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Abstract 

Wave energy has significant worldwide exploitable resource and its exploitation has attracted 

renewable energy investigator’ attention. Great progress on calculating device performance has been 

made by means of theoretical, numerical and model tests. This paper presents a method of 

calculating the energy extraction of a wave energy converter (WEC) based on Wave Height Take-

off (WHTO). The method provides a means to improve the capture efficiency of designs, including 

demonstrating how well different kinds of WEC are optimized for certain wave conditions. 

Numerical simulations of a heaving buoy and a bottom-hinged pendulum in a 2D wave flume with 

different damping types (linear and nonlinear) are presented. The results show that the difference 

between the calculated energy extraction from the wave height reduction and from the model power 

take-off (PTO) was not significant in a 2D flume. Physical model tests were conducted using a 

simplified PTO consisting of a system of lifting weights, used to measure the energy extraction 

directly. Based on both numerical and physical model analyses, the article defines WHTO, which is 

equivalent to energy extracted by PTO, but determined without taking direct measurements. This 

paper aims to promote and validate the concept of the WHTO. 

Keywords: wave energy, Wave Height Take-off, numerical simulation, model test 
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1 Introduction  

 Wave energy has aroused great interest due to the significant exploitable resource. The 

majority of wave energy converters (WECs) which convert wave energy into electricity can be  

summarized in three different types: oscillating water column (OWC), overtopping devices (OTDs), 

and wave activated bodies (WABs[1][2]. The energy conversion of the WECs can generally be 

divided into two steps: energy extraction from the wave oscillations; and the conversion of this 

extracted energy to electrical energy by a power take-off (PTO) system[3]. The majority of PTO 

that have been studied as: pneumatic (such as OWCs), hydraulic (WABs) or direct electricity 

generation (WABs)[4]. 

In recent decades, efforts have been made to find and enhance the extracted power from WECs 

by optimizing geometrical characteristics, PTO forms, and control strategies with analytical, 

numerical and physical methods. For instance, Shi et al proposed a formula based on Morison 

equation to seek the maximum extractions of a hydraulic system, which is applied in a heaving buoy 

WEC[5]. Zheng et al evaluated the maximum power absorption of the two interconnected floaters 

by a mathematical model based on the three-dimensional wave radiation-diffraction theory [6]. 

Lewis et al discussed the maximum energy extraction of WABs in time and frequency domain by 

optimizing the PTO damping [7]. Renzi et al applied a mathematical model to investigate the 

influence of the channel sloshing modes on the performance of a pendulum device[8]. Zhang X et 

al first applied a nonlinear PTO system to an oscillating-body WEC by using two symmetrically 

oblique springs to make the system bi-stable; The results showed that bi-stable PTOs can 

dramatically improve power capture performance compared to linear PTOs with relatively low-

frequency waves [9]. 

When energy is extracted by a WEC, a reduction in wave height is expected. Previous studies 

have examined the change in the wave field surrounding a WEC by physical and numerical methods: 

Zanuttigh et al Error! Reference source not found. studied a floating WEC (DEXA - a raft WEC 

with two floating bodies) acting as a floating breakwater using model tests, comparing the difference 

of protection ability between the DEXA and a traditional floating breakwater. Two physical models 

(the larger one with a PTO and the smaller without) with different scale ratio were tested. The results 
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showed that wave transmission and the energy absorption efficiency were strongly related to the 

ratio of device length to the wave length. When the ratio increased, the wave transmission trends to 

decrease, while absorption efficiency increased until the peak (ratio = 1) then it also decreased. 

Wave reflection had the opposite trend to the transmission due to energy conservation. The 

differences between the two scale models showed that the PTO decreased the wave transmission. 

Beels et al [11] used a time-dependent mild-slope equations 3D numerical model to analyse the 

wake effect behind an overtopping WEC called Wave Dragon, finding the irregular long-crested 

wave cases experienced a large decrease of wave energy while the short-crested cases have a faster 

wave redistribution. Later, Nørgaard et al [12] conducted an experiment focusing on the transmitted 

wave energy behind the Wave Dragon, discussing the wake effects including the transmission wave 

height reduction in a 3D basin by a numerical model after validating based on the experimental 

results. In this test, it was also found that the mooring type affected the wave transmission. Stratigak 

et al [13] tested the wave transmission of a point absorber in both a 2D flume and 3D basin. The 

device used in the experiment had a mechanical PTO system consisting of a brake providing 

constant damping. To limit 3D affects, the device width was made equal to the flume width in the 

2D case. The tests were intended to optimize the extraction of the PTO and validate the numerical 

models.    

Wave reduction is also significant within wave farms. Palha et al [14] used a REFDIF model 

to calculate the device absorption in five different wave farms configurations of the Pelamis WEC. 

It was found that the wave height variation may be significant due to the energy extraction of the 

WEC in several situations, while the direction variation was quite low. Stratigak et al [15]conducted 

an experiment in a large basin with an array of heaving buoys under different wave conditions 

including regular and irregular wave conditions. A significant wave height reduction in the down-

wave areas was reported, which nearly reached 20% while the reduction was dependent on the wave 

conditions. Haller et al [16]used three arrays (single device, three devices and five devices) to find 

how the effect on the wave field was influenced by the number of devices. For a single device, the 

relative capture width decreased with an increasing wave period and the wave height reduction was 

not significant in the far-field. In the multi-devices cases the wave height reduction increased when 

more devices were added into the array and it was still significant in the far-field.  
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A 2D flume is employed, the energy loss of the wave is equal to the sum of the device’s 

absorption and any propagation losses. This paper demonstrates the measurements of the wave 

height reduction can be used to calculate the energy extracted by a WEC. The concept of Wave 

Height Take-off (WHTO) is proposed as a measure of energy absorption. The remainder of the paper 

is organized as follows: Section 2 designs a 2D numerical wave flume and defines WHTO. Section 

3 presents numerical simulation results demonstrating the WHTO concept. Section 4 discusses 

model tests of a heaving buoy and a bottom hinged pendulum WEC, which demonstrates the 

feasibility of the method. Conclusions are drawn in Section 5. 

 

2 Concept of WHTO 

In liner theory, the energy carried by a regular wave in one wavelength can be presented as:  

𝐸𝑤 =
1

8
𝜌𝑔𝐿𝐷𝐻2                                                              (1) 

where the 𝜌 is water density, 𝑔 is acceleration of gravity, 𝐻 is wave height, 𝐿 is wavelength, 𝐷 

is the wave crest line width. 

In the same wave period, the unit width energy is proportional to the square of the wave height. The 

wave height which is relevant to the PTO is defined as WHTO. So, there is an assumption (shown 

in (2) that the device’s energy is proportional to the square of WHTO, 

The energy extracted by the device can be represented as: 

𝐸𝑃𝑇𝑂 = 𝐶𝐻𝑃𝑇𝑂
2                                                              （2） 

where the 𝐶 is a parameter which is related to wave condition, 𝐻𝑃𝑇𝑂 is the WHTO. 

When the capture width of the device is nearly the same as the flume wide, the waves focusing 

effects can be ignored in the 2D flume.    

Considering the energy conservation:  

When the device is absent in the flume: 

1

8
𝜌𝑔𝐿𝐷𝑁𝐻0

2= 
1

8
𝜌𝑔𝐿𝐷𝑁𝐻𝑇

2                                                   （3）                                                           

where the 𝐻0 is the incident wave height, 𝐻𝑇 is the transmitted wave height, 𝑁 is the number of 
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wave in a case time. 

When the device is in the flume but fixed or operates with no damping which means there is no 

energy absorption,  

1

8
𝜌𝑔𝐿𝐷𝑁𝐻0

2= 
1

8
𝜌𝑔𝐿𝐷𝑁𝐻𝑟

2+ 
1

8
𝜌𝑔𝐿𝐷𝑁𝐻𝑇

2                                         4)                                                                                                                                            

where 𝐻𝑟 is the reflect wave height. When the device is in the flume and operates with PTO, 

1

8
𝜌𝑔𝐿𝐷𝑁𝐻0

2= 
1

8
𝜌𝑔𝐿𝐷𝑁𝐻𝑟

2+ 
1

8
𝜌𝑔𝐿𝐷𝑁𝐻𝑇

2+𝐶𝐻𝑃𝑇𝑂
2                                   (5)                                                               

If it is assumed that the reflection and transmission have the same wave period as the incident wave 

then  𝐶 = 
1

8
𝜌𝑔𝐿𝐷𝑁 can be substituted into (5) 

 𝐻0
2=𝐻𝑟

2+𝐻𝑇
2+𝐻𝑃𝑇𝑂

2
                                                                                        (6) 

The PTO is in the form of a mass being lifted via a gearbox arrangement, which applies a constant 

damping value. This PTO can be modelled as: 

𝐸𝑃𝑇𝑂 = 𝑀𝑔ℎ                                                                (7) 

where the 𝑀 is the mass of the weight, and the ℎ is the lifting displacement. 

According to the (2) (6) and (7): 

The 𝐶 can be presented as: 

𝐶 =
𝑀𝑔ℎ

𝐻0
2−𝐻𝑟

2−𝐻𝑇
2                                                           (8) 

In the following part, the assumption of 𝐶 will be verified and the maximum power extraction of 

different devices under certain waves calculated by the above mothed. 

3  Numerical simulation  

The type of PTO damping applied to a WEC is difficult to change in physical model tests, but 

is convenient to alter in simulations. Here, numerical simulations are used to investigate the 

influence of the PTO damping type. The simulations in this paper are conducted by Flow-3D[17], a 

computational fluid dynamic (CFD) software, applying the finite difference method[18] to solve the 

RANS equations[19] which are written in terms of Cartesian coordinates. The RNG k-ε turbulence 

model was applied due to regular waves being modelled. The WECs were modelled by a general 

moving object (GMO) model. All equations are formulated with area and volume porosity functions. 
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This formulation, called FAVORTM for Fractional Area/Volume Obstacle Representation Method is 

used to model complex geometric regions. In Flow-3d, the core of the GMO is the FAVOR method, 

applied to describe and calculate the motion of the device in each degree. 

    To find the most suitable PTO type, a numerical wave tank (NWT) was used to simulate the 

device motion with different damping types. As shown by Fig.1, the NWT was 50m long, 0.7m 

wide and 2m high (the water depth is 1m), divided into two zones (Zone 1 and Zone 2). Each zone 

consists of cubic cells. The WEC model is in Zone 1, which has a finer mesh than Zone 2. The 

boundaries of the two zones can been seen in Table 1. Simulations were conducted for both a 

heaving buoy and pendulum device. The results of a mesh resolution study for both cases can be 

seen in the Fig.2. The ratio between the flume width and the cell length is defined as 𝑟0. In the 

heaving buoy case, buoy velocity is different in 𝑟0 = 2.33 cell and 𝑟0 = 2 cell, meaning the cell 

size still influenced the results. When 𝑟0 > 3.5, the results are independent of the cell size. The 

computing time length in 𝑟0 = 7 case is not much longer than in the 𝑟0 = 3.5 case (3 min 21 s 

and 3min 50s, respectively). So, in the heaving buoy cases a cell size of 𝑟0 = 7 was used. The 

length of the pendulum device along the incident wave direction was smaller than the buoy (heaving 

buoy: 0.5m and pendulum: 0.15m) and the generated motions were smaller. Hence a smaller and 

finer mesh was needed for the pendulum compared to the buoy. The modelled pendulum velocity 

was the same when the cell sizes were 𝑟0 = 15.5 and 𝑟0 = 14, with 𝑟0 = 14 being selected for 

zone1. 

 

  Fig.1 Side view of the NWT. The WEC located in Zone 1. Zone 2 is used for wave absorption.  
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Table 1 Boundary conditions of NWT 

 Zone 1 Zone 2 

𝑋𝑚𝑖𝑛 Linear wave Symmetry 

𝑋𝑚𝑎𝑥 Symmetry Outflow with wave absorber 

𝑌𝑚𝑖𝑛 Symmetry Symmetry 

𝑌𝑚𝑖𝑛 Symmetry Symmetry 

𝑍𝑚𝑖𝑛 Wall Wall 

𝑍𝑚𝑎𝑥 Specified pressure Specified pressure 

 

 

(a) 
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(b) 

Fig.2 Results of mesh resolution study for (a) heaving buoy and (b) pendulum device, with 

different cell size. 𝐻 = 0.2 𝑚, 𝑇 = 1.9 𝑠 

 

(a) 
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(b) 

 

(c) 

Fig.3 The validation of NWT, comparing physical model measurements and numerical model 

predictions of surface elevation with regular waves of (a) 𝑇 = 1.96 𝑠 𝐻 = 12 𝑐𝑚 (b) 𝑇 =

1.96 𝑠 𝐻 = 20 𝑐𝑚 (c) 𝑇 = 2.51 𝑠 𝐻 = 12 𝑐𝑚    

The function of the Zone 2 is to absorb the wave, reducing the reflection. Porous wave 

absorbing is applied at the end of NWT with a 0.7 coefficient. The other parameters can be seen in 

Table 2. The NWT has been validated by the physical wave tank (PWT) which is used in the model 

test. The results can be seen in the Fig.3, amplitude of NWT waves are larger than in PWT, believed 

to be due to the losses from the tank bottom in the PWT.  

Table 2 Numerical parameter used during simulations of Heaving Buoy and Pendulum WEC 
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Input conditions Heaving buoy (Cuboid) Pendulum 

𝑇: 1.96 s,2.51s 

𝐻: 0.2 m, 0.12 m 

Size: 500*700*500 mm Size: 150*700*700 mm 

   

Deep: 1 m  Density: 600 Kg/m3 Density: 335 Kg/m3 

   

Wave tank length and width: 

50 m and 0.7 m 

Damping type: a. constant  𝐾  

b. liner type 𝐾𝑉  

Damping type: a. constant 𝐾  

b. liner type 𝐾𝜔𝑝 

   

 

As shown by Table 2 the width of the two devices is the same as the tank width. The density 

of these two devices is also the same as applied in the model test. The energy capture calculated by 

the WHTO technique and directly from the modelled motions is compared for two different PTO 

damping types applied to the heaving buoy device (Fig. 4) and pendulum device (Fig. 5). A constant 

damping and a linear damping (proportion to velocity or angle velocity of the device) are used in 

the simulation. The energy absorbed by PTO in the heavying buoy device is calculated by  

𝐸𝑃𝑇𝑂 = 𝐹𝑆  

where 𝐹 is the damping force, and S is the distance of the buoy movement.  

And the extraction of PTO in pendulum device is calculated by 

𝐸𝑃𝑇𝑂 = 𝑇𝑝𝑡𝑜∅  

where 𝑇𝑝𝑡𝑜 is the damping torque and ∅ is the rotation angle of the pendulum. 

 Fig.4 and Fig.5 show how the power absorption of the buoy and pendulum respectively 

various with PTO damping for a regular wave with 𝑇 = 1.96 𝑠, 𝐻 = 12 𝑐𝑚. For both devices, a 

single peak is observed in absorbed power as damping is varied. Also, the maximum power 

absorption is the same regardless of PTO types (here, it is 220J for buoy, 455J for the Pendulum), 

although the relationship between power and damping is different. The constant damping type was 

judged as the more suitable one for the model tests of both devices as it has the softest trend (easy 

to control) and is convenient to setup. 

The differences between the absorbed power calculated from the PTO and WHTO are below 

3% in both Fig.4 and Fig.5 These differences are within the accuracy of the numerical model 

simulations. The similarity between absorbed power calculated by both approaches confirms that 
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the assumption that 𝐶 = 
1

8
𝜌𝑔𝐿𝐷𝑁 made in the theoretical derivation of WHTO is acceptable. 

 

(a) 

 

(b) 

Fig.4 Energy absorbed calculated by WHTO and by PTO by heaving buoy with varying PTO 

damping for regular wave 𝑇 = 1.96 𝑠 𝐻 = 12 𝑐𝑚. (a) Constant PTO damping (b) Linear PTO 

damping 
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(a) 

 

(b) 

Fig.5 Energy absorbed calculated by WHTO and by PTO for pendulum device with varying PTO 

damping for regular wave 𝑇 = 1.96 𝑠 𝐻 = 12 𝑐𝑚. (a) Constant PTO damping (b) Linear PTO 

damping 
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4 Experimental setup 

4.1 Layout 

Model tests were carried out at 1:9 scale under Froude scaling of both a heaving buoy and 

pendulum type WEC. A 60 m long, 3 m wide, 1.5 m deep flume was used with a single-directional 

wave maker. Flume width was reduced to 0.8m to reduce the impacts from wave diffraction. The 

distance from the wave maker to the physical models (both heaving buoy and pendulum) was 25 m. 

The layout of the experiment can be seen in Fig.6.  

 

Fig.6 The layout of the experiment: three wave gauges are applied to collect the wave data behind 

and before the physical model  

Surface elevation was measured at three locations using resistive wave gauges. Gauge C 

records surface elevation behind the device. The GODA method[20], also known as the two-point 

method, is applied to separate the incident and reflect wave using the Gauge A and Gauge B data. 

The distance between Gauge A and B was 1m, with Gauge A located 1.2m from the device. The 

tank layout was also applied to the numerical wave tank. 

The incident waves in north China are sheltered and blocked by the island chain at the western 

Pacific. Considering typical wave conditions in Qingdao and the experimental scale ratio and 

capability of the wave maker system [21], the wave parameters tested can be seen in the Table 3. 
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Table 3 Wave parameters used during experimental tests on heaving buoy and pendulum device 

Heaving buoy Pendulum 

1.96 s 12 cm 1.96 s 12 cm 

2.51 s 12 cm 1.96 s 20 cm 

 1.4 s 14 cm 

4.2 PTO 

A constant damping type PTO was applied to both physical models in the form of a clump 

weight lifting mechanical structure. The gear box (Fig.7), consisting of five gears, two one-way 

bearings, one input shaft, one output shaft, and a winch, converting reciprocating rotation generated 

by the WEC to one-way rotation, lifting the clump weight by a winch. The one-way bearing and 

gear were expected to face very high torque during the test and so they were made from titanium 

alloy. 

   

                            (a)                              (b) 

Fig.7 One-way gear box used during experimental tests; (a) structure diagram of the gear box and 

(b) gear box used 

To understand the damping of the device, the transmission efficiency of the gear box was 

measured using a torque sensor and an electric motor (Fig.8a). The PTO system input energy (𝐸𝑖𝑛𝑝𝑢𝑡) 

is recorded by torque sensor, and the output energy (𝐸𝑜𝑢𝑡𝑝𝑢𝑡) is measured by the change in height 

of the clump weight. The efficiency 𝜂𝑃 can be presented as: 𝜂𝑃 =
𝐸𝑜𝑢𝑡𝑝𝑢𝑡

𝐸𝑖𝑛𝑝𝑢𝑡
 . 
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Fig.8.b shows the efficiency under the different damping (clump weight mass). The electric 

motor operated at a constant power and therefore the changes in damping resulted in variations in 

rotation speed. As shown by Fig 8.b, the efficiency is 55% with an acceptable fluctuation. 

 

(a) 

 

(b) 

Fig.8 Transmitted efficiency test of experimental PTO arrangement. (a) set-up of test, (b) 

measurement of efficiency, with different damping values 

The motor tests were also used to validate the assumption that the gear-box – clump weight 

PTO model provided constant damping. Fig. 9 shows the curve of damping type was an approximate 

square wave, validating the constant damping caused by the clump weight. The damping value also 

has an acceptable fluctuation when the device is in a reciprocating motion.  
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                   (a)                                (b) 

Fig.9 Constant damping produced by the lifting weight system: (a) The damping torque on the 

winch is 7 NM. (b) The damping torque on the winch is 10 NM           

 The mass of the clump weight was varied from 10 Kg to 120 Kg in the pendulum cases and 

between 1 Kg and 25 Kg for the buoy. The absorbed energy is proportion to the lifting height of the 

clump weight in a certain time. The maximum number of waves is dependent on the wave speed, 

ensuring the wave reflected by the physical model will not reach the wave maker. In this test, the 

regular waves are employed for the experimental studies.  

 

4.3 The model of heaving buoy 

The heaving buoy had a density of 600 Kg/m3 and was a 700 mm long, 500 mm wide and 350 

mm high cuboid. The buoy is designed as a cuboid to limit waves radiation and diffraction effects. 

At the four corners of the buoy, there are four linear bearings to ensure the buoy heaves along the 

four light bars with very little resistance. A rack was installed at the central point of the upper surface 

of the buoy. As the buoy heaved, the rack drove the one-way gear box to lift the clump by a winch. 

The details can be seen in the Fig.10. 

  

                                      (a) 
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                                    (b)                  

Fig.10 Structure diagram of Heaving buoy WEC: (a). Heaving buoy design sketch. (b). Heaving 

buoy physical model 

4.4 The model of pendulum 

The pendulum plate was 150mm long, 700mm wide and 700mm high and made from 

aluminum alloy. The plate was connected to the flume base with a shaft which was connected to the 

PTO via a gear and chain. The details can be seen in the Fig.11. 

 

(a) 
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(b) 

Fig.11 Structure diagram of Pendulum WEC (a). Pendulum physical model includes the pendulum 

and the PTO connections. (b). Pendulum design sketch 

5 Results and Discussions 

5.1 The differences between WHTO and PTO 

Heaving buoy 

The principle of the WHTO method is to calculate the power extracted by the device by 

measuring the wave heights. Fig.12 shows the incident wave, reflected wave and the transmitted 

wave height with different damping values. The incident and reflected wave heights were calculated 

by GODA method while the transmitted one was recorded by the Gauge C. All the wave heights 

were analyzed by the mean value method.  
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(a) 

        

(b) 

Fig.12 Incident wave height, reflected wave height and the transmitted wave height: (a). The wave 

condition is  𝑇 = 1.96 𝑠 𝐻 = 12 𝑐𝑚.  (b). The wave condition is  𝑇 = 2.51s 𝐻 = 12 𝑐𝑚 

Before testing in the wave tank, incident wave height was calibrated. Minor fluctuations in the 

incident wave height were observed once reflected waves reached the wave maker. All analysis was 

conducted before this occurred, ensuring the incident wave height was the same for each damping 

value tested.  As damping increased, the reflected wave height increased while the transmitted 

wave height decreased. However, when the damping reached 180N the device could no longer move. 
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Overtopping effects led to a growth for the transmitted wave height. The same phenomenon occurs 

in the 2.51s cases (shown by Fig.12.b) but is more obvious. 

Fig.13 shows the absorbed power calculated from the PTO and the WHTO, respectively. When 

calculating the energy extracted by the PTO, the measured 𝜂𝑝  was applied to account for the 

mechanical energy loss in the one-way gear box. The power loss from diffraction effects were 

measured using the WHTO technique when the PTO system was disconnected and so no damping 

was applied and when damping levels were large enough to prevent device motion (experienced in 

the T = 1.96 s, H = 12 cm case when damping was 180N). The energy loss was found to be nearly 

constant in these two cases. This power loss has been removed from the power calculated using the 

WHTO method.   

The difference between PTO and WHTO were larger than in the simulations for the 1.96s case 

(Fig.13 a), where the power calculated from the PTO was consistently smaller than the WHTO result. 

This is believed to be due to mechanical losses within the PTO system, not accounted for in the 

calibration of the gearbox efficiency. Some wave breaking when the wave interacted with the buoy 

was also observed during these wave conditions, which would have potentially increased the 

measured WHTO value. However, in 2.51s case (Fig. 13b), the wave breaking is not obvious, 

leading a better agreement between the absorption measured by PTO and the WHTO. Under two 

lowest damping values, the PTO extraction is a slightly larger than the WHTO extraction. This is 

possibly due to the effects of overtopping of the buoy observed during tests under these wave 

conditions. This overtopping would result in a slight increase in the wave height measured behind 

the buoy, thereby reducing the WHTO measurement. 
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(a) 

 

(b) 

Fig.13 The power calculated by PTO and WHTO for the heaving buoy (a) The wave condition is 

 𝑇 = 1.96𝑠 𝐻 = 12𝑐𝑚 (b). The wave condition is  𝑇 = 2.51s 𝐻 = 12𝑐𝑚 

Pendulum 

During the pendulum tests, the wave did not break, and the other energy losses could be ignored. 

Fig 14 show the three types of wave height with different damping values under different input 

conditions. The torque could be presented as: 𝑇𝑀 = 𝑀𝑔𝑅, where R is the radius of the winch. 



23 

 

 

(a) 

 

(b) 

Fig.14 Incident wave, reflected wave and the transmitted wave (a). The wave condition is  𝑇 =

1.96 𝑠 𝐻 = 12 𝑐𝑚  (b). The wave condition is  𝑇 = 1.96 s 𝐻 = 20 𝑐𝑚 

Shown by Fig.14, the incident wave height was still a constant value. Like the buoy cases, the 

reflected wave height increases with increasing damping (more obvious in the higher wave height 

cases). When the damping is large enough to fix the device (150NM for 𝐻 = 12 𝑐𝑚, 250NM for 

𝐻 = 20 𝑐𝑚), the pendulum blocked the flume. The transmitted wave height was caused by the wave 

overtopping. The extracted energy calculated by the PTO and WHTO are shown in Fig.15. 
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Compared with the buoy case, the power calculated from the PTO and WHTO show good agreement 

during both wave conditions and at all damping values. It should be noted that unlike the buoy case 

wave breaking and overtopping were not observed during the pendulum tests. It can also be seen 

that the optimal damping value is not a constant with different wave heights. 

 

(a) 

 

(b) 

Fig.15 PTO and WHTO in Pendulum (a). The wave condition is  𝑇 = 1.96 𝑠 𝐻 = 12 𝑐𝑚 (b). The 

wave condition is  𝑇 = 1.96 s 𝐻 = 20 𝑐𝑚 
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5.2 The efficiency calculated by WHTO and PTO  

The heaving buoy and the pendulum are symmetric. Based on[22][23], the maximum 

absorption efficiency for the symmetric oscillating body is 50% in 2D flume. Fig.16 shows the 

whole efficiency of the two devices under the same wave condition (𝑇 = 1.96𝑠, 𝐻 = 12𝑐𝑚). The 

maximum efficiency (by WHTO) for the pendulum is 17% while the heaving buoy it is only 8.5%, 

demonstrating that in these wave conditions the pendulum performed better. 

 

(a) 

 

(b) 
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Fig.16 The efficiency of two devices: (a). The Pendulum device with a maximum efficiency 17%. 

(b). The Heaving buoy device with a maximum efficiency 8.5% 

 

5.3 Comparison between theoretical and experimental 

results   

This part compares the absorption in simulation and physical model for the heaving buoy and 

pendulum (𝑇 = 1.96𝑠 𝐻 = 12𝑐𝑚), respectively. Fig.17b demonstrates that for the pendulum WEC 

the numerical model and physical results are in good agreement. The trend in power with increasing 

damping is correctly predicted by the model. The magnitude of the power is slightly over predicted 

by the numerical model (by an average of 5%). This is believed to be due to additional losses within 

the experiment not accounted for in the numerical model.   

Fig. 17a shows that for the heaving buoy the numerical and physical results have a less good 

agreement compared to the pendulum. The trend in absorbed power with damping is correctly 

modelled, however the magnitude of absorbed power is significantly greater in the numerical model. 

This difference is 20% for power calculated by the PTO and 7%for the power calculated by WHTO. 

In section 5.1 it was proposed that the difference between PTO and WHTO measurement in the 

model tests was due to mechanical losses reducing the PTO measurement and wave breaking 

increasing the WHTO measurement. The results in Fig.17a suggest that the mechanical losses are 

more significant, as unlike wave breaking these are not simulated within the numerical model. 
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(a) 

 

(b) 

Fig.17 The difference between numerical model and physical model:(a) Heaving buoy                    

(b). Pendulum 

6 Conclusions 

In this paper, an available method to find the energy extraction of WECs based on WHTO was 

proposed. A pendulum and a heaving buoy were applied to validate the method both numerically 

and physically. In the theoretical part, the WHTO was defined to be equivalent to the energy 
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extraction by the PTO. Numerical simulation results showed that the maximum absorption was 

independent of damping type for both the heaving buoy and pendulum and that the difference 

between the absorbed energy calculated from the PTO and from WHTO was found to be 

insignificant.   

Physical model tests of the pendulum WEC similarly showed small differences between the 

power calculated from the PTO and the WHTO and also gave good agreement with the numerical 

model simulations. Agreement was less good for the heaving buoy cases. It has been proposed that 

this is due to losses in the PTO system and the possible influence of wave overtopping and steeper 

waves breaking on the model. Comparisons with the numerical simulations suggest that PTO losses 

were the most significant of these three effects, demonstrating the use of WHTO as an alternative 

method to measure absorbed power.   

For the two devices applied in the test, the pendulum had a better capture performance. Further 

work will attempt to validate the WHTO technique in a 3D basin to calculate the device extraction 

spectrum.   
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