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We investigate the collective plasmonic modes in a chain of metallic nanoparticles that are coupled by near-
field interactions. The size- and momentum-dependent nonradiative Landau damping and radiative decay rates
are calculated analytically within an open quantum system approach. These decay rates determine the excitation
propagation along the chain. In particular, the behavior of the radiative decay rate as a function of the plasmon
wavelength leads to a transition from an exponential decay of the collective excitation for short distances to an
algebraic decay for large distances. Importantly, we show that the exponential decay is of a purely nonradia-
tive origin. Our transparent model enables us to provide analytical expressions for the polarization-dependent
plasmon excitation profile along the chain and for the associated propagation length. Our theoretical analysis
constitutes an important step in the quest for the optimal conditions for plasmonic propagation in nanoparticle
chains.
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I. INTRODUCTION

One of the primary goals of plasmonics [1] is to confine
light at subwavelength scales in order to transport and ma-
nipulate it over macroscopic distances. While metallic nanos-
tructures have been proposed and widely studied to achieve
such “plasmonic circuits” [2], both radiative and nonradia-
tive losses inherent to metals are rather significant and, hence,
limit the possible applications for energy and information
transport at the nanoscale [3]. Thus, understanding the dif-
ferent damping mechanisms in radiatively coupled metallic
nanostructures is of paramount interest in the field of plasmon-
ics from a fundamental point of view and in order to increase
the efficiency of signal transmission.

The proposal of using a linear chain of spherical metallic
nanoparticles as a subwavelength-sized light guide [4] was ac-
companied by classical electromagnetic calculations based on
the generalized Mie theory [5]. Solving Maxwell’s equations
for a driven chain of Ag nanoparticles with radius a = 25 nm
(the incoming light illuminating only the first nanoparticle of
the chain), the authors of Ref. [4] attempted to optimize the in-
terparticle distance to achieve maximum propagation length.
Significant propagation was only found for the longitudinal
excitation (with the electric field parallel to the axis of the
chain). The largest propagation length (900 nm) was obtained
for a center-to-center interparticle distance of d = 3a.

Plasmonic chains, as well as structures containing cor-
ners and junctions, were studied by Brongersma et al. [6]
within a model description based on electrostatically cou-
pled point dipoles. An analytic form of the dispersion re-
lation for the longitudinal and transverse modes was given
and shown to be weakly affected by couplings beyond near-
est neighbors. Assuming the radiation damping to be the
same as that of uncoupled nanoparticles, the authors of Ref.
[6] found a negligible radiation damping based on an estima-
tion of the radiation from a single oscillating electron. Un-
der these two questionable assumptions, the dominant losses
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were of nonradiative character (phonons, electrons, lattice de-
fects and impurities), leading to comparable attenuations of
the longitudinal and transverse modes, and similar propaga-
tion lengths to those found in Ref. [4]. The dispersion re-
lation obtained using the point dipole model was later vali-
dated by using finite-difference time-domain calculations for
an Au nanoparticle chain [7]. The possibility of propagating
a pulse excitation was confirmed in Ref. [7], while the attenu-
ation (3 dB/140 nm and 3 dB/43 nm for the longitudinal and
transverse modes, respectively) was larger than that obtained
in Ref. [6] for Ag nanoparticle chains.

Further theoretical studies investigated the influence of re-
tardation effects in the dipole-dipole interaction on the plas-
monic properties of the chain. It was found [8, 9] that a non-
monotonic behavior in the dispersion relation of the transverse
mode emerges due to retardation effects, unlike the case of the
longitudinal mode. This non-monotonic behavior was argued
to arise from the phase matching of the plasmon dispersion
with free photons of the same frequency [8]. Moreover, the
influence of the interaction on radiation losses was shown to
give a mode-dependent radiation damping [8, 9]. The decay
of the plasmon propagation in a driven chain was found to
be non-exponential for both the longitudinal and transverse
modes [8], with the transverse mode persisting for longer dis-
tances than the longitudinal one.

Later studies using a similar retarded approach consid-
ered ordered and disordered chains of metallic nanoparticles
[10]. While a similar behavior for the dispersion and radia-
tion damping to that found in Ref. [8] was observed, a distinc-
tion between two types of plasmons was introduced: ordinary,
subradiative modes that localize in the presence of any disor-
der strength, and extraordinary, radiative modes that depend
weakly on disorder. In the past few years, the quantum prop-
erties of metallic nanoparticle chains has also attracted some
attention, as such chains may serve as quantum communica-
tion devices [11] and they might present significant entangle-
ment stored in the collective modes [12].

On the experimental side, the first observation of the near
field associated with collective plasmons in ordered nanopar-
ticle chains was reported by Krenn and coworkers [13] using
a photon scanning tunneling microscope. The near-field op-
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tical effects measured with a scanning tunneling microscope
for a chain of 10000 half-oblate spheroidal Au nanoparticles
of dimensions 100 × 100 × 40 nm3, separated by a distance
of 100 nm, were found to be consistent with the numerical so-
lution of Maxwell’s equations. Using a far-field spectroscopy
technique, Maier et al. [14] measured the frequencies of the
infinite-wavelength longitudinal and transverse modes for a
chain composed of 80 almost spherical Au nanoparticles with
a = 25 nm and d = 75, 100 and 125 nm. These frequencies
were found to be in agreement with the predictions of Ref. [6],
and in particular with their d-dependence.

Later experimental studies [15] used a near-field scanning
optical microscope and fluorescent dyes to investigate en-
ergy transport along a chain of Ag nanoparticles with sizes
90× 30× 30 nm3, separated by a distance of 50 nm, and they
obtained an attenuation of the plasmon excitation of 6 dB over
195 nm. The recent development of experimental techniques
allowed for a spatial imaging of the electric field associated
with the plasmons along a chain of elliptical nanocylinders.
[16]. Furthermore, the electron energy loss spectroscopy tech-
nique was used to excite and map subradiant modes of short
nanoparticle chains [17].

While the existence of collective plasmons in nanoparticle
chains and the theoretical approaches predicting the resulting
frequencies are well documented in the literature, the situation
is more controversial when faced with the issue of the damp-
ing mechanisms, which are crucial for the excitation propaga-
tion and the practical application of these plasmonic waveg-
uides. In this paper we investigate theoretically the problem of
collective plasmonic excitations in chains of metallic nanopar-
ticles, focusing on their damping mechanisms. We assume
that the dipolar localized surface plasmons (LSPs) supported
by each spherical nanoparticle interact through their near field
and hence form plasmonic modes that are delocalized over the
whole chain, i.e., collective plasmons. These collective exci-
tations, like the LSP in single nanoparticles, suffer from both
radiative and nonradiative losses. The former arise from the
coupling between the collective modes and the photonic en-
vironment. The latter stem from Ohmic (absorption) losses
characteristic of the bulk metal, and the coupling of the plas-
mon to electron-hole pairs, leading to a size-dependent Lan-
dau damping.

We derive analytical expressions for the radiative damping
rates of the transverse and longitudinal plasmonic modes in
the infinite chain limit, confirming previous numerical stud-
ies. Our open quantum system approach further enables us
to provide analytical expressions of the Landau damping de-
cay rates, the latter being crucial for small nanoparticle sizes
and/or for dark modes that couple only weakly to photons.

Our approach based on the collective plasmon reduced den-
sity matrix in momentum space allows us to study energy
transport along the chain. Importantly, we find that radia-
tion damping is responsible for changing the character of the
collective plasmon decay along the chain. While without ra-
diation damping, the decay is exponential for all distances,
the presence of radiation damping induces algebraic tails at
long distances. Such behavior is crucial for the appropriate
characterization of the damping in the propagation of an ini-

tially localized excitation. Notably, we demonstrate that the
short-distance exponential decay, which is the most relevant
in the prospect of light and energy transport at the nanoscale,
is of purely nonradiative origin. We further show that the
size-dependent Landau damping is crucial in understanding
the limiting mechanisms to plasmon propagation, especially
for small nanoparticles. Moreover, we provide analytical ex-
pressions for the plasmon excitation profile along the chain
as well as for the associated polarization-dependent propaga-
tion length, which both reproduce numerical calculations with
excellent agreement.

The paper is organized as follows: Section II presents
an open quantum system model to plasmon propagation in
metallic nanoparticle chains. In Sec. III, we derive analyt-
ical expressions for both the Landau damping and radiative
linewidths of the collective plasmons. The plasmon propaga-
tion along the chain is studied both numerically and analyt-
ically in Sec. IV before we conclude in Sec. V. We provide
in Appendix A a discussion of the rotating wave approxima-
tion for the plasmon dynamics, and in Appendix B we pro-
vide a detailed analysis of the special case of a heterogeneous
nanoparticle dimer. We relegate to Appendix C a few mathe-
matical details for the derivation of the plasmon propagation
length along the nanoparticle chain.

II. MODEL

We consider a linear chain ofN identical spherical metallic
nanoparticles of radius a separated by a distance d as sketched
in Fig. 1. Each nanoparticle can sustain three degenerate LSP
resonances that couple to the neighboring ones via the quasi-
static dipole-dipole interaction [1, 6, 18]. As in the cases
of a single metallic nanoparticle [19, 20] and a nanoparticle
dimer [21], separating the electronic coordinates into center-
of-mass and relative coordinates yields a description typical
for an open quantum system. The dipolar LSPs (the center-
of-mass coordinates of the electron gas) are coupled to elec-
tronic environments (baths of electron-hole pairs represented
by the relative coordinates) present in each nanoparticle. This
nonradiative mechanism leads to the Landau damping [20–25]
of the collective excitations, a purely quantum-mechanical ef-
fect. The coupling between the plasmonic and electron-hole
pair subsystems is a consequence of the breaking of Kohn’s
theorem [26, 27] due to the nonharmonicity of the single-
electron confinement arising from the positive ionic back-
ground [19, 20]. In addition, the LSPs couple to the elec-
tromagnetic field modes, leading to the radiative decay of the
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FIG. 1. Sketch of a linear chain of N identical spherical metallic
nanoparticles.
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collective plasmons. As previously stated, Ohmic losses in-
herent to the bulk metal provide a further nonradiative decay
channel for the collective modes.

A. Hamiltonian of the system

We write the Hamiltonian of the system as

H = Hpl +Heh +Hph +Hpl-eh +Hpl-ph +Hdrive, (1)

where the plasmonic part reads

Hpl = ~ω0

N∑
n=1

∑
σ=x,y,z

bσn
†bσn

+ ~Ω
N−1∑
n=1

∑
σ=x,y,z

ησ

(
bσn + bσn

†
)(

bσn+1 + bσn+1
†
)
(2)

with n the index identifying the particle number in the chain
(see Fig. 1). Here, ηx = ηy = 1 for the two transverse
polarizations and ηz = −2 for the longitudinal one. Each
nanoparticle supports three degenerate dipolar LSPs with a
resonance frequency ω0 that, for alkaline nanoparticles in
vacuum and neglecting the spill-out effect [28], corresponds
to the Mie frequency ωp/31/2 = (Nee

2/mea
3)1/2, where

ωp = (4πnee
2/me)1/2 is the plasma frequency of the con-

sidered metal. Here, e denotes the electron charge, me is its
mass, Ne is the number of electrons in each nanoparticle, and
ne is the corresponding electronic density. The bosonic op-
erator bσn (bσn

†) in Eq. (2) annihilates (creates) an LSP in the
σ = x, y, z direction in the nth nanoparticle. In the regime
3a . d � k−1

0 [18], where k0 = ω0/c is the wavenumber
corresponding to the LSP frequency (c is the speed of light
in vacuum), the LSPs couple to their nearest neighbors essen-
tially via the near-field quasistatic dipole-dipole interaction.
The latter gives rise to the second term on the right-hand side
of Eq. (2) [21, 29–32] with the coupling constant

Ω =
ω0

2

(a
d

)3

. (3)

We do not use the rotating wave approximation in Eq. (2),
since the nonresonant terms ∝ (bσnb

σ
n+1 + h.c.) are important

for the plasmonic eigenstates, and hence for quantities derived
from them, such as, e.g., plasmon lifetimes (for more details,
see Appendix A).

Our open chain of coupled metallic nanoparticles is conve-
niently described using the basis

bσn =

√
2

N + 1

∑
q

sin (nqd) bσq (4)

with q = πm/(N + 1)d the plasmonic momentum, where the
integerm ∈ [1,N ]. Using Eq. (4), the plasmonic Hamiltonian

(2) is expressed in momentum space, yielding

Hpl =
∑
qσ

[~ω0 + 2ησ~Ω cos (qd)] bσq
†bσq

+ ~Ω
∑
qσ

ησ cos (qd)
(
bσq
†bσq
† + bσq b

σ
q

)
. (5)

After diagonalization by means of a bosonic Bogoliubov
transformation, the above Hamiltonian reads

Hpl =
∑
qσ

~ωσqBσq
†Bσq , (6)

where the eigenfrequencies of the collective plasmons are
given by

ωσq = ω0

√
1 + 4ησ(Ω/ω0) cos (qd). (7)

In Eq. (6), the bosonic operators

Bσq = cosh (θσq ) bσq + sinh (θσq ) bσq
† (8)

and their adjoints Bσq
† annihilate and create, respectively, a

collective plasmon excitation with polarization σ and with
momentum q along the chain. The coefficients of the Bogoli-
ubov transformation in Eq. (8) read

cosh (θσq ) =
1√
2

√
1 + 2ησ(Ω/ω0) cos(qd)√
1 + 4ησ(Ω/ω0) cos(qd)

+ 1 (9a)

and

sinh (θσq ) =
sgn {ησ cos(qd)}√

2

×
√

1 + 2ησ(Ω/ω0) cos(qd)√
1 + 4ησ(Ω/ω0) cos(qd)

− 1. (9b)

We show in the inset of Fig. 2 the dispersion relation (7)
of the transverse (red dashed line) and longitudinal (blue solid
line) collective plasmons. Including the far-field corrections
and the associated retardation effects in the dipole-dipole in-
teraction between the nanoparticles along the chain, as was
done in Ref. [8], only leads to a slight quantitative modifica-
tion with respect to the dispersion relations shown in the inset
of Fig. 2. This justifies that we only consider the near-field
interaction between nearest neighbors in Eq. (2). The depen-
dence of the eigenfrequencies (7) on the interparticle distance
d is encapsulated in the coupling constant Ω � ω0 defined
in Eq. (3), yielding ωσq /ω0 − 1 ' ησ(a/d)3 cos (qd). Such
a 1/d3 dependence [6] directly stems from the scaling of the
quasistatic dipole-dipole interaction with d.

The electronic environment is composed of electron-hole
excitations and is described in Eq. (1) by the Hamiltonian

Heh =
N∑
n=1

∑
α

εnαc
†
nαcnα, (10)
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FIG. 2. Landau damping decay rate from Eq. (28) as a function of
momentum for the transverse (red dashed lines, σ = x, y) and lon-
gitudinal (blue solid lines, σ = z) collective plasmonic modes for an
interparticle separation d = 3a. The thick (thin) lines correspond to
~ω0/EF = 0.5 (~ω0/EF = 1). The inset shows the corresponding
collective plasmon dispersions (7).

where cnα (c†nα) annihilates (creates) an electron in the nth

nanoparticle associated with the one-body state |nα〉 with en-
ergy εnα in the self-consistent potential Vn of that nanoparti-
cle. We assume Vn to be a spherically symmetric hard-wall
potential [20, 21, 33]. The coupling of the plasmon to the
electronic environment, arising from the nonharmonicity of
the single-electron confinement, yields [19–21, 25] the cou-
pling Hamiltonian Hpl-eh in Eq. (1) in the form

Hpl-eh = Λ
N∑
n=1

∑
σ=x,y,z

∑
αβ

(
bσn + bσn

†
)
〈nα|σ|nβ〉c†nαcnβ ,

(11)
with Λ = (~meω

3
0/2Ne)1/2. The coupling Hamiltonian

Hpl-eh is responsible for the Landau damping of the collec-
tive plasmons.

The plasmonic system is also coupled to a photonic bath
described by the Hamiltonian

Hph =
∑
k,λ̂k

~ωka
λ̂k

k

†
aλ̂k

k , (12)

where aλ̂k

k (aλ̂k

k

†
) annihilates (creates) a photon with momen-

tum k, transverse polarization λ̂k (i.e., λ̂k · k = 0), and dis-
persion ωk = c|k|. In the long-wavelength limit, assuming
that the nanoparticle sizes are much smaller than k−1

0 , the
plasmon-photon coupling in Eq. (1) takes the form [34]

Hpl-ph =
e

me

N∑
n=1

Πn ·A(dn). (13)

Here,

Πn = i

√
Neme~ω0

2

∑
σ=x,y,z

σ̂
(
bσn
† − bσn

)
(14)

is the momentum associated with the LSPs on nanoparticle n,
and

A(dn) =
∑
k,λ̂k

λ̂k

√
2π~
Vωk

(
aλ̂k

k eik·dn + aλ̂k

k

†
e−ik·dn

)
(15)

is the vector potential evaluated at the position of the center of
the nth nanoparticle dn = ẑ(n − 1)d, where V is the quanti-
zation volume used for the electromagnetic modes. Together
with Eqs. (14) and (15), the plasmon-photon coupling (13)
thus takes the form

Hpl-ph = i~
N∑
n=1

∑
σ=x,y,z

∑
k,λ̂k

√
πω3

0a
3

Vωk
σ̂ · λ̂k

×
(
bσn
† − bσn

)(
aλ̂k

k eik·dn + aλ̂k

k

†
e−ik·dn

)
.

(16)

The last term of the system Hamiltonian (1) is a driving
term representing an electric field, with wavelength much
larger than the nanoparticle size, acting on the LSPs in the
first nanoparticle. It reads

Hdrive = ~ΩRf(t)
∑

σ=x,y,z

(
bσ1 + bσ1

†
)
σ̂ · ε̂ (17)

with the Rabi frequency

ΩR = eE0

√
Ne

2me~ω0
, (18)

where E0 is the amplitude of the electric field and ε̂ its po-
larization. In Sec. IV, we will consider both the case of a
monochromatic electric field f(t) = sin (ωdt) with ωd the
driving frequency and the case of an extremely short laser
pulse, modelled by f(t) = δ(ω0t), where δ(ν) represents the
Dirac delta function.

B. Reduced density matrix

The dynamics of the system is most conveniently described
in terms of the reduced density matrix ρ of the collective
plasmonic degrees of freedom. We treat the two coupling
Hamiltonians Hpl-eh and Hpl-ph perturbatively and trace out
the electronic and photonic degrees of freedom. The resulting
time evolution at zero temperature in the large bath(s) limit
and under the Markovian hypothesis is given by the Lindblad



5

form [34–37]

ρ̇ =− i
∑
qσ

ω̃σq

[
Bσq
†Bσq , ρ

]
−
∑
qσ

γσq
2

(
Bσq
†Bσq ρ+ ρBσq

†Bσq − 2Bσq ρB
σ
q
†
)

+ i
∑
qσ

Aσq f(t)
2ω̃σq

[
Bσq
† +Bσq , ρ

]
, (19)

where we introduced the amplitude of the driving term

Aσq = −2

√
2

N + 1
σ̂ · ε̂ sin (qd) ΩRω̃

σ
q

√
ω0

ωσq
. (20)

The rate γσq = γO + γσ,Lq + γσ,rq entering the master
equation (19) and describing the decay of a collective plas-
monic mode {q, σ} into the ground state consists of three
components: (i) the nonradiative bulk Ohmic losses charac-
terized by the (mode-independent) decay rate γO [which is
phenomenologically incorporated in the master equation (19)
and not through a first-principle calculation], (ii) the nonra-
diative Landau damping linewidth γσ,Lq , and (iii) the radiative
losses with decay rate γσ,rq .

The Landau damping decay rate arising from the coupling
Hamiltonian (11) reads

γσ,Lq =
ω0

ωσq
Σσ(ωσq ) (21)

with

Σσ(ω) =
2π
~2

Λ2
∑
eh

|〈e|σ |h〉|2 δ(ω − ωeh), (22)

where ωeh = (εe − εh)/~, with |e〉 and |h〉 representing, re-
spectively, electron and hole states with energy εe and εh in
the self-consistent potential Vn (assumed to be the same for
each nanoparticle).

The radiative decay rate arising from the plasmon-photon
interaction (16) is given by

γσ,rq = 2π2ω2
0ω

σ
q

a3

V
∑
k,λ̂k

|σ̂ · λ̂k|2
ωk

|Fk,q|2δ(ωσq − ωk), (23)

where the array factor

Fk,q =

√
2

N + 1

N∑
n=1

sin(nqd) e−ik·dn (24)

is straightforwardly evaluated to yield

Fk,q =
i eikzd√
2(N + 1)

∑
κ=±

κ e−iκ(N+1)(q+κkz)d/2

× sin (N [q + κkz]d/2)
sin ([q + κkq]d/2)

(25)

with kz referring to the z component of the photon momentum
k.

In the master equation (19), the eigenfrequency ω̃σq = ωσq −
(δσ,Lq + δσ,rq ) contains the redshifts due to the interaction with
electronic [19, 20, 38] and photonic [34] environments, which
read, respectively,

δσ,Lq =
2
~2

Λ2 ω0

ωσq
P
∑
eh

|〈e|σ|h〉|2 ωeh
ω2
eh − ωσq 2 (26)

and

δσ,rq = 2πω2
0ω

σ
q

a3

V P
∑
k,λ̂k

|σ̂ · λ̂k|2|Fkq|2 1
ω2

k − ωσq 2 , (27)

where P denotes the Cauchy principal value.

III. NONRADIATIVE AND RADIATIVE DECAY RATES
OF THE COLLECTIVE PLASMONIC MODES

We now turn to the evaluation of the nonradiative and radia-
tive decay rates given by the Fermi golden rule expressions in
Eqs. (21) and (23), respectively.

A. Landau damping

The function Σσ(ω), defined in Eq. (22), which determines
the Landau damping (21) has been evaluated for σ = z using
semiclassical expansions [20]. For symmetry reasons, Σx(ω)
and Σy(ω) have the same expression as Σz(ω), yielding in the
zero-temperature limit [cf. Eq. (34) in Ref. [20]]

γσ,Lq =
3vF
4a

(
ω0

ωσq

)4

g

(~ωσq
EF

)
, (28)

where vF and EF are respectively the Fermi velocity and en-
ergy of the considered metal. The function g(ν) entering the
expression above is given by [24, 39]

g(ν) =
1

3ν

[
(1 + ν)3/2 − (1− ν)3/2

]
+
ν

4
(√

1 + ν −√1− ν − ν ln ν
)

+
ν

2

[(
1 +

ν

2

)
ln
(√

1 + ν − 1
)

−
(

1− ν

2

)
ln
(
1−√1− ν)] (29a)

for ν 6 1 and

g(ν) =
1

3ν
(1 + ν)3/2 +

ν

4
(√

1 + ν − ln ν
)

+
ν

2

[(
1 +

ν

2

)
ln
(√

1 + ν − 1
)− ν

2
ln
√
ν
]

(29b)

for ν > 1. The nonradiative decay rate (28) scales as the
inverse of the nanoparticle size, so that for small enough
nanoparticles, Landau damping dominates over radiation
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damping (which scales as the particle volume; see Sec. III B).
Landau damping is therefore of prominent importance in the
prospect of light and energy transport in nanoscale plasmonic
arrays.

The Landau damping decay rates of the transverse and
longitudinal collective plasmon modes are shown in Fig. 2
as a function of momentum. Once scaled with the Lan-
dau damping decay rate of a single nanoparticle [23–25]
γL
0 = (3vF/4a)g(~ω0/EF), the nonradiative linewidths of

the coupled plasmons show a significant modulation as a func-
tion of the wavelength of the modes (between −25% and
+45% for the longitudinal mode and for d = 3a). For
larger interparticle distances, the modulation is less strin-
gent, since for coupling constant Ω � ω0, γσ,Lq /γL

0 − 1 '
ησ(a/d)3 cos (qd)G(~ω0/EF) withG(ν) = νg′(ν)/g(ν)−4,
and where g′(ν) represents the derivative of the function g(ν)
defined in Eq. (29) with respect to ν. As can be seen in Fig. 2,
the higher the frequency of the mode, the lower is its Lan-
dau damping linewidth, similarly to the case of an isolated
nanoparticle [35]. Notice also that the dependence of γσ,Lq on
the ratio ~ω0/EF is rather weak (thick and thin lines in Fig. 2
correspond, respectively, to ~ω0/EF = 0.5 and 1, values that
are of the order of magnitude that is usually encountered in
metallic nanoparticles). This is due to the relatively smooth
behavior exhibited by the monotonically decreasing function
g(ν).

B. Radiative damping

In the Fermi golden rule (23) for the radiative decay rate of
the collective plasmons, the summation over photon polariza-
tions is done using

∑
λ̂k
|σ̂ · λ̂k|2 = 1 − (σ̂ · k̂)2, while the

sum over photonic momenta k is performed in the continuous
limit (V → ∞). Using spherical coordinates for the integral
over k, we arrive at

γσ,rq =
3|ησ|γr

0

8

(
ωσq
ω0

)2

×
∫ π

0

dθ sin θ
(
1 + sgn{ησ} cos2 θ

) |Fkσq ,q|2 (30)

for the radiative decay rates of the transverse and longitudinal
collective plasmons. In Eq. (30), γr

0 = 2ω4
0a

3/3c3 is the ra-
diation damping decay rate of a single isolated nanoparticle,
and

|Fkσq ,q|2 =
1

2(N + 1)

{∑
κ=±

sin2
(N [q + κkσq cos θ]d/2

)
sin2

(
[q + κkσq cos θ]d/2

)
− 2 cos([N + 1]qd)

×
∏
κ=±

sin
(N [q + κkσq cos θ]d/2

)
sin
(
[q + κkσq cos θ]d/2

) } , (31)

where kσq = ωσq /c. In the infinite chain limit (N → ∞), the
expression above reduces to

|Fkσq ,q|2 ' π
∑
κ=±

δ([q + κkσq cos θ]d), (32)
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FIG. 3. Radiation damping decay rate from Eq. (30) as a function of
momentum for the (a) transverse and (b) longitudinal collective plas-
monic modes for k0d = 1 in chains with d = 3a that contain various
numbers N of nanoparticles. The thick solid lines correspond to
N → ∞, [cf. Eq. (33)]. The inset shows the radiation damping de-
cay rate from Eq. (33) for the transverse (red dashed lines) and longi-
tudinal (blue solid lines) collective plasmonic modes for k0d = 0.25,
0.5, and 1 from the thin to the thicker line.

such that the remaining integral in Eq. (30) is easily per-
formed, and yields

γσ,rq =
3π|ησ|γr

0

4k0d

(
ωσq
)2 + sgn{ησ}

(
cq
)2

ω0ωσq
Θ
(
ωσq − cq

)
.

(33)
We denote by Θ(ν) the Heaviside step function.

In Fig. 3, we compare our analytical results for transverse
[Fig. 3(a)] and longitudinal [Fig. 3(b)] plasmonic modes in in-
finite chains (N →∞), Eq. (33), to a numerical evaluation of
Eq. (30) for finite chains containingN = {5, 10, 20} nanopar-
ticles. The special case of a nanoparticle dimer (N = 2),
where the momentum representation is of no use and which
has already been considered in Ref. [21], is presented in Ap-
pendix B. As one can see from Fig. 3, the behavior of the
finite chain approaches the analytical infinite chain limit with
rather good agreement already for N = 20. For N = 50,
the continuous black line representing the analytical result of
Eq. (33) in Fig. 3 and the numerics almost coincide. Thus,
for clarity, we do not show the data points in the figure. The
strong q dependence of the radiation damping is a crucial is-
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sue when considering the propagation across the chain of an
initially localized excitation (see Sec. IV).

Expression (33) shows that dark plasmonic modes with a
wavelength smaller than ∼ 2π/k0 (q & k0), i.e., outside of
the light cone, have a vanishing radiative decay rate. This be-
havior arises from the destructive interference of the electric
field associated with domains of in-phase LSPs, resulting in
subradiant collective modes that do not couple to light. The
results in Eq. (33) and in Fig. 3 also show that most of the
collective plasmons with a wavelength larger than ∼ 2π/k0

(q . k0) are superradiant, with radiative decay rates that ex-
ceed that of a single nanoparticle γr

0.
As illustrated in the inset in Fig. 3, the expression (33)

shows that the radiative linewidth γσ,rq , scaled with γr
0/k0d,

is almost a universal function of q/k0. In the limit of uncou-
pled nanoparticles (Ω→ 0), Eq. (33) reduces to

γσ,rq '
3π|ησ|γr

0

4k0d

[
1 + sgn{ησ}

(
q

k0

)2
]

Θ (k0 − q) , (34)

and it is easy to show that
∫

dq γσ,rq = πγr
0/d for both, the

transverse and the longitudinal mode. Equation (34) demon-
strates that the radiative linewidth γσ,rq of a chain of nonin-
teracting nanoparticles is significantly different from that of a
single nanoparticle γr

0. This is due to the interference effects
between the dipolar LSPs in the far field.

The behavior of the radiative decay of the transverse and
longitudinal plasmonic modes in Fig. 3 has been previously
addressed by means of sophisticated numerical and semi-
analytical calculations, including retardation in the interaction
between the nanoparticles [8–10, 40–42]. Our transparent
analytical result (33) shows that a quasistatic description of
the interparticle interactions is sufficient to describe, at least
qualitatively, radiative energy losses in metallic nanoparticle
chains.

IV. PLASMON PROPAGATION ALONG THE
NANOPARTICLE CHAIN

After having obtained analytical expressions for the non-
radiative and radiative lifetimes of the collective plasmons in
Sec. III, we are now in a position to study the plasmon propa-
gation along the chain resulting from the irradiation of the first
nanoparticle by a long-wavelength electric field [cf. Eq. (17)].
Toward that end, we introduce the (dimensionless) dipole mo-
ment σn = 〈bσn + bσn

†〉 bared by nanoparticle n. This quan-
tity can be calculated from its time evolution in momentum
space, itself obtained from the master equation (19) using that
〈Ȯ〉 = Tr {ρ̇O} for any operator O. This procedure yields
the equation of motion

σ̈q + γσq σ̇q + (Ωσq )2σq = Aσq f(t), (35)

with σq = 〈Bσq + Bσ†q 〉 [cf. Eq. (8)] and (Ωσq )2 = (ω̃σq )2 +
(γσq /2)2, and where the amplitude of the driving force Aσq is
defined in Eq. (20). In the following, we consider first the
case of a continuous drive by a monochromatic electric field

(Sec. IV A), and then the case of the irradiation of the first
nanoparticle by an extremely short (δ-like) laser excitation
(Sec. IV B).

A. Continuous drive by a monochromatic electric field

We start by considering the case in which the first
nanoparticle in the chain is illuminated by a long-wavelength
monochromatic electric field at the driving frequency ωd, for
which f(t) = sin (ωdt). The stationary solution of Eq. (35)
then reads

σq = Sσq sin (ωdt) + Cσq cos (ωdt), (36)

with

Sσq = Aσq
Ωσq

2 − ω2
d(

ω2
d − Ωσq

2
)2

+
(
γσq ωd

)2 , (37a)

and

Cσq = Aσq
−γσq ωd(

ω2
d − Ωσq

2
)2

+
(
γσq ωd

)2 . (37b)

While the time-averaged dipole moment σn = 0 due to the
sinusoidal time dependence in Eq. (36) (the bar denotes time
averaging), the root-mean-square dipole moment

√
∆σ2

n =√
σ2
n is nonvanishing and reads

√
∆σ2

n =
1√N + 1

√(
S̃σn
)2

+
(
C̃σn
)2

, (38)

with

S̃σn =
∑
q

sin (nqd)√
ωσq /ω0

Sσq (39a)

and

C̃σn =
∑
q

sin (nqd)√
ωσq /ω0

Cσq . (39b)

1. Crossover between exponential and algebraic decay of the
plasmon excitation along the chain

In Figs. 4(a)–(d) we present numerical results for the aver-
age stationary dipole moment on nanoparticle n [cf. Eq. (38)]
for the transverse (red dashed lines) and longitudinal modes
(blue solid lines) along a chain composed of N = 1000
Ag nanoparticles, where the first nanoparticle of the chain
is driven at the LSP resonance frequency of the individual
nanoparticles, ωd = ω0. Panels (a) to (d) in Fig. 4 corre-
spond to nanoparticle radii kFa = 50, 100, 200 and 300, re-
spectively, keeping the interparticle distance fixed to d = 3a.
Here, kF denotes the Fermi wavevector.
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FIG. 4. (a)–(d) Normalized time-averaged root mean square dipole moment on nanoparticle n resulting from a monochromatic excitation
at frequency ωd = ω0 of the first nanoparticle in a chain with N = 1000 and interparticle distance d = 3a. Dashed red and solid blue
lines correspond, respectively, to a numerical evaluation of Eq. (38) for the transverse and longitudinal modes, including Ohmic losses,
Landau damping and radiation damping. The thick dashed and solid gray lines corresponding to the analytical result (43) include only the
nonradiative losses, i.e., Ohmic and Landau damping. The nanoparticle sizes are (a) kFa = 50, (b) kFa = 100, (c) kFa = 200, and (d)
kFa = 300. The thick dashed and solid black lines are algebraic fits for the transverse and longitudinal modes, respectively (see text). (e) and
(f) Propagation length ξσ from Eq. (44) for the (e) transverse and (f) longitudinal modes as a function of a and d. The parameters in the figure
are γO/ω0 = 0.027, ~ω0/EF = 0.47, and ω0/ckF = 1.1 × 10−3, corresponding to a chain of Ag nanoparticles. The frequency shifts (26)
and (27) have been neglected.

We observe two different regimes for the decay of the
dipole moment along the chain: Over the first few nanopar-
ticles of the chain, the decay of the excitation is purely expo-
nential, √

∆σ2
n√

∆σ2
1

= e−(n−1)d/ξσ , (40)

with ξσ the propagation length for the polarization σ. Re-
markably, such an exponential decay is exclusively due to the
nonradiative decay mechanisms of the collective plasmons,
i.e., Ohmic losses and Landau damping. Indeed, the numeri-
cal evaluation of Eq. (38) without the radiation damping (33)
reproduces almost perfectly the exponential decay of

√
∆σ2

n

shown in Figs. 4(a)–(d).
For longer distances along the chain, the decay of the exci-

tation is algebraic [see the thick solid and dashed black lines in
Figs. 4(a)–(d), which correspond to the fit

√
∆σ2

n ∼ 1/nζ
σ

].
This algebraic decay results solely from the radiation damp-
ing (33) and its behavior as a function of momentum. The
latter for the transverse modes is discontinuous (for N � 1)

at q ' k0 [see Fig. 3(a)], yielding ζx,y ' 1 [see the thick
dashed black lines in Figs. 4(a)–(d)], while for the longitudi-
nal mode [see Fig. 3(b)], the monotonic decaying behavior of
the radiative damping rate for q . k0 yields ζz ' 2. The alge-
braic behavior of the plasmon decay along the chain becomes
more predominant for increasing nanoparticle size and inter-
particle distance, at the constant ratio d = 3a used in Figs.
4(a)–(d). This is a result of the increasing influence of the ra-
diation damping on the overall collective plasmon linewidth
for increasing nanoparticle sizes.

2. Propagation length

Within the perspective of energy transfer, the initial expo-
nential regime witnessed in Figs. 4(a)–(d) is the determinant
one. Therefore, it is useful to search for the maximization
of the propagation length ξσ defined in Eq. (40) within the
parameter range of the present model. Below we provide an
analytical calculation of the root-mean-square dipole moment
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(38) in the weakly-coupled nanoparticle regime, and subse-
quently we deduce the propagation length ξσ as a function of
the parameters of our model.

Since the exponential decay of the plasmon excitation is of
nonradiative origin, we neglect in what follows the radiation
damping (33). Moreover, we neglect the frequency shifts (26)
and (27) as these represent a very small correction to the col-
lective mode resonance frequencies [20]. To linear order in
the coupling (3) and to quadratic order in γσq /ω0, using Eqs.
(7) and (28), the coefficients (37) read for ωd = ω0

Sσq '
Aσq
4ω2

0

ησΩω0 cos (qd) + (γnr/4)2

[ησΩ cos (qd)]2 + (γnr/4)2
(41a)

and

Cσq ' −
Aσq
8ω2

0

γnrω0/2 + ησγ
L
0 ΩG(~ω0/EF) cos (qd)

[ησΩ cos (qd)]2 + (γnr/4)2
,

(41b)
where γnr = γO + γL

0 is the nonradiative part of the damping
rate corresponding to a single nanoparticle. In the large chain
limit (N � 1), we replace the summation over plasmon mo-
menta in Eq. (39) by an integral, and we arrive, using Eq. (41),
at

S̃σn '−
√

2(N + 1)
2πησ

σ̂ · ε̂ ΩR

Ω

[
(γnr/4)2

ησΩω0
In
(

γnr

4|ησ|Ω
)

+ Jn
(

γnr

4|ησ|Ω
)]

(42a)

and

C̃σn '
√

2(N + 1)
4πησ

σ̂ · ε̂ ΩR

Ω

[
γnr

2ησΩ
In
(

γnr

4|ησ|Ω
)

+ G

(
~ω0

EF

)
γL
0

ω0
Jn
(

γnr

4|ησ|Ω
)]

, (42b)

where the Rabi frequency ΩR is introduced in Eq. (18). The
integrals In and Jn are defined in Eqs. (C1) and (C2), respec-
tively, and they are evaluated in Appendix C.

With Eqs. (C7) and (C8) and to leading order in Ω/ω0 and
γσq /ω0, Eq. (38) finally reads

√
∆σ2

n '
|σ̂ · ε̂|√
2|ησ|

ΩR

Ω

√1 +
(

γnr

4|ησ|Ω
)2

− γnr

4|ησ|Ω

n .
(43)

The decay of the plasmon excitation then follows the expo-
nential behavior (40), with a decay length

ξσ =
d

arcsinh(γnr/4|ησ|Ω)
. (44)

The latter, once scaled with the interparticle distance d, is
a monotonically decreasing function of the unique param-
eter γnr/Ω. For weak dissipation and/or strong coupling
(γnr � Ω), it behaves as ξσ/d ' 4|ησ|Ω/γnr, while in the op-
posite regime γnr � Ω, ξσ/d ' [ln (γnr/4|ησ|Ω) + ln 2]−1.

We show in Figs. 4(a)–(d) our analytical result (43) for the
transverse and longitudinal modes by thick solid and dashed
gray lines, respectively. As can be seen from the figure, the
agreement between Eq. (43) and the exponential part of the
plasmon decay as obtained from the numerics is excellent,
confirming that such an exponential behavior is solely of non-
radiative origin.

The propagation length (44) is plotted in Fig. 4(e) for the
transverse modes and in Fig. 4(f) for the longitudinal one for
chains of Ag nanoparticles. The propagation length ξσ is
measured in units of k−1

0 = 76 nm, while a and d are mea-
sured in units of k−1

F = 0.83 Å. In these two figures, we only
show data points for d > 3a, as our model of point dipoles
interacting through a quasistatic interaction is not valid for
smaller interparticle distances [18].

As can be seen from panels (e) and (f) in Fig. 4 and inferred
from Eq. (44), the smaller the interparticle distance d and the
larger the nanoparticle radii a, i.e., the larger the coupling con-
stant Ω defined in Eq. (3), the larger is the propagation length
ξσ . For a fixed d, the maximum ξσ is attained for d/a = 3,
that is, at the limit of validity of the near-field approximation
adopted in this work. It is then expected that the optimal prop-
agation lengths occur for d/a < 3.

An important conclusion that can be extracted from Figs.
4(e) and 4(f) and from Eq. (44) is that the longitudinal mode
generally propagates for a longer distance than the transverse
one, thus confirming previous numerical studies [4, 6, 7] in
the framework of a well-defined criterion. This is due to the
fact that the LSPs have an effective interaction strength in Eq.
(2) that is twice as large in the longitudinal case (|ηz| = 2) as
in the transverse case (|ηx,y| = 1).

B. Short laser pulse

We now consider an alternative situation of experimental
relevance, where the first nanoparticle in the chain is irradiated
by a very short laser pulse. In such a case, f(t) = δ(ω0t) and
the solution of Eq. (35) can be readily obtained, yielding the
(dimensionless) dipole moment on nanoparticle n,

σn(t) =

√
2

(N + 1)ω0
Θ(t)

∑
q

Aσq
(ωσq )3/2

sin (nqd)

× e−γ
σ
q t/2 sin (ωσq t). (45)

We have checked by a numerical evaluation of Eq. (45) (not
shown) that the radiation damping weakly affects the decay
of the plasmon excitation along the chain for short distances
(below ca. 10 nanoparticles), as is the case for the continu-
ous drive by a monochromatic field (see Sec. IV A). Along
the same lines as in the previous section, in the following we
thus evaluate Eq. (45) analytically by disregarding the radia-
tion damping (33). We further ignore the frequency shifts (26)
and (27). In the large chain limit and working up to leading
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Eq. (47)]. The transverse and longitudinal modes are represented by red dashed and blue solid lines, respectively. The parameters used in the
figure correspond to an infinite chain of Ag nanoparticles with radius a = 200 k−1

F = 16.6 nm separated by an interparticle distance d = 3a.

order in Ω/ω0 � 1, we then obtain

σn(t) '− 4
π
σ̂ · ε̂ ΩR

ω0
Θ(t) e−γ

nrt/2

× [Kn (2ησΩt, ησγL
0G(~ω0/EF)Ωt/ω0

)
sin (ω0t)

+ Ln
(
2ησΩt, ησγL

0G(~ω0/EF)Ωt/ω0

)
cos (ω0t)

]
.

(46)

The integrals Kn and Ln are defined in Eqs. (C9) and (C10)
and are evaluated in Appendix C. Together with Eqs. (C13)
and (C14), we then obtain to leading order in Ω/ω0 and in
γσq /ω0 the result

σn(t) =
2ΩR

ω0
σ̂ · ε̂ Θ(t)

× e−γ
nrt/2 cos (ω0t+ nπ/2) nJn(2ησΩt)

ησΩt
(47)

for the dipole moment on nanoparticle n resulting from a
pulsed excitation on the first nanoparticle in the chain. In the
previous expression, Jn(z) denotes the Bessel function of the
first kind.

In Fig. 5 we plot the dipole moment (47) on nanoparti-
cle n = 1 to 8 as a function of time for the transverse (red
dashed lines) and longitudinal modes (blue solid lines). The
parameters used in the figure correspond to the case of an in-
finite chain of Ag nanoparticles with radius a = 200 k−1

F =
16.6 nm and interparticle distance d = 3a. As can be seen in
the figure, the initial excitation propagates for at least n = 8
nanoparticles in the case of the longitudinal mode, corre-
sponding to a distance of about 400 nm. It is clear from Fig.
5 for n = 1 to 4 that the transverse mode (cf. the red dashed
lines in the figure) has a longer lifetime than the longitudi-
nal one (blue solid lines). Such a longer lifetime is asso-
ciated with lower propagation efficiency. Hence, the longi-
tudinal mode propagates for longer distances than the trans-
verse mode. For instance on the 8th nanoparticle, the longi-
tudinal mode is still active (at the level of a few percent of

the initial excitation) while the transverse mode is totally sup-
pressed. One may conclude from Fig. 5 that, although the sig-
nal is strongly damped, it may still be detectable and therefore
may be useful in the prospect of information transfer based on
nanoscale plasmonic metamaterials.

V. CONCLUSIONS

We have considered collective plasmonic excitations in fi-
nite and infinite chains of spherical metallic nanoparticles,
and in particular their damping. Our open quantum system
approach has enabled us to quantify the two most important
size-dependent damping mechanisms that lead to the decay
of the plasmonic excitations along the chain: Landau damp-
ing due to the coupling to internal electronic degrees of free-
dom and radiation damping due to the coupling to the sur-
rounding electromagnetic field modes. We have derived and
presented a universal analytical formula for the nonradiative
Landau damping decay rate of coupled plasmonic modes that
is valid for an arbitrary chain length. We have shown that
Landau damping is predominant for small nanoparticles as it
scales as the inverse of their diameter. Moreover, unlike radia-
tive losses, Landau damping is nonzero for all plasmon modes
of any wavelength.

We have calculated the radiation damping decay rate of the
coupled modes and obtained an analytical expression for the
infinite chain limit. We have performed numerical calcula-
tions for finite chains, thereby extending the investigated pa-
rameter regime and confirming the analytically predicted be-
havior for infinite chains. Our transparent analytical results,
obtained within a quasistatic approximation, are also consis-
tent with existing numerical results which include retardation
effects. Therefore, we can conclude that retardation effects do
not play a crucial role and are rather unimportant for explain-
ing, at least qualitatively, radiation losses in coupled plas-
monic nanostructures.
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Using the reduced density matrix formalism, we have in-
vestigated the decay of the plasmonic excitation along the
chain when a long-wavelength laser field illuminates the first
nanoparticle of the chain. In the case of a continuous drive
by a monochromatic field, we have numerically demonstrated
that there are two distinct regimes for the decay of the plas-
monic modes along the chain. For short distances (typically
of the order of 10 nanoparticles), the decay of the plasmonic
excitation exhibits an exponential behavior along the chain.
Importantly, we have shown that such an exponential decay
is due solely to the nonradiative damping mechanisms (i.e.,
Ohmic losses and Landau damping), and that it is not influ-
enced by radiation damping. For longer distances, the decay
becomes algebraic, with a polarization-dependent power law.
Such an algebraic decay is exclusively due to the behavior of
the radiation damping decay rate as a function of momentum.
This regime switching is of foremost importance for charac-
terizing the alteration of an excitation along the chain, and
it must be taken into account when comparing the different
predictions and measurements of the decay lengths. Similar
conclusions can be drawn from the case of a pulsed excitation
on the first nanoparticle.

We have provided transparent and simple analytical expres-
sions for the exponentially-decaying plasmon excitation pro-
file along the chain and its associated plasmon propagation
length, which is larger for the longitudinal mode than for the
two transverse modes. The largest propagation lengths were
found at the limit of validity of the present model. Therefore,
it is desirable to develop alternative models in order to ex-
tend the parameter range explored in this work. In addition,
it would be interesting to extend the theory of the decay of
coupled plasmonic modes presented in this paper, which cap-
tures the essential physics of the problem, to other one- and
two-dimensional arrays of metallic nanoparticles, presenting,
e.g., interesting topological features, such as the honeycomb
array baring chiral bosonic Dirac plasmons [29, 30].
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Appendix A: The need to go beyond the rotating-wave
approximation for the plasmonic Hamiltonian

In this appendix, we briefly comment on the rotating-wave
approximation (RWA) for the plasmonic Hamiltonian (2). We
show that, although it gives correct results for the dispersion
relation to first order in the small parameter Ω/ω0 � 1 de-
fined in Eq. (3), it misses corrections of the same order in
Ω/ω0 to the eigenstates. These are, however, important for
state-dependent quantities such as the nonradiative and radia-
tive collective plasmon decay rates evaluated in Sec. III in the

general case and in Appendix B for the special case of a het-
erogeneous nanoparticle dimer.

The RWA counterpart of the Hamiltonian (2) reads

HRWA
pl = ~ω0

N∑
n=1

∑
σ=x,y,z

bσn
†bσn

+ ~Ω
N−1∑
n=1

∑
σ=x,y,z

ησ

(
bσnb

σ
n+1
† + bσn+1b

σ
n
†
)
(A1)

and it is easily diagonalized using the sine transform (4) to
yield

HRWA
pl =

∑
qσ

~ωσ,RWA
q bσq

†bσq . (A2)

Within the RWA, the plasmon dispersion reads

ωσ,RWA
q = ω0 + 2ησΩ cos (qd), (A3)

coinciding with the exact spectrum (7) to first order in
Ω/ω0 � 1. However, the RWA leads to values of the Bogoli-
ubov coefficients cosh θσq and sinh θσq [cf. Eq. (9)] that are 1
and 0, respectively, while these coefficients read, to first order
in Ω/ω0, as cosh θσq ' 1 and sinh θσq ' ησ(Ω/ω0) cos (qd).
Hence, the RWA misses the latter correction to the plasmon
eigenstates, and therefore it gives incorrect results for state-
dependent quantities.

Appendix B: The case of a heterogeneous nanoparticle dimer

The technical ideas presented in this work can be easily
tested on the special case of a nanoparticle dimer (N = 2),
even in the heterogeneous case of different nanoparticle sizes
and/or made of different materials. The analytical results ob-
tained within the present approach can be checked against pre-
vious developments [21]. For completeness, we adapt the for-
mulation of the main text to the specific case at hand. The
plasmonic part of the Hamiltonian (1) now reads

Hpl =
2∑

n=1

∑
σ=x,y,z

~ωnbσ†n bσn

+ ~Ω
∑

σ=x,y,z

ησ

(
bσ1 + bσ1

†
)(

bσ2 + bσ2
†
)
, (B1)

where ωn is the LSP resonance frequency in the nth nanopar-
ticle, and it corresponds for simple metals and neglecting the
spill-out effect to the Mie frequency (Nne2/mea

3
n)1/2, with

Nn and an the electron number and the radius of nanoparticle
n, respectively. The coupling frequency reads

Ω =
√
ω1ω2

2

(√
a1a2

d

)3

. (B2)

The Hamiltonian (B1) is diagonalized to

Hpl =
∑
σ

(
~ωσ+Bσ+

†Bσ+ + ~ωσ−Bσ−
†Bσ−

)
(B3)
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by a Bogoliubov transformation [43]

Bσ± =
2∑

n=1

(
uσn±b

σ
n + ūσn±b

σ†
n

)
, (B4)

where the eigenfrequencies of the high- and low-energy eigen-
modes read

ωσ± =

√√√√ω2
1 + ω2

2

2
±
√

4η2
σΩ2ω1ω2 +

(
ω2

1 − ω2
2

2

)2

, (B5)

respectively. The high-energy (low-energy) mode for the
transverse polarization σ = x = y corresponds to a bright
(dark) mode. Vice versa, the high-energy (low-energy) mode
for the longitudinal σ = z polarization corresponds to a dark
(bright) mode. The coefficients entering Eq. (B4) read

uσn,± = [±sgn{ησ}]n−1 ω
σ
± + ωn

2
√
ωnωσ±

√
ωσ±

2 − ω2
n̂

2ωσ±
2 − ω2

1 − ω2
2

,

(B6a)

ūσn,± = [±sgn{ησ}]n−1 ω
σ
± − ωn

2
√
ωnωσ±

√
ωσ±

2 − ω2
n̂

2ωσ±
2 − ω2

1 − ω2
2

,

(B6b)

where n̂ = 1(2) for n = 2(1).
The coupling between plasmons and electron-hole pairs

reads for a heterogeneous dimer as

Hpl-eh =
2∑

n=1

∑
σ=x,y,z

Λn
(
bσn + bσn

†
)

×
∑
αβ

〈nα| σ̂ · rn |nβ〉 c†nαcnβ , (B7)

with rn the vector originating from the center of nanoparticle
n. The Landau damping of the heterogeneous dimer can then
be expressed as [21]

γσ,L± =
2∑

n=1

3v(n)
F

4an

(
ωn
ωσ±

)3

g

(
~ωσ±
E

(n)
F

)(
∆uσn±

)2
, (B8)

where v(n)
F and E(n)

F are the Fermi velocity and energy of the
nth nanoparticle, respectively, and where the function g(ν) is
defined in Eq. (29). In the expression above, ∆uσn± = uσn± −
ūσn±. For a homogeneous dimer made of two nanoparticles
of the same size and material, the Landau damping linewidth
(B8) reduces to

γσ,L± =
3vF
4a

(
ω0

ωσ±

)4

g

(
~ωσ±
EF

)
, (B9)

corresponding to Eq. (28) for N = 2.
In Eq. (1), the coupling between plasmons and photons for

a heterogeneous dimer reads in the dipolar approximation

Hpl-ph = i~
2∑

n=1

∑
σ=x,y,z

∑
k,λ̂k

√
πω3

na
3
n

Vωk
σ̂ · λ̂k

×
(
bσn
† − bσn

)(
aλ̂k

k eik·dn + aλ̂k

k

†
e−ik·dn

)
.

(B10)

With the help of the Bogoliubov transformation (B4), the
Fermi golden rule radiative decay rate hence takes the form

γσ,r± =
2π2

V
∑
k,λ̂k

|σ̂ · λ̂k|2
ωk

∣∣∣∣∣
2∑

n=1

(ωnan)3/2Uσn±e−ik·dn
∣∣∣∣∣
2

× δ(ωσ± − ωk), (B11)

where Uσn± = uσn± + ūσn±. After summing over photon po-
larizations, and replacing in the limit V → ∞ the summation
over photon momenta by an integral, we arrive at the general
result for the radiation damping of a heterogeneous metallic
nanoparticle dimer,

γσ,r± =
2ωσ±
3c3

{
2∑

n=1

(ωnan)3Uσn±
2 + 3

2∏
n=1

(ωnan)3/2Uσn±

×
[(

Θ(ησ)
kσ±d

− ησ
(kσ±d)3

)
sin (kσ±d)

+
ησ

(kσ±d)2
cos (kσ±d)

]}
, (B12)

with kσ± = ωσ±/c. In the limit kσ±d� 1, the above expression
reduces to

γσ,r± =
2ωσ±

3

3c3

(
2∑

n=1

√
ωna3

n∆uσn±

)2

, (B13)

and we thus recover the result of Ref. [21].
We show in Fig. 6 the competition between the Landau and

radiative decay rates of the bright (light gray/red lines) and
dark (black lines) plasmonic transverse modes as a function of
nanoparticle radius a (assumed to be the same for both parti-
cles) for a homogeneous Ag-Ag [Fig. 6(a)] and heterogeneous
Ag-Au dimer [Fig. 6(b)] with interparticle separation d = 3a.
We assume that the dimers are embedded in a medium with
dielectric constant εm = 4, corresponding to LSP resonance
frequencies ωAg = 2.6 eV/~ and ωAu = 2.2 eV/~ [28]. Note
that the data shown in Fig. 6 imperceptibly differ from those
in Fig. 3 of Ref. [21].

In the homogeneous dimer case [Fig. 6(a)] and for the
bright mode, the Landau damping dominates over radiation
damping for nanoparticle sizes smaller than ca. 15 nm (com-
pare the solid and dashed-dotted red lines in the figure). For
the dark mode, the radiation damping strictly vanishes [dashed
black line in Fig. 6(a)], so that Landau damping (solid black
line) is the main decay mechanism of the coupled plasmonic
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FIG. 6. Landau damping (solid and dotted lines) and radiation
damping (dashed-dotted and dashed lines) decay rates of the trans-
verse mode as a function of nanoparticle radius a for the bright (+,
light gray/red lines) and dark (−, black lines) mode of a nanoparticle
dimer (N = 2) with d = 3a. (a) Homogeneous dimer formed by
two identical Ag nanoparticles and (b) heterogeneous Ag-Au dimer
embedded in a medium with dielectric constant εm = 4.

modes, until it becomes irrelevant for increasing nanoparti-
cle size as compared to Ohmic losses, which are, to a first
approximation, size-independent. For the Ag-Au dimer [Fig.
6(b)], the dark mode acquires some finite dipole moment due
to the difference in densities of the two metals, and the radi-
ation damping of the dark mode (which is not strictly dark in
that case) is finite and increases as a function of the nanopar-
ticle size (see the dashed line in the figure). In such a case,
the nonradiative damping is the main decay mechanism of the
dark mode for nanoparticle sizes up to ca. 25 nm.

Appendix C: Nonradiative suppression of the plasmon profile
along the chain for continuous and pulsed excitations

In this appendix, we provide details of the analytical calcu-
lations of the dipole moment on nanoparticle n presented in
Sec. IV.

The two integrals appearing in Eq. (42) are defined by

In(α) =
∫ π

0

dx
sinx sin (nx)
cos2 x+ α2

(C1)

and

Jn(α) =
∫ π

0

dx
sinx cosx sin (nx)

cos2 x+ α2
, (C2)

where α is real and positive, and n is an integer strictly larger
than 0. It is easy to show that

In(α) =
1
2

Im
∫ 2π

0

dx
sinx einx

cos2 x+ α2
(C3)

for n odd and In(α) = 0 for n even, while

Jn(α) =
1
2

Im
∫ 2π

0

dx
sinx cosx einx

cos2 x+ α2
(C4)

for n even and Jn(α) = 0 for n odd. Changing variables to
z = eix in Eqs. (C3) and (C4), we arrive at

In(α) = −Im
∮

dz
(z2 − 1)zn

z4 + 2(1 + 2α2)z2 + 1
(C5)

and

Jn(α) = −1
2

Im
∮

dz
(z4 − 1)zn−1

z4 + 2(1 + 2α2)z2 + 1
, (C6)

where the two above integrals are taken over the unit circle in
the complex plane. The denominator of the integrands appear-
ing in Eqs. (C5) and (C6) has two simple poles lying outside
of the unit circle, zout

± = ±i[(1 +α2)1/2 +α], and two simple
poles lying inside of the unit circle, zin

± = ±i[(1+α2)1/2−α].
By the residue theorem, we thus arrive to the final results

In(α) = [1− (−1)n] Im{in}π
2

(√
1 + α2 − α)n

α
(C7)

and

Jn(α) = − [1 + (−1)n] Im{in+1}π
2

(√
1 + α2 − α

)n
(C8)

for all integers n > 1. These simple expressions allow us to
obtain the form (43) of the dipole moment and the subsequent
propagation length (44) resulting from a continuous excitation
of the first nanoparticle in the chain.

The two integrals involved in the expression (46) describing
the dipole moment resulting from the pulsed excitation of the
first nanoparticle in the chain are defined by

Kn(α, β) =
∫ π

0

dx sin (nx) sinx cos (α cosx) e−β cos x

(C9)
and

Ln(α, β) =
∫ π

0

dx sin (nx) sinx sin (α cosx) e−β cos x,

(C10)
where α and β are both real and where n is an integer strictly
larger than zero. Using that∫ π

0

dx cos (nx) cos (z cosx) = π cos
(nπ

2

)
Jn(z) (C11)

and∫ π

0

dx cos (nx) sin (z cosx) = π sin
(nπ

2

)
Jn(z), (C12)

where Jn(z) denotes the Bessel function of the first kind with
z a complex variable, we obtain

Kn(α, β) = πn Im
{

einπ/2 Jn(α+ iβ)
α+ iβ

}
(C13)

and

Ln(α, β) = −πn Re
{

einπ/2 Jn(α+ iβ)
α+ iβ

}
. (C14)

These closed expressions, when inserted into Eq. (46) allow
one to obtain the time-dependent dipole moment σn(t) and
the weak-coupling limit (47) in the case of a pulsed excitation.
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