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Guided modes and terahertz transitions for two-dimensional Dirac fermions
in a smooth double-well potential
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The double-well problem for the two-dimensional Dirac equation is solved for a family of quasi-one-
dimensional potentials in terms of confluent Heun functions. We demonstrate that for a double well separated
by a barrier, both the energy-level splitting associated with the wave-function overlap of well states and the gap
size of the avoided crossings associated with well and barrier state repulsion can be controlled via the parameters
of the potential. The transitions between the two states comprising a doublet, as well as transitions across the
pseudogaps are strongly allowed, highly anisotropic, and, for realistic graphene devices, can be tuned to fall
within the highly desirable terahertz frequency range.
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I. INTRODUCTION

The double well in quantum mechanics has been stud-
ied in relation to various physical phenomena, ranging from
vibrations of polyatomic molecules [1] to applications in
Bose–Einstein condensation [2]. Solutions to the Schrödinger
equation for smooth double wells are equally broad and have
been analyzed using perturbative methods [3], instanton cal-
culus [4], the WKB approximation [5], and other techniques.
With the rise of two-dimensional (2D) Dirac materials [6]
comes a fresh opportunity to revisit the double-well problem
in a relativistic setting and to conduct ultrarelativistic exper-
iments without the need for powerful accelerators. Indeed,
there has been significant progress in creating guiding po-
tentials in Dirac materials [7–12], most recently using carbon
nanotubes as top gates [13]. These top-gated structures allow
the potential profile to be controlled by manipulating the top-
gate voltage, allowing the creation of well-defined smooth
double wells.

Several approaches have been considered to achieve the
goal of confinement in Dirac materials. These range from uti-
lizing magnetic fields [14–18] to implementing Fermi velocity
engineering [19–22] to introducing a spatially dependant mass
term [23] and, most commonly, using electrostatic potentials
[24–47]. Confinement in massless Dirac materials is noto-
riously difficult due to the Klein tunneling effect [48,49].
However, total confinement can be achieved in such sys-
tems for zero-energy states within an electrostatically defined
waveguide, whose potential vanishes at infinity. This is be-
cause the density of states vanishes outside of the waveguide
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[36,39,40,46]. For non-zero-energy states, the bound states
within the potential can couple to the continuum states outside
the channel and are therefore poorly guided. However, for
massive particles, bound states can occur in spite of the Klein
phenomena.

The alternative geometry of transmission through potential
barriers has also been a subject of extensive research, with the
majority of studies utilizing sharp but smooth potentials, i.e.,
potentials which are steplike or have kinks but are assumed to
be smooth on the scale of the lattice constant, so the effects of
intervalley scattering are neglected. Supercritical transmission
[50–58] and tunneling through barriers has been studied for
a variety of one-dimensional (1D) model potentials in both
massless and massive 2D Dirac systems [25,27,49,59–76],
including square barrier structures such as the double barrier
[77–80], inverted double well [81,82], asymmetric waveg-
uides [34,43], and various other steplike structures [41,42,82].
A variety of approaches ranging from the transfer matrix
method to the WKB method have been used. However, there
is a dearth of studies concerning potentials which span both
positive and negative energies, i.e., contain both electronlike
and holelike guided modes. The exceptions are periodic po-
tentials [83] and sinusoidal multiple-quantum-well systems
[68]. Multiple-quantum-well systems are shown to exhibit
transmission gaps in the electrons and holes spectra at tilted
angles of incidence [68,84], and the number of oscillations in
the transmission window depends on the number of quantum
wells. For a double well studied in this paper (see Fig. 1 for
the Gedankenexperiment sketch), the width of the transmis-
sion gap simply corresponds to the energy difference between
guided modes, whereas the oscillations are associated with
the splitting of a guided mode into multiple modes due to
tunneling between wells. In this paper, we consider the regime
where the potential results in an “inversion” of electron and
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FIG. 1. A schematic diagram of a double-well system, created by
three carbon nanotube top gates. The central nanotube is negatively
biased to create the central barrier, while the other two are positively
biased to create the two wells. The Dirac material sits on top of a
dielectric layer (violet layer), which lays on top of the metallic back
gate. The Fermi level can be controlled using the back gate potential.
The electrostatic potential created by the top gates is shown by the
thick black line.

hole states, i.e., the valence band states in the barrier are
higher than the conduction band states in the two wells. In
this regime, the repulsion of electron and hole states gives
rise to interesting features in the eigenvalue spectrum, namely,
avoided crossings, which can be controlled via the applied
potential. These level avoided crossings also provide a clear
physical picture behind the anisotropic energy gap opening
near the Dirac point of graphene subjected to a periodic po-
tential [83,85].

The 2D Dirac equation has been the subject of considerable
interest due to the explosion of research in transition metal
dichalcogenides (TMDs) [86], Weyl semimetals [87], topo-
logical insulators [88–90], low-dimensional forms of carbon
[91,92], and their silicon analogs [93], for which their low-
energy excitations can be described by a Hamiltonian of the
form

Ĥ = h̄v(k̂xσx + sK k̂yσy + kzσz ), (1)

where k̂x = −i ∂
∂x , k̂y = −i ∂

∂y , σx, y, z are the Pauli spin matri-
ces, v is the Fermi velocity which plays the role of the speed
of light, sK = ±1 is the valley index number, and kz is propor-
tional to the particle’s in-plane effective mass. For graphene,
v = vF ≈ 106 m/s and kz = 0 [94]. For quasi-1D forms such
as narrow-gap carbon nanotubes and certain types of graphene
nanoribbons [95,96], the operator k̂y can be substituted by the
number ky = Eg/(2h̄vF), where Eg is the value of the band
gap, which can be manipulated via the application of external
fields [92,97–101]. Examples of massive 2D Dirac systems
include but are not limited to silicene, germanene, TMDs, and
graphene on top of lattice-matched boron nitride [102].

The gapless spectrum of graphene and the nearly gapless
band structure of narrow-gap carbon nanotubes and ribbons
caused a natural attraction to their optical properties in the
terahertz (THz) spectral range, which have led to a menagerie
of promising applications in the field of THz optoelectronics
[92]. The main goal of this paper is to demonstrate that the
gate-induced double-well geometry allows for tuneable THz

transitions between the various guided modes. We approach
this problem by calculating the dispersion of guided modes in
several model potentials which are smooth at the atomic scale,
thus allowing us to disregard the problem of valley mixing
caused by jumps and kinks in piecewise potentials. These
models describe well the shape of an electrostatic potential
created in plane by three differently charged nanowires placed
above a metallic gate, as can be shown by the mirror charge
method.

The detailed calculations of the energy spectrum for a
smooth double well, with the middle barrier exceeding the
side barriers, are provided in Sec. II, whereas the model po-
tential with a middle barrier below the side barriers is treated
in Appendix B. The selection rules for dipole transitions be-
tween the guided modes in the potential described in Sec. II
are analyzed in Sec. III, followed by the summary of the
results in Sec. IV.

II. RELATIVISTIC ONE-DIMENSIONAL
DOUBLE-WELL PROBLEM

In what follows, we shall consider a Dirac particle de-
scribed by the Hamiltonian given by Eq. (1) subject to a
double-well 1D potential U (x). Hereafter, the valley index
number, sK, is set to one. The other valley’s wave function can
be readily obtained by performing a sign change on ky. The
Hamiltonian acts on the two-component Dirac wave function

� =
(

ψA(x)
ψB(x)

)
eikyy (2)

to yield the coupled first-order differential equations

(V − E + �z )ψA − i

(
d

dx̃
+ �y

)
ψB = 0 (3)

and

(V − E − �z )ψB − i

(
d

dx̃
− �y

)
ψA = 0, (4)

where x̃ = x/L and L is a constant with the dimension of
length. V = UL/h̄vF and the charge carrier energy, ε, have
been scaled such that E = εL/h̄vF. The charge carriers prop-
agate along the y direction with wave vector ky = �y/L,
which is measured relative to the Dirac point and �z = kzL
represents their effective mass in dimensionless units. Fi-
nally, ψA(x) and ψB(x) are the wave functions associated
with the A and B sublattices, respectively. Substituting ψA =
1
2 (ψ1e

1
2 iφ + ψ2e− 1

2 iφ ) and ψB = 1
2 (ψ1e

1
2 iφ − ψ2e− 1

2 iφ ), where
φ = arctan (�y/�z ), allows Eqs. (3) and (4) to be reduced to
a single second-order differential equation in ψ j :

−d2ψ j

dZ2
+ Vs j ψ j = M2ψ j, (5)

where

Vs j (Z ) = W 2(Z ) − scs j
dW (Z )

dZ
(6)

and the other spinor component is found by the relation

ψ j′ = − 1

M

(
V − E + scs j

d

dZ

)
ψ j, (7)
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where x̃ = sciZ , sc = ±1, W = V − E , s j = (−1) j , and j =
1, 2 ( j′ = 2, 1) corresponds to the spinor components ψ1

(ψ2) and ψ2 (ψ1), respectively. In this basis, the particle’s
transverse momentum �y and in-plane effective mass �z have

been combined into a single effective mass, M =
√

�2
y + �2

z .
Equation (5) is of the same form as the Schrodinger equation,
i.e., a second-order differential equation with no first-order
derivative. Therefore, if Vs j is equal to a potential possess-
ing known solutions to the Schrödinger equation, then for
zero-energy states, we can readily write down the bound state
spectrum of the potential, W , which satisfies the nonlinear
Eq. (6) [103–105]. It should also be noted that for zero-energy
modes, the left-hand side of Eq. (5) is of the form of the
super-Hamiltonian, W plays the role of the superpotential,
and the allowed M plays the role of the energy eigenstates
[103,104]. Thus there exists a plethora of potentials which
admit solutions for zero-energy modes. These zero-energy
modes are highly relevant to the study of electronic waveg-
uides formed by graphene top-gated structures [13,36]. In
pristine graphene, waveguides formed by potentials which
vanish at infinity possess fully guided modes only at zero
energy, at nonzero energy the guided modes are leaky. Since
there is a threshold value in the characteristic strength of the
confinement potential (controlled by the applied gate volt-
age), for which the first zero-energy bound mode appears,
such structures can be utilized as the basis of switchable de-
vices, thus overcoming the problem of minimal conductivity,
which is a major obstacle in graphene applications for digital
electronics. For nonzero energy, the W which satisfies the
nonlinear Eq. (6) for a given potential Vs j will be eigenval-
ues of an energy-dependent potential [106]. However, we are
interested in potentials which are independent of energy and
are suitable for the use of modeling double wells in Dirac
materials.

In what follows, we consider the case where the 2D Dirac
equation reduces to the confluent Heun equation for a fam-
ily of potentials, some of which can be used to describe
a double well separated by a barrier. This quantum model
is quasiexactly solvable [39,46,107–112], i.e., only a subset
of the eigenvalues can be found explicitly. We study bound
states contained within double-well potentials and calculate
their entire energy spectrum. Energy-level splitting associated
with quantum tunneling between wells and avoided crossings
associated with the intermixing of electron-hole states are dis-
cussed. Finally, THz applications utilizing the doublet states
and avoided crossing points are considered.

We seek to recast Eq. (5) in the form of the normal sym-
metrical confluent Heun equation [113]. This can be achieved
by applying the transformation ξ = ξ (Z ) to the independent
variable and ψ j = exp [− ∫

1
2 ( 1



d

dξ

)dξ ]�s j ,sc (ξ ), where 
 =
dξ (Z )

dZ , to the dependent variable. If the potential is of the form

V = a2ξ
2 + a1ξ + a0

1 − ξ 2

η1, η2 , (8)

where a2, a1, and a0 are constants, 
η1, η2 =
Cη1, η2 (1 − ξ )η1 (1 + ξ )η2 , η1 and η2 can take the values
of unity or zero, and Cη1, η2 is a constant, then Eq. (5) reduces
to the normal symmetrical form of the Confluent Heun

equation (see Appendix A):

− d2�s j ,sc

dξ 2
+

[
p2+ λ − 2pβξ

ξ 2 − 1
+ m2 + s2 − 1 + 2msξ

(ξ 2 − 1)2

]
�s j ,sc

= 0. (9)

If the parameters η1 and η2 defining 
η1,η2 are not set to zero
or unity, then the aforementioned transformations will result
in an equation different from Eq. (9), which is the basis of the
method used in this paper. Equation (8) provides a family of
energy-independent potentials for which the quasi-1D Dirac
problem admits wave functions in terms of the confluent Heun
functions. Notable members of this family include the Rosen-
Morse potential, a generalized Hulthen-like potential, and the
shifted 1D Coulomb potential (see Appendix A for further
details).

One of the opportunities to describe a smooth double well
is to choose the case of η1 = η2 = 0. We require that our
potential is nonsingular and vanishes as x → ±∞. Therefore
we set a2 = 0 and the potential becomes

V = a1Z + a0

1 − Z2
≡ A1x̃ + A0

1 + x̃2
, (10)

where the potential parameters A1 and A0 are related to the
parameters appearing in Eq. (9) via the relations

p = sp

√
E2 − M2, β = −iscA1E/p,

λ = −A1(A1 + is j ) + 2EA0,

�1, 2 = saA0, �2, 1 = isa(A1 + is j )sc,

where �1 = m, �2 = s, and sa, p = ±1. Equation (10) is
a linear combination of the Lorentzian and its logarithmic
derivative, which has known solutions for the radial Dirac
equation [37]. Since the potential given by Eq. (10) is smooth
and vanishes as x → ±∞, it may be utilized for modeling
top-gated structures in 2D Dirac materials. The Lorentzian has
already been used to model the potential generated by a top
gate formed by a carbon nanotube [13]. It should also be noted
that when p = 0, i.e., |E | = M, the Lorentzian admits exact
energy eigenvalues (see Appendix C). Exponentially decaying
potentials also play an important role in the modeling of het-
erostructure devices based upon zero-energy modes in Dirac
materials, as these potentials are often quasiexact, admitting
some exact energy eigenvalues. As mentioned previously in
the Introduction, the majority of work on multiple-barrier
structures focus on smooth but sharp potentials. However,
realistic potential profiles vary slowly over the length scale
of the Dirac material’s lattice constant and discontinuous po-
tentials have yet to be realized. Furthermore, many piecewise
potentials do not result in smooth wave functions across the
whole of configuration space due to the nontrivial nature of
their boundary conditions [42,43,114]. Smooth potentials do
not suffer from this problem [36,39,46,115], additionally they
permit intervalley scattering to be neglected.
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FIG. 2. Energy levels of 2D Dirac electrons in a double-well
potential. The black solid lines show the two potentials given by
Eq. (10), (a) for the case of A1 = −6 and A0 = 0 and (b) for the case
of A1 = −3 and A0 = −2. The horizontal lines depict the bound-state
energies for the four lowest doublet states, plus all the holelike states
in the spectrum for the case of M = 1. The red solid and blue dashed
lines correspond to the eigenvalues of the even and odd modes of ψI ,
respectively.

The stationary points, x̃sr , of the potential Eq. (10) are
located at

x̃sr = −r + sr

√
1 + r2, (11)

where r = A0/A1 and sr = ±1. Making the coordinate trans-
formation x̃ = |x′| + x̃sr allows the potential Eq. (10) to be
utilized as a model for quasi-1D double wells in realistic
top-gated Dirac material heterostructures. When A1 < 0 and
sr = −1, the potential is a double well (see Fig. 2) whose
local minima are located a distance of 2

√
1 + r2 apart. The

two wells of depth A1/(2x̃1) are separated by a barrier of
height A1/(2x̃−1), which acts as a single well for holelike par-
ticles, with the possible experimental setup shown in Fig. 1.
Although we are dealing with a single-particle Hamiltonian,
it is convenient to call the states with the energy growing
with increasing |�y| when |�y| → ∞ as electronlike states or
electrons, whereas the holelike states correspond to E → −∞
when |�y| → ∞. In the limit that r � 1, the central bar-
rier’s height becomes negligible in comparison to the depth
of the two wells. Conversely, when A1 > 0 and sr = −1, the
potential becomes a single electron well, lying between two
barriers, which act as a double well for holelike particles. It
should be recalled that the potential described by Eq. (10) is
scaled such that V = UL/h̄, where L is the effective width of
the potential. Therefore, the dimensionless parameters A1 and
A0, which enter Eq. (10), are related to the effective potential
width and depth. It can be shown both via relativistic Levin-
son’s theorem [58,116–118] and analytically [36,46] that the
number of bound states contained within a realistic confining
potential is defined by the product of the potential’s depth and
its width, rather than its exact form. Therefore, the parameters
A0 and A1 can be extracted from existing single waveguide
systems by experimentally observing the appearance of the
first bound state as the potential depth is increased beyond
the critical threshold [13]. Although the effective width of the
potential is governed by technological limitations, mostly by
the separation of the top gate from the Dirac material, the
parameters A1 and A0 can still be controlled by the voltages
applied to the top gates.

Let us now calculate the energy spectrum of bound states
contained within a double well separated by a barrier, de-

FIG. 3. The energy spectrum of bound states contained within a
double well separated by a barrier, defined by the potential param-
eters (a) A1 = −6 and A0 = 0 and (b) A1 = −3 and A0 = −2, as a
function of effective mass, M. Here, only the four lowest doublet
states are displayed and all barrier states are present within the energy
range shown. The alternating red solid and blue dashed lines repre-
sent the even (odd) and odd (even) modes of ψI (ψII ), respectively.
The boundary at which the bound states merge with the continuum
is denoted by the grey short dashed lines.

scribed by Eq. (10). The solution to Eq. (5) for ψ1 and its
corresponding ψ2 can be written as (see Appendix A)

ψ1 =
∑

sc,cp,sa

Csc,cp,sa

(
− sa + A0 + iscA1

2M

)− scsa
2

�−1,sc (12)

and

ψ2 =
∑

sc,cp,sa

Csc,cp,sa

(
− sa + A0 + iscA1

2M

) scsa
2

�1,sc , (13)

respectively, where �s j ,sc = (1 − ξ )
γ

2 (1 + ξ )
δ
2 e−pξ u( 1−ξ

2 ),
and u = u(p, α, γ , δ, σ ; 1−ξ

2 ) are the Heun Confluent func-
tions [113] whose parameters are defined as γ = m + s +
1, δ = m − s + 1, α = −β + m + 1, σ = λ − 2p(β − γ ) −
m(m + 1), m = saA0, s = isa(A1 + is j )sc, and Csc,cp,sa are
weighting coefficients. For bound states, we require that the
term e−pξ decays as x → ∞; this imposes two conditions:
First sp = sc, and second, the absolute value of the particle’s
energy must be less than the reduced mass, i.e., |E | < |M|.
The functions ψ1 and ψ2 are neither even nor odd. For under-
standing optical selection rules and for a more clear mapping
of our results to the conventional double well picture, we shall
move to the symmetrized basis functions |ψI〉 = |ψ1〉 − |ψ2〉
and |ψII〉 = −i(|ψ1〉 + |ψ2〉). It should be noted that in this
basis, an exchange of the signs of V and E is formally
equivalent to exchanging ψI with ψII for the original V and
E . Therefore, inverting the potential only results in a sign
change of the eigenvalues. In the symmetrized basis, one can
construct a linear combination of functions Eqs. (12) and (13)
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FIG. 4. The normalized bound-state wave functions of the double-well potential. V = A1x̃/(1 + x̃2), where x̃ = |x′| − 1, A1 = −6, and
M = 3.5 for the first three doublet states of energies: (a) E = 0.92814, (b) E = 0.92818, (c) E = 1.54719, (d) E = 1.54723, (e) E = 1.98230,
(f) E = 1.98235, and for the hole states of energy (g) E = −1.10843, (h) E = −2.23465, and (i) E = −3.31137. The solid red and dash-dotted
blue lines correspond to the even and odd modes of �I , respectively, while the dashed and short dashed lines correspond to the other spinor
component �II . The grey line shows the double-well potential as a guide to the eye, plotted in arbitrary units.

to form solutions which are electron- (sa = 1) and holelike
(sa = −1),

ψI =
∑

sa

Dsa Im(ρ��1,1 + ρ−1�1,−1), (14)

ψII =
∑

sa

Dsa Re(ρ��1,1 + ρ−1�1,−1), (15)

where Re and Im are the standard notations for the
real and imaginary parts of a complex number, ρ =
(−2M )−

sa
2 (sa + A0 − iA1)

sa
2 and Dsa are the weighting con-

stants. For bound states, we require that the spinor compo-
nents, Eqs. (14) and (15), vanish at infinity, i.e., ψI,II (x′ −→
±∞) = 0, while the coordinate transformation, x̃ = |x′| +
x̃sr , imposes the continuity condition

ψI (x̃−) = 0 (16)

for odd states and

∂ψI

∂x

∣∣∣∣
x̃−

= 0 (17)

for even states. The coordinate transformation also requires
that ψI,II (x′) = −ψI,II (−x′) and ψI,II (x′) = ψI,II (−x′) for
odd and even states, respectively. However, the radius of con-
vergence, of the power series, is unity. Therefore, an iterative,
analytic continuation method must be employed to evaluate
the confluent Heun function beyond its radius of convergence
[119]. First, the power series u is evaluated at the point ξ̃1,
which lies within the radius of convergence. A new series

expansion is then performed about the point ξ̃1, which in
turn is used to evaluate the point ξ̃2, and so on and so forth.
This allows the energy eigenvalues to be found via a simple
shooting method [120,121] which utilizes the wave functions
of Eqs. (12) and (13).

In Fig. 3, we plot the energy spectrum of bound states
(square integrable along the x direction) defined by the poten-
tial parameters A1 = −6 and A0 = 0, as a function of effective
mass, M, displaying only the four lowest lying electronlike
doublets and all the holelike states within the energy range.
When E 
 M + Vmin (where Vmin is the minimum value of
the potential), the spectrum resembles a single, holelike par-
ticle trapped within a positive potential barrier. The highest
in energy holelike branch is s-like (nodeless) for ψI , and the
number of nodes increases by one as the branches progress
toward more negative energies. For E � −M + Vmax (where
Vmax is the maximum value of the potential), the spectrum is
electronlike and the energy splittings of the doublets (each
shown by a red line with a blue line underneath in Fig. 3)
tend to zero with increasing M, as expected for nonrelativis-
tic particles when increasing mass suppresses tunneling. In
this regime, it can be seen from Fig. 4 that the particles are
localized in the region of the wells, and that the wave func-
tions behave as a linear combination of the wave functions
associated with the individual wells. This gives rise to two
states where there would have been one if tunneling was
forbidden. For ψI , the number of nodes increases by one as
the branches progress to higher energies. However, since ψII
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is related to the derivative of ψI and the potential is even in x,
i.e., V (−x) = V (x), the asymmetric linear combination of the
two single well functions forces a node in the barrier between
them, while the symmetric combination does not, which is
reflected in the behavior of ψII being precisely the same as
a wave function for a nonrelativistic particle in a double well,
whereas, the component ψI has the opposite parity. Finally, in
the energy zone M − Vmin < E < −M + Vmax, the solutions
are a linear combination of electronlike and holelike states. It
can be seen from see Fig. 3 that a series of avoided crossings
are opened in the energy spectrum due to the repulsion of
barrier and well-doublet states. Also, in this energy zone,
the energy-level splitting associated with quantum tunneling
increases until the bound states merge with the continuum
states. This energy splitting between the two doublets can
be controlled in realistic Dirac-material-heterostructures by
either adjusting the strength of the applied top-gate voltages
or by the choice of geometry. This, coupled with the ability to
change the position of the Fermi level via a back gate, gives
rise to many possible device applications. Indeed, utilizing the
dependence on the number of zero-energy modes on potential
strength in single-well smooth electron waveguides has been
proposed as the basis switching devices in graphene [36].

III. TERAHERTZ TRANSITIONS

Within this section, we provide the general formalism
for calculating the dipole matrix element of THz transi-
tions between guided modes of quasiparticles described by
the Hamiltonian given by Eq. (1). For a Dirac particle
subject to a 1D potential U (x), the unperturbed Hamil-
tonian is given by Ĥ0 = Ĥ + IUz and the corresponding
eigenfunctions of the unperturbed Hamiltonian are given by
(ψA(x), ψB(x))T eikyy/

√
N , where N is a normalization factor

given by the expression N = l
∫ ∞
−∞(|ψA|2 + |ψB|2)dx, and l

is the sample length. In the presence of an electromagnetic
field, the particle momentum operator, p̂, is modified such that
p̂ → p̂ + eA/c, where e is the elementary charge, and A is the
magnetic vector potential, which is related to ê = (ex, ey), the
unit vector describing the polarization of the electromagnetic
wave, via the relation A = Aê. For linearly polarized light, the
polarization vector is expressed as (cos(ϕ0), sin(ϕ0)), while
for right- and left-handed polarized light it is (1,−i)/

√
2 and

(1, i)/
√

2, respectively. The general form of the perturbation
due to an electromagnetic wave impinging normally to a Dirac
material is

δH = eAvF

c
(σxex + sKσyey). (18)

Using the wave functions given in Eq. (2), in the limit that
l −→ ∞ the matrix element of transition becomes

|〈 f |δH |i〉| = G1

∣∣∣∣ ∫ ∞

−∞
[(ex − isKey)ψ�

A, f ψB,i

+ (ex + isKey)ψ�
B, f ψA,i]dx|δky,i,ky, f , (19)

where G1 = eAvF/(c
√

NiNf ) and the indices i and f cor-
respond to the initial and final states, respectively. For free
2D massless Dirac fermions, Eq. (19) becomes valley inde-
pendent [122] while, in contrast, massive 2D Dirac fermions

have valley-dependent optical transition rules [101]. We shall
now analyze the optical selection rules between guided modes
contained within the electrostatically controlled double well
defined by Eq. (10). To do so, it is more convenient to
move from the original |ψA〉, |ψB〉 basis to the symmetrized
one. The functions ψA and ψB can be expressed in terms
ψI and ψII via the transformation (ψA, ψB)T = U (ψI , ψII )T ,
where

U = 1

2

(
i sin

(
1
2φ

)
i cos

(
1
2φ

)
cos

(
1
2φ

) − sin
(

1
2φ

)). (20)

To shift to the symmterized basis, we make a unitary transfor-
mation to δH with the unitary operator U . Under this change,
the perturbation δH transforms as δH̆ = U †δHU :

δH̆ = −evFA

4c

⎛⎝exσy + sKey�z√
�2

z + �2
y

σx + ey�y√
�2

z + �2
y

σz

⎞⎠.

(21)

The optical transitions between different guided modes can
be categorized into two distinct groups. First, when the parity
of each of the symmetrized spinor components ψI and ψII

is preserved during the transition, i.e., both ψI,i and ψI, f are
even, or both odd. Second, when the parity of each component
changes after the transition, i.e., ψI,i is odd (even) while ψI, f

is even (odd). When a transition, which preserves the parity of
each spinor component, occurs, its matrix element, given by
Eq. (19), can be expressed in terms of the symmetrized spinor
components, Eqs. (14) and (15) as

|〈 f |δH |i〉| = G2

∣∣∣∣∣∣
∫ ∞

−∞
ψ

†
f

⎛⎝ ey�yσz√
�2

y + �2
z

⎞⎠ψi dx

∣∣∣∣∣∣δky,i,ky, f ,

(22)

where ψi = (ψI,i, ψII,i ), ψ f = (ψI, f , ψII, f ), G2 = G1/4, and
the indices i and f correspond to the initial and final states,
respectively. When the transition occurs between states of
differing parities, the matrix element of transition, Eq. (19),
becomes

|〈 f |δH |i〉|=G2

∣∣∣∣∣∣
∫ ∞

−∞
ψ

†
f

⎛⎝exσy + sKey�zσx√
�2

y + �2
z

⎞⎠ψi dx

∣∣∣∣∣∣δky,i,ky, f .

(23)

We will now analyze the optical selection rules in two dis-
tinct regimes. The first regime corresponds to the case where
the dispersion lines are linear, here the electronlike branches
have positive dispersion whereas the holelike branches have
negative dispersion. The second regime corresponds to the
case where there is a significant reconstruction of the eigen-
functions, i.e., a strong admixture of electronlike and holelike
eigenfunctions [see Eqs. (14) and (15)].

In the linear dispersion regime, one can clearly see from
Fig. 4 that the electronlike states are highly localized in the
well regions, whereas the holelike states are highly localized
in the barrier region. The overlap between electronlike and
holelike states becomes increasingly small with increasing
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�y, which leads to all transitions between branches of posi-
tive and negative dispersion being heavily suppressed. Similar
to nonrelativistic quantum wells, in our double-well system,
within the linear regime, transitions between electronlike
(holelike branches) branches are allowed for light polarized
normal to the direction of the waveguide while for light po-
larized along the direction of the waveguide, these transitions
rapidly become vanishingly small with increasing �y.

For a massless Dirac system, in the energy range far away
from an avoided crossing but in the region where the splitting
between doublet states is maximal, transitions between the
two guided modes comprising the doublet are only allowed
for light linearly polarized normal to the direction of the
waveguide. In stark contrast, in the vicinity of the avoided
crossings, transitions strongly occur between the avoided
crossing states for light linearly polarized along the direction
of the waveguide. It should also be noted that transitions are
also allowed between an avoided crossing level and the state
belonging to an “opposite” parity branch (opposite parity in
the large effective mass limit) which lies in between; in this
instance, transitions are predominately polarized normally to
the waveguide.

The energy-level splitting associated with quantum tunnel-
ing between wells and the avoided crossings associated with
electron-hole repulsion can be utilized for THz applications.
For the appropriate choice of parameters, the potential given
by Eq. (10) can be used to create doublet states within the
vicinity of graphene’s charge neutrality point with an energy-
level splitting in the THz range. Similarly, the energy gap
associated with avoided crossings can be engineered to fall
within the THz regime. These avoided crossings would absorb
in a narrow frequency range due to the presence of the van
Hove singularity at the pseudogap edge. A detailed analysis
of the optical selection rules shall be a topic of future study,
and is beyond the scope of this paper. Our simple analysis
serves to demonstrate the potentiality of double-well smooth
electron waveguides as the basis of polarization sensitive THz
detectors.

IV. CONCLUSION

We have found a class of 1D double-well potentials for
which the 2D Dirac equation can be solved in terms of conflu-
ent Heun functions, and calculated the corresponding energy
spectra. The energy-level splitting associated with electron
tunneling between wells as well the electron-hole avoided
crossing gap, can be controlled via the parameters of the
electrostatic potential. Dipole optical transitions between the
two states comprising a doublet, as well as transitions across
the avoided crossing gap are both allowed, but follow dras-
tically different polarization selection rules. For the doublet
transitions, light is strongly absorbed for linear polarizations
oriented normal to the waveguide. For the avoided crossing
transitions, absorption of radiation polarized along the direc-
tion of the waveguide dominates. The presence of the van
Hove singularity at the bottom of the pseudogaps opened in
the spectrum leads to a narrow absorption peak, which can be
tuned via the applied top-gate voltages to occur in the THz
range.
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APPENDIX A: DOUBLE-WELL POTENTIALS LEADING
TO THE CONFLUENT HEUN EQUATION

The solutions to many second-order differential equa-
tions, such as the Schrödinger equation and the 2D Dirac
equation, can be obtained in terms of hypergeometric func-
tions [5,54,57,123–126]. Indeed any second-order differential
equation, possessing three regular singularities, can be re-
expressed as Euler’s hypergeometric differential equation.
Terminating the resulting hypergeometric series and/or uti-
lizing their well-known connection formulas allows the
eigenvalues of many potentials to be obtained. However, when
considering the 2D Dirac equation for double-well poten-
tials, the resulting second-order differential equation’s may
contain more than three regular singularities. For example,
four regular singularities means the differential equation can
be re-expressed as Heun’s equation [127]. For the family
of potentials which result in a differential equation having
two regular singularities and one irregular singularity of rank
1, the second-order differential equation can be transformed
into the confluent form of Heun’s equation. Indeed, reducing
a system of coupled first-order differential equations to the
confluent Heun equation has been exploited to solve various
generalizations of the quantum Rabi model [110,128]. Despite
the absence of a general connection formula, the confluent
Heun functions can still serve as a powerful tool in studying
confinement potentials and has been extensively applied in the
fields of general relativity and quantum gravity [129].

Let us search for transformations which may be performed
on the dependent and independent variables of Eq. (5), and
the corresponding energy-independent potentials which allow
Eq. (5) to be transformed into the confluent Heun equa-
tion. In some instances, the resulting confluent Heun series
can be terminated [113], allowing a subset of the eigen-
values to be obtained exactly. In other instances, the entire
energy spectrum can be obtained fully via the Wronskian
method [39,46,112,128,130,131]. Similar approaches have
been implemented in the nonrelativistic regime, indeed, for
the Schrödinger equation there exist 35 choices for the coordi-
nate transformation, each leading to 11 independent potentials
which are exactly solvable in terms of the general Heun func-
tions [126,132]. The Schrödinger equation also reduces to
various forms of confluent Heun equations for potentials such
as the Natanzon family [133] and several others [134].

The Bôcher symmetrical form of the Confluent Heun equa-
tion, also known as the generalized spheriodal equation, can
be written using the notation from Ref. [113],

d

dξ

[
(ξ 2 − 1)

dy(ξ )

dξ

]
+

[
− p2(ξ 2 − 1)

+ 2pβξ − λ − m2 + s2 + 2msξ

ξ 2 − 1

]
y(ξ ) = 0, (A1)
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where the regular singular points are located at ξ = 1 and ξ =
−1. The first-order derivative can be removed by transforming
the independent variable to v(ξ ) = y(ξ )

√
1 − ξ 2; this allows

Eq. (A1) to be written in normal symmetrical form:

−d2v(ξ )

dξ 2
+

[
p2 + λ − 2pβξ

ξ 2 − 1
+ m2 + s2 − 1 + 2msξ

(ξ 2 − 1)2

]
v(ξ )

= 0. (A2)

We shall now re-express Eq. (5) of the main text, into the
same form as Eq. (A2). There are many transformations
which may be performed on the dependent and independent
variables of Eq. (5), which give rise to a second-order differ-
ential equation possessing no first-order derivative. Applying
the transformation of the independent variable ξ = ξ (Z ) and
ψ j = exp [− ∫

1
2 ( 1



d

dξ

)dξ ]�s j ,sc to the dependent variable
yields

− d2�s j ,sc

dξ 2
+

[
1

4

(
1




d


dξ

)2

+ 1

2

d

dξ

(
1




d


dξ

)
− scs j

1




dV

dξ

+ (V − E )2 − M2


2

]
�s j ,sc

= 0, (A3)

where 
 = dξ (Z )
dZ . If the potential is of the form

V = a2ξ
2 + a1ξ + a0

1 − ξ 2

η1, η2 , (A4)

then Eq. (A3) becomes exactly of the form of Eq. (A2), pro-
viding 
η1, η2 = Cη1, η2 (1 − ξ )η1 (1 + ξ )η2 , and η1 and η2 can
only take the values of 1 and 0, and Cη1, η2 is a constant. There-
fore, the wavefunctions can be expressed in terms of Heun
Confluent functions. In general, the polynomial solutions of
Eq. (A3) may be constructed about either of the two regular
singularities located at ξ = 1 and ξ = −1, respectively. In
some cases, they can be terminated for certain parameters
of the potential, allowing some of the eigenvalues to be ex-
pressed explicitly. Thus, as mentioned in the Introduction, this
family of potentials belongs to the class of quantum models
which are quasiexactly solvable [39,46,107–112]. If one of the
regular singularities occurs at a finite value of x and another is
at x = ±∞ (this occurs, e.g., for the Pöschl-Teller potential,
see Appendix B), then the power series solution expanded
about one singularity will rapidly diverge as it approaches the
second singularity. In this instance, a second linearly indepen-
dent solution can be constructed from a series expansion about
the other singularity, allowing the full spectrum to be deter-
mined via the Wronskian method [46]. For the case where
both singularities are at finite values of x, for example, for the
potential described by Eq. (10) of the main text, then an itera-
tive analytic continuation method is needed [119] to calculate
the wave functions across the domain of x. A detailed review
of the solutions to the confluent Heun equation can be found
in Ref. [113].

As mentioned in the main text, we have restricted η1

and η2 to the values of zero and unity only. When η1 =
η2 = 1, Eq. (A4) can be expressed as the Rosen-Morse
potential, V = b1 tanh2 (x̃) + b2 tanh (x̃), whose eigenvalue
spectrum, which is quasiexact, was discussed in Ref. [46]. The

analytic bound-state energy spectra of the Rosen-Morse po-
tential for the 2D Dirac problem has also been obtained via
the Nikiforov-Uvarov method [135]. When η1 �= η2, Eq. (A4)
can be expressed as a generalized Hulthen-like potential,

V = c1 exp (−2λZ ) + c2 exp (−λZ ) + c3

1 + c4 exp (−λZ )
, (A5)

where λ and c1,2,3,4 are constants. When c1 = 0 and c4 =
−1, Eq. (A5) becomes a linear combination of the Hulthen
potential [136] and its logarithmic derivative. The Hulthen
potential has previously been investigated for the 2D Dirac
equation using an algebraic approach [137]. The case where
Eq. (A5) reduces to a single exponential has also been studied
in graphene waveguides [38]. It should also be noted that
when 
 = i, the potential given by Eq. (A4) can be reduced
to the shifted 1D Coulomb potential, which has applications
to charged impurities and excitons in carbon nanotubes [40].

Let us move to the case of η1 = η2 = 0, which corresponds
to the potential described by Eq. (10) in the main text of the
paper. In this case, it is convenient to use the nonsymmetrical
canonical form of the confluent Heun equation. Expressing
�s j ,sc in the form of

�s j ,sc (ξ ) = (1 − ξ )
γ

2 (1 + ξ )
δ
2 e−pξ u

(
1 − ξ

2

)
, (A6)

and making the change of variable ξ̃ = (1 − ξ )/2 allows
Eq. (A3) to be written as

∂2u
(
ξ̃
)

∂ξ̃ 2
+

(
4p + γ

ξ̃
+ δ

ξ̃ − 1

)
∂u

(
ξ̃
)

∂ξ̃
+ 4pαξ̃ − σ

ξ̃
(
ξ̃ − 1

) u
(
ξ̃
)

= 0, (A7)

where

γ = m + s + 1, δ = m − s + 1,

α = −β + m + 1, σ = λ − 2p(β − γ ) − m(m + 1),

and u = u(p, α, γ , δ, σ ; ξ̃ ) are the Heun Confluent func-
tions [113]. Currently, there are no universal expressions for
arbitrary parameters connecting Heun functions about dif-
ferent singular points, and unlike for Gauss hypergeometric
functions, there are no expressions relating the derivative
of a confluent Heun function to another confluent Heun
function, although particular instances have been obtained
[46,138,139]. The dearth of connection formulas makes ob-
taining the analytic expressions for the complete eigenvalue
spectrum of a wave function expressed in terms of a confluent
Heun function nontrival. However, for the potential, Eq. (10),
the derivative can be expressed exactly in terms of the Heun
confluent function with new parameters. Using the definition
of the Heun confluent function [113], �s j ,sc can be expressed
in terms �−s j ,sc via the relation

− 1

M

[
(V − E )�s j ,sc + s j i

d�s j ,sc

dx

]
=

(
− sa + A0 + iscA1

2M

)−s j scsa

�−s j ,sc , (A8)
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FIG. 5. The energy spectrum of bound states contained within
a Rosen-Morse-double-well potential, defined by the potential pa-
rameters (a) B1 = 14 and B2 = −1, as a function of effective mass,
M. Here, only the four lowest doublet states are displayed, while
all barrier states are present within the energy range shown. The
alternating red solid and blue dashed lines represent the even (odd)
and odd (even) modes of ψI (ψII ), respectively. The boundary at
which the bound states merge with the continuum is denoted by the
grey short dashed lines.

which allows the solution to Eq. (5) of the main text, for ψ1

and its corresponding ψ2 to be written as

ψ1 =
∑

sc,cp,sa

Csc,cp,sa

(
− sa + A0 + iscA1

2M

)− scsa
2

�−1,sc (A9)

and

ψ2 =
∑

sc,cp,sa

Csc,cp,sa

(
− sa + A0 + iscA1

2M

) scsa
2

�1,sc , (A10)

respectively, where m = saA0, s = isa(A1 + is j )sc, and
Csc,cp,sa are weighting coefficients. It should be noted that if
m and s are exchanged, then the phase factor appearing in
Eq. (A8) and Eq. (A10) must be multiplied by the factor 4scsa .

APPENDIX B: EXPONENTIALLY DECAYING
DOUBLE WELL

Although the double well constructed from the potential
Eq. (10) is smooth and continuous across the whole of con-
figuration space, the absolute value of the argument of the
Heun function appearing in Eq. (A6) exceeds unity. There-
fore, analytic continuation is needed to analyze its far-field
behavior. In contrast, the corresponding Heun function for the

FIG. 6. The energy spectrum for the three lowest-energy guided
modes contained with a Lorentzian potential of strength A0 = −3.5,
as a function of M. The alternating red solid and blue dashed lines
represent the even (odd) and odd (even) modes of �I (�II ), re-
spectively. The black crosses denote the supercritical states. The
boundary at which the bound states merge with the continuum is
denoted by the grey short dashed lines.

Rosen-Morse potential,

V = −B1

4
[1 − tanh2(x̃)] − B2

2
[1 − tanh(x̃)], (B1)

is maximally one, and therefore its far-field behavior can
be determined by the expansion about the second pole [46].
Using the coordinate transformation, x̃ → |x′| − d , allows
the Rosen-Morse potential to model a double well centered
about |x̃′| = 0. Although this potential is continuous, it is not
smooth. However, in the limit that tanh (d ) ≈ 1, the discon-
tinuity in its derivative becomes vanishingly small, making
it quasismooth. This potential has the additional advantage
that it can also be used to model shallow double wells. The
potential parameters B1 and B2 appearing in Eq. (B1) are
related to the parameters in Eq. (A2) via the relations

p = −ispsc
B1

4
, β = −scsp

(
s j − i

B2

2

)
,

λ = −
(

is j + B2

2

)
B2

2
+ 2

(
E + B2

2

)
B1

4
,

s = B2

2m

(
B2

2
+ E

)
,

m = sM

2
{
√

M2 − E2 + sm

√
M2 − (B2 + E )2},
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where sM, sm = ±1 and the spinor components are given by
the expressions

ψ j =
∑
sM

D̃sM (1 − ξ )
γ−1

2 (1 + ξ )
δ−1

2 e−pξ u

(
1 − ξ

2

)
, (B2)

where ξ = tanh (x̃). As x → ∞, ξ → 1, therefore sM must be
equal to 1 for the functions to decay at infinity. The bound

states are obtained via the zeros of the functions ψI (x̃′ = 0)
and ψII (x̃′ = 0). In Fig. 5, we plot the energy eigenvalue
spectrum for the potential, Eq. (B1), defined by the potential
parameters B1 = 14 and B2 = −1, displaying the four lowest
doublet states and complete set of barrier states within the
energy range displayed.

APPENDIX C: LORENTZIAN POTENTIAL

When p = 0, i.e., |E | = M and A1 = 0, the Heun confluent function appearing in Eq. (A6) reduces to a Gauss hypergeometric
function, therefore

u(̃ξ ) = (1 − ξ̃ )−ω
2F

1

(
−sa(scs j + A0) + ω, ω; γ ,

ξ̃

ξ̃ − 1

)
, (C1)

where ω = saA0 + (1 + sω

√
1 + 8EA0)/2 and 2F1 is the hypergeometric function. The particular case of A1 = 0 corresponds to

the Lorentzian potential, which notably admits exact eigenvalues for supercritical states. The emergence of a supercritical state
(i.e., bound states with energy E = −M) is characterized by the appearance of a new node at infinity [46] as x̃′ → ∞, ψ j takes
the form of

lim
x→∞(ψ j ) ∝ R

m+s+1
2

[∑
sl

(1 − R)−
1+�l

2
�(1 + saA0 − sas jsc)�(�l )

�
(
saA0 + 1+�l

2

)
�

( 1+�l
2 − sascs j

)]
, (C2)

where �l = sl sω

√
1 + 8EA0, sl = ±1 and R = ξ̃ /(̃ξ − 1). It can be seen from Eq. (C2) that the bound-state condition is

contingent upon the value of �l . For the case of Im(�l ) = 0 and |�l | > 1, bound states arise when

E = A2
0 + sa(2n + 1)A0 + n(n + 1)

2A0
,

where saA0 < 0 and n = 0, 1, 2, . . . and n is restricted such that n < |saA0| − 1. In Fig. 6, we plot the energy eigenvalue spectrum
for the case of the Lorentzian potential with potential strength A0 = −3.5. The exact supercritical eigenvalues are indicated by
black crosses.
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