
1 
 

Using remote sensing to assess peatland resilience by estimating soil surface moisture and 1 

drought recovery 2 

Lees KJ1, Artz RRE2, Chandler D3, Aspinall T4, Boulton CA1, Buxton J1, Cowie NR5 & Lenton 3 

TM1 4 

1.Global Systems Institute, University of Exeter, Laver Building, North Park Rd., Exeter, EX4 5 

4QE, UK 6 

2. The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK 7 

3. Moors for the Future Partnership, The Moorland Centre, Fieldhead, Edale, Hope Valley, 8 

S33 7ZA, UK 9 

4. RSPB Denby Dale Office, Westleigh Mews, Wakefield Road, Denby Dale, Huddersfield, 10 

HD8 8QD, UK 11 

5. RSPB Centre for Conservation Science, 2 Lochside View, Edinburgh Park, Edinburgh, 12 

EH12 9DH 13 

Abstract 14 

Peatland areas provide a range of ecosystem services, including biodiversity, carbon 15 

storage, clean water, and flood mitigation, but many areas of peatland in the UK have been 16 

degraded through human land use including drainage. Here, we explore whether remote 17 

sensing can be used to monitor peatland resilience to drought. We take resilience to mean 18 

the rate at which a system recovers from perturbation; here measured literally as a recovery 19 

timescale of a soil surface moisture proxy from drought lowering. Our objectives were (1) to 20 

assess the reliability of Sentinel-1 Synthetic Aperture Radar (SAR) backscatter as a proxy 21 

for water table depth (WTD); (2) to develop a method using SAR to estimate below-ground 22 

(hydrological) resilience of peatlands; (3) to apply the developed method to different sites 23 

and consider the links between resilience and land management. Our inferences of WTD 24 

from Sentinel-1 SAR data gave results with an average Pearson’s correlation of 0.77 when 25 
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compared to measured WTD values. The 2018 summer drought was used to assess 26 

resilience across three different UK peatland areas (Dartmoor, the Peak District, and the 27 

Flow Country) by considering the timescale of the soil moisture proxy recovery. Results 28 

show clear areas of lower resilience within all three study sites, which often correspond to 29 

areas of high drainage and may be particularly vulnerable to increasing drought 30 

severity/events under climate change. This method is applicable to monitoring peatland 31 

resilience elsewhere over larger scales, and could be used to target restoration work 32 

towards the most vulnerable areas.  33 
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1.Introduction 35 

There is widespread interest in the resilience, or otherwise, of ecosystems subject to global 36 

changes, especially climate change (Côté & Darling, 2010). However, despite theoretical 37 

progress, there is a paucity of work quantifying the resilience of different real-world 38 

ecosystems (Pimm et al., 2019). This is a critical gap, because if we cannot quantitatively 39 

measure resilience we cannot tell which ecosystems are losing resilience, and we cannot tell 40 

whether efforts to increase the resilience of particular systems are having the desired effect 41 

or not. In order to understand resilience it is important to understand the ecosystem 42 

response to stressors, but also the response to management techniques used to manage 43 

vulnerability (Chambers et al., 2019). The definition of what is meant by resilience can vary 44 

across disciplines (Müller et al., 2016); in this study we define resilience as the rate at which 45 

a system recovers from perturbation (Chambers et al., 2019; Pimm, 1984; Swindles et al., 46 

2016). This definition of resilience is more easily quantified than definitions of resilience 47 

which relate to ecosystem stability over longer timescales, but there is assumed to be a 48 

correlation between the two (Hillebrand & Kunze, 2020; Müller et al., 2016; Zelnik et al., 49 

2018). In this study we consider the recovery of water levels following a drought event, an 50 

example of a pulse-disturbance, as this is a clearly defined event with a recovery rate that is 51 
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relatively easy to monitor, and which may give some insights regarding ecosystem stability 52 

over the longer term.  53 

Here we take peatlands as a target ecosystem for monitoring resilience. Peatland 54 

environments are valuable in terms of the many ecosystem services they provide, including 55 

carbon storage (Gorham, 1991), biodiversity (Minayeva et al., 2017), and water purification 56 

(Wallage et al., 2006). However, these landscapes are vulnerable to both climate change 57 

and human land use pressures (Clark et al., 2010; Gallego-Sala et al., 2010; JNCC, 2011). 58 

Given their function as large stores of carbon, there is particular interest in how peatlands 59 

will respond to climate change, and how resilient they will be in the face of climatic pressures 60 

such as increasing droughts (Page & Baird, 2016). Positive feedbacks include a change in 61 

vegetation species towards a community which prefers dryer conditions, and changes in the 62 

specific yield of peat causing greater WTD fluctuations (Sherwood et al., 2013; Waddington 63 

et al., 2015). Compound disturbances, such as the interactions of drainage, fire, and 64 

drought, can cause positive feedbacks to dominate, tipping the peatland over a threshold 65 

and into an alternative state (Sherwood et al., 2013; Swindles et al., 2016). These compound 66 

disturbances are more likely to occur under climate change (Sherwood et al., 2013; Swindles 67 

et al., 2019). 68 

Hydrology is considered a key factor in peatland resilience, as high and stable water levels 69 

are associated with healthy peatlands, whilst sustained and/or frequent drought can cause 70 

degradation and long-term damage (Kettridge & Waddington, 2014; Sherwood et al., 2013; 71 

Swindles et al., 2016; Waddington et al., 2015). Some studies have assessed long-term 72 

peatland resilience through paleoecology methods (Lamentowicz et al., 2019; Łuców et al., 73 

2020; Swindles et al., 2016, 2019), whilst others have considered shorter-term resilience 74 

through field studies (Holden et al., 2011; Sherwood et al., 2013). Peatlands are generally 75 

remarkably resilient over long timescales due to the range of negative feedbacks that can 76 

counteract the effects of perturbations to the system. Negative feedbacks include increased 77 

surface resistance, altered peat deformation and decomposition characteristics during 78 
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drought events, which act to bring the water table closer to the surface following a drop in 79 

Water Table Depth (WTD), and changes in Sphagnum species and behaviour (Kettridge & 80 

Waddington, 2014; Page & Baird, 2016; Waddington et al., 2015). An increase in the 81 

severity or frequency of droughts due to climate change could, however, cause negative 82 

feedback systems to lose their effectiveness (Lowe et al., 2018).  83 

Using remote sensing to assess ecosystem resilience is a fast-growing area of research, as 84 

such data can cover large areas over long timescales, with increasingly fine spatial 85 

resolution and frequent repeat measurements (e.g. Díaz-Delgado et al., 2002; Li et al., 2014; 86 

Washington-Allen et al., 2008). Data collected from satellites are particularly useful in 87 

monitoring remote environments where repeat field visits would be difficult and expensive. 88 

Remote sensing can provide large scale assessments of spatial variation in resilience, which 89 

are the most useful for management decisions (Chambers et al., 2019). However, many 90 

remote sensing measures of resilience rely on optical data which can only be obtained under 91 

clear sky conditions, and can only detect surface changes (Li et al., 2014). For example, 92 

several existing efforts have focused on terrestrial vegetation using the normalised 93 

difference vegetation index (NDVI) to monitor the response rate to known perturbations, e.g. 94 

fires (Díaz-Delgado et al., 2002), or utilising the inverse relationship between temporal 95 

autocorrelation and resilience (Verbesselt et al., 2016). Synthetic Aperture Radar (SAR) is 96 

different because it can penetrate below the surface into the top few centimetres of the soil, 97 

thereby giving information that would not be available from optical data. Here we explore 98 

whether we can use remote sensing derived information to monitor a below-ground 99 

(hydrological) measure of ecosystem resilience. SAR backscatter can be used to estimate 100 

surface moisture in soils, and has been shown to correlate with WTD time series in 101 

peatlands and wetlands (Bechtold et al., 2018; Kasischke et al., 2009; Millard & Richardson, 102 

2018; Schlaffer et al., 2016). SAR also has the advantage over optical data that it can 103 

penetrate through cloud, which is a great benefit in the wet climates where peatlands thrive 104 

(Babaeian et al., 2019).  105 
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The SAR sensor carried on the two Sentinel-1 satellites has great potential for monitoring 106 

soil moisture fluctuations due to its frequent return interval, particularly at high latitudes 107 

where many peatlands are located, and high spatial resolution (down to 10 m). Not many 108 

studies have yet considered the performance of Sentinel-1 SAR due to the relatively recent 109 

launch of the paired satellites (April 2014 and April 2016) and therefore the short time series 110 

of available images (Asmuß et al., 2019; Huang et al., 2018).  111 

SAR cannot be used to directly compare soil moisture across different sites, as the 112 

relationship between SAR backscatter and soil moisture is inconsistent and affected by other 113 

factors such as surface topography and vegetation structure (Bechtold et al., 2018; Millard & 114 

Richardson, 2018). To counteract this, we developed a method that compares a site against 115 

itself, indicating how far above or below average a site is for the time of year, and therefore 116 

how long a site takes to recover to its usual moisture level after a drought perturbation. We 117 

use the developed method to compare the effects of the extreme 2018 spring/summer 118 

drought and heat event (Bastos et al., 2020) to previous and subsequent years. As SAR 119 

backscatter functionally estimates soil moisture by penetrating the top few centimetres below 120 

the soil surface, but we validated the method using more easily available WTD datasets, the 121 

resulting estimates are referred to throughout as a soil surface moisture proxy (this is 122 

discussed further in Section 4.1.1.).  123 

Our study therefore makes significant steps forward in several areas. First, we consider the 124 

abilities of SAR in general and Sentinel-1 in particular to estimate a soil moisture proxy and 125 

WTD dynamics in peatland sites, focusing on sites in Great Britain as a contrast to sites in 126 

Germany already considered by Asmuß et al. (2019). Secondly, we develop a method to use 127 

SAR estimates of the soil moisture proxy to assess peatland resilience to drought, taking 128 

advantage of the unique abilities of SAR to measure below-ground changes, and minimising 129 

the effect of confounding factors such as surface topography. We use this method to 130 

consider three example peatland sites in Great Britain, focusing on areas where compound 131 
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disturbances are likely to have decreased resilience. Finally, we discuss the wider 132 

implications for peatland monitoring globally.  133 

2. Materials and Methods 134 

2.1. Study sites 135 

This work focuses on the Flow Country in Northern Scotland, the Peak District in the centre 136 

of Britain, and Dartmoor in the South-West of England (see Figure 1). These three study 137 

sites include a range of blanket bog conditions which characterise peatlands across Britain. 138 

The Flow Country is one of the largest expanses of blanket bog in the world, with large parts 139 

in good condition with no evidence of human activity. Some areas however were drained 140 

and planted for commercial forestry in the 1980s, many of which are now undergoing 141 

restoration. Areas of the Peak District peatland have, in contrast, been exposed to different 142 

combinations of drainage, managed burns, grazing, and pollution as they are close to 143 

several urban centres. Dartmoor is a smaller area of upland peat which has experienced 144 

drainage, grazing, peat cutting and erosion.  145 

2.1.1. Water Table Depth (WTD) data 146 

Two peatland WTD datasets were selected to validate the SAR data. The first, from sites 147 

across the Forsinard Flows RSPB reserve within the Flow Country, contains nine time series 148 

of WTD dynamics from peatland areas undergoing restoration or slope-matched control 149 

blanket bog areas. Water tables across the Forsinard Flows reserve were monitored using 150 

dipwells. The dipwells comprised auger holes cased with 32 mm polyvinyl chloride (PVC) 151 

pipe, with 4 rows lengthwise of 2 mm holes at 5 cm intervals and sealed at the bottom with a 152 

32 mm PVC plug. Dipwells were installed to 1 m below surface. Each dipwell was equipped 153 

with an Odyssey capacitance probe (1 m), with the logger body encased in a 30-40 cm 154 

section of 40 mm PVC piping secured to the 32 mm dipwell using a reducing coupler. This 155 

additional section ensured that the logger placement did not significantly reduce the internal 156 

volume of the dipwell. The height of the dipwell relative to the peat surface was measured 157 
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using 3 manual measurements to mm precision at the start of the monitoring period and 158 

checked at subsequent data download site visits. Water level data were captured at 30 min 159 

intervals, and for the purpose of the present work, calculated as daily averages to match the 160 

remotely sensed data. Each of the time series from the Forsinard Flows reserve dataset 161 

used in this study is an average of the data series from at least 3 dipwells within 30 m of 162 

each other across a site. A central point was used as the reference for downloading 163 

Sentinel-1 data.  164 

The second dataset, from the Moors for the Future partnership, comprises four time series 165 

from individual dipwells across the Peak District, using daily averages of hourly 166 

observations. The dipwells consisted of a 110 cm PVC pipe sunk to 1 m below the surface, 167 

with holes drilled through the sides to allow water movement. In each dipwell a HOBO water 168 

level logger was suspended on a wire. At each site a second pressure logger was 169 

suspended in a PVC pipe above the surface, with holes drilled to allow movement of air, and 170 

the results used to calibrate the water pressure readings.  171 

We were unable to access a WTD dataset covering Dartmoor, but the SAR backscatter 172 

method is calibrated to the Forsinard Flows reserve and Moors for the Future partnership 173 

datasets combined to minimise the effect of local variations.  174 

The location and site descriptions for all selected time series are given in Table I, and the 175 

dipwell locations are shown in Figure 1. 176 
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 177 

Figure 1 – Locations of the three peatland study areas, weather stations used in SAR 178 

backscatter processing, and dipwell locations used to give WTD time series. MftF_R is 179 

located on peatland outside of the selected study area. 180 

Table I – WTD time series used in this study. Locations for the sites comprising the 181 

Forsinard Flows reserve dataset (ID beginning with F) are central point locations 182 

representing the averaged dipwells. Locations with ID beginning with MftF are from the 183 

Moors for the Future partnership dataset. Most of the Forsinard Flows reserve sites (except 184 

F_CON) were previously planted for commercial forestry, and are currently undergoing 185 

restoration starting with tree felling.  186 

ID Location 

(WGS84) 

Site description Measurements 

time period 

F_CON 58.3719, -3.9639 Near-natural bog 20/07/2017 – 

10/07/2018 

F_CL_FTW 58.3853, -3.9612 Felled-to-waste in 2005-6 20/07/2017 – 

10/07/2018 
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F_CL_BCFB 58.3756, -3.9647 Felled-to-waste in 2005-6, brash-

crushing and furrow-blocking 2015-

16 

20/07/2017 – 

10/07/2018 

F_L_BCFB 58.3875, -3.7601 Felled-to-waste in 2005-6, brash-

crushing and furrow-blocking 2017-

18 

20/07/2017 – 

11/07/2018 

F_L_FTW 58.3904, -3.7658 Felled-to-waste in 2005-6 18/07/2017 – 

25/01/2018 

F_R_BCFB 58.4093, -3.7344 Felled-to-waste 2010-11, brash-

crushing and furrow-blocking 2014-

15 

18/07/2017 – 

11/07/2018 

F_R_FTW 58.4099, -3.7279 Felled-to-waste 2010-11 19/07/2017 – 

11/07/2018 

F_T_BCFB 58.4152, -3.7995 Felled-to-waste in 1998, brash-

crushing and furrow-blocking in 

2015-16 

21/03/2017 – 

12/07/2018 

F_T_FTW 58.4135, -3.7998 Felled-to-waste in 1998 22/03/2017 – 

12/07/2018 

MftF_E 53.3826, -1.8554 Highly degraded with past gullies 09/12/2015 – 

19/05/2018 

MftF_H 53.5314, -1.8892 Eriophorum vaginatum dominated 

blanket bog, with Sphagnum 

present in small patches 

11/09/2015 – 

10/01/2018 

MftF_M 53.6098, -1.9934 Molinia dominated blanket bog with 

some Sphagnum. 

09/10/2015 – 

01/08/2018 
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MftF_R 53.1636, -1.9925 Small but relatively intact area of 

bog. Eriophorum vaginatum 

dominated with Sphagnum. 

This area of bog is in a small dip 

between two drier slopes 

dominated (pre-fire) by dwarf 

shrubs. 

Fire in August 2018 

13/10/2016 – 

25/10/2018 

 187 

2.2. Synthetic Aperture Radar (SAR) data  188 

Sentinel-1 GRD (Ground Range Detected) Interferometric Wide Swath data (spatial 189 

resolution of 10 by 10 m), were selected using Google Earth Engine (GEE) (Gorelick et al., 190 

2017). GEE performs thermal noise removal, radiometric calibration, and terrain correction 191 

using a Digital Elevation Model on Sentinel-1 data, and completes the conversion from 192 

intensity to backscatter coefficient (in decibels, dB). Only images with VV polarisation on a 193 

descending pass were used to maintain consistency of imagery.  194 

For comparison with the WTD datasets, the backscatter values of each image were 195 

averaged over a circular area of radius 50 m around the point of interest, to reduce speckle 196 

(interference) effects.  197 

Processing detailed in sections 2.2.1., 2.2.2., and 2.2.3. was completed for each time series 198 

using R (R Core Team, 2017).  199 

2.2.1. Weather filtering 200 

Days with high rainfall (>20 mm) or frozen soil (<2°C) were removed following Bechtold et al. 201 

(2018), although due to data availability we used soil temperatures at 10 cm depth instead of 202 

5 cm. MIDAS CEDA (Met Office, 2012) datasets from the nearest weather station with 203 

appropriate records were used. The station used for the Forsinard Flows reserve dataset 204 
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was Altnaharra, and the Derbyshire Dales NNR weather station for the Moors for the Future 205 

partnership dataset (see Figure 1).  206 

2.2.2. Angle correction 207 

We found a negative correlation between incidence angle and SAR backscatter. This was 208 

corrected for by creating an individual linear model describing this relationship for each site, 209 

and subtracting this model from the dataset. This correction improved the correlations by an 210 

average of 8.6%. Previous studies have found more complicated correction systems give 211 

limited improvements in results in wetland environments, and so these were not considered 212 

here (Asmuß et al., 2019; Bechtold et al., 2018; Schlaffer et al., 2016). 213 

2.2.3. Sine curve 214 

We found that subtracting a sine curve from the SAR time series for each site improved the 215 

correlation with WTD data by a further 48.5% on average. The sine curve was fitted using 216 

both the Forsinard Flows reserve and Moors for the Future partnership datasets, and was 217 

described by the equation: 218 

Y = sin ( 0.0173 × ( DoY – 80 )) 219 

Where DoY is Day of Year. This sine curve is a proxy for annual vegetation growth, which 220 

can obscure the moisture content backscatter signal. Growing vegetation increases SAR 221 

backscatter (Baghdadi et al., 2009), and the sine curve therefore simulates the increase and 222 

decrease in backscatter with the growth and senescence of peatland vegetation.  223 

Both the SAR backscatter data and the WTD data for each site were smoothed using the 224 

ksmooth function in R, with a bandwidth of 10. Figure 3 presents the SAR datasets resulting 225 

from the steps described in Section 2.2. in comparison to the WTD datasets.  226 

2.3. Modelling spatial resilience 227 
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GEE was used to select and process the Sentinel-1 datasets as described in this section 228 

(see Figure 2). Peatland areas of interest were determined using the EDINA 2015 land cover 229 

map (Rowland et al., 2017, see Figure 1). 230 

The SAR data was obtained following the same procedure as described in Section 2.2, 231 

filtered for weather conditions as described in section 2.2.1, and corrected for incidence 232 

angle as described in section 2.2.2. The sine curve determined in section 2.2.3. was then 233 

subtracted. Weather data from Altnaharra weather station was used for the Flow Country, 234 

North Wyke for Dartmoor, and Bingley no.2 for the Peak District (as the Derbyshire Dales 235 

NNR weather station was not operational after October 2018). Soil temperature data was not 236 

available from Bingley no.2 for 2019, so data from the Keele weather station was used to fill 237 

in (see Figure 1). 238 

Sentinel-1 tiles covering the area of interest were selected using a central point rather than 239 

the entire site polygon, due to the computational limitations of GEE. This means that some of 240 

the outlying parts of the study areas have a lower frequency of data points than the central 241 

areas.  242 

The 2018 drought was used as a study period, and the non-drought years were separated 243 

for creation of an average seasonal cycle. The non-drought years with available Sentinel-1 244 

data (2015 to 2017, and 2019) were used to create an annual average cycle of the soil 245 

moisture proxy using the mean of DoY values within 20 days of each date. This average 246 

seasonal cycle was subtracted from both the non-drought years and the drought-affected 247 

and post-drought period (May 2018 to Dec 2019) to give the residuals. The residuals 248 

therefore show whether a date was drier or wetter than the average for that DoY over the 249 

non-drought time period. The residuals of May, July, September, and November 2018 were 250 

averaged for presentation in Section 3.2 (see Figure 4). Using 2019 data as part of the 251 

annual cycle calculation leads to some overlap between the pre-drought and drought-252 

affected data series. This is not ideal, but without the 2019 data included there were not 253 

enough DoY data points due to the recent launch dates of the Sentinel-1 satellites. Weather 254 
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and WTD fluctuations in previous years will also have impacted the annual cycle, and using 255 

the maximum data available minimises seasonal anomalies. 256 

The residuals of both the non-drought years and the drought period were smoothed using 257 

the average of values within 20 days of each image to minimise the effect of outliers in the 258 

data series whilst retaining the trends. The standard deviation of the smoothed residuals of 259 

the non-drought period was calculated, and used to detect the starting point of the 2018 260 

drought at each pixel. The drought start point was considered to be the first instance after 1st 261 

May 2018 (to avoid anomalies earlier in the year that were not considered part of the study 262 

drought) when the residuals fell below the standard deviation of the smoothed non-drought 263 

period residuals. The next point when the smoothed residual was greater than the average 264 

annual cycle was then found, and the time difference between these two points was 265 

calculated to give the length of the drought recovery period at each pixel. If a value greater 266 

than the average annual cycle had not been reached after 500 days a value of 500 was 267 

assigned.  268 

Results from this method cannot be assumed to be reliable over burnt peatland areas (see 269 

Section 4.1 for discussion). Some areas of the Peak District site are regularly burnt, and we 270 

have therefore ignored these areas in our analysis (see Figure 8). 271 
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 272 

Figure 2 – Flow chart showing the process used to calculate the recovery period.  273 

3. Results 274 

3.1. SAR method 275 

The average Pearson’s correlation between the smoothed WTD dynamics and the smoothed 276 

SAR based method was 0.77±0.26 (see Figure 3). 277 

Despite strong correlations for many of the sites, the relationship between WTD and the 278 

SAR-based method is not consistent across the selected areas. Some sites, notably 279 

F_R_BCFB and F_R_FTW, have higher SAR values in general than the other sites. The 280 

MftF_E site has much lower WTD values than the other sites, whilst F_CON and MftF_H 281 

have high WTD values across the whole period.  282 

 283 
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 284 
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285 

Figure 3 – Smoothed WTD (left-hand axes) and smoothed SAR backscatter (right hand 286 

axes) for all sites. All axes are varied to fit the data. Pearson’s correlation values are given 287 

with the name of the site in the top right corner of each graph.  288 

3.2. Peatland resilience 289 

 290 
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Figure 4 – SAR-based model residuals showing the Flow Country during the 2018 drought 291 

period, May to November.  292 

Figure 4 shows the progression of the 2018 drought in the Flow Country peatland area. The 293 

site was noticeably drier than previous years in July, and some areas were still drier than 294 

average in September and November.  295 

Figure 5 shows daily and cumulative annual rainfall totals for weather stations in the vicinity 296 

of the selected peatland areas. Rainfall for the Flow Country (Figure 5A) was lower in 2018 297 

than either the preceding or following year. Dartmoor (Figure 5B), however, shows similar 298 

rainfall totals for all three years, although the 2018 drought is evident as a plateau in the 299 

cumulative data. The Peak District (Figure 5C) has similar totals in 2017 and 2018, but 300 

noticeably more rain in 2019.  301 

Figures 6, 7, and 8 show the length of the recovery period from the 2018 drought in the Flow 302 

Country, Dartmoor, and the Peak District respectively. The selected larger-scale sections in 303 

these figures show areas of particular interest. Some, such as 6A, 7B, and 8A, show areas 304 

that were affected by wildfire in 2018 or 2019. Other areas were selected because they show 305 

noticeably longer recovery times than surrounding areas; some of these also have evidence 306 

of drainage ditches, such as 6B and C, and others are known to have experienced gullying, 307 

such as 8B and C.  308 
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A 
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 311 

Figure 5 – Rainfall at weather stations in the vicinity of the three selected peatland areas. 312 

Figure A shows rainfall data from the Altnaharra station, B from North Wyke, and C from 313 

Bingley no2.  314 

 315 

 316 

C 
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Figure 6 - Length of drought recovery period for the peatland area of the Flow Country. 6A 317 

shows the area affected by the Melvich wildfire in May 2019. 6B has a lot of drainage, both 318 

natural watercourses and some man-made channels, and 6C has visible drains. 6D shows 319 

an area of generally low resilience, although the reasons for this are unclear. 320 

 321 

 322 

Figure 7 - Length of drought recovery period for the peatland area of Dartmoor. 7A shows an 323 

area to the East of Lydford village, which is detected as being less resilient than the 324 

surrounding area. 7B shows an area near the source of the River Erme which burnt in a 325 

wildfire in April 2019. 326 
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 327 

Figure 8 - Length of drought recovery period for the peatland areas of the Peak District. 328 

Areas with prescribed burn management have been visually identified and are shown as 329 

semi-transparent black polygons; the results should not be considered reliable in these 330 

areas. 8A was affected by the Saddleworth wildfire in June 2018. 8B shows the Kinder Scout 331 

area, which has extensive gullying, but also much restoration work done over the previous 332 

decade (Alderson et al., 2019). 8C also has extensive gullying and had gully-blocking and 333 

revegetation work done in 2016 334 

4. Discussion 335 

4.1. Using SAR to estimate WTD 336 

As Bechtold et al. (2018) found, SAR backscatter can give reasonable agreement with 337 

temporal variation in WTD, but cannot reliably detect spatial differences. This is particularly 338 

noticeable for sites F_R_FTW and F_R_BCFB, both of which have large micro-topographical 339 

variations due to a relic furrow and ridge system. This micro-topography increases the SAR 340 

backscatter values, giving a higher y-axis intersect than other Forsinard Flows reserve sites. 341 

The lack of detectable spatial difference is also evident at site MftF_E, which has a low 342 

average WTD but similar SAR backscatter values compared to the other Moors for the 343 
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Future partnership sites. The method used in this study, which compares anomalies in 344 

residuals to the average seasonal cycle of each pixel, allows useful comparisons between 345 

areas to be made despite the SAR backscatter data being affected by topography and other 346 

factors, as temporal variation in peatland surface roughness is slow compared to soil 347 

moisture fluctuations (Millard & Richardson, 2018). Similar to Bechtold et al. (2018) we found 348 

that the most natural site in the Forsinard Flows reserve dataset (F_CON) had the least 349 

agreement with the SAR data, and the most natural Moors for the Future partnership site 350 

(MftF_H) also had a relatively low correlation. This may be due to the natural sites being 351 

saturated with only minimal fluctuation in WTD for much of the year, or due to the presence 352 

of pools (see Section 4.1.1.).  353 

4.1.1. Limitations of using SAR to estimate WTD 354 

Some peatland sites have areas of open water in the form of pools, which have a different 355 

relationship with SAR compared to soil moisture and so could disrupt the signal (Kasischke 356 

et al., 2009; Schlaffer et al., 2016). Several studies have considered the effect of inundation 357 

on SAR backscatter (Kasischke et al., 2009; Schlaffer et al., 2016), and have found that 358 

standing water generally reduces the backscatter signal by providing a reflective surface 359 

(Bartsch et al., 2012). The peatland sites considered in this study are unlikely to experience 360 

complete inundation due to their elevation and topography, but there is standing water 361 

present in pools across the Forsinard Flows reserve in the most natural sites, and during 362 

winter months in some of the restored sites in the former planting furrows, which may affect 363 

the average signal. Many of the pools dried up or at least reduced significantly in size during 364 

the peak of the drought, and the resulting fluctuation in SAR backscatter may have affected 365 

the recovery estimates. 366 

The results from site MftF_R suggest that fires on peatland can affect the SAR signal in 367 

ways which are not yet fully understood. At this site there was a fire in August 2018, and 368 

there is a corresponding increase in SAR backscatter following this event. Due to the limited 369 

WTD data available from burnt peatland sites, we cannot at this stage say with certainty 370 
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whether the post-fire changes in WTD shown using our method are reliable, or whether the 371 

SAR data is picking up signals from other changes such as vegetation loss. Zhou et al. 372 

(2019), for example, found that burnt tundra sites had higher backscatter, in line with our 373 

results from the MftF_R site. This means that our method should not be applied to sites 374 

which are regularly burnt to encourage heather (Calluna vulgaris) growth. Some studies 375 

have found that WTD is closer to the surface after fire (Clay et al., 2009), whilst others show 376 

that it is deeper (Holden et al., 2015). Brown et al. (2015) suggest that this disparity may be 377 

due to the dominant species on the peatland, with feather moss increasing hydrophobicity 378 

and therefore limiting evaporation after fire (Kettridge et al., 2014).  379 

It is important to consider that WTD is an indirect proxy for soil surface moisture, and the 380 

accuracy of the model could perhaps be improved if compared against direct measurements 381 

of soil moisture, which are unfortunately rarely available (and often inaccurate in very wet 382 

peatland soils).  It is difficult to calculate soil surface moisture from WTD due to the specific 383 

yield, the amount of water needed to raise the water table by a given amount in a given peat 384 

volume, which varies across peat types due to the porosity. Where peat is highly 385 

decomposed, the porosity and therefore the specific yield is low, leading to large WTD 386 

fluctuations (Price, 1996). Capillary processes in Sphagnum can also affect the relationship 387 

between soil surface moisture and WTD, as can aspect, slope, and vegetation. The WTD 388 

datasets used for the method development in this study were mostly only available up to the 389 

middle of the 2018 drought, and did not cover the full recovery period. Future work in this 390 

area could consider how extreme droughts such as the 2018 event affect the relationship 391 

between WTD and soil moisture. It may also be the case that the depth of SAR penetration 392 

into the peat is affected by local variations in bulk density, and so the relationship between 393 

SAR and soil moisture might also be variable depending on the depth at which soil moisture 394 

is measured.  395 
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The effects of drainage on WTD may be very localised (Holden et al., 2011) and the speckle 396 

(interference) inherent in SAR data may mask these small-scale variations, particularly when 397 

using SAR data with a coarse spatial resolution.  398 

4.2. Peatland resilience  399 

Locations where the drought persisted for longer periods of time are understood to be less 400 

resilient than areas which recovered faster. These areas may be most vulnerable to the 401 

future effects of climate change, notably increasing drought and heatwave events and 402 

severities. This method may also be useful as a way of locating areas which could benefit 403 

most from peatland restoration, especially where areas of lower resilience correlate with 404 

visible drains on the peat surface.  405 

Many of the areas which are shown to be least resilient in the Flow Country and the Peak 406 

District have evidence of high drainage, both natural and due to human land management 407 

(see Figures 6 and 8).  408 

Both areas highlighted on Dartmoor (Figures 7A and B) have evidence of peatland cuttings, 409 

gullies and erosion (Carless et al., 2019), but not noticeably more so than other areas of 410 

Dartmoor. Figure 7B, near the source of the River Erme, was affected by wildfire in 2019 411 

(see Section 4.2.1.), whilst the reasons for the longer recovery times seen in Figure 7A may 412 

be due to its peatland-edge location. The area to the left of Figure 7A that shows longer 413 

drought recovery is an area of high moorland with steep slopes to either side, which may 414 

increase drainage. The peat is also potentially thinner there than in the centre of the peat 415 

area.  416 

Figures 8B and C show areas which are known to have had extensive gullying, but are now 417 

being restored through gully-blocking. Gullying is a form of peatland erosion which can be 418 

initiated through the removal of stabilising surface vegetation by fire, pollution, or 419 

overgrazing (Evans & Warburton, 2007). Other areas of low resilience may also be affected 420 
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by erosion, due to management decisions or other factors, that is not visible from satellite 421 

imagery.  422 

The area of the Peak District shown in Figure 8C was subject to gully blocking in 2016, and 423 

shows a drop in the SAR backscatter signal at around the same time. This may be due to 424 

the sudden increase in standing water within the blocked gullies causing a decrease in 425 

backscatter due to the reflective surface. The model shows slow recovery in this area, which 426 

may be exaggerated due to the seasonal cycle being calculated from both pre- and post-427 

restoration SAR data. The recovery is likely also slow in this area because there would not 428 

have been time for the restoration works to be fully effective in recovering peatland function 429 

and reversing lower resilience before the 2018 drought. Kinder Scout (Figure 8B), which was 430 

badly degraded but had earlier restoration work done (Alderson et al., 2019), shows slow 431 

recovery but is not dramatically different from surrounding areas. It may be the case that 432 

more recently restored areas have lower resilience because they are not yet in a stable 433 

state, and without maintenance and monitoring could again start to degrade. This 434 

corresponds with Holden et al. (2011) who found that the hydrology of a peatland area with 435 

blocked drains had results between those of a natural and a drained site for several 436 

hydrological indicators. Their drain-blocked site had been under restoration for 6-7 years, but 437 

the hydrological processes had not yet fully recovered.  438 

Previous studies have found evidence that peatlands become less resilient as compound 439 

disturbances increase positive feedbacks (Sherwood et al., 2013; Swindles et al., 2016). 440 

Areas which are affected by a combination of anthropogenic disturbances such as drainage 441 

and peat cutting, and natural disturbances such as droughts and fires, are likely to be less 442 

resilient than areas which have only been subject to one form of disturbance. Our findings 443 

show that areas which have been subject to drainage, and areas with severe erosion in the 444 

form of gullying, had lower resilience to drought than areas with less evidence of 445 

disturbance. This supports the concept of compound disturbances leading to lower 446 

resilience.  447 
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Increases in the frequency and magnitude of pulse-disturbances can lead to increased 448 

variability in ecosystem functions, particularly where resilience is low, and thereby lower 449 

stability over the longer term (Zelnik et al., 2018). An increase in drought severity and 450 

frequency due to climate change could therefore lead to greater variability in water levels in 451 

areas where resilience is low, as the time taken for recovery may become longer than the 452 

intervals between drought events. This could lead to a less stable ecosystem and potentially 453 

a shift towards an alternative state (Worrall et al., 2006).  454 

4.2.1. Limitations in monitoring peatland resilience through drought recovery 455 

Differing recovery timescales are in part due to varying weather conditions and precipitation. 456 

Hence, the three peatland areas considered in this study cannot be directly compared 457 

against each other as they experienced different weather conditions during the recovery 458 

period (see Figure 5). Recovery patterns within each of the three areas are likely to be more 459 

useful for considering local variations in resilience, particularly where there are large 460 

differences within a small spatial area. The effects of wildfire in this method are complex. As 461 

stated in Section 4.1.1., it appears that fire increases SAR backscatter. This means that the 462 

Saddleworth site (Figure 8A) had higher than normal residuals after the fire in June 2018 at 463 

the peak of the drought, meaning that the drought effect is not recorded in the model. The 464 

areas affected by fire in spring 2019 (Figure 6A in the Flow country and 7B on Dartmoor) 465 

show slow but relatively comparable recovery times compared to the surrounding area. The 466 

higher post-fire results in 2019 affect the calculated seasonal cycle, thereby potentially 467 

exaggerating the effects of the 2018 drought, as can be seen in the Melvich wildfire area of 468 

Figure 6A. 469 

Measuring recovery of water levels using SAR backscatter does not give a complete picture 470 

of peatland resilience to drought, as there may be chemical and structural changes which 471 

occur within the peat during the disturbance event but persist beyond the recovery of water 472 

levels (Worrall et al., 2006). 473 
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4.4. Future directions 474 

There are several areas of future research which could improve this method and expand its 475 

applicability. Considering limitations of the SAR method for estimating WTD identified the 476 

variable relationship between WTD and soil surface moisture as a challenge to gaining 477 

reliable WTD from SAR backscatter. Future work into the interactions between soil surface 478 

moisture and WTD with relation to specific yield would improve our understanding of how 479 

these factors are interrelated. Such work should explicitly consider how these relationships 480 

change under extreme conditions such as drought. The variations in WTD and SAR 481 

backscatter following fire could also be a target for future research. It seems likely that fire 482 

causes the SAR backscatter signal to lose correlation with soil moisture and WTD as other 483 

factors such as vegetation loss and surface roughness gain more influence (Zhou et al., 484 

2019).  485 

With regards to using SAR backscatter to monitor resilience, future work should consider the 486 

perturbation effect size (severity of drought) as well as the recovery time. This would make it 487 

possible to compare resilience between peatland areas in different parts of the country and 488 

internationally (De Keersmaecker et al., 2015). In the future, SAR backscatter could be 489 

considered as part of a range of measures to estimate peatland resilience, some of which 490 

would give more information over longer timescales. This would give a greater 491 

understanding of the stability of peatland ecosystems under climate change.  492 

4.5. Wider applicability 493 

Using SAR backscatter as a measure of below-ground (hydrological) resilience has the 494 

potential to be applied to peatlands, and indeed other ecosystems, around the world. Using 495 

SAR to estimate WTD in highly organic soils has already been shown to give good results on 496 

sites across Germany (Asmuß et al., 2019; Bechtold et al., 2018), and it is therefore likely 497 

that using this method to monitor resilience following drought would also be successful in 498 

those ecosystems. In some landscapes, however, other factors affecting SAR backscatter 499 
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would need to be accounted for. In particular, areas subject to inundation would require the 500 

backscatter effects of flooding to be taken into account (Kasischke et al., 2009; Schlaffer et 501 

al., 2016). In ecosystems with different vegetation compositions, particularly treed areas, the 502 

SAR signal might be obstructed by the canopy, meaning that below-ground measures of 503 

resilience may not be achievable using this method (Millard & Richardson, 2018). The use of 504 

SAR backscatter is also complicated by the presence of permafrost, which may be a 505 

consideration when applying methods such as this to peatlands in the far north (Du et al., 506 

2019). In all cases where this method for estimating resilience could be applied we 507 

recommend first validating the relationship of SAR and WTD, or soil moisture if available, 508 

with ground data.  509 

In ecosystems where SAR backscatter has been shown to give reliable estimates of 510 

WTD/soil surface moisture, there are other applications of this technique besides monitoring 511 

resilience following drought recovery. One potential use could be to use a similar method to 512 

monitor peatland restoration success, by analysing whether measures such as drain-513 

blocking have been successful in raising water tables across large areas without the need to 514 

invest in a significant number of replicate water table monitoring devices. 515 

Although using methods such as this can give useful insights into peatland resilience, the 516 

decisions which are made using this understanding are not necessarily straightforward. 517 

Chambers et al. (2019) discussed the concept of ‘coerced resilience’, where an ecosystem is 518 

maintained by anthropogenic intervention. In such cases, which are likely to become more 519 

common due to climate change making certain ecosystems increasingly unstable, resilience 520 

is lost and the only way to maintain the preferred state is through human input. In some 521 

situations a degraded ecosystem is more resilient than the pristine ecosystem state (Côté & 522 

Darling, 2010). This may be the case in some peatland environments where management 523 

stressors have already forced the system into an alternative state, which is more resilient to 524 

both anthropogenic and climatic disturbances. In such a scenario, decisions must be made 525 
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as to whether it is worth investing in maintaining or restoring an ecosystem state which may 526 

be less resilient to future climate change.  527 

5. Conclusions 528 

In this study we developed a method using Sentinel-1 SAR data to estimate a peatland soil 529 

surface moisture proxy, which had an average Pearson’s correlation of 0.77 when compared 530 

to WTD data. This method was used to derive the residual variation in the soil moisture 531 

proxy after the seasonal trend had been removed at three peatland areas in the UK. These 532 

residuals were used to assess the severity of the 2018 drought and the time period of 533 

recovery across the three sites. 534 

We suggest that the areas which experienced longer recovery periods from the 2018 535 

drought are likely to be more vulnerable to future climate change effects. The results 536 

confirmed that there are clear interactions between peatland resilience and human activity, 537 

and in particular strong links between peatland drainage and recovery from drought. This 538 

supports the theory that compound disturbances weaken peatland resilience.  539 

Our results should be useful for land managers in identifying areas which would benefit most 540 

from targeted restoration measures. The method could also in future be adapted to monitor 541 

ongoing restoration work. Future work should consider the relationship between peatland 542 

fires, soil surface moisture, and SAR data, in order to facilitate remote sensing studies of 543 

peatland resilience over areas which are regularly burnt for heather management, or which 544 

have experienced wildfire. A stronger understanding of the link between WTD and soil 545 

moisture in peatlands would also help to improve the validation of SAR data as a proxy for 546 

soil surface moisture, particularly under extreme conditions.   547 

The method developed in this study can be used to provide large scale estimates of 548 

peatland resilience from freely available satellite data. This method has the potential to be 549 

used to estimate resilience in peatlands across the northern hemisphere, although further 550 
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validation would be needed on peatland areas with differing vegetation or underlain by 551 

permafrost.   552 

 553 

Acknowledgements 554 

We are very grateful to the staff and volunteers at Moors for the Future Partnership who 555 

collected the dipwell data used in this study, and the field assistants (especially Paul Gaffney 556 

and Gillian Donaldson-Selby) who helped with WTD monitoring in the Forsinard Flows 557 

reserve, as well as to the RSPB for site access. We would also like to thank the researchers 558 

who volunteered WTD data which were not used in the final study. Thanks to Andy Baird for 559 

advice on peatland hydrology, and to Jesse Abrams for commenting on the final manuscript.  560 

Funding 561 

K Lees, T Lenton, C Boulton & J Buxton were funded by Leverhulme grant no. RPG-2018-562 

046. The funders had no involvement in study design, or in the collection, analysis or 563 

interpretation of the data, or in writing or submitting the report for publication. WTD dynamics 564 

monitoring at the Forsinard Flows reserve and staff time for R Artz was funded by The 565 

Scottish Government Strategic Research Programme 2016-2021. 566 

 567 

References 568 

Alderson, D. M., Evans, M. G., Shuttleworth, E. L., Pilkington, M., Spencer, T., Walker, J., & 569 
Allott, T. E. H. (2019). Trajectories of ecosystem change in restored blanket peatlands. 570 
Science of the Total Environment, 665, 785–796. 571 
https://doi.org/10.1016/j.scitotenv.2019.02.095 572 

Asmuß, T., Bechtold, M., Tiemeyer, B., Asmuß, T., Bechtold, M., & Tiemeyer, B. (2019). On 573 
the Potential of Sentinel-1 for High Resolution Monitoring of Water Table Dynamics in 574 
Grasslands on Organic Soils. Remote Sensing, 11(14), 1659. 575 
https://doi.org/10.3390/rs11141659 576 

Babaeian, E., Sadeghi, M., Jones, S. B., Montzka, C., Vereecken, H., & Tuller, M. (2019). 577 
Ground, Proximal and Satellite Remote Sensing of Soil Moisture. Reviews of 578 
Geophysics, 57(2), 2018RG000618. https://doi.org/10.1029/2018RG000618 579 

Baghdadi, N., Boyer, N., Todoroff, P., El Hajj, M., & Bégué, A. (2009). Potential of SAR 580 
sensors TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for monitoring sugarcane 581 
crops on Reunion Island. Remote Sensing of Environment, 113(8), 1724–1738. 582 
https://doi.org/10.1016/J.RSE.2009.04.005 583 

Bartsch, A., Trofaier, A. M., Hayman, G., Sabel, D., Schlaffer, S., Clark, D. B., & Blyth, E. 584 
(2012). Detection of open water dynamics with ENVISAT ASAR in support of land 585 
surface modelling at high latitudes. Biogeosciences, 9(2), 703–714. 586 
https://doi.org/10.5194/bg-9-703-2012 587 

Bastos, A., Ciais, P., Friedlingstein, P., Friedlingstein, P., Sitch, S., Pongratz, J., Pongratz, 588 
J., Fan, L., Wigneron, J. P., Weber, U., Reichstein, M., Fu, Z., Anthoni, P., Arneth, A., 589 
Haverd, V., Jain, A. K., Joetzjer, E., Knauer, J., Lienert, S., … Zaehle, S. (2020). Direct 590 
and seasonal legacy effects of the 2018 heat wave and drought on European 591 
ecosystem productivity. Science Advances, 6(24), eaba2724. 592 



31 
 

https://doi.org/10.1126/sciadv.aba2724 593 

Bechtold, M., Schlaffer, S., Tiemeyer, B., De Lannoy, G., Bechtold, M., Schlaffer, S., 594 
Tiemeyer, B., & De Lannoy, G. (2018). Inferring Water Table Depth Dynamics from 595 
ENVISAT-ASAR C-Band Backscatter over a Range of Peatlands from Deeply-Drained 596 
to Natural Conditions. Remote Sensing, 10(4), 536. https://doi.org/10.3390/rs10040536 597 

Brown, L. E., Holden, J., Palmer, S. M., Johnston, K., Ramchunder, S. J., & Grayson, R. 598 
(2015). Effects of fire on the hydrology, biogeochemistry, and ecology of peatland river 599 
systems. https://doi.org/10.1086/683426 600 

Carless, D., Luscombe, D. J., Gatis, N., Anderson, K., & Brazier, R. E. (2019). Mapping 601 
landscape-scale peatland degradation using airborne lidar and multispectral data. 602 
Landscape Ecology, 34(6), 1329–1345. https://doi.org/10.1007/s10980-019-00844-5 603 

Chambers, J. C., Allen, C. R., & Cushman, S. A. (2019). Operationalizing Ecological 604 
Resilience Concepts for Managing Species and Ecosystems at Risk. Frontiers in 605 
Ecology and Evolution, 7, 241. https://doi.org/10.3389/fevo.2019.00241 606 

Clark, J., Gallego-Sala, A., Allott, T., Chapman, S., Farewell, T., Freeman, C., House, J., 607 
Orr, H., Prentice, I., & Smith, P. (2010). Assessing the vulnerability of blanket peat to 608 
climate change using an ensemble of statistical bioclimatic envelope models. Climate 609 
Research, 45, 131–150. https://doi.org/10.3354/cr00929 610 

Clay, G. D., Worrall, F., Clark, E., & Fraser, E. D. G. (2009). Hydrological responses to 611 
managed burning and grazing in an upland blanket bog. Journal of Hydrology, 376(3–612 
4), 486–495. https://doi.org/10.1016/J.JHYDROL.2009.07.055 613 

Côté, I. M., & Darling, E. S. (2010). Rethinking Ecosystem Resilience in the Face of Climate 614 
Change. PLoS Biology, 8(7), e1000438. https://doi.org/10.1371/journal.pbio.1000438 615 

De Keersmaecker, W., Lhermitte, S., Tits, L., Honnay, O., Somers, B., & Coppin, P. (2015). 616 
A model quantifying global vegetation resistance and resilience to short-term climate 617 
anomalies and their relationship with vegetation cover. Global Ecology and 618 
Biogeography, 24(5), 539–548. https://doi.org/10.1111/geb.12279 619 

Díaz-Delgado, R., Lloret, F., Pons, X., & Terradas, J. (2002). SATELLITE EVIDENCE OF 620 
DECREASING RESILIENCE IN MEDITERRANEAN PLANT COMMUNITIES AFTER 621 
RECURRENT WILDFIRES. Ecology, 83(8), 2293–2303. https://doi.org/10.1890/0012-622 
9658(2002)083[2293:SEODRI]2.0.CO;2 623 

Du, J., Watts, J. D., Jiang, L., Lu, H., Cheng, X., Duguay, C., Farina, M., Qiu, Y., Kim, Y., 624 
Kimball, J. S., & Tarolli, P. (2019). Remote Sensing of Environmental Changes in Cold 625 
Regions: Methods, Achievements and Challenges. Remote Sensing, 11(16), 1952. 626 
https://doi.org/10.3390/rs11161952 627 

Evans, M., & Warburton, J. (2007). Geomorphology of Upland Peat. In M. Evans & J. 628 
Warburton (Eds.), Geomorphology of Upland Peat: Erosion, Form and Landscape 629 
Change. Blackwell Publishing Ltd. https://doi.org/10.1002/9780470798003 630 

Gallego-Sala, A. V., Clark, J. M., House, J. I., Orr, H. G., Prentice, I. C., Smith, P., Farewell, 631 
T., & Chapman, S. J. (2010). Bioclimatic envelope model of climate change impacts on 632 
blanket peatland distribution in Great Britain. Climate Research, 45(1), 151–162. 633 
https://doi.org/10.3354/cr00911 634 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). 635 
Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote 636 
Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 637 

Gorham, E. (1991). Northern Peatlands: Role in the Carbon Cycle and Probable Responses 638 



32 
 

to Climatic Warming. Ecological Applications, 1(2), 182–195. 639 
https://doi.org/10.2307/1941811 640 

Hillebrand, H., & Kunze, C. (2020). Meta‐analysis on pulse disturbances reveals differences 641 
in functional and compositional recovery across ecosystems. Ecology Letters, 23(3), 642 
575–585. https://doi.org/10.1111/ele.13457 643 

Holden, J., Palmer, S. M., Johnston, K., Wearing, C., Irvine, B., & Brown, L. E. (2015). 644 
Impact of prescribed burning on blanket peat hydrology. Water Resources Research, 645 
51(8), 6472–6484. https://doi.org/10.1002/2014WR016782 646 

Holden, J., Wallage, Z. E., Lane, S. N., & McDonald, A. T. (2011). Water table dynamics in 647 
undisturbed, drained and restored blanket peat. Journal of Hydrology, 402(1–2), 103–648 
114. https://doi.org/10.1016/J.JHYDROL.2011.03.010 649 

Huang, W., DeVries, B., Huang, C., Lang, M., Jones, J., Creed, I., & Carroll, M. (2018). 650 
Automated Extraction of Surface Water Extent from Sentinel-1 Data. Remote Sensing, 651 
10(5), 797. https://doi.org/10.3390/rs10050797 652 

JNCC. (2011). Towards an assessment of the state of UK peatlands. 653 
http://jncc.defra.gov.uk/pdf/jncc445_web.pdf 654 

Kasischke, E. S., Bourgeau-Chavez, L. L., Rober, A. R., Wyatt, K. H., Waddington, J. M., & 655 
Turetsky, M. R. (2009). Effects of soil moisture and water depth on ERS SAR 656 
backscatter measurements from an Alaskan wetland complex. Remote Sensing of 657 
Environment. 113: 1868-1873, 113, 1868–1873. 658 
https://www.fs.usda.gov/treesearch/pubs/38928 659 

Kettridge, N., Humphrey, R. E., Smith, J. E., Lukenbach, M. C., Devito, K. J., Petrone, R. M., 660 
& Waddington, J. M. (2014). Burned and unburned peat water repellency: Implications 661 
for peatland evaporation following wildfire. Journal of Hydrology, 513, 335–341. 662 
https://doi.org/10.1016/J.JHYDROL.2014.03.019 663 

Kettridge, N., & Waddington, J. M. (2014). Towards quantifying the negative feedback 664 
regulation of peatland evaporation to drought. Hydrological Processes, 28(11), 3728–665 
3740. https://doi.org/10.1002/hyp.9898 666 

Lamentowicz, M., Gałka, M., Marcisz, K., Słowin´ski, M. S., Kajukało-Drygalska, K., Dayras, 667 
M. D., & Jassey, V. E. J. (2019). Community ecology Unveiling tipping points in long-668 
term ecological records from Sphagnum-dominated peatlands. 669 
https://doi.org/10.1098/rsbl.2019.0043 670 

Li, Z., Xu, D., & Guo, X. (2014). Remote sensing of ecosystem health: Opportunities, 671 
Challenges, and future perspectives. In Sensors (Switzerland) (Vol. 14, Issue 11, pp. 672 
21117–21139). MDPI AG. https://doi.org/10.3390/s141121117 673 

Lowe, J. A., Bernie, D., Bett, P., Bricheno, L., Brown, S., Calvert, D., Clark, R., Eagle, K., 674 
Edwards, T., Fosser, G., Fung, F., Gohar, L., Good, P., Gregory, J., Harris, G., Howard, 675 
T., Kaye, N., Kendon, E., Krijnen, J., … Belcher, S. (2018). UKCP18 Science Overview 676 
Report. www.metoffice.gov.ukwww.metoffice.gov.uk 677 

Łuców, D., Lamentowicz, M., Obremska, M., Arkhipova, M., Kittel, P., Łokas, E., 678 
Mazurkevich, A., Mróz, T., Tjallingii, R., & Słowiński, M. (2020). Disturbance and 679 
resilience of a Sphagnum peatland in western Russia (Western Dvina Lakeland) during 680 
the last 300 years: a multiproxy, high-resolution study. The Holocene, 681 
095968362094106. https://doi.org/10.1177/0959683620941064 682 

Met Office. (2012). Met Office Integrated Data Archive System (MIDAS) Land and Marine 683 
Surface Stations Data (1853-current). NCAS British Atmospheric Data Centre. NCAS 684 



33 
 

British Atmospheric Data Centre 685 

Millard, K., & Richardson, M. (2018). Quantifying the relative contributions of vegetation and 686 
soil moisture conditions to polarimetric C-Band SAR response in a temperate peatland. 687 
Remote Sensing of Environment, 206, 123–138. 688 
https://doi.org/10.1016/j.rse.2017.12.011 689 

Minayeva, T. Y., Bragg, O. M., & Sirin, A. A. (2017). Towards ecosystem-based restoration 690 
of peatland biodiversity. 19. https://doi.org/10.19189/MaP.2013.OMB.150 691 

Müller, F., Bergmann, M., Dannowski, R., Dippner, J. W., Gnauck, A., Haase, P., Jochimsen, 692 
M. C., Kasprzak, P., Kröncke, I., Kümmerlin, R., Küster, M., Lischeid, G., Meesenburg, 693 
H., Merz, C., Millat, G., Müller, J., Padisák, J., Schimming, C. G., Schubert, H., … 694 
Theuerkauf, M. (2016). Assessing resilience in long-term ecological data sets. 695 
Ecological Indicators, 65, 10–43. https://doi.org/10.1016/j.ecolind.2015.10.066 696 

Page, S. E., & Baird, A. J. (2016). Peatlands and Global Change: Response and Resilience. 697 
Annual Review of Environment and Resources, 41(1), 35–57. 698 
https://doi.org/10.1146/annurev-environ-110615-085520 699 

Pimm, S. L. (1984). The complexity and stability of ecosystems. Nature, 307(5949), 321–700 
326. https://doi.org/10.1038/307321a0 701 

Pimm, S. L., Donohue, I., Montoya, J. M., & Loreau, M. (2019). Measuring resilience is 702 
essential to understand it. In Nature Sustainability (Vol. 2, Issue 10, pp. 895–897). 703 
Nature Publishing Group. https://doi.org/10.1038/s41893-019-0399-7 704 

Price, J. S. (1996). Hydrology and microclimate of a partly restored cutover bog, Quebec. 705 
Hydrological Processes, 10(10), 1263–1272. https://doi.org/10.1002/(SICI)1099-706 
1085(199610)10:10<1263::AID-HYP458>3.0.CO;2-1 707 

R Core Team. (2017). R: A language and environment for statistical computing. 708 

Rowland, C. S. ., Morton, R. D. ., Carrasco, L. ., McShane, G. ., O’Neil, A. W. ., & Wood, C. 709 
M. (2017). Land Cover Map 2015 (vector, GB). NERC Environmental Information Data 710 
Centre. https://doi.org/10.5285/6c6c9203-7333-4d96-88ab-78925e7a4e73 711 

Schlaffer, S., Chini, M., Dettmering, D., Wagner, W., Schlaffer, S., Chini, M., Dettmering, D., 712 
& Wagner, W. (2016). Mapping Wetlands in Zambia Using Seasonal Backscatter 713 
Signatures Derived from ENVISAT ASAR Time Series. Remote Sensing, 8(5), 402. 714 
https://doi.org/10.3390/rs8050402 715 

Sherwood, J. H., Kettridge, N., Thompson, D. K., Morris, P. J., Silins, U., & Waddington, J. 716 
M. (2013). Effect of drainage and wildfire on peat hydrophysical properties. Hydrological 717 
Processes, 27(13), 1866–1874. https://doi.org/10.1002/hyp.9820 718 

Swindles, G. T., Morris, P. J., Mullan, D. J., Payne, R. J., Roland, T. P., Amesbury, M. J., 719 
Lamentowicz, M., Turner, T. E., Gallego-Sala, A., Sim, T., Barr, I. D., Blaauw, M., 720 
Blundell, A., Chambers, F. M., Charman, D. J., Feurdean, A., Galloway, J. M., Gałka, 721 
M., Green, S. M., … Warner, B. (2019). Widespread drying of European peatlands in 722 
recent centuries. Nature Geoscience. https://doi.org/10.1038/s41561-019-0462-z 723 

Swindles, G. T., Morris, P. J., Wheeler, J., Smith, M. W., Bacon, K. L., Turner, T. E., 724 
Headley, A., & Galloway, J. M. (2016). Resilience of peatland ecosystem services over 725 
millennial timescales: evidence from a degraded British bog. 726 
https://doi.org/10.1111/1365-2745.12565 727 

Verbesselt, J., Umlauf, N., Hirota, M., Holmgren, M., Van Nes, E. H., Herold, M., Zeileis, A., 728 
& Scheffer, M. (2016). Remotely sensed resilience of tropical forests. Nature Climate 729 
Change, 6(11), 1028–1031. https://doi.org/10.1038/nclimate3108 730 



34 
 

Waddington, J. M., Morris, P. J., Kettridge, N., Granath, G., Thompson, D. K., & Moore, P. A. 731 
(2015). Hydrological feedbacks in northern peatlands. Ecohydrology, 8(1), 113–127. 732 
https://doi.org/10.1002/eco.1493 733 

Wallage, Z. E., Holden, J., & McDonald, A. T. (2006). Drain blocking: An effective treatment 734 
for reducing dissolved organic carbon loss and water discolouration in a drained 735 
peatland. Science of the Total Environment, 367(2–3), 811–821. 736 
https://doi.org/10.1016/j.scitotenv.2006.02.010 737 

Washington-Allen, R. A., Ramsey, R. D., West, N. E., & Norton, B. E. (2008). Quantification 738 
of the Ecological Resilience of Drylands Using Digital Remote Sensing. Resilience 739 
Alliance. https://agris.fao.org/agris-search/search.do?recordID=AV2012093728 740 

Worrall, F., Burt, T. P., & Adamson, J. K. (2006). Trends in drought frequency - The fate of 741 
DOC export from British peatlands. Climatic Change, 76(3–4), 339–359. 742 
https://doi.org/10.1007/s10584-006-9069-7 743 

Zelnik, Y. R., Arnoldi, J.-F., & Loreau, M. (2018). The Impact of Spatial and Temporal 744 
Dimensions of Disturbances on Ecosystem Stability. Frontiers in Ecology and Evolution, 745 
6, 224. https://doi.org/10.3389/fevo.2018.00224 746 

Zhou, Z., Liu, L., Jiang, L., Feng, W., & Samsonov, S. V. (2019). Using Long-Term SAR 747 
Backscatter Data to Monitor Post-Fire Vegetation Recovery in Tundra Environment. 748 
Remote Sensing, 11(19), 2230. https://doi.org/10.3390/rs11192230 749 

 750 


