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We investigate near-shoring a small part of the global production to local SpeedFactories that serve only

the variable demand. The short lead time of the responsive SpeedFactory reduces the risk of making large

volumes in advance, yet it does not involve a complete re-shoring of demand. Using a break-even analysis

we investigate the lead time, demand, and cost characteristics that make dual sourcing with a SpeedFactory

desirable compared to complete off-shoring. Our analysis employs a linear generalization of the celebrated

order-up-to inventory policy to settings where capacity costs exist. The policy allows for order smoothing to

reduce capacity costs and performs well relative to the (unknown) optimal policy. We highlight the significant

impact of auto-correlated and non-stationary demand series, which are prevalent in practice yet challenging

to analyze, on the economic benefit of re-shoring. Methodologically, we adopt a linear policy and normally

distributed demand and use Z−transforms to present exact analyses.

Key words : Inventory Management, Order Smoothing, Order-Up-To Policy, Auto-Regressive Demand,

Integrated Moving Average Demand, Global Outsourcing, Dual Sourcing, Z−transform.

1. Introduction

Re-shoring initiatives are growing in popularity. Margolis [2017] reports of a UK company re-shoring

30% of its production back from China for economic reasons. Annual Chinese labor costs rose from

£2.5K in 2007 to £8K in 2017, with some key personnel being paid £55K. Over the same timespan,

Chinese factory leases have doubled to £4 per sq ft (London is £8 per sq ft; other areas of the UK

are much cheaper). Cheaper, and easier to program, labor-reducing CNC machines facilitate more

in-house production. Add transport and coordination costs and off-shoring economics appear even

less attractive. With product demand being more unpredictable and speed-to-market becoming

more important, this re-shoring trend may continue.
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Recently, the concept of a SpeedFactory1 has emerged. A SpeedFactory is a small, local, fast

response plant that supplements a large off-shore plant [Shotter and Whipp 2016]. Adidas and

Nike announced they are bringing back some manufacturing to Europe and North America, using

automation to keep labor costs down and make products quickly. Nevertheless, they still make the

large majority of their goods in Asia, an intriguing fact our model analysis can explain2. The need

for such a near-shore SpeedFactory is driven by the demand for new products with shorter and

more unpredictable life-cycles, partially due to the increased focus on e-commerce which makes

speed key to the company’s long-term growth. In the past, Nike would start manufacturing when

it received an order it had to deliver in six months. Now Nike is moving towards quick response

manufacturing matched to consumer need. This reduces the time from-manufacturing-to-market

to 10 days or less. Similarly, Adidas opened a SpeedFactory in Germany and in Atlanta to do more

of its own responsive manufacturing. Recently, Adidas has rescinded on their bold decision and

moved their robotic SpeedFactory back to Asia [Ziady 2019].

We are also working with a high volume European apparel manufacturer. They currently out-

source their printable t-shirt production to a Bangladesh supplier. The company is suffering from

long replenishment lead-times and pressure for working capital reduction; they are investigating

the possibility of a local SpeedFactory to help cope with the highly unpredictable demand and

short life cycles. We later show how our analysis supports their decision.

Herein, we study when, and to what extent, such a SpeedFactory creates value by analyzing the

combined impact of: product demand, supply chain costs, inventory service levels, replenishment

smoothing rules, lead times, and off-shore and near-shore facilities’ labor flexibility. We consider

a family of linear order policies under a broad class of normally distributed demand patterns,

including auto-correlated and non-stationary demand.

1.1. Background and motivation

We study a focal company that previously outsourced production to a low cost, global, off-shore,

supplier with a long lead-time. The off-shore supplier charges a unit price to deliver the item to an

inventory location from which customers are served. Upon arrival, product ownership is transferred

to the focal company. The focal company controls this inventory (used to serve demand) by issuing

replenishment orders to the off-shore supplier. This arrangement has worked well in the past, but

recently off-shore labor costs have risen dramatically3. This preference is driving up factory labor

1 The SpeedFactory moniker comes from Adidas.

2 While Adidas sell 301M pairs of shoes each year, they plan to make only 1M (0.33%) shoes a year in their German
SpeedFactory. Nike’s near-shore, purpose-built footwear factory with Flex will deliver 3M pairs of shoes to North
America in 2018. This is only 0.23% of the predicted 1.3B shoes to be shipped in 2018 [Bain 2017].

3 In conversations we have held with Chinese factory owners, technician rates have increased three-fold in the last
decade; regular worker rates have doubled in the same time frame. Migrant workers are increasingly averse to working
long hours in distant factories. Many would rather work closer to their family in service industries.
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costs, and increased demand unpredictability that puts pressure on inventories, is eroding many of

the benefits of off-shoring.

SpeedFactories provide an accurate response to demand fluctuations. This local production facil-

ity, owned and operated by the focal company, has a nominal working week with a reserve capacity

for meeting short-term demand peaks via over-time. In this re-shored scenario the focal company

is responsible for material, labor, and over-time costs of local production. The short lead time of

re-shored production allows for tighter control of inventory levels, off-setting the potentially higher

local labor costs.

1.2. Related literature

Interest in re-shoring strategies, where companies reverse off-shoring decisions and bring manufac-

turing back home, has gained momentum recently. Suggested drivers of this global (re-)location

include: the rising labor cost in low-cost countries, the increased fuel cost and associated transport

costs, and the fast response time and leaner supply chain associated with locating manufacturing

closer to the end customer [Ellram et al. 2013]. In their analysis of the manufacturing off-shoring

and back-shoring activities of 1663 German manufacturing companies, Kinkel and Maloca [2009]

show that 16-25% of off-shoring is re-shored within four years. Rather than off-shoring or re-shoring

all manufacturing activities, the dual sourcing literature considers the combined use of off-shoring

and near-shoring. The dual sourcing literature is rich (see Yao and Minner [2017] for a review); we

restrict our literature review to the most relevant contributions.

Whittemore and Saunders [1977] show when the lead times of both sources differ by more

than one period, the optimal policy depends on the entire ordering history and requires multi-

dimensional dynamic programming. Therefore, the literature proposes various heuristic policies.

Rosenshine and Obee [1976] study the standing order policy which orders at a constant rate from

the regular global source and uses a base-stock policy for the emergency replenishment. Allon

and Van Mieghem [2010] refer to a standing order policy as a tailored base-surge (TBS) policy,

where the regular source supplies the base demand and the fast source supplies the remaining surge

demand using a base-stock policy. They give guidance on the off-shore vs. near-shore production

volume. Janakiraman et al. [2015] show the TBS policy is optimal when demand comes from a

two-point distribution and when the probability of the smaller (base) demand is sufficiently large.

They also show that the TBS performance, relative to the optimal policy, improves as the off-shore

lead time increases. Xin and Goldberg [2018] prove that TBS is asymptotically optimal as the lead

time difference L→∞.

Building upon Song and Zipkin [2009], Song et al. [2017] consider a dual-sourcing setting with

endogenous stochastic lead times within a queuing theory framework under iid Poisson demand
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with exponentially distributed lead times. Hua et al. [2015] consider a periodic review dual sourcing

inventory system with general lead times and iid demand over a finite, and an infinite, time horizon,

and characterize the structural properties of the optimal orders. All the aforementioned order

policies are developed for linear inventory holding and backlog costs and linear order costs from

both sources.

Boute and Van Mieghem [2015] introduce a linear control rule to determine off-shored and re-

shored volumes. Their model captures each source’s lead time, capacity cost, and flexibility to

work over-time. Linear control rules have been investigated successfully by several researchers in

various environments; see, for example Graves [1999], Zipkin [2000, p.393], Aviv [2007] and Huh

and Nagarajan [2010] and the references therein.

1.3. Contribution

We contribute to the off-shoring, re-shoring, and dual sourcing literature as follows. We believe

this is the first paper to provide a stochastic analysis of dual sourcing under correlated and non-

stationary demand. We show that such demand can significantly increase the viability of dual

sourcing relative to the traditionally-assumed iid demand in dual sourcing research. Our analysis

employs a linear generalization of the celebrated order-up-to inventory policy to settings where

capacity costs exist. The policy allows for order smoothing to reduce capacity costs and performs

well relative to the (unknown) optimal policy. Using a break-even analysis we offer conservative

guidance on when a SpeedFactory is attractive given specific product demand characteristics,

supply chain costs, and replenishment lead-times. We illustrate our findings with an industrial case.

The strength of our linearized model is analytical tractability for continuous normally distributed

demand. Yet we acknowledge this linearity is also the key restriction of our analysis. We therefore

provide extensive robustness analysis to show that this linearization is reasonable.

2. A production-inventory model with two replenishment sources

We consider a discrete-time, discrete-review production-inventory model where stochastic customer

demand, dt, is satisfied from finished goods inventory (FGI) it, and excess demand is backlogged. In

each period t∈N, the firm can replenish its FGI from two sources, as illustrated in Figure 1: (a) A

local (re-shored) wholly-owned SpeedFactory with the smallest possible lead-time, corresponding

to an order received in time to fill next period’s demand (following [Zipkin 2000, p404] we say that

the risk period or total lead time is L= 1, this includes the one period review). (b) A global off-

shore outsourced supplier with lead time L> 1. Denote the local and global replenishment orders

by qt and qgt , respectively. Period t starts by receiving orders qt−1 and qgt−L. Then demand dt is
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Global supplier

Local SpeedFactory

CustomerShipping Finished 
Goods Inventory

Lead time L

Unit lead time

Figure 1 Our supply chain replenishes inventory from a global supplier and a local SpeedFactory.

observed and satisfied. Finally, orders qt and qgt are placed based on the finished goods inventory

it which evolves via

it = it−1− dt + qgt−L + qt−1. (1)

In period t, inventory incurs the usual holding and backlog costs4:

Ci
t = h[it]

+ + b[−it]+, (2)

where h and b are the per period per unit holding and backlog cost, and [x]+ = max[x,0].

Inventory replenishment costs depend on the order quantity and on the source. The purchasing

cost in period t from the global external supplier, Cp
t , is

Cp
t = pqgt , (3)

where p is the total landed unit purchasing cost (p includes all the costs involved in producing and

delivering the product). We assume the global supplier can outsource excess demand beyond their

capacity to a third party within the same quality parameters, cost structure, and lead time. Hence,

the global supplier effectively has no capacity limit.

In contrast, the internal SpeedFactory maintains an installed nominal production capacity of

k≥ 0 units per period but can run overtime to produce qt >k. The local production cost in period

t, Cq
t , is5

Cq
t = uk+um[qt− k]+, (4)

4 Notation: (·) is used to clarify precedence, [·] for functions or operators, and {·} for lists.

5 Per unit material and direct energy costs could also be included into the capacity cost function, but as this is entirely
volume related, it will not affect the capacity decision, and any influence it would have in our break-even analysis
later could be readily included in the variable p. To create a parsimonious model we have omitted this term.
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where u is the per unit labor cost of producing an item during normal working hours (at full

capacity)6 and um is the per unit cost to produce excess demand in over-time7,8. If the local order

is less than the installed capacity, qt <k, workers stand idle, but still receive their full wage for the

working week9. Otherwise, over-time cost of um is incurred which is at least as expensive as work

in the nominal working week. The multiplier m≥ 1 can be thought of as a flexibility coefficient.

When m= 1, total labor flexibility is available, all products are produced at a unit cost of u; as

there are no guaranteed hours, there is also no idling. As m> 1 increases, labor is increasingly less

flexible; when m→∞, labor is totally inflexible.

Program OPT Let Π denote the set of non-anticipatory order policies π = {(qt, qgt ) ∈ R2 : t ∈

N0}. The objective is to find an order policy π ∈Π and a SpeedFactory size k ≥ 0 that minimizes

the long-run average total cost per period Cπ,k, where

Cπ,k = lim inf
n→∞

1

n

n∑
t=1

(Ci
t +Cp

t +Cq
t )≥ 0. (5)

Let COPT = infπ∈Π,k≥0C
π,k ≥ 0 denote the optimal cost.

Unfortunately, the multidimensional dynamic program (DP) to solve Program OPT is not ana-

lytically tractable and the structure of the optimal policy remains unknown for general lead times.

Therefore, we shall consider a family of linear dual sourcing order policies that are analytically

tractable and are used in practice. When local supply is uncapacitated (k=∞), Xin and Goldberg

[2018] proved that our family of policies is asymptotically optimal with iid demand when L→∞,

so they are expected to perform well in our setting where L� 1. These linear policies give an upper

bound on COPT that we will quantify for settings where the DP can be solved numerically.

Note that the policies in OPT, including our linear policies, may place negative orders. To

compare their performance with traditional inventory theory, which often assumes non-negative

orders, we also consider the restricted program OPT+:

6 u includes depreciated overheads, indirect labor, and indirect energy allocated to each unit of nominal capacity.

7 We note that over-time customs vary from country-to-country. In many Western countries working hours are limited
by law and workers expect to be paid a premium for hours worked at night, on the weekend, and in excess of a
standard working week. In other countries, working hours are not limited and workers do not receive an over-time
premium. Even in the cases where premiums are paid, there are often other conventions to consider. For example,
unions may insist that only full shifts of over-time are offered, allowing workers of recover their travel costs. Such
highly contextual factors are not included in (4).

8 We are aware of companies who have sold their old production equipment to local subcontractors when they upgraded
their facilities. When these companies experience peak demand, a proportion of the excess demand is produced by
these subcontractors. This set-up also matches our assumptions, allows for a linear analysis, and affords an alternative
way to interpret (4). That is, in a 24/7 operation, [qt − k]+ is the subcontractors demand and um is the per unit
subcontractor cost. Alternatively, excess demands at the local factory could also be produced by the global supplier
and air-shipped to the FGI (in unit lead time). In this case the um incorporates the premium transportation costs.

9 In a highly automated SpeedFactory, not only the workers, but also the machines stand idle when demand is less
than the installed capacity; when machines incur linear depreciation costs, the equations remain.
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Program OPT+ Let Π+ denote the restricted set of non-negative, non-anticipatory order poli-

cies π = {(qt, qgt ) ∈ R2
+ : t ∈ N0} and COPT+ = infπ∈Π+,k≥0C

π,k. Clearly, COPT ≤ COPT+ . We will

define a “non-negative version” of our linear order policies whose cost provides an upper bound to

COPT+ . In addition, by bounding the probability that our linear policies place negative local orders

by ε > 0, the linear policy is also conjectured to provide an upper bound to COPT+ . Proving this

conjecture is exceedingly difficult and beyond the scope of this paper but an extensive numerical

study that we present later supports the conjecture.

In addition to COPT and COPT+ , we will also compare the linear policy’s cost to the two single-

sourcing benchmarks: Let πl = {(qt,0) ∈ R2
+ : t ∈ N0} and πg = {(0, qgt ) ∈ R2

+ : t ∈ N0} denote any

single-sourcing local or global policy, respectively. These single-sourcing policies provide an upper

bound:

0≤COPT ≤COPT+ ≤min{Cπl,k,Cπg ,k}. (6)

It is well known that the optimal single-sourcing global replenishment policy is the celebrated

Order-Up-To (OUT) policy. However, when the local plant is constrained with piecewise-linear

convex production costs the OUT policy is not the optimal single-sourcing local policy. Boute and

Van Mieghem [2015] show that the optimal single-sourcing local order policy in a setting under

piece-wise linear convex local production costs with unit lead-time is characterized by a dual-base-

stock policy that features a region of inaction (RoI). This “RoI policy” operates as follows: When

the inventory exceeds the higher base-stock level y1, no local order is placed. When the inventory

is below y1, we first use up the local production capacity k to replenish locally. If this raises the

inventory to above the lower base stock y2, we stick to this local order of k units and do not use

over-time to replenish all observed demand; otherwise, we use over-time to raise the inventory to

y2. Thus there is a region of inaction where we order maximal k but less than the demand10. Our

numerical robustness section will show that our linear policy performs close to the RoI policy to

place local orders, qt. Mathematically, the RoI+ policy places local orders as:

qt =


(y1− it)+, it > y1− k
k, y2− k≤ it ≤ y1− k
y2− it, it < y2− k.

(7)

We denote the linearized version that drops the positive-part operator in equation (7) and allows

negative orders by RoI. Unfortunately there are no simple solutions for the optimal base-stock

levels and capacity level because the RoI policy is not a demand replacement policy. Numerically

optimizing the four parameters is computationally demanding and non-obvious.

10 The marginal over-time cost exceeds the marginal benefit of raising inventory (reducing backlogging relative to
holding costs). It is better to wait and replenish in the future at regular cost versus now at an over-time cost.
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3. TBS policies with local linear POUT control under normal demand

The linear policies we consider are TBS policies that place a constant global order under iid and

auto-correlated demand (and, as we shall show, a dynamic order under non-stationary demand)

and use the local SpeedFactory to respond to demand variation and control inventory. TBS policies

are used in practice and convenient as they directly facilitate specifying offshoring contracts in

terms of strategic allocations: Let γ ∈ [0,1] denote the decision variable that we refer to as the

strategic SpeedFactory allocation, which is the long-run fraction of the expected demand per period

µ to be produced locally. Then, the global constant order when using a TBS policy is

qgt |TBS = µ(1− γ). (8)

With an off-shore constant order generated by (8), the local SpeedFactory is the only means to

control the FGI that is subject to stochastic demand dt − µ(1− γ). Analytically, the TBS policy

reduces the dual sourcing problem to a much simpler single sourcing problem where it only remains

to specify the local order policy.

To allow for an analytic study of the appropriate SpeedFactory allocation γ? and capacity k?,

we consider a TBS policy where local orders are controlled by a generalization of the OUT policy,

called the Proportional Order-Up-To (POUT) policy [Disney et al. 2016]:

qt|TBS-POUT = µγ+ (1−α) (i?− it) , (9)

where i? is the desired safety stock level and α ∈ (−1,1] is a smoothing parameter. Without

smoothing (α= 0), the POUT policy reduces to the familiar OUT policy which attempts to restore

inventory deviations in a single replenishment decision. When 0<α< 1, only a fraction (1−α) of

the actual inventory deviation is corrected in each decision, deferring the remaining correction to

be recovered in future decisions. This creates a smoothing policy where the variability of the orders

can be less than the variability of the demand [Deziel and Eilon 1967]. From a control theory per-

spective, the feedback control is proportional and thus α is also known as a proportional feedback

controller. With total smoothing in a TBS policy, α= 1, a constant, or level, production policy is

obtained; a negative smoothing parameter indicates order variance amplification (bullwhip). The

key benefit from the POUT policy with 0<α≤ 1 is a reduction of the production order variability,

which reduces factory capacity requirements, at the expense of slower control, and thus higher

variance, of inventory. Boute and Van Mieghem [2015] show that the POUT policy closely tracks

the optimal RoI policy in the presence of capacity costs; our robustness section also confirms this.

With the linear POUT order rule, the inventory in each period is a linear superposition of

demands. Given that a linear superposition of normal distributions remains normally distributed,



Dual sourcing under non-stationary demand
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 9

the inventory, and thus also the local order (9), in each period is normally distributed if dt is

normally distributed. If the limiting inventory and local order distributions exists, they are normally

distributed with variances denoted by σ2
i and σ2

q , which are to be determined. We can then evaluate

and optimize system performance analytically. Let {φ[·],Φ−1[·]} denote the probability density

function and the inverse of the cumulative distribution function of the standard normal distribution

respectively. (All proofs are housed in Appendix A).

Proposition 1 Let dt =N(µ,σ) be identically, normally distributed for each t. When dual sourcing

using a linear TBS-POUT policy, the optimal safety stock level and inventory cost are,

i? = σizi, zi = Φ−1 [b/(b+h)] , and C?
i = σi(h+ b)φ [zi]≥ 0. (10)

In the linearized model, the optimal local SpeedFactory capacity and cost are,

k? = µγ+σqzq, zq = Φ−1 [(m− 1)/m] , and C?
q = uµγ+umσqφ[zq]≥ 0. (11)

The purchasing cost from the off-shore supply under TBS is,

C?
p = p(1− γ)µ≥ 0. (12)

The associated total minimal long-run average cost is

CTBS-POUT,k? =C?
i +C?

q +C?
p = σi(h+ b)φ [zi] +σqumφ [zq] + ((u− p)γ+ p)µ≥ 0. � (13)

Note, Proposition 1 allows demands to be correlated over time. Our linear analysis also allows

capacity k? < 0 for extremely small values of γ < −σq
µ

Φ−1
[
m−1
m

]
(in the numerical setting used

throughout the paper, k? < 0 when γ < 0.023). Imposing a positive [k?]+ for these instances results,

however, in non-normal orders, such that we cannot find the critical fractile. To preserve linearity,

we alternatively increase γ to ensure k? ≥ 0. Increasing γ also reduces the probability that a

local production order is negative and it limits the proportion of production being produced in

overtime. By this, increasing γ ensures the accuracy of our linear approximation to the true non-

linear problem. We explore this in the robustness analysis in section 4.3. Assuming linearity, it

only remains to determine (1) the inventory and local order variances and (2) the smoothing

parameter (which all depend on the correlation structure). The significant benefit of our linear

control approach is that these variances can be computed in closed-form using Z-transforms as

explained in Appendix B. When the normal demands are independent and identically distributed

(iid), the variances under the linear TBS-POUT policy are:

σ2
i |iid = σ2

(
1

1−α2

)
and σ2

q |iid = σ2

(
1−α
1 +α

)
. (14)
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Figure 2 By tuning the smoothing parameter α, the POUT policy can trade-off the local order variance (which

drives the local SpeedFactory’s production cost) and the inventory variance.

In the absence of smoothing (α = 0), POUT reduces to the classic, demand-replacing OUT

policy and both variances equal the demand variance. Incorporating smoothing (0≤ α≤ 1) adds

a control variable to manage the trade-off between inventory and local order variability that is

shown in Figure 2. The local order variance is decreasing convex in the smoothing parameter α

with a minimum of σ2
q = 0 under complete smoothing at α= 1. The inventory variance is convex

in α with a minimum of σ2
i at α= 0 (recall that OUT minimizes inventory costs) and asymptotes

to ∞ at α= {−1,1}. Under a TBS-POUT policy, both variances are independent of {L,γ,µ} and

therefore so is the smoothing feedback parameter α? that minimizes the sum of inventory and local

capacity costs.

For any capacity k and (possibly correlated) normal demands, the cost (13) can be written as

CTBS-POUT,k =ϕ(σi +λ(σq −σi)) +A, (15)

where λ∈ [0,1] indicates the capacity intensity and ϕ≥ 0 the scaling factor,

λ= umφ[zq]/ϕ and ϕ= (h+ b)φ[zi] +umφ[zq], (16)

and A are other terms in the cost function that are not influenced by α and thus can be ignored.

The optimal smoothing parameter, α, can then be found:

Proposition 2 Let dt be identically, normally distributed for each t. For a TBS policy with local

linear POUT control and given capacity intensity λ∈ [0,1], the optimal smoothing level is

α? = f−1[λ] where f [α] =
σq

σq −σi
(
dσ2q
dα

/
dσ2i
dα

) . (17)
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The first order condition (17) is always easily solved graphically or numerically as f is an inverse

function that defines for each α the corresponding unique optimal λ. For normal iid demands, the

condition can be solved analytically. Substituting the standard deviations (14) and their derivatives

in (17) reveals that α∗ = λ is a unique solution for CTBS-POUT,k? and is unimodal in α:

Corollary 1 With normal iid demand, the optimal smoothing for a TBS policy with local linear

POUT control and given capacity intensity λ∈ [0,1] is α? = λ.

The corollary states that when labor is more rigid, capacity becomes more constrained and one

should smooth more, exactly because it reduces production variance.

Having fully specified the minimal cost when dual sourcing using a linear TBS-POUT policy

that allocates fraction γ of the mean demand µ for production to the near-shore SpeedFactory, the

last optimization considers the optimal allocation γ?. Equation (13) directly shows that the dual

sourcing cost CTBS-POUT,k? is linear in γ with coefficient (u− p)µ. Aside from the knife-edge case

at u= p (in which case the cost is independent of γ), the optimal γ is a boundary solution:

Proposition 3 (Bang-bang) Let dt = N(µ,σ) be identically, normally distributed for each t.

When dual sourcing using a TBS policy with local linear POUT control, the optimal strategic

allocation γ? = 0 if u> p and γ? = 1 if u< p.

When the local cost u during normal working hours is below the offshore price p the optimal

strategic allocation γ? = 1 reduces to complete reshoring; i.e., single sourcing from the local Speed-

factory. The more interesting and relevant case is u> p for which γ? = 0. This means that the local

SpeedFactory is allocated a normal demand with mean 0 and standard deviation σ: it produces on

average zero volume but serves all the variability. This implies that 50% of its orders are negative

and in the next section we investigate how to adjust this result when orders must be non-negative.

Yet the key insight will be robust: dual sourcing with a SpeedFactory that only serves the variable

demand (hence with a capacity of the scale of σ) can be attractive even when u> p.

Recall, however, a linear TBS-POUT policy with γ? = 0 still dual sources and differs from single

sourcing from the global source. Indeed, while TBS-POUT can replicate single local sourcing, it

cannot replicate single offshoring because it requires a SpeedFactory serving variable demand. To

analyze whether dual sourcing with a TBS-POUT policy is viable, we compare its cost to the

optimal single-sourcing cost from the uncapacitated off-shore supplier. Here a traditional OUT

policy is optimal and the associated inventory and purchasing cost serves as a benchmark:

Cs = σi,s(h+ b)φ [zi] + pµ, (18)

with σi,s = σ
√
L the standard deviation of the inventory under single sourcing with iid demand.
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policies under normal iid demand. Parameters: α= α?, h= 1, b= 9, u= 4,m= 1.5, σ= 1, µ= 10.

Figure 3 compares the optimal dual sourcing cost under the linear TBS-OUT and TBS-POUT

policies for two off-shore purchase prices and two off-shore lead times. Given that TBS-POUT

can replicate TBS-OUT (when setting smoothing α= 0), TBS-POUT dominates TBS-OUT. Fig-

ure 3 demonstrates that smoothing local SpeedFactory orders with TBS-POUT reduces local order

variability (and capacity costs) below those of the TBS-OUT policy, enhancing the value of a

SpeedFactory. While the lead time greatly influences the single-offshore cost Cs (the horizontal

line), by definition the TBS costs (the sloped lines) are independent of the leadtime. The local unit

production cost u= 4. For the parameters used in Figure 3, we can observe: When the outsourcing

price is p= 3.8 in the bottom panels, complete off-shoring with short off-shore lead time dominates

both dual sourcing with TBS-POUT and complete re-shoring (panel D). Yet with a long lead time,

dual sourcing with TBS-POUT allocating only the variable demand to a SpeedFactory dominates

(panel B). The top panels, A and C, assume a higher off-shoring purchasing price p= 4.2. With

longer lead time (L= 6 in panel A), dual sourcing with TBS-POUT always dominates complete

off-shoring. Given linearity, complete re-shoring is optimal: γ? = 1. With shorter off-shore lead time

(L= 2 in panel C), full off-shoring is more attractive, yet is still dominated by complete re-shoring.
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In the next section, we analyze the robustness of our key insight that dual sourcing with a

SpeedFactory that only serves the variable demand can be attractive even when u> p.

4. Robustness Analysis of the linear TBS-POUT Policy

In this section we investigate three robustness questions:

1. How reasonable is the linear TBS-POUT policy? We present optimality gaps of TBS-POUT

with Program OPT for a wide testbed of parameters.

2. What is the impact of demand distributions that are not normal?

3. What is the impact of a non-negativity constraint on local orders?

4.1. TBS-POUT performance and optimality gaps

The purpose of this section is to ascertain the performance of the TBS-POUT policy relative

to the optimal policy computed numerically by solving its dynamic program. Due to the curse

of dimensionality, we can only solve Program OPT for lead times up to L = 7 for a discrete

demand distribution with limited support. For a first performance analysis, we consider all lead

times between L = 2 and L = 7 for six symmetric beta-binomial demand distributions that vary

by coefficients of variation (CoV), as shown in Table 1. Symmetric beta-binomial distributions are

characterized by only one parameter and cover a range of distributions, including a bell-shaped

(CoV= 0.5), uniform (CoV ≈ 0.7) and two-point (CoV= 1) distribution. The optimal dual sourcing

policy and cost COPT, as well as the optimal local single sourcing policy and cost Cπl,k? were

computed exactly via an linear programming (LP) formulation of the underlying dynamic program,

which is a stationary Markov decision problem (MDP). For L= 7, the LP has 3,250,000 state-action

pairs and took 6.5hrs CPU time. For L= 2, only 1,040 state-action pairs are solved in under 1min.

The TBS-POUT cost was evaluated by solving its underlying Markov Chain; the reported results

thus have no simulation errors. The TBS-POUT order quantity was rounded to integers using the

round half away from zero convention. The three optimal parameters {k?, γ?, i?} were identified by

a grid search on the integers (α was enumerated in increments of 0.01).

Table 1 shows that the optimality gap reduces in the off-shore lead time L and the coefficient

of variation in demand. By construction, TBS-POUT is independent of L, while COPT is non-

decreasing in L because a shorter L dominates a longer L. Hence, the optimality gap is always non-

increasing in the lead time. Recall that CoV=0.5 is bell-shaped and closest to a normal distribution.

Table 1 also highlights the optimal single sourcing at a costs

To investigate the parameter robustness of the results in Table 1, our second performance analysis

fixed L = 4 and the mean of the beta-binomial distribution µ = 2 and calculated the optimal-

ity gap for a testbed of 486 parameter combinations: CoV∈ {0.5,0.6,0.7.,0.8,0.9,1}, h = 1, b ∈
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Coefficient of variation (CoV) 0.5 0.6 0.7 0.8 0.9 1
Demand distribution P[D= 0] 0.0625 0.1206 0.1942 0.2824 0.3844 0.5

P[D= 1] 0.25 0.2375 0.2032 0.1506 0.0823 0
P[D= 2] 0.375 0.2838 0.2052 0.134 0.0666 0
P[D= 3] 0.25 0.2375 0.2032 0.1506 0.0823 0
P[D= 4] 0.0625 0.1206 0.1942 0.2824 0.3844 0.5

Optimal cost COPT L= 2 9.99 10.42 10.98 11.40 11.60 11.60
L= 3 10.28 10.82 11.39 11.93 12.26 12.40
L= 4 10.40 10.97 11.58 12.10 12.45 12.80
L= 5 10.47 11.07 11.69 12.16 12.51 12.83
L= 6 10.51 11.12 11.75 12.19 12.55 12.86
L= 7 10.53 11.14 11.78 12.21 12.56 12.92

Optimized Cπl,k? 11.13 11.71 12.37 12.58 12.85 13.17

Optimized CTBS-POUT,k? 10.79 11.42 12.18 12.69 13.29 13.80

Optimality gap CTBS-POUT,k?

COPT − 1 L= 2 7.96% 9.60% 10.97% 11.38% 14.54% 18.97%
L= 3 4.93% 5.57% 6.97% 6.45% 8.38% 11.29%
L= 4 3.70% 4.11% 5.23% 4.94% 6.69% 7.81%
L= 5 2.97% 3.17% 4.22% 4.40% 6.21% 7.55%
L= 6 2.58% 2.70% 3.70% 4.10% 5.88% 7.27%
L= 7 2.42% 2.51% 3.45% 3.99% 5.77% 6.81%

Table 1 Total costs and optimality gaps for optimized TBS-POUT policies for independent beta-binomial

distributed demand with 5 support values and mean µ= 2, and parameters {h= 1, b= 9, p= 3.8, u= 4,m= 1.5}.

Coefficient of variation (CoV) 0.5 0.6 0.7 0.8 0.9 1

Optimality gap, CTBS-POUT,k?

COPT − 1
Minimum (0%) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

First Quartile (25%) 2.62% 2.63% 2.03% 1.43% 2.27% 2.48%
Median (50%) 4.54% 5.68% 6.77% 6.91% 6.54% 7.04%

Third Quartile (75%) 5.56% 6.99% 8.06% 9.26% 10.49% 12.91%
Maximum (100%) 7.28% 9.01% 12.57% 14.10% 16.34% 18.93%

Table 2 Distribution of 486 optimality gaps for optimized TBS-POUT policies for independent beta-binomial

distributed demand with 5 support values and mean µ= 2 and L= 4 over the parameter testbed:

h= 1, b∈ {9,19,99}, λ∈ {0.25,0.5,0.75}, p
u
∈ {0.7,0.8,0.9} and m∈ {1.1,1.5,2}.

{9,19,99}, λ ∈ {0.25,0.5,0.75}, p
u
∈ {0.7,0.8,0.9} and m ∈ {1.1,1.5,2}. Table 2 provides confidence

that the results in Table 1 are representative for a wide range of parameter values.

Given that the optimality gaps above consider a discrete demand distribution with only 5 support

points, our third performance analysis compares TBS-POUT to Program OPT for a discretized

normal demand distribution with same mean µ= 2 as in Tables 1 and 2. To be able to compute

OPT, we fixed minimal L = 2 (which gives a conservative analysis given that optimality gaps

decrease in L) and COV= 0.5. We discretized the normal distributions using 40 bins (about the

maximum number of bins for which we could solve Program OPT) over the truncated support

µ± 4σ= [−2,6]. For the parameters of Table 1 with m= 1.1 (so that a SpeedFactory is viable, as

will be discussed in Section 5), we found that the optimality gap of TBS-POUT was 1.94%. We
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Figure 4 Dual sourcing with a linear TBS-POUT policy when the demand distribution is normal, uniform, or

negative binomial; all with same µ= 12.5, σ= 4.61. Parameters: h= 1, b= 9, u= 4, p= 3.8,m= 1.5. Policy controls

for non-normal distributions are optimized numerically. Recall, TBS costs are independent of L.

also calculated the cost of the best TBS-RoI policy, which had an optimality gap of 1.59%. This

suggests that the TBS-POUT performance is reasonable, both with respect to OPT and TBS-

RoI, and that the optimality gaps in Table 1 for a 5-point discrete beta-binomial distribution are

conservative relative to discrete distributions that are closer to a normal distribution.

4.2. Impact of non-normal demand distributions

Our analytic analysis of the linear TBS-POUT policy assumes a normal demand distribution. To

investigate the robustness of our analytic insights we compared the performance of TBS-POUT for

three distributions that have equal µ= 12.5 and σ = 4.61 (indeed, our analysis can be viewed as

a two-moment approximation of the actual distribution). Figure 4 replicates Figure 3, panel B for

a negative binomial demand distribution (also used by Axsäter [2013]) with parameters p= 0.412

and r = 17.9, a discrete uniform distribution over [5,20], and a continuous normal distribution

N(12.5,4.61). The costs for the normal demand were obtained analytically. The stationary costs

for the negative binomial and discrete uniform demand were obtained by solving their Markov

chains and policy parameters were numerically optimized.

We observe that: (1) the curves are linear suggesting that Proposition 3 is robust, (2) higher

moments that differ from those of the normal distribution of course change the cost, yet the

impact is small (≤ 1% for the negative binomial demand and ≤ 0.5% for the discrete uniform

demand, (3) the optimal safety stock i? and SpeedFactory capacity k? for the non-normal demands

are within one unit away from the normal demand prescription (not shown). The numerically

optimized α is α? = 0.51 for negative binomial demand and discrete uniform demand while the

analytic prescription α? = 0.554 for normal demand. This suggests that our analytic expressions
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CoV CTBS-POUT,k? k? α? qg i? P[qt < 0]
0.5 10.79 0 0.54 2 2 0.14
0.6 11.42 0 0.62 2 2 0.18
0.7 12.18 0 0.59 2 2 0.22
0.8 12.69 0 0.58 2 3 0.25
0.9 13.29 0 0.55 2 3 0.27
1 13.80 0 0.33 1 3 0.17

CoV CTBS-POUT+,k
?
k? α? qg i? P[qt = 0]

0.5 10.97 1 0.50 1 1 0.20
0.6 11.63 1 0.55 2 1 0.19
0.7 12.17 0 0.11 2 1 0.47
0.8 12.38 0 0.11 2 1 0.52
0.9 12.66 0 0.09 2 1 0.55
1 12.99 0 0.13 2 1 0.58

Table 3 (TOP) Probability that P[qt < 0] for the TBS-POUT policy with the Beta-Binomial demand and

parameters of Table 1. (BOTTOM) Performance of truncated TBS-POUT+ policy. Parameters:

h= 1, b= 9, u= 4, p= 3.8,m= 1.5. Policy controls numerically optimized.

derived for the normal distribution (Proposition 1) are a reasonable starting point for non-normal

distributions.

4.3. Impact of non-negativity constraint on local orders

Our analytic analysis of the linear TBS-POUT policy allows negative local orders. Here we inves-

tigate the impact of restricting local orders to be non-negative.

Table 3 compares the optimized CTBS-POUT to the optimized CTBS-POUT+ for the beta-binomial

demand distribution and parameters used in Table 1. TBS-POUT+ is the modified TBS-POUT

policy that truncates negative TBS-POUT orders to zero. The cost difference is between 0.12% to

5.86%. We also compared COPT to COPT+ , which depends on the lead time L. For the lead times

reported in Table 1, COPT+/COPT− 1 had a median of 0.000%, average of 0.030%, and maximum

of 0.225%. This suggest that, for discrete beta-binomial demand, restricting to non-negative orders

has minimal impact on the optimal cost and rather moderate impact on the cost under TBS-POUT.

For normal demand, the probability that TBS-POUT places a negative order P[qt < 0] = Φ[−µγ/
σq] is smaller for larger demands (high µ) and more smoothing (small σq). For practically non-

negative normal demand distributions, the probability of a negative local production order can be

made arbitrarily small (i.e., P[qt < 0]< η) by increasing the allocation γ so that the SpeedFactory

is allocated demand N(γµ,σ) such that the local order qt is positive with probability greater than

1−η. This accomplishes two feats: First, the SpeedFactory continues to serve the variable demand

but also produces on average a small fraction γ of the average demand. Second, its optimal capacity

k? = µγ + σqzq can be made positive and sufficiently large to recover factory set-up and overhead

costs (not considered here) by increasing γ. In other words, by slightly increasing the SpeedFactory

size our key insight remains.
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Figure 5 The linear and non-linear TBS-POUT policies track the linear and non-linear TBS-RoI policies as an

upper bound. Figure drawn for parameters: h= 1, b= 9, u= 4,m= 1.5, p= 3.8,L= 6, σ= 1, µ= 1 with the

TBS-POUT+ policy parameters {α?, k?, i?} and the TBS-RoI/TBS-RoI+ policy parameters {k, y1, y2} numerically

optimized.

Figure 5 shows the results of an exact numerical exploration of the impact of non-negative local

production orders for the optimized TBS-POUT and TBS-RoI policies11, replicating the parameter

values of Panel B in Figure 3. Here we have discretized the normally distributed demand, N(10,1),

into 100 bins over a support of µ± 4σ = [6,14] to get exact results via the dynamic program. We

observe: a) TBS-POUT+ and TBS-POUT are both upper bounds on the cost of TBS-RoI and

TBS-RoI+. b) Unless γ→ 0, the costs of the restricted policies TBS-POUT+ and TBS-RoI+ concur

with those of the linear policies TBS-POUT and TBS-RoI. c) At γ = 0 the cost of TBS-POUT

is equivalent to the cost of TBS-RoI. d) The costs of the POUT policies track the costs of the

RoI policies within 1%. Furthermore, our key insight remains: dual sourcing with a small local

SpeedFactory, able to serve the variation in demand, is able to outperform full global outsourcing,

even when the local production cost is higher then the global purchase cost.

5. Determinants of SpeedFactory viability under normal iid demand

Having demonstrated its robustness, we now adopt the linear TBS-POUT policy under normal

iid demand to investigate when a SpeedFactory outperforms full off-shoring using a break-even

analysis.12 The difference between (18) and (13) shows that a SpeedFactory is economical if

CTBS-POUT,k? −Cs = (h+ b)(σi−σi,s)φ[zi] +umσqφ[zq] +µγ(u− p)< 0, (19)

11 Unfortunately, the solution space is too large for an equivalent MDP analysis of the OPT policies.

12 Note that an analytical comparison against optimal single local sourcing, or even against optimal dual sourcing
with no SpeedFactory (k= 0) is elusive for normally distributed demands. These optimal policies can be found using
dynamic programming, but only for very limited demand support which does not produce fine comparative results.
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Figure 6 A SpeedFactory controlled with TBS-POUT dominates full offshoring when the off-shore purchasing

price p exceeds the break-even price and demand is normal iid. Figure drawn for parameters:

h= 1, b= 9, u= 4,m= 1.5, σ= 1, µ= 10, α? = λ.

or, equivalently, when the off-shore purchasing price p exceeds the break-even price p−:

p > p− =
h+ b

µγ
(σi−σi,s)φ[zi] +

um

µγ
σqφ[zq] +u. (20)

If p > p− it is economical to re-shore at least a proportion of demand. The amount to re-shore

depends on the concavity of the break-even price. To see this, consider the strategy space plotted

in Figure 6 for an off-shore lead-time of L = 6 on the left-hand concave plot and L = 2 for the

right-hand convex plot. A concave p− implies that the break-even p− is below the regular local unit

production cost u. If p > u, then complete re-shoring is optimal; this corresponds to panel A in

Figure 3. If p < u, then panel B in Figure 3 applies and there is a small strategy zone p− < p< u

where dual sourcing with a SpeedFactory serving the variable demand yields lower total cost even

though local production costs are higher than the off-shore purchasing price. The reason is the

short SpeedFactory lead time allows tight FGI control and results in inventory cost savings that

outweigh the increased local production costs. In contrast, a convex p− implies that the break-even

p− exceeds the regular local unit production cost u. If p < p−, complete off-shoring is optimal,

corresponding to panel D in Figure 3. Thus, the off-shore purchased price p has to rise even further

before re-shoring is profitable. But when it does become profitable to re-shore, all demand should

be re-shored, corresponding to panel C in Figure 3.

The concavity of the break-even price is key to the strategy prescription and depends on the

model parameters in a complex matter that can be decomposed into three dimensionless factors:

Proposition 4 (p− concavity) Let dt = N(µ,σ) be identically, normally distributed for each t.

When dual sourcing using a linear TBS-POUT policy, the break-even price p− is concave in γ if

h+ b

um
· σi,s−σi

σq
· φ[zi]

φ[zq]
> 1. (21)
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σ Cs γ k? CTBS-POUT Cs

CTBS-POUT − 1
1 42.3 0.2 1.77 41.68 1.74%
2 46.6 0.2 1.54 44.95 3.54%

0.3 2.54 45.15 3.11%
0.4 3.54 45.35 2.68%

3 50.9 0.3 2.31 48.43 4.85%
0.4 3.31 48.63 4.46%
0.5 4.31 48.83 4.07%

4 55.22 0.4 3.08 51.91 5.96%
0.5 4.08 52.11 5.60%
0.6 5.08 52.31 5.24%
0.7 6.08 52.51 4.87%

Table 4 Economic value of SpeedFactories under TBS-POUT and iid normal demand for different demand

variabilities with {h= 1, b= 9, p= 3.8, u= 4,m= 1.5,L= 6, µ= 10, α? = 0.554186}.

Then dual sourcing dominates single offshoring when p− < p< u (local production costs exceed off-

shore purchasing prices). Otherwise p− is convex and complete re-shoring is optimal when p > p−.

Condition (21) is the product of three dimensionless factors:

1. The financial factor is the ratio of the inventory costs to local production costs. As inventory

costs increase, or local production costs decrease, SpeedFactories are more viable.

2. The variability factor is the ratio of the inventory variability reduction when using TBS-POUT

versus using single global sourcing to the SpeedFactory order variability. The smoothing of the

POUT policy increases the numerator and decreases the denominator relative to a standard OUT

policy, and thus enhances the viability of SpeedFactories. The variability factor also captures the

lead time effect via σi,s; σi,s =
√
Lσ under iid normal demand. Given that σi and σq are independent

of leadtime under a TBS policy, this means that SpeedFactories are more viable as the off-shore

leadtime L increases.

3. The service/flexibility factor shows that higher inventory availability targets and higher labor

flexibility lead to local SpeedFactories.

Table 4 illustrates the economic benefit of dual sourcing with a SpeedFactory compared to full

off-shoring, using (19). When demand variability increases, the performance of dual sourcing with

a SpeedFactory improves compared to single sourcing from an off-shore supplier.

Note that (21) is a conservative condition as the (unknown) optimal dual sourcing policy dom-

inates the TBS-POUT policy and thus makes a SpeedFactory even more valuable. The analytic

analysis in the remainder of this paper similarly presents a conservative analysis.

6. SpeedFactories are more viable with non-iid demand

Ali et al. [2012] studied a dataset of weekly demand over a 2-year period for 1798 stock keep-

ing units (SKUs) from a European retailer. They identified the first order autoregressive, AR(1),
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demand processes in 544 time series (30.3%), the first order integrated moving average, IMA(0,1,1),

processes13,14 in 426 time series (23.7%), and iid demand processes in 293 time series (16.3%).

As these were the three most popular ARIMA processes, and accounted for 70% of the retailers

SKU’s, we explore the economic value of Speedfactories under AR(1) and IMA(0,1,1) demand.

6.1. TBS-POUT and SpeedFactory viability under correlated demand: AR(1)

The autoregressive mean-centered AR(1) demand process is

dt = ρ(dt−1−µ) +µ+ εt. (22)

When |ρ|< 1, the effect of the initial shock, ρtε0, tends to zero as t→∞, indicating the demand

process is stationary. Let d̂?t+n,t denote the minimum mean squared error (MMSE) point forecast

made at time t of the demand in period t+n. For AR(1), Box et al. [2008] show that

d̂?t+1,t = ρ(dt−µ) +µ. (23)

The TBS-POUT policy for AR(1) demand issues a constant order to the off-shore supplier via (8)

and a local SpeedFactory order via

qt|TBS,AR = d̂?t+1,t− (1− γ)µ+α(i?− it). (24)

The total cost difference ((19)) between complete off-shoring and the dual sourced SpeedFactory

under TBS-POUT still holds under AR(1) demand, we only need to calculate the three variances

(single-sourcing inventory variance σ2
i,s, and dual sourcing inventory and production variances σ2

i

and σ2
q) that arise with AR(1) demand. Using Z-transforms, Online Appendix A shows:

σ2
i,s|AR =

σ2

(1− ρ)2

(
ρ(1− ρL)(2 + ρ− ρL+1)

1− ρ2
+L

)
, (25)

σ2
q |AR = σ2 (α2 +α− 2)ρ− 2αρ2 +α+ 2ρ3− 1

(α+ 1) (ρ2− 1) (1−αρ)
, (26)

σ2
i|AR =

σ2

1−α2
. (27)

When (26) and (27) are used inside (5) we obtain the dual sourcing costs under AR(1) demand

using a TBS-POUT policy. It only remains to optimize the smoothing parameter α:

13 Hanssens [1998] studies the factory orders for a computer peripheral finding them to be IMA(0,1,1) with β = 0.603.

14 Cui et al. [2015] finds that 6 out of 14 time series of demand in a consumer packaged goods company were
IMA(0,1,1); a further two time series were identified with an IMA(0,1,0) structure.
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Figure 7 Compared to iid demand (ρ= 0, bold line), positively auto-correlated demand significantly increases

the viability region where dual sourcing using SpeedFactories under TBS-POUT policies dominates single

sourcing. Parameters: L= 6, h= 1, b= 9, u= 4,m= 1.5, σ= 1, µ= 10.

Lemma 1 For TBS-POUT with AR(1) demand, the optimal smoothing α? = f−1
AR[λ] where

fAR[α] =
σq|AR

σq|AR +σi|AR
(α2−1)

2
(ρ(2αρ+ρ−α2−1)−1)

α(α+1)2(αρ−1)2

. � (28)

Lemma 1 specifies α? in terms of the inverse function and provides a direct graphical solution:

put λ on the vertical axis and find corresponding α? = f−1
AR[λ] on the horizontal axis. Alternatively,

fAR[α?] = λ is easily solved numerically for α? ∈ (−1,1] given λ∈ [0,1] and ρ∈ (−1,1), as shown in

Online Appendix B, which also presents analytic bounds on α?.

Using (25)-(27) inside (19), numerically optimizing α? using Lemma 1 provides the break-even

price, p−, for which dual sourcing with a SpeedFactory and TBS-POUT policy dominates single

sourcing from offshore supplier, see Fig. 7. As demand becomes more positively correlated, the

break-even curves fall and the strategy space where a SpeedFactory dominates (i.e., the area

between the concave breakeven curve and p= u= 4) grows significantly: if ρ= 0.95, the strategy

space is about four times the size of the iid strategy space. (Recall that this region is conservative

and a lower bound as the optimal dual sourcing policy outperforms TBS-POUT.) Furthermore, for

strongly negative auto-correlation ρ < ρ=−0.6180, full off-shoring is likely to become dominant.

Note, as the break-even curves have the same structure under AR(1) demand as under iid demand,

Proposition 2 and Proposition 3 continue to hold.

Not only do SpeedFactories dominate as autocorrelation increases, their value relative to full

off-shoring also increases, as shown in Table 5. Depending on how much of the demand 0< γ < 1

is produced locally, the SpeedFactory solution exhibits better performance than full off-shoring as

the demand becomes more correlated.
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ρ Cs CTBS-POUT Cs

CTBS-POUT − 1
improvement range

-0.5 41.09 40.93+2γ −4.5% to 0.4%
-0.25 41.57 40.94+2γ −3.3% to 1.52%
0 42.30 41.28+2γ −2.3% to 2.42%
0.25 43.44 41.81+2γ −0.9% to 3.74%
0.5 45.33 42.53+2γ 1.76% to 6.17%
0.75 48.68 43.68+2γ 6.15% to 10.26%
0.95 53.22 47.28+2γ 7.41% to 11.17%

Table 5 Comparison of dual sourcing with TBS-POUT against full off-shoring under AR(1) demand. Note, the

% cost improvement range is determined by setting γ = 0 for the upper bound and γ = 1 for the lower bound.

Parameters: p= 3.8,L= 6, h= 1, b= 9, u= 4,m= 1.5, σ= 1, µ= 10.

6.2. SpeedFactory viability under non-stationary demand: IMA(0,1,1)

Dekimpe and Hanssens [1995] discuss the short- and long-term effects of sales promotions. If a

sales promotion causes customers to switch brands only temporarily, the increased demand has a

stationary effect; i.e., the demand level soon reverts back to fluctuating around its pre-promotion

mean. However, if the sales promotion causes a permanent change in the customer’s brand choice,

demand becomes non-stationary. Dekimpe and Hanssens [1995] found the majority of 400 time

series (54%) to be non-stationary. Interestingly, Dekimpe and Hanssens [1995] find 29% of European

sales time series were non-stationary (matching the European results from Ali et al. [2012]), but

that 72% of US and Canadian sales were non-stationary. The simplest non-stationary demand

process (and the most common in the study of EU retail demand by Ali et al. [2012]) is the

Integrative Moving Average process of first order, IMA(0,1,1):

dt =

{
µ+ ε0, if t= 0,

dt−1− (1−β)εt−1 + εt, otherwise.
(29)

Here, µ is an initial condition that does not have any long-term impact. For invertability reasons

(so that β can be estimated from past data), the moving average parameter β is restricted to

β ∈ [0,2). Graves [1999] showed that exponential smoothing,

d̂?t+1,t =

{
µ, if t < 0,

βdt + (1−β)d̂?t,t−1, otherwise,
(30)

provides the one-period-ahead minimum mean squared error point forecast of the IMA(0,1,1) pro-

cess because dt+1− d̂?t+1,t = εt+1 and it can be shown that ∀i > 1, d̂?t+i,t = d̂?t+1,t as ∀i > 1, E[εt+i,t] = 0.

Constant off-shore orders under non-stationary IMA(0,1,1) demand result in non-stationary

local orders with infinite variance, which leads to infinite local production costs. Therefore, with

IMA(0,1,1) demand, we set the global off-shore order to the expected demand in the period after

the off-shore lead time minus a strategic fraction γ ∈ [0,1] of the initial demand that is produced

in the local factory so that the off-shore supplier gets a dynamic order:

qgt |DYN = d̂?t+L,t−µγ. (31)
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This results in a stationary demand at the local SpeedFactory with finite order variance. The

POUT policy that specifies local orders to control the local inventory is also generalized to

qt|DYN = d̂?t+1,t− (d̂?t+1,t−L+1−µγ) + (1−α) (i?− it) . (32)

Notice, d̂?t+1,t and d̂?t+1,t−L+1 are two different point forecasts, produced at different times, but

both predicting the demand in period t+ 1. Both are dependent upon the demand process; with

iid demand, both forecasts coincide, but with general time series they may differ. Optimization

over α ensures the POUT performance is never worse than the OUT performance (where α= 0).

Using Z-transforms, Online Appendix A derives the single-sourcing inventory variance σ2
i,s, and

dual sourcing inventory and production variances σ2
i and σ2

q resulting from the DYN-POUT policy

π= {(qgt |DYN, qt|DYN)∈R2 : t∈N0} under IMA(0,1,1) demand:

σ2
i,s|IMA = σ2L

(
1 +β(L− 1) +β2(L− 1)(2L− 1)/6

)
, (33)

σ2
q |IMA = σ2

(
1−α
1 +α

+ 2β(1−αL−1) +β2(L− 1)

)
and σ2

i |IMA =
σ2

1−α2
. (34)

With the off-shore supplier absorbing the non-stationary demand variation, both the local replen-

ishment orders and the FGI levels are stationary under IMA demand. This leads to an optimal FGI

safety stock of i? = σizi and an optimal installed SpeedFactory capacity base of k? = µγ + σqzq.

At the same time, the off-shore supplier’s production will now always be less variable than the

demand, indicating dual sourcing may be advantageous for suppliers who are willing to sacrifice a

small amount of total volume to gain access to a smoother demand.

To address the non-stationarity, we write the total costs under complete off-shoring as

Cs =C?
i,s + p lim

n→∞
E

[
1

n

n∑
t=1

dt

]
, (35)

and the total costs under dual sourcing using the DYN-POUT policy as,

CDYN,k? =C?
i +C?

q + p lim
n→∞

E

[
1

n

n∑
t=1

(d̂?t+n.t−µγ)

]
, (36)

where {C?
i ,C

?
q } is as defined in (10) and (11), respectively15. As E[d̂?t+n,t] = E[dt], the difference

between (35) and (36) can be re-arranged to find the break-even purchase price, p−, indicating

when dual sourcing with a SpeedFactory and DYN-POUT policy may be preferred over full off-

shoring. The result is (20) after the variances are suitably updated using (33) and (34). It remains

to optimize the smoothing parameter of the DYN-POUT policy under IMA demand:

15 Note, the inventory costs are independent of µγ.
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β Cs CDYN-POUT Absolute Improvement Relative Improvement
Lower Bound [Lower, Upper] Bound

0 4.30+C?
p,s 3.28+2γ+C?

p,d 1.02− 2γ [0%, (1.02− 2γ)/(4.30)< 24%]
0.25 7.22+C?

p,s 4.45+2γ+C?
p,d 2.78− 2γ [0%, (2.78− 2γ)/(7.22)< 38%]

0.5 10.35+C?
p,s 5.48+2γ+C?

p,d 4.87− 2γ [0%, (4.87− 2γ)/(10.34)< 47%]
0.75 13.53+C?

p,s 6.64+2γ+C?
p,d 6.89− 2γ [0%, (6.89− 2γ)/(13.53)< 51%]

1.0 16.74+C?
p,s 7.83+2γ+C?

p,d 8.92− 2γ [0%, (8.92− 2γ)/(16.74)< 53%]
1.25 19.97+C?

p,s 9.02+2γ+C?
p,d 10.95− 2γ [0%, (10.95− 2γ)/(19.97)< 56%]

1.5 23.20+C?
p,s 10.22+2γ+C?

p,d 12.98− 2γ [0%, (12.98− 2γ)/(23.20)< 57%]
1.75 26.44+C?

p,s 11.42+2γ+C?
p,d 15.02− 2γ [0%, (15.02− 2γ)/(26.44)< 57%]

1.95 29.03+C?
p,s 12.38+2γ+C?

p,d 16.65− 2γ [0%, (16.65− 2γ)/(29.03)< 57%]

Table 6 Comparison of dual sourcing with DYN-POUT against full off-shoring under IMA(0,1,1) demand.

Parameters: L= 6, p= 3.8, h= 1, b= 9, u= 4,m= 1.5, σ= 1, µ= 10.

Lemma 2 For DYN-POUT with IMA(0,1,1) demand, the optimal smoothing α? = f−1
IMA[λ] where

fIMA[α] =
σq|IMA

σq|IMA−σi|IMA((α2− 1)
2
β(1−L)αL−3− (α−1)2

α
)
. � (37)

As with AR(1), the Lemma specifies α? in terms of the inverse function and provides a direct

graphical solution. Alternatively, fIMA[α?] = λ is easily solved numerically for α? ∈ (−1,1] given

λ∈ [0,1] and β ∈ [0,2), as shown in Online Appendix B, which also presents analytic bounds.

After numerically optimizing α, the break-even purchase price (20), p−, for which dual sourcing

with a SpeedFactory and DYN-POUT policy dominates single sourcing from the offshore supplier,

can be plotted, see Fig. 8. As demand becomes more non-stationary the break-even curves fall and

the strategy space where a SpeedFactory dominates (i.e., the area between the concave breakeven

curve and p = u = 4) grows significantly. The impact of non-stationary demand is even more

significant than that of serially-correlated demand: when β = 1.95, the SpeedFactory strategy space

is approximately six times larger than its iid (i.e., β = 0) counterpart. (Recall that this region is

conservative and a lower bound as the optimal dual sourcing policy outperforms DYN-POUT.)

Not only do SpeedFactory solutions become more viable as non-stationarity (i.e., β) increases,

their value relative to full off-shoring also increases. Table 6 presents the total costs as a function of

β, λ, and the purchasing costs C?
p,s and C?

p,d under IMA demand. In this numerical setting, Speed-

Factories are more attractive than full off-shoring, and increasingly so as the demand becomes

more non-stationary. Note, the IMA(0,1,1) demand has no natural mean and {C?
p,d,C

?
p,s} are inde-

terminate. So, although C?
p,d <C?

p,s, it is not possible to determine the range of the possible cost

improvement under IMA(0,1,1) in the same way we did for AR(1) demand. However, we are able

to give a lower bound of the absolute difference between full off-shoring and the SpeedFactory

solution (note, 0<γ < 1).

7. SpeedFactory decisions in a European apparel company

A European apparel company currently sources casual wear (T-shirts, polos, sweaters, etc.) from

Bangladesh. The production and transportation lead-time is 5 months, which together with the
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Figure 8 Compared to iid demand (β = 0, bold line), more non-stationary demand (β increases) significantly

increases the viability region where dual sourcing using SpeedFactories under DYN-POUT policies dominates

single sourcing. Parameters: L= 6, h= 1, b= 9, u= 4,m= 1.5, σ= 1, µ= 10.

review cycle gives a risk period of L= 6. We ran their monthly demand data (from January 2013 to

June 2018) through the arima.auto function in the R software package so as to identify the demand

process structure. For illustrative purposes we report on one T-shirt that followed an IMA(0,1,1)

demand pattern, with an average demand of 845, a standard deviation of the error term of 514,

and β = 1. T-shirts produced in Bangladesh and imported to the EU had a declared average value

of p=e1.67 during the 2013-2017 period (www.ec.europa.eu/eurostat).

We assumed a life-time of a printable T-shirt of one year, corresponding to a inventory holding

cost of h = p/12. Target availability levels were set to be 98% as per company policy, implying

a backlog cost of b = 49h. This resulted in an expected monthly purchasing cost of e1411.15,

and inventory cost of e1653.43, providing a total off-shore cost per month of e3064.58. With the

same demand, lead-time, and cost information, we quantified whether a SpeedFactory would be

attractive. We assumed the European labor flexibility coefficient16 m= 1.5.

Proposition 4 revealed that a SpeedFactory is only viable when the breakeven price p− is concave.

Rewriting Eq. (21), we find that p− is concave in γ if the local unit production cost u satisfies:

u< uc =
h+ b

m
· σi,s−σi

σq
· φ[zi]

φ[zq]
=e1.92, (38)

otherwise p− is convex in γ. Re-arranging the p− (eq.(20)) for u, reveals that the SpeedFactory will

become economic for γ = 0.2 when the local unit production cost u< u− = e1.87 with α? = 0.616.

The cheapest purchase cost (averaged over the 2013-2017 period) for a European-based SpeedFac-

tory is e2.60 in Croatia (www.ec.europa.eu/eurostat). Note, this is not a unit production cost,

16 As labor costs are typically less than 50% of the manufacturing cost of a T-shirt the true m will be smaller than
m= 1.5. As a consequence our SpeedFactory predictions are likely to be conservative.
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Figure 9 Average unit production costs for T-shirt production within the EU countries during (2013-2017).

Based on information available at www.ec.europa.eu/eurostat/.

to which we have no access. However, our SpeedFactory analysis reveals the benchmark unit price

for local production to be viable is not the current off-shore price e1.67, but rather e1.92 because

of the benefit of tight inventory control.

If we were to assume a life-time of the printable T-shirt of just four months, rather than a year, the

inventory holding cost becomes h= p/4. With the same lead-time, service levels, and demand pro-

cess, the total monthly off-shore cost becomes e6371.45. The break-even purchase price is concave

in γ if u < uc = e5.76 and the break-even unit production cost with γ = 0.2 becomes u− = e5.02

(with α? = 0.503). Based on average prices in the 2013-2017 period, see Figure 9, the following coun-

tries would be suitable for SpeedFactory production: Belgium, Austria, Czech Republic, Germany,

Denmark, Spain, France, UK, Greece, Croatia, Hungary, Ireland, Malta, Netherlands, Norway,

Poland, Romania, Sweden, Slovakia, Slovenia, and Turkey (www.ec.europa.eu/eurostat). This

demonstrates our analysis is able to determine whether (and where) a SpeedFactory is attractive

given the specific product characteristics and country specific factors such as labor costs, over-time

rates, and lead-times.

8. Concluding remarks

As off-shore costs rise, it is not necessary to wait until off-shore costs exceed local costs to bring back

production; we can re-shore economically before that occurs with a SpeedFactory. A SpeedFactory,

used in combination with an off-shore supplier, should be as small as possible, but able to serve

the local order variation. In other words, its scale is of the order of the standard deviation of the

local orders. The small, local SpeedFactory can be valuable even when local unit production cost

is higher than the off-shore purchase price due to inventory savings accruing from the fast lead

time. These savings increase when the SpeedFactory lead time decreases relative to the off-shore
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lead-time and when the SpeedFactory labor is more flexible. Rigid local labor works against the

benefits of re-shoring.

Re-shoring is strongly influenced by the demand structure; positively autocorrelated and non-

stationary demand significantly increases the economic benefit of SpeedFactories. This implies that

the upstream supply chain needs to be aligned to market factors as the majority of retail demand is

correlated or non-stationary. The small is beautiful SpeedFactory also reduces demand variability

faced by the off-shore supplier. While the off-shore suppliers demand volume has been reduced,

the decreased variability reduces any capacity idling/over-time required at the off-shore supplier,

preserving the off-shore business case.

We considered two different types of orders issued to the off-shore supplier, the TBS-type with

constant off-shore orders and the dynamic off-shore orders based on forecasted demand. Dynamic

orders were the only feasible way to manage non-stationary demand. Our results are likely to

be conservative as we have not accounted for the value of late customization or location, nor

for customization or multi-product flexibility. There is also a reputation benefit from having a

local SpeedFactory; people are often willing to pay for a made-within-their-own-country label.

Furthermore, the structure of the SpeedFactory decision shows that limited editions/very short

shelf-life products benefit particularly strongly from SpeedFactory production. We emphasize that

identifying the best-fitting time series is the first step in our approach. Once the time-series is

identified, we have presented a causal framework to solve the capacity and production and sourcing

process of the SpeedFactory.

Our work could also provide insights into a range of scenarios where there are two lead-times.

For example, in supply chains where there are two transportation modes (for example, air/ship, or

road/rail). The interesting nuance in this problem is that often the longest lead-time has the least

environmental impact and the emphasis is on shifting product to the slow route, lengthening lead-

times, rather than using the more environmentally damaging fast route. Re-manufacturing appli-

cations could also exist as the production of new items have one lead-time, and the re-manufacture

of product returns has another lead time.
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Appendix A. Proofs

Proof of Proposition 1 The safety stock and the inventory costs will be derived. We depart from

the expected, per period, inventory holding and backlog costs,

E[Ci
t ] = b

∫ 0

−∞
(−x)f [x]dx+h

∫ ∞
0

xf [x]dx, (39)
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where f [x] is the pdf of the inventory levels. Using a linear TBS-POUT policy with iid normal

demand, the inventory levels are normally distributed with mean µi and standard deviation σi,

f [x] = φ[x|µi, σi]. Closing the integral and using the pdf and cdf of the standard normal distribution,

{φ[x],Φ[x]}, leads to,

E[Ci
t ] = (b+h)

(
µiΦ

[
µi
σi

]
+σiφ

[
µi
σi

])
− bµi. (40)

We wish to control the mean inventory levels to minimise the expected inventory costs. The deriva-

tive of E[Ci
t ] w.r.t. µi is

dE[Ci
t ]

dµi
= (b+h)Φ

[
µi
σi

]
− b. (41)

Setting the derivative to zero and solving for µi reveals the optimal safety stock level, i? = µi,

i? = σizi; zi = Φ[b/(b+h)]. (42)

Using (42) in (40) and simplifying leads to the following expression for the minimised costs,

C?
i = σi(h+ b)φ[zi]. (43)

The optimal capacity level k? and the minimised capacity costs are derived as follows. The

expected capacity costs are

E[Cq
t ] = uk+E[um[qt− k]+] = uk+um

∫ ∞
k

(x− k)f [x])dx, (44)

where f [x] is the pdf of the local orders. For normally distributed orders with mean µγ and standard

deviation σq, f [x] = φ[x|µγ,σq]; using this and simplifying (44), leads to,

E[Cq
t ] = uk+m

(
(k−µγ)Φ

[
k−µγ
σq

]
+σqφ

[
k−µγ
σq

]
+µγ− k

)
. (45)

The derivative of E[Cq
t ] w.r.t. k is

dE[Cq
t ]

dk
= u

(
1 +m

(
Φ

[
k−µγ
σq

]
− 1

))
. (46)

Setting the derivative to zero and solving for k reveals the optimal capacity level,

k? = µγ+σqzq; zq = Φ−1[(m− 1)/m]. (47)

Substituting (47) into (45) and simplifying leads to the minimised local capacity costs,

C?
q = uµγ+umσqφ[zq]. (48)
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Proof of Proposition 2 The derivative of (15) with respect to α is

dCπ,k

dα
=ϕ

(
(1−λ)

dσ2i
dα

2σi
+
λ
dσ2q
dα

2σq

)
. (49)

From (49), the necessary first order optimality condition for α? is

(λ− 1)
dσ2i
dα

2σi
=
λ
dσ2q
dα

2σq
. (50)

Rearranging (50) for λ provides, (17), the stated inverse function for α. �

Proof of Proposition 4 Expression (21) is readily obtained from the second derivative of p−. �

Appendix B. Methodology: Using Z -transforms to calculate variances

To study the significant impact of correlated and non-stationary demand series, we adopt Z-

transforms17. These transforms are the discrete-time analogue of Laplace and Fourier transforms

and are at the foundation of linear control theory. This section presents the essence of this method-

ology.

Linear discrete-time systems are governed by linear difference equations. System analysis requires

the solution of these equations for a given input function. This solution can be characterized in

the time-domain or, using the Z-transform, in the frequency domain. The benefit of the latter

is that the difference equation is transformed into an easier-to-solve polynomial equation18. The

Z-transform of a discrete time series xt is defined as19

X[z] = Z [xt] =
∞∑
t=0

xtz
−t. (51)

Linearity implies that the system output yt for any input function xt is fully described by the

impulse response function gt, which is the solution of the system’s difference equation when the

input is the unit impulse function (also called the Kronecker delta function) δ[t]; δ[t = 0] = 1

and δ[t 6= 0] = 0. Indeed, given that any input function is the superposition of scaled and delayed

17 Z−transforms were developed independently during the second world war for military needs: In the UK for gun
target systems (Tustin), Bissell [1992a], the US (Ragazzini and Zadeh) for radar and also in Russia (Tsypkin), Bissell
[1992b]. The z name originated from the US team, Wikipedia [2018].

18 We could have used a range of methods to study our problem: the Martingale Method of Forecast Evolution [Heath
and Jackson 1994], state space methods [Gaalman 2006], the expectation operator [Hosoda and Disney 2018], the
backwards difference operator, [Box et al. 2008], to name just a few. However, we choose the z-transform method
due to its well-established tool-kit for understanding complex linear systems. Regardless of method used, the end
expressions are equivalent.

19 Notation: As is usual practice in the control literature we use lower case letters for state variables in the time
domain and UPPER case letters for the corresponding state variables in the complex frequency (z) domain.
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impulse functions, its output is similarly the superposition of scaled and delayed impulse response

functions. Equivalently, the output is the convolution of the input and impulse response:

yt =
t∑
i=0

xigt−i. (52)

The Z-transform of the impulse response function is called the transfer function G(z) and convo-

lutions are transformed into simple multiplications so that the Z−transform of (52) yields

Y (z) =G(z)X(z). (53)

The impulse response function directly allows the exact computation of the variance of the output:

Lemma 3 (Tsypkin [1964]) If the input xt to a linear system with impulse response function gt

is an iid random process with variance σ2
x, then the long-run variance of the output yt is

σ2
y = σ2

x

∞∑
t=0

(gt)
2. (54)

Proof: A sketch of the proof removes potential mystery. Denote E[xt] = x̄ and limt→∞E[yt] = ȳ.

Taking expectations and limits in (52) yields ȳ= x̄
∑∞

t=0 gt. Indeed, linearity means that a centered

input xt− x̄ yields asymptotically centered output yt− ȳ. Similarly:

σ2
y = lim

t→∞
E[(yt− ȳ)2] (by definition of a variance)

= lim
t→∞

E
[( t∑

i=0

(xi− x̄)gt−i

)2]
(using (52))

= lim
t→∞

E
[( t∑

i=0

(xi− x̄)gt−i

)( t∑
j=0

(xj − x̄)gt−j

)]
(expand the square)

= lim
t→∞

t∑
i=0

t∑
j=0

E[(xi− x̄)(xj − x̄)]gt−igt−j

(expected value of a sum is the sum of its expected addends)

= σ2
x

∞∑
i=0

g2
i . (E[(xi− x̄)(xj − x̄)] = 0 if i 6= j for iid input xt)

�

Note, Lemma 5 holds regardless of the distribution of xt; all that is required is that xt is iid.

In the on-line technical companion, Online Appendix A shows how we derived the impulse

response functions and related variances for our inventory systems. Online Appendix B shows

the detailed analytical optimization of the AR(1) and IMA(0,1,1). Online Appendix C details the

VBA code for a Microsoft Excel Add-in that can be used to find α? numerically for AR(1) and

IMA(0,1,1) demand. The Add-in is based on the Regula-Falsi method.
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Online Appendix A. Deriving variances using Z-transforms

This Appendix gives an overview of how Z-transforms, a basic analysis tool in control theory, were

used to calculate the inventory and order variance. For the unfamiliar reader, we first derive the

familiar variances for the full off-shoring setting, before tackling dual sourcing systems.

8.1. Deriving the full off-shoring order and inventory variances

We start with the Z−transform of the inventory balance equation,

it = it−1− dt + qgt−L, (55)

for the single sourcing setting:

Is[z] = z−1Is[z]−D[z] + z−LQg[z]⇒ Is[z] =
(
z−LQg[z]−D[z]

) z

z− 1
. (56)

This defines the inventory transfer function, Is[z], as a function of the order and demand transforms

Qg[z] and D[z]. This inventory relationship can be graphically represented in a control block

diagram20 by blocks labeled b, c, d in Fig. 10 (the letters refer to the short-hand notation in the top-

left corner of the blocks in Fig. 10). In our single off-shore supplier setting, the OUT replenishment

policy (75) is the optimal linear policy. The order transfer function is found by first transforming

the inventory position (the sum of current inventory and outstanding receipts) to yield

IP [z] = Is[z] +
L−1∑
i=1

z−iQg[z]⇒ IP [z] = Is[z] +
1− z1−L

z− 1
Qg[z], (57)

represented by block e in Fig. 10. Next, we convert the demand and forecasting difference equations

(dt = µ+ εt and d̂?t+n,t = µ for iid; and (22)-(30) for AR(1)), into transfer functions. The transform

of the demand (D[z]) and the forecast of demand over L+ 1 periods (A[z]) is shown in Table 7 for

all three demand processes (iid, AR(1), and IMA(0,1,1)). These transforms correspond to block d

and a in Fig. 10, completing the block diagram.

Remark. In the time domain, under a random demand, the long-run expected inventory E[it] = i?.

As the variance is the expected squared deviation from the mean, the specific value of i? has no

impact on var[it], which we aim to calculate. Likewise, the long-run expected demand, E[dt] and

the long-run expected replenishment quantity E[qgt ] have no influence on the var[dt] and var[qgt ]

respectively. �

The Z−transform of the order-up-to replenishment policy (75) is

Qg[z] =A[z]D[z]− IP [z]. (58)

20 Block diagrams are a standard control theory technique, see Nise [2004].
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Figure 10 Block diagram of the full off-shoring setting.

Transfer function iid demand AR(1) demand IMA(0,1,1) demand

A[z] 0 ρ(ρL−1)

ρ−1
zβL

z−1+β

D[z] 1 z
z−ρ 1 + β

z−1

Table 7 Full off-shoring transfer functions.

Substituting (56) and (57) into (58) results in

Qg[z] =A[z]D[z]− IP [z] (59)

=A[z]D[z]− Is[z]−
1− z1−L

z− 1
Qg[z] (60)

=A[z]D[z]− (z−LQg[z]−D[z])
z

z− 1
− 1− z1−L

z− 1
Qg[z]. (61)

Collecting together all the Qg[z] and simplifying gives

Qg[z]

(
1 + z−L

z

z− 1
+

1− z1−L

z− 1

)
=A[z]D[z] +D[z]

z

z− 1
(62)

Qg[z] =
A[z]D[z] +D[z] z

z−1

1 + z−L z
z−1

+ 1−z1−L

z−1

(63)

Qg[z] =D[z]

(
1 +A[z]− A[z]

z

)
. (64)

After substituting in the relevant expressions for A[z] and D[z] as given in Table 7, simple algebra

leads to the transfer functions for the global orders Qg[z]. Knowing Qg[z], the inventory transfer

function Is[z] can be found from (56).

We are now ready to determine the variances of the orders and inventory levels from the relevant

transfer function using Tsypkin’s Relation (Lemma 3). Putting A[z] = 0 and D[z] = 1 into (64)

provides the transfer function of the global orders under iid demand:

Qg[z] = 1. (65)
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Taking the inverse z-transform of (65) gives the order impulse response function

qgt = Z −1[1] = δ[t], (66)

which equals the impulse function (Kronecker delta). Using Tyspkin’s relation,

σ2
q,s = σ2

∞∑
t=0

δ[t]2 = σ2. (67)

Note, the OUT policy behaves as a pass-on-orders system and as expected σ2
q,s = σ2.

Using (65) inside of (56) provides the inventory transfer function,

Is[z] =
z(z−L− 1)

z− 1
(68)

which has a time domain response given by it inverse z-transform,

ist = Z −1

[
z(z−L− 1)

z− 1

]
=−Z −1

[L−1∑
t=0

z−t
]

= h[t−L]−h[t], (69)

where h[·] is the unit step function; that is, h[t < 0] = 0, otherwise h[t≥ 0] = 1. Applying Tyspkin’s

relation from Lemma 3 provides

σ2
i,s|IID = σ2

∞∑
t=0

(h[t−L]−h[t])2 = σ2L. (70)

The variance of inventory in the presence of AR(1) and IMA(0,1,1) demand is obtained in exactly

the same manner. As these expressions can be quite lengthy, we used Mathematica (Wolfram

Research) to help with the algebra involved. For clarity, we also provide a sketch of the derivation

of the remaining variance expressions in what remains of Online Appendix A.

8.1.1. Deriving the full off-shoring inventory variance under AR(1) demand Depart-

ing from (64), we substitute in the transfer function of demand, D[z] = z/(z− ρ), and the transfer

function of the mechanism that converts the demand into the forecast of demand over the lead-time,

A[z] = ρ(ρL− 1)/(ρ− 1); simplifying yields the order transfer function,

Qg,s[z] =
z

z− ρ

(
1 +

ρ(ρL− 1)

ρ− 1
− ρ(ρL− 1)

z(ρ− 1)

)
=
ρ− z+ (z− 1)ρ1+L

(z− ρ)(ρ− 1)
. (71)

Using (71) inside (56) and simplifying provides the inventory transfer function,

Is[z] =
ρL+1

ρ− 1

(
z1−L

z− ρ

)
+

1

1− ρ

(
z1−L

z− 1
+

(ρ− 1)z2

(z− 1)(z− ρ)

)
. (72)

Taking the inverse Z−transform of reveals the inventory impulse response,

ist =
ρL+1

ρ− 1

(
ρt−Lh[t−L]

)
+

1

1− ρ
(
h[t−L] + ρt+1− 1

)
=

{
ρt+1−1

1−ρ if t < L,

0 if t≥L.
(73)
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Figure 11 The effect of auto-correlated demand on the inventory in a fully off-shored supply chain.

(Recall that σ2
i,s/σ

2 =L for iid demand).

Tyspkin’s sum of squares then provides the inventory variance,

σ2
i,s|AR =

σ2

(ρ− 1)2

(
ρ(ρ(ρL− 1)− 2)(ρL− 1)

ρ2− 1
+L

)
(74)

which matches the inventory variance given by Disney and Lambrecht [2008]. With unit lead time

L = 1, σ2
i,s = σ2. As with iid demand, the inventory variance is increasing in lead time L, but

superlinearly if ρ> 0 and sublinearly if ρ< 0. It also is convex in ρ, see Figure 11.

8.1.2. Deriving the single sourcing inventory variance under IMA(0,1,1) demand

For IMA(0,1,1) demand and its forecast introduced in §6.2, single-sourcing under a linearized OUT

replenishment policy becomes

qgt =

(
i? +

L∑
i=1

d̂?t+i,t

)
︸ ︷︷ ︸

Target inventory position

−
(
it +

L−1∑
i=1

qgt−i

)
︸ ︷︷ ︸
Inventory position

(75)

= i? +Ld̂?t+n,t− it−
L−1∑
i=1

qgt−i. (76)

Remark 1. At time t = 0, the long-run variance of the demand and forecast is infinite. As the

forecast is added directly into the replenishment order (see (76)), the long-run variance of the

orders, qgt , is also infinite. We assume the supplier can provide items at a unit purchase price, p, and

the supplier either has sufficient in-house capacity, or can subcontract excess demand to another

supplier with the same lead time, quality, and cost characteristics. �

Remark 2. The demand variance under IMA(0,1,1) demand is given by σ2
d = σ2(1 +

∑∞
n=1 β

2); the

variance of the inventory maintained by the OUT policy is σ2
q,g = σ2((1 + Lβ)2 +

∑∞
n=1 β

2). The

difference σ2
q,g −σ2

d = σ2Lβ(2 +Lβ) reveals bullwhip is always generated as β > 0 and L≥ 1. �
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Figure 12 The variance of the inventory levels when outsourcing all production to an off-shore supplier under

IMA(0,1,1) demand.

Graves [1999] shows that the variance of the inventory levels under single sourcing is given by

(33). With unit lead time L= 1, σ2
i,s = σ2. As noted by Graves [1999] and shown in Figure 12, the

inventory variance, which was linear in the lead-time L for iid demand, is now convex increasing

in L and in β. This means when β is sufficiently large, the inventory costs will also be convex

in L. When β = 0, the iid expression is recovered. When β = 1, the IMA(0,1,1) demand process

degenerates into the AR(1) process with ρ= 1 and σi,s = σ2(L2 +L(2L2− 3L+ 1))/6.

To verify the inventory variance expression of Graves [1999] with our z-transform approach, we

depart from (64), this time substituting in D[z] = 1 +β/(z− 1), for the demand and, A[z] = zβL/

(z−1+β), for the lead-time demand forecast generating mechanism. Simplifying yields the transfer

function of the orders,

Qg,s[z] = 1 +β

(
L+

1

z− 1

)
. (77)

Placing (77) inside (56) and simplifying yields the IMA(0,1,1) inventory transfer function,

Is[z] =
z

z− 1

(
z−L

(
1 +βL+

β

z− 1

)
− β

z− 1
− 1

)
. (78)

Taking the inverse Z−transform gives the inventory transfer function in the time domain;

ist = (1 +βL+β(t−L))h[n−L]− tβ− 1 =

{
−1− tβ if t < L,

0 if t≥L.
(79)

Finally, summing the squared impulse response provides the inventory variance,

σ2
i,s|IMA = σ2

L−1∑
t=0

(−1− tβ)
2

= σ2L
(
1 +β(L− 1) +β2(L− 1)(2L− 1)/6

)
, (80)

confirming Graves [1999] and used in (33).
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Transfer function iid demand AR(1) demand IMA(0,1,1) demand

A[z] 0 0 β
1−(1−β)z−1

B[z] 0 ρ β
1−(1−β)z−1

C[z] 0 0 βz1−L

1−(1−β)z−1

D[z] 1 z
z−ρ

β+z−1
z−1

Table 8 Dual sourcing transfer functions.

8.2. Obtaining the dual sourcing order and inventory variances

We now consider the variance of the inventory levels and the replenishment orders in the dual

sourcing setting. A new block diagram is required, see Fig. 13. This is based on the dual sourcing

inventory balance equation (1), the demand processes and their forecasts, (22)-(30), the replenish-

ment rules, (9) and (32), and the off-shore orders, (8) and (31). Specific demand processes require

substitutions within the block diagram as detailed in Table 8. The OUT policy can be accessed by

setting α= 0, POUT requires −1<α≥ 1 for stability.

Equation (63) hints at another way to obtain the transfer function for the local orders directly

from the block diagram. First sum all the feed-forward routes, from the white noise input to the

output, the local orders; (bd− cd+ dfh− adefh). Next, divide by 1− sum of the feedback loops,

from the local orders back to the local orders leading to

Q[z] =(bd− cd+ dfh− adefh)/(1 + fgh)

=
D[z]z−L (A[z](α− 1)z+ zL(B[z](z− 1) +C[z](z− 1)−αz+ z))

z−α
. (81)

After substituting and simplifying, we arrive at transfer functions for the local replenishment orders,

Q[z]; Table 8 provides the required information. The levels {i?, µγ, (1− γ)µ} have no consequence

and can be ignored when determining the variance. The transfer function for the inventory levels

in dual sourcing mode, I[z], can be found from

Id[z] =
z

z− 1

(
Q[z]z−1 +D[z](A[z]z−L− 1)

)
. (82)

8.2.1. Dual sourcing variances under iid demand Placing A[z] = B[z] = C[z] = 0 and

D[z] = 1, see Table 8, into (81) and simplifying yields the transfer function of the orders:

Qd[z] =
z(1−α)

z−α
. (83)

Remark. The poles and zeros (the roots of the denominator and numerator w.r.t. z respectively)

of a system’s transfer function, see (84) or (84), are required to lie within the unit circle in the

complex plane for stability. Thus, stability21 is achieved when −1<α≤ 1. �

21 Poles and zeros are allowed to lie on the unit circle at z = 1; hence the inequality α≤ 1.
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Figure 13 Generic block diagram of the dual sourcing for both the TBS and DYN settings.

Taking the inverse Z−transform of the transfer function of the orders, (83) results in

qdt = Z −1

[
z(1−α)

z−α

]
= (1−α)Z −1

[
1

1−αz−1

]
= (1−α)Z −1

[ ∞∑
t=0

αtz−t
]

= (1−α)αt. (84)

Applying Tsypkin’s relation to (84), we obtain the variance expression,

σ2
q |IID = σ2

∞∑
t=0

((1−α)αt)2 = σ2

(
1−α
1 +α

)
. (85)

Putting (83) into (82) and simplifying gives the inventory transfer function,

Id[z] =
z

α− z
. (86)

The variance of the inventory levels requires us to take the inverse z-transform of the inventory

level transfer function. For the iid case,

idt = Z −1

[
z

α− z

]
= (1−α)Z −1

[ ∞∑
t=0

αtz−t
]

=−αt, (87)

to which we apply Tsypkin’s relation to obtain the following expression for the inventory variance,

σ2
i |IID = σ2

∞∑
t=0

(−αt)2 = σ2

(
1

1−α2

)
. (88)

8.2.2. Dual sourcing variances under AR(1) demand The local order transfer function

in the dual sourcing setting is found by substituting A[z], B[z], C[z], and D[z] from Table 8 into

(81) and simplifying,

Q[z] = z

(
z− 1

α− z
+

z

z− ρ

)
. (89)
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Taking the inverse Z−transform provides the impulse response of the local orders in response in

the dual sourcing scenario under AR(1) demand,

qt = Z −1[Q[z]] = αt−αt+1 + ρt+1, (90)

which can be used inside Tsypkin’s relation, (54), to provide the variance of the local orders under

AR(1) demand shown in (26).

The transfer function of inventory levels is found by placing (89) into (82) and simplifying,

I[z] =
z

α− z
. (91)

Taking the inverse Z−transform of (91) provides the impulse response the inventory levels under

AR(1) demand in the time domain,

it =−αt. (92)

By Tsypkin’s relation the sum square of (92) provides the variance of the FGI in the dual sourcing

setting given by (27).

8.2.3. Dual sourcing variances under IMA(0,1,1) demand The transfer function of the

local orders in the dual sourcing setting is obtained by substituting the relevant A[z], B[z], C[z],

and D[z] from Table 8 into (81) and simplifying:

Qd[z] =
z (α(1−β) +βz1−L(α− z) + z(β−α+ 1)− 1)

(z− 1)(z−α)
. (93)

The time-domain impulse response of the local orders is given by the inverse Z−transform of (93),

qt = Z −1[Qd[z]] =
(β−αβ)h[t+ 1−L] + (α−β− 1) (1−αt+1)− (α(β− 1) + 1) (αt− 1)h[t− 1]

α− 1
.

(94)

Summing the square of (94) over t= 0 to ∞ gives the variance expression in (34).

The inventory variance is obtained by first using (93) in (82) to find the inventory transfer

function,

I[z] =
z

α− z
. (95)

Taking the inverse Z−transform reveals the inventory impulse response,

it = Z −1[I[z]] =−αt. (96)

Squaring (96) inside the Tsypkin sum provides the inventory variance expression in (34).
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Figure 14 The contour lines of the optimal smoothing α? as a function of capacity intensity λ (horizontal axis)

and serial correlation ρ (vertical axis) for the TBS-POUT policy under AR(1) demand. Higher capacity intensity

requires more production smoothing. Around the natural neighborhood of ρ > 0, higher serial correlation leads to

less smoothing.

Online Appendix B. Analytic optimization under AR(1) and
IMA(0,1,1) demand

This Appendix presents the analytic optimization of α under AR(1) and IMA(0,1,1).

8.3. Correlated AR(1) demand

fAR[α?] = λ is easily solved numerically for α? ∈ [−1,1] given λ ∈ [0,1] and ρ ∈ [−1,1], as shown

in Fig. 14. Unfortunately, the analytic solution of fAR[α?] = λ requires the roots of a 7-th order

polynomial and we know that no general analytic solutions exist for polynomials above 4-th order.

For the practicing manager/analyst Online Appendix C provides the VBA code for a Microsoft

Excel Add-in that can numerically determine α? for a given cost function under AR(1) demand.

The algorithm is based on the Regula-Falsi method. We also provide an approximate analytic

solution that is a bound:

Lemma 4 For TBS-POUT with AR(1) demand, the optimal smoothing α? = gAR[ρ]λ+o[λ] where

gAR[ρ] = 1/f
′

AR[0] =
1 + ρ− ρ2√

2ρ3−2ρ−1
ρ2−1

. (97)
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Figure 15 The graph shows α?/λ for five capacity intensities λ∈ {0,0.25,0.5,0.75,0.95} and the linear

approximation gAR[ρ] which is exact for λ= 0 and a bound otherwise. For practical (positive) correlation values,

AR(1) demand series with larger serial correlation require less local order smoothing.

The linear approximation gAR[ρ]λ is a lower (upper) bound for α? when serial correlation ρ is

positive (negative) and is asymptotically correct for (i) λ→ 0 and (ii) ρ→ 0. �

Lemma 4 shows that, in the natural neighborhood of ρ > 0, higher serial correlation leads to

less smoothing, as shown in Fig. 15. This is sensible as more negative serial correlation typically

results in higher demand fluctuations for which inventory benefits from more smoothing. Lemma 4

also shows that α? is positive if ρ > ρ=−0.6180 (the negative zero of gAR[ρ] which interestingly

is the reciprocal of the golden ratio). Positive smoothing is the natural regime to consider as

negative smoothing implies that deviations from the target inventory are over-corrected in each

replenishment decision. As most real demand patterns are positively auto-correlated, a positive α

is likely in practice.

8.4. IMA(0,1,1) demand

fIMA[α?] = λ is easily solved numerically for α? ∈ [−1,1] given λ ∈ [0,1] and β ∈ [0,2], as shown

in Fig. 16 for different lead times L. Online Appendix D provides the VBA code to determine α?

numerically with the Regula-Falsi method in a Microsoft Excel Add-in. If L= 2, optimal smoothing

roughly equals the capacity intensity λ, almost irrespective of β. Yet as lead-times increase, the

optimal smoothing decreases as the non-stationarity β increases, except for high capacity intensity

for which smoothing is extremely high (and insensitive to β). Unfortunately, there is no general

analytic solution of fIMA[α?] = λ but we can provide an approximate analytic solution that is a

bound:
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Figure 16 The contour lines of the optimal smoothing α? under IMA(0,1,1) demand: as lead-times increase,

the optimal smoothing decreases as β increases, except for high capacity intensity for which smoothing is

extremely high (and insensitive to β).

Lemma 5 For DYN-POUT with IMA(0,1,1) demand, the optimal smoothing α? = gIMA[β,L]λ+

o[λ] where

gIMA[β,L] = 1/f
′

IMA[0] =

{
1 if L= 2

1/
√

(L− 1)β2 + 2β+ 1 if L> 2
. (98)

The linear approximation gIMA[β,L]λ is a lower bound for α? and is asymptotically correct for (i)

λ→ 0 and (ii) β→ 0. �

Lemma 5 shows that for small capacity intensities λ, optimal smoothing decreases in β, as shown in

Fig. 17. Indeed, α? is roughly proportional to 1/β and to 1/
√
L, implying that optimal smoothing

decreases in both the non-stationarity β and the off-shore lead time L.
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Figure 17 The graph shows α?/λ for L= 6 and for five capacity intensities λ∈ {0,0.25,0.5,0.75,0.95} and the

linear approximation gIMA[β,L] which is exact for λ= 0 and a lower bound otherwise. IMA(0,1,1) demand series

with higher non-stationarity require less local order smoothing.

Online Appendix C. Finding α? numerically under AR(1) and
IMA(0,1,1) demand with the Regula-Falsi method

A user defined function can be added to Microsoft Excel for numerically finding α? using the

following VBA code. The function is based on the Regula-Falsi method and is guaranteed to

find a solution. For AR(1) demand the α? for the TBS-POUT policy can be accessed with

“=DSAlphaStar(0,ρ,λ)”; for IMA(0,1,1) demand, the α? for the DYN-POUT policy can be accessed

by “=DSAlphaStar(L,β,λ)”. Due to an asymptote in the AR(1) case, the method is not reliable

when ρ< 0.61803, so we a have included an escape that outputs a warning when this issue has the

potential to happen.

Option Explicit

Function Fp(p As Double, L As Integer, br As Double, lambda As Double)

Dim p1, p2 As Double

If L > 0 Then

p1 = ((-1 + 2 / (1 + p) + br * (2 - 2 * p ^ (L - 1) + (L - 1) * br)) ^ 0.5)

p2 = ((((p - 1) ^ 2) * (1 / (1 - p ^ 2)) ^ 0.5 * (p ^ 2 + (L - 1) * (p ^ L) * ((1 + p) ^ 2) * br)) / (p ^ 3))

Else

p1 = (-(-1 + p + (-2 + p + p ^ 2) * br - 2 * p * br ^ 2 + 2 * br ^ 3) / ((1 + p) * (-1 + p * br) * (-1 + br * br))) ^ 0.5

p2 = (((1 / (1 - p ^ 2)) ^ 0.5) * (-1 + p) ^ 2 * (1 + br * (1 + p ^ 2 - br - 2 * p * br))) / (p * (-1 + p * br) ^ 2)

End If

Fp = (p1 / (p2 + p1)) - lambda

End Function

Function DSAlphaStar(L As Integer, br As Double, lambda As Double)

Dim A, B, C, Fa, Fb, Fc, p1, p2 As Double

Dim grandloop As Integer

Dim p As Double

If br < -0.61803398875 Then

DSAlphaStar = "When rho<-0.61803 this method is not reliable"

Else:

A = -0.999999

B = 0.999999

C = 0

For grandloop = 1 To 1000

p = A

Fa = Fp(p, L, br, lambda)

p = B

Fb = Fp(p, L, br, lambda)

C = (A * Fb - B * Fa) / (Fb - Fa)

p = C

Fc = Fp(p, L, br, lambda)

If Fc * Fa > 0 Then
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A = C

Else: B = C

End If

If Abs(Fc) < 0.00000000001 Then

grandloop = 1000

End If

Next grandloop

DSAlphaStar = C

End If

End Function


