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Abstract

The absence or lack of steady hydrogen fusion in the cores of brown dwarfs means

these objects cool over time by radiating away their internal thermal energy. The rate at

which these objects cool is regulated by the atmosphere, which imprints its complex and

changing chemical composition of molecules and condensates onto the emitted radiation.

A reliable model of the atmosphere and its evolution over time therefore lies at the core

of our understanding of brown dwarfs and substellar objects. Over the last decade the

WISE mission has uncovered the coolest spectral type known as the Y dwarfs. These

objects have effective temperatures a few times greater than Jupiter, and thus provide

excellent analogs for Jovian-like worlds outside of our solar system. Accurate and reliable

atmosphere and evolution models are important for placing mass and age constraints on

these newly discovered objects and understanding the rich chemistry and physics taking

place in their atmospheres.

In this thesis, I present a new set of solar metallicity atmosphere and evolutionary

models for very cool brown dwarfs and self-luminous giant exoplanets, which is termed

ATMO2020. Atmosphere models are generated with the state-of-the-art 1D radiative-convective

equilibrium code ATMO, and are used as surface boundary conditions to calculate the in-

terior structure and evolution of 0.0005� 0.075 M� objects. These models include several

key improvements to the input physics used in previous models available in the literature.

First, the use of a new H-He equation of state including ab initio quantum molecular dy-

namics calculations has raised the mass by ⇠ 1 � 2% at the stellar-substellar boundary

and has altered the cooling tracks around the hydrogen and deuterium burning mini-

mum masses. A second key improvement concerns updated molecular opacities in our

atmosphere model ATMO, which now contains significantly more line transitions required

to accurately capture the opacity in these hot atmospheres. This leads to warmer atmo-

spheric temperature structures, further changing the cooling curves and predicted emis-

sion spectra of substellar objects. I present significant improvement for the treatment of

the collisionally broadened potassium resonance doublet, and highlight the importance

of these lines in shaping the red-optical and near-infrared spectrum of brown dwarfs.
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This is highlighted through improved comparisons to the observed spectra of benchmark

objects. I generate three different grids of model simulations, one using equilibrium chem-

istry and two using non-equilibrium chemistry due to vertical mixing, all three computed

self-consistently with the pressure-temperature structure of the atmosphere. I show the

impact of vertical mixing on emission spectra and in colour-magnitude diagrams, and

highlight wavelength regions which can be used of infer the strength of vertical mixing in

cool brown dwarfs.
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Chapter 1

Introduction

Brown dwarfs are star-like objects with insufficient mass to sustain hydrogen fusion within

their cores. The absence or lack of steady fusion means these objects cool over time by ra-

diating away their internal thermal energy. This cooling leads to a degeneracy in mass,

age and luminosity i.e. a relatively young, low mass object can have an equivalent lumi-

nosity to an older, higher mass object. This degeneracy makes the fundamental proper-

ties of brown dwarfs, particularly isolated field objects, difficult to determine. The rate at

which brown dwarfs cool is regulated by the atmosphere, which imprints its complex and

changing chemical composition of molecules and condensates onto the emitted radiation,

forming the M-L-T-Y spectral sequence (Kirkpatrick 2005; Helling & Casewell 2014). A

reliable model of the atmosphere and its evolution over time therefore lies at the core of

our understanding of brown dwarfs and substellar objects.

Understanding the atmospheres of brown dwarfs has further motivation since the

physics, chemistry, and composition is shared with giant extra-solar planets (exoplanets)

(Burrows et al. 2001), meaning useful analogies can be drawn between these objects. Over

the last decade the WISE mission (Wright et al. 2010) has uncovered the coolest brown

dwarfs (known as the Y dwarfs; Cushing et al. 2011; Kirkpatrick et al. 2012), including the

coldest known brown dwarf at Teff ⇠ 250 K just 2 pc from the sun (Luhman 2014). These

objects have effective temperatures a few times greater than Jupiter (Teff ⇠ 124 K), pro-

viding excellent analogues for Jovian-like worlds outside of our solar system, and have
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proved challenging for atmosphere models (Morley et al. 2018; Leggett et al. 2019). On-

going projects are likely to discover more objects in this temperature range (e.g. Marocco

et al. 2019; Meisner et al. 2020) that will become amenable to characterisation with future

instrumentation such as the James Webb Space Telescope (Gardner et al. 2006).

In this thesis, I present my work on developing a state-of-the-art grid of atmosphere

and evolution models for substellar objects, which encompass brown dwarfs and giant

exoplanets. The new models aim to improve our understanding of these cool atmospheres

and their evolution over time, and provide a toolkit for studying and characterising new

discoveries of the coldest brown dwarfs and exoplanets. Ultimately, I hope this work

contributes in some small way towards the grander question of whether our solar system

is unique in the Universe.

I begin this thesis by first reviewing the history of the prediction and detection of the

first brown dwarfs, as well as detailing the evolution of their main properties throughout

their lifetime in Section 1.1. I then discuss the main observed features of brown dwarfs

and giant exoplanets as they cool over time in Section 1.2, and assess our current under-

standing and methods for modelling the physics driving these observations in Section 1.3.

In Section 1.4 I provide the aims of this work. Finally, in Section 1.5 I give an overview of

the structure of the chapters in this thesis, and provide my statement of contribution to

publications in Section 1.6.

1.1 History and physical properties of brown dwarfs

1.1.1 The prediction of brown dwarfs and the hydrogen burning limit

Stars form through the gravitational collapse of gas and dust in cold interstellar clouds.

As the cloud contracts it heats, radiating away energy until the central region is sufficiently

dense to trap radiation. The temperature and density in the core of the forming star then

increase over time until the conditions are hot and dense enough to fuse hydrogen into

helium. The energy released from these thermonuclear reactions prevents further con-

traction, and balances the energy radiated away from the stellar surface. This steady state

configuration of hydrogen burning is known as the main-sequence stage of a star’s life-
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time.

It was first predicted by Kumar (1963) that electron degeneracy can play a key role in

the cores of low mass contracting stars, and prevent objects of sufficiently low mass reach-

ing the main sequence. This degeneracy occurs because electrons obey the Pauli exclusion

principle, preventing them from occupying the same quantum state simultaneously and

forcing them to occupy states of non-zero momentum even at absolute zero. This therefore

provides a degeneracy pressure that in the dense core of a low mass forming star can pre-

vent further gravitational collapse and hence the temperatures rising to that required for

hydrogen burning. Kumar (1963) therefore proposed that there exists a hydrogen burning

minimum mass (HBMM) of star formation due to the onset of electron degeneracy. Early

calculations of the HBMM found its value to be 0.08 M� (Hayashi & Nakano 1963), while

later calculations revised this value to be ⇠ 0.07 M�, dependent on metallicity (Chabrier

et al. 2000b). The exact value of the HBMM is still being revised today, with improvements

in the equation of state and the effect of metals altering the predicted value (Fernandes

et al. 2019; Phillips et al. 2020b).

The absence or lack of steady hydrogen fusion in the cores of objects below the

HBMM means that they will not attain a steady state like main sequence stars, and they

will cool over time by radiating away their internal thermal energy. These objects were

originally termed ‘black’ or infrared dwarfs, owing to their low observable luminosity,

and the peak in emission moving to infrared wavelengths as they cool throughout their

lifetime. The term ‘brown’ dwarf was first introduced by Tarter (1975), and has become

the widely accepted term for star-like objects that do not sustain stable hydrogen burning.

1.1.2 The discovery of the first brown dwarfs

The search for the first unambiguous brown dwarfs proved a long and arduous process,

as technology was not initially sensitive to their faint infrared emission. Searches focused

on young clusters and star forming regions, in an effort to detect brown dwarfs when they

are at their warmest and brightest, and hence most observable. The problem with this

is that young brown dwarfs can have temperatures and luminosities similar to low mass

main-sequence stars, making them difficult to distinguish between. It was first proposed
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by Rebolo et al. (1992) that the detection of the element lithium (Li) can be used to distin-

guish a brown dwarf from a low mass star. Low mass stars are expected to be completely

depleted in Li due to nuclear burning within ⇠ 100 Myr, whilst the cores of most brown

dwarfs do not reach sufficient temperatures, and thus retain Li (Dantona & Mazzitelli 1985;

Nelson et al. 1993). Therefore, for an age at which all main sequence stars have depleted

their Li, it should only be found in objects of a substellar nature. This ‘lithium test’ was

successfully used to confirm the first brown dwarfs in the Pleiades cluster, Teide 1 (Rebolo

et al. 1995; Rebolo et al. 1996) and PPl 15 (Basri et al. 1996).

Concurrently to the brown dwarfs confirmed in the Pleiades, an extremely cool, red

object was discovered orbiting the star Gliese 229 (Nakajima et al. 1995). The extremely

faint luminosity implied that its companion, Gliese 229B, was a brown dwarf with a tem-

perature of  1200 K. A further measurement of the near-infrared emission spectrum of

Gl 229 B revealed absorption features attributable to methane (Oppenheimer et al. 1995),

similar to that seen in Jupiter’s emission. Since methane becomes stable at temperatures

below ⇠ 1200 K, this unequivocally confirmed the substellar nature of Gl 229 B, and sig-

nalled that an entirely new class of astronomical object was now amenable to observational

characterisation from Earth.

Remarkably, the discovery of the first methane brown dwarf Gl 229 B was announced

at the same time as the detection of the first extra-solar planet orbiting a sun-like star

(Mayor & Queloz 1995). The study and characterisation of over 2000 brown dwarfs and

exoplanets has followed these discoveries, bridging the gap between stellar and plane-

tary astrophysics. The brown dwarf and exoplanet fields have evolved in parallel, as both

classes of object are governed by the same physics, chemistry and compositions (Burrows

et al. 2001), meaning useful analogies can be drawn between these objects. Brown dwarfs

can be most readily compared to giant exoplanets discovered at wide-separations (>30AU)

from their host stars through high contrast adaptive optics imaging (Bowler 2016; Biller &

Bonnefoy 2018). These directly imaged planets have atmospheres unaffected by host star

irradiation, and therefore cool throughout their lifetimes similarly to field brown dwarfs.
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1.1.3 Brown dwarf evolution

Figure 1.1 shows an artists view of some of the first discovered brown dwarfs compared to

the Sun, a low mass red dwarf star Gliese 229 A, and the planet Jupiter. This graphic serves

to illustrate several fundamental characteristics of brown dwarfs. First, the absence of a

stable internal energy source means brown dwarfs cool over time by radiating away their

internal energy. This leads to a degeneracy between mass, age and luminosity, which

makes the fundamental properties of brown dwarfs hard to determine. For example, a

relatively young, low mass object can have an equivalent luminosity to an older, higher

mass object. Despite having similar masses, the young brown dwarf Teide 1 is significantly

warmer and slightly larger than its older counterpart Gliese 229 B. Second, after an early

contraction phase, all brown dwarfs have roughly the same size of ⇠ 1 Jupiter radius,

regardless of their mass. This is brought about by the quantum mechanical effects of

electron degeneracy within the cores brown dwarfs. Thus, Gliese 229B, WISE 1828 and

Jupiter can be seen in Fig. 1.1 as having the same size, despite having masses ranging up

to tens of Jupiter masses. Finally, the true colour of brown dwarfs as seen by the human

eye is in fact not brown, and ranges from red to magenta, to a deep purple in the coldest

objects. This is illustrative of the atmospheres of brown dwarfs imprinting complex and

changing chemical compositions onto the emitted radiation, creating an ever-changing

spectral appearance as they cool over time. It is in fact the broad absorption of the alkali

metals sodium and potassium that give the coolest brown dwarfs their purple hue, as

depicted in Fig. 1.1.

To more quantitatively review these characteristics of isolated substellar objects,

Figures 1.2 through 1.6 show the evolution of the luminosity (L), core temperature (Tc),

radius (R), effective temperature (Teff) and surface gravity (g) as a function of age. In

these Figures, objects in the mass range 0.001�0.2 M� (or approximately 1�200 MJup) are

shown with colour coding based on the approximate hydrogen and deuterium burning

limits (⇠ 0.075 M� and 0.012 M� respectively). It should be noted that this colour coding

serves primarily to guide the eye, and should not be taken as indicative of what consti-

tutes a planet or brown dwarf. While the deuterium burning minimum mass (⇠ 13 MJup)

has been utilised as a dividing line between planets and brown dwarfs, a more physi-
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Figure 1.1: Illustration of the relative sizes, appearances and temperatures of the Sun, the M dwarf star Gliese
229A, the young brown dwarf Teide 1, the old brown dwarf companion Gliese 229B, one of the coldest brown
dwarfs WISE 1828 Cushing et al. (2011), and Jupiter. The graphic was rendered using NASA satellite images
(Sun, Jupiter) and NASA artist work (Gliese 229A+B, Teide 1, WISE 1828) and is taken from Joergens (2014)
(Copyright MPIA/V. Joergens).

cally motivated way of distinguishing between the two objects is based on their formation

(Schlaufman 2018). Objects forming through the collapse of interstellar material should

be considered brown dwarfs, and objects forming through accretion in protostellar disks

should be considered planets. Despite difficulties in determining the formation pathway

of a substellar object, this is widely accepted to be the defining difference between planets

and brown dwarfs.

The evolutionary tracks shown here are from the solar metallicity calculations of

Burrows et al. (1997), and the Figures are based on those presented in Burrows et al. (2001).

Evolutionary calculations from other authors exist in the literature (e.g. Chabrier et al.

(2000b); Baraffe et al. (2003); Saumon & Marley (2008); Fernandes et al. (2019); Phillips

et al. (2020b)), however these calculations differ minimally in the broad characteristics of

brown dwarf evolution discussed in this Section. For further reading, the evolution of
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brown dwarfs and giant planets is reviewed in more detail in Chabrier & Baraffe (2000);

Burrows et al. (2001).

Figure 1.2 shows the luminosity of a given mass of object as a function of age. The

luminosity is the amount of radiated power from the object’s surface, and is often quoted

in solar units. The luminosity of low-mass stars and brown dwarfs initially decreases over

time at early stages in their evolution, as they contract after formation. In low-mass stars

above the HBMM, i.e. � 0.075 M�, the core thermonuclear power eventually balances

the photon radiative losses from the surface, stabilising the object’s luminosity during the

main sequence. This can be seen in Figure 1.2 for blue coloured lines representing low-

mass stars above the HBMM, whereby the luminosity remains constant at later ages of

� 0.1�1 Gyr depending on mass. In brown dwarfs below the HBMM, the absence or lack

of steady hydrogen fusion means they cool over time becoming gradually less luminous.

This can be seen in Figure 1.2 for orange and green coloured lines representing brown

dwarfs and giant planets, whereby the luminosity continually decreases throughout their

lifetimes.

Also shown in Fig. 1.2 are the ages at which a given mass has depleted 90% of its

initial lithium and deuterium abundances through nuclear burning. Objects more massive

than ⇠ 0.06 M� will burn lithium, and objects more massive than ⇠ 0.012 M� will burn

deuterium. As discussed in Section 1.1.2, the presence of Li in sufficiently low-mass brown

dwarfs can be used to distinguish them from low-mass stars through the ‘lithium test’.

Similarly, the presence of deuterium in the atmospheres of young brown dwarfs has been

proposed as a method of inferring the mass and age of brown dwarfs (Chabrier et al.

2000a; Morley et al. 2019). Deuterium burning roughly stabilises the luminosity L and

radius R of brown dwarfs with ages between 1 Myr and 100 Myr depending on mass.

While deuterium does influence the evolution of young objects, it is not so abundant that

its effects are as dominant as hydrogen burning in low mass stars. Most objects will have

burnt the majority of their initial deuterium abundance by ⇠ 100 Myr, with higher mass

objects burning deuterium quicker (Burrows et al. 2001).

Figure 1.3 shows the evolution of the core temperature of a given object mass as a

function of age. The gravitational contraction of low-mass stars and brown dwarfs leads to
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Figure 1.2: Evolution of the luminosity of low-mass stars and substellar objects as a function of age. Stars
are shown in blue, brown dwarfs with masses  0.07 M� and above > 0.012 M� are shown in orange, and
brown dwarfs/giant planets with masses  0.012 M� are shown in green. These colour categories should be
considered arbitrary, and are based on the approximate hydrogen and deuterium burning mass regimes. Red
diamonds and purple circles indicate the ages at which a given mass has depleted 90% of the initial lithium
and deuterium abundances respectively. The masses shown here, from top to bottom are, 0.001, 0.002, 0.003,
0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.012, 0.015, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.075, 0.08, 0.085, 0.09,
0.095, 0.1, 0.15 and 0.2 M� . Note that 0.001 M� ⇠ 1 MJup. Figure inspired by Fig. 1 of Burrows et al. (2001).

a steady increase in their core temperatures and densities. For objects above the HBMM,

the temperatures and densities eventually reach that required to drive thermonuclear re-

actions fusing hydrogen to helium. The power derived from this nuclear burning balances

the surface radiative losses, preventing further contraction and causing the core temper-

atures to remain constant for the rest of the object’s lifetime. In brown dwarfs below the

HBMM, the core becomes electron degenerate before the temperature reaches that re-

quired for thermonuclear power to balance the surface radiative losses, causing the core

temperature to then decrease gradually over time.
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Figure 1.3: Evolution of the core temperature of low-mass stars and substellar objects as a function of age.
The colour coding and mass-range is the same as in Fig. 1.2.

Figure 1.4 shows the evolution of the radius of a given mass of object as a function of

age. At early ages in a substellar object’s lifetime, the radius is a monotonically increasing

function of mass, which decreases as a function of age as the object contracts after forma-

tion. Early plateaus in the radius of brown dwarfs coincide with deuterium burning. At

later ages, the radii cluster around a value of 1RJup for objects spanning approximately

1� 2 orders of magnitude in mass between 0.001 and 0.075 M�. Furthermore, within this

clustering the dependence of the radius on mass reverses, with lower mass objects having

larger radii. This is due to the competition of Coulomb and electron degeneracy effects

in the equation of state. Coulomb forces set the mass-radius relationship as R / M
1
3 ,

whereas electron degeneracy sets the relationship as R / M
� 1

3 . The interplay of these

relationships cause the radii of brown dwarfs and giant planets to become independent

of mass to within ⇠ 30% of the radius of Jupiter (Burrows et al. 2001).
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Figure 1.4: Evolution of the radius (in solar units) of low-mass stars and substellar objects as a function of
age. The colour coding and mass-range is the same as in Fig. 1.2. The dashed black line shows the radius of
Jupiter (1 RJup ⇡ 0.1 R�).

Figure 1.5 shows the evolution of the effective temperature of a given mass of object

as a function of age. The effective temperature is related to the luminosity of an object

through the Stefan-Boltzmann law (L / R
2
T

4
eff), and thus a small drop in Teff leads to a large

drop in L. The Teff of low-mass stars eventually stabilises at late stages in their evolution,

whereas the Teff of brown dwarfs and giant planets continuously decreases throughout

their lifetime. The continual decrease of Teff is the primary driver of chemical changes in

the atmosphere that become imprinted onto the emitted thermal radiation. These spectral

imprints form a sequence characterised by the M, L, T and Y spectral types, and Fig. 1.5

is divided to indicate the approximate Teff ranges of these spectral types. The defining

features of these spectral types is discussed in detail in Section 1.2.1.

Finally, Fig. 1.6 shows the evolution of the surface gravity and effective temperature
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Figure 1.5: Evolution of the effective temperature of low-mass stars and substellar objects as a function of
age. The colour coding and mass-range is the same as in Fig. 1.2. Dashed black lines divide the Figure into
the approximate Teff ranges of the MLTY spectral sequence, as discussed in Section 1.2.1.

as a function of age. The surface gravity is related to the radius and mass of an object as

g / MR
�2. The evolution in this Figure proceeds from right to left, as brown dwarfs and

planets start with high Teff and low g, and then cool and contract moving to lower Teff and

higher g. Brown dwarfs quickly increase their surface gravity during the deuterium burn-

ing phase, whereas lower mass objects which do not burn deuterium contract over a longer

period of time, and thus increase their surface gravity more slowly. When brown dwarfs

are young, they have similar surface gravities (log(g) ⇠ 3.5�4.0) to planetary mass objects,

making them ideal analogues to understand giant exoplanets. Furthermore, Fig. 1.6 illus-

trates that by knowing the Teff and g of a brown dwarf can break the degeneracy between

mass, age and luminosity.
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Figure 1.6: Evolution of the surface gravity and effective temperature of low-mass stars and substellar objects.
The colour coding and mass-range is the same as in Fig. 1.2. Dotted grey lines are isochrones with ages as
indicated on the plot.

1.2 Observations of the brown dwarf cooling sequence

1.2.1 The spectral sequence

Astronomers classify stars based on their emission spectra. A star is assigned a letter

out of OBAFGKM to indicate its spectral type, with O representing the hottest and M

the coolest objects. This system is used to spectrally classify stellar objects, and is known

as the MK system (Morgan & Keenan 1973). M dwarf stars are classified as such based

on the strength of the molecular absorption bands of titanium and vanadium oxide (TiO

and VO respectively) in the red-optical emission spectra (⇠ 0.6 � 0.9 µm) (Kirkpatrick

et al. 1991). During the search for brown dwarfs, an early candidate displayed a spectrum

lacking in the prominent in the TiO and VO absorption features characteristic of M dwarfs

(Kirkpatrick et al. 1993). Furthermore, one of the first confirmed brown dwarfs, Gl 229 B,
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displayed methane absorption features in its near-infrared spectrum (Oppenheimer et al.

1995, 1998), a feature indicative of a planetary atmosphere rather than a stellar atmosphere.

These observations hinted that the spectra of brown dwarfs differ from that of M dwarfs,

and that at least one new spectral class would be needed to classify these objects.

Shortly after the first confirmed brown dwarfs in 1995, three surveys observing

large areas of the sky at red-optical and near-infrared wavelengths began, allowing as-

tronomers to detect and spectrally characterise hundreds of brown dwarfs. These surveys

were 2MASS (Two Micron All Sky Survey) (Skrutskie et al. 1997), DENIS (Deep Near In-

frared Southern Sky Survey) (Epchtein et al. 1997), and SDSS (Sloan Digital Sky Survey)

(York et al. 2000). Observations by these surveys led to the development of two new spec-

tral classes for brown dwarfs; the L and T spectral classes. More recently, the launch of the

WISE (Wide field Infrared Survey Explorer) mission (Wright et al. 2010) has led to the dis-

covery of the coldest brown dwarfs known, which have been assigned the Y spectral type.

The MLTY spectral sequence is subdivided with numbers ranging from 0 � 9, with e.g.

L0 denoting the hottest L dwarfs and L9 the coolest. In this Section, I discuss the spectral

characteristics of this sequence, and show the main observed features from red-optical to

mid-infrared wavelengths in Figures 1.7 through 1.10.

A red-optical spectral classification scheme of L dwarfs was presented by Kirk-

patrick et al. (1999) based on 2MASS discoveries. A red-optical classification scheme for

T dwarfs was similarly presented by Burgasser et al. (2003b). The red-optical spectral se-

quence from early L dwarfs to late T dwarfs is shown in Figure 1.7. These spectra contain

a mixture of atomic and molecular absorption features, including neutral alkali lines (Na

I, K I, Rb I and Cs I), oxide bands (TiO and VO) and hydride bands (MgH, CaH, CaOH,

CrH and FeH). The TiO and VO absorption features can be seen weakening in progres-

sively cooler L dwarfs and have disappeared by the mid L5 spectrum (Martin et al. 1997;

Kirkpatrick et al. 1999), while the neutral alkali lines and hydride bands strengthen. By

late L and early T spectra, the hydride bands begin to weaken and H2O absorption bands

appear in the spectrum while the alkali lines remain strong. H2O becomes a prominent

absorber and the Na I and K I lines continue to strengthen throughout the T type sequence,

becoming so broad they dominate throughout the red-optical.
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Figure 1.7: Red-optical spectral sequence of L and T type brown dwarfs. Neutral alkali lines are indicated by
green annotations, oxides in yellow and hydrides in red. Figure from Kirkpatrick (2005).

The peak of the blackbody spectrum for L and early-mid T dwarfs lies in the near-

infrared (⇠ 1.0 � 2.4 µm), and thus a spectral classification scheme at these wavelengths

would be optimal. Kirkpatrick et al. (2010) and Burgasser et al. (2006) presented unified

near-infrared spectral classification schemes for L and T dwarfs respectively. The near-

infrared MLT spectral sequence is shown in Figure 1.8. The near-infrared spectra of L

dwarfs is qualitatively similar to M dwarfs in that it is shaped by H2O and CO absorption

bands, which increase in strength along the ML sequence. At short wavelengths between

0.95�1.35 µm, there are strong FeH bands along with neutral atomic lines from Na I, K I, Fe

I, Al I and Ca I. These features can be seen in more detail in Figure 4 of Kirkpatrick (2005).

CH4 absorption features appear in the T dwarf spectra, which is the defining characteristic

of this spectral class. The CH4 and H2O bands deepen along the T sequence, shaping the

spectrum into defined flux peaks by the latest T-type. The red wing of the K I resonance

line shapes the short-wavelength side of the 1.05 µm flux peak, and collisionally induced

absorption from H2 flattens the 2.08 µm flux peak in the late T8 spectrum.
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Figure 1.8: Near-infrared spectral sequence of M, L and T type dwarfs. Figure from Kirkpatrick (2005).

At longer wavelengths, L�band (2.9 � 4.1 µm) and M�band (4.5 � 5.0 µm) spectra

of brown dwarfs have been obtained by Cushing et al. (2005); Leggett et al. (2019); Miles

et al. (2020). These spectra have demonstrated the onset of a CH4 absorption feature at

⇠ 3.3 µm in mid-L dwarfs, which strengthens and dominates the 3.1 � 4.0 µm spectral

region in T and Y dwarfs, as seen in Fig. 1.9. Carbon monoxide absorption is also seen

peaking at ⇠ 4.7 µm, and is shown in the T6.5 object in Fig. 1.9.

The Spitzer space telescope has provided 5 � 15 µm spectra of a small sample of

objects (Roellig et al. 2004; Cushing et al. 2006), as shown in Fig. 1.10. M�dwarf 5�15 µm

spectra are relatively featureless with H2O the sole observed absorber in this wavelength

range. The H2O absorption feature strengthens along the L sequence with CH4 absorption

features appearing by mid-L types. These features continue to strengthen in the 5�15 µm

spectra of T dwarfs, with a strong NH3 feature appearing between 10 � 11 µm in late T

dwarf objects.

A comprehensive spectral classification scheme for Y type brown dwarfs similar
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Figure 1.9: L� and M�band spectra of L and T type brown dwarfs from Cushing et al. (2004) and Oppen-
heimer et al. (1998). Figure from Kirkpatrick (2005).

to the L and T dwarfs has yet to be developed. This due to their extremely faint nature

making them challenging to detect and spectrally characterise. Nevertheless, Cushing

et al. (2011) and Kirkpatrick et al. (2012) presented the first Y dwarfs and prototype Y0, Y1

and Y2 spectral standards based on observed ammonia absorption in the near-infrared

(⇠ 1.0 � 2.4 µm), which was a long predicted hallmark of this spectral class (Burrows

et al. 2003). While spectral classification in the near-infrared is useful, mid-infrared wave-

lengths increase in importance for and T and Y dwarf objects as the peak of the blackbody

spectrum moves to ever longer wavelengths with decreasing temperature. Indeed, ob-

jects with Teff < 500 K emit around 50% of their flux through the 3.5 � 5.5 µm opacity

window (Leggett et al. 2017), and thus a spectral sequence at these wavelengths would be

optimal. The next generation of telescopes and instrumentation will be crucial for char-

acterising and developing a comprehensive classification scheme for Y dwarfs. The James

Webb Space Telescope (JWST) will be particularly suited for this, given its large aperture

and increased sensitivity over existing instrumentation, along with its broad wavelength
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Figure 1.10: 5 � 15 µm Spitzer IRS spectra from Roellig et al. (2004) of M, L and T dwarfs. Figure from
Kirkpatrick (2005).

coverage (1 � 26 µm) (Gardner et al. 2006).

1.2.2 The spectral sequence in colour-magnitude diagrams

The brown dwarf spectral sequence can be represented photometrically in colour-magnitude

diagrams (CMDs), which are similar to Hertzprung-Russell diagrams for stars. Figure 1.11

shows two typical CMDs used to illustrate different classes of substellar object. The left

panel shows a near-infrared diagram involving the J-band which ranges from 1.1�1.4 µm,

and the H-band which ranges from 1.5�1.8 µm. The ground based near-infrared photom-

etry of brown dwarfs from Dupuy & Liu (2012) in these bands has been converted to the

Hubble Space Telescope (HST) channels for comparison with data from hot Jupiters (Man-

javacas et al. 2019). The right panel shows a mid-infrared diagram with photometry using

Spitzer/IRAC channels centred around 3.6 and 4.5 µm (Triaud et al. 2014). Also shown

in Fig. 1.11 are young, low-gravity brown dwarfs (Liu et al. 2016) and directly imaged

planets, which are discussed in more detail in Fig. 1.11.
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Figure 1.11: Colour-magnitude diagrams for multiple classes of substellar objects. Brown dwarfs are shown
as grey, orange, blue and purple dots which represent the M, L, T and Y spectral classes respectively, with
data from Dupuy & Liu (2012). Low gravity brown dwarfs from Liu et al. (2016) are shown as red dots. Hot
Jupiters are shown in pink and directly imaged planets in green, with data from sources listed in Zhang (2020)
from which this Figure was obtained.

In the near-infrared diagram, as the J�band magnitude decreases the J�H colour of

the M and L dwarfs gets progressively redder, before a sudden brightening of the J�band

and a shift to bluer colours for early T dwarfs. After the L-T transition, the T dwarfs

become progressively bluer as CH4 absorption increases in the H�band, before eventually

turning back to redder colours for late-T and Y dwarf objects. In the mid-infrared diagram,

the [3.6] � [4.5] colours remain roughly constant for the M and L dwarfs as the [3.6]-
band magnitude decreases. There is then a clear transition to redder colours for T type

objects, as CH4 begins absorbing in the [3.6]-band. As CH4 absorption increases along

the T sequence, the colours become progressively redder as the [3.6]�band magnitude

decreases.

Figure 1.11 also shows photometry of hot Jupiters; close-in exoplanets that orbit
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their host stars on short periods (< 10 days). The atmospheric emission from hot Jupiters

is strongly impacted by the intense stellar irradiation they experience, which leads to a hot

dayside and cooler nightside causing drastically different atmospheric dynamics to brown

dwarfs. These objects cannot therefore be compared directly to brown dwarfs and directly

imaged planets, whose emission is formed solely from their internal energy. Nevertheless,

the dayside near- and mid-infrared emission of hot-Jupiters shows similar colours to M

and mid-L dwarfs, indicating that the same underlying physical processes may be taking

place in their atmospheres. The sample of hot Jupiters shown in Fig. 1.11 display a wider

scatter in near- and mid-infrared colours, a diversity that could be driven by the host-star

irradiation (along with surface gravity, metallicity, internal heat and radius effects).

1.2.3 Low-gravity objects

In addition to effective temperature, surface gravity can also affect the spectral morphol-

ogy of substellar objects. Young brown dwarfs (< 300 Myr; see Fig. 1.6) have low surface

gravities (log(g) < 4.5) as they are still undergoing contraction, and share similar gravities

to self-luminous giant exoplanets. Identifying spectral indicators of low gravity enables

the characterisation of young brown dwarfs, which act as useful proxies for directly im-

aged planets (Faherty et al. 2013, 2016). Brown dwarfs can be identified as young objects

from host star age-indicators if they are found as companions to stars (e.g. Phillips et al.

2020a), or from having proper motions associated with young moving groups (e.g. Best

et al. 2017; Zhang et al. 2018; Lodieu et al. 2018).

Cruz et al. (2009) and Allers & Liu (2013) presented spectral indices and spectral

typing methods for low-gravity M and L dwarfs. Young, low-gravity brown dwarfs ex-

hibit a ‘triangular’ or ‘peaky’ H band (Allers & Liu 2013), which can be used to identify

young substellar objects in star forming regions (Jose et al. 2020). Further spectral features

sensitive to surface gravity include the J-band FeH feature, and the K I, Na I, Rb I and Cs

I lines in the optical and near-infrared which appear weaker and narrower in younger

objects (McGovern et al. 2004).

Low-gravity brown dwarfs are consistently fainter and redder at near-infrared wave-

lengths (Faherty et al. 2016; Liu et al. 2016). This can be seen in Fig. 1.11, in which low-
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gravity brown dwarfs from Liu et al. (2016) form a tight continuous sequence from M to

late-L dwarfs which is systematically redder than the field M to L dwarf sequence. Several

of the directly imaged planets (or planetary mass objects) shown in Fig. 1.11 photometri-

cally resemble L and T dwarfs, further emphasising the synergy between these two classes

of object. These directly imaged planetary mass objects can be seen extending the ‘elbow’

of the L-T transition to fainter J-band magnitudes and redder J�H colours, indicating that

the L-T transition depends on surface gravity. The gravity dependence of the L-T transition

was most recently investigated by Zhang et al. (2020), who found that low-gravity brown

dwarfs pass through the transition at Teff ⇠ 200 � 300 K cooler than older, higher gravity

objects, exhibit larger amplitude J�band brightening and also brighten in the H�band

across the transition.

At present, there is a significantly smaller sample of confirmed young low-gravity

and planetary mass T dwarfs (e.g. Macintosh et al. 2015; Gagné et al. 2015, 2017, 2018)

than L dwarfs. However, the gravity dependence of the spectral morphology appears

to weaken in T type objects, as they have been found to have comparable near-infrared

photometry and are Teff ⇠ 100 K cooler than older, higher gravity T dwarfs (Zhang et al.

2020).

1.2.4 Non-solar metallicity objects

Astronomically, ‘metals’ are considered as any element heavier than helium. The interstel-

lar medium (ISM) is progressively enriched over time with metals from supernovae and

the stellar winds of giant stars. Since brown dwarfs are formed within the ISM, they have

metal contents representative of their formation environments. Metal-poor and metal-

rich brown dwarfs have generally formed earlier and later in galactic history respectively.

Metal-poor brown dwarfs, known as subdwarfs, therefore provide a key insight into the

early history of our galaxy, and the current state of knowledge on these objects is reviewed

in detail in Lodieu (2018).

Subdwarfs can often be identified from their large kinematic velocities which are

caused by energetic dynamical interactions throughout the galaxy, implying older ages

(Burgasser et al. 2003a). They typically have bluer near-infrared colours compared to
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equivalent field brown dwarfs (Mace et al. 2013; Burningham et al. 2014; Lodieu et al.

2017; Gonzales et al. 2018), and are rare compared to solar metallicity objects (Zhang et al.

2017b,a, 2019).

1.2.5 Variability

It has been suggested since the discovery of the first brown dwarfs that meteorological

processes may lead to rotationally induced photometric and spectral variability (Tinney

& Tolley 1999). Such modulations are of great interest as they act as probes into the spatial

variations of large scale surface features on the object. The reliability of observing rota-

tional modulations from the atmospheres of brown dwarfs depends on relatively short

rotation periods. High resolution spectroscopy has provided projected rotational veloci-

ties of brown dwarfs in the range of 10� 60 kms�1, which given the radii of brown dwarfs

(⇠ 1 RJup) gives an upper limit on the rotation period of ⇠ 12.5 hrs (Mohanty & Basri

2003; Zapatero Osorio et al. 2006). These relatively short rotation periods mean multiple

object rotations can be observed during single observing runs, making observing brown

dwarf variability feasible. Brown dwarf variability has become an active research field,

and is reviewed in detail in Biller (2017) and Artigau (2018). Here I briefly summarise key

observational results of brown dwarf variability.

Ground- and space-based photometric surveys have found that variability is com-

mon within field L and T dwarfs. Typically, ground-based surveys have revealed that

> 10% of brown dwarfs have variability > 1% in the J-band (Radigan et al. 2014; Wilson

et al. 2014; Radigan 2014), while the Spitzer space telescope (which is more sensitive to

smaller variability amplitudes) has shown that > 50% of these objects are variable at mid-

infrared wavelengths, with amplitudes in the range 0.2 � 4.6% (Metchev et al. 2015). A

number of early T dwarfs that exhibit variability with high amplitudes and lie within the

L-T transition have been found (Artigau et al. 2009; Radigan et al. 2012; Biller et al. 2013),

with the highest amplitude being 26% in the J-band on a period of 7.7 hrs. The ground-

based near-infrared survey of Radigan et al. (2014) also found increased variability am-

plitudes in objects close to the L-T transition, hinting that the physical process behind the

sharp change in colours from late-L to early-T types may also be driving the observed
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high amplitude variability. In addition to high amplitude variable objects found at the L-

T transition, low-gravity brown dwarfs and planetary mass objects have also been found

to have high variability amplitudes (Biller et al. 2015; Lew et al. 2016; Zhou et al. 2016).

Vos et al. (2019) performed a ground-based survey of L dwarfs, finding that low-gravity

objects have a higher variability occurrence rate than field dwarfs. Despite the faint nature

of Y dwarfs, Spitzer has also found them to be variable in the mid-infrared, with variability

amplitudes of ⇠ 3 � 5% and rotation periods in the range 6 � 8.5 hrs (Cushing et al. 2016;

Leggett et al. 2016; Esplin et al. 2016).

Spectroscopic variability of brown dwarfs has been primarily observed with the

Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope (HST) (Buenzli et al.

2012; Apai et al. 2013). The WFC3 has a wavelength coverage of 1.1 � 1.7 µm, covering

a deep H2O absorption band at 1.45 µm which is inaccessible from the ground due to

telluric absorption. There is evidence that the spectroscopic variability of L and T dwarfs

differ based on the behaviour of this water feature. Yang et al. (2015) demonstrated that

a small sample of L dwarfs show similar variability amplitudes both in and out of the

water feature, whereas T dwarfs show significantly lower variability amplitudes within

the water feature compared to out of it.

Simultaneous HST and Spitzer time-resolved observations have found prominent

phase shifts between lightcurves observed in the near-infrared (HST) and mid-infrared

(Spitzer) (Buenzli et al. 2012; Yang et al. 2016), a feature that has also been found in plane-

tary mass objects (Biller et al. 2018). Since different wavelengths probe different pressure-

levels in the atmosphere (Marley & Robinson 2015), the phase-shifted light curves provide

useful probes of spatial variations in the vertical structure of brown dwarf atmospheres.

Medium resolution spectroscopy (R ⇠ 4000) has been used to study variability at the reso-

lution of the K I spectral lines in the closest known brown dwarf binary to the Sun, Luhman

16AB (Faherty et al. 2014; Kellogg et al. 2017). Finally, high resolution spectroscopy has

enabled Doppler imaging to construct a brightness map of Luhman 16B (Crossfield et al.

2014), showing large scale surface inhomogeneities.
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1.3 The physics driving the cooling sequence

1.3.1 Modelling the cooling sequence

Traditionally, the atmospheres of brown dwarfs and giant planets are modelled with 1D

codes which convert a given internal heat flux from the convective interior to radiation

which departs the top-of-the atmosphere. Energy transport in these atmospheres is domi-

nated by convection at high pressures (treated as an adiabatic process), and radiative trans-

fer at low pressures (accounting for the opacities of abundant atoms and molecules). Such

models aim to solve for the atmospheric temperature structure in radiative-convective

flux balance with a given internal heat flux, while maintaining self-consistency between

the temperature structure, chemical abundance profiles and opacities in the model atmo-

sphere. This type of model is typically referred to as a radiative-convective equilibrium

model, and I refer the reader to Marley & Robinson (2015); Fortney (2018); Zhang (2020)

for detailed reviews of these 1D atmosphere models.

Radiative-convective equilibrium models are used to compute grids of model at-

mospheres spanning effective temperature and surface gravity. These grids contain tem-

perature structures and top of the atmosphere emission spectra, which both have useful

applications. The temperature structures can be coupled as surface boundary conditions

(Chabrier & Baraffe 1997) to interior structure models to compute the cooling and evo-

lution over time. Such evolutionary tracks have already been discussed in Section 1.1.3.

The fundamental properties of brown dwarfs can be then obtained by fitting synthetic

emission spectra from grids of atmosphere models and then inferring the mass and age

of the object using evolutionary calculations (e.g. Saumon et al. 2006; Saumon et al. 2007;

Burningham et al. 2011; Leggett et al. 2019; Zhang et al. 2020).

Some of the earliest model sets that follow this coupled atmosphere and evolu-

tionary model framework and that are widely used in the literature include Burrows

et al. (1997), and the AMES-Dusty and AMES-Cond models of Chabrier et al. (2000b) and

Baraffe et al. (2003) respectively. Saumon & Marley (2008) presented coupled atmosphere

and evolutionary calculations, additionally varying the cloud sedimentation efficiency

(Ackerman & Marley 2001) within their atmospheric outer boundary condition, in order
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to investigate the impact of clouds on brown dwarf evolution (see Section 1.3.3 for more

information on clouds). More recently, Fernandes et al. (2019) used existing atmosphere

models in the literature as surface boundary conditions to a stellar evolution code to in-

vestigate the effects of including additional metals in the interior equation of state on the

substellar boundary.

Beyond these coupled evolutionary models numerous improvements and complex-

ities have been added to radiative-convective equilibrium codes in an attempt to reproduce

and explain various features of the brown dwarf cooling sequence. I now discuss some of

these complexities regarding atmospheric chemistry (Section 1.3.2), clouds (Section 1.3.3)

and thermo-compositional convection (Section 1.3.4), and our current understanding of

the physics driving the brown dwarf cooling sequence.

1.3.2 Atmospheric chemistry

Stars are predominantly composed of hydrogen, with the second most abundant element

being helium. M dwarfs and brown dwarfs are sufficiently cool for hydrogen to be in a

molecular state (H2) (Burrows & Liebert 1993), with some hydrogen being contained in

metal hydrides. The high densities in these cool atmospheres mean that the frequency

of collisions between H2 molecules (and other species) is high enough to produce colli-

sionally induced absorption (CIA) (Linsky 1969), which peaks at ⇠ 2.4 µm (Saumon et al.

2012). The H2 �H2 CIA is stronger in the denser atmospheres of higher gravity brown

dwarfs than lower gravity brown dwarfs, and is partially responsible for producing the

redder J � H and J � K of low-gravity objects seen in Fig. 1.11.

Aside from H2 and He in M dwarf atmospheres, oxygen is primarily found in H2O,

TiO and VO, carbon in CO and nitrogen in N2 (Allard et al. 1997; Burrows & Sharp 1999),

which have prominent features in the M dwarf spectral sequence. The change in spectral

morphology from the M to L class is thought to be the result of the formation of conden-

sates as the pressures and temperatures of these atmospheres become amenable to harbor

liquid and solid phase species. At atmospheric temperatures less than ⇠ 2400 K, conden-

sates form from the refractory elements Ti, V, Ca, Al, Fe, Mg and Si, which gravitationally

settle in the atmosphere to form cloud layers as depicted in Fig. 1.12. The weakening of the
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Figure 1.12: Illustration of the condensate cloud layers and carbon chemistry that drives changes along the
brown dwarf spectral sequence. Figure from (Lodders 2004).

TiO and VO bands in L dwarfs is a result of the condensate perovskite (CaTiO3) and solid

solutions of VO2 and V2O3 forming in the atmosphere (Fegley & Lodders 1996; Jones &

Tsuji 1997). Al also condenses into corundum (Al2O3), and at slightly lower temperatures

(< 1800 K), Mg and Si condense into forsterite (Mg2SiO4) and enstatite (MgSiO3), and Fe

into liquid iron (Fegley & Lodders 1996; Allard et al. 1997; Burrows & Sharp 1999). The

removal of Fe from the gas phase causes the weakening of the FeH spectral signature in

late L dwarf spectral types (Kirkpatrick et al. 1999; Burgasser et al. 2002).

In cooler T type brown dwarfs, the perovskite, corundum, Mg-silicate and liquid

iron clouds sink deeper into the atmosphere, as depicted in Fig. 1.12. As these clouds sink

deeper, the alkali metals Na and K condense into sodium sulfide (Na2S) and potassium

chloride (KCl) for atmospheric temperatures below ⇠ 1000 K and ⇠ 800 K respectively

(Lodders 1999; Morley et al. 2012). This removal of Na and K from the gas phase is the

cause of the disappearance of their strong resonance lines in the red-optical spectra of late

T dwarfs (Burgasser et al. 2003b). Moving to cooler objects still, cloud layers continue to

sink (Fig. 1.12), and H2O and NH3 are predicted to condense in Y dwarf atmospheres with

Teff < 350 K and Teff < 200 K respectively (Morley et al. 2014b).

Alongside condensation, gas phase chemistry also strongly influences the brown

dwarf cooling sequence. The change in spectral morphology from the L to T class is dom-

inated by the appearance of CH4 absorption features, as the dominant form of carbon

transitions from CO at high temperatures to CH4 at lower temperatures. Similarly, the
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transition from the T to Y spectral classes is characterised by the appearance of NH3 ab-

sorption, as the dominant form of nitrogen transitions from N2 at high temperatures to

NH3 at lower temperatures. At the atmospheric pressures relevant in brown dwarf at-

mospheres (0.1 � 10 bar), these transitions occur at ⇠ 1300 ± 200 K and ⇠ 700 ± 200 K

respectively (Fegley & Lodders 1996; Lodders & Fegley 2006). The net chemical reactions

converting CO to CH4 and N2 to NH3 are (Lodders & Fegley 2006)

CO + 3H2  ! CH4 + H2O, (1.1)

N2 + 3H2  ! 2NH3. (1.2)

It is well known from chemical network studies that the rightward chemical reac-

tions of Eq. (1.1) and Eq. (1.2) are typically slow (Moses et al. 2011; Venot et al. 2012). These

species can therefore be driven away from chemical equilibrium by rapid vertical mixing

which may be induced by a number of complex processes common in planetary and stel-

lar atmospheres (e.g. gravity waves, convective overshooting (Freytag et al. 1996; Kupka

et al. 2018)). The abundances of these species is therefore not determined by chemical

equilibrium predictions, but rather the competition between the rate of transport and the

rate of chemical conversion. For example, if CO from the hotter, deeper layers of the at-

mosphere is rapidly vertically mixed into the cooler, upper layers faster than the chemical

conversion to CH4, then CO will remain in the cooler observable part of the atmosphere,

in contrast to chemical equilibrium predictions.

Signatures of non-equilibrium chemistry due to vertical mixing are present in solar

system planet observations, and an observed excess of CO is seen in Jupiter’s upper atmo-

sphere (Bézard et al. 2002). Fegley & Lodders (1996) suggested that non-equilibrium chem-

istry due to vertical mixing could also occur in brown dwarf atmospheres, with excess CO

and depleted CH4 predicted in T-type objects, and excess N2 and depleted NH3 in cooler

late T-Y type objects (Zahnle & Marley 2014). Indeed, observational studies have revealed

vertical mixing is prevalent throughout the brown dwarf cooling sequence, through ob-

servations of excess CO in T dwarfs (Noll et al. 1997; Oppenheimer et al. 1998; Geballe
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et al. 2009; Miles et al. 2020) and depleted NH3 in late T and Y dwarfs (Saumon et al. 2000,

2006; Leggett et al. 2015; Tremblin et al. 2015).

1.3.3 Clouds

The main parameter driving the spectral sequence is the effective temperature, which

steadily decreases throughout the M-L sequence before plateauing at Teff ⇤ 1400 ± 200 K

at the L-T transition, and then continuing to steadily decrease from mid-T types onwards

(Golimowski et al. 2004; Kirkpatrick 2005; Stephens et al. 2009; Marocco et al. 2013; Fil-

ippazzo et al. 2015). The occurence of the L-T transition over a narrow Teff range implies

that another parameter is responsible for the dramatic change in spectral morphology.

The widely accepted process driving the change from red L dwarfs to blue T dwarfs

is the evolution of clouds in brown dwarf atmospheres. As previously discussed in Sec-

tion 1.3.2, perovskite, corundum, Mg-silicates and liquid iron condense in L dwarf at-

mospheres to form cloud layers. These clouds have an intrinsic opacity, and block flux

emerging from the hot, deep layers of the atmosphere. This suppresses the flux at near-

infrared wavelengths (in particular in the J- and H-bands), causing the colours of L dwarfs

to become progressively redder with decreasing Teff (Chabrier et al. 2000b; Cushing et al.

2008; Stephens et al. 2009; Witte et al. 2011). The sharp change to bluer colours at the L-T

transition is thought to be due to a sudden reduction in the cloud opacity (Allard et al.

2001; Ackerman & Marley 2001). The extremely red colours of low-gravity objects and

directly imaged planets are also generally considered to be the result of thick cloud decks,

which persist to lower effective temperatures than in typical, higher gravity brown dwarfs

(Barman et al. 2011; Marley et al. 2012).

There are two main proposed causes for this sudden drop in cloud opacity at the

L-T transition. The first proposal suggests that there is a break up in the cloud cover, al-

lowing flux from the hot, deep layers of the atmosphere to emerge through holes in the

clouds, brightening the J-band at the L-T transition and producing bluer near-infrared

colours (Ackerman & Marley 2001; Burgasser et al. 2002; Marley et al. 2010). This sce-

nario is demonstrated in Fig. 1.13, which shows synthetic photometry from clear, cloudy,

and patchy model atmospheres. The red near-infrared colours of L dwarfs can only be
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Figure 1.13: Near-infrared CMD from Marley et al. (2010). M, L and T dwarfs are shown as black, red and
blue data points respectively. The red line is a completely cloudy model, the blue line is a completely clear
model, and the green lines are patchy cloud models with different values of cloud sedimentation efficiency
(Ackerman & Marley 2001).

reproduced by cloudy model atmospheres, whereas the bluer colours of T dwarfs are re-

produced by clear model atmospheres, with the transition between the two captured by

model sequences with varying cloud patchiness (Marley et al. 2010).

Another key spectroscopic feature of the L-T transition indicative of patchy clouds

is the behaviour of the 0.99 µm FeH spectral feature. FeH absorption weakens and disap-

pears in mid to late L dwarfs, before re-emerging in early to mid T dwarfs (Burgasser et al.

2002; Burrows et al. 2003). The weakening of this feature along the L sequence is inter-

preted as evidence of Fe being sequestered in condensates which gradually sink below the

photosphere. The re-emergence of FeH absorption in T dwarfs can be interpreted as holes

in the cloud cover allowing deeper regions of the atmosphere, where Fe is not sequestered

in condensates and still present in gas phase species such as FeH, to be probed (Burgasser

et al. 2002).

The second suggested explanation for the apparent drop in cloud opacity at the

L-T transition, is a sudden downpour (or rainout) of condensates due to a change in the

dynamical state of the atmosphere, increasing the cloud particle sizes and leading to a

clearing of the cloud layers (Tsuji & Nakajima 2003; Tsuji et al. 2004; Knapp et al. 2004;
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Burrows et al. 2006; Saumon & Marley 2008; Charnay et al. 2018). Similarly to the cloud

break-up scenario, changes in the cloud sedimentation efficiency parameter fsed (Acker-

man & Marley 2001), can reproduce the sharp change in near-infrared colours at the L-T

transition in CMDs (e.g. Saumon & Marley 2008; Charnay et al. 2018), and can also lead to

an increase in the strength of the FeH absorption feature in early T dwarfs. This is due to

the opacity of the atmosphere decreasing as the cloud sedimentation efficiency increases

across the L-T transition, allowing a larger column density of FeH to be observed (Cushing

et al. 2008).

Since L-T transition objects exhibit increased variability, it is natural to suggest that

the physical process driving the sharp change in colours is also behind the observed vari-

ability. Indeed, it has been shown that the high amplitude variability of L-T transition

objects can be best fit by 1D model combinations of thin and thick cloud decks, rather

than combinations of clear and cloudy models (Radigan et al. 2012; Apai et al. 2013; Buen-

zli et al. 2015). However, while the FeH spectral feature might be expected to be variable

given this cloudy explanation of the L-T transition, Buenzli et al. (2015) observed a lack of

variability within this spectral feature.

Clouds have also been invoked to explain the red near-infrared colours of late-T and

Y dwarfs. Na2S and H2O clouds are expected to form in these atmospheres, and includ-

ing opacity from these condensates in 1D radiative-convective models has been shown to

improve comparisons to observations (Morley et al. 2012, 2014b). The variability seen in

Y dwarfs is also attributed to patchy water clouds (Morley et al. 2014a).

Given the importance of clouds in shaping the observed cooling sequence, numer-

ous cloud models have been developed for use in 1D radiative-convective models, which

determine the cloud particle size and distribution in the atmosphere. These models can

be divided into two classes. The first class is perhaps the most sophisticated, and corre-

sponds to models which self-consistently compute cloud particle sizes and vertical distri-

butions from microphysics (e.g. Helling et al. 2008; Allard et al. 2012). The second class,

while not as sophisticated, is perhaps more versatile and suited for use in large grids of

atmosphere models. It represents models in which the cloud particle sizes and vertical

distributions are defined by free parameters (e.g. Ackerman & Marley 2001; Tsuji 2002;
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Burrows et al. 2006; Madhusudhan et al. 2011), and it is these parameterised models that

have predominantly been used to study the role of clouds throughout the brown dwarf

cooling sequence.

1.3.4 Thermo-compositional convection

The cloudy picture of the brown dwarf cooling sequence discussed in Section 1.3.3 has

advanced the understanding of the role of clouds in brown dwarf and exoplanet atmo-

spheres. However, cloudy models can only reproduce the spectral evolution of brown

dwarfs by manually adjusting the cloud parameters, such as the cloud patchiness (Mar-

ley et al. 2010) or cloud sedimentation efficiency (Saumon & Marley 2008). In particular,

the physical mechanism causing the sudden drop in cloud opacity at the L-T transition

remains unclear.

Over the past half decade, a new theory has been developed suggesting that chem-

ical transitions such as CO ! CH4 and N2 ! NH3 in brown dwarf atmospheres can be

responsible for triggering convective instabilities. This can reduce the temperature gradi-

ent in the atmosphere and reproduce several observed features of brown dwarfs, including

the L-T transition (Tremblin et al. 2016), extremely red young low-gravity objects (Trem-

blin et al. 2017b), and the red colours of cool late T dwarf objects (Tremblin et al. 2015). To

date the reduction in the temperature gradient has been modelled in radiative-convective

equilibrium models by adjusting the adiabatic index �, which sets the pressure P and tem-

perature T in the convective regions of the atmosphere through P
1��

T
� ⇤ constant (this is

discussed in more detail in Chapter 2). For an ideal gas, � is the ratio of the specific heats

at constant pressure and volume and for a diatomic gas such as a H2 dominated brown

dwarf atmosphere, � ⇤ 1.4. Reducing the value of � in the model atmosphere reduces the

temperature gradient, leading to cooler temperatures in the deep atmosphere.

The proposed explanation of brown dwarf spectral evolution according to reduc-

tions in the temperature gradient can be seen in Fig. 1.14, which shows a near-infrared

CMD comparison between observed field brown dwarfs and the model atmospheres of

Tremblin et al. (2016). L dwarf atmospheres are expected to be unstable to convective insta-

bilities driven by the CO! CH4 chemical conversion. The reddening L dwarf sequence
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Figure 1.14: Near-infrared CMD from Tremblin et al. (2016). Unmodified atmosphere models are shown as
blue and cyan solid lines, and models with modified adiabatic indexes are shown as red, orange and magenta
solid lines. M, L, T and Y dwarf photometry from Dupuy & Liu (2012); Faherty et al. (2012); Dupuy & Kraus
(2013); Beichman et al. (2014) are shown as blue, light green, orange and red data points respectively.

is reproduced with model atmospheres with � ⇤ 1.05, which reduces the temperature

gradient, lowering the flux emitted through the J-band and reddening the emission spec-

trum. Brown dwarf atmospheres become stable to CO ! CH4 convective instabilities

across the L-T transition as the atmosphere becomes CH4 dominated. This increases the

temperature gradient of the atmosphere, causing a re-emergence of the FeH spectral fea-

ture and a brightening of the J-band that reproduces the sharp change in colours from

late-L to early T-type objects. Cooler objects become unstable to convective instabilities

induced by the N2 ! NH3 chemical conversion, and the colours of late-T dwarfs are best

reproduced by model atmospheres with � ⇤ 1.25.

To investigate the potential mechanism at play reducing the temperature gradient,

Tremblin et al. (2019) generalised the theory of convection to include diabatic processes

through thermal and compositional source terms, demonstrating that a number of con-

vective systems in the Earth’s atmosphere and oceans derive from the same instability

criterion. In brown dwarf atmospheres, the thermal and compositional source terms are

represented by radiative transfer and CO ! CH4 or N2 ! NH3 chemistry, respectively,

with the convective instability driven by opacity and/or mean molecular weight differ-
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ences in the different chemical states. The idealised 2D hydrodynamics simulations of

Tremblin et al. (2019) reveal that by including such source terms the temperature gradient

can indeed be reduced to that required to qualitatively reproduce brown dwarf observa-

tions.

Thermo-compositional convection provides a promising mechanism by which to

explain observational features of the brown dwarf cooling sequence. However, the study

of such convection in brown dwarf atmospheres is in its infancy compared to the mod-

elling of clouds, and shares the same drawback in that currently it uses a free parameter (�)

to reproduce the L-T transition. More detailed, larger simulations, beyond the idealised

small-scale simulations shown in Tremblin et al. (2019), are required to establish whether

the spatial scales associated with the thermo-chemical instability are large enough to in-

fluence brown dwarf atmospheres. Further work is currently being undertaken to assess

whether temperature fluctuations naturally arising from thermo-compositional convec-

tion could also provide an explanation for observed brown dwarf variability.

1.4 Aims of this thesis

As discussed in Section 1.3, there have been numerous complexities concerning clouds

and convection used in 1D radiative-convective models in an attempt to reproduce various

features of the observed brown dwarf cooling sequence. Along with these additional com-

plexities, there has also been significant improvement in the fundamental input physics

to 1D atmosphere models. The opacity for important molecular absorbers has improved

through more complete high-temperature line lists (Tennyson & Yurchenko 2018), which

has altered the temperature structures and synthetic emission spectra in 1D model grids

(Saumon et al. 2012; Malik et al. 2019). There has been significant theoretical improvement

in the pressure-broadened line shapes of the alkali metals Na and K (Allard et al. 2016,

2019), which shape the red-optical and near-infrared spectra. To further aid in the study of

non-equilibrium processes, complex chemical kinetics networks containing thousands of

reactions between important molecules in exoplanet and brown dwarf atmospheres have

been developed and refined (Moses et al. 2011; Venot et al. 2012, 2019; Tsai et al. 2017,

2018).
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Motivated by these theoretical improvements, and driven by ever-improving instru-

mentation becoming sensitive to cooler objects, I have developed a state-of-the-art grid

of coupled atmosphere and evolution models for cool T/Y type brown dwarfs and self-

luminous giant exoplanets. This grid, which is named ATMO 2020, includes numerous key

improvements to the input physics for modelling substellar objects used in previous mod-

els available in the literature. The aims of these new models, and this thesis as a whole,

are to:

• Determine the pressure-temperature structure, abundance profiles and key pro-

cesses impacting the observable emission from brown dwarf and giant exoplanet

atmospheres

• Identify observable atomic and molecular spectral features of brown dwarf and giant

exoplanet atmospheres

• Determine the impact of modelling improvements on the atmospheric temperature

structures, emission spectra and cooling tracks of brown dwarfs and giant exoplan-

ets

• Provide a publically available set of atmosphere and evolutionary models for the

community to use in interpretation of existing and future observations of brown

dwarfs and giant exoplanets.

1.5 Chapter overview

The Chapters in this thesis are structured as follows. In Chapter 2 I introduce the funda-

mentals of one-dimensional forward modelling of substellar atmospheres, such as radia-

tive transfer and convection. I focus on how these processes are modelled in the ATMO code,

which is used throughout this work. In Chapter 3 I describe the chemistry schemes and

opacities used by ATMO. I present improvements regarding the equation of state, discuss

the self-consistent coupling of a chemical relaxation scheme to model non-equilibrium

chemistry, and detail the calculation of gaseous Fe opacity. Chapter 4 focuses on the im-

plementation of new potassium resonance line shapes in opacity tables used by ATMO. I
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compare these line shapes to those previously used, and demonstrate the impact on atmo-

sphere models. I present the ATMO 2020 model grid in Chapter 5, and highlight numerous

theoretical modelling improvements by comparing to other model sets in the literature.

These improvements are further highlighted and validated through comparisons to obser-

vational datasets in Chapter 6. These comparisons also serve to highlight current short-

comings in the modelling of cool brown dwarfs in reproducing the cooling sequence, thus

motivating future work in these areas. Finally, in Chapter 7, I summarise and conclude

the results, and provide future prospects for this work.

1.6 Statement of contribution to publications

Many of the results from Chapters 4, 5 and 6 have been published in Phillips et al. (2020b).

The results were obtained and analysed by myself, with contributions and input from

Pascal Tremblin, Isabelle Baraffe, Gilles Chabrier, Nicole Allard, Ben Drummond, Jayesh

Goyal and Eric Hébrard. The writing of the manuscript was led by myself.

I am a co-author on the paper Tremblin et al. (2019), where I provided model fits

to observational data and was involved in the discussion of the manuscript. Results from

this paper are not presented in this thesis, however its implications are discussed.

I am a co-author on the paper Goyal et al. (2020), which has recently been accepted

for publication in the Monthly Notices of the Royal Astronomical Society. I provided the

Fe opacity used in the atmosphere models in this work, and discussed its role in forming

temperature inversions in hot Jupiter exoplanets. I present the Fe opacity used in this

work in Chapter 3.

Some of the results in Chapter 6 regarding comparisons of the ATMO 2020 and Sonora

models in CMDs, and modelling the late-T dwarf UGPS 0722 with a reduced temperature

gradient, are yet to be published. However these results will likely appear in work led by

Sandy Leggett, in collaboration with Pascal Tremblin, in the near-future.
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Chapter 2

One-dimensional forward modelling

of substellar atmospheres

This Chapter outlines the physics and techniques commonly used in brown dwarf and

planetary atmosphere models, with a particular focus on the atmosphere code ATMO. ATMO

is a 1D/2D atmosphere model developed to study hot Jupiters (Amundsen et al. 2014;

Drummond et al. 2016; Tremblin et al. 2017b; Goyal et al. 2018; Goyal et al. 2019; Drum-

mond et al. 2019) and brown dwarfs (Tremblin et al. 2015; Tremblin et al. 2016; Tremblin

et al. 2017a). The model (in 1D) solves for the pressure-temperature structure of an at-

mosphere that is self-consistent with radiative-convective flux balance for a given internal

heat flux, and hydrostatic equilibrium for a given surface gravity. This type of model,

often termed a radiative-convective equilibrium model, has a long history of being used

to study brown dwarf and giant planet atmospheres, and the reader is referred to Marley

& Robinson (2015); Hubeny (2017); Fortney (2018) for further reviews of these models in

this context.

I begin by reviewing the fundamental atmospheric physics used in one-dimensional

forward models of substellar atmospheres in Section 2.1. I discuss and demonstrate how

radiative transfer and convection shape the temperature structure of a model atmosphere,

and lead to observable emission from the top of the atmosphere. I provide more detail

on the radiative transfer scheme used in ATMO in Section 2.2, and mixing length theory
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used to model convection in Section 2.3. Finally, I discuss how the model iterates towards

a final pressure-temperature profile in Section 2.4. The chemistry schemes and opacities

used by ATMO are discussed in Chapter 3.

2.1 One-dimensional atmospheric physics

2.1.1 Discretisation and optical depth

One-dimensional forward models assume a vertical atmospheric column of gas which is

split into a grid of model levels defined in either pressure (P), altitude (z), or in the case of

ATMO optical depth (⌧). Optical depth is an appropriate vertical coordinate for a 1D atmo-

sphere model over, for instance, altitude, since it indicates the transparency/absorbency

of the material, encompassing information regarding the density and opacity of abundant

atoms, molecules and condensates. The optical depth ⌧ at a given wavenumber ⌫̃ (inverse

of the wavelength �), is defined as

d⌧ ⇤ (⌫̃)dz , (2.1)

where (⌫̃) is the extinction coefficient, which is the change in intensity of light due to

absorption or scattering over a given path length dz. The extinction coefficient is typically

defined as per unit number density or per unit mass density.

2.1.2 Hydrostatic Equilibrium

It is assumed each model level obeys hydrostatic equilibrium, whereby the pressure in

each model level must support the weight of the atmosphere above it. Balancing the grav-

itational force acting on a parcel of gas with the pressure-gradient force, the condition for

hydrostatic equilibrium can be simply derived as

dP

dz
⇤ �⇢g , (2.2)

where ⇢ is density, and g is acceleration due to gravity. Replacing the gradient d/dz with
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the derivative with respect to optical depth in Eq. (2.1) gives the hydrostatic equilibrium

condition as

dP

d⌧
⇤ � ⇢g

(⌫̃) . (2.3)

A 1D model atmosphere must satisfy this equation in each model level, for a given sur-

face gravity. The radial extension of the atmosphere should be negligible compared to the

total radius of the object, and thus the gravity can assumed to be constant throughout the

atmosphere. While the hydrostatic equilibrium equation does depend weakly on temper-

ature through the extinction coefficient, it is this equation that predominantly defines the

pressure levels in an ATMOmodel atmosphere.

2.1.3 Pressure scale height

A useful quantity for describing atmospheres is the pressure scale height HP . This repre-

sents the vertical distance over which the pressure in an isothermal atmosphere drops by

a factor of 1/e. The value of HP can be easily derived by inserting the ideal gas law into the

equation for hydrostatic equilibrium (Eq. (2.2)) to eliminate the density ⇢, and integrating

from a reference pressure P0 (defined at z ⇤ 0) to a given pressure and altitude to obtain

P ⇤ P0e
� µmu g

kT
z . (2.4)

Here µ is the mean molecular weight, mu is the atomic mass constant, k is Boltzmann’s

constant, and T is temperature. The pressure scale height of the atmosphere can then be

seen to be

HP ⇤
kT

µmu g
. (2.5)

The pressure scale height gives useful insight into the effect of gravity on an atmosphere.

Lower gravity atmospheres will have a larger pressure scale height, meaning the vertical

extent of a low gravity atmosphere will be larger than a higher gravity atmosphere.
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2.1.4 Internal heat flux and radiative-convective equilibrium

Alongside the surface gravity, another key model input parameter is the internal heat flux

(Fi), which (for a non-irradiated object) is set by the effective temperature (Teff) through

the Stefan-Boltzmann law

Fi ⇤ �T
4
eff , (2.6)

where � is the Stefan-Boltzmann constant. This heat flux is assumed to be constant through-

out the atmosphere, and is carried by two energy transport mechanisms: radiation and

convection. The internal heat flux is conserved by the radiative (Frad) and convective (Fconv)

fluxes throughout the atmosphere such that

Fi ⇤ Frad + Fconv , (2.7)

is satisfied in each model level. This is shown in Fig. 2.1, which shows an example pressure-

temperature profile from the 1D atmosphere model ATMO. The right panel of this Figure

illustrates how the radiative and convective fluxes satisfy the internal heat flux throughout

the atmosphere. This conservation of energy flux leads to 1D atmosphere models such as

ATMO being commonly referred to as radiative-convective equilibrium models.

2.1.5 Convection

The internal heat flux in brown dwarfs is large (Teff ⇤ 200� 2400 K), and leads to thermal

structures unstable to vertical convection. If a parcel of gas is displaced upwards and finds

itself in an environment with a density greater than the parcel’s own internal density,

then it will continue to rise, and vice versa for a parcel displaced downwards. This leads

to a density gradient for which convection occurs when the gradient is too steep. This

density gradient can be related to a temperature gradient in the atmosphere, known as the

lapse rate, which can be used to define the limit between convectively stable and unstable

thermal structures.
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Figure 2.1: An example pressure-temperature profile along with processes influencing its structure from the
1D radiative-convective equilibrium model ATMO. This model has Teff ⇤ 800 K and log(g) ⇤ 3.5. The left panel
shows the temperature structure (green line) as a function of pressure, the atmospheric temperature gradient
r (solid orange line) and the local adiabatic gradient rad (dashed orange line). The model has two convectively
unstable regions (thickened green line) within which r ⇤ rad. The right panel shows the internal heat flux
Fi ⇤ �T

4
eff (solid grey line) which is carried by the convective flux (dot-dashed purple line) and the radiative flux

(dashed pink line).

Convection in brown dwarfs has been shown to be adiabatic (Baraffe et al. 2002).

Applying the ideal gas law and approximating the convection as adiabatic gives the con-

dition for an unstable lapse rate, known in Astrophysics as the Schwarzchild criterion,

as

� dT

dz
>

g

cP

. (2.8)

Including the equation of hydrostatic equilibrium (Eq. (2.2)) this becomes

rT ⇤
d log T

d log P
>

Rs

cP

⇤ rad , (2.9)

where Rs is the specific gas constant and cP is the local atmospheric heat capacity. There-
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fore for lapse rates larger than the adiabatic lapse rate rad , convection will ensue, which

will redistribute heat in the convectively unstable region of the atmosphere. Note that this

is the dry adiabatic lapse rate, i.e. assuming no water vapour is present in the atmosphere.

The specific gas constant Rs is equal to cP � cv , and the ratio of the specific heats

at constant pressure and constant volume, called the adiabatic index, is � ⇤ cp/cv . Using

these definitions, the adiabatic lapse rate can alternatively be written as

rad ⇤
� � 1
�
. (2.10)

At high pressures and densities in brown dwarf atmospheres the optical depth is

large and the dominant energy transport mechanism is convection. Thermal photons are

efficiently absorbed and/or scattered and cannot transport the internal heat flux. Convec-

tion therefore drives the deep atmosphere temperature profile, rT , to closely follow the

convective adiabat, rad. This is shown in Fig. 2.1 where rT ⇤ rad in convective regions of

the atmosphere (left panel, thickened green line and orange lines, note that rT is denoted

as r in this Figure).

2.1.6 Radiation

At lower pressures and densities in the atmosphere, the optical depth decreases, thermal

photons are not absorbed or scattered as frequently, and the dominant energy transport

mechanism becomes radiation. The internal heat is radiated away through opacity win-

dows meaning the temperature gradient begins to decrease with decreasing pressure, and

the atmosphere becomes stable to convection, i.e. rT < rad. The location of the transition

between convective and radiative atmospheric layers is known as the radiative-convective

boundary, and the pressure level at which this occurs, PRC, is illustrated in Fig. 2.1.

To illustrate the physics taking place, Fig. 2.2 shows radiative properties local to a

selection of radiative and convective model levels. The pressure levels indicated in Fig. 2.2

correspond to the model presented in Fig. 2.1, and thus these figures are best considered

concurrently. First, we introduce the concept that each model level with temperature T

acts as a blackbody in thermal equilibrium, meaning the emitted spectral energy density
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Figure 2.2: Spectra of the normalised local Planck function (green) and column absorptivity (orange) (i.e.
1 � e

�⌧) with each subplot indicating the pressure level of the model atmosphere. The ⌧ ⇤ 1 level is shown
by the horizontal dashed grey line.

of radiation follows Planck’s law,

B� ⇤
2hc

2

�5
1

exp
⇣

hc

�kBT

⌘
� 1
, (2.11)

where h is Planck’s constant, c is the speed of light and kB is Boltzmann’s constant. The

spectral energy density B� has units of W/sr/m�3, and is normalised and plotted as the

green line in Fig. 2.2. The peak in emission can be seen shifting to longer wavelengths for

model levels with lower pressures, due to the temperature dependence in Eq. (2.11).

Second we introduce the absorptivity (A�) of the column of gas above an atmo-

spheric layer,

A� ⇤ 1 � exp (�⌧) . (2.12)
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Here ⌧ is the optical depth at a given wavelength integrated from the top of the atmosphere

down to the pressure level indicated in each subplot of Fig. 2.2. Plotted as the grey dashed

line in Fig. 2.2 is the ⌧ ⇤ 1 absorptivity level, above which the medium is considered

optically thick and below which it is considered optically thin.

At the highest pressure model level shown in Fig. 2.2, the absorptivity of the atmo-

sphere is high across the wavelength range encompassing the Planck function. Emitted

thermal radiation is efficiently absorbed or scattered, and thus the model level is convec-

tive as shown in Fig. 2.1. Moving to a lower pressure of 2.3 bar, opacity windows appear

in the near-infrared between 1� 2 µm lowering the absorptivity of the atmosphere in this

wavelength range. This overlaps with the local Planck function, meaning thermal photons

are radiated away through these opacity windows and the internal heat is carried by the

radiative flux (see Fig. 2.1). At 0.3 bar the absorptivity continues to decrease across many

wavelengths due to wavelength dependent molecular opacity (discussed in more detail in

Chapter 3, and the peak of the Planck function shifts to longer wavelengths, aligning itself

with a strong CH4 absorption band at ⇠ 3 µm. Despite the internal heat flux being pre-

dominantly carried by the radiative flux through wavelength regions of low absorptivity,

the strong absorption at the peak of the Planck function heats the atmosphere, increasing

the atmospheric temperature gradient rT such that the atmospheric layer becomes con-

vectively unstable. This forms a “detached” convective zone (shown in Fig. 2.1) within

which rT ⇤ rad and the convective flux is non-zero. It is common that multiple such

zones can form in a model atmosphere as the local Planck function aligns with different

wavelength regions of strong molecular opacities. Finally at 0.1 bar, the column absorp-

tivity continues to decrease across many wavelengths, and the peak of the Planck function

moves into a region of low absorptivity. The model level is therefore stable to convection

and the internal heat is once again carried solely by the radiative flux. The atmosphere

remains radiative to the top of the atmosphere as the optical depth continues to decrease.

2.1.7 Observable emission

As seen in Fig. 2.2, thermal photons travel through opacity windows of low absorptivity

in radiative atmospheric layers, and are emitted from the top of the atmosphere. Through
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this emission brown dwarfs radiate away their internal heat and cool over time. The top

panel of Fig. 2.3 shows the emission spectrum from the top of the model atmosphere.

The wavelength dependent opacity in brown dwarf atmospheres leads to the emitted flux

being strongly wavelength dependent, and composed of emission from many different

layers of the atmosphere.

To quantify the contribution of different model levels to the emission from the top

of the atmosphere, we introduce the contribution function CF (Drummond et al. 2018),

defined as

CF ⇤ B�
d[exp (�⌧)]
d[log(P)] . (2.13)

Note that CF has units of Wm�2ster�1, however it is common to present the normalised

Figure 2.3: Top: Emission spectrum from the top of an ATMO model atmosphere. Bottom: Contour plot of
the normalised contribution function, illustrating the pressure levels of the model atmosphere contributing
to the emission from the top of the atmosphere at a given wavelength.
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contribution function CF , such that the atmospheric layer that contributes the most to the

top of atmosphere emission has CF ⇤ 1. It is the normalised contribution function CF

that is presented in the bottom panel of Fig. 2.3. Examining Eq. (2.13), the peak in CF at

a given wavelength will occur when ⌧ ⇤ 1 since this will give the maximum gradient in

d[exp(�⌧)]/d[log(P)], and thus represents the location of the photosphere. It can be seen

in Fig. 2.3 that wavelength regions of high emitted flux are formed at high pressures as

the ⌧ ⇤ 1 level lies deep in the atmosphere due to low opacity. Conversely, wavelength

regions of low emitted flux are formed at lower pressures as the ⌧ ⇤ 1 level lies higher in

the atmosphere due to strong opacity.

It is the top of atmosphere emission from 1D models that can be compared to obser-

vations. The flux, F�, can be scaled to that of an observed object by multiplying by R
2/D

2,

where R is the radius and D is the distance to the object.

2.2 Radiative transfer

Here I discuss the fundamentals of radiative transfer in stellar and planetary atmospheres.

These details are readily available in the literature, and are presented in more depth in e.g.

Rybicki & Lightman (1986); Thomas & Stamnes (2002). Radiative transfer in ATMO is also

discussed in Amundsen (2015); Goyal (2019).

Specific intensity

The fundamental quantity of radiative transfer considered here is the specific intensity (or

spectral radiance) I, which is defined as the energy (E) transported by a beam of radiation

at position x per unit area (A), time (t), frequency (⌫) and solid angle (⌦). A beam of

radiation travelling in direction k̂ has intensity

I(x , k̂ , ⌫, t) ⇤ dE

dAcos⇥d⌦dtd⌫
, (2.14)

where ⇥ is the angle between the direction of propagation and the unit normal of the

area dA. An important property of the specific intensity is its implicit invariance with
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distance i.e. the specific intensity remains constant along a beam of radiation provided

there is no absorption, scattering or emission between the source and receiver. This is due

to the solid angle dependence of I which implicitly accounts for the inverse square law of

radiative propagation. We now drop the position and time notation in the quantity I and

its subsequently derived moments for clarity.

Plane parallel geometry

One-dimensional models generally employ plane parallel geometry when treating radia-

tive transfer in the atmosphere. In the plane parallel approximation, the atmosphere is

divided into multiple plane parallel layers as illustrated in Fig. 2.4, each with a local tem-

perature, pressure and density (T, P and ⇢ respectively). The plane parallel approximation

is valid when the radial extension of the modelled atmosphere is negligible compared to

the bulk radius of the object. Horizontal variations in the radiative properties are ne-

glected by assuming azimuthal symmetry.

Formulating the radiative transfer equation

We now formulate a basic form of the radiative transfer equation in plane parallel geome-

try, which considers the change in specific intensity dI of a beam of radiation over a path

length dS, travelling at an angle ✓ to the normal of the plane parallel model level, given

as

µ
dI(⌫, µ)

dS
⇤ �↵(⌫)I(⌫, µ) � �(⌫)I(⌫, µ) + ↵(⌫)B(⌫, T) + �(⌫)J(⌫). (2.15)

Here µ is the cosine of the angle ✓. The formulation of the radiative transfer equation is

illustrated in Fig. 2.4. The coefficients ↵(⌫) and �(⌫), describe the loss of intensity per unit

length due to absorption or scattering from the beam of radiation respectively, meaning

the first two terms in Eq. (2.15) represent decreases in the specific intensity, and are hence

negative. The third term in Eq. (2.15) represents the gain (addition) in intensity of the beam

of radiation due to thermal emission. Assuming local thermodynamic equilibrium, the

emission is given by Kirchoff’s law of thermal radiation as the product of the absorption
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Figure 2.4: Illustration of plane parallel radiative transfer in a 1D model atmosphere. Plane parallel model
levels are shown as horizontal black lines with a given optical depth ⌧ and a local temperature, pressure and
density (T, P and ⇢ respectively). A beam of radiation with specific intensity I(⌫, µ) incident at an angle ✓
to the ⌧i model level is shown as the black arrow. Green quantities represent gains in intensity to the beam
of radiation due to isotropic scattering from other beam directions J(⌫) and Planck emission B(⌫, T). Darker
green arrows represent gains in the same direction µ as the incident beam of radiation. Orange quantities
represent decreases in intensity of the beam of radiation due to absorption (↵(⌫)) and scattering (�(⌫)).

coefficient ↵(⌫) and the Planck function B(⌫, T) which is inherently isotropic.

The final term of Eq. (2.15) represents the gain (addition) in specific intensity due

to the scattering of radiation from other directions into the beam direction. In this term,

J(⌫) is the intensity averaged over solid angle, i.e.

J(⌫) ⇤ 1
4⇡

æ
⌦

I(⌫, µ)d⌦ (2.16)

which in plane parallel geometry assuming azimuthal symmetry becomes

J(⌫) ⇤ 1
4⇡

æ 2⇡

0

æ 1

�1
I(⌫, µ)dµd�

⇤
1
2

æ 1

�1
I(⌫, µ)dµ,

(2.17)

where � is the azimuthal angle. The mean intensity J(⌫) is known as the zeroth moment

of the specific intensity I. The gain in intensity due to scattering is given by
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Escatt(⌫, µ) ⇤
1

4⇡

æ 2⇡

0

æ 1

�1
I(⌫, µ)p(µ, �, µ0, �0)dµ0d�0

⇤
1
2

æ 1

�1
I(⌫, µ)p(µ, µ0)dµ0

(2.18)

where p is the scattering phase function representing the contribution of scattered radi-

ation from direction (µ0, �0) into the direction (µ, �). Assuming isotropic scattering and

azimuthal symmetry, the phase function is normalised to unity, meaning that the gain in

intensity due to scattering is equivalent to taking the mean intensity of all solid angles,

i.e. Escatt(⌫, µ) ⇤ J(⌫).

Replacing the gradient d/dS with the derivative with respect to optical depth in

Eq. (2.1) and recognising that the extinction coefficient k(⌫) ⇤ ↵(⌫) + �(⌫), the radiative

transfer equation can be simplfied to

µ
dI(⌫, µ)

d⌧
⇤ �I(⌫, µ) + S(⌫, µ) (2.19)

where S is the source function defined as

S(⌫, µ) ⇤ ↵(⌫)B(⌫, T) + �(⌫)J(⌫)
↵(⌫) + �(⌫)

⇤ ✏B(⌫, T) + (1 � ✏)J(⌫).
(2.20)

Here ✏ is the photon destruction probability defined as ✏ ⇤ ↵(⌫)
↵(⌫)+�(⌫) .

Solving the radiative transfer equation

The radiative transfer equation (RTE hereafter, Eq. (2.19)) is generally difficult to solve

since the source function contains an integral involving the quantity I we are solving for

through the mean intensity J (Eq. (2.17)). This complexity is due to scattering, since to

know how much radiation a layer of the atmosphere scatters into a component of the
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local radiation field, requires knowledge of the local radiation field at all angles, which in

turn requires knowledge of the amount of radiation other atmospheric layers have already

scattered. Given this complexity, many numerical techniques have been developed to

solve the radiative transfer problem in planetary and substellar atmospheres (Thomas &

Stamnes 2002).

Radiative transfer is solved by ATMO using the discrete ordinate method, which sam-

ples a given number of ray directions (µ) using Gauss-Legendre quadrature. Solving the

RTE is split into an upwelling stream of radiation I
+ towards lower pressures, i.e. for

ray directions µ ⇤ 0 ! 1, and a downwelling stream I
� towards higher pressures, i.e.

µ ⇤ �1 ! 0. A pair of boundary conditions are required to specify the downwelling

radiation from the top of the atmosphere, and the upwelling radiation from the bottom of

the atmosphere. At the top of the atmosphere, the downwelling intensity is assumed to

be zero. The upwelling intensity from the bottom of the atmosphere is assumed to have

some contribution from deeper layers, and is given by

I(⌫, µ) ⇤ B(⌫, T) + µ dB(⌫, T)
d⌧

, (2.21)

following Mihalas (1970). Here the gradient terms allows for a contribution to the thermal

radiation from deeper atmospheric layers, and the factor of µ ensures that vertical streams

of radiation have a higher contribution from the deep atmosphere.

The RTE itself is solved by ATMO in each model level in its integral form, given as

I(⌧, ⌫, µ) ⇤ �I0(⌫, µ) exp
✓
�

����⌧ � ⌧0
µ

����
◆
+

æ ⌧/µ

⌧0/µ

1
µ

S(⌧, ⌫, µ) exp
✓
⌧0 �

���� ⌧µ
����
◆

d⌧0, (2.22)

where I0 is the incident radiation, and ⌧0 is the optical depth at the top of the atmosphere.

Since the source function depends on the zeroth moment of the specific intensity, it is

necessary to solve the Eq. (2.22) iteratively, with the initial calculation being performed

with no scattering, i.e. S(⌧, ⌫, µ) ⇤ B(⌫, T), and then on subsequent iterations computes
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corrections to the source function including scattering, multiplied by a convergence accel-

eration factor applied in each layer. We direct the reader to Bueno & Bendicho (1995) for

more information on this technique to solving the radiative transfer equation, known as

a Gauss-Siedel type ⇤ acceleration scheme.

The radiative flux

The flux F(⌫) of radiation, otherwise known as the first moment of the specific intensity,

is defined as

F(⌫) ⇤
æ
⌦

I(⌫, µ)d⌦, (2.23)

which in plane parallel geometry assuming azimuthal symmetry becomes

F(⌫) ⇤
æ 2⇡

0

æ 1

�1
I(⌫, µ)µdµd�

⇤ 2⇡
æ 1

�1
I(⌫, µ)µdµ.

(2.24)

Once the RTE has been solved in each model level, the zeroth and first moments, J(⌫) and

F(⌫) respectively, can be calculated. To obtain the radiative flux in Eq. (2.7), we integrate

F(⌫) over frequency to obtain the bolometric flux Frad in each model level i.e.

Frad ⇤

æ1
0

F(⌫)d⌫, (2.25)

which can then be used to test for radiative-convective equilibrium.

2.3 Convection and mixing length theory

Convection can be modelled through mixing length theory, which uses dimensional scal-

ing arguments to model convective fluxes. The idea behind this theory is that a displaced

fluid parcel will conserve its properties over a characteristic length, known as the mixing
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length, before mixing with the surrounding fluid. This approach models convection as

the diffusion of heat through a turbulent medium, with the turbulent diffusivity given as

Kh ⇤ vconvl , (2.26)

where l is the mixing length and vconv is the characteristic transport velocity. The

mixing length is typically given in terms of the pressure scale height H as l ⇤ ↵H, where

↵ is a free parameter.

The convective flux in ATMO is computed using the mixing length theory presented

by (Henyey et al. 1965)

Fconv ⇤
1
2⇢cPTvconv↵r, (2.27)

where ⇢ is the density, cP is the specific heat at constant pressure, T is the temperature,

and the convective efficiency r is

r ⇤
�

� + 1 (rT � rad). (2.28)

Here rT is the temperature gradient as in Eq. (2.9), and rad is the adiabatic gradient.

We refer the reader to Henyey et al. (1965) and Gustafsson et al. (2008) for details

on the computation of the convective velocity vconv and the efficiency parameter �. It is

assumed that the convective flux is zero in convectively stable regions.

2.4 Finding the Pressure-Temperature Profile

Finding the pressure-temperature profile of a 1D model atmosphere in radiative-convective

and hydrostatic equilibrium is typically done iteratively (Marley & Robinson 2015). In

ATMO, a first guess pressure and temperature is assigned to each model level, and then the

model iterates the P-T structure using a Newton-Raphson solver until Eq. (2.2) and Eq. (2.7)
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are equated to a desired level of accuracy. On each iteration, chemical abundances are cal-

culated for the current P-T structure (see Chapter 3, Section 3.1), opacities obtained from

pre-computed look-up tables for individual gases (see Chapter 3, Section 3.2), and the ra-

diative and convective fluxes calculated (Section 2.2 and Section 2.3 respectively). The P-T

structure is generally considered converged in ATMO when radiative-convective flux bal-

ance and hydrostatic-equilibrium is satisfied to an accuracy of  1 ⇥ 10�3 in each model

level.
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Chapter 3

Chemistry and Opacities

This Chapter is organised into two parts. In Section 3.1, I describe the chemical schemes

used by ATMO, present improvements regarding the equation of state, and discuss the self-

consistent coupling of a chemical relaxation scheme to model non-equilibrium chemistry

due to vertical mixing. In Section 3.2, I present the atomic and molecular opacities used

by ATMO, and detail the calculation of opacity tables.

3.1 Chemistry

3.1.1 Initial elemental abundances

Constructing a model atmosphere requires initial elemental abundances from which to

derive the chemical composition. In models of brown dwarfs and giant exoplanets an

appropriate and common assumption is to use solar elemental abundances i.e. the overall

composition of the molecular cloud from which the solar system formed. This assumes

that the modelled object, be it a brown dwarf or giant exoplanet, formed from similar

material to our solar system. These primordial elemental abundances are typically derived

from spectroscopic measurements of the Sun’s photosphere or from mass spectroscopy of

chondritic meteorites (Asplund et al. 2009; Lodders 2019).

Photospheric abundances are believed to approximately reflect the primordial com-

position of the solar system (Asplund et al. 2009), with notable exceptions of He and Li.
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Element Ni/NH Source
H 1.000 ⇥ 100

He 9.550 ⇥ 10�2 Asplund et al. (2009) (protosolar)
C 3.162 ⇥ 10�4 Caffau et al. (2011) (photosphere)
N 7.244 ⇥ 10�5 Caffau et al. (2011) (photosphere)
O 5.754 ⇥ 10�4 Caffau et al. (2011) (photosphere)
Na 1.738 ⇥ 10�6 Asplund et al. (2009) (photosphere)
K 1.288 ⇥ 10�7 Caffau et al. (2011) (photosphere)
Si 3.236 ⇥ 10�5 Asplund et al. (2009) (photosphere)
Ar 2.512 ⇥ 10�6 Asplund et al. (2009) (photosphere)
Ti 8.9125 ⇥ 10�8 Asplund et al. (2009) (photosphere)
V 8.511 ⇥ 10�9 Asplund et al. (2009) (photosphere)
S 1.445 ⇥ 10�5 Caffau et al. (2011) (photosphere)
Cl 3.162 ⇥ 10�7 Asplund et al. (2009) (photosphere)
Mg 3.981 ⇥ 10�5 Asplund et al. (2009) (photosphere)
Al 2.818 ⇥ 10�6 Asplund et al. (2009) (photosphere)
Ca 2.188 ⇥ 10�6 Asplund et al. (2009) (photosphere)
Fe 3.311 ⇥ 10�5 Caffau et al. (2011) (photosphere)
Cr 4.365 ⇥ 10�7 Asplund et al. (2009) (photosphere)
Li 1.820 ⇥ 10�9 Asplund et al. (2009) (meteorites)
Cs 1.202 ⇥ 10�11 Asplund et al. (2009) (meteorites)
Rb 3.311 ⇥ 10�10 Asplund et al. (2009) (photosphere)
F 3.631 ⇥ 10�8 Asplund et al. (2009) (photosphere)
P 2.884 ⇥ 10�7 Caffau et al. (2011) (photosphere)

Table 3.1: Elemental abundances used by ATMO

Diffusion and gravitational settling over the 4.56 Gyr lifetime of the sun mean that the pro-

tosolar He abundance is 0.05 dex higher than the present day photospheric abundance.

Lithium burning has depleted the Sun of Li, and thus the primordial solar Li abundance

is obtained from mass spectroscopy of meteorites.

The ATMO model atmospheres presented throughout this thesis are generated us-

ing solar elemental abundances from Asplund et al. (2009) and Caffau et al. (2011). These

sources tabulate logarithmic abundances on a scale relative to hydrogen such that log(✏H) ⇤
12 (see Lodders 2019), meaning the logarithmic abundance for a given element i is

log(✏i) ⇤ 12 + log
✓

Ni

NH

◆
, (3.1)

where Ni and NH are the number of atoms of elements i and H respectively. The elemental

abundances Ni/NH used in ATMO are shown in Table 3.1.
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The composition of an astrophysical object such as a star or brown dwarf is often

defined by the hydrogen, helium and metal mass fractions X, Y and Z respectively. These

mass fractions are defined as

X ⇤
mH
M
,

Y ⇤
mHe
M
,

Z ⇤

’
i>He

mi

M
⇤ 1 � X � Y,

(3.2)

where M is the total mass of the system, and mH, mHe and mi are the fractional masses of

the hydrogen, helium and metals the system contains. Here “metals” refers to all elements

heavier than helium, and the mass fraction Z is commonly termed the metallicity.

Alternatively, the metallicity can be expressed as a ratio of the number of atoms of

all metals NM to the number of hydrogen atoms NH, defining a metallicity factor [M/H]
as

[M/H] ⇤ log
✓

NM
NH

◆
� log

✓
NM
NH

◆Sun
, (3.3)

where the second term on the right hand side comprises solar values. Note that it is

common in the stellar community to use a metallicity factor [Fe/H] defined similarly to

Eq. (3.3) but with the ratio of the number of iron atoms to the number of hydrogen atoms

used instead, i.e. NFe/NH instead of NM/NH.

Rearranging Eq. (3.3) we obtain the expression

NM
NH

⇤

✓
NM
NH

◆Sun
⇥ 10[M/H]. (3.4)

The initial elemental abundances of elements heavier than helium in ATMO can be changed

through the metallicity factor [M/H]. Solar metallicity therefore refers to [M/H] ⇤ 0, with
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the elemental abundances set to the values inferred to be the primordial composition of

the solar system, and [M/H] ⇤ 1 would increase the abundances of the metals by an order

of magnitude.

3.1.2 Chemical equilibrium

Gibbs free energy minimisation

Once we have set the initial elemental abundances, our goal is to find the equilibrium

distribution of these elements among atomic, molecular and condensate species in the at-

mosphere. This can be done by minimising the Gibbs free energy of a mixture of species

for a fixed pressure and temperature. The method of minimising the Gibbs free energy to

find the equilibrium composition of the atmosphere in ATMO has been presented in Drum-

mond (2017), and I provide a brief review here. The Gibbs free energy is a thermodynamic

potential analogous to mechanical potential, whereby a thermodynamic system will spon-

taneously minimise the Gibbs free energy to reach an equilibrium state. The Gibbs free

energy G is defined as

G ⇤ H � TS (3.5)

where H is enthalpy, T temperature and S entropy.

The enthalpy of formation of a chemical species can be thought of as a measure of its

energy content, and the change in enthalpy �H quantifies the heat absorbed or released

in chemical reactions as molecular bonds are broken and formed. Since physical systems

tend to spontaneously move towards states of lower energy, equilibrium favours reactions

that give a minimum in �H. Additionally, the second law of thermodynamics implies

that the equilibrium configuration of a thermally isolated system will have maximum

entropy. Spontaneous processes in a thermally isolated system will therefore proceed in

the direction of maximum entropy. Through these two principles, we can conclude that

minimising the Gibbs free energy of a thermodynamic system will give the equilibrium

chemical composition.
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The chemical potential of a species is the energy that can be absorbed or released

due to a change in the species particle number density through, for example, a chemical

reaction or phase transition. When the temperature, pressure and concentrations of all

other species in the mixture are held constant, the chemical potential µ of a species j is

defined as

µ j ⇤

✓
@G

@Nj

◆
T,P,Ni, j

, (3.6)

where Nj is the number of moles of species j per kilogram of the total mixture.

Given the definition of the chemical potential, Eq. (3.6), we can write the Gibbs free

energy of a system of J chemical species at constant pressure and temperature as

G ⇤

J’
µ j Nj . (3.7)

To find the equilibrium composition of J species at a constant pressure and temperature,

the Gibbs free energy, Eq. (3.7), is minimised subject to the constraint of elemental conser-

vation, i.e. conserving the total amount of each element in the total mixture of chemical

species. This is expressed mathematically as

J’
j⇤1

ai j Nj � bi ⇤ 0, (3.8)

where i ⇤ 1, . . . , I and I is the total number of different elements in the mixture, ai j is the

number of atoms of element i in species j, and bi is the total number of atoms of element

i per kg of the mixture.

ATMO solves for the chemical equilibrium composition in each model level by min-

imising Equation (3.7) subject to the condition of Eq. (3.8) following the procedure out-

lined in Gordon & McBride (1994), which uses the method of Lagrange multipliers and

Newton-Raphson iterations to solve the system of linear equations.
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The method of Gibbs minimisation of Gordon & McBride (1994) allows for the treat-

ment of condensation. First, a mixture containing only gas-phase species is used in the

calculation, and is converged to a state of minimum G. Once this has been achieved, a

test is performed to assess whether adding one or more condensate species will further

minimise G. If this test is satisfied, then the condensate species which reduces G the most

is added to the calculation, and the new mixture is re-converged to a state of minimum

G. Only one species is added to the mixture at a time, and this process is repeated until

G can no longer be reduced by the addition of condensate species to the mixture.

Local and Rainout Condensation

ATMO considers two options when calculating chemical equilibrium abundances including

condensate species (Drummond 2017; Goyal et al. 2019):

1. Local condensation - when condensate species form, the gas-phase abundances of

elements contained within the condensate species are depleted locally in each model

level. Each model level is treated independently and has the same initial elemental

abundances.

2. Rainout condensation - when condensate species form, the gas-phase abundances

of elements contained within the condensate species are depleted from the current

model level and all levels above (towards lower pressures). Each model level is

therefore not independent and can have different initial elemental abundances, as

elements contained within condensates are progressively depleted along the P-T

profile, from high to low pressures in the atmosphere.

The local condensation approach assumes that the formation of condensate species

in a given atmospheric layer does not affect the availability of elements for the formation

of species elsewhere at other pressure levels in the atmosphere. In contrast, the rainout

condensation approach assumes that when condensate species form, they settle or sink

in the atmosphere, depleting the elements available to form species at lower pressures in

the atmosphere.

Evidence for rainout condensation has been found in the retrieved abundances of
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alkali metals in late T and Y dwarfs (Line et al. 2017; Zalesky et al. 2019). Therefore, the

rainout condensation approach is used in the ATMOmodels presented in later chapters in

this thesis.

Thermochemical data

Calculating the chemical equilibrium abundances requires thermochemical data on each

individual species included in the mixture. McBride et al. (1993, 2002) present such data in

the convenient form of coefficients of polynomials that have been fitted to the thermody-

namic data of many species. These fits are performed over a temperature range typically

between 200 K and 6000 K and a constant reference pressure of 1 bar. These polynomials

are easily digestible by ATMO, and the general form is dimensionless and given by

C
o

P
(T)

R
⇤

I’
i⇤1

aiT
qi . (3.9)

Here C
0
P

is the heat capacity at a constant pressure of a given species, R is the univer-

sal gas constant, ai are the polynomial coefficients, qi are integer temperature exponents.

Typically, I ⇤ 7 and qi ⇤ �2, . . . , 4.

The enthalpy, entropy and chemical potential of an individual species can be related

thermodynamically to C
o

P
(T) as

H
o(T)
RT

⇤
b1
T

+

¥
C

o

P
(T)dT

RT
(3.10)

S
o(T)
R

⇤ b2 +

æ ✓
C

o

P
(T)

RT

◆
dT (3.11)

µo(T)
RT

⇤
H

o(T)
RT

� S
o(T)
R

(3.12)

where b1 and b2 are integration constants.

Since these thermodynamic quantities are defined at a standard reference pressure,

it is necessary to convert to any pressure and temperature in a given ATMO model level.
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Following Gordon & McBride (1994), for gas phase species this can be done with the re-

lation

µ j(T, P) ⇤ µo

j
(T) + RT ln

�
Pj

�
, (3.13)

where Pj is the partial pressure of species j. This can be expressed in terms of the total

pressure of the system,

µ j(T, P) ⇤ µo

j
(T) + RT ln (P) + RT ln

✓
Nj

N

◆
. (3.14)

For condensate species, the relationship is simply µ j(T, P) ⇤ µo

j
(T) (Drummond 2017).

3.1.3 Non-equilibrium chemistry

The Gibbs energy minimisation procedure for calculating atmospheric abundances is only

valid when assuming the atmosphere is in chemical equilibrium. The chemistry of an at-

mosphere can be driven out of equilibrium due to processes that happen on timescales

faster than the net chemical reaction timescales that bring the atmosphere back to equilib-

rium with the local surroundings. Non-equilibrium chemistry due to vertical mixing is a

prevalent feature in the solar system and throughout the brown dwarf cooling sequence,

as discussed in Section 1.3.2.

Since the Gibbs energy minimisation procedure is based on thermodynamic princi-

ples and does not contain information regarding chemical timescales, physical processes

such as vertical mixing which can drive the atmospheric chemistry away from equilib-

rium cannot be modelled using this approach. To model such non-equilibrium processes,

chemical kinetics schemes are used in 1D codes such as ATMO, which deal directly with a

network of chemical reactions. Chemical kinetics schemes solve the continuity equation,

which describes the net rate of change of each species j in the mixture due to the produc-

tion and loss of the species through chemical reactions. Discretised in a 1D column model

such as ATMO, the continuity equation can be written as
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@nj

@t
⇤ Pj � L j �

@� j

@z
, (3.15)

where nj is the number density of species j, Pj and L j are the production and loss terms

respectively (Drummond et al. 2016; Drummond 2017). The @� j/@z term describes the

vertical net transport of species j into the system, and thus setting @� j/@z ⇤ 0, i.e. assum-

ing no net chemical transport, and solving Eq. (3.15) for each species will give the chemical

equilibrium composition. Diffusion processes contributing to the vertical net transport of

species are encapsulated within the single flux term � j . Within this term is the eddy dif-

fusion coefficient Kzz , which is poorly constrained and often treated as a free parameter in

1D atmosphere models. The eddy diffusion coefficient can be used to estimate the typical

mixing timescale in the atmosphere as tmix ⇠ H
2
P
/Kzz (Lodders & Fegley 2006), where HP

is the pressure scale height.

The chemical conversion of one species to another follows a sequence of reactions

forming a pathway, and the production and loss terms for each species are derived from

complex chemical kinetic networks containing thousands of these reactions (Moses et al.

2011; Venot et al. 2012). The continuity equation (Eq. 3.15) must be solved for each species

included in the calculation, and since Pj and L j depend on the number density of other

species in the mixture through the chemical network, the system comprises of J coupled

ordinary differential equations (ODEs), where J is the total number of species. This sys-

tem of ODEs is solved for a steady state in which @nj/@t ⇤ 0, and details on how this is

implemented in ATMO can be found in (Drummond 2017).

Chemical relaxation

The chemical timescales of each reaction along a chemical conversion pathway can differ

by many orders of magnitude. Solving the system of coupled ODEs in the chemical kinet-

ics scheme can therefore be a stiff problem, and generating self-consistent models with a

coupled chemical kinetics scheme in a 1D or 3D atmosphere model can be computation-

ally expensive and lead to inconsistent convergence. To address this, chemical relaxation

schemes such as those presented in Cooper & Showman (2006); Tsai et al. (2018) have

therefore been developed to treat disequilibrium chemistry in brown dwarf and exoplanet
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atmospheres.

Chemical relaxation schemes take the approach of replacing the chemical network

with a source/sink term that depends on a chemical timescale. The relaxation method

rewrites Eq. (3.15) for a given species as

dn

dt
⇤ �n � nEQ

⌧chem
, (3.16)

where nEQ is the equilibrium number density and ⌧chem is the chemical timescale. Here the

production and loss terms in Eq. (3.15) have been replaced by a source/sink term that re-

laxes n to nEQ on a given chemical timescale. Whether the species in question attains chem-

ical equilibrium depends on the competition with dynamical mixing timescales. Since

Eq. (3.16) for a given species is not coupled to the equation for other species in the mix-

ture, the system of equations is much easier to solve.

A key challenge of chemical relaxation schemes is finding the chemical timescale,

which is pre-computed from the chemical networks employed by chemical kinetics schemes.

As the chemical timescales of each reaction along a chemical conversion pathway can vary

by several orders of magnitude, the slowest reaction along the fastest pathway, known as

the rate-limiting reaction, is used to determine the chemical timescale in Eq. (3.16). Tsai

et al. (2018) develop a method of identifying the rate limiting reactions for different pres-

sure/temperature regimes in a given chemical network, and thus obtaining the chemical

timescale. They find the rate-limiting reactions for 500 to 3000K, and 0.1mbar to 1kbar,

and include 6 species in the scheme, H2O, CO, CO2, CH4, N2 and NH3.

To calculate non-equilibrium chemical abundances in ATMOwe have self-consistently

implemented the chemical relaxation scheme of Tsai et al. (2018). We choose to adopt this

chemical relaxation scheme over full chemical kinetics networks for computational effi-

ciency and consistent convergence throughout the grid when solving for a self-consistent

P-T profile. The relaxation method is more computationally efficient as it avoids the need

to solve the large, stiff system of ordinary differential equations needed when using full

chemical kinetics networks. The P-T profile is reconverged on the fly while integrating
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over time for the non-equilibrium abundances every 50 iterations of the numerical solver.

Reconverging the profile more often than every 50 iterations gives negligible differences in

the final P-T structure, abundances and emission spectrum. The chemistry is integrated

for a minimum of 1 ⇥ 1010 s, and is considered converged and in a steady state when

dn/n < 1 ⇥ 10�2 and (dn/n)/dt < 1 ⇥ 10�4 for all species, where n is the species number

density. This self-consistent non-equilibrium chemistry approach is similar to that used

in hot Jupiter models presented in Drummond et al. (2016).

3.1.4 Equation of State

Once the chemical composition of the atmosphere has been obtained, an equation of state

is required to obtain properties such as the gas density ⇢(P, T), specific heat CP(P, T), and

adiabatic gradient rad throughout the atmosphere. The relatively low densities and tem-

peratures of brown dwarf atmospheres mean the gas can be assumed to be ideal (Saumon

et al. 1995), and thus the density in each model level can be obtained using the ideal gas

law,

⇢(P, T) ⇤ mP

kBT
. (3.17)

Here m is the mean molecular weight of the gas, typically measured in g/mol, which

depends on the chemical composition of the atmosphere and is calculated as

m ⇤

Jg’
j⇤1

Aj mj (3.18)

where Aj is the mole fraction of species j, mj is the species mean molecular weight, and

Jg is the number of gas phase species.

The specific heat and adiabatic gradient of the atmosphere can be obtained from

the chemical composition using the NASA polynomials as described in Section 3.1.2, and

are calculated in each ATMOmodel level as
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CP ⇤
kB

m

Jg’
j⇤1

Aj

✓
C

o

P

R

◆
j

, (3.19)

rad ⇤
1ÕJg

j
Aj

⇣
C

o

P

R

⌘
j

. (3.20)

The quantity (Co

P
/R) j is obtained from thermodynamic data at a standard reference

pressure, as described in Section 3.1.2. The pressure dependence of CP and rad is taken

into account through the chemical composition, i.e. Aj , which is calculated with the Gibbs

energy minimisation scheme using the chemical potential converted to any pressure and

temperature in a given model level (see Eq. (3.14)).

Whilst generating models withATMOusing adiabatic gradient derived from the NASA

polynomials, it was noticed that the temperature gradient in high effective temperature

models (Teff > 2000 K) significantly differed when compared to other established mod-

els in the literature such as BT-COND (Allard et al. 2012). The ATMO models predicted

much steeper temperature gradients, and thus higher temperatures at high pressures in

the atmosphere.

Figure 3.1 shows the adiabatic gradient as a function of temperature computed from

NASA polynomials (green line), along with the mole fractions of H2, H and He as a func-

tion of temperature, for a Teff ⇤ 2400 K, log(g) ⇤ 4.0 model. At low temperatures, the

atmosphere is H2 dominated meaning the gas is primarily diatomic, giving � ⇠ 1.4 and

rad ⇠ 0.28. At higher temperatures the atmosphere becomes H dominated meaning the

gas is monatomic, giving � ⇠ 1.66 and rad ⇠ 0.4. The NASA polynomials capture the

transition from a H2 dominated diatomic gas to a H dominated monatomic gas, but do

not take into account the dissociation energy involved in the H2 ! 2H conversion. The

dissociation energy modifies the internal energy of the gas, and thus the specific heat and

adiabatic gradient.

The adiabatic gradient and the specific heat can alternatively be loaded from equa-

tion of state tables from Saumon et al. (1995) (hereafter SCVH95). SCVH95 present ther-
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Figure 3.1: Top: Adiabatic gradient as a function of temperature calculated from the NASA polynomials (green
line) and the SCVH95 (orange line) EOS for a fixed Teff ⇤ 2400 K, log(g) ⇤ 4.0 pressure-temperature profile
(hotter green profile in Fig. 3.2). Bottom: Mole fraction as a function of temperature for species contributing
to the adiabatic gradient for the same atmospheric model.

modynamic calculations for hydrogen and helium mixtures covering a wide range in pres-

sures and temperatures applicable for the atmospheres and interiors of low-mass stars,

brown dwarfs and giant planets. The tabulated results account for non-ideal interactions

important at high densities in a brown dwarf interior, and can also recover the ideal gas

thermodynamics valid in the lower densities of the atmosphere. Figure 3.1 shows the

adiabatic gradient from SCVH95 (orange line) for the same Teff ⇤ 2400 K, log(g) ⇤ 4.0
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Figure 3.2: Pressure-temperature profiles from ATMO for Teff ⇤ 2000, 2400 K and log(g) ⇤ 4.0 calculated with
the adiabatic gradient from NASA polynomials (green line) and the SCVH95 EOS (orange line). Convective
regions are indicated by the thickened lines.

pressure-temperature profile. The SCVH95 EOS similarly predicts rad ⇠ 0.28 in the di-

atomic H2 region, but predicts a much lower minimum of rad ⇠ 0.1 in the dissociation

region. This is due to the effects of dissociation energy being taken into account in the

SCVH95 EOS.

It was thus concluded that the NASA polynomials were not sufficient in modelling

the adiabatic gradient in Teff > 2000 K models where the atmosphere is hot enough to

transition from being H2 to H dominated. The SCVH95 EOS must therefore be used to

capture the H2 ! 2H dissociation energy and correctly model the adiabatic gradient. The

EOS tables from SCVH95 were therefore coupled to the ATMO code, to give the gas density,

entropy, specific heat, adiabatic index and adiabatic gradient for a given pressure and

temperature. A solar metallicity helium mass fraction Y ⇤ 0.275 (Asplund et al. 2009) is

used in ATMO to be consistent with previous models (Baraffe et al. 1998, 2003; Chabrier et al.

2000b). Since we are using a metal-free EOS, the presence of metals with mass fraction

Z can be mimicked by an equivalent He mass fraction Yeq ⇤ Y + Z (Chabrier & Baraffe
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1997). ATMO uses Z ⇤ 0.0169 giving Yeq ⇤ 0.2919 as input to the SCVH95 EOS tables.

Figure 3.2 shows self-consistent ATMOP-T profiles for Teff ⇤ 2000, 2400 K and log(g) ⇤
4.0, calculated with the adiabatic gradient from the NASA polynomials and from the

SCVH95 EOS. Models calculated with the SCVH95 EOS have shallower temperature gra-

dients and are significantly cooler at high pressures in the atmosphere. This is due to the

lower SCVH95 adiabatic gradient in the region of H2 dissociation, which sets the tempera-

ture gradient in the convective region of the atmosphere. Temperature profiles computed

with the SCVH95 EOS are in better agreement with other established models in the liter-

ature, such as the BT-COND models (Allard et al. 2012).

3.2 Opacities

Once the chemical abundances have been obtained, the opacities of important absorbers

must be considered in brown dwarf and giant exoplanet atmosphere models. In this Sec-

tion I review the calculation of atomic and molecular opacities for use in ATMO. Such calcu-

lations have been extensively detailed in Amundsen et al. (2014); Amundsen (2015); Goyal

(2019).

3.2.1 Absorption cross-sections

The opacity of a species at a particular frequency of radiation arises from the transition

between energy levels of the atom or molecule. Individual spectral absorption lines can

be described by three parameters: the wavenumber of the centre of the line (⌫̃0), the line

intensity (S(T)) and the line profile (�(⌫̃� ⌫̃0)). The absorption cross-section � (or absorp-

tion coefficient per unit number density) for a given wavenumber ⌫̃ is then the product of

the line intensity Si and the line profile �i for a given transition i, i.e.

�(⌫̃) ⇤ Si(T)�i(⌫̃ � ⌫̃0). (3.21)

The line profile �(⌫̃� ⌫̃0) is normalised such that the integrated area under an indi-

vidual line is equal to Si(T), meaning broader lines have higher opacity in the line wings
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and lower opacity in the line centre, and vice versa for less broad lines. We now review

the calculation of the line intensities and the line profiles.

Line lists

The necessary information for calculating line intensities can be found in large databases

referred to as line lists, which typically tabulate either Einstein coefficients or oscillator

strengths of transitions in a molecule or atom. If we consider two discrete energy levels in

an atom or molecule there are three processes which can change the state of the system,

each described by an Einstein coefficient. The lower energy level has energy E and the

upper level has energy E + h⌫0, where h is plancks constant and ⌫0 is the frequency of

radiation. In the absence of a radiation field, the system can spontaneously transition from

the upper to the lower energy level, emitting a photon with energy h⌫0. The probability per

unit time of this spontaneous emission occurring is described by the Einstein coefficient

Aul . In the presence of a radiation field, the system can transition from the lower to upper

energy state by absorbing a photon of energy h⌫0, or can transition from from the upper to

lower state due to the radiation field stimulating the upper energy level. These processes

depend on the energy density of the local radiation field, and thus the probability per unit

time per unit energy density of the radiation field for absorption and stimulated emission

are described by the Einstein coefficients Blu and Bul respectively.

The three Einstein coefficients are related to each other (Rybicki & Lightman 1986)

by

Aul ⇤ 8⇡hc ⌫̃3
0Bul , (3.22)

glBlu ⇤ guBul , (3.23)

where gl and gu are the lower and upper level degeneracies respectively, and c is the speed

of light. Since the Einstein coefficients are independent of temperature, and knowing

any of the three coefficients is sufficient to describe the probability of a transition, it is

convenient for line lists to tabulate transitions with a corresponding Einstein coefficient
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(typically Aul) and information on the upper and lower energy levels. Occasionally, line

lists tabulate oscillator strengths (or g f values) instead of an Einstein coefficient. The

oscillator strength can also be thought of as describing the probability of a transition, and

is related to the Einstein Aul coefficient through

guAul ⇤
8⇡e

2 ⌫̃2
0

me c
gl flu , (3.24)

where e is the electron charge, me the mass of the electron, and flu is the oscillator strength

of the transition.

One of the most widely used sources of line lists used in atmosphere models is

the HITRAN database (Rothman et al. 2013). This database gives line lists at a refer-

ence temperature of 296 K and includes line intensities valid at the temperatures found

in the Earth’s atmosphere. Temperatures in brown dwarfs and exoplanets can reach sev-

eral thousand Kelvin, meaning molecules present in the atmosphere can be excited to

occupy high energy levels, and thus undergo significantly more transitions than at lower

temperatures. It has been shown that the HITRAN line lists, whilst accurate for Earth’s

atmosphere, can underestimate the opacity at higher temperatures by many orders of

magnitude (Amundsen 2015). This has led to the development of high temperature line

list databases such as HITEMP (the high temperature version of HITRAN) (Rothman et al.

2010) and ExoMol (Tennyson et al. 2016), which more accurately capture the opacity in hot

brown dwarf and exoplanet atmospheres. These high temperature line lists are predomi-

nantly theoretical, and are based on quantum chemistry simulations tuned to experimen-

tal results where available (Tennyson & Yurchenko 2012). The opacities used by ATMO are

calculated from line lists mainly from the ExoMol database. The sources of opacity used

in ATMOmodels throughout this work are listed in Table 3.2.

Line intensities

The relationship between the Einstein coefficient Aul and the spectral line intensity of a

transition between an upper u and lower l state resulting is given by
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Table 3.2: Opacity database used by ATMO.

Species Source
H2-H2, H2-He Richard et al. (2012)

H� John (1988)
H2O Barber et al. (2006)
CO2 Tashkun & Perevalov (2011)
CO Rothman et al. (2010)
CH4 Yurchenko & Tennyson (2014)
NH3 Yurchenko et al. (2011)

Na,K, Li,Rb,Cs, Fe Heiter et al. (2015)
TiO Plez (1998)
VO McKemmish et al. (2016)
FeH Wende et al. (2010)
PH3 Sousa-Silva et al. (2015)
HCN Barber et al. (2014)

C2H2, H2S Rothman et al. (2013)
SO2 Underwood et al. (2016)

Su ,l(T) ⇤ Ia

Aul

8⇡c ⌫̃2
u ,l

gu e
�El/kBT

Q(T)
⇣
1 � e

�hc ⌫̃u ,l/kBT

⌘
, (3.25)

where Ia is the fractional isotopic abundance, c is the speed of light, El is the energy of

the lower level of the transition, gu is the degeneracy of the upper level, kB is Boltzmann’s

constant, T is the temperature, Q(T) is the partition function, and ⌫̃u ,l is the wavenumber

of the transition. Many line list sources such as HITRAN are tabulated at a reference

temperature T0. It is possible to calculate the line intensity at any given temperature using

Su ,l(T) ⇤ Su ,l(T0)
Q(T0)
Q(T)

e
�El/kBT

e�El/kBT0

�
1 � e

�hc ⌫̃u ,l/kBT
�

�
1 � e�hc ⌫̃u ,l/kBT0

� . (3.26)

Note that the internal partition function Q(T) is typically provided with the line list.

Line broadening

The line profile �(⌫̃ � ⌫̃0) spreads the line intensity over a wavenumber region, and is

dependant on the temperature, pressure and composition of the atmosphere. In an atmo-

sphere, there are two processes which dominate the broadening of spectral lines: Doppler

and pressure broadening.



�� CHAPTER �. CHEMISTRY AND OPACITIES

At low pressures and high temperatures the line profile is dominated by Doppler ef-

fects from the thermal motion of particles altering the frequency of radiation. This Doppler

broadening of a spectral line has a Gaussian line shape function given by

�(⌫̃ � ⌫̃0) ⇤
1
↵D

r
ln 2
⇡

exp

 
�

ln 2(⌫̃ � ⌫̃2
0)

↵2
D

!
, (3.27)

with ↵D the Doppler half-width at half maximum, which is given by

↵D ⇤
⌫̃0
c

r
2 ln 2 kBT

m
. (3.28)

where m is the molecular mass. It can be seen that Doppler broadening is effective at

higher temperatures and for lower mass molecules.

At higher pressures in an atmosphere, collisions between particles reduce the life-

time of the upper and lower energy states, leading to a broadening of the spectral line

known as pressure broadening. The line shape for pressure broadening is characterised

by a Lorentzian line profile,

�L(⌫̃ � ⌫̃0) ⇤
1
⇡

↵L

(⌫̃ � ⌫̃0)2 + ↵2
L

, (3.29)

where ↵L is the pressure broadened half-width at half maximum. The width ↵L depends

on the pressure, temperature and composition of the atmosphere in a complex way, but in

brown dwarf and exoplanet models it is often approximated as (Sharp & Burrows 2007)

↵L(Pz , T) ⇤
’

z

↵z

L
(Pz , T0)

✓
T0
T

◆nz
Pz

P0
, (3.30)

where z is the perturbing species, T0 and P0 are a reference temperature and pressure, Pz

is the partial pressure of species z and nz is the temperature exponent. The total pressure

broadened width is the sum of the pressure broadened widths for all perturbing species.
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Since the Lorentz width depends on the partial pressure of the perturbing species,

only the most abundant species need to be considered, and hence the opacities used in

ATMO only consider broadening by H2 and He. We note that in high metallicity atmo-

spheres pressure broadening from other perturbing molecules may become important,

however this should not affect the solar metallicity models presented throughout this

work.

The values of ↵L(P0 , T0) and nz in Eq. (3.30) are obtained from literature sources

mostly gathered from experimental data, and are tabulated at approximately room tem-

perature and pressure. The values of ↵L(P0 , T0) and nz must therefore be extrapolated

to different pressures and temperatures in the absence of available data. Furthermore,

↵L(P0 , T0) and nz are only known for a small fraction of transitions in the line list, and

must again be extrapolated to pressure broaden all transitions. Pressure broadening is

therefore a significant uncertainty and challenge in the brown dwarf and exoplanet mod-

elling community, and laboratory experiments are needed to tackle this issue.

Calculating opacity tables

The methodology for calculating opacities for use in ATMO is presented in detail in Amund-

sen et al. (2014). The absorption coefficients are calculated on a wavenumber grid span-

ning 0 � 50000 cm�1 at a resolution of 0.001 cm�1, in order to capture the large number of

spectral lines and strong wavenumber dependence of the opacity. Each line is broadened

including both Doppler and pressure broadening with collisions from H2 and He. This is

done on a pressure temperature grid, with 40 logarithmically spaced pressure points from

10�9 � 103 bar, and 20 logarithmically spaced temperature points in the range 70� 3000 K.

There will exist large pressure-temperature regions where Doppler and pressure broad-

ening are comparably important. Therefore a convolution of the Doppler and Lorentz

profiles is used, known as the Voigt profile (see Amundsen (2015) for details). It is not

necessary to compute the Voigt profile out to arbitrarily large distances from the line cen-

tre, and numerical considerations regarding line wing cutoffs are discussed in Amundsen

et al. (2014).
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3.2.2 The correlated-k method

Once absorption cross-sections have been calculated, the opacity of select atoms and molecules

can be included in 1D atmosphere models and used to solve the radiative transfer equation,

as discussed in Section 2.2. The radiative transfer equation must be solved at a sufficiently

high wavenumber resolution to capture the opacity of all line transitions of an atom or

molecule, a method known as line-by-line radiative transfer. ATMO can solve the radiative

transfer equation at the wavenumber resolution of the opacity tables (�⌫̃ ⇤ 0.001cm�1),

which is at a sufficiently high resolution to be considered equivalent to line-by-line. While

this is the most accurate method of solving the radiative transfer equation, this resolution

yields 107 monochromatic calculations in each model level, which becomes computation-

ally unfeasible particularly when iterating for a consistent P-T structure. It has been shown

that binning opacities into larger wavenumber bins or sampling the opacities at a lower

resolution can lead to substantial errors when combining cross-sections of different gases

(Amundsen et al. 2014; Garland & Irwin 2019). Therefore care must be taken to reduce

the computational expense of solving the radiative transfer equation while maintaining

accuracy.

The correlated-k method is a commonly used technique with roots in Earth atmo-

spheric science (Goody et al. 1989; Lacis & Oinas 1991; Edwards & Slingo 1996), which

has been successfully applied in brown dwarf and exoplanet models (Amundsen et al.

2014, 2017; Malik et al. 2017) to improve computational efficiency while maintaining ac-

ceptable accuracy when solving the radiative transfer equation. The key idea behind this

technique is that the absorption coefficient will take similar values at several wavenum-

bers within a spectral interval, and therefore by considering the distribution of opacities

we can replace integrals over wavenumber with more well-behaved integrals over a new

independent variable. For example, consider the transmission T of radiation between ⌫̃1

and ⌫̃2 through a homogeneous medium, given by

T (u) ⇤ 1
⌫̃2 � ⌫̃1

æ ⌫̃2

⌫̃1

e
�k(⌫̃)u

d ⌫̃. (3.31)

Here u is the column mass density and k(⌫̃) is the mass absorption coefficient. As dis-
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cussed previously, solving this integral requires a high wavenumber resolution in order

to capture the complex wavenumber dependence of k(⌫̃). However, recognising that the

same value of k(⌫̃) will be encountered at several wavenumbers, we can combine the cal-

culation at these wavenumbers by considering the frequency distribution of absorption

coefficients f (k). The fraction (or probability) of absorption coefficients between k and

k + dk is f (k)dk. Following Lacis & Oinas (1991), Eq. (3.31) can be rewritten as

T (u) ⇤
æ1

0
f (k)e�ku

dk. (3.32)

This integral can be simplified further by considering the cumulative frequency distribu-

tion of absorption coefficients, defined as g(k) ⇤
¥

k

0 f (k0)dk
0, which gives the probability

of an absorption coefficient having a value less than k. Since the cumulative distribution

is a smooth, monotonically increasing function of k, it can be inverted to give k(g), which

is known as the k-distribution. In the k-distribution, g acts as a pseudo wavenumber

variable. The transmission can then be written in terms of this k-distribution as

T (u) ⇤
æ 1

0
e
�k(g)u

dg. (3.33)

The transmission over a homogeneous path can therefore be calculated by evalu-

ating an integral over wavenumber, frequency distribution or k-distribution (Eq. (3.31),

Eq. (3.32) and Eq. (3.33) respectively). While all three calculations are exact and provide

the same result, performing the integral over the smooth, monotonic k-distribution pro-

vides much greater computational efficiency. Typically, only⇠10 characteristic absorption

coefficients of a k�distribution, known as k�coefficients, are needed to evaluate the inte-

gral in Eq. (3.33), which can then be used to solve the radiative transfer equation.

In a homogeneous atmosphere, this k�distribution method is exact and equivalent

to a line-by-line calculation since the g(k) mapping of opacities from wavenumber space

is the same along any given path. Of course, real atmospheres are not homogeneous, with

different atmospheric layers having different pressures, temperatures and compositions.

This means that the g(k) mapping of opacities from wavenumber space in one model
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level can differ to that in another model level, and can lead to the mixing of wavenum-

bers throughout the atmosphere. This limitation can in part be overcome by choosing

narrow spectral intervals, or carefully selecting interval boundaries so that only one ab-

sorber dominates each interval. The k�distributions can then be assumed to be correlated

throughout atmosphere, leading to this technique being termed the correlated-k method.

A correlated-k database was created by Amundsen et al. (2014) which can be used by

ATMO to solve the radiative transfer equation. The database consists of tables of k�coefficients

for each individual opacity source, calculated on the same pressure-temperature grid as

the full resolution absorption coefficient files. The k� coefficients are calculated with the

open source UK Met Office radiative transfer code SOCRATES (Edwards 1996; Edwards &

Slingo 1996), which is described in Amundsen et al. (2014); Amundsen (2015). The tables

are provided at 32-, 500-, and 5000-band spectral resolutions. The spacing in the 32-band

files is shown in Table 4 of Amundsen et al. (2014), and these tables are used by ATMO

when iterating for a consistent P-T structure. The 500 and 5000 bands are evenly spaced

in wavenumber between 1 and 50000cm�1, and the 5000-band tables are used to generate

emission spectra shown in this work. The k-coefficients are mixed within the ATMO code

using the methods described in Amundsen et al. (2017).

3.2.3 Iron opacity

Whilst developing models of brown dwarfs in this work, it was noticed that for high effec-

tive temperature models (Teff > 2000 K) the top of atmosphere emission spectra exhibited

large emission between 0.2� 0.4µm, an example of which is shown in Fig. 3.3 in the spec-

trum without Fe opacity. The peak in emission for brown dwarfs lies in the near-infrared

with significantly less emission at shorter wavelengths. This large flux window is therefore

not realistic as it exceeds the flux in the near-infrared, and is likely due to a missing opac-

ity source in this wavelength region. Sharp & Burrows (2007) discuss important opacity

sources in this wavelength region, with the most important absorber being gaseous iron

(see their Section 2.5). Indeed, iron has a comparable abundance to other major absorb-

ing species in a Teff ⇤ 2000 K model atmosphere, and is more abundant than sodium and

potassium. Therefore, we calculated Fe opacity for use in ATMO following the methods and
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Figure 3.3: ATMO emission spectra calculated with (orange) and without (green) gaseous Fe opacity.

physics described in Section 3.2.1 and Section 3.2.2.

The line list for iron was taken from the VALD database (Heiter et al. 2015), which

tabulates the oscillator strength (or g f value) of ⇠ 96, 000 transitions. The partition func-

tion, needed to obtain the line intensities (see Eq. (3.26)), was obtained from Sauval &

Tatum (1984), which is the same source as used for the alkali metals. As discussed in

Section 3.2.1, the parameters required to calculate pressure broadened line widths from

collisions with H2 and He are typically taken from literature sources. Unfortunately, no

data were found in the literature on the pressure broadening of Fe lines from collisions

with H2. This is because Fe is more commonly used as an opacity source in stellar atmo-

spheres where the temperatures are sufficiently high to dissociate molecular hydrogen.

Therefore, pressure broadened line widths were calculated with Van der Waals coeffi-

cients included in the VALD line list using Equation 23 of Sharp & Burrows (2007). The

use of Van der Waals coefficients to calculate pressure broadened line widths from colli-

sions with H2 and He is outlined in Amundsen (2015). A fixed factor cutoff of 1000 times

the sum of the pressure and Doppler broadened line width from the centre of each line

was applied to the Voigt profiles in the Fe absorption coefficient calculations. Note that in

this fixed factor cutoff there is also a maximum line width applied of 100 cm�1.

The absorption cross-section of Fe is shown in Fig. 3.4 for a pressure of 100 bar and
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Figure 3.4: Absorption cross-section of atomic iron at 100 bar and 2200 K.

a temperature of 2200 K, which can be directly compared to Figure 10 of Sharp & Burrows

(2007). We find good agreement between the absorption cross-section of atomic Fe cal-

culated in this work and that presented in Sharp & Burrows (2007). Note the opacity of

Fe is not calculated for wavelengths longer than 1µm, as the opacity becomes negligible

compared to other dominant opacity sources in the atmosphere.

Emission spectra calculated with and without Fe opacity are shown in Fig. 3.3. It

can be seen that including Fe opacity reduces the flux emerging between 0.2 and 0.4µm,

causing the flux in this wavelength region to become small compare to the near-infrared. It

is thus concluded that including Fe opacity inATMO is important for modelling the emission

of high effective temperature (Teff > 2000 K) brown dwarfs.

We have also shown that gaseous Fe opacity is important in models of extremely

irradiated hot Jupiters, as shown in a new grid of self-consistent ATMOmodels (Goyal et al.

2020). The large cross-sections of Fe at ultraviolet and optical wavelengths lead to strong

absorption of incoming stellar radiation. This causes heating in the upper atmosphere at

low pressures, and subsequently cools the deeper atmosphere at higher pressures. Thus,

Fe opacity plays in important role in forming temperature inversions in hot Jupiter atmo-

spheres.
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Chapter 4

Potassium Line Shapes

4.1 The role of potassium in brown dwarf atmospheres

The alkali metals sodium Na and potassium K play a key role in brown dwarf atmospheres.

They are abundant in the gas phase until they condense into KCl and Na2S (Lodders 1999),

and have strong resonance doublets at ⇠ 0.59 µm and ⇠ 0.77 µm, respectively, that are

present in late L and T dwarfs (Kirkpatrick et al. 1999; Burgasser et al. 2003b). The line

shapes are determined by the potential field of H2 perturbing the ground and excited

states of the alkali atom, and in brown dwarf atmospheres these resonance lines become

broadened out to thousands of angstroms away from the line core, shaping the visible and

red-optical spectra of brown dwarfs. As such, Lorentzian line profiles are not sufficient

to model the collisional broadening effects on these alkali metals (Allard & Kielkopf 1982;

Burrows et al. 2000, 2002; Allard et al. 2019), and more detailed quantum mechanical cal-

culations of the interaction potentials of these collisions are required to accurately model

Na and K line shapes.

Both Burrows et al. (2003) and Allard et al. (2007b) (hereafter BV03 and A07) have

presented alkali broadening calculations which can be used in 1D radiative-convective

models of brown dwarfs and exoplanets. BV03 calculate the interaction potentials of the

ground and excited states of Na and K perturbed by H2 and He as a function of distance

and orientation angle. Using these potentials BV03 computed absorption line profiles out
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to thousands of angstroms from the line core. A07 similarly compute interaction potentials

of Na and K perturbed by H2 and He, and used the semi-classical unified line shape theory

of Allard et al. (1999) to calculate the collisional profiles of the Na- and K-H2 resonance

lines.

Previous works with ATMO have used both the BV03 and A07 broadening treatments

(Tremblin et al. 2015; Tremblin et al. 2016) as it remains unclear which performs best when

reproducing observations. The BV03 profiles used in ATMO are implemented in Baudino

et al. (2015). Baudino et al. (2017) benchmarked the BV03 and A07 alkali broadening

schemes in a 1D radiative-convective equilibrium model showing large uncertainties in the

predicted transmission spectra of hot Jupiters and the emission spectra of brown dwarfs.

When generating the grid of brown dwarf atmosphere models in this work we found

similar uncertainties. In particular, the differences in opacity in the far-red wing of the K

doublet cause substantial differences in the predicted near-infrared spectra where the peak

in brown dwarf emission lies. This has motivated us to implement the new K resonance

line profiles presented in Allard et al. (2016) (hereafter A16). The A16 line profiles follow

the same framework as A07, with improvements on the determination of the intermediate-

and long-range part of the K �H2 potential and the inclusion of spin-orbit coupling.

This Chapter is organised as follows. Details of the implementation of the new A16

potassium line shapes for use in ATMO are shown in Section 4.2. In Section 4.3, I compare

these new line shapes to those previously used in ATMO, and examine the impact of these

new line shapes on 1D radiative-convective models in Section 4.4. These results have been

published in Phillips et al. (2020b).

4.2 Implementing new potassium line shapes

The opacity of potassium is calculated following the methodology described in Section 3.2.

The line list is obtained from the VALD database (Heiter et al. 2015), which tabulates the

oscillator strength of 1128 transitions of the K atom. Doppler and pressure broadening

effects are included when calculating line profiles. The VALD line list contains van der

Waals coefficients, which are used to calculate pressure broadened line widths (Sharp &
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Burrows 2007) for all lines except for the K resonance doublet at ⇠ 0.77 µm. For these

lines, we use updated resonant line shapes from A16.

The wing profiles from A16 are tabulated as coefficients of density expansion of the

dipole autocorrelation function. For a review on the density expansion of atomic spectra,

the reader is referred to Royer (1971); Allard et al. (1994, 1999), and Section 3.3 of Allard

et al. (2019) for a brief review of its use in opacity tables. The cross-section in the line wing

profile is calculated from these tables using

�wing(�!) ⇤ ⇡r0 f exp
✓
�

np

n0
vn

◆ Nexp’
i⇤1

✓
np

n0

◆ i

pi(�!), (4.1)

where �! is the frequency given in wavenumbers (cm�1) relative to the unperturbed line

centre of the transition, np is the perturber density, n0 is the reference perturber density at

which the table was calculated, and vn is a normalisation factor. The density expansion

coefficients pi are tabulated at a given �! up to order Nexp. In the A16 tables, Nexp ⇠ 20,

whereas in the A07 tables Nexp ⇠ 3. This higher order expansion makes the A16 line wing

profiles valid up to perturber densities of 1⇥1021 cm�3, whereas the A07 line wing profiles

are only valid up to perturber densities of 1 ⇥ 1019 cm�3. The factor ⇡r0 f acts as an area

normalisation constant for the line profile integrated over �! (Allard et al. 2019), where

r0 is the classical radius of the electron and f is the oscillator strength of the transition.

The tables are provided for the D1 and D2 component of the K resonance doublet, which

correspond to the 4s
2
S1/2 � 4p

2
P3/2,1/2 transitions in the atom. These tables are provided

at a reference perturber density of n0 ⇤ 1⇥1021cm�3 and for a range of temperatures. The

K resonance lines broadened by H2 are provided at temperatures of 600, 820, 1000, 1500,

2000, and 3000 K. The K resonance lines broadened by He are provided at temperatures

of 500, 800, 1000, 1500, 2000, 2500 and 3000 K.

While the line wing profiles are calculated from the density expansion coefficients,

the profile in the line core is modelled with a Lorentzian profile with parameters calculated

from the same unified line shape theory (Allard et al. 1999). The line core is determined by

distant encounters that alter the lifetime of states in the K atom and can thus be modelled
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Figure 4.1: Absorption cross-section of potassium broadened by H2 calculated at P ⇤ 10 bar and T ⇤ 1500 K,
which corresponds to a H2 perturber density of nH2 ⇤ 4 ⇥ 1019 cm�3. The absorption cross-section is shown
as the solid black line, with the contribution of the Lorentzian core and pressure broadened wing profiles
shown as dotted red and blue lines repectively.

with a Lorentzian, while the line wings are determined by distant encounters that shift

the energy levels in the K atom (Allard et al. 1999; Burrows et al. 2003). The Lorentzian

core must be convolved with the line wings, which is done separately for the D1 and D2

component by taking the maximum cross-section between the core and wing at a given

wavenumber. This process is shown in Fig. 4.1 at P ⇤ 10 bar and T ⇤ 1500 K, and is

generally found to give a smooth junction between the core and wing profile, provided

the sampling in wavenumbers is sufficiently high (�! ⇤ 0.01 cm�1).

Once the Lorentzian core and wing profiles have been combined for the D1 and D2

components, the total opacity from the resonance doublet will be the summation of each

component. The contribution of each component to the total K opacity is shown in Fig. 4.2

calculated for P ⇤ 10 bar and T ⇤ 1500 K, which corresponds to nH2 ⇤ 4 ⇥ 1019 cm�3. The

blue wing of the resonance doublet can be seen to be shaped by the broadening of the D2

component, and the far red wing is formed from the broadening of the D1 component.

To understand how the K line shapes change throughout the atmosphere, the vari-

ations of the D1 and D2 components with perturber density and temperature are shown

in Fig. 4.3 and Fig. 4.4 respectively. The opacity in the wings increases linearly with H2

number density in Fig. 4.3, except in the blue wing of the D2 component. The opacity

in the blue wing of the D2 component does not vary linearly with density due to multi-
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Figure 4.2: Absorption cross-section of potassium broadened by H2 calculated at P ⇤ 10 bar and T ⇤ 1500 K,
which corresponds to a H2 perturber density of nH2 ⇤ 4 ⇥ 1019 cm�3. The absorption cross-section is shown
as the solid black line, with the contribution of the D1 and D2 components shown as dotted blue and red
lines respectively.

Figure 4.3: Variation of the D1 and D2 component wing profiles with number density of H2, given in the
legend with units cm�3. The temperature is 1000 K.

ple perturber effects causing quasi-molecular line satellites (Allard et al. 2007b). A first

line satellite can be noticed at ⇠ 0.69 µm due to K-H2, and a second satellite appears for

nH2 ⇤ 1021 cm�3 at ⇠ 0.63 µm due to K-(H2)2 (Allard et al. 2016). The broadening of the

line wings increases with temperature, which can be seen in Fig. 4.4. At high tempera-

tures, the D1 component extends into the near-infrared, and can thus have a significant

impact on the emitted radiation from a model atmosphere.

Since H2 is the most abundant species in brown dwarf and giant exoplanet atmo-
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Figure 4.4: Variation of the D1 and D2 component wing profiles with temperature. The H2 perturber density
is nH2 ⇤ 1 ⇥ 1021 cm�3.

spheres, the opacity from the K resonance doublet is dominated by broadening from H2.

However, while less abundant, He also contributes to the broadening of the resonance

doublet. The Lorentzian core and line wings are joined for K�He in the same manner as

for K �H2. The opacities of K �H2 and K �He are summed to obtain the total opacity,

and are each weighted by the expected abundance in brown dwarf atmospheres. To do

this, the number fraction of H is assumed to be AH ⇤ 0.91183 (Amundsen 2015), with the

number fraction of He being AHe ⇤ 1 � AH. The dominant form of hydrogen is assumed

to be H2, meaning the partial pressure of a given perturber, denoted by the subscript p,

can be calculated using

Pp ⇤ P
Ap

AH
2 + AHe

, (4.2)

where P is the total pressure of the gas. The broadening from H2 and He can then be

calculated using the number density calculated from the ideal gas equation using the

partial pressure of each species.

The contribution to the total opacity of K �H2 and K �He is shown in Fig. 4.5, which

is calculated at P ⇤ 10 bar and T ⇤ 1500 K. This pressure and temperature correspond to

nH2 ⇤ 4.1⇥ 1019 cm�3 and nHe ⇤ 7.8⇥ 1018 cm�3. The opacity can be seen to be dominated
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Figure 4.5: Left: Absorption cross-section of potassium calculated with broadening from H2 and He (solid
black line), and calculated with broadening solely from H2 (dashed red line). Right: Absorption cross-section
of potassium calculated with broadening from H2 and He (solid black line), with the contribution of the D1
(red) and D2 (blue) components broadened by H2 and He (dashed and dotted lines respectively).

by K �H2 since H2 is more abundant than He. However, K �He has a small contribution

to the opacity, particularly in the blue wing satellite feature between 0.7 � 0.75 µm, and

it also increases the peak of the resonance lines due to the smaller number density of He

giving a less broad Lorentzian core.

4.3 Comparisons with other line shapes

In Fig. 4.6 I show the absorption cross section of potassium employed in ATMO using broad-

ening schemes from BV03, A07, and A16, at pressures and temperatures typical of the

red-optical to near-infrared photosphere of T-type brown dwarfs. The top panel displays

the K opacity for P=1 bar and T=1500 K. This corresponds to a nH2 < 1019 cm�3 regime

within which both the A07 and A16 profiles are valid. Therefore, the A07 and A16 wing

profiles predict a similar strength quasi-molecular K �H2 line satellite in the blue wing at

⇠ 0.7 µm, which is not captured by the BV03 wing profiles. The bottom panel of Fig. 4.6

shows the K absorption cross section at a higher pressure of 50 bar corresponding to a

1019 cm�3 < nH2 < 1021 cm�3 regime within which the A07 tables are no longer valid,

while the A16 profiles are. The A07 profiles therefore predict a much weaker line satellite

than the A16 profiles. At both 1 and 50 bar, the opacity differs considerably in the red

wing at ⇠ 1 µm, with the BV03 profiles giving significantly less absorption than the A07
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Figure 4.6: Absorption cross section of potassium calculated with different broadening treatments for the D1
and D2 resonance doublet, at a pressure of 1 bar and a temperature of 1500K (top panel) and a pressure of 50
bar and a temperature of 1500K (bottom panel).

and A16 profiles.

4.4 Impact on atmosphere models

We now investigate the impact K resonance line shapes have on 1D atmosphere models

from ATMO. Figure 4.7 shows a synthetic red-optical and near-infrared emission spectrum

of a Teff ⇤ 800 K, log(g) ⇤ 5.0 T-type brown dwarf calculated with the BV03, A07, and

A16 broadening schemes. The red-optical spectra in the left panel shows the difference in

the emission around the potassium D1 and D2 resonance doublet. There is a noticeable

difference between the emission in the blue wing around⇠ 0.7 µm due to the K �H2 quasi-

molecular feature predicted by A07 and A16 compared to BV03. The lower absorption in

the red wing in the BV03 case leads to more flux emerging through the Y band at ⇠ 1 µm
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Figure 4.7: Comparison of the emission spectra from the top of the atmosphere for Teff ⇤ 800K and
log(g) ⇤ 5.0 calculated with alkali broadening from BV03; A07; A16. Indicated in the right plot are the loca-
tions of the Mauna Kea near-infrared filters.

compared to the A07 and A16 cases. The large differences in opacity in the BV03 profiles

compared to the A07 and A16 profiles also causes differences in the temperature profile

when reconverging the atmospheric structure to find radiative-convective equilibrium. P-

T profiles generated including BV03 alkali opacity are several hundred Kelvin cooler for

pressures above 5 bar than profiles generated with A07 and A16 opacity. This leads to the

redistribution of flux across the near-infrared seen in the right panel of Fig. 4.7. We note

that this flux distribution only occurs if the model is generated self-consistently with a

reconverged P-T structure when switching between opacity sources.

The biggest effect the K resonance lines have on the synthetic spectrum is in the Y

band due to the extent of the red wing of the D1 component. Figure 4.8 shows the absolute

Y band magnitude as a function of effective temperature in model grids calculated with

BV03, A07 and A16 broadening schemes. At high effective temperatures in Fig. 4.8 there

is no difference in the Y band magnitudes due to different K resonance line broadening

schemes since the main of source of opacity in the Y band is FeH. At lower effective tem-

peratures, the K-H2 redwing begins to influence the Y band magnitide. This is caused

by FeH becoming less abundant due to the rainout of Fe, and an increase in the number

density of H2 in these cooler atmospheres. Models calculated with the BV03 line profiles

profiles predict brighter Y band magnitudes than A07 by up to ⇠ 0.8 mag for log(g) ⇤ 5.0

and ⇠ 0.5 mag for log(g) ⇤ 3.5. The differences in Y band magnitudes become more

pronounced at higher gravity due to these atmospheres being cooler and denser, which
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Figure 4.8: Absolute Y band magnitude as a function of effective temperature for log(g) ⇤ 3.5 (top panel) and
log(g) ⇤ 5.0 (bottom panel). A constant radius of 0.1 R/Rsun was used to compute the magnitudes.

increases the opacity in the red wing of the resonance doublet. It can therefore be con-

cluded that K resonant line broadening will be most significant in older, cooler brown

dwarfs.
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Chapter 5

A New Set of Atmosphere and

Evolution Models

In this chapter, we present a new set of coupled atmosphere and evolutionary models for

brown dwarfs and giant exoplanets, which we have termed ATMO 2020. This set of models

is published in Phillips et al. (2020b), and includes numerous improvements to the input

physics for modelling substellar objects. The 1D atmosphere code ATMO is used to gen-

erate self-consistent models with equilibrium chemistry and non-equilibrium chemistry

due to vertical mixing. We include updated line lists for important molecular absorbers

and improved line shapes for the pressure broadened potassium resonance lines. Finally,

these atmosphere models are coupled to an interior structure model which uses a new

H �He equation of state from Chabrier et al. (2019) including ab initio quantum molecu-

lar dynamics calculations.

The chapter is organised as follows. In Section 5.1 we outline the details of the grid

and the tools used to generate the models. The main results and features of the grid are

presented in Section 5.2. The grid is then compared to others in the literature in Section 5.3

to highlight model improvements. Finally, we summarise this Chapter in Section 5.4.
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5.1 Grid set-up and methods

5.1.1 Model grid

The model set consists of a grid of solar metallicity atmosphere models spanning Teff ⇤

200 � 3000 K and log(g) ⇤ 2.5 � 5.5 (g in cgs units), with steps of 100 K for Teff > 600 K,

50 K for Teff < 600 K, and 0.5 in log(g). We note that we extend our grid of models to

Teff ⇤ 3000 K in order to follow the evolution of the most massive brown dwarfs from very

early stages starting from hot luminous initial models. However, the range of validity of

our atmosphere models is Teff <⇠ 2000 K since we do not include some sources of opacity

(e.g. some hydrides and condensates) that form at higher temperatures.

We generate three atmosphere grids with different chemistry schemes spanning this

parameter range. The first is calculated assuming chemical equilibrium, and the second

and third are calculated assuming non-equilibrium chemistry due to vertical mixing with

different mixing strengths. Each model in each of the grids is generated with the ATMO

code, and consists of a pressure-temperature (P-T) profile, chemical abundance profiles,

and a spectrum of the emergent flux at the top of the atmosphere. The ATMO code is de-

scribed in detail in Chapter 2, with the chemistry schemes and opacity database used by

the model described in Chapter 3. The models are all publicly available for download� �.

The P-T profiles from the model atmosphere grid are then used as outer boundary

conditions for the interior structure model to follow the evolution of 0.0005 � 0.075 M�

objects from 0.001� 10 Gyr. We follow the evolution of the object’s effective temperature,

luminosity, radius, gravity, and absolute magnitudes in a range of photometric filters.

Absolute magnitudes are derived by calculating the flux density in a given photometric

filter for each spectrum in the atmosphere grid. The flux density can then be interpolated

to the Teff and log(g) for a given mass and age, and the corresponding radius used to

compute the absolute magnitude. The zero point is calculated from a Vega spectrum.

The evolutionary tracks for a given mass are also publicly available for download12.

�http://opendata.erc-atmo.eu
�http://perso.ens-lyon.fr/isabelle.baraffe/ATMO2020/.

http://opendata.erc-atmo.eu
http://perso.ens-lyon.fr/isabelle.baraffe/ATMO2020/
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5.1.2 One-dimensional atmosphere model - ATMO

The one-dimensional atmosphere model ATMO used to generate atmosphere models in this

grid has been previously discussed in detail in Chapter 2 and Chapter 3 of this thesis. We

briefly summarise the model here for completeness.

The P-T structure is solved by ATMO on a logarithmic optical depth grid defined in

the spectral band between 1.20 and 1.33 µm. We use 100 model levels, with the outer

boundary condition in the first model level fixed at a pressure of 10�5 bar and given an

optical depth of ⌧ ⇠ 10�4 � 10�7 depending on log(g). The inner boundary condition in

the last model level is not fixed in pressure and given an optical depth of ⌧ ⇤ 1000. A

first guess pressure and temperature is assigned to each model level, and then the model

iterates the P-T structure towards radiative-convective and hydrostatic equilibrium using

a Newton-Raphson solver. On each iteration, chemical abundances are calculated for the

current P-T structure, opacities are obtained from pre-computed look-up tables for indi-

vidual gases, and the radiative and convective fluxes are calculated. The P-T structure is

generally considered converged when radiative-convective flux balance and hydrostatic

equilibrium is satisfied to an accuracy of  1 ⇥ 10�3 in each model level.

ATMO can calculate chemical abundances assuming thermodynamic equilibrium or

assuming non-equilibrium chemistry due to vertical mixing in the atmosphere. The chem-

istry schemes used in this work are discussed in detail in Section 3.1. Once the chem-

ical abundances have been computed, the opacities used by ATMO are loaded from pre-

computed correlated-k tables for individual gases. The calculation of these opacities is

discussed in detail in Section 3.2, and the specific improvements regarding the potassium

resonance line broadening implemented in this thesis are outlined in Chapter 4. The opac-

ities are combined within the code using the random overlap method with resorting and

rebinning to get the total mixture opacity (Amundsen et al. 2017). This method ensures

the opacities are completely consistent with the pressure, temperature, and abundances

on every iteration.

The radiative flux is computed by solving the integral form of the radiative trans-

fer equation in 1D plane-parallel geometry following Bueno & Bendicho (1995), which



�� CHAPTER �. A NEW SET OF ATMOSPHERE AND EVOLUTION MODELS

is discussed in Section 2.2. We include isotropic scattering and sample 16 ray directions

with a discrete ordinate method using Gauss-Legendre quadrature. The convective flux

is computed using mixing length theory (Henyey et al. 1965) as discussed in Section 2.3,

with a mixing length of 2 times the local pressure scale height. The adiabatic gradient is

computed using EOS tables from Saumon et al. (1995), as discussed in Section 3.1.4.

5.1.3 Interior structure and evolution model

Calculations of interior structure and evolutionary models are based on the Lyon stellar

evolution code, and are described in detail in Chabrier & Baraffe (1997); Baraffe et al.

(1998, 2003). The structure models are based on the coupling between interior profiles

and the chemical equilibrium atmospheric structures described previously at an optical

depth ⌧ = 1000. We note that this is deeper than in previous models which used ⌧ ⇤ 100

to couple the atmosphere to the interior. However, the radial extension of the atmosphere

at ⌧ ⇤ 1000 is still negligible compared to the total radius of the object, and thus the

Stefan-Boltzmann condition (L ⇤ 4⇡�R
2
T

4
eff) is still satisfied. We use a solar metallicity

helium mass fraction Y ⇤ 0.275 (Asplund et al. 2009) to be consistent with previous models

(Baraffe et al. 1998; Chabrier et al. 2000b; Baraffe et al. 2003). Since we are using a metal-

free EOS, the presence of metals with mass fraction Z can be mimicked by an equivalent

He mass fraction Yeq ⇤ Y + Z (Chabrier & Baraffe 1997). We use Z ⇤ 0.0169 giving

Yeq ⇤ 0.2919.

The main change in terms of inner structure input physics concerns the EOS. In this

work we use the new EOS for H–He mixtures presented by Chabrier et al. (2019), which

includes ab initio quantum molecular dynamics calculations in the regime of pressure

dissociation and ionisation. This is a significant improvement over the semi-analytic H–

He EOS of Saumon et al. (1995) (SCVH95) used in this regime in previous models (Baraffe

et al. 1998; Chabrier et al. 2000b; Baraffe et al. 2003).

For the sake of comparison, we have also computed a set of evolutionary models

with the SCVH95 EOS to determine the impact of the new EOS. We note that the SCVH95

EOS is used in the atmosphere models (see Section 3.1.4). There is, however, no difference

between the SCVH EOS and the new EOS of Chabrier et al. (2019) in the atmospheric P-T
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Figure 5.1: Self-consistent atmospheric P-T structures from the ATMO 2020 model grid. Each panel shows P-T
structures with Teff ⇤200, 300, 450, 600, 800, 1000, 1200, 1400, 1600, and 1800 K from left to right respectively,
with log(g) ⇤ 4.0 (left panel) and log(g) ⇤ 5.5 (right panel). The condensation curves of major condensing
species are shown as grey dashed lines. Convectively unstable regions of the model atmosphere are shown
as thickened solid lines. Finally, the 1.26, 3.6 and 4.5 µm photospheres are shown as coloured markers on the
profiles.

regime, which is close to a perfect gas. There is thus no inconsistency when using the

SCVH EOS in the atmosphere models and the new EOS in the inner structure models.

5.2 The ATMO 2020 model grid

5.2.1 Atmospheric temperature structures

Self-consistent, chemical equilibrium P-T profiles from theATMO2020 model grid are shown

in Figures 5.1 and 5.2. Figure 5.1 shows the variation of the P-T profiles with Teff at constant

surface gravities of log(g) ⇤ 4.0 and log(g) ⇤ 5.5. Convective regions typically lie deep

in the atmosphere, where the optical depth is high, thermal photons cannot propogate

far, and radiative energy transport is inefficient. At cooler Teff, detached convective zones

appear at lower pressures in the P-T profiles, as the local Planck function in the model

atmosphere aligns with regions of strong molecular opacity (this is discussed in Chap-

ter 2, Section 2.1). Detached convective zones appear for Teff  800 K at log(g) ⇤ 4.0, and

Teff  450 K at log(g) ⇤ 5.5, and are separated from the deep convective zones by radiative

regions, within which the opacity is low enough for radiative transport to be efficient.
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Figure 5.2: Same as Fig. 5.1, but showing P-T structures with log(g) ⇤ 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 and 5.5 from
top to bottom respectively, with Teff ⇤ 450 K (left panel) and Teff ⇤ 800 K (right panel).

Indicated on the profiles shown in Fig. 5.1 are the locations of the 1.26, 3.6 and 4.5 µm

photospheres, which have been located using the contribution function (Eq. (2.13)). The

general trend is that the photosphere moves to higher pressures with decreasing Teff, as the

local temperature of the atmosphere decreases. The 3.6 µm photosphere initially moves to

lower pressures in the atmosphere between Teff ⇤ 1400 K and Teff ⇤ 1600 K for log(g) ⇤ 4.0,

and Teff ⇤ 1600 K and Teff ⇤ 1800 K for log(g) ⇤ 5.5. This is due to CH4 beginning to absorb

at 3.6 µm, as it begins to be the dominant form of carbon in the upper atmosphere. The

4.5 µm photosphere gradually moves towards higher pressures, and undergoes the largest

shift towards higher pressures between Teff ⇤ 1200 K and Teff ⇤ 800 K for log(g) ⇤ 4.0,

and Teff ⇤ 1400 K and Teff ⇤ 1000 K for log(g) ⇤ 5.5. This is due to CO becoming less

abundant as the dominant form of carbon becomes CH4, which removes opacity from the

4.5 µm wavelength region and shifts the photosphere to higher pressure.

Figure 5.2 shows the variation of the P-T profiles with log(g) at constant effective

temperatures of Teff ⇤ 450 K and Teff ⇤ 800 K. At a given pressure level, lower gravity

atmospheres have a higher local temperature. An alternative way of expressing this is

that at a given optical depth, lower gravity atmospheres have lower pressures. This can

be seen from the location of the 1.26, 3.6, and 4.5 µm photospheres, which are located at
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lower pressures for lower gravity atmospheres, and higher pressures for higher gravity

atmospheres. This can be best explained through the pressure scale height of the atmo-

sphere (Eq. (2.5)). Consider the column density of gas N , from a reference location in

the atmosphere with local density n0, vertically to infinity. In an isothermal atmosphere

with constant gravity, the column density is N ⇤ n0HP (Fortney 2018). Since lower grav-

ity atmospheres have larger scale heights, the column density N will increase in lower

gravity atmospheres, which will increase the optical depth at a given pressure level. The

photosphere will therefore lie at lower pressures in the atmosphere.

5.2.2 Chemistry and opacities

Figure 5.3 shows the chemical equilibrium abundances of molecules that play an impor-

tant role in shaping the emission from ATMO 2020 model atmospheres. Chemical equilib-

rium abundances for several values of Teff and log(g) are shown.

At Teff ⇤ 1200 K, the dominant form of carbon is CH4 in the cooler upper atmo-

sphere, and CO in the warmer deep atmosphere. Note some carbon is contained within

CO2, however its abundance is several orders of magnitude lower than CO and CH4. The

transition between CO and CH4 occurs at ⇠ 0.1 bar for log(g) ⇤ 4.0, and ⇠ 15 bar for

log(g) ⇤ 5.5, due to lower gravity atmospheres being warmer at a given pressure level

(see Fig. 5.2). This transition moves to higher pressures in the atmosphere with decreas-

ing Teff, and by Teff ⇤ 300 K the model atmosphere is completely CH4 dominated at all

pressures for both surface gravities shown in Fig. 5.3.

The dominant form of nitrogen is N2 at Teff ⇤ 1200 K for both surface gravities

shown in Fig. 5.3. At Teff ⇤ 800 K, N2 is the dominant form of nitrogen in the warmer

deep atmosphere, and NH3 is more abundant in the cooler upper atmosphere. Similarly

to the CO to CH4 transition, the N2 to NH3 transition occurs at higher pressures for higher

log(g) and decreasing Teff. In the Teff ⇤ 300 K models shown, the atmosphere is almost

completely NH3 dominated at both values of log(g).

The most abundant molecule is generally H2O, except at high pressures in the Teff ⇤

1200 K and Teff ⇤ 800 K, log(g) ⇤ 4.0 model atmospheres in which CO is more abundant.
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Figure 5.3: Chemical abundance profiles of H2O, CH4, CO, CO2, NH3, PH3, and N2 of self-consistent ATMO
models generated under the assumption of chemical equilibrium. Columns display models with different
surface gravities, and rows display models with different effective temperatures, as indicated in the plot
titles.

In these model atmospheres, the H2O abundance can be seen increasing with decreasing

pressure as CO becomes less abundant, which frees O to form H2O. In the coolest model

atmospheres shown in Fig. 5.3, H2O condenses in the upper atmosphere, depleting its gas

phase abundance. Similarly, NH3 also condenses, depleting its gas phase abundance at

lower temperatures (and thus pressures) than H2O. The condensation level depends on

log(g), with H2O and NH3 condensing at higher pressures in higher gravity atmospheres,
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Figure 5.4: Abundance weighted cross-sections of the main molecular opacity sources in T and Y dwarf
atmospheres. Each panel shows the opacity at the pressures and temperatures of the photosphere at a given
wavelength indicated in the plot titles. The opacities are taken from models with Teff ⇤ 800 K and Teff ⇤ 300 K,
log(g) ⇤ 4.0, as indicated in the plot titles.

due to high gravity atmospheres being cooler at a given pressure level.

Phosphine (PH3), while less abundant than other molecules shown in Fig. 5.3, can

also impact the emission spectra from a model atmosphere. Its abundance becomes signif-

icantly depleted at low pressures in the Teff ⇤ 800 K and Teff ⇤ 300 K model atmospheres

in Fig. 5.3, due to the condensation of phosphoric acid (H3PO4). This causes phosphorous

(P) to rainout of the atmosphere, depleting the abundance of PH3.

The absorption cross-sections of H2O, CH4, CO, CO2, NH3 and PH3 are shown in
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Fig. 5.4. Each panel shows abundance weighted cross-sections at the pressures and tem-

peratures of the 1.26 and 4.5 µm photospheres of the Teff ⇤ 800, 300 K and log(g) ⇤ 4.0

model atmospheres. This Figure serves to highlight how the wavelength dependent opaci-

ties of these molecules in brown dwarf and giant exoplanet atmospheres shape the emitted

flux. H2O is the most prominent source of opacity across the spectrum, and has strong ab-

sorption bands at all pressures and temperatures shown. H2 �H2 collisionally induced

absorption (CIA) adds a continuum like opacity to the spectrum, peaking at ⇠ 2.4 µm.

H2 �H2 CIA contributes to the total opacity around ⇠ 2.4 µm and ⇠ 4.0 µm at high atmo-

spheric pressures.

In the Teff ⇤ 800 K model atmosphere, CH4 opacity is stronger at 1 bar than at

14.5 bar in the atmosphere, due to its higher abundance (see Fig. 5.4). Conversely, CO

and CO2 opacity are stronger at 14.5 bar than at 1 bar, and influence the opacity in the

⇠ 4.5 µm spectral region. In the cooler Teff ⇤ 300 K model atmosphere, CH4 opacity has

strengthened and has absorption bands at multiple wavelengths across the spectrum. The

opacity from CO and CO2 has weakened to have no influence on the total mixture opacity,

and instead the ⇠ 4.5 µm spectral region is shaped by PH3 and H2O opacity. The absorp-

tion of NH3 also increases in the Teff ⇤ 300 K model atmosphere to influence multiple

wavelengths, in particular the ⇠ 10 µm region.

5.2.3 Emission spectra

Figure 5.5 shows chemical equilibrium ATMO 2020 emission spectra for a range of Teff and

log(g). The emission spectra are formed by the P-T profiles shown in Fig. 5.1, the chem-

ical abundances shown in Fig. 5.3 and the opacities shown in Fig. 5.4. Absorption bands

from H2O, CH4 and NH3 increase with decreasing Teff, carving out defined flux peaks

which emerge through opacity windows. Surface gravity also has an impact on the emit-

ted flux at a given Teff, particularly in the K-band due to H2 �H2 CIA. Higher gravity

atmospheres have lower flux in the K-band, due to higher photospheric pressures increas-

ing the H2 �H2 CIA at this wavelength. Other differences in the low and high gravity

spectra are primarily due to differing CH4 and NH3 abundances.
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Figure 5.5: Emission spectra of self-consistent ATMO model atmospheres generated under the assumption of
chemical equilibrium. Four effective temperatures are shown (Teff ⇤ 1200, 800, 500, 300 K) at two gravities
(log(g) ⇤ 4.0, 5.5). Overplotted at the top are the approximate locations of molecular absorption features,
and the locations of the Mauna Kea, WISE and Spitzer IRAC photometric filters.

5.2.4 Models with vertical mixing

Atmosphere models with non-equilibrium chemistry due to vertical mixing are calculated

with ATMO using the self-consistently coupled Tsai et al. (2018) chemical relaxation scheme

as described in Section 3.1.3. Vertical mixing in the atmosphere is parametrised using the

eddy diffusion coefficient Kzz in cm2s�1 (see Section 3.1.3), and is assumed to be constant

throughout the atmosphere. We scale the eddy diffusion coefficient with surface gravity

since the typical dynamical timescale t can be approximated as

t ⇠
H

2
P

Kzz

/ 1
g2Kzz

, (5.1)

where HP is the atmospheric scale height. Within this approximation, we keep the dy-
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Figure 5.6: Vertical mixing relationships with surface gravity (strong and weak; see text) used in the genera-
tion of non-equilibrium atmosphere models in this work.

namical timescale t constant by changing the value of Kzz by an order of magnitude for

a log(g) step of 0.5 within the grid. We generate atmosphere model grids with two Kzz

scaling relationships with surface gravity as shown in Figure 5.6; we refer to these rela-

tionships as ‘strong’ and ‘weak’ mixing throughout this work.

Our choice of mixing strengths come from approximate values in the literature

which have been found to provide reasonable comparisons to observations of late T and

Y dwarfs. For example, Leggett et al. (2017) found Kzz values in the range 104-106 cm2/s

provided reasonable comparison to the [4.5]-M colours of late T and Y dwarfs for model

sequences with a constant gravity of log(g) ⇤ 4.5 (see their Figure 7). We have therefore

adopted to set log(Kzz) ⇤ 4 and log(Kzz) ⇤ 6 in the ‘weak’ and ‘strong’ cases respectively

at log(g) ⇤ 4.5 and scale Kzz with gravity.

We note that Kzz has often been estimated by assuming it is the same diffusion co-

efficient as that derived from mixing length theory of convection, i.e. Dmix ⇠ lmixvmlt,

with lmix the mixing length and vmlt the convective velocity (Gierasch & Conrath 1985;

Ackerman & Marley 2001). This however has to be extrapolated to the convectively sta-

ble radiative regions of the atmosphere where a number of complex processes such as
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Figure 5.7: Self-consistent atmospheric P-T structures calculated assuming chemical equilibrium (CEQ) and
non-equilibrium chemistry due to vertical mixing with different mixing strengths (CNEQ) indicated in the
legend, for Teff ⇤ 400, 800 and 1200 K.

gravity waves and convective overshooting (Freytag et al. 1996; Kupka et al. 2018) may

drive the mixing. The value of Kzz has also been approximated from 3D numerical sim-

ulations of hot Jupiters including passive tracer transport (Parmentier et al. 2013; Zhang

& Showman 2018). These approaches to estimating Kzz have their limitations and none

has provided a quantitative picture that has reached a consensus in the community. In

this work we therefore choose to adopt a simpler approximation for Kzz to examine the

trends of non-equilibrium chemistry in colour-magnitude diagrams (Chapter 6), and we

leave more sophisticated studies of Kzz for future work.

Figure 5.7 shows self-consistent P-T structures calculated with ATMO assuming chem-

ical equilibrium and non-equilibrium due to vertical mixing in the weak and strong Kzz

cases. We choose to show here a low gravity of log(g) ⇤ 3.5, and hence high Kzz values,

to give large, clear differences between the equilibrium and non-equilibrium chemistry

models. Non-equilibrium chemistry models produce P-T structures with cooler upper at-
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mospheres compared to chemical equilibrium models. This difference decreases towards

lower effective temperatures. Models with stronger vertical mixing give cooler temper-

atures in the atmosphere than models with weaker vertical mixing, a difference which

again decreases with decreasing effective temperature.

The differences in the self-consistent P-T structures can be understood by examin-

ing the chemical abundance profiles, which are shown in Figure 5.8. At Teff ⇤ 1200 K,

the dominant carbon bearing species in the cooler, upper atmosphere is CH4 and in the

warmer, deeper atmosphere is CO. Vertical mixing acts to bring CO from the deep at-

mosphere into the upper atmosphere on timescales shorter than the chemical timescale

converting CO to CH4. This therefore increases the CO abundance and depletes the CH4

abundance in the upper atmosphere. While significantly less abundant than CO, CO2 is

similarly mixed into the upper atmosphere in Figure 5.8.

The abundance of CH4 is quenched by up to 2 orders of magnitude in both the weak

and strong mixing cases in the Teff ⇤ 1200 K models in Figure 5.8. The H2O abundance is

also quenched by up to a factor of ⇠ 3. H2O and CH4 are two of the most significant opac-

ity sources in model brown dwarf atmospheres, and therefore the depleted abundances

of these species in models including vertical mixing lowers the opacity in the upper at-

mosphere. This results in P-T structures that are cooler in the upper atmosphere as seen

in Figure 5.7.

Models with stronger vertical mixing quench species from deeper in the atmosphere

due to shorter mixing timescales, which leads to stronger depletion of CH4 and a larger

increase in the abundance of CO. In the Teff ⇤ 1200 K, log(Kzz) ⇤ 8 model the quenched

mole fraction of methane is 3.7 ⇥ 10�6, whereas in the Teff ⇤ 1200 K, log(Kzz) ⇤ 6 model

the quenched mole fraction is 1.4 ⇥ 10�5. This difference in abundance translates into a

difference in opacity, and causes models with strong vertical mixing to be cooler in the

upper atmosphere than models with weak vertical mixing in Figure 5.7.

At lower effective temperatures the dominant carbon bearing species becomes CH4

throughout the atmosphere, as can be seen in the Teff ⇤ 400 K models in Figure 5.8. The

change in CH4 abundance due to vertical mixing is therefore smaller at lower effective
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Figure 5.8: Chemical abundance profiles of H2O, CO, CH4, CO2, N2, and NH3 of self-consistent ATMOmodels
generated under the assumption of chemical equilibrium (solid lines) and non-equilibrium chemistry due
to vertical mixing (dashed lines). Non-equilibrium models calculated with the weak and strong Kzz mixing
relationship are shown in the left and right columns respectively. The rows display models with different
effective temperatures, as indicated in the plot titles. These chemical abundance profiles correspond to the
P-T profiles shown in Figure 5.7 and have log(g) ⇤ 3.5. Note that in some cases the abundance profile of a
given species lies below the profile of another species.

temperatures, giving a smaller change in opacity in the upper atmosphere. This causes

smaller temperature differences in the P-T structures calculated with and without vertical

mixing at lower effective temperatures, as seen in Figure 5.7.

At low effective temperatures the nitrogen chemistry of the atmosphere begins to
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become important in a role similar in nature to the carbon chemistry at higher tempera-

tures. In the Teff ⇤ 400 K models in Figure 5.8, the dominant nitrogen bearing species in

the cooler upper atmosphere is NH3, and in the warmer deeper atmosphere is N2. Ver-

tical mixing acts to bring N2 from the deep atmosphere into the upper atmosphere on

timescales shorter than the chemical timescale converting N2 to NH3. The abundance of

N2 therefore increases in the upper atmosphere and the NH3 abundance becomes depleted

by approximately an order of magnitude. The depletion of NH3 in the upper atmosphere

becomes greater in models with stronger vertical mixing. The condensation of H2O can

also be seen in the chemical equilibrium abundances in the Teff ⇤ 400 K model in Fig-

ure 5.8. Including vertical mixing brings gas phase H2O into a region of the atmosphere

that would otherwise be absent of H2O due to condensation.

The changes in the abundances of H2O, CO, CH4, CO2, N2 and NH3 due to vertical

mixing impact the emission spectra from the model atmosphere, as shown in Figure 5.9.

In the Teff ⇤ 800 K and Teff ⇤ 1200 K non-equilibrium chemistry models, the depleted CH4

abundance lowers the opacity in absorption bands at ⇠ 1.6 µm, ⇠ 2.15 µm, ⇠ 3.15 µm and

⇠ 7.1 µm. This gives brighter H and L
0 bands in the non-equilibrium spectra, which be-

comes enhanced with stronger vertical mixing. The K-band flux is lower in the Teff ⇤ 800 K

and Teff ⇤ 1200 K non-equilibrium spectra due to the P-T profiles being cooler than the

equilibrium models. This causes the model levels in which the K-band flux is generated

to be shifted to slightly higher pressures where H2 �H2 collisionally induced absorption

is stronger.

The abundances of CO and CO2 are increased by many orders of magnitude in the

upper atmosphere under non-equilibrium chemistry due to vertical mixing in all models

shown in Figure 5.8. Despite CO2 being several orders of magnitude less abundant than

CO, both CO and CO2 have strong absorption features at ⇠ 4.3 µm and ⇠ 4.18 µm, respec-

tively, and their increased abundances lower the flux at these wavelengths in the W2 and

M
0 bands in the non-equilibrium spectra shown in Figure 5.9. Since higher values of Kzz

mix CO and CO2 from deeper in the atmosphere where they are more abundant, the W2

and M
0 band flux depend strongly on Kzz.

At lower effective temperatures NH3 absorption features can begun to be seen in
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Figure 5.9: Emission spectra of self-consistent ATMO model atmospheres generated under the assumption of
chemical equilibrium (black) and non-equilibrium chemistry due to vertical mixing (red). Non-equilibrium
models calculated with the weak and strong Kzz mixing relationship are shown in the left and right columns
respectively. The rows display models with different effective temperatures, as indicated in the plot titles.
These emission spectra correspond to the P-T profiles and chemical abundance profiles in Figure 5.7 and Fig-
ure 5.8 respectively, and all models shown here have log(g) ⇤ 3.5. Overplotted for clarity are the approximate
locations of molecular absorption features causing differences between the equilibrium and non-equilibrium
spectra. Also indicated in the top plots are the locations of the Mauna Kea near-infrared photometric filters
(blue bars), the WISE infrared filters (green bars), and Spitzer IRAC filters (magenta bars).

the emission spectra. In the Teff ⇤ 800 K models, a NH3 absorption feature is seen at

⇠ 10.2 µm. Since vertical mixing quenches the abundance of ammonia, the flux emitted

through this NH3 absorption band increases in models with non-equilibrium chemistry.

At lower effective temperatures in the Teff ⇤ 800 K models, the equilibrium abundance of

ammonia increases, the absorption feature at ⇠ 10.2 µm becomes more prominent, and

NH3 absorption features at ⇠ 1.5 µm, ⇠ 1.9 µm, ⇠ 2.85 µm, ⇠ 5.6 µm, and ⇠ 8.6 µm also
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Figure 5.10: Evolution of the effective temperature and surface gravity of the ATMO 2020 models, for masses
of 0.0005 M� and 0.001 � 0.075 M� in steps of 0.001 M� (coloured lines). Isochrones are also shown as grey
dotted lines, with ages of 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0 and 10.0 Gyr.

appear in the spectra. In models with non-equilibrium chemistry due to vertical mix-

ing, the quenching of ammonia increases the flux emitted through these wavelengths, in

particular brightening the H and W3 bands.

5.2.5 Evolutionary tracks

The chemical equilibrium atmospheric temperature structures presented in Section 5.3.1

are used to couple the non-grey atmosphere to the interior structure, and calculate evo-

lutionary tracks for a range of substellar masses. Figure 5.10 shows the evolution of Teff

and log(g) as a function of mass and age. The evolution proceeds from left to right, as

a given object contracts to higher gravity and cools to lower effective temperature. This

Figure shows how a given Teff and log(g) from the atmospheric model grid can be used

to infer a mass and age of an object.

One of the major improvements of the interior structure model in this work is the use
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of the EOS of Chabrier et al. (2019), over the older EOS of Saumon et al. (1995) (see Section

Section 5.1.3). Figure 5.11 shows evolutionary tracks calculated with these different EOSs.

There are notable differences for the highest masses, with the new EOS predicting slightly

cooler, less luminous objects at old ages close to the stellar–substellar transition. The new

EOS also slightly changes the cooling curve around the deuterium burning minimum

mass, which can be seen in the 0.012 M� track.

The right column of Figure 5.11 shows evolutionary tracks magnified for objects

close to the substellar boundary. The largest difference occurs for a 10 Gyr old 0.071 M�

object, which is now predicted to be⇠ 180 K cooler in effective temperature and⇠ 0.25 dex

less luminous with the new EOS. We note, however, that we do not expect our evolutionary

tracks to be accurate at the 0.001 M� level, as other uncertainties in the evolution model

such as small changes in the helium mass fraction can cause changes to the cooling curves

comparable to those caused by the new EOS. Therefore, distinguishing between the new

and the old EOS will be challenging, and for this reason we avoid providing an exact value

for the mass at the substellar boundary predicted by our new models.

To illustrate the impact of the new EOS we show the interior temperature and den-

sity profiles of a 0.075 M�, 10 Gyr object in Figure 5.12. The new EOS of Chabrier et al.

(2019) gives an object up to ⇠ 5% cooler and ⇠ 8% denser in the core. This therefore raises

the theoretical stellar–substellar boundary by 1-2% in mass, as the interior is now cooler

and denser, thus more degenerate ( / T/⇢2/3, where  is the degeneracy parameter

equal to the ratio of the thermal energy kT to the electron Fermi energy kTF (Chabrier &

Baraffe 1997)) for a given mass and age. This results in a change in the cooling curves at

masses near the stellar–substellar boundary, with objects cooling to lower Teff.

5.3 Comparisons to other models

Throughout this Section, we present and compare the new set of atmosphere models and

evolutionary tracks to others available in the literature in order to highlight model im-

provements. Alongside previously published ATMO models, we choose two families of

brown dwarf models that are widely used in the community for comparison, the Lyon
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Figure 5.11: Luminosity, effective, and central temperature (from top to bottom) as a function of age calculated
with the new EOS from Chabrier et al. (2019) (solid lines) and the older EOS of Saumon et al. (1995) (dashed
lines). These models are calculated with ATMO surface boundary conditions, as described in the text. Each
column displays a different selection of masses, indicated by colour-coded annotations placed next to the
curves calculated with the new EOS.

group and the Saumon & Marley group.

The Lyon group use the model atmosphere code Phoenix for application to stellar

and substellar atmospheres (Allard & Hauschildt 1995; Hauschildt et al. 1999), which have
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Figure 5.12: Interior temperature (top) and density (bottom) as a function of normalised radial mass profile
of the simulated object. Solid blue lines are generated using the new EOS of Chabrier et al. (2019), and the
dashed orange lines are generated using the older EOS of Saumon et al. (1995).

been succesfully used to describe the evolution of low-mass stars (e.g. Baraffe et al. (2015)).

Both Chabrier et al. (2000b) and Baraffe et al. (2003) presented evolutionary calculations for

brown dwarfs using grids of Phoenix model atmospheres from Allard et al. (2001), labelled

"AMES-Dusty" and "AMES-Cond", respectively. The AMES-Dusty models included dust

opacity and are valid for hot (i.e. massive and/or young) brown dwarfs, whereas the

AMES-Cond models neglected dust opacity representing the case where all condensates

have settled below the photosphere, and are valid for cooler brown dwarfs.

The second set of brown dwarf models we use for comparisons are from the Saumon

& Marley group, who applied and developed a 1D radiative-convective code originally

designed for solar system atmospheres to brown dwarfs (McKay et al. 1989; Marley et al.
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1996, 2002; Burrows et al. 1997). Evolutionary models from this group were presented in

Saumon & Marley (2008), who varied the cloud sedimentation efficiency (see Ackerman

& Marley (2001)) within their atmospheric outer boundary condition to investigate the

impact of clouds on brown dwarf evolution. Most recently, this group has been devel-

oping a new set of atmosphere and evolution models named Sonora (Marley et al. 2017,

Marley et al., in prep). While yet to be published, these models are already being used

by the community to model brown dwarfs and interpret observations (e.g. Nielsen et al.

2019; De Rosa et al. 2019; Kitzmann et al. 2020; Zhang 2020; Miles et al. 2020). Currently,

the Sonora model grid consists of chemical equilibrium model atmospheres with three

different metallicities, [M/H] ⇤ �0.5, 0.0, 0.5, and spans a similar effective temperature

and surface gravity range to the ATMO 2020 grid.

5.3.1 Atmospheric temperature structures

The ATMO chemical equilibrium temperature structures are compared to the AMES-Cond

and Sonora models in Fig. 5.13 and Fig. 5.14 respectively. Temperature structures are

shown for log(g) ⇤ 4.0, log(g) ⇤ 5.0 and Teff between 200 and 2400 K. The effect of

surface gravity on the temperature structure of the atmosphere can be seen in these figures.

Lower surface gravity objects are hotter at a given pressure level in the atmosphere, or

alternatively, have lower pressures for a constant optical depth.

Significant differences in the temperatures structures from the ATMO and AMES-

Cond can be seen in Fig. 5.13, for a given Teff and log(g). The ATMO profiles are typically

warmer than AMES-Cond for Teff < 1200 K in the log(g) ⇤ 4.0 case, and Teff < 2000 K in

the log(g) ⇤ 5.0 case. There are numerous model improvements that could contribute to

these differences since the AMES-Cond grid was generated. Most notably, improved high-

temperature line lists including significantly more transitions for crucial species such as

H2O, CH4, and NH3, have increased the atmospheric opacity leading to warmer temper-

ature profiles in this Teff range. A good agreement with the Sonora temperature profiles

in this Teff range can be seen in Fig. 5.14, which similarly use improved high-temperature

line lists to calculate opacities in the atmosphere model.

TheATMOTeff ⇤ 200 K models are slightly cooler in the deep atmosphere compared to
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Figure 5.13: Self-consistent atmospheric P-T structures from this work (solid blue lines) and from the AMES-
Cond models of B03 (dashed orange lines) for log(g) ⇤ 4.0 (left panel), log(g) ⇤ 5.0 (right panel), and Teff ⇤

200, 400, 600, 800, 1000, 1200, 1400, 1600, 2000, and 2400K (from left to right in each panel).

Figure 5.14: Same as Fig. 5.13 but with the Sonora atmosphere models

the AMES-Cond and Sonoramodels in Fig. 5.13 and Fig. 5.14. Since details of the Sonora

models are yet to be published, and the Phoenix models were generated in 2001, it is

difficult to confidently conclude the cause of the cooler ATMO profiles at Teff ⇤ 200 K. How-

ever, one likely cause is subtle differences in the treatment of low-temperature equilibrium

chemistry and condensation, since the temperature structure at these cool temperatures

is highly sensitive to the condensation of H2O and NH3.
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Figure 5.15: Evolution of the effective temperature and luminosity for substellar masses � 0.2 M� from this
work (solid lines), from the AMES-Cond models of B03 (dashed lines, top), and the Sonoramodels (dashed
lines, bottom).

At higher effective temperatures, ATMO profiles tend to be cooler than the AMES-

Cond and Sonoramodels for Teff > 1200 K in the log(g) ⇤ 4.0 case, and Teff > 2000 K in the

log(g) ⇤ 5.0 case. This suggests we may be missing opacity at higher temperatures. We do

not include the opacity of some metal oxides and metal hydrides which can be important

in shaping the temperature profiles at high Teff (Malik et al. 2019). This is only important

for high-Teff objects (i.e. massive and/or young brown dwarfs), and will therefore not

affect the evolutionary calculations of cool T–Y objects presented in this work.

5.3.2 Evolutionary tracks

The evolutionary tracks from this work and from the AMES-Cond and Sonora calculations

are compared in Figure 5.15, which shows the evolution of the effective temperature and

luminosity for masses � 0.02 M�. As previously discussed, the new EOS used in this
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Figure 5.16: Same as Figure 5.15 but for masses  0.2 M� .

work raises the hydrogen and deuterium minimum burning mass, causing changes in the

cooling curves at high masses and around 0.012 M�, respectively. Indeed, the ATMO tracks

can be seen to be cooler and less luminous than both the AMES-Cond and Sonora tracks at

high masses and old ages, likely due to the usage of the new EOS. The AMES-Cond tracks

were calculated with the old EOS, while it is not current known what EOS was used in the

Sonora calculations. We also note that small changes in the effective helium mass fraction

can also induce changes in the evolutionary tracks qualitatively similar to that induced

by the new EOS. The effective helium mass fraction could therefore be another cause of

differences between the ATMO and Sonora calculations.

At young ages, the ATMO tracks tend to be warmer and more luminous than the

AMES-Cond and Sonoramodels in Figure 5.15. This is likely due to the cooler pressure-

temperature profiles at high Teff used as surface boundary conditions (see Figure 5.13
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and Figure 5.14), which stems from some missing condensate and hydride opacity in the

ATMO models. At lower masses and cooler effective temperatures, the ATMO and Sonora

tracks show good agreement stemming from the similar atmospheric P-T profiles in this

Teff range (see Figure 5.14).

Figure 5.16 compares theATMO evolutionary tracks with the AMES-Cond andSonora

tracks for masses  0.02 M�. The biggest differences arise for 0.012 M�, i.e. around the

deuterium burning limit, due to the usage of the new EOS in the ATMO models. There is

also a change in the shape of the evolutionary curves at these lower masses due to changes

in the atmospheric temperature structures used as the surface boundary conditions. At

younger ages, or for Teff > 350 K, the ATMO tracks are cooler and less luminous than the

AMES-Cond tracks due to the warmer temperature structures, as shown in Figure 5.13. At

older ages, or for Teff < 350 K, the ATMO tracks switch to being warmer and more luminous

than the AMES-Cond tracks, due to the cooler temperature structures at the very lowest

Teff seen in Figure 5.13. This can also be seen in the comparisons with the Sonora tracks.

The ATMO and Sonora tracks show good agreement for Teff > 350 K, a Teff region in which

the temperature structures also show good agreement (see Figure 5.14). For Teff < 350 K,

the ATMO tracks become warmer and more luminous than the Sonora tracks, due to the

temperature structures being cooler at the lowest Teff (see Figure 5.14).

5.3.3 Emission spectra

The AMES-Cond grid of the Lyon group was labelled as such due to the NASA-AMES line

lists used to calculate the opacity of H2O and TiO. Since the calculation of these models

there have been significant improvements in high-temperature line lists for these species,

in particular the BT2 H2O line list from Barber et al. (2006). A new BT-Cond grid of Phoenix

model atmospheres with updated opacities was presented by Allard et al. (2012), which

spans Teff ⇤ 800 � 3000 K.

Figure 5.17 shows comparisons of emission spectra from ATMO and BT-Cond for a se-

lection of effective temperatures and surface gravities. Differences in the emission spectra

can be seen in the H and K bands due to the updated CH4 line list (Yurchenko & Tennyson

2014) used by ATMO. This updated line list adds opacity to the red side of the H band peak at
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Figure 5.17: Synthetic near-infrared emission spectra from ATMO compared with models from the BT-Cond
grid (Allard et al. 2012) for a range of effective temperatures and log(g) ⇤ 4.0 (left) and log(g) ⇤ 5.0 (right).
Overplotted are the approximate locations of absorption features causing differences between the spectra.
Also indicated in the top plots are the locations of the Mauna Kea near-infrared photometric filters (blue
bars).

⇠ 1.6 µm, altering the shape of the H band. Furthermore, improved H2 �H2 collisionally

induced absorption used by ATMO from Richard et al. (2012) can be seen increasing the flux

emitted through the K band, an effect also seen by Saumon et al. (2012). At Teff ⇤ 800 K

differences can be seen in the Y band at � ⇠ 1 µm, due to the red wing of the potassium

resonance doublet. As shown in Chapter 4, different potassium resonance line broaden-

ing schemes can lead to large differences in the flux emitted through the Y and J bands.

Furthermore, differences in the condensation schemes between ATMO and AMES-Cond can

affect the potassium abundance, leading to further differences in opacity in the Y band.

The emission spectra from the ATMO 2020 model atmosphere grid and previously

published ATMO models from Tremblin et al. (2015) are shown in Figure 5.18. Tremblin

et al. (2015) presented a grid of ATMOmodel atmospheres, showing how non-equilibrium
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Figure 5.18: Synthetic infrared emission spectra from the ATMO 2020 model grid compared with previously
published ATMO models from Tremblin et al. (2015) for a range of effective temperatures and log(g) ⇤ 4.0
(left) and log(g) ⇤ 5.0 (right). Overplotted are the approximate locations of absorption features causing
differences between the spectra. Also indicated in the top plots are the locations of the Mauna Kea near-
infrared photometric filters (blue bars), WISE photometric filters (green bars), and Spitzer IRAC photometric
filters (magenta bars).

chemistry and alterations to the temperature structure can reproduce spectral observa-

tions of cool late T and Y dwarfs. Here we compare to the chemical equilibrium models

from this grid with no modifications to the thermal structure, to illustrate how model

improvements have impacted the synthetic emission spectra from ATMO.

Differences in the Y band due to the red wing of the potassium resonance dou-

blet can be seen in Figure 5.18. The Tremblin et al. (2015) models used K resonance line

broadening from Allard et al. (2007b), and assumed local condensation to remove potas-
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sium from the gas phase at higher temperatures into alkali feldspars to reduce the strong

Y band absorption. The lower potassium red wing absorption in the Allard et al. (2016)

profiles used in the ATMO 2020 models, and the use of rainout condensation allowing potas-

sium to remain in the gas phase to lower temperatures, causes differences in the Y band

in these models.

A phosphine (PH3) absorption feature can be seen in the ATMO 2020 models at ⇠
4.05 µm, that is absent from the Tremblin et al. (2015) spectra. The Tremblin et al. (2015)

models included 12 opacity sources not including PH3, whereas the ATMO 2020 models

include 22 opacity sources including PH3. These additional opacity sources in the ATMO

2020 models become important at low effective temperatures, adding opacity to the model

atmosphere and leading to warmer temperature structures than the Tremblin et al. (2015)

models. The impact of this can be seen in the emission spectra of the Teff ⇤ 400 K models

in Figure 5.18, where the ATMO 2020 models are brighter in the near-infrared Y, J, H and

K bands due to the warmer temperatures in the atmosphere.

The emission spectra from ATMO and Sonora models are shown in Figure 5.19 for

a selection of effective temperatures and surface gravities. The spectra generally show

good agreement, likely due to improved opacities used by both models that have previ-

ously caused differences with the BT-Cond models. Similarly to the Tremblin et al. (2015)

models, there appears to be additional opacity in the ATMOmodels due to PH3 in the blue

side of the 4 � 5 µm flux window. The Sonora models appear to be either missing PH3

opacity or predicting a much lower abundance than ATMO. At the lowest effective temper-

ature of 200 K the ATMO and Sonora spectra begin to differ. As seen in Figure 5.14, ATMO

predicts a cooler temperature profile than Sonora at Teff ⇤ 200 K. As such, the flux emit-

ted by ATMO is generally lower than Sonora across all wavelengths, apart from � > 15 µm.

In this wavelength region, the opacity is dominated by H2O. Since the ATMO models are

cooler, more H2O is removed from the gas phase as it condenses, leading to more flux

being emitted at � > 15 µm.
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Figure 5.19: Synthetic emission spectra from the ATMO 2020 and Sonora model grids for a range of effective
temperatures and surface gravities, as indicated in the plot titles. Note that the Sonora spectra are presented
at a higher resolution than the ATMO spectra. Overplotted are the approximate locations of absorption features
causing differences between the spectra. Indicated in the top plots are the locations of the Mauna Kea near-
infrared photometric filters (blue bars), WISE photometric filters (green bars), and Spitzer IRAC photometric
filters (magenta bars).

5.4 Summary and conclusions

In this Chapter, I have presented a new set of substellar atmosphere and evolution mod-

els applicable to cool brown dwarfs and directly imaged giant exoplanets, named ATMO

2020. The atmosphere model grid is generated with the 1D code ATMO, and spans Teff ⇤

200�3000 K, log(g) ⇤ 2.5�5.5 with both equilibrium and non-equilibrium chemistry due

to different strengths of vertical mixing. This grid of atmosphere models has been used as

the surface boundary condition for the interior structure model to calculate the evolution

of 0.0005�0.075 M� objects. I have highlighted numerous theoretical modelling improve-

ments through comparisons to other models sets in the literature. The main conclusions

from this Chapter are as follows:
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• The ATMO 2020 atmospheric temperature structures are warmer than previous mod-

els due to improved high temperature line lists of important molecular absorbers

adding opacity to the 1D model atmosphere. These high temperature line lists con-

tain significantly more line transitions required to accurately capture the opacity in

brown dwarf and exoplanet atmospheres, also altering the predicted emission spec-

tra.

• There are notable changes to the cooling tracks of substellar objects due to the usage

of a new H-He equation of state and the warmer atmospheric temperature structures

used as surface boundary conditions. The new EOS raises the mass of the stellar-

substellar boundary by ⇠ 1� 2%, and alters the cooling tracks around the hydrogen

and deuterium burning minimum masses. The warmer outer boundary conditions

changed the shape of the cooling curves in the low-mass brown dwarf regime, with

a 1 MJup object being cooler and less luminous at ages < 0.1 Gyr, and warmer and

brighter for ages > 0.1 Gyr.

• Good agreement is found between the ATMO 2020 and Sonoramodels. The tempera-

ture structures and emission spectra are largely similar except at the highest effective

temperatures where ATMO may be missing some hydride opacity, and at the lowest

effective temperatures where theATMOmodels tend to be cooler than theSonoramod-

els. It is unclear what is causing the differences between the models at Teff ⇤ 200 K.

However we note that the temperature structures and emission spectra are highly

sensitive to condensation of major species and the treatment of equilibrium chem-

istry at these low temperatures.

• Including self-consistent non-equilibrium chemistry due to vertical mixing leads to

cooler temperatures in the upper atmosphere due to the quenching of CH4 and H2O.

This impact on the temperature structure is weakly dependent on mixing strength,

and reduces towards lower effective temperatures as the equilibrium composition

of the atmosphere becomes CH4 dominated. The quenching of CH4, and also NH3

at lower effective temperatures, reduces the opacity of their respective absorption

features brightening multiple regions of the synthetic emission spectra, in particu-

lar the H and L
0 photometric bands. The largest impact on the synthetic emission
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spectra from vertical mixing is the increased CO and CO2 absorption in the 4�5 µm

flux window. The abundances of these species are increased by many orders of mag-

nitude as they are mixed from the deep atmosphere. This is strongly dependent on

the mixing strength, and thus it is concluded that CO and CO2 absorption in the

4 � 5 µm flux window can be used to calibrate Kzz in cool substellar atmospheres.
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Chapter 6

Comparisons to observations

In this Chapter I extensively compare the ATMO 2020 model set presented in Chapter 5 to ob-

servational datasets of substellar objects. These comparisons serve to illustrate the numer-

ous modelling improvements included in the ATMO 2020 model set over previous calcula-

tions in the literature, such as the new H-He EOS, improved high temperature linelists, im-

proved K resonance line broadening, and the inclusion of self-consistent non-equilibrium

chemistry due to vertical mixing. Alongside highlighting and validating these improve-

ments, these comparisons also highlight current shortcomings in the modelling of cool

brown dwarfs in reproducing observational features along the cooling sequence, thus

motivating future work in these areas. The majority of these comparisons to observations

have been published in Phillips et al. (2020b).

The Chapter is organised as follows. In Section 6.1 I compare the ATMO 2020 evo-

lutionary tracks, along with other calculations in the literature, to dynamical mass mea-

surements of brown dwarfs. In Section 6.2 I compare the new models to other models

and observational datasets in colour-magnitude diagrams. I present comparisons of the

new models to the observed spectra of cool brown dwarfs across the T-Y transition in Sec-

tion 6.3. Following these spectral comparisons, I present preliminary work in tuning the

ATMO 2020 models with the effective adiabatic index �eff following Tremblin et al. (2019),

to better reproduce the observed emission spectra of late T and Y dwarfs. Finally, I sum-

marise the Chapter and draw conclusions in Section 6.4.
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6.1 Dynamical masses

Dynamical mass measurements of brown dwarfs from astrometric monitoring programs

of binary systems provide useful tests for evolutionary models (e.g. Dupuy & Liu (2017)).

A reliable measurement of a brown dwarf mass helps break the degeneracy between its

fundamental parameters. Recently, Brandt et al. (2019) presented a dynamical mass mea-

surement of the first imaged brown dwarf Gl 229 B of 70±5 MJup. This measurement joins

a growing list of massive T dwarfs that are challenging evolutionary models by having

higher than expected masses for their observed luminosity (e.g. Bowler et al. (2018); Di-

eterich et al. (2018); Dupuy et al. (2019); Sahlmann et al. (2020)). Evolutionary models tend

to predict that these systems must be older than expected to have cooled to their observed

luminosity, often in tension with age estimates from host star activity or kinematics.

We show in Figure 6.1 the luminosity as a function of mass for ultracool dwarfs with

dynamical mass measurements including Gl 229 B. In this figure we show isochrones from

this work calculated with the new and old EOSs, along with isochrones from Baraffe et al.

(2003), the Sonoramodels, and the hybrid cloud tracks of Saumon & Marley (2008). The

new EOS can be seen predicting cooler, less luminous objects in this figure for old high-

mass objects, since the hydrogen burning minimum mass has been raised and objects

in this mass range cool faster. For a 70 MJup object at an age of 10 Gyr, the ATMO tracks

calculated with the new EOS are⇠ 0.1 dex less luminous than the AMES-Cond and Sonora

tracks, and ⇠ 0.4 dex less luminous than the hybrid cloud tracks of Saumon & Marley

(2008).

As discussed by Brandt et al. (2019), the evolutionary models of B03 and SM08 are

only compatible with a mass of 70 ± 5 MJup for Gl 229 B if the system is old (7-10 Gyr),

in some tension with the 2-6 Gyr age estimate of the host star from kinematics and stellar

activity. The ATMO tracks calculated with the new EOS may help relieve some of the tension

surrounding the age of the system given that high-mass objects are predicted to be cooler

and less luminous at a given age. We note, however, that the difference between the old and

new EOS is not observationally significant given the uncertainty on the mass measurement

of Gl 229 B shown in Figure 6.1.
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Figure 6.1: Luminosity as a function of mass for ultracool dwarfs that have dynamical mass measurements.
ATMO isochrones from this work calculated using the new EOS from Chabrier et al. (2019) and the older EOS
of Saumon et al. (1995) are plotted as solid and dashed grey lines respectively in the left panel. Isochrones
from the AMES-Cond models of Baraffe et al. (2003) are plotted as dotted grey lines in the left panel, and
isochrones from the Sonoramodels and the hybrid cloud models of Saumon & Marley (2008) are plotted in
the right panel with dashed and dotted lines respectively. Most mass measurements are from Dupuy & Liu
(2017) and are plotted as blue circles, with other literature measurements plotted as black diamonds (Bowler
et al. 2018; Lazorenko & Sahlmann 2018; Dupuy et al. 2019; Brandt et al. 2019). Both mass measurements
of ✏ Indi BC from Cardoso (2012) and Dieterich et al. (2018) are plotted, and we refer the reader to Dupuy
et al. (2019) for a discussion on these conflicting mass measurements. We indicate key objects with coloured
outlines.

6.2 Colour-magnitude diagrams

In this section we compare the new ATMO 2020 model set presented in this thesis, along

with the AMES-Cond and Sonoramodels, to observational datasets in colour-magnitude

diagrams. In Section 6.2.1 we show diagrams involving the Mauna Kea Y, J, H and K

photometric filters, which cover the peak in emission of L and early T dwarfs. The peak in

emission for cooler late T and Y dwarfs shifts to longer wavelengths, with a large percent-

age of flux emitted through the 3.5 � 5.5 µm flux window. In Section 6.2.2 we therefore

show diagrams involving photometric filters that cover longer wavelengths, including the

3.5 � 5.5 µm flux window.

6.2.1 Near-infrared diagrams

In Figures 6.2 through 6.5, we present near-infrared colour-magnitude diagrams (CMDs)

including Y, J, H and K band photometry from the database of ultracool parallaxes (Dupuy
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& Liu 2012; Dupuy & Kraus 2013). We exclude from the dataset the known and suspected

binaries, young low-gravity objects, and low-metallicity objects. In these diagrams, the

data show the M and L dwarf population for J or H < 14, which gets progressively redder

for cooler objects, and the sharp change to bluer colours for the methane dominated T

dwarfs at J or H ⇠ 14.5 known as the L-T transition. The cool T and Y dwarf objects for

which the models presented in this work are most applicable, lie below J or H ⇠ 15.

Figure 6.2 shows near-infrared CMDs including 0.1� 5.0 Gyr isochrones with pho-

tometry derived from ATMO chemical equilibrium atmosphere models, to illustrate the

variation of the predicted colours with age. The 0.1 � 5.0 Gyr isochrone range is cho-

sen to approximately capture the typical age range of field brown dwarfs inferred from

mass and luminosity measurements (Dupuy & Liu 2017). The J � H and J � K colours

predicted by ATMO are too blue compared to the data. The colours of the cool T and Y

dwarf population below J ⇠ 15 are not well reproduced, however the isochrones do begin

to redden and reconverge with the observed J�H colours of the Y dwarfs, which lie below

J ⇠ 21. Unlike the J � H and J � K colours, the H � K colours of cool T–Y-type objects

lying below H ⇠ 15 are well reproduced by the ATMO isochrones, with the spread in age

reasonably encapsulating the data. The fact that the ATMO models predict too blue J � H

and J�K colours compared to the data, but are able to reproduce the H�K colours of cool

T and Y dwarfs, indicates that there is a problem with the current models in the J-band.

It has been shown that additional physics not currently included in the ATMOmodels such

as reductions in the temperature gradient due to thermochemical instabilities (Tremblin

et al. 2015; Tremblin et al. 2016) and/or cloud opacity (Morley et al. 2012; Charnay et al.

2018) can reduce the flux in the J band and better reproduce the red J�H and J�K colours

of late T dwarfs.

The Y� J colours in Figure 6.2 are captured by the ATMO isochrones for T type brown

dwarfs between J ⇠ 15�18 mag, before becoming too red at cooler temperatures between

J ⇠ 22�24. As shown in Chapter 4, the Y-band magnitude is formed by the red wing of the

K resonance doublet, and thus the Y� J colours are dependent on the choice of K resonance

line broadening. We show this dependence on the Y � J colours in Figure 6.3, which

shows 1 Gyr isochrones with photometry derived from chemical equilibrium ATMOmodels
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Figure 6.2: Near-infrared colour-magnitude diagrams involving the Mauna Kea Y, J, H and K photometric
filters. The photometry of field brown dwarfs are plotted as black circles, with the data taken from the
database of ultracool parallaxes. The data is filtered to only include field brown dwarfs from Dupuy & Liu
(2012) and Dupuy & Kraus (2013). Isochrones from ATMO 2020 chemical equilibrium models are plotted as
blue lines, with orange markers on each isochrones indicating Teff ⇤ 1000, 800, 600, 500, 450, 400 and 350 K.

calculated with potassium resonance line broadening from Burrows & Volobuyev (2003)

(BV03), Allard et al. (2007b) (A07) and Allard et al. (2016) (A16). The isochrone including

BV03 broadening is too blue for T dwarf objects with J < 20, due to the low opacity in

the red wing of the potassium resonance doublet (see Figure 4.6). The stronger opacity in

the red wing of the potassium doublet from the A07 and A16 broadening treatments give

redder Y� J colours, with the A16 isochrone best matching the data for J < 20. For cooler

objects with J > 22, all the isochrones become too red compared to the observed Y � J

colours of Y dwarfs, before reconverging with the WISE 0855 data point at J ⇠ 29. Given
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Figure 6.3: Y � J colour as a function of absolute J-band magnitude. Photometry of >T6 brown dwarfs are
plotted as black circles, with data from the database of ultracool parallaxes (Dupuy & Liu 2012; Dupuy &
Kraus 2013) and updated photometry from Leggett et al. (2019) and references therein. 1 Gyr isochrone from
chemical equilibrium ATMO models calculated with Allard et al. (2016) (blue), Allard et al. (2007b) (orange)
and Burrows & Volobuyev (2003) (green) K resonance line broadening are shown.

the improvements to the potassium resonance line broadening discussed in Chapter 4, this

could indicate that the current modelling of potassium chemistry is incorrect. Potassium

appears to remain in the gas phase and suppress the Y band flux in the current models to

lower temperatures than observed. This is further discussed in Section 6.3.3.

In Figure 6.4 we show the near-infrared CMDs including 1 Gyr isochrones from the

ATMO 2020, AMES-Cond and Sonora chemical equilibrium models. The ATMO and Sonora

tracks predict broadly similar colours in all diagrams, whereas the older AMES-Cond

tracks predict significantly different colours primarily due to outdated opacities. The J�H

colours are best reproduced by the AMES-Cond models, with both the ATMO and Sonora

isochrones predicting colours that are too blue compared to the data. This is caused by the

outdated physics used within the AMES-Cond models, which lack CH4 and NH3 opacity

in the H band due to the incomplete line lists used at the time. The brighter AMES-Cond

H band therefore gives redder J � H colours that coincidentally more closely match the

data compared to the ATMO and Sonora tracks, which use more complete CH4 and NH3 line

lists. These more complete line lists have added opacity to the H band since the generation

of the AMES-Cond models.
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Figure 6.4: Same as Figure 6.2, but with 1 Gyr isochrones from ATMO 2020 (blue), AMES-Cond (orange) and
Sonora (green) chemical equilibrium models. Note that the AMES-Cond models are not shown in the Y � J

diagram due to the Y band photometry not being included in the available evolutionary tables.

In the J � K and H � K diagrams in Figure 6.4, the AMES-Cond models get pro-

gressively bluer compared to the ATMO and Sonora tracks for objects above J ⇠ 17 and

J ⇠ 16. This is due to outdated H2 �H2 collisionally induced absorption used by the

AMES-Cond models over-predicting the opacity in the K-band. The updated H2 �H2

CIA from Richard et al. (2012) used by the ATMO and Sonoramodels predicts a brighter K-

band, and improves the comparison with observations in these CMDs (see also Saumon

et al. (2012)). The AMES-Cond models are not shown in the Y � J diagram due to the

Y band photometry not being included in the available evolutionary tables. The Sonora

isochrone predicts slightly redder Y � J colours than ATMO, similar to the isochrone calcu-
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Figure 6.5: Same as Figure 6.2, but with 1 Gyr isochrones from chemical equilibrium models (blue) and non-
equilibrium chemistry models with weak (orange) and strong (green) vertical mixing from the ATMO 2020
model set.

lated with A07 potassium resonance line broadening shown in Figure 6.3.

In Figure 6.5, we show 1 Gyr ATMO isochrones with photometry derived from chemi-

cal equilibrium and non-equilibrium atmosphere models to illustrate the impact of vertical

mixing on the predicted colours of cool brown dwarfs. Vertical mixing can be seen red-

dening the predicted J �H colours compared to chemical equilibrium tracks, moving the

isochrones towards the observed J � H colours of T dwarfs. This is due to vertical mix-

ing quenching CH4 and NH3, lowering the opacity and increasing the flux through the H

band. The difference between the weak and strong vertical mixing tracks in the J �H di-

agram is small. This is due to the abundance of methane only varying by a small factor at
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the quench levels corresponding to the differing vertical mixing strengths (see Figure 5.8).

Unlike the J�H colours, including non-equilibrium chemistry due to vertical mixing

moves the isochrone away from the observed J�K and H�K colours of cool T and Y dwarfs.

This is due to non-equilibrium chemistry giving cooler P-T profiles (see Figure 5.7) thus

increasing the strength of H2 �H2 collisionally induced absorption in the K-band. This

reduces the flux in the K-band, and gives bluer J � K and H � K colours. The quenching

of CH4 and NH3 also brightens the H-band and contributes to the reddening of the H �K

colours when including vertical mixing. The cooler P-T profiles given by assuming non-

equilibrium due to vertical mixing also alters the Y and J band magnitudes, and gives

redder Y � J colours.

6.2.2 3.5–5.5 micron flux window diagrams

Cool T–Y-type brown dwarfs emit a large percentage of their total energy through the

3.5 to 5.5 µm flux window, at longer wavelengths probed by the Y, J, H, and K filters

considered in the CMDs presented in Section 6.2.1. The WISE W1 and W2, the Spitzer

IRAC [3.6] and [4.5], and the MKO L
0 and M

0 filters probe this wavelength region and can

provide useful photometry by which to characterise cool brown dwarfs. In Figures 6.6

through 6.8, we present CMDs involving these photometric filters. The photometric data

of >T6 type brown dwarfs presented in these Figures are taken from Leggett et al. (2017);

Martin et al. (2018); Smart et al. (2018); Theissen (2018); Leggett et al. (2019); Kirkpatrick

et al. (2019) and references therein.

Figure 6.6 shows a selection of CMDs including 0.1 � 5.0 Gyr isochrones with pho-

tometry derived from ATMO chemical equilibrium atmosphere models, to illustrate the

variation of the predicted colours with age. The J � [4.5] colours are reasonably well

reproduced by the ATMO chemical equilibrium isochrones for objects with Teff < 600 K

(J � [4.5] > 4). For warmer objects with Teff > 600 K (J � [4.5] < 4) the predicted colours

are slightly too red. Similarly, the tight H � W2 correlation with H band magnitude is

well reproduced by the ATMO chemical equilibrium isochrones. The predicted colours are

again slightly too red for warmer objects, with the discrepancy decreasing with effective

temperature. The L
0 magnitude is underpredicted by the ATMO isochrones for H � L

0 > 3,
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Figure 6.6: Colour-magnitude diagrams involving photometric filters that cover the 3.5�5.5 µm flux window.
The photometry of >T6 brown dwarfs are plotted as black circles, with the data taken from Leggett et al.
(2017); Martin et al. (2018); Smart et al. (2018); Theissen (2018); Leggett et al. (2019); Kirkpatrick et al. (2019)
and references therein. Isochrones from ATMO 2020 chemical equilibrium models are plotted as blue lines,
with orange markers on each isochrones indicating Teff ⇤ 1000, 800, 600, 500, 450, 400, 350, 300 and 250 K.

corresponding to objects with Teff < 600 K. This is a long-standing issue in the understand-

ing of cool brown dwarfs, whereby the � ⇤ 3.6�4.0 µm model fluxes are too low compared

to observations of cool brown dwarfs (Leggett et al. 2012, 2013, 2015, 2017; Leggett et al.

2019), a discrepancy that increases with decreasing Teff. The ATMO [3.6]� [4.5] colours are

too red compared to the data, clearly indicating that the ATMO [4.5] band magnitudes are

too bright. The [3.6] � [4.5] colours are also affected by the ATMO [3.6] band magnitudes

being too faint compared to the data, since the [3.6] band covers a similar wavelength

range to the L
0 band.
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Figure 6.7: Same as Figure 6.6, but with 1 Gyr isochrones from ATMO 2020 (blue), AMES-Cond (orange) and
Sonora (green) chemical equilibrium models.

In Figure 6.7 we show CMDs including 1 Gyr isochrones from the ATMO 2020, AMES-

Cond and Sonora chemical equilibrium models. The AMES-Cond isochrones tend to be

fainter than the ATMO and Sonora isochrones for cool Y dwarf objects in photometric bands

that cover the 3.5�5.5 µm flux window. This is due to the cooler atmospheric temperature

structures given by the AMES-Cond models (see Figure 5.13). The Sonora isochrones are

slightly brighter than the ATMO isochrones in L
0, [4.5] and W2 band magnitude, likely due

to differing PH3 absorption as discussed in Section 5.3.3 and shown in Figure 5.19. This

means the Sonora isochrones have redder J� [4.5], [3.6]� [4.5], H�L
0 and H�W2 colours

compared to the ATMO isochrones, but generally show the same trends.
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Figure 6.8: Same as Figure 6.6, but with 1 Gyr isochrones from chemical equilibrium models (blue) and
non-equilibrium chemistry models with weak (orange) and strong(green) vertical mixing from the ATMO 2020
model set.

In Figure 6.8, we show 1 Gyr ATMO isochrones with photometry derived from chemi-

cal equilibrium and non-equilibrium atmosphere models to illustate the impact of vertical

mixing on the predicted colours of cool brown dwarfs. Including non-equilibrium chem-

istry due to vertical mixing reduces the W2 and [4.5] band magnitudes due to increased

CO and CO2 absorption, the quenching of CH4 brightens the L
0 and [3.6] bands, and

the quenching of both CH4 and NH3 brightens the H band. This yields bluer J � [4.5],
[3.6]�[4.5], and H�W2 colours. The observed J�[4.5] colours are reasonably well encap-

sulated by the chemical equilibrium and weak vertical mixing isochrones, indicating that

variations in the strength of vertical mixing in these objects could explain their observed
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colours. The strong mixing tracks are too blue compared to the data. A similar conclusion

can be drawn from the H�W2 colours, where the weak vertical mixing tracks provide the

best comparison to the data. Given the tight correlation of H �W2 colour with H-band

magnitude, and the dependence of H �W2 colour on vertical mixing, this CMD could be

used to calibrate vertical mixing in cool brown dwarfs and constrain the values of Kzz that

should be used in atmosphere models.

The predicted [3.6]� [4.5] colours are improved by the inclusion of vertical mixing,

with both the strong and weak vertical mixing tracks matching the observed population

of T and Y dwarfs. However, the tracks diverge from the [3.6]� [4.5] colours of the coolest

objects, predicting colours that are far too red. In the H � L
0 diagram, including non-

equilibrium chemistry due to vertical mixing can increase the � ⇠ 3.6 � 4.0 µm flux as

CH4 is quenched in the atmosphere, lowering the opacity in the L
0 band. However, as

the H band also brightens when including vertical mixing the H � L
0 colours become

bluer, moving the tracks away from the observed population of late T and Y dwarf com-

pared to chemical equilibrium tracks. As noted by Leggett et al. (2019) and Morley et al.

(2018), the discrepancy between the models and the observed � ⇠ 3.6 � 4.0 µm flux is

likely due to processes happening in these atmospheres that are not currently captured

by 1D radiative-convective models, such as thermochemical instabilities, cloud clearing,

or breaking gravity waves. The inclusion of such processes in 1D atmosphere models may

improve the comparisons to data in the H � L
0 and [3.6] � [4.5] diagrams.

6.3 Spectral comparisons to observations

In this Section, we show comparisons of our models to spectra and photometry of cool

T–Y-type brown dwarfs. Our methodology here is to compare models to the data by eye,

guided by values of Teff, log(g), and R obtained from other studies in the literature and

which are consistent with our new evolutionary tracks. Our by-eye comparison serves

to illustrate model improvements and current shortcomings in reproducing cool brown

dwarf spectra, and we leave more thorough grid fitting analyses to future work.
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6.3.1 Gliese 570 D

Gliese 570 D is a late T dwarf companion to a ternary star system ⇠ 5.8 pc parsecs away

from the sun (Burgasser et al. 2000; van Leeuwen 2007). It has a T7.5 spectral type and is

one of the most thoroughly studied T dwarfs to date. Age indicators from the host star

indicate an age in the range 1�5 Gyr (Geballe et al. 2001; Liu et al. 2007). Gliese 570 D has

been the target of a number of grid fitting studies, which have estimated Teff ⇤ 800�820 K,

log(g) ⇤ 5.00 � 5.27 and L ⇤ 2.88 � 2.98 L� (Geballe et al. 2001, 2009; Saumon et al. 2006;

Saumon et al. 2012). This object has also been used as a benchmark for brown dwarf

retrieval studies, which obtain a slightly cooler Teff ⇤ 715 K and a surface gravity log(g) ⇤
4.8 (Line et al. 2015, 2017). Red-optical and near-infrared spectra are from Burgasser et al.

(2003b, 2004).

We compare Teff ⇤ 800 K, log(g) ⇤ 5.0 chemical equilibrium models calculated

with different K resonance line broadening schemes to the red-optical and near-infrared

spectra of Gliese 570 D (Burgasser et al. 2003b, 2004) in Figure 6.9. We find a radius of

R/R� ⇤ 0.082 provides the best match to the observed spectrum for this Teff and log(g).
Using our new evolutionary tracks, these parameters indicate an age of 5 Gyr and a mass

of 46 MJup for Gliese 570 D, in agreement with previous works (Saumon et al. 2006). We

note that non-equilibrium chemistry models do not impact the near-infrared spectrum

within this wavelength range since the Kzz value is low for this high gravity.

The models with A16 K resonance line broadening provide the best match to the

data. There is an excellent agreement in the Y band where the redwing of the K resonance

doublet influences the spectrum. In models with A07 K broadening the opacity in the

redwing is too strong giving too little flux in the Y band, whereas in models with BV03

broadening too much flux emerges in the Y band due to the lower opacity in the K redwing.

A further improvement in the models can be seen in the H band, where the improved

methane line list provides a much more satisfactory comparison to the data than models

with a less complete line list (Saumon et al. 2012). The K band is nicely reproduced due

to the collisionally induced absorption from Richard et al. (2012), as previously shown in

Saumon et al. (2012). The flux in the J band is overpredicted by the model with A16 K

broadening. We speculate that a more in-depth fitting study investigating the effects of
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Figure 6.9: Model comparisons to the absolutely flux calibrated near-infrared spectrum of the T7.5 dwarf
Gliese 570 D (Burgasser et al. 2000). Three models are shown all calculated self-consistently using K resonance
line broadening from BV03 (top), A07 (middle), and A16 (bottom), for Teff ⇤ 800 K, log(g) ⇤ 5.0, and R/R� ⇤

0.082.

metallicity and/or thermo-chemical instabilities may help further improve the fit in the J

band.
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6.3.2 The T–Y transition

In Figure 6.10 we show a comparison of the ATMO 2020 models calculated with equilibrium

and non-equilibrium chemistry to spectra and photometry of objects spanning the T–Y

transition. We compare them to the T9 spectral standard UGPS 0722 (Lucas et al. 2010;

Leggett et al. 2012), a well-studied cool dwarf that has been estimated to have Teff ⇤ 505±
10 K, a mass of 3 � 11 MJup, and an age range between 60 Myr and 1 Gyr using the SM08

models (Leggett et al. 2012). We compare Teff ⇤ 500 K, log(g) ⇤ 4.0 chemical equilibrium

and non-equilibrium models to this object, finding that these models overpredict the flux

in the Y and J bands at ⇠ 1.0 µm and ⇠ 1.2 µm, respectively. This has been noted by other

authors (e.g. Leggett et al. (2012)), with sulfide clouds (Morley et al. 2012) or a reduced

temperature gradient (Tremblin et al. 2015) invoked to redden the spectrum at these short

near-infrared wavelengths. This is further explored in Section 6.3.4.

At longer wavelengths, the shape of the K band at ⇠ 2.1 µm appears to be better re-

produced by the model including non-equilibrium chemistry. The Spitzer IRAC channel

2 and WISE W2 photometric points at ⇠ 4.5 µm and ⇠ 4.6 µm, respectively, are lower than

that predicted with the chemical equilibrium model, implying the presence of enhanced

CO absorption brought about through vertical mixing in the atmosphere (see Figure 5.9

and Section 5.2.4). Both the strong and weak mixing non-equilibrium models overpredict

the CO absorption in the IRAC ch2 and W2 bands, implying that the strength of vertical

mixing is overestimated in the current model set-up. Decreasing the eddy diffusion coef-

ficient Kzz further may improve the comparison to the photometric points in the 4� 5 µm

flux window for this object.

Observations of the Y0- and Y1-type objects WISE 1206 and WISE 1541 (Cushing

et al. 2011; Schneider et al. 2015) are shown in the middle and bottom panels of Figure 6.10,

respectively. Using the cloud-less models of SM08, Schneider et al. (2015) estimate Teff ⇠
400 � 450 K and log(g) ⇤ 4.0 � 4.5 for the Y0 object WISE 1206. Zalesky et al. (2019)

ran retrieval analysis on a sample of Y dwarfs including WISE 1541, retrieving Teff ⇠
325 K log(g) ⇠ 5.0 for this object, in line with comparisons to cloud-free forward models

presented in Leggett et al. (2013). Here we compare Teff ⇤ 420 K, log(g) ⇤ 4.5 models to

WISE 1206 and Teff ⇤ 330 K, log(g) ⇤ 4.0 models to WISE 1541. We use a lower value of
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Figure 6.10: Comparison of the chemical equilibrium (blue) and non-equilibrium (orange) ATMO 2020 models
to sample spectra (black) forming a T–Y spectral sequence. The left and right columns display non-equilibrium
models with the strong and weak Kzz mixing relationships with surface gravity, respectively. Spitzer IRAC
photometry is plotted as squares and WISE photometry as circles. The top panel shows the observed spectrum
of the T9 dwarf UGPS 0722 (Lucas et al. 2010; Leggett et al. 2012), with Spitzer IRAC and WISE photometric
points from Kirkpatrick et al. (2012). The middle and bottom panels show the 0.9�1.7 µm HST WFC3 spectra
of the Y0- and Y1-type dwarfs WISE 1206 and WISE 1541 (Schneider et al. 2015), with Spitzer IRAC photometry
also from Schneider et al. (2015) and WISE photometry from Cutri et al. (2013).

the surface gravity for WISE 1541 than obtained by previous studies since log(g) ⇤ 5.0

does not agree with our evolutionary tracks at this Teff.

The J- and H-band brightness and shape is better reproduced by the non-equilibrium

models for both objects. This is due to the quenching of NH3 reducing the opacity in these

bands (see Figure 5.9 and Tremblin et al. (2015)). The strong mixing non-equilibrium

chemistry model overpredicts the CO absorption in the 4 � 5 µm flux window for the
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Figure 6.11: The equilibrium (solid blue line) and tuned (dashed blue line) mole fraction of potassium in the
Teff ⇤ 420 K, log(g) ⇤ 4.5, NEQ weak model atmosphere used to model the emission spectrum of WISE 1206
in Figure 6.10 and 6.12. The normalised contribution function at the 1.05 µm peak of the Y band is shown as
the orange line.

warmer WISE 1206 object, while the weaker mixing model better reproduces the pho-

tometric points in this wavelength range. The strong and weak mixing non-equilibrium

chemistry models both overpredict the CO absorption in the cooler WISE 1541 object, with

the equilibrium model better reproducing the WISE and Spitzer photometry.

6.3.3 Tuning the potassium abundance

The Y-band flux at ⇠ 1 µm is underpredicted for WISE 1206 and WISE 1541 in Figure 6.10

by the current models, an issue also seen by the model comparisons in Schneider et al.

(2015). We note that the K �H2 opacity is important in this wavelength region; however,

given the improvements to the K resonant line broadening outlined in Chapter 4, we do

not attribute this discrepancy to shortcomings in the K opacity. Instead, we note that

reducing the K abundance by artificially altering the KCl condensation level in the model

atmosphere can rectify the difference between model and data in the Y band.
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Figure 6.12: Comparison of the Teff ⇤ 420 K, log(g) ⇤ 4.5, ATMO 2020 weak vertical mixing model emission
spectrum with equilibrium (blue) and tuned (orange) potassium abundance, to the observed spectra and
photometry of WISE 1206.

The process of artificially tuning the potassium abundance to better match the data

is shown in Figures 6.11 and 6.12. Figure 6.11 shows the abundance of K in the atmo-

sphere corresponding to the Teff ⇤ 420 K, log(g) ⇤ 4.5, weak vertical mixing model used

to model WISE 1206 in Figure 6.10. Potassium is sufficiently abundant in the unmodified,

equilibrium model between 30 � 40 bar where the 1.05 µm contribution function peaks.

The opacity of K �H2 therefore suppresses the flux in the Y band. The K abundance can

however be artificially tuned so that it is reduced by approximately an order of magni-

tude between 30 � 40 bar in the peak of the 1.05 µm contribution function. This reduces

the K �H2 opacity and increases the flux passing through the Y band, better matching

the observed emission of WISE 1206 as illustrated in Figure 6.12.

We therefore posit that the current modelling of the potassium chemistry, including

potentially its condensation into KCl and/or the thermochemical data used to calculate

the equilibrium abundances, is slightly incorrect. This should be investigated more thor-

oughly in future work.
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6.3.4 Tuning the effective adiabatic index

As discussed in Section 6.3.2, the current ATMO 2020 models overpredict the flux in the

Y and J bands of late T dwarf objects such as UGPS 0722. This has been noted by other

authors (e.g. Leggett et al. (2012)), with sulfide clouds (Morley et al. 2012) or a reduced

temperature gradient (Tremblin et al. 2015) invoked to redden the spectrum at these short

near-infrared wavelengths. Here we explore the process of reducing the temperature gra-

dient of the model atmosphere to resolve the discrepancy between model and data.

The suggested mechanism reducing the temperature gradient in brown dwarf at-

mospheres is radiative convective instabilities triggered by chemical transitions such as

CO! CH4 and N2 ! NH3 (Tremblin et al. 2019). The reduction in the temperature gra-

dient can be mimicked in ATMOmodels through the effective adiabatic index �eff. We recall

from Section 2.1 that the adiabatic gradient which sets the temperature gradient in con-

vectively unstable regions of the atmosphere can be written as

rad ⇤
� � 1
�
, (6.1)

where � is the adiabatic index obtained from the (Saumon et al. 1995) EOS tables as dis-

cussed in Section 3.1.4. The adiabatic index � can be replaced with a user defined effective

adiabatic index �eff in Equation (6.1), which changes the temperature gradient in the con-

vectively unstable regions of the atmosphere. Reductions in the temperature gradient

through �eff have been shown to reproduce several observed features of brown dwarfs,

including the L-T transition (Tremblin et al. 2016), extremely red young low-gravity ob-

jects (Tremblin et al. 2017b), and the red colours of cool late T dwarf objects (Tremblin

et al. 2015).

Figure 6.13 shows P-T profiles used to model the late T dwarf UGPS 0722. The corre-

sponding emission spectra from these model atmospheres are compared to the observed

spectrum of UGPS 0722 in Figure 6.14. The unmodified Teff ⇤ 500 and 550 K models (blue

and orange respectively) both overpredict the flux in the Y and J band at ⇠ 1.05 µm and

⇠ 1.2 µm respectively. The Y and J band flux is formed at pressures of 10�30 bar in the at-
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Figure 6.13: Pressure-temperature profiles used to model the late T dwarf UGPS 0722. Convectively unstable
regions of the atmosphere are shown as thickened lines. The model atmosphere with a modified temperature
gradient through the effective adiabatic index is shown in green.

mosphere. The P-T profile with �eff ⇤ 1.27 (green model) reduces the temperature at these

pressure levels, thus reducing the flux emitted through the Y and J bands and matching

the spectrum of UGPS 0722 well at these wavelengths. At longer wavelengths the spec-

trum in the 3.5 � 5.5 µm flux window is well reproduced by the Teff ⇤ 540 K, �eff ⇤ 1.27

model, capturing both the slope between 3.5 � 4.2 µm, and the CO absorption in the M
0

spectrum from Miles et al. (2020). Note that, since the �eff ⇤ 1.27 profile is cooler in the

deep atmosphere, the value of Kzz has been increased to Kzz ⇤ 107 cm2s�1 compared to the

strong and weak mixing relationships used in the ATMO 2020 models to quench a sufficient

amount of CO to reproduce the M
0 spectrum. This further highlights how CO absorption

in the 3.5 � 5.5 µm flux window can be used to calibrate vertical mixing in cool brown

dwarf atmospheres.
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Figure 6.14: Comparison of ATMO model emission spectra to the observed spectrum of UGPS 0722 (Lucas
et al. 2010; Leggett et al. 2012; Miles et al. 2020). The corresponding P-T profiles of the models shown here are
shown in Figure 6.13. The spectrum corresponding to the model atmosphere with a modified temperature
gradient through the effective adiabatic index is shown in green.

6.4 Summary and Conclusions

In this Chapter, I have presented extensive comparisons of the ATMO 2020 model set, along

with other model sets in the literature, to observational datasets. These observational

datasets include brown dwarf dynamical mass measurements (Section 6.1), photometry of

large samples of field brown dwarfs (Section 6.2), and infrared emission spectra of individ-

ual objects (Section 6.3). The comparisons of the ATMO 2020 models to these observational

datasets serve to illustrate numerous modelling improvements presented in this thesis, as

well as highlight the current shortcomings in the modelling of cool brown dwarfs, thus

motivating future research. The main conclusions from this Chapter are as follows:

• The new H-He EOS of Chabrier et al. (2019) used in the calculation of the ATMO 2020

evolutionary tracks helps relieve some tension between T dwarfs such as Gl 229 B

with unexpectedly high dynamical mass measurements and evolutionary models.

Evolutionary models tend to predict that these systems must be older than age esti-

mates from host star activity and/or kinematics to have cooled to their observed lu-
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minosity. The new EOS predicts high mass objects cool faster, to lower temperatures

and luminosities than previous models, thus reducing the discrepancy in derived

ages. It must however be noted that the difference in evolutionary tracks calculated

with the old and new EOS is not observationally significant given the uncertainty

on typical dynamical mass measurements.

• The new potassium resonance line shapes of Allard et al. (2016) implemented in

the ATMO 2020 models have been validated through comparisons to the observed

Y � J colours of cool brown dwarfs and the emission spectrum of a typical mid-

late T dwarf, Gliese 570 D. The Y band at ⇠ 1.05 µm is best reproduced by models

including the new line shapes, with models computed with potassium resonance

line shapes from Allard et al. (2007b) and Burrows & Volobuyev (2003) predicting

too strong and too little absorption, respectively, in the far red wing.

• Despite the improvements to the K resonant line broadening, the Y-band flux of the

Y dwarfs WISE 1206 and WISE 1541 is underpredicted by the current models, giv-

ing Y � J colours that are too red compared to the observed Y dwarf population.

We have demonstrated that this discrepancy can be rectified by artificially reducing

the potassium abundance to mimick the condensation into KCl occuring at higher

pressures in the model atmosphere. This reduces the K �H2 opacity and increases

the flux passing through the Y band, better matching the observed emission of the Y

dwarf WISE 1206. We therefore posit that the current modelling of potassium chem-

istry, including potentially its condensation into KCl and/or the thermochemical

data used to calculate the equilibrium abundances is slightly incorrect, and should

be investigated in future work.

• Comparisons of the ATMO 2020 models to the observed spectra of Y dwarfs indicate

the quenching of ammonia is key in reproducing near-infrared emission from these

objects, in agreement with the results of Leggett et al. (2015); Tremblin et al. (2015).

Comparisons of the models to photometry probing the 3.5 � 5.5 µm flux window

also supports the presence of non-equilibrium CO and CO2 abundances. Since the

abundances of CO and CO2 depend strongly on the value of Kzz (the parameter

commonly used to model vertical mixing in 1D atmosphere codes), the 3.5� 5.5 µm
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flux window is a useful observational diagnostic of Kzz in cool brown dwarf atmo-

spheres, as demonstrated recently by Miles et al. (2020).

• We have demonstrated that reducing the temperature gradient in a 1D model atmo-

sphere through the effective adiabatic index can successfully reproduce the emis-

sion spectrum of the late T dwarf UGPS 0722 over the full 1 � 5 µm wavelength

range. The reduction in the temperature gradient is thought to be driven by the

CO! CH4 and N2 ! NH3 chemical transitions triggering convective instabilities

(Tremblin et al. 2019). This cools the deep layers of the atmosphere and lowers the

flux emitted through the Y, J and H bands. Reducing the temperature gradient can

thus impact the predicted J�H, J�K, H�L
0 colours of brown dwarfs that have found

to be insufficiently modelled by the current ATMO 2020 models through comparisons

to observations in colour-magnitude diagrams in this Chapter. This therefore pro-

vides motivation to expand on this initial grid of atmosphere models, by reducing

the temperature gradient through the effective adiabatic index.
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Chapter 7

Summary and future work

7.1 Summary and conclusions

A reliable model of the atmosphere and its evolution over time lies at the core of our un-

derstanding of brown dwarfs and giant exoplanets. The atmosphere regulates the rate at

which these objects cool, and imprints its temperature structure and chemical composition

onto the emitted thermal radiation. The study of brown dwarfs and giant exoplanets is be-

ing driven by ever-improving instrumentation becoming sensitive to cooler objects, which

are providing the opportunity to study Jovian-like worlds outside of our solar system. In

this thesis I have presented a new set of atmosphere and evolution models applicable for

the coolest T/Y brown dwarfs and giant exoplanets, termed ATMO 2020. These models are

important for placing mass and age constraints on newly discovered objects and under-

standing the rich chemistry and physics taking place in their atmospheres.

In Chapter 2 I reviewed the physics and techniques used in one-dimensional atmo-

sphere models, with a particular focus on the ATMO code which I have used throughout

this thesis to generate the new set of atmosphere models. ATMO solves for the temperature

structure of the atmosphere in radiative and convective flux balance with a given inter-

nal heat flux, and computes the emission spectrum from the top of the atmosphere for

comparisons to observations. The two major components of the ATMO code are therefore

the radiative transfer and convection modules, which are detailed in Section 2.2 and Sec-
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tion 2.3 respectively. To find the temperature structure of the atmosphere, ATMO iterates

towards radiative-convective equilibrium, which is discussed in Section 2.4.

The main input physics to the ATMO code is the chemistry schemes and the opac-

ity sources that are used in the model atmosphere, which is the focus of Chapter 3. In

Section 3.1, I review the different chemistry schemes used in the ATMO 2020 model atmo-

spheres. These include the calculation of chemical equilibrium abundances with rainout

condensation, and the inclusion of non-equilibrium chemistry due to vertical mixing us-

ing a fully coupled chemical relaxation scheme. I also demonstrate that an equation of

state that takes into account H2 ! 2H dissociation energy is required to correctly model

the adiabatic gradient in atmospheres with Teff > 2000 K. In Section 3.2, I discuss the cal-

culation of atomic and molecular opacity tables from large line lists for use in radiative

transfer calculations within ATMO. I present calculations of gaseous Fe opacity, an impor-

tant absorber at short wavelengths (0.2 � 0.4 µm) which we show can play an important

role in forming temperature inversions in hot Jupiter atmospheres.

The alkali metals are key opacity sources in brown dwarf atmospheres. In particu-

lar, the potassium resonance lines at⇠ 0.77 µm are broadened due to the high atmospheric

densities of H2, and can dominate the 0.7 � 1.0 µm spectrum of late L and T dwarfs. In

Chapter 4, I present the implementation of new resonant line shapes from Allard et al.

(2016) in the calculation of potassium opacity tables for ATMO. I outline the junction of the

Lorentzian line cores and the pressure broadened wings, and review how the line wing

shape depends on temperature and H2/He perturber number density. The new resonant

line shape calculations improve upon previous calculations principally on their validity

at high atmospheric densities (nH2 > 1019 cm�3), which leads to differences in the pre-

dicted opacity in the blue wing satellite feature and the far-red wing. I compare synthetic

emission spectra calculated with these new K line shapes to others commonly used in the

literature, showing that there is a large impact on the predicted Y- and J-band flux due to

these different line shapes. These differences are larger in high gravity atmospheres due to

higher H2 number densities, meaning the new K resonant line shapes are most important

for old and/or massive brown dwarfs.

In Chapter 5 I present the ATMO 2020 set of atmosphere and evolutionary models
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for cool brown dwarfs and directly imaged giant planets. The atmosphere grid spans

Teff ⇤ 200 � 3000 K, log(g) ⇤ 2.5 � 5.5 with both equilibrium and non-equilibrium chem-

istry due to different strengths of vertical mixing. This grid of atmosphere models is used

as the surface boundary condition for an interior structure model to calculate the evolu-

tion of 0.0005�0.075 M� objects. I highlight theoretical modelling improvements through

comparisons to other model sets, finding that there are notable changes to the cooling

tracks and predicted emission of substellar objects. These changes are brought about by

two major modelling improvements. First the use of a new hydrogen and helium EOS

(Chabrier et al. 2019) in the interior structure model has raised the hydrogen and deu-

terium burning minimum masses, causing changes in the cooling tracks around these

masses. Second, improved high temperature line lists for important molecular absorbers

have added opacity to the 1D model atmosphere, changing the predicted emission spectra

and leading to warmer temperature structures, which alter the shape of the cooling tracks

of substellar objects in the low-mass brown dwarf regime. I demonstrate the impact of self-

consistent non-equilibrium chemistry due to vertical mixing on 1D model atmospheres,

and highlight how CO and CO2 absorption in the 4 � 5 µm flux window can be used to

calibrate vertical mixing in cool substellar atmospheres. The results from Chapter 5 are

fully summarised and concluded in Section 5.4.

Finally, in Chapter 6 I compare the ATMO 2020 model set to observational datasets

of substellar objects. I show that the new H-He EOS used in the calculation of the ATMO

2020 evolutionary tracks helps relieve some tension between T dwarfs with unexpectedly

high dynamical mass measurements and evolutionary models. I validate the implemen-

tation of the new potassium line shapes presented in Chapter 4 through the observed

Y � J colours of cool brown dwarfs and the emission spectrum of a typical mid-late T

dwarf. Finally, I demonstrate that non-equilibrium chemistry due to vertical mixing is

supported through comparisons to near-infrared photometry and emission spectra of cool

T/Y brown dwarfs. These comparisons further illustrate the numerous modelling im-

provements included in the ATMO 2020 model set, but also serve to highlight the current

shortcomings in the modelling of cool brown dwarfs. Despite the improvements to the K

resonant line broadening, the Y-band flux of Y dwarfs appears to be underpredicted by

the current models, and I demonstrate that this discrepancy can be rectified by artificially
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reducing the potassium abundance in the model atmosphere. The near-infrared colours

of late-T dwarfs are also significantly redder than those predicted by the current models,

and I demonstrate that this discrepancy can be improved by reducing the temperature

gradient in a 1D model atmosphere. The results from Chapter 6 are fully summarised

and concluded in Section 6.4.

7.2 Future work

There are a number of possible avenues to build upon my existing work in forward mod-

elling of substellar atmospheres, and several natural extensions to the ATMO 2020 model

set presented in this thesis. I finish by outlining these ideas for future work.

7.2.1 Non-solar metallicity models

The atmosphere models presented in this thesis were all generated assuming solar metal-

licity elemental abundances. A natural extension to the ATMO 2020 model grid is therefore

exploring the effect of non-solar metallicities on the predicted cooling and emission of sub-

stellar objects. Spectroscopic signatures of metallicity through the C/O ratio have been

cited as a method of inferring the formation mechanism of an object, and hence its clas-

sification as a planet or brown dwarf (Bowler 2016). However, such signatures could be

degenerate with other atmospheric processes such as non-equilibrium chemistry due to

vertical mixing. My work self-consistently coupling a non-equilibrium chemistry scheme

in the ATMO 2020 models therefore provides an ideal starting point for future studies into

disentangling the spectral signatures of non-equilibrium chemistry and non-solar metal-

licity. This could be a key step in finding observational differences between planets formed

by accretion in a protoplanetary disk and cool brown dwarfs formed by gravitational col-

lapse of interstellar material.

7.2.2 Opacities and alkali broadening

In this thesis, I have demonstrated the importance of molecular opacities in shaping the

temperature structures and synthetic spectra of cool brown dwarfs and giant exoplanets.

Line lists of important absorbers are being continuously updated and improved. For ex-
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ample, several new line lists have been published since the generation of the ATMO 2020

models, including H2O (Polyansky et al. 2018), TiO (McKemmish et al. 2019) and CO2

(Yurchenko et al. 2020). Future work integrating these updated opacities into ATMOwill be

undertaken, and the impact on the temperature structures, synthetic spectra, and cooling

tracks will be investigated.

I have also shown that the new potassium resonant line shapes used in this work im-

prove the near-infrared spectral comparisons to mid-late T dwarfs. Further work must be

undertaken to validate these line shapes not only in the near-infrared, but also at red-

optical wavelengths where line shape calculations differ in the blue wing of the reso-

nance doublet. The blue wing displays a satellite feature brought about by K �H2 quasi-

molecular absorption that has previously been detected in the T dwarf ✏ Indi Ba (Allard

et al. 2007a), and can be a useful diagnostic of temperature and metallicity (Allard et al.

2007b). Accurately modelling the optical spectrum requires taking into account the pres-

sure broadened line shapes of other alkali metals such as Na and Li. Recently, Allard et al.

(2019) presented improvements on the line shapes of the Na resonance doublet, finding a

change in the blue wing of the doublet in the predicted emission spectra of self-luminous

atmospheres. I am working to include these new Na resonance line shapes in ATMO, and fu-

ture work to validate these improvements on the alkali opacity at red optical wavelengths

must be undertaken.

7.2.3 Non-equilibrium chemistry

To model non-equilibrium chemistry due to vertical mixing, I consistently coupled the

chemical relaxation scheme of Tsai et al. (2018) to ATMO, considering the non-equilibrium

abundances of H2O, CO, CO2, CH4, N2 and NH3. I adopted this relaxation scheme over a

full kinetics network for computational efficiency and consistent convergence throughout

the grid when solving for a self-consistent P–T profile. This relaxation scheme is more

computationally efficient as it avoids the need to solve the large, stiff system of ordinary

differential equations needed when using full chemical kinetics networks. Despite these

advantages, the abundances obtained from chemical relaxation schemes are not always

accurate, and can differ from those obtained from full chemical kinetics networks by up to
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an order of magnitude (Tsai et al. 2018). Recent efforts have been made to develop reduced

chemical kinetics networks which improve computational efficiency while maintaining

accurate chemical abundance profiles (Venot et al. 2019). In future work, I will investigate

the benefits of using such reduced chemical networks over the relaxation scheme used in

the ATMO 2020 models.

Additionally, while I have considered the non-equilibrium abundances of the pri-

mary carbon- and nitrogen-bearing molecules with the relaxation scheme, future mod-

els should include additional species thought to be impacted by vertical mixing. Non-

equilibrium signatures of HCN may become apparent in high-gravity objects with vigor-

ous mixing (Zahnle & Marley 2014), and PH3 and GeH4, both of which are signatures of

vertical mixing in Jupiter’s atmosphere, as well as C2H2 and CH3D, could impact the mid-

infrared spectra of the coolest brown dwarfs (Morley et al. 2018). Furthermore, present

chemical kinetics models do not consider condensate species. As such, the models es-

sentially assume that mixing of species into the upper atmosphere happens on timescales

much shorter than condensation timescales. Such an assumption is important for H2O and

NH3, which condense in the upper atmospheres of cool brown dwarfs in chemical equi-

librium. Incorporating condensation timescales would involve combining kinetic cloud

formation models such as the Helling & Woitke model (Woitke & Helling 2003, 2004;

Helling & Woitke 2006; Helling et al. 2008) with a gas-phase chemical kinetics scheme.

While this coupling is technically challenging and beyond the scope of this work, coupled

gas-cloud kinetics models are required to correctly determine the abundances of H2O and

NH3, which are critical species governing the temperature structure and thermal emission

from cool Y dwarf atmospheres.

7.2.4 Clouds and thermo-compositional convection

The most apparent example of shortcomings in the current ATMO 2020 models is the in-

ability to reproduce the sharp change in near-infrared colors at the L-T transition and

the red colors of cool late T dwarf objects. Currently, there are two competing theories

on the physical process responsible for these observational features: clouds and thermo-

compositional convection.
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Including clouds in 1D atmosphere codes has been widely shown to reproduce the

L-T transition and the red colors of late-T dwarfs through variations in cloud model param-

eterisations concerning, for example, the cloud sedimentation efficiency or cloud patch-

iness (Allard et al. 2001; Burrows et al. 2006; Saumon & Marley 2008; Marley et al. 2010;

Morley et al. 2012, 2014b; Charnay et al. 2018). One such parametric cloud model widely

used in the brown dwarf and exoplanet communities is the EddySed cloud formation code

(Ackerman & Marley 2001), which has been applied to the L-T transition (Saumon & Mar-

ley 2008; Marley et al. 2010) and late-T dwarfs (Morley et al. 2012). The code has already

been used within the Exeter Exoplanet Theory Group to study the fully coupled effects

of clouds in 3-dimensional models of hot Jupiter atmospheres (Lines et al. 2019). Future

work self-consistently coupling the EddySed code to ATMO is needed to account for the

clouds expected to form in brown dwarf atmospheres, and to enable studies into the role

of clouds throughout the cooling sequence.

Recently, a new theory has been developed suggesting that chemical transitions

such as CO/CH4 and N2/NH3 in brown dwarf atmospheres can be responsible for trig-

gering ‘thermo-compositional diabatic convection’ (Tremblin et al. 2019). This may reduce

the temperature gradient in the atmosphere reddening the emission spectrum without the

need to invoke clouds. Reductions in the temperature gradient through the adiabatic in-

dex �eff have been shown to reproduce several observed features of brown dwarfs, includ-

ing the L-T transition (Tremblin et al. 2016), extremely red low gravity objects (Tremblin

et al. 2017b), and the red colors of cool late T dwarfs (Tremblin et al. 2015). Motivated

by this, I aim to expand on the initial grid of atmosphere models presented here by re-

ducing the temperature gradient through the effective adiabatic index �eff. The key goal

is to study and calibrate how thermo-compositional diabatic convection may evolve and

influence the brown dwarf cooling sequence.

7.3 Concluding statement

The work I have presented in this thesis provides the tools required to place mass and

age constraints on cool brown dwarfs and giant exoplanets, and characterise the complex

chemistry and physics taking place in their atmospheres. The comparisons of the ATMO
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2020 model set to observational datasets validates the modelling improvements presented

in this work, and reinforces the need for continued development of atmosphere and evolu-

tion models. The ATMO 2020 model set will be particularly useful for the next generation of

telescopes and instrumentation such as the James Webb Space Telescope (JWST) and ground-

based extemely large telescopes, which will be transformative in our ability to detect and

characterise the coldest brown dwarfs and directly imaged planets.
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