(
a2 + a4, a2 + a3, 1

)
da1da2da3da4

+ Oi, j

(
(deg Q)2i+2 j+ 7

2

)
.

Using Lemma 6.5 and the Cauchy–Schwarz inequality, we obtain that

1

φ(Q)

1

(log q)2k+2l

∑
χ mod Q
χ even
χ �=χ0

∣∣∣L(k)
(
1

2
, χ

) ∣∣∣2
∣∣∣L(l)

(
1

2
, χ

) ∣∣∣2

= q−1(deg Q)2k+2l+4 ×
∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

fk
(
a1 + a3, a1 + a4, 1

)
fl
(
a2 + a4, a2 + a3, 1

)
da1da2da3da4

+ Ok,l

(
(deg Q)2k+2l+ 7

2

)
. (18)

The proof follows from (15), (17), (18). ��
We now proceed to prove Theorem 2.7.

Lemma 8.1 Let m be a positive integer. For all non-negative x we have that
(
1 − x

m

)m ≤ e−x ,

and for all x ∈ [0, 2m 1
3 ] we have that

(
1 − x

m

)m ≥ e−x e
−4

m
1
3 −2m

− 1
3 .

Proof By using the Taylor series for log we have that

log
((
1 − x

m

)m)
= −x − x2

2m
− x3

3m2 − x4

4m3 − . . . .

Clearly, the RHS is ≤ −x , which proves the first inequality. For the second inequality we
use the bounds on x to obtain that

x2

2m
+ x3

3m2 + x4

4m3 + . . . ≤ x2

m

∞∑
i=0

( x

m

)i = x2

m

(
1

1 − x
m

)
≤

(
4

m
1
3 − 2m− 1

3

)
,

from which the result follows. ��

Proof of Theorem 2.7 Let us expand the brackets in (7) and multiply by m4. One of the terms
is the following:

123



The fourth moment of derivatives of Dirichlet...

m4
∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

(1−a1−a3)
m(1−a1−a4)

m(1 − a2 − a3)
m(1 − a2 − a4)

mda1da2da3da4

=
∫
a1,a2,a3,a4≥0
2a1+a3+a4<m
2a2+a3+a4<m

(
1 − a1 + a3

m

)m (
1 − a1 + a4

m

)m

×
(
1 − a2 + a3

m

)m (
1 − a2 + a4

m

)m

da1da2da3da4,

where we have used the substitutions ai → ai
m . On one hand, by using Lemma 8.1, we have

that ∫
a1,a2,a3,a4≥0
2a1+a3+a4<m
2a2+a3+a4<m

(
1 − a1 + a3

m

)m (
1 − a1 + a4

m

)m (
1 − a2 + a3

m

)m

×
(
1 − a2 + a4

m

)m

da1da2da3da4

≥
∫
0≤a1,a2,a3,a4≤m

1
3

2a1+a3+a4<m
2a2+a3+a4<m

(
1 − a1 + a3

m

)m (
1 − a1 + a4

m

)m

×
(
1 − a2 + a3

m

)m (
1 − a2 + a4

m

)m

da1da2da3da4

≥ e
−16

m
1
3 −2m

− 1
3

∫
0≤a1,a2,a3,a4≤m

1
3
e−2(a1+a2+a3+a4)da1da2da3da4 −→ 1

16

as m −→ ∞. On the other hand, by the same lemma, we have that∫
a1,a2,a3,a4≥0
2a1+a3+a4<m
2a2+a3+a4<m

(
1 − a1 + a3

m

)m (
1 − a1 + a4

m

)m (
1 − a2 + a3

m

)m

×
(
1 − a2 + a4

m

)m

da1da2da3da4

≤
∫
0≤a1,a2,a3,a4≤m

e−2(a1+a2+a3+a4)da1da2da3da4 −→ 1

16

as m −→ ∞. So, we see that

m4
∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

(1−a1−a3)
m(1−a1−a4)

m(1−a2−a3)
m(1−a2−a4)

mda1da2da3da4

−→ 1

16
(19)

as m −→ ∞.
Now, after we expanded the brackets in (7) and multiplied by m4, there were other terms.

These can be seen to tend to 0 as m −→ ∞. We prove one case below; the rest are similar.

m4
∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

(1 − a1 − a3)
m(1 − a1 − a4)

m(a2 + a3)
m(a2 + a4)

mda1da2da3da4

≤ m4
∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

(a2 + a3)
m(a2 + a4)

m � m4

4m
,
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wherewehave used the following:Themaximumvalue that (a2+a3)(a2+a4) can take subject
to the conditions in the integral is at most equal to the maximum value that f (x, y) := xy
can take subject to the conditions x, y ≥ 0 and x + y < 1. By plotting this range and looking
at contours of f (x, y) we can see that the maximum value is 1

4 . The result follows. ��
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