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Abstract

Much attention has been paid to solving real-world engineering problems with multiple conflicting objectives ef-
ficiently using evolutionary approaches. However, in such approaches the loss of selection pressure and the non-
uniformity in the distribution of the Pareto optimal solutions can cause issues when there are many objectives. This
has been observed in both dominance-based and decomposition-based multi-objective optimizers. We confront this
performance is in this work we circumvent by exploiting two quality indicators, and use these in an optimizer’s envi-
ronmental selection via non-dominated sorting. This effectively converts the original many-objective problem into a
bi-objective one. Our convergence performance criterion tries to balance the performance of individuals in different
parts of the objective space. The angle between solutions on objective space is adopted to measure the diversity of
each individual. Using these two measures, solutions can be separated into different layers easily, which is often
not possible for the original many-objective optimization representation. The performance of the proposed method
is evaluated on the DTLZ benchmark problems with up to 30 objectives, and MaF test suite with 10, 15, 20 and 30
objectives. The experimental results show that our proposed method is competitive compared to six recently proposed
algorithms, especially for solving problems with a large number of objectives.

Keywords: Many-objective optimization problems, performance indicator, non-dominated sorting, environmental
selection
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1. Introduction1

Many real-world applications, such as industrial scheduling [1], controller design [2], and design optimization [3],
often have multiple objectives that are in conflict with one another. Without loss of generality, multi-objective opti-
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mization problems (MOPs) can be modeled as follows:

Minimize F(x) = ( f1(x), f2(x), . . . , fM(x))
Subject to: x ∈ X (1)

where X is the feasible decision (variable) space (here in D dimensions) and fi(x), i = 1, 2, . . . ,M are the objectives to2

be optimized. When the objective functions are in conflict it is not possible to define a single optimal solution, but a3

set of non-dominated solutions instead, which is known as Pareto optimal set (PS) in the decision space. The image in4

objective space of the Pareto optimal set under F(·) is known as the Pareto front (PF). The main goal of multi-objective5

optimization is to find a set of solutions whose objective vectors form a uniformly distributed non-dominated set as6

close as possible to the PF.7

Evolutionary multi-objective optimization (EMO) [4, 5, 6, 7, 8, 9] has garnered widespread attention because of8

its capability to find multiple tradeoff solutions simultaneously [10, 4, 6, 11]. However, it is often difficult to obtain9

good approximations to the Pareto set when problems have four or more objectives. Such problems are called many-10

objective problems (MaOPs) [12], and the issue with solving them stems from the loss of selection pressure [13]11

in high-dimensional objective spaces (which causes nearly all solutions to be incomparable with each other under a12

Pareto dominance comparison) [14].13

Generally speaking, evolutionary optimization algorithms for many-objective problems can be divided into dom-14

inance based multi-objective evolutionary algorithms (MOEAs) [15, 16], decomposition based MOEAs [17, 18, 19,15

20], and performance indicator-based MOEAs [21, 22, 23]. As indicated in [3, 8], dominance based MOEAs lose se-16

lection pressure significantly in environmental selection because the number of non-dominated individuals increases17

dramatically when the dimension of the objective space increases [24, 25, 26]. Therefore, the environmental selection18

behaves akin to a random selection process. This results in a final population whose members are distributed widely19

over the objective space but, which objective vectors lying far from the desired PF [27]. The straightforward way for20

confronting this problem is to modify the Pareto dominance relation. Some interesting attempts include loosening21

the dominance condition or dominance relation, such as α-dominance [28], and dominance area control [29]. These22

parameterized dominance relations are able to provide sufficient selection pressure towards the Pareto front. How-23

ever, a crucial aspect of such methods is determining a priori an appropriate value of the parameter which determines24

the relaxation degree. This has been highlighted as an area needing further research [30]. For decomposition-based25

MOEAs, [24] shows that their performance strongly depends on the shape of the Pareto front. Hence the choice of26

their reference vectors is particularly important to achieve a good performance. However, as the dimension of the27

objective space increases, it is difficult to divide the objective space evenly into sub-objective spaces. Furthermore,28

it is also difficult to adapt the distribution of search directions when the Pareto front is irregular. In performance29

indicator approaches, such as the hypervolume (HV) [7] and R2 indicator [31], a fitness value is assigned to each30

individual based on the indicator before environmental selection. These approaches are popular as because both HV31

and R2 are able to account for convergence and diversity in parallel. For example, HyPE [21] and SMS-MOEA [7]32

use the hypervolume to evaluate the convergence and diversity of a solution. Unfortunately however, the computation33

of the hypervolume indicator can be relatively time-consuming compared to the other operations required during op-34

timization, especially when the number of objectives is large. Recently, Li et al. [32] utilized the stochastic ranking35

technique to balance the search biases of different indicators. Tian et al. [33] developed an improved inverted gener-36

ational distance indicator and designed a strategy to adaptively alter the reference vectors according to the indicator37

contributions of candidate solutions in an external archive. Sun et al. [23] proposed using IGD for environmental38

selection. Zhou et al. [34] designed a co-guided MaOEA (many-objective evolutionary optimizer) and used an indi-39

cator together with reference points to evaluate the convergence and diversity of the solutions. A promising-region40

based MaOEA with the ratio based indicator was proposed in [35], in which a ratio based indicator with infinite norm41

was used to identify the promising region and the parallel distance was adopted to select individuals in the promising42

region to ensure the diversity of the population.43

In the evolutionary process, the contributions to convergence and the diversity performances of some solutions44

may be in conflict with one other, i.e., where many solutions might be located close to ideal (optimal) objective45

combinations, those solutions with good convergence may collectively have poor diversity. Therefore, in this paper,46

we regard the convergence performance and diversity performance as two separate objectives. A new population is47

selected according to non-dominated sorting on these two objectives. Note that although often the case, convergence48
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and diversity are not required to be in conflict with each other. If both convergence and diversity are good, the49

individual will be definitely be in the first front. Relatedly, Li et al. [36] also proposed to convert a many-objective50

problem into a bi-goal problem encompassing proximity and diversity, called BiGE. In BigE, the summation of all51

elements of F(x) is taken as the first objective, and the crowding degree calculated niching is the second objective52

used for environmental selection. As the first objective compresses together all the values in the original objectives,53

this can lead to the loss of some important individuals, such as the extreme solutions of a convex Pareto front, or the54

solutions in the center of a concave Pareto front. Similarly, most existing convergence performance indicators are55

based only on the distance to the ideal or nadir point, which may also result in the loss of such solutions. Thus, in this56

paper, we propose a new convergence measure, which tries to balance the convergence performance of the solutions57

on the boundaries and in the center of the approximated Pareto front. For the diversity performance, we propose to58

use the angle to measure the degree of crowdedness between individuals, which has been shown more precise than59

the Euclidean distance in high-dimensional objective space [17]. In contrast, in BiGE [36] the diversity of solution60

is evaluated by a niching technique, which requires the setting of an additional parameter. The main contributions of61

this paper can be summarized as follows:62

1. A new method to measure of convergence performance is proposed, which makes use of both an ideal point and63

a nadir point to balance the convergence performance of individuals that are located in different regions of the64

objective space.65

2. The angle between an individual and its closest neighbour, is used as the diversity performance as an objective66

to be maximized together with the convergence performance for guiding the search.67

3. The effectiveness of contributions 1) and 2) are evaluated on a range of well-known test problems, and shown68

to be competitive with state-of-the-art methods, particularly for many-objective problem instances.69

The rest of this paper is organized as follows. Section 2 provides a detailed description of our proposed approach,70

named non-dominated sorting on performance indicators for evolutionary many-objective optimization (NSPI-EMO).71

The performance of the experimental results on DTLZ and MaF test problems are presented and analyzed in Section 3.72

Section 4 summarises the paper and outlines future work leading on from this study.73

2. Non-dominated Sorting on Performance Indicators for Evolutionary Many-objective Optimization74

2.1. A General Framework75

Environmental selection plays an important role in solving many-objective problems. Performance on diversity76

and convergence are normally integrated into a single indicator for environmental selection. However, as discussed77

above, these measures are often in conflict with one another. We address this here by casting this two measures78

as separate objectives in the environmental selection, and use non-dominated sorting to rank individuals on these79

measures. The pseudocode of the proposed method is given in Algorithm 1.80

In Algorithm 1, the convergence and diversity of each individual in the initial population are calculated (line81

2)and the non-dominated solutions (according to their original objective values) in the current population P are saved82

in the archive A (line 3). A mating pool is generated using tournament selection, the details of which are given in83

Algorithm 2. After this, an offspring population is generated using the canonical simulated binary crossover and84

polynomial mutation. The archive A is then updated by individuals in the offspring population after the original85

objectives are evaluated (line 8). To be specific, a union is made of archive A and the offspring population, and is86

subsequently non-dominated sorted according to the objective values. The resulting non-dominated solutions will87

replace all solutions in archive A. Next, the convergence and diversity of each individual in the combined population88

P
′

is calculated, and a new population is selected according to the environmental selection strategy (see Algorithm 2).89

This process repeats until the stopping criterion is met. Finally, N reference vectors are generated using the method90

proposed in MOEA/DD [37], and N solutions will be selected using these as the output. These are determined by the91

minimum perpendicular distance to the ray defined by each of the reference vectors and the ideal point.92

As in NSPI-EMO each solution has two performance values with respect to convergence and diversity, which are93

treated as objectives to be optimized, standard MOEAs such as NSGA-II can be used for solving the problem. It94

should be pointed out, however, that solutions selected based on the two metrics are not necessarily non-dominated in95

the sense of Pareto dominance. Therefore, we use Pareto dominance to preserve the non-dominated solutions on the96

original objectives in an external archive.97
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Algorithm 1 Pseudocode of the proposed NSPI-EMO method
1: Initialize a population P;
2: Calculate the convergence indicator Conv(xi) and diversity indicator Div(xi) for each xi, xi ∈ P, respectively;
3: Save all non-dominated individuals in P in an archive A;
4: while the stopping criterion is not met do
5: Select individuals from the parent population P based on tournament selection strategy and save them to a

mating pool for mating selection. (Refer to Algorithm 2);
6: Generate offspring Q;
7: Evaluate the objective values for each individual in Q;
8: Update the archive A by individuals in Q;
9: Combine the parent and offspring populations, denoted as P

′

= P ∪ Q;
10: Calculate the convergence indicator Conv(xi) and diversity indicator Div(xi) of each individual i in the com-

bined population P
′

;
11: Perform environmental selection to set P. (Refer to Algorithm 3);
12: end while
13: Generate N reference vectors and select N solutions from archive A as the output;

We now give a detailed description of mating selection and the environmental selection in NSPI-EMO algorithm.98

2.2. Mating Selection99

Like other state-of-the-art methods, for example, BiGE [36], AR-MOEA [33], and MOEA-CSS [38], in NSPI-100

EMO the mating pool is also utilized for the offspring generation. As detailed in Algorithm 2, two solutions, xi and101

x j, will be randomly selected. Then, if xi is not worse than x j with respect to both convergence Conv and diversity102

Div, then xi will be kept in the mating pool Z, and vice versa. However, when the pair of solutions is mutually non-103

dominating using these two objectives, then one of the pair will be randomly selected and put into the mating pool Z.104

The procedure is repeated until the number of the solutions in Z reaches the required population size N.

Algorithm 2 Mating Selection
Input: population P, convergence indicator Conv, diversity indicator Div;
Output: parent population Z;

1: Z = empty list to store |P| parent solutions;
2: index = 1;
3: while |Z| ≤ |P| do
4: Randomly select two solutions, xi and x j, from the current population P;
5: if Con(xi) ≤ Con(x j) and Div(xi) ≤ Div(x j) then
6: Zindex = xi;
7: else if Con(xi) ≥ Con(x j) and Div(xi) ≥ Div(x j) then
8: Zindex = x j;
9: else

10: Randomly choose one solution, xi or x j, and insert in Zindex;
11: end if
12: index = index + 1;
13: end while
14: output Z;

105

2.3. Environmental Selection106

Environmental selection plays a key role in solving multi-/many-objective problems. It is well-known that dominance-107

based MOEAs often fail in optimizing MaOPs because of the loss of selection pressure when the dimension of ob-108

jectives increases. As there are only two objectives for non-dominated sorting in this work, we can prevent the loss109
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Figure 1: An example to show the method to calculate the convergence performance of each solution. A black dot with a number represents an
individual in the population. The square and diamond in black are the ideal point Z∗ and the nadir point Znad , respectively.

of selection pressure and it is much easier to separate individuals into different layers, irrespective of whether the110

number of original objectives is high or not. In the following, we will describe in detail the methods to calculate the111

convergence and diversity performance, for each individual, and how they are utilized in the environmental selection.112

113

2.3.1. The convergence indicator114

The convergence performance measures the quality of an individual in terms of its closeness to the PF. Therefore,115

the better the convergence performance is, the closer the individual is to the PF. The distance to the ideal point,116

or from the nadir point, is usually adopted to evaluate the convergence performance of a solution, however, some117

essential solutions may be lost if only one of these is considered. For example, an individual at the edge of the118

objective space will not be selected for the convex problem if only the distance to the ideal point is considered.119

Conversely, an individual at the center of the PF will be discarded if the problem is concave and only the distance120

from the nadir point is used as the convergence performance. Therefore, in order not to lose solutions that may be121

important in searching for an accurate approximation to the PF, we first propose two new convergence performance122

indicators, C1 and C2, which are utilized to keep solutions that locate at the middle and the edge parts of the front,123

respectively, in the objective space for convex problems, or vice versa for concave problems. C1 and C2 are then124

integrated into a unary convergence performance indicator, Conv. Fig. 1 provides an illustration of how the value of125

convergence performance of solutions is calculated. Suppose there are ten solutions in the population, whose objective126

vectors are given in black solid circles (as shown in Fig. 1(a)). Z∗ and Znad are the ideal and nadir points, the value127

of each dimension of these points is the minimum and maximum objective value of the population, respectively. The128

performance indicators C1 and C2 of solution i, denoted as Ci
1 and Ci

2, i = 1, 2, . . . ,N, where N is the population size,129

are calculated as shown in Eq. (2) and Eq. (3).130

Ci
1 =

√√√ M∑
m=1

( fm(xi) − Z∗m)2 (2)

Ci
2 = −

√√√ M∑
m=1

( fm(xi) − Znad
m )2 (3)

Fig. 1(b) shows the solutions in Fig. 1(a) in the convergence space which is composed of C1 and C2. We can131

clearly see from Fig. 1(b) that individual 2 will be lost if only C1 is used to measure the convergence performance132

of a solution for a convex problem if the population size is five, and individual 8 will be lost if only C2 is utilized133

for a concave problem. However, it can be seen from Fig. 1(a) that we are likely to experience better subsequent134
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Figure 2: The convergence and diversity of each solution in the current population. A black dot with a number represents an individual in the
population. The square and diamond in black are the Z∗ and Znad , respectively.

exploration if individual 2 is kept. Additionally, if individual 8 is kept, it should be able to assist convergence to the135

central portion of the PF. That is, both of these individuals are likely to play an important role in the search process,136

and we would like to keep them in the population. From Fig. 1(b), we find that solutions far away from the nadir137

point of convergence space are those solutions either close to the ideal point or at the edge position in the objective138

space. Therefore, we integrate C1 and C2 to a unary measure, Conv, as the final convergence criterion, which is given139

in Eq. (4). In Eq. (4), Ci = (Ci
1,C

i
2), i = 1, 2, . . . ,N, Cnad = (max{Ci

1, i = 1, 2, . . . ,N}),max{Ci
2, i = 1, 2, . . . ,N}), ‖ · ‖140

represents the Euclidean distance.141

Convi = ‖Ci − Cnad‖ (4)

142

2.3.2. Diversity143

The population diversity is important as a common aim is to find a diverse and accurate approximation to the144

PF. As indicated in [17], the angle is a better measure for assessing the diversity of a population in high-dimensional145

objective spaces. As such, in this work the angle between the solution and its closest neighbor will be used to measure146

the crowding degree (and diversity) of a solution. Eq. (5) shows how this is calculated for each solution [39], which147

is denoted by Div. In Eq. (5), Ai
j is the angle between individuals i and j. Different to RVEA [17], in which the angle148

between an individual and a reference vector was first proposed to be used as a diversity measurement, in our method149

the angle between two individuals is adopted to measure the diversity performance of the population.150

Divi = min
j∈{1,2,...,N}, j,i

Ai
j (5)

where151

Ai
j = arccos

∑M
m=1 [( f i

m − z∗m)( f j
m − z∗m)]√∑M

m=1 ( f i
m − z∗m)2

√∑M
m=1 ( f j

m − z∗m)
2

(6)

152

2.3.3. Individual selection153

After the evaluation of each solution in terms of convergence and diversity, we select a new population by si-154

multaneously maximizing the convergence (Conv) and the diversity (Div) based on non-dominated sorting. To ensure155

consistency with the rest of this work, the maximization of the convergence (Conv) and the diversity (Div) is converted156

into minimization of the negative Conv and Div, i.e., −Conv and −Div. Fig. 2(b) shows the positions of each solution157

given in Fig. 2(a) in the convergence-diversity space, which are non-dominated sorted. Solutions are progressively158

selected from the first front to the next until the number of individuals is equal to the desired population size. From159
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Fig. 2(b), we can see that the individuals selected under our environmental selection strategy are the same as we would160

expect from Fig. 2(a). Note that as individuals 2, 4, 7 and 8 are in the final layer to be considered, and three of them161

will be randomly selected from it to be placed in the next population. From Fig. 2(a), we can easily understand that162

individuals 2, 7 and 8 are preferred to be kept because individuals 2 and 7 are at the edge of the objective space and163

individual 8 falls in the center part of the objective space. While the individual 4 is also possible to be selected because164

of its good diversity.165

The pseudocode of our environmental selection approach is given in Algorithm 3. The convergence performance166

Conv and the diversity performance Div are first calculated for each individual in the combined population P
′

. Then167

all individuals are non-dominated sorted on these two performance indicators (line 3). The individuals are selected168

sequentially from the first non-dominated front to the critical front (the k-th layer in Algorithm 3), on which the169

individual will be selected randomly, until the size of the population reaches N.

Algorithm 3 Environmental selection
Input: the combined population P

′

;
Output: the population P to be passed to the next generation;

1: Evaluate the convergence indicator, Convi, for each solution in population P
′

;
2: Evaluate the diversity indicator, Divi, for each solution in population P

′

;
3: Perform non-dominated sorting on population P

′

according to Conv and Div, suppose there are L non-dominated
layers after sorting and Lk represents those solutions located in the k-th layer.

4: Set P := ∅, k = 1;
5: while |P| + |Lk | < N do
6: P := P ∪ Lk;
7: k := k + 1;
8: end while
9: K := randomly select N − |P| individuals from the k-th layer (Lk);

10: P := P ∪ K

170

3. Experimental Results and Analysis171

In order to assess whether the proposed environmental selection strategy is efficient for many-objective optimiza-172

tion, we firstly conducted experiments on the DTLZ1 and DTLZ3 test problems with different numbers of objectives.173

DTLZ1 and DTLZ3 are known to be hard problems to converge to when the function evaluation budget is limited. We174

compared versions of the algorithm with three different environmental selection strategies: (i) the convergence only175

(called convergence-strategy); (ii) diversity only (called diversity-strategy); and, (iii) dominated sorting on the two176

convergence measures and diversity (called C1-C2-Div-strategy) [40].177

Following the initial environmental selection study, we conducted several experiments on the unconstrained178

DTLZ [41] problems with 3, 5, 8, 10, 15, 20, 30 objectives, and the MaF [42] test problems with 10, 15, 20, 30179

objectives, to evaluate the performance of our proposed algorithm. Note that the 30-objective variants of DTLZ7,180

MaF7 and MaF10 are not tested due to the difficulty of sampling their complex Pareto front uniformly — which we181

need access to in order to calculate the performance indicator. Results are compared with six state-of-the-art algo-182

rithms, namely NSGA-III [3], SPEA/R [18], MaOEAIGD [23], NMPSO [43], MOEA/D-DE [44], and BiGE [36].183

These algorithms have all been proposed for solving multi/many-objective problems, and cover the different cat-184

egories of evolutionary many-objective optimization algorithms discussed in Section 1. NSGA-III (nondominated185

sorting genetic algorithm-III) [3] is an extended version of NSGA-II [4]. It incorporates a number of changes in the186

selection mechanism compared to NSGA-II (notably decomposition-based niching rather than crowding), and it was187

adopted in our experiments as a representative dominance based method. SPEA/R [18] and MOEA/D-DE [44] are188

two decomposition based approaches. In SPEA/R, each solution is assigned a fitness based on the local raw fitness189

and density for environmental selection. MOEA/D-DE is a modification of MOEA/D [6], in which a differential190

evolution algorithm is employed in place of a genetic algorithm. MaOEAIGD [23], NMPSO [43] and BiGE [36] are191

three performance indicator based MOEAs. In MaOEAIGD, the IGD indicator is utilized in each generation to select192
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Table 1: The characteristics of test problems
Problem Characteristics
DTLZ1 Linear, Multimodal
DTLZ2 Concave
DTLZ3 Concave, Multimodal
DTLZ4 Concave, Biased
DTLZ5 Concave, Degenerate
DTLZ6 Concave, Degenerate, Biased
DTLZ7 Mixed, Disconnected, Multimodal, Scaled
MaF1 Linear
MaF2 Concave
MaF3 Convex, Multimodal
MaF4 Concave, Multimodal
MaF5 Convex, Biased
MaF6 Concave, Degenerate
MaF7 Mixed, Disconnected, Multimodal
MaF8 Linear, Degenerate
MaF9 Linear, Degenerate
MaF10 Mixed, Biased
MaF11 Convex, Disconnected, Nonseparable
MaF12 Concave, Nonseparable, Biased deceptive
MaF13 Concave, Unimodal, Nonseparable, Degenerate
MaF14 Linear, Partially separable, Large scale
MaF15 Convex, Partially separable, Large scale

solutions with good convergence and diversity. In NMPSO both convergence and diversity are considered together in193

fitness estimation to address the curse of dimensionality in MaOPs. BiGE [36] also utilizes the NSGA-II framework194

to select solutions layer by layer. In BiGE, all solutions in the last layer are non-dominated sorted on proximity and195

diversity and the required number of solutions are selected layer by layer. The main contributions of BiGE is the196

utilization of two indicators to select individuals in the last layer, therefore. As such it is of particular interest to197

compare the performance of BiGE to our proposed approach, as there are similar concepts underpinning the method,198

albeit via different implementation routes.199

3.1. Test Problems200

The DTLZ benchmark problems [41] are widely used for testing multi- and many-objective optimization algo-201

rithms, and therefore are adopted for empirical comparisons in this work. These test suites are composed of opti-202

mization problems with linear, concave, multimodal, disconnected, biased, or degenerate Pareto optimal fronts. The203

characteristics of the DTLZ test problems are summarized in Table 1. The number of decision variables is set to204

D = M + L − 1, as recommended in [45], where M is the number of objectives, L = 5 for DTLZ1, L = 10 for DTLZ205

2-6 and L = 20 for DTLZ7.206

The MaF problems were proposed in [42] for testing the efficiency of optimization algorithms on many-objective207

problems. The number of decision variable is set to D = M + L − 1 for MaF1-7 and MaF10-12, where L = 10 for all208

these problems except L = 20 for MaF7. For other MaF problems, D = 2 for MaF8 and MaF9, D = 5 for MaF13, and209

D = M × 20 for MaF14 and MaF15.210

3.2. Performance Indicator211

The inverted generational distance (IGD), which can offer performance measures of the convergence and diversity212

simultaneously, is popular in performance assessment of evolutionary algorithms for MaOPs. As such, the IGD is213

adopted here as the performance indicator to evaluate the ability of each algorithm to solve many-objective problems.214
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Table 2: Setting of the population size, where p1 and p2 are parameters controlling the number of reference points along the boundary and inside
of the Pareto optimal front, respectively.

M p1 p2 N
3 16 0 153
5 6 0 210
8 3 2 156
10 3 2 275
15 2 1 135
20 2 1 230
30 1 1 60

IGD is calculated as follows:215

IGD(F,P∗) =
1
|P∗|

∑
v∈P∗

dist(v,p) (7)

where P∗ represents a set of solutions uniformly sampled from the true Pareto optimal front, and dist(v,p) is the216

Euclidean distance between the solution v in P∗ and its nearest point p from the approximating front F. When217

the number of solutions in P∗, i.e., |P∗|, is large enough to cover the true Pareto optimal front at a high resoultion,218

IGD(F,P∗) measures both the diversity and convergence of final solutions. Note, as IGD requires access to the actual219

Pareto front for a problem, which is not typically accessible in a real-world optimization, it is not an indicator which220

can be reasonably be embedded within an optimization algorithm to drive its selection mechanisms.221

3.3. Parameter Settings222

All algorithms under comparison are run on the PlatEMO 2.0 platform [46]. SBX [47] and polynomial muta-223

tion [48] are employed as the genetic operators in NSPI-EMO, and the probabilities of crossover and mutation are set224

to be 1 and 1/D, respectively. The distribution parameters of mutation and crossover are set to be 20. In order to make225

a fair comparison with other algorithms, the population size of all approaches is set to be the same. The population226

size is set according to parameters p1 and p2 for the different number of objectives. These are listed in Table 2 for227

each problem dimension. The maximum number of function evaluations (the termination condition) is set to 30, 000228

for each run. Each algorithm is run independently 20 times on each test problem. The Wilcoxon rank-sum test [39]229

with Bonferroni correction for a significance level of 0.05 is applied to assess whether the expected performance of230

a solution obtained by one of the two compared algorithms is significantly different to another [49]. In the tabulated231

results, the symbols +, ≈, and − indicate where the compared algorithms are significantly better, equivalent to, or232

worse than NSPI-EMO, respectively, according to the Wilcoxon rank-sum test on median IGD values [50].233

3.4. Experimental Results234

We now discuss the results obtained from the different experiments.235

3.4.1. Performance comparison on environmental selection236

Table 3 presents the median and median absolute deviation (MAD) obtained on DTLZ1 and DTLZ3 using different237

environmental selection strategies set out at the start of Sec. 3. Recall that NSPI-EMO uses the convergence-diversity-238

strategy. The best median result is shaded for each problem, along with those which are not statistically different from239

it. We can see that the proposed convergence-diversity-strategy obtains better or competitive results on both problems240

across a range of M, which shows that the method to combine two convergence performance into one indicator is241

effective. From Table 3, we can also see that the proposed convergence-diversity-strategy obtains much better results242

than the diversity-strategy on both DTLZ1 and DTLZ3 problems. Compared to the convergence-strategy, we can243

clearly see that our proposed strategy can obtain better performance on DTLZ1. Although the convergence-diversity-244

strategy failed to obtain better results on the DTLZ3 problem with three objectives, it achieved better results on DTLZ3245

with 15, 20 and 30 objectives, and equivalent results for 5, 8 and 10 objectives. The reason might be because the246

Euclidean distance is utilized to measure the convergence performance in our proposed method. When the dimension247

of objective is increased, it will gradually become more difficult to select individuals using the convergence strategy248

9



Table 3: Median and MAD of IGD obtained by different environmental selection strategies on DTLZ1 and DTLZ3. The best median result in each
row is shown with a gray background, along with any results not significantly different from it.

Problem M C1-C2-Div-strategy Convergence-strategy Diversity-strategy Convergence-diversity-strategy

DTLZ1

3 2.4811e-2 (4.01e-2) − 1.6281e-1 (6.19e-2) − 2.4811e-2 (4.01e-2) − 1.9649e-2 (1.45e-3)
5 7.4814e-2 (3.54e-2) ≈ 2.9603e-1 (6.02e-2) − 1.3146e+1 (4.03e+0) − 6.5513e-2 (2.27e-3)
8 1.7757e-1 (6.58e-2) − 3.6757e-1 (4.32e-2) − 2.3974e+1 (5.98e+0) − 1.2537e-1 (6.51e-3)
10 2.8177e-1 (7.26e-2) − 3.6177e-1 (3.82e-2) − 2.4000e+1 (9.09e+0) − 1.3210e-1 (6.59e-3)
15 2.8341e-1 (6.14e-2) − 3.9341e-1 (4.37e-2) − 3.4521e+1 (1.12e+1) − 1.8742e-1 (1.52e-2)
20 3.5847e-1 (8.21e-2) − 4.2847e-1 (7.69e-2) − 2.9199e+1 (5.78e+0) − 2.5702e-1 (1.32e-2)
30 3.8341e-1 (6.14e-2) − 4.6527e-1 (8.09e-2) − 3.2591e+1 (6.28e+0) − 2.8437e-1 (4.72e-2)

DTLZ3

3 2.6253e+0 (1.51e-1) − 9.8311e-1 (4.73e-1) + 1.9546e+2 (4.24e+1) − 1.8513e+0 (8.62e-1)
5 5.4487e+0 (3.53e+0) − 1.5863e+1 (4.58e+1) ≈ 2.8532e+2 (4.67e+1) − 1.5196e+0 (1.21e+0)
8 5.8712e+0 (5.59e+0) − 3.1061e+1 (5.49e+1) ≈ 4.1929e+2 (7.56e+1) − 1.2527e+0 (8.34e-1)
10 6.2475e+0 (6.21e+0) − 3.7920e+1 (7.51e+1) ≈ 4.4413e+2 (8.00e+1) − 1.4948e+0 (1.11e+0)
15 6.8204e+0 (5.04e+0) − 2.1914e+2 (2.03e+2) − 5.0859e+2 (6.27e+1) − 2.2473e+0 (9.27e-1)
20 7.2012e+0 (3.24e+0) − 1.4644e+2 (1.53e+2) − 4.7804e+2 (7.65e+1) − 3.1255e+0 (1.13e+0)
30 7.6241e+0 (4.01e+0) − 2.4532e+2 (1.21e+2) − 4.8212e+2 (5.25e+1) − 3.1076e+0 (1.64e+0)

+/ ≈ /− 0/1/13 1/3/10 0/0/14

only. In the diversity strategy, by contrast, the angle is utilized to measure the crowding degree of each individual,249

which has been shown to be better than the Euclidean distance for identifying the crowdedness of an individual in a250

high-dimensional objective space [17]. Therefore, we conclude that the convergence-diversity-strategy proposed in251

this work is the most suitable for solving many-objective problems of the four variants considered here.252

3.4.2. Results on DTLZ test problems253

Table 4 presents the median and MAD on 48 DTLZ test problem instances, of NSPI-EMO together with those of254

the five other MOEAs for MaOPs being compared. The best median result and those results not significantly different255

to it are shaded for each problem. From Table 4, we can see that NSPI-EMO obtained better median results on 26256

problems out of the 48 instances than the other six algorithms, and is statistically equivalent to the best performing on257

a further five test instances. The proportion of the test instances on which our proposed NSPI-EMO algorithm out-258

performs NSGA-III, MaOEAIGD, NMPSO, BiGE, SPEA/R and MOEA/D-DE with statistical significance is 38/48,259

41/48, 39/48, 38/48, 42/48 and 29/48, respectively. However, we can see from Table 4 that NSPI-EMO is not well260

suited to solving problems with degenerate Pareto fronts, such as DTLZ5 and DTLZ6. This is expected because the261

two proposed performance criteria equally contribute and if the Pareto front is degenerate, the environmental selection262

strategy may fail to effectively guide the search towards the Pareto front. Furthermore, we can see in Table 4 that the263

NSPI-EMO algorithm is outperformed by other algorithms on most problems with three objectives. This is also not264

unexpected: in the lower-dimensional objective space the solutions can be separated well for environmental selection265

by the Pareto dominance based MOEAs, and the space can be uniformly divided in the decomposition based MOEAs.266

3.4.3. Results on MaF test problems267

Table 5 gives the statistical results on the MaF problems considered. We can see that NSPI-EMO outperforms,268

or is statistically comparable to, the other algorithms on 23 out of the 58 test problem instances considered. The269

proportion that NSPI-EMO performs better than NSGA-III, MaOEAIGD, NMPSO, BiGE, SPEA/R, and MOEA/D-270

DE are 33/58, 47/58, 35/58, 27/58, 47/58 and 26/58, respectively. Interestingly, we find that NSPI-EMO with two271

performance indicators is much better than MaOEAIGD and NMPSO (which utilize only one performance indicator272

in their environmental selection). Furthermore, it can be clearly seen that the win/loss ratio of NSPI-EMO and BiGE,273

both of which utilize two performance indicators in environmental selection, is 27/19. This win/loss ratio suggests274

that our proposed algorithm, to some extent, can address the weakness of BiGE and achieve better results. However,275

the proposed algorithm is not able to achieve better results on MaF8, MaF9 and MaF13 problems whose Pareto fronts276

are degenerate (as was observed in the Sec. 3.4.2 for degenerate DTLZ problems).277

Looking further at Table 5, we find NSPI-EMO obtained better results on MaF14 and MaF15 which have 20 × M278

decision variables. The decision space for these problems therefore gets very large when the number of objectives279

increases. In order to understand why the NSPI-EMO algorithm can perform better than the other algorithms on high-280

dimensional many-objective problems, we graphically plot the parallel coordinates of the final solutions obtained by281

the algorithms for the 20-objective MaF14 and MaF15 problems in Fig. 3 and Fig. 4, respectively. The horizontal axis282

represent each objective, and vertical axis the values obtains on each objective in the final returned solutions. We can283

see clearly that the convergence and diversity of NSPI-EMO is much better than others on these two high-dimensional284

many-objective problems.285
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(c) NMPSO on 20 objectives
of MaF14
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(d) BiGE on 20 objectives of
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(e) SPEA/R on 20 objectives
of MaF14
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tives of MaF14
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Figure 3: Parallel coordinates of the final solutions obtained by five compared algorithms for the 20-objective MaF14 instance. (a) NSGA-III. (b)
MaOEAIGD. (c) NMPSO. (d) BiGE. (e) SPEA/R. (f) MOEA/D-DE. (g) NSPI-EMO.
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Figure 4: Parallel coordinates of the final solutions obtained by five compared algorithms for the 20-objective MaF15 instance. (a) NSGA-III. (b)
MaOEAIGD. (c) NMPSO. (d) BiGE. (e) SPEA/R. (f) MOEA/D-DE. (g) NSPI-EMO
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Table 4: Median and MAD of the IGD values obtained by NSGA-III, MaOEAIGD, NMPSO, BiGE, SPEA/R, MOEA/D-DE and NSPI-EMO on
DTLZ1-7. The best median result in each row is shown with a gray background, along with any results not significantly different from it.

Problem M NSGAIII MaOEAIGD NMPSO BiGE SPEAR MOEA/D-DE NSPI-EMO

DTLZ1

3 2.0851e-2 (1.56e-4) − 3.2258e-1 (2.17e-1) − 2.3735e-2 (9.90e-2) − 3.4119e-2 (1.23e-2) − 2.6143e-2 (1.75e-2) − 2.3103e-2 (1.48e-1) − 1.9649e-2 (1.45e-3)
5 6.9589e-2 (2.06e-2) − 3.4483e-1 (2.52e-1) − 7.0993e-2 (4.28e-2) − 1.7062e-1 (5.63e-2) − 1.2465e-1 (1.05e-1) − 3.9341e-1 (2.73e-1) − 6.5513e-2 (2.27e-3)
8 1.5579e-1 (1.06e-1) − 3.2576e-1 (2.31e-1) − 3.0187e-1 (5.38e+0) − 9.4519e-1 (5.42e-1) − 5.0246e-1 (2.27e-1) − 1.3337e+0 (8.57e-1) − 1.2537e-1 (6.51e-3)

10 2.4752e-1 (1.55e-1) − 4.5146e-1 (1.97e+0) − 3.7615e+0 (1.29e+1) − 1.5717e+0 (8.74e-1) − 5.8784e-1 (5.51e-1) − 4.9824e-1 (5.15e-1) − 1.3210e-1 (6.59e-3)
15 2.8848e-1 (1.50e-1) − 4.7190e-1 (2.64e-1) − 4.1943e+1 (7.08e+0) − 2.5853e+0 (1.53e+0) − 5.1957e-1 (2.03e-1) − 3.4395e-1 (3.21e-1) − 1.8742e-1 (1.52e-2)
20 5.5224e-1 (3.52e-1) − 6.0313e-1 (3.81e-1) − 4.1470e+1 (5.32e+0) − 2.0358e+0 (1.87e+0) − 7.9883e-1 (8.76e-1) − 9.9762e-1 (5.23e-1) − 2.5702e-1 (1.32e-2)
30 5.3089e-1 (3.36e-1) − 1.0363e+0 (5.85e-1) − 4.3627e+1 (7.30e+0) − 2.8440e+0 (1.54e+0) − 1.9315e+0 (1.52e+0) − 4.4108e-1 (5.45e-1) ≈ 2.8437e-1 (4.72e-2)

DTLZ2

3 5.4478e-2 (7.56e-6) ≈ 1.7123e-1 (5.39e-4) − 7.6773e-2 (2.25e-3) − 7.8719e-2 (3.13e-3) − 5.7141e-2 (8.88e-4) ≈ 5.6150e-2 (4.21e-4) ≈ 5.4702e-2 (7.37e-3)
5 2.1234e-1 (4.54e-5) − 2.2252e-1 (7.31e-3) − 2.2912e-1 (1.74e-3) − 2.7230e-1 (9.10e-3) − 2.1755e-1 (1.46e-3) − 3.3294e-1 (1.29e-2) − 1.6804e-1 (3.42e-3)
8 3.8760e-1 (2.29e-2) − 4.0093e-1 (2.74e-2) − 3.9270e-1 (1.99e-3) − 4.4260e-1 (9.22e-3) − 3.8933e-1 (1.39e-3) − 6.8108e-1 (4.35e-2) − 3.4177e-1 (3.16e-3)

10 6.1411e-1 (4.65e-2) − 6.4100e-1 (5.82e-2) − 5.8802e-1 (4.83e-2) − 5.4897e-1 (1.12e-2) − 5.3968e-1 (7.54e-3) − 6.4951e-1 (1.53e-2) − 4.1310e-1 (1.26e-2)
15 7.5802e-1 (1.67e-2) − 7.3074e-1 (1.80e-2) − 8.5004e-1 (6.81e-2) − 6.7260e-1 (7.65e-3) ≈ 6.9998e-1 (1.59e-3) − 9.5482e-1 (4.49e-2) − 6.7141e-1 (4.29e-2)
20 1.0070e+0 (2.54e-2) − 8.5628e-1 (5.78e-2) − 9.5962e-1 (1.28e-1) − 7.4923e-1 (1.10e-2) + 7.6481e-1 (2.04e-3) + 1.0748e+0 (2.38e-2) − 7.8040e-1 (2.32e-2)
30 8.4814e-1 (1.02e-2) + 9.6376e-1 (6.13e-2) + 2.9764e+0 (3.19e-1) − 9.4810e-1 (1.85e-2) + 8.2339e-1 (8.74e-3) + 1.2108e+0 (1.76e-2) + 1.2592e+0 (3.87e-2)

DTLZ3

3 1.4104e-1 (4.33e-1) + 1.0073e+1 (2.97e+0) − 1.8898e+1 (9.03e+0) − 1.1318e-1 (3.20e-1) + 1.3871e+0 (7.45e-1) ≈ 2.4040e+0 (7.38e+0) ≈ 1.8513e+0 (8.62e-1)
5 3.1693e+0 (1.59e+0) − 1.1968e+1 (5.72e+0) − 1.7705e+1 (6.84e+0) − 2.0597e+0 (6.77e-1) ≈ 5.8395e+0 (2.44e+0) − 8.9400e+0 (1.66e+1) − 1.5196e+0 (1.21e+0)
8 8.9607e+0 (4.30e+0) − 9.1686e+0 (3.96e+0) − 1.3248e+1 (1.48e+1) − 2.6664e+1 (1.29e+1) − 2.1994e+1 (6.03e+0) − 3.5113e+1 (2.25e+1) − 1.2527e+0 (8.34e-1)
10 1.1221e+1 (5.84e+0) − 8.0502e+0 (3.94e+1) − 6.6194e+1 (4.16e+1) − 4.2786e+1 (9.64e+0) − 5.3340e+1 (1.14e+1) − 4.7734e+0 (8.13e+0) − 1.4948e+0 (1.11e+0)
15 6.6528e+0 (4.19e+0) − 6.4309e+0 (4.07e+0) − 1.3936e+2 (5.41e+1) − 4.5353e+1 (7.76e+0) − 4.1042e+1 (1.93e+1) − 4.5568e+0 (8.52e+0) − 2.2473e+0 (9.27e-1)
20 2.2102e+1 (1.66e+1) − 6.6413e+0 (4.64e+0) − 2.2952e+2 (3.42e+1) − 4.8012e+1 (1.06e+1) − 6.1387e+1 (2.82e+1) − 7.9118e+0 (1.25e+1) − 3.1255e+0 (1.13e+0)
30 1.4165e+1 (6.56e+0) − 1.4668e+1 (7.54e+0) − 2.5090e+2 (1.01e+1) − 4.9403e+1 (1.86e+1) − 9.2535e+1 (1.96e+1) − 2.4578e+0 (1.45e+1) ≈ 3.1076e+0 (1.64e+0)

DTLZ4

3 5.4496e-2 (2.13e-1) − 5.4143e-1 (2.10e-1) − 7.6781e-2 (8.39e-2) − 7.8686e-2 (4.40e-2) − 5.7824e-2 (1.11e-3) − 7.2483e-2 (5.88e-2) − 4.2294e-2 (2.84e-4)
5 2.1270e-1 (1.15e-1) − 4.2712e-1 (1.85e-1) − 2.3307e-1 (6.73e-2) − 2.6439e-1 (4.33e-3) − 2.2018e-1 (2.04e-3) − 4.0584e-1 (1.81e-2) − 1.7298e-1 (2.24e-3)
8 5.2262e-1 (7.50e-2) − 4.8384e-1 (6.11e-2) − 5.1415e-1 (8.16e-2) − 4.3539e-1 (4.81e-3) − 3.8983e-1 (1.65e-3) − 7.1183e-1 (2.43e-2) − 3.5997e-1 (2.04e-2)

10 5.5929e-1 (5.47e-2) − 7.0896e-1 (6.14e-2) − 5.8650e-1 (1.01e-1) − 5.3645e-1 (5.73e-3) − 5.4447e-1 (3.21e-3) − 7.3222e-1 (1.91e-2) − 4.4626e-1 (1.49e-2)
15 7.7816e-1 (1.36e-2) − 8.7404e-1 (8.40e-2) − 7.7859e-1 (1.37e-1) − 6.5377e-1 (3.78e-3) ≈ 7.4239e-1 (8.12e-3) − 9.3621e-1 (3.57e-2) − 6.5404e-1 (1.22e-2)
20 9.7627e-1 (3.72e-2) − 8.6667e-1 (6.28e-2) − 1.1139e+0 (1.89e-1) − 6.9110e-1 (6.45e-3) − 7.9713e-1 (1.47e-2) − 1.0455e+0 (1.92e-2) − 6.6484e-1 (1.58e-2)
30 8.4679e-1 (6.65e-3) + 8.8481e-1 (1.90e-2) + 2.7775e+0 (2.11e-1) − 9.3198e-1 (3.75e-2) + 8.3502e-1 (8.06e-3) + 1.1709e+0 (1.50e-2) − 1.1478e+0 (3.03e-2)

DTLZ5

3 1.1968e-2 (1.44e-3) + 6.7110e-1 (1.63e-1) − 1.4384e-2 (1.39e-3) + 1.4241e-2 (2.74e-3) + 3.0958e-2 (1.80e-3) − 8.7409e-3 (6.80e-5) + 2.0001e-2 (1.29e-3)
5 1.0008e-1 (2.50e-2) − 6.5747e-1 (1.42e-1) − 4.1836e-2 (4.80e-3) ≈ 1.0762e-1 (1.46e-2) − 2.3494e-1 (6.52e-2) − 3.8045e-2 (1.31e-3) + 4.1485e-2 (5.48e-3)
8 2.3220e-1 (6.17e-2) − 6.8872e-1 (1.24e-1) − 6.2540e-1 (1.65e-1) − 1.9881e-1 (4.98e-2) − 4.0172e-1 (7.63e-2) − 1.6469e-1 (1.33e-2) − 1.5403e-1 (1.79e-2)
10 2.3825e-1 (5.21e-2) − 6.9919e-1 (1.49e-1) − 7.7251e-1 (7.02e-2) − 2.7919e-1 (5.52e-2) − 6.2606e-1 (1.25e-1) − 1.6448e-1 (4.84e-3) − 1.5264e-1 (1.66e-2)
15 2.7151e-1 (8.30e-2) ≈ 7.1308e-1 (1.27e-1) − 7.5008e-1 (1.56e-2) − 4.3758e-1 (6.45e-2) − 9.5744e-1 (2.57e-1) − 8.4310e-2 (1.01e-2) + 3.0302e-1 (4.52e-2)
20 1.0400e+0 (5.23e-1) − 9.2065e-2 (1.38e-1) + 7.4209e-1 (5.01e-2) − 4.7555e-1 (3.25e-2) − 1.0486e+0 (2.17e-1) − 1.0261e-1 (1.20e-2) + 3.4203e-1 (3.80e-2)
30 3.0515e-1 (4.39e-2) − 9.2424e-2 (1.73e-1) + 7.4209e-1 (1.64e-1) − 3.3766e-1 (5.00e-2) − 9.9886e-1 (1.21e-1) − 9.1735e-2 (1.19e-2) + 2.6772e-1 (8.82e-2)

DTLZ6

3 2.0064e-2 (2.25e-3) + 6.7105e-1 (9.38e-2) − 1.3894e-2 (1.68e-3) + 6.9697e-1 (5.43e-2) − 3.5106e-2 (2.83e-3) − 8.8312e-3 (2.83e-5) + 2.5416e-2 (3.99e-3)
5 2.5571e-1 (1.47e-1) − 6.5765e-1 (2.13e-1) − 4.9194e-2 (4.04e-3) + 7.1623e-1 (5.38e-2) − 6.6312e-1 (3.21e-1) − 3.5596e-2 (2.07e-4) + 5.8807e-2 (9.04e-3)
8 1.6884e+0 (8.41e-1) − 7.1514e-1 (1.41e-1) − 7.4209e-1 (1.48e-1) − 6.9109e-1 (6.75e-2) − 1.1323e+0 (4.05e-1) − 1.0860e-1 (3.00e-2) + 1.6512e-1 (4.66e-2)
10 1.7287e+0 (8.67e-1) − 6.9862e-1 (1.09e+0) − 7.4209e-1 (2.22e-16) − 7.3573e-1 (2.50e-2) − 7.6373e+0 (3.84e-1) − 2.9513e-2 (1.96e-3) + 2.1262e-1 (3.90e-2)
15 2.0576e+0 (5.24e-1) − 7.1294e-1 (3.74e-2) − 7.4209e-1 (2.22e-16) − 7.4209e-1 (8.71e-2) − 5.8250e+0 (1.04e+0) − 7.8845e-2 (1.47e-2) + 3.7468e-1 (6.98e-2)
20 4.7738e+0 (1.53e+0) − 9.1472e-2 (3.22e-1) + 7.4209e-1 (4.17e-2) − 7.5006e-1 (1.90e-1) − 7.3298e+0 (1.11e+0) − 7.6743e-2 (7.49e-3) + 5.0962e-1 (3.35e-2)
30 1.8926e+0 (5.51e-1) − 8.8534e-1 (4.47e-1) − 2.1385e+0 (2.16e+0) − 7.7031e-1 (1.44e-1) − 8.4674e+0 (5.99e-1) − 7.2398e-2 (2.86e-3) + 7.4209e-1 (6.72e-3)

DTLZ7

3 7.7938e-2 (2.54e-3) + 6.8294e-1 (1.77e-1) − 6.9102e-2 (3.07e-3) + 8.2868e-2 (2.72e-2) + 9.5148e-2 (2.22e-3) + 1.5661e-1 (2.44e-2) − 1.2764e-1 (1.87e-2)
5 3.9254e-1 (1.73e-2) + 7.5723e-1 (3.68e-2) − 3.0717e-1 (8.78e-3) + 5.1642e-1 (1.32e-1) ≈ 5.0987e-1 (1.15e-2) − 1.2010e+0 (1.80e-1) − 4.6981e-1 (2.02e-2)
8 9.9476e-1 (7.48e-2) + 1.2247e+0 (5.42e-2) + 9.9108e-1 (1.51e-1) + 2.2005e+0 (3.23e-1) − 2.1235e+0 (5.09e-1) − 1.4118e+0 (2.12e-1) − 1.3292e+0 (4.11e-2)

10 2.2820e+0 (4.23e-1) − 1.6596e+0 (3.01e+0) ≈ 1.1843e+0 (1.20e-1) + 4.2476e+0 (5.77e-1) − 3.3375e+0 (2.47e-2) − 1.6200e+0 (1.04e-1) ≈ 1.6839e+0 (8.60e-2)
15 6.5148e+0 (8.56e-1) − 2.7468e+0 (1.37e-1) − 2.9614e+0 (2.28e+0) − 1.1187e+1 (4.31e-1) − 1.4699e+1 (3.97e+0) − 2.0258e+0 (5.28e-2) + 2.5357e+0 (1.37e-1)
20 1.5324e+1 (2.49e-1) − 3.5378e+0 (6.32e-1) − 2.8879e+0 (1.31e+0) ≈ 1.5646e+1 (1.81e-1) − 1.7139e+1 (3.79e+0) − 2.4473e+0 (6.10e-2) ≈ 2.8951e+0 (1.93e-1)
30 - - - - - - -

+/ ≈ /− 8/2/38 6/1/41 7/2/39 6/4/38 4/2/42 14/5/29

3.5. Computational Complexity Analysis286

The computational complexity of NSPI-EMO in one generation depends mainly on four parts: (i) calculation of287

the performance indicators; (ii) the formation of the mating pool; (iii) environmental selection; and (iv) the updating of288

the archive. Suppose the number of objectives is M and the size of the population is N. The computational complexity289

for calculating the performance indicators consists of the calculation of the diversity and convergence performances,290

which will cost O(N) and O(N2), respectively. To form a mating pool, N binary tournament selections are required.291

Therefore, a complexity of O(N) is required. In the environmental selection, the next parent population is selected292

based on the non-dominated sorting according to the proposed two indicators. Thus, the time complexity of the293

environmental selection is O(N2). The archive is updated based on the non-dominated sorting on the objective values.294

Therefore, the time complexity will be O(M × |A|) for each solution, where |A| represents the number of solutions in295

the archive. Thus, the total computational complexity is O(M × N × |A|) for all solutions for updating the archive.296

To summarize, as M << N in general, the overall computational complexity of NSPI-EMO for one generation is297

O(N × |A|) if |A| > N, otherwise it will be O(N2).298
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Table 5: Median and MAD of the IGD values obtained by NSGA-III, MaOEAIGD, NMPSO, SPEA/R, BiGE, MOEA/D-DE and NSPI-EMO on
MaF1–15. The best median result in each row is shown with a gray background, along with any results not significantly different from it.

Problem M NSGAIII MaOEAIGD NMPSO BiGE SPEAR MOEA/D-DE NSPI-EMO

MaF1

10 3.2584e-1 (1.05e-2) ≈ 3.6272e-1 (9.57e-3) − 3.3981e-1 (1.28e-2) ≈ 2.9254e-1 (9.79e-3) + 4.5218e-1 (5.05e-2) − 2.9786e-1 (2.06e-2) + 3.1874e-1 (2.23e-2)
15 3.9370e-1 (1.32e-2) + 4.0122e-1 (1.63e-2) + 4.3901e-1 (2.08e-2) ≈ 3.5300e-1 (1.23e-2) + 4.9078e-1 (5.40e-2) − 4.1585e-1 (1.61e-2) ≈ 4.3489e-1 (1.89e-2)
20 5.2069e-1 (2.34e-2) ≈ 5.2621e-1 (1.63e-2) ≈ 5.2888e-1 (2.44e-2) ≈ 4.2642e-1 (1.74e-2) + 6.7199e-1 (4.23e-2) − 5.2043e-1 (1.69e-2) ≈ 5.2944e-1 (2.36e-2)
30 4.8439e-1 (9.04e-3) + 5.5654e-1 (2.00e-2) + 6.1403e-1 (3.18e-2) + 4.2825e-1 (4.56e-3) + 6.5135e-1 (4.43e-2) + 5.5737e-1 (2.17e-2) + 8.1923e-1 (7.12e-2)

MaF2

10 2.6361e-1 (3.06e-2) − 4.3413e-1 (5.54e-2) − 2.1146e-1 (9.88e-3) + 2.4662e-1 (1.68e-2) ≈ 2.4968e-1 (2.44e-3) ≈ 3.2475e-1 (3.09e-2) − 2.4666e-1 (2.19e-2)
15 3.1211e-1 (3.52e-2) ≈ 5.0002e-1 (3.81e-2) − 3.6016e-1 (1.27e-2) − 2.6490e-1 (2.28e-2) + 6.5950e-1 (8.56e-2) − 4.7130e-1 (3.62e-2) − 3.0567e-1 (1.64e-2)
20 3.0114e-1 (5.66e-2) + 4.8725e-1 (1.02e-1) − 4.5283e-1 (3.43e-2) − 3.2724e-1 (2.34e-2) + 4.7071e-1 (9.07e-2) − 3.6405e-1 (6.58e-2) ≈ 3.5465e-1 (1.57e-2)
30 2.5083e-1 (6.20e-2) + 5.2277e-1 (5.59e-2) + 8.9519e-1 (1.33e-2) + 6.0414e-1 (9.34e-2) + 3.4248e-1 (4.48e-2) + 4.1232e-1 (6.54e-2) + 9.1314e-1 (9.60e-3)

MaF3

10 1.1525e+3 (1.04e+4) − 7.1062e+0 (3.42e+1) ≈ 3.0755e+5 (4.88e+7) − 1.1395e+6 (1.77e+6) − 2.1341e+4 (1.64e+7) − 2.1994e+1 (4.08e+2) ≈ 5.2862e+0 (1.01e+1)
15 1.4182e+3 (5.45e+3) − 4.6025e+1 (6.26e+1) − 1.0471e+8 (1.51e+9) − 2.1165e+6 (2.66e+6) − 9.5453e+4 (1.18e+8) − 2.6810e+1 (9.68e+1) ≈ 1.1511e+1 (1.60e+1)
20 7.8321e+3 (1.40e+5) − 1.2688e+1 (5.78e+1) ≈ 2.4945e+9 (1.49e+9) − 3.6440e+6 (7.01e+6) − 1.1223e+5 (1.30e+5) − 2.9656e+0 (2.65e+2) ≈ 1.8652e+1 (1.27e+1)
30 1.3246e+3 (6.54e+3) − 2.5442e+2 (3.78e+2) − 1.4166e+9 (1.32e+9) − 5.4872e+6 (3.94e+7) − 9.4663e+4 (7.13e+8) − 1.5711e+1 (2.11e+2) − 9.3180e+0 (7.72e+1)

MaF4

10 1.6596e+2 (3.95e+2) ≈ 7.8332e+2 (5.47e+2) − 2.6245e+4 (6.30e+3) − 3.7935e+2 (5.14e+2) ≈ 2.3737e+3 (1.41e+3) − 4.5860e+3 (6.15e+3) − 4.3431e+2 (1.43e+2)
15 6.0097e+3 (8.59e+3) + 7.4076e+4 (7.58e+4) − 1.0466e+6 (4.49e+5) − 9.8981e+3 (1.20e+4) ≈ 7.9201e+4 (5.21e+4) − 1.0593e+5 (3.29e+5) ≈ 1.4273e+4 (3.04e+3)
20 2.0551e+5 (1.21e+5) + 2.1107e+6 (1.74e+6) − 4.0867e+7 (1.42e+7) − 3.8382e+5 (5.46e+5) ≈ 3.5532e+6 (1.97e+6) − 2.7688e+6 (8.79e+6) − 5.1833e+5 (1.26e+5)
30 5.0284e+8 (1.16e+9) ≈ 6.6256e+9 (2.74e+9) − 2.2784e+10 (1.28e+10) − 9.3785e+8 (6.37e+8) ≈ 3.3020e+9 (2.55e+9) − 6.3162e+8 (4.26e+9) − 7.0075e+8 (1.17e+8)

MaF5

10 1.3205e+2 (6.74e+0) + 3.0397e+2 (3.72e+1) − 1.0357e+2 (3.55e+1) + 9.3710e+1 (4.00e+0) + 1.2763e+2 (9.80e+0) + 3.0605e+2 (4.45e-1) − 1.3887e+2 (8.03e+0)
15 4.6126e+3 (6.92e+2) + 7.3260e+3 (2.90e+2) − 4.2261e+3 (1.47e+3) + 2.3046e+3 (1.87e+2) + 4.9896e+3 (3.16e+2) ≈ 7.3260e+3 (9.30e-2) − 5.2216e+3 (3.91e+2)
20 7.7024e+4 (1.57e+4) + 1.7095e+5 (3.16e-1) − 1.1474e+5 (3.24e+4) ≈ 4.0663e+4 (6.51e+3) + 1.1063e+5 (1.67e+4) ≈ 1.7095e+5 (4.63e-2) − 1.1795e+5 (7.61e+3)
30 7.2313e+7 (8.85e+6) + 1.3021e+8 (1.01e+0) − 1.3021e+8 (4.36e+0) − 9.0255e+7 (2.00e+7) + 6.8452e+7 (7.60e+6) + 1.3021e+8 (4.16e-4) − 1.2956e+8 (7.43e+6)

MaF6

10 3.5647e-1 (7.18e-2) − 7.0303e-1 (1.63e-1) − 1.3194e+0 (9.21e-1) − 3.9713e-1 (1.18e-1) − 3.0251e-1 (7.77e-2) − 4.2628e-2 (4.99e-4) − 3.2703e-2 (1.68e-2)
15 3.4234e-1 (1.66e-1) − 7.4226e-1 (9.23e-3) − 3.7161e+0 (2.06e+0) − 5.7048e-1 (3.11e-1) − 3.0621e-1 (7.05e+0) − 5.3466e-2 (4.95e-3) + 8.3593e-2 (6.44e-4)
20 3.7756e-1 (5.43e+0) − 9.2334e-2 (1.58e-1) − 3.7002e+0 (7.92e+0) − 6.4031e-1 (1.96e-1) − 3.4251e-1 (2.68e+1) − 8.4767e-2 (1.14e-2) − 8.3338e-2 (5.74e-4)
30 3.9166e-1 (1.46e-1) − 1.1760e-1 (2.45e-1) ≈ 1.1583e+2 (7.43e+1) − 3.4567e-1 (7.47e-2) ≈ 3.7990e+1 (2.57e+1) − 7.3318e-2 (8.64e-4) + 3.8775e-1 (2.30e-1)

MaF7

10 2.9200e+0 (7.90e-1) − 1.6682e+0 (1.42e+0) ≈ 1.3458e+0 (8.31e-1) + 4.2526e+0 (5.29e-1) − 3.3454e+0 (9.74e-1) − 1.6614e+0 (1.46e-1) ≈ 1.6736e+0 (8.40e-2)
15 7.2229e+0 (1.85e+0) − 2.7790e+0 (4.32e-1) − 2.9324e+0 (1.78e+0) − 1.1257e+1 (2.16e-1) − 1.8246e+1 (7.80e+0) − 2.0332e+0 (4.16e-2) + 2.5449e+0 (1.33e-1)
20 1.5583e+1 (1.44e+1) − 3.9094e+0 (1.26e+0) − 3.0179e+0 (6.92e-1) ≈ 1.5563e+1 (1.30e-1) − 1.9989e+1 (9.36e+0) − 2.4519e+0 (7.02e-2) + 2.9038e+0 (1.39e-1)
30 - - - - - - -

MaF8

10 4.7141e-1 (4.93e-2) − 1.5250e+0 (2.25e-1) − 2.1054e-1 (1.02e-2) + 3.1988e-1 (3.84e-2) − 1.7960e+3 (1.55e+3) − 1.3631e-1 (1.51e-3) + 2.2823e-1 (2.58e-2)
15 8.6141e-1 (1.21e-1) − 1.9316e+0 (1.11e+0) − 5.5495e-1 (3.91e-2) − 3.7645e-1 (4.77e-2) + 2.7730e+3 (3.07e+3) − 2.0125e-1 (2.55e-3) + 4.5584e-1 (2.18e-2)
20 8.1291e-1 (1.51e-1) − 2.2562e+0 (3.03e-1) − 6.8300e-1 (9.49e-2) − 4.5386e-1 (4.59e-2) ≈ 3.6886e+3 (3.13e+3) − 1.8501e-1 (2.44e-3) + 4.4945e-1 (2.15e-2)
30 8.5110e-1 (9.34e-2) + 2.9908e+0 (4.92e-1) − 8.9741e-1 (1.12e-1) + 7.4505e-1 (1.15e-1) + 4.2768e+3 (3.38e+3) − 1.1293e+0 (1.23e-2) + 1.7087e+0 (1.65e-1)

MaF9

10 1.1015e+0 (8.95e-1) − 1.4342e+0 (1.35e+0) − 2.1377e-1 (1.08e-2) + 2.4100e+0 (1.35e-1) − 9.1386e+0 (4.51e+0) − 1.7975e-1 (6.21e-3) + 3.2297e-1 (1.32e-1)
15 1.3331e+0 (5.33e+0) − 1.2785e+1 (7.57e+0) − 5.7353e-1 (6.22e-1) + 2.3320e+0 (3.19e+0) − 3.2579e+1 (3.54e+1) − 4.6052e-1 (3.03e-2) + 7.6106e-1 (1.04e+0)
20 1.8508e+1 (6.04e+0) − 1.6941e+1 (6.48e+0) − 1.1807e+0 (3.79e-1) ≈ 1.7167e+1 (7.06e+0) − 3.3831e+1 (4.72e+1) − 2.9258e-1 (2.57e-2) + 9.4062e-1 (4.69e+0)
30 1.7788e+0 (2.99e+0) ≈ 3.2367e+1 (1.56e+1) − 4.2489e+0 (2.81e+0) ≈ 4.0536e+0 (8.08e+0) ≈ 5.4726e+1 (1.85e+1) − 2.7290e+0 (1.57e+1) ≈ 1.6924e+1 (1.53e+1)

MaF10

10 2.5184e+0 (2.06e-1) ≈ 2.3624e+0 (1.80e-1) + 2.8031e+0 (2.39e-1) ≈ 1.5186e+0 (8.14e-2) + 2.9676e+0 (1.42e-1) − 3.2947e+0 (3.10e-2) − 2.6288e+0 (1.62e-1)
15 2.6435e+0 (1.19e-1) + 3.5292e+0 (2.23e-1) − 3.6920e+0 (1.66e-1) − 2.0147e+0 (8.76e-2) + 3.7105e+0 (1.65e-1) − 3.3957e+0 (1.15e-1) − 3.1979e+0 (1.11e-1)
20 5.2991e+0 (1.24e-1) − 5.5008e+0 (1.37e-1) − 5.3163e+0 (1.34e-1) − 3.9549e+0 (6.33e-2) + 5.4331e+0 (8.04e-2) − 5.7142e+0 (8.63e-2) − 4.8733e+0 (6.36e-2)
30 - - - - - -

MaF11

10 1.4683e+0 (7.20e-2) − 2.3923e+0 (9.21e-1) − 1.7704e+0 (2.11e-1) − 1.4956e+0 (5.59e-2) − 1.6500e+0 (8.24e-2) − 1.7923e+0 (5.58e-2) − 1.1992e+0 (7.12e-2)
15 2.8759e+0 (6.10e-1) − 2.3971e+0 (2.54e+0) − 2.7730e+0 (3.75e-1) − 1.9114e+0 (5.60e-2) − 2.5398e+0 (5.53e-1) − 3.1822e+0 (4.23e-1) − 1.7478e+0 (6.66e-2)
20 8.5064e+0 (2.10e+0) − 5.0447e+0 (5.89e+0) − 4.7852e+0 (5.36e-1) − 3.7939e+0 (6.93e-2) − 5.0498e+0 (1.42e+0) − 5.1234e+0 (2.14e-1) − 3.4428e+0 (1.39e-1)
30 5.0771e+0 (3.30e-1) ≈ 3.9501e+1 (2.01e+1) − 1.4410e+1 (1.65e+0) − 5.1274e+0 (4.56e-1) − 5.0738e+0 (2.46e-1) ≈ 7.7823e+0 (1.06e+0) − 5.2310e+0 (1.78e-1)

MaF12

10 5.7192e+0 (8.97e-2) − 6.8356e+0 (4.67e+0) − 4.8361e+0 (5.85e-2) − 5.6426e+0 (2.93e-1) − 5.7886e+0 (4.35e-2) − 6.4873e+0 (2.86e-1) − 4.3383e+0 (9.17e-2)
15 1.1372e+1 (2.45e-1) − 1.3635e+1 (8.39e+0) − 9.0472e+0 (4.10e-1) ≈ 1.0081e+1 (2.78e-1) − 1.1978e+1 (7.52e-2) − 1.3297e+1 (6.59e-1) − 9.3609e+0 (3.75e-1)
20 1.8488e+1 (9.12e-1) − 3.7932e+1 (1.07e+1) − 1.6837e+1 (1.79e+0) − 1.4880e+1 (3.40e-1) − 1.7433e+1 (6.98e-2) − 2.3725e+1 (1.23e+0) − 1.3555e+1 (7.88e-1)
30 2.5372e+1 (4.30e-1) + 2.4277e+1 (1.28e+1) + 5.0963e+1 (1.12e+0) − 3.3679e+1 (2.53e+0) + 2.6124e+1 (9.51e-2) + 4.9752e+1 (2.13e+0) − 4.3287e+1 (3.64e+0)

MaF13

10 4.0709e-1 (9.80e-2) ≈ 1.2675e+0 (1.40e-1) − 2.6293e-1 (3.60e-2) + 4.2239e-1 (1.05e-1) ≈ 7.5559e-1 (1.46e-1) − 2.7357e-1 (9.98e-3) + 4.2214e-1 (2.80e-2)
15 7.3486e-1 (1.46e-1) ≈ 1.6600e+0 (1.26e-1) − 3.8626e-1 (7.98e-2) + 5.1312e-1 (1.71e-1) + 8.0964e-1 (3.11e-1) ≈ 5.9186e-1 (4.12e-2) + 7.9590e-1 (6.68e-2)
20 7.0308e-1 (1.36e-1) + 1.9522e+0 (2.14e-1) − 5.2701e-1 (7.45e-2) + 6.7750e-1 (3.60e-1) ≈ 1.4403e+0 (3.34e-1) − 5.8756e-1 (4.20e-2) + 9.0035e-1 (1.06e-1)
30 7.0705e-1 (1.97e-1) + 2.3505e+0 (5.10e-1) − 1.1403e+0 (8.73e-1) ≈ 1.4751e+0 (6.06e-1) − 1.6239e+0 (4.60e-1) ≈ 8.6231e-1 (1.38e-1) + 1.3416e+0 (5.22e-1)

MaF14

10 1.5974e+1 (1.47e+1) − 2.5174e+0 (8.61e-1) − 3.0517e+1 (2.45e+1) − 2.2273e+1 (8.11e+1) − 2.6065e+1 (2.54e+1) − 6.2109e+0 (1.28e+0) − 1.3177e+0 (2.15e-1)
15 1.4174e+1 (1.07e+1) − 1.7189e+1 (1.50e+1) − 4.2469e+1 (2.38e+2) − 1.7516e+1 (9.63e+0) − 2.8183e+1 (1.16e+1) − 7.6009e+0 (3.73e+0) − 1.5240e+0 (5.22e-1)
20 6.1421e+0 (1.30e+3) − 2.0554e+0 (1.55e+0) − 5.5266e+1 (1.84e+1) − 3.1027e+1 (1.02e+2) − 6.2389e+1 (7.72e+2) − 1.2425e+0 (1.75e-1) ≈ 1.2364e+0 (1.35e-1)
30 4.5151e+0 (4.05e+1) − 3.1596e+0 (2.79e+0) − 6.5877e+1 (3.10e+4) − 3.6061e+2 (7.84e+2) − 1.9305e+2 (3.42e+2) − 1.4726e+0 (5.28e-1) ≈ 1.5568e+0 (5.32e-1)

MaF15

10 1.4045e+1 (3.26e+0) − 1.6060e+0 (2.26e-1) − 1.5157e+0 (2.40e-1) − 5.7483e+0 (1.19e+0) − 2.3887e+1 (3.74e+0) − 7.1632e+0 (6.75e-1) − 1.0561e+0 (4.58e-2)
15 2.2302e+1 (1.13e+1) − 1.4231e+0 (2.34e+0) ≈ 1.7777e+0 (1.79e+0) − 5.4214e+0 (1.63e+0) − 7.1913e+1 (1.03e+1) − 1.2038e+1 (8.92e-1) − 1.4286e+0 (4.34e-2)
20 4.8716e+1 (4.87e+0) − 5.0182e+0 (1.20e+0) − 4.5258e+0 (4.34e-1) − 2.7834e+0 (3.12e-1) − 9.6359e+1 (6.35e+0) − 1.5339e+1 (8.28e-1) − 1.7247e+0 (4.54e-2)
30 5.8912e+1 (3.27e+0) − 2.2315e+1 (4.06e+0) − 8.7668e+0 (9.91e-1) − 5.1510e+0 (7.47e-1) + 1.0496e+2 (6.91e+0) − 2.5043e+1 (2.49e+0) − 6.3738e+0 (8.90e-1)

+/ ≈ /− 15/9/34 5/6/47 13/10/35 19/12/27 5/6/47 16/13/29
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4. Conclusion299

Two new performance indicators, one focusing on convergence and the other on diversity, have been proposed300

in this paper, and used in the environmental selection after non-dominated sorting for many-objective optimization.301

These performance indicators are helpful in maintaining solutions located in both the middle and edge parts in the302

objective space, thereby effectively enhancing the diversity of the population. On the basis of these performance303

indicators, a new MOEA for many-objective optimization, termed NSPI-EMO has been developed. The experimental304

results on DTLZ test functions with 3, 5, 8, 10, 15, 20 and 30 objectives, and on MaF test instances with 10, 15, 20305

and 30 objectives, show that the performance of proposed NSPI-EMO algorithm is highly competitive compared to a306

number of state-of-the-art many-objective optimizers, especially when the number of objectives and/or design space307

is large.308

However, as discussed, the NSPI-EMO algorithm is (relatively) less adept at solving problems when the number309

of objectives is low. We posit that in the lower-dimensional objective space it may be better to use the distance310

instead of angle to measure the crowdedness of a solution. We intend to analyze the characteristics of distance-based311

and angle-based diversities further in order to propose even better strategies to evaluate the performance on diversity312

for each solution in our future work. Furthermore, the experimental results show that NSPI-EMO is inefficient in313

solving problems with irregular/degenerate Pareto fronts. Therefore, we look forward to designing new strategies for314

identifying and dealing with such Pareto front properties.315
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