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Abstract—The load frequency control (LFC) aims to keep the 

frequency fluctuation of the power grids within certain specified 

limits, under various load disturbances. However, with the 

increased usage of renewable energy sources (RES) in smart grids, 

it is essential to regulate the conventional power plants, based on 

renewable energy penetration levels. Moreover, with the 

decentralized nature of the control operation in smart grids, the 

communication network between the control center and actuator 

faces the challenge of random communication delays, packet drops 

in the form of cyber-attacks. In this paper, the conventional 

thermal power plant operations within an LFC has been modified 

using energy storage elements with an emphasis on maximizing the 

RES utilization while tackling the problems associated with cyber-

physical systems like packet drops and random time delays. A 

filtered proportional-integral-derivative (PID) controller is tuned 

in the LFC using the particle swarm optimization (PSO) 

algorithm, including random time delays and cyber-attacks 

modelled as random packet drops. The tuned PID control 

performance in the LFC scheme is tested with synthetic stochastic 

as well as real profiles of RES and load demands. The numerical 

analysis has been conducted on two area LFC model with Monte-

Carlo simulations of stochastic demand and generation profiles. 

Note to Practitioners-We are moving towards more renewable 

energy-based cyber-physical power grids, and it is becoming 

increasingly important to understand the limits of the balance 

between more renewable energy integration vs changing the 

prime-mover in thermal power generation units to meet uncertain 

load demands. This paper proposes a new LFC scheme employing 

a nonlinear dead-zone element between the control signals and the 

actuators (prime movers) which allows the utilization of the 

available RES to meet the load and then send a set-point change 

command in the thermal power generators if the RES does not 

meet the load. The robustness of the smart grid stability is also 

verified with the denial of service (DoS) type cyber-attack which is 

represented in the form of high probability of packet drops and 

stochastic time delays in the communication channels between the 

control center and the generation units. It is also essential to 

understand how different stochastic profiles may affect the 

stability and performance of the tuned LFC loops, under random 

time delays and packet dropouts. These are quantified using the 

uncertainty bounds of grid frequency, its rate of change, control 

inputs and power exchange between the two areas which are 

analyzed using Monte Carlo simulations with different types of 

nonstationary load and RES profiles, and also using real data to 
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show the effectiveness of the LFC scheme with communication 

constraints and the resulting imperfections.    
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I. INTRODUCTION 

HE utility industries are now facing several operational 

challenges with the increasing usage of RES. With the 

focus on reducing the dependence on fossil fuels, several 

technical and economic feasibility studies have been conducted 

on 100% renewable usage taking the case of New Zealand [1], 

Nordic Countries [2], Caribbean island [3], Macedonia [4], 

Denmark [5], [6], Ireland [7], Japan [8], United States [9] and 

United Kingdom [10], with the optimal usage of hydro, wind, 

geothermal and energy storage devices. In [9], analysis is 

performed concerning the country’s economy and global 

climate cost reduction per person. However, with the increasing 

integration of RES, it is becoming essential to study the 

implications on the dynamics of the smart grids which can be 

studied using various LFC schemes. 

A. Previous Works on LFC with Renewable Energy/Storage  

     Several standalone hybrid power systems for LFC have been 

described in [11]–[13],[12], [14], consisting of wind and solar 

power with various storage devices operating in linear and 

nonlinear regimes. Electric vehicles (EVs) as storage devices 

with nonlinear functionality has been used within LFC in [15], 

[16]. A combination of the traditional multi-area LFC scheme 

and RES has been investigated by incorporating wind power 

systems [17], [18] and solar photovoltaic (PV) in [19], [20]. 

Data driven and forecasting approaches for LFC are adopted in 

[21]–[23] by making necessary changes in the secondary 

control loop and facilitating inter-area communication between 

the operators. Real wind profile data has been used in [22] for 

stochastic power system LFC models. Changes in the control 

loop has been facilitated in [24]  which decouples the balancing 

act from the system dynamics. The primary control loop has 

been used in frequency restoration while secondary control 
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activation is required only in the case of specific local events. 

The solar and wind power generation along with load demands 

have been considered as stochastic models in [11], [13], [25] 

where the stochastic natures of the inputs are described using 

synthetic profiles as filtered random numbers with drifts and 

jumps. However, in these cases, the system consists of RES 

acting as stochastic input variables along with the storage 

devices as actuators to damp out the grid oscillations. Filtered 

white noise is used to model the wind velocities in [26] to 

control the pitch angle of the wind turbine system. 

B. Previous Works on LFC with Time Delays/Packet Dropouts 

Open communication channels and the decentralized nature 

of the controllers in power plants and smart grids can cause 

communication delays, which are detrimental to the LFC 

performance. Delay dependent stability of LFC is analyzed 

using sliding mode control [14], and decentralized fuzzy H

control [27] for variable time delays and system uncertainties 

and multi-area power systems with nonlinear constraints [28]. 

Nonconvex optimization methods are adopted in [29], [30] for 

designing PID controller in time-delayed LFC systems. The 

LFC has been modelled as an interval power system in [31] 

using Kharitonov’s theorem where the controller’s robustness 

was tested with governor dead-band, generator rate constraint 

and communication time delays.  

The interrupted packet transmission in industrial automation 

and process control have been introduced in the form of DoS 

attack which attempts to reduce the system availability by 

denying the information exchange between the sensor to 

controller and controller to actuator respectively. Event-

triggered methods are used in [32]–[34] for LFC. According to 

this scheme, the information is transmitted if the control signals 

meet a specific criterion. In [32]–[34], the event triggering 

strategy has been modified for LFC to make the communication 

system robust to the interrupted data transmission induced by 

the DoS attacks. Resilient controllers for LFC have been 

designed using the autoencoder extreme learning machine in 

[35]. Further methods for mitigating cyberattacks have been 

described using hierarchical games between the transmitter and 

the attacker in [36], using a delay estimator and decision-

making unit in [37] and zero input actuator policy in [38]. 

Combinations of time delays and DoS attacks are described in 

[39] where the latter is modelled via attack duration and 

frequency, which has uniform upper and lower bounds. 

C. Contributions of this Paper over Existing Literature 

This paper combines the whole system complexities posed 

by the controller communication network like the DoS attacks 

modelled by random interruption of data packets and random 

time delays due to its decentralized nature of the operation. So 

far the existing works have incorporated either DoS 

cyberattacks or time delays in the control loops except in [39] 

where analytical stability is obtained for a less complicated LFC 

scheme. The DoS attacks modelled in the existing works are 

bounded by duration and frequency. The work done in this 

paper eliminates the need for a predictor and an estimator for 

the lost data packets. Moreover, it does not need a change in the 

existing communication networks to handle these complexities 

of random time delays or DoS cyberattacks as dropped out 

control signal packets. Performance robustness is obtained by 

tuning the PID controllers in each area using particle swarm 

optimization (PSO) considering the presence of time delay and 

cyberattack in the simulation model as an adversarial tuning 

mechanism for resilient control design. The robustness of the 

controller in the cyber-physical system is tested using the 

stochastic profiles including stationary (i.e. Gaussian) and 

nonstationary inputs, e.g. geometric Brownian motion (gBm) 

and fractional Brownian motion (fBm), which are simulated by 

solving stochastic differential equations (SDEs) as discussed in 

[40]. The results are also validated with the real profiles of 

solar, wind and load demand. Several energy storage elements 

are also added in the hybrid power system, as shown in Figure 

1, as per the schemes in [41] and [11].  

 The main contributions of this paper are as follows: 

• Tuning the filtered PID controllers for two-area LFC with 

energy storage devices using PSO on a more realistic and 

complex smart grid model considering random time delays 

and DoS cyberattacks in the form of high data packet 

interruptions from the controllers to the actuators. Also, 

higher system complexities involve different types of 

nonlinearities (rate constraints and output saturations) in 

the storage elements and the control loops. Post-hoc 

analysis of the control performance of the tuned LFC 

system and convergence characteristics of the 

optimization-based controller design is also investigated. 

• Comparison of the frequency and rate of change of 

frequency (ROCOF) fluctuations for varying random 

packet transmission rate and random time delays. The 

control performances are also compared with stationary, 

nonstationary and real input profiles as per the IEEE grid 

standards [42] recommended for connecting distributed 

energy resources to the grid. 

• Comparison of other important grid operational measures 

in case of different RES and load profiles, e.g. storage 

operations and RES penetration level into the smart grid as 

well as visualizing the uncertainties on these grid 

performance measures using Monte Carlo simulations. 

• Insights into the LFC system operations using bivariate 

statistical analysis of the smart grid operational variables. 

Also, carrying out nonparametric hypothesis tests on the 

signal norms of the grid frequency fluctuations for two 

areas and tie-line power using Monte Carlo simulations. 

II. THE PROPOSED LOAD FREQUENCY CONTROL SCHEME 

The multi-area LFC maintains grid frequency of different 

areas within certain tolerance limits by controlling the 

generation rates and the power exchanges between them, as 

shown in Figure 1. The LFC also ensures the load sharing 

between the sub-systems, keeping the frequency deviation 

within limits. The area control error ( )ACE
i
 for each area i is 

generated as a weighted summation of the frequency deviation 

error ( )
i

f  and the tie-line power exchange ( )TieP  between 

the two areas is kept to the minimum possible level using the 

controllers employed in the respective areas.
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Figure 1: Schematic of the two-area LFC scheme with RES and energy storage with filtered PID controllers. The dead zones between the controller and governor 

increase the RES utilization in the smart grid.    

Brief description of the models of the thermal power plant 

and energy storage devices are given below. 

A. LFC in Conventional Fossil Fuel Power Plant Units 

The thermal power plant model in each area consists of the 

steam governor with dead-zone, a steam turbine with the rate 

constraints and a reheater system, as shown in Figure 1. The 

first-order dynamic models, along with their associated 

nonlinearities, are modelled as per the scheme in [11]. The 

coefficients 1 iR  in the ith area are the primary control gain and 

the droop constant of the governor which act upon to reduce the 

immediate frequency fluctuations. The coefficients Bi act upon 

the longer fluctuations which act as a bias to the inter-area 

fluctuations. The PID controller used in the scheme in Figure 1 

minimizes the area control error (ACE) comprising of the 

frequency deviations and the inter-area tie-line power 

oscillations. As given in [43], the frequency deviation due to 

load change in one area is not corrected by the controller in the 

other areas in case of primary frequency control. While in the 

secondary frequency control, the deviations due to the load 

changes are generally corrected using the tie-line power 

exchange between the two areas. This deviation is reflected in 

the system using ( )ACE
i
 for each area i which is defined as: 

1

ACE ,
M

i ij i i

j

P B f
=

=  +                (1) 

where, 
ijP  represents tie-line power flow from the ith area to 

the jth area, 
if  is the frequency deviation in the ith area, and M 

is the number of areas connected to the ith area. The bias factor 

due to frequency ( )iB  is generally expressed as a combination 

of speed regulation ( )iR  and damping coefficient ( )iD  

which is given in (2) as: 

( )1 .i i iB R D= +                    (2) 

The nonlinearity in the system is represented by a generation 

rate constraint (GRC) and the dead zone for the governor and 

the turbine, respectively. A reheater is also considered in the 

thermal power plant as a first-order model, which is shown in 

Figure 1. It increases the steam quality at the turbine exhaust 

and improves the thermodynamic efficiency of the power plant. 

Several realistic modelling aspects like nonlinearities, e.g. GRC 

in turbines in the LFC loops have been studied in [44], [45], 

dead-zone in [46] along with reheat turbine [47]. Due to the 

regulations to increase the usage of the RES, in the proposed 

scheme, the increase in the conventional thermal power plant 

outputs for each area i are only activated when the RES 

generation is unable to meet the increased load demand, with 

the control input 
iu to the governor given as: 

( )ˆmax 0,i i i i
u u f R = −    ,              (3) 

where, ˆ
iu  signifies the controller output after the 

communication network with DoS attacks and random delays. 

B. Nonlinear Models of Energy Storage Devices 

The energy storage devices are connected to the grid as per 

the scheme in [41]. In [48], the stochastic nature of RES is 

incorporated in the battery energy operation instead of direct 

solar power output. However in this paper, first-order models 

for the energy storage elements are used viz. ultra-capacitors 

(UCs) [49], electric vehicles (EVs) [16], battery storage, 

flywheel [41], fuel cell (FC) and the solar power output is 

separately modelled so that the aggregated power of a bus is 

obtained. The energy storage devices have been used to damp 

out the grid frequency fluctuations due to load disturbances 

instead as a control device in [11]–[13], [25]. The detailed 

energy storage scheme used in Figure 1 is shown in Figure 2. 

First-order model of the EVs has been used without any 

nonlinearity constraint [16]. The diesel generator has a rate 

constraint nonlinearity, but its operation is limited to restrain 

the harmful emissions from the fuel combustion. Hence it is 

scheduled to start only when the frequency deviations are 
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beyond 0.05 p.u. The GRCs for the energy storage components 

are given as 0.9fwP  , 0.05batP  , 1.2ucP  , 0.5DGP  , 

0.1fcP  . The rate constraints account for the electro-

mechanical constraints of the storage devices. The overall 

dynamics of the storage devices are governed by the relative 

values of its gains and time constants. This property of energy 

storage devices influences the overall response of the LFC 

system as it consists of a combination of fast and slow dynamics 

of various components. 

 
Figure 2: First order storage device models with nonlinearities like dead bands, 

output saturations and generation rate constraints. 

C. DoS Cyberattack and Stochastic Time Delay Models 

In networked control system (NCS), packet drops and time 

delays are usually considered from sensor to controller and 

controller to actuator paths [50]. In the context of load 

frequency control, the feedback and the forward path is 

analogous to the data transmitted from the remote terminal units 

(RTU) to the control center and from control center to the 

generation companies where the governor set-point is 

transmitted. As given in [51], the application layer in the 

communication system is responsible for the transmission of 

data packets within a given bandwidth from the control center 

to the generation company (GENCO) which makes it 

vulnerable to DoS cyber-attack [52]. Time delay is considered 

due to the transmission of the data from the control center to the 

governor control system. The packet drops and delays are 

considered negligible in the feedback path and significant in the 

forward path. 

The DoS attack in the form of random packet drops is 

modelled in cascade with a random time delay model, as 

addressed in [53]. The random time delay model considered 

here detains the PID controller output by random amount 

following a Gaussian distribution ( )2,d d d   . The 

distribution parameters 
d and

d  are considered as 1.5 and 

0.1, respectively, for the simulation of random time delays.  

Let us now consider the total time interval for consideration 

is T seconds. The packet transmission occurs when certain 

criteria, as in [32]–[34], is satisfied, which is given as:  

( )DoS dns ropTra a =P p ,                 (4) 

where,  DoS 0,1a  is uniformly distributed and
dropp  governs 

the packet transmission rate by regulating the number of 

packets to be dropped. The control packet is held over the 

interval till the next event (4) is satisfied, and the next packet is 

transmitted. The controller output after interrupted transmission 

of the packets can be modelled using the following logic. Let 

us consider the sampling time for the controller output be given 

as
sT , and the discrete-time instants are expressed as:  

( ) 0,1, , 1 ,N N = − s sT T ,             (5) 

where N = sT T and T  represents total simulation time. 

Now we consider the time instants  0 , ,  =Trans Nt t  

where (4) is satisfied and the control packets are transmitted. 

Here,N  represents the time instants where (4) is satisfied. Let 

us considerH  be the Heaviside step function defined by: 

( )
01

0 0.

t
t

t


= 



             
           

            
H               (6) 

When the packets are not transmitted from the controller, the 

packet at previous instant goes to the actuator. Hence, we can 

model this using a zero-order hold (ZOH) which is represented 

using the difference between the Heaviside unit step function

H  between two instants. We denote the delayed control signal 

as ( ) ( )du t u t = − . Hence, the control output from the 

communication network can be expressed as:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

0 1 0 1 0

2 1 2 1

1 1

0 1 1

1

           

             

       = 

ˆ

.

i t u u u

u u

u u

u t u t u t t

u

t

− −

− −

=

= + −  −  

+ −  − +  

+ −  −  

+ −  −  

N N

N

t t t t t

t t t t

t t t t

H

H

H

Hi i i i
i

     (7) 

Here,  0 Trans, , Nt t be the time instants when (4) is 

satisfied and i  be the instant of the sample when the signal is 

transmitted. Substituting the value of ( )ˆ
iu t in equation (7), the 

governor input is represented as:   

( ) ( ) ( ) 

( ) ( ) ( ) ( ) ( )0 1 1

1

ˆmax 0

max 0 .     

,

,

i i i i

i i

t

u t

u t u f R

fu t u t t t R− −

=

+ −  − 

= − 

 
= −  







N

Hi i i i
i

      

                                                                                                (8) 

As per (4), a higher
dropp makes

TransP quite small, thus 

transmitting a lower number of packets inside the LFC loop. 

Furthermore, it reduces the value of N  thus limiting the number 

of time instants in Trans .   

D. Global Optimization based PID Controller Tuning 

PID controllers with derivative filters are used in both the 

areas of the LFC loops to reduce the effect of noise and 

stochastic disturbances. The controllers are tuned considering 

the nonlinearities and stochasticity in the system due to random 

delays and cyberattack models. Previous studies in [53], [54] 

have shown that tuning PID controllers considering the upper 

limit of the stochastic delays and packet dropout probability rate 
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as an adversarial tuning method by including the stochastic 

cyberattack models in the tuning phase, helps to improve the 

control performances as compared to controller tuning using 

static lumped delay assumption without considering the 

intrinsic stochasticity in the system. Hence the value of 
dropp  

considered to be 0.99 during the PID controller tuning phase. 

The load disturbances in the form of step inputs are unequal for 

the two areas and have been considered as active while tuning 

the PID controllers using constrained single objective global 

optimization. The controller is tuned by minimizing the Integral 

of Squared Error (ISE) criterion which aims to minimize 

sustained frequency fluctuations as compared to other time-

weighted criteria like the integral of time multiplied squared 

error (ITSE). The former penalizes large oscillations as opposed 

to small sustained oscillations at a later time and helps to 

prevent the damage to the connected components to the grid. 

The weighted sum of the ACEs and the squared deviations of 

the control signals in two areas are considered as the objective 

function to be minimized for controller tuning as: 

( ) ( )( )
2

2

1 2
0

2

1

Tiei i i

i

J w B f w u tP d


=

=  ++    

( ) ( )( )1 2

1

2
2

2

0
ACE ,i

i

iw w u dt


=

= +             (9) 

where,
21 0.5w w= =  indicating equal weightage on both the 

objectives – ACE and the control effort and i represents each 

area. The four tuning parameters of the PID controller with the 

derivative filter i.e. , , ,p i dK K K N  as shown in Figure 1 for 

each area, are tuned using the global optimizer PSO by 

minimizing the weighted objective function (9). PSO has been 

widely utilized for handling linear and nonlinear systems with 

optimal PID controllers in [55]–[57] where the performance of 

the tuned PID controllers are shown to be acceptable under 

various operating conditions. The research in [58], [59] requires 

the system to have dual loops for minimizing the energy 

consumption, thus keeping the parameters within a specific 

limit. However, in this study, an expected minimum of the 

stochastic objective function (9) is achieved using PSO, 

satisfying the given objectives. Our study shows that the system 

tends to be more stable when high communication packet drops 

and random time delays are considered in the tuning phase with 

PSO as an adversarial mechanism. Most of the earlier works 

have tuned controllers by optimizing static objective function 

without the stochastic components in such complex systems. 

Due to the presence of random packet drops for simulating DoS 

attack and stochastic delays in the NCS, the cost function also 

becomes stochastic, even for a deterministic step load 

disturbance in both the areas. Global optimization-based 

controller design approaches for such NCS problems have been 

previously studied in [53],[54],[60],[61]. These approaches of 

optimizing dynamic and stochastic objective function have 

been shown to outperform deterministic objective function-

based controller design methods for NCS applications which 

have also been adopted in this paper. 

The PSO algorithm consists of the swarm of particles xi 

 1,2, ,  pi n  where pn  is given by the user. The 

position and the velocity of each particle is updated in each 

iteration as given by [62]: 

( ) ( )
,

1 1

1 ,

1 21, 2,

,

,

x x

v x x x x    

+ +

+

= +

= + − + −
bestbest

swarm

k

k k k
i i i

k k k k k k k
i i i i i i i

v

v

                                                                                        (10) 

where,   represents the inertia factor, 
1  is the cognitive 

learning rate and 
2  is the social learning rate which influences 

the exploration and exploitation nature of the particles. The 

values 
1,k
i  and 

2, k
i  represent random numbers uniformly 

distributed in the interval  0,1 . The variable ,x best k
i

represents the previously obtained best value while
,

x
best

swarm

k

 

denotes the best position of the swarm at iteration k and 

expressed as: 

( ) 

( ) 
,

, : argmin ,0 ,

: argmin , .

x

x

x f x

x f x

=  

= 
best

best

swarm

j
i

k

k
i

k j
i i

k
i

j k

i
              (11) 

The PID controllers in the LFC system are tuned with a 

deterministic step load disturbance but random NCS 

components. The system with the designed controller is then 

tested against various stationary and nonstationary input 

profiles of load and RES for testing its robustness. 

III. MATHEMATICAL MODELS OF STOCHASTIC LOAD 

DEMANDS AND RES GENERATION PROFILES 

The power produced due to solar and wind energy depends 

on the power electronic energy conversion devices, as shown in 

Figure 1 to integrate into the smart grid. The solar power needs 

a DC-DC converter interconnection and an inverter which has 

a time constant of
INT and

I CT respectively as described in [63]. 

Since the induction generator dynamics of a wind generator is 

faster than the turbine, it is ignored, and the latter is considered 

as a first-order model using gain KWTG and time constantTWTG . 

 
Figure 3: RES generation and load model used in the LFC scheme. 

The uncertainty of the RES generation has been considered 

in different stochastic profiles used for modelling. The 

maximum solar and wind power output in each area is limited 

to 0.01 pu and 0.02 pu, respectively using appropriate bias and 

gain as analogous to the maximum rating of the solar and wind 

power installed in each area. The maximum load demand in 

area 1 is limited to 0.03 pu and 0.025 pu as analogous to the 

maximum demand contracted by the consumer with the 

utilities. The mathematical models of various stochastic input 

profiles are described in the next subsections.  
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A. Filtered White Gaussian Noise (wGn) Profile 

The system is tested considering the input profile as wGn as 

given in [26]. The generated white noise is filtered using a 

bandpass filter which yields a correlated noise. The transfer 

function of the bandpass filter used is given by: 

( )
1 300

.
1800 1 300 1

bp

s
s

s s
= +

+ +
B              (12) 

The random number generated from the wGn generator which 

has equal intensities at all frequencies is represented by: 
2

2

1 ( )
( ) exp ,

22
G

z
p z



 

 −
= − 

 
             (13) 

where,   represents the mean and   represents the standard 

deviation of the signal. For this case, we assume, 0 =  and 

1 = . The power generated in (13) is passed through the 

bandpass filter in (12) to produce a correlated noisy signal 

which is further conditioned to keep the load demand, solar 

power and wind power within the given bounds. 

B. Nonstationary Synthetic Input Profiles 

The wind velocity and solar irradiation can be modelled 

using various other random number generators (RNGs) e.g. 

fractional Brownian motion [64]–[66] and geometric Brownian 

motion [67]–[69]. The wind speed needs to be modelled such 

that it represents the spatial dependencies of the wind flow. The 

power production due to wind is highly dependent on the 

fluctuation of the wind speed, especially at higher values due to 

the turbulent behaviour. The output of wind power  varies with 

the wind velocity as [70]: 

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

2 3

2

130 63 9.1 0.3  ; 4< 15 m/s

= 140+11 0.36                 ;15 26 m/s

0                                                  ; 26 m/s.

W

v t v t v t v t

P t v t v t v t

v t

 − + − 


−  




 

(14) 

Here, ( )v t is considered as the stochastic variable and ( )WP t  is 

the wind power generated due to the random variable v in (14). 

Similarly, for solar power, the solar irradiance   is considered 

as the random variable, which is related to the production of 

solar PV power as given in [71]: 

( ) ( ) 1 0.005 25PVP S t=  − +aT ,              (15) 

where, the parameter 10% =  is the conversion efficiency of 

the PV cells, 4084S = m2 is the measured area of the PV array, 

 is measured in kW/m2 which is the solar radiation of the PV 

cells and aT  =25
o C  is considered as the ambient temperature. 

The nonstationary signals used to model ( )v t and ( )t are given 

as the following two RNGs – fBm and gBm. 

1) Fractional Brownian Motion (fBm) Profile 

The wind velocity has been modelled as an fBm in [66]. As 

given in [72], Brownian Motion is defined as B , having the 

following properties: 

• 
0 0=B ,  

• For 1n   and 
0 10 .. nt t t    , the increments 

0 1 1 2 1
, , ,

n nt t t t t t  
−

B B B  are independent, 

• For 0 s t   we have ( )0,st t s −B . 

For fractional Brownian motion, if ( )tB  is the ordinary 

Brownian motion and H is the Hurst parameter satisfying 

0 1H   then, the fBm is defined as the moving average 

(MA) of Brownian motion ( )tB , in which past increments of 

( )tB  are weighted by ( )
1 2H

t s
−

− [73]. Defining t as the time 

such that t−     and   belonging to the samples space 

 , one can write the Brownian motion as ( ),t B . Hence  

random function ( ),
H

t B  is defined considering 
0b  as the 

arbitrary real number such that: 

( )

( ) ( ) ( ) ( ) ( )

( ) ( )

0

0
1 2 1 2

1 2

0

0,

1
, 0,  ,

1

2

                                                  , .

H

H H

H H

t
H

t t s s d s

H

t s d s



  



− −

−

−

=

  − = − − −      + 
 


+ − 







B b

B B B

B

 

(16) 

For 1 2H = , ( ),
H

t B  represents a Brownian motion. For 

other value of H , it represents fractional derivative or integral 

of Brownian motion as defined in [74]. ( )  represents the 

Gamma function or generalized factorial. For 1 2H   , there 

is a positive autocorrelation and for 1 2H   there is a negative 

auto-correlation. The expectation of the function is given by: 

( ) ( )2 2 21

2
( , ) |, | | | | | .H H H

H H
t s s st t   = + − − B B   (17) 

Solar irradiation is highly nonstationary; hence the analysis 

does not give the correct value of H , but better trends have 

been obtained using the detrended fluctuation analysis (DFA) 

in [65]. The Hurst exponent 0.7H = is obtained for solar 

irradiation which proves that the signals have a persistent long-

range correlation. Considering the homogeneous turbulence of 

the wind speed as given in [66], Hurst exponent 1 3H = has 

been considered to model the wind speed. For area 1, the wind 

speed (v) is considered from 4-15 m/s and in area 2, the wind 

speed is considered from 0-30 m/s. The wind and solar power 

are calculated from the wind speed and solar irradiation values 

from (14) and (15) respectively. The load demand fluctuations 

as the probabilistic forecast have been tackled in [64] using 

fBm, as it depends on the range and length of the Hurst 

exponent. Hence the value of 0.185H = in this paper to model 

the randomness in load demand. The fBm has been simulated 

in MATLAB using the function fbm() from the Wavelet 

Toolbox [75].  

2) Geometric Brownian Motion (gBm) Profile 

Next, the stochastic process
tS is considered to follow a gBm 

as described in [76] if it satisfies the SDE defined as: 

t t t td dt d= +S µS oS B ,               (18) 

where, µ is the percentage drift and o represents the volatility 

rate where the former models the deterministic trends while the 

latter explains the unpredictability in the motion. Under Ito’s 

representation, the SDE defined in (18) has the solution: 
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( )( )( )2

0 exp 2 ,t tt= − +S o oBS µ          (19) 

where,
0S is the initial condition. The nonstationary nature of 

the process is inferred from the expectation and covariance 

defined as: 

 

    ( )
2

0

2 22

0Var

,

1 .

t

t

t t

t t t

e

e e  −=  =−

= µ

µ o

S S

S S S S
        (20) 

The distributed lag model has been used to predict the local 

levels of the incoming solar radiation in [69] where it was found 

that it follows a gBm. Time-varying rate parameter has been 

used to model the stochastic nature of the RES in [48]. 

However, as per [69], a constant value also captures the 

stochasticity of monthly solar irradiation variation. The rate 

( )0.014=µ  and the drift ( )2 0.019=o  are obtained from [69] 

to generate the random input profiles for solar irradiation. The 

solar PV power from the RNG is obtained from (15) using the 

gBm profile. The gBm has been simulated in MATLAB using 

the function gbm() in the Financial Toolbox [77]. 

The stochastic behaviour of the energy consumption and 

wind speed has been discussed in [67], [68] using Ornstein-

Uhlenbeck (OU) Brownian motion model. The physical model 

is based on the motion of the particles of Brownian motion 

under friction, and it tends to drift towards its long-term mean. 

It is defined as the solution of the SDE ( )tx as: 

,t t td dt d= − +x x ó B               (21) 

where, 0  and 0ó . 

Considering 
0x  as constant, we can define the expectation and 

covariance as: 

  ( )

( ) ( )( )

0

2

1 ,

cov , .
2

ss

s

t t

t

tt

t

e e

e e

 







− −

− +− −

= + −

= −

x x

ó
x x

         (22) 

The SDE (21) is used to model the energy consumption of 

the multi-area power system in [68]. The OU gBm model has 

been used in continuous time to represent the wind speed as it 

models its long term daily cycle in [67], for energy system 

balancing. Numerical solution of the SDE is defined in [78]. 

Here, the OU process is defined as the univariate Markov 

process X that evolves with time t as per the Langevin equation 

with its update formula given as:  

( ) ( ) ( ) ( )
1 21 21

t t t t t c t+   −  + X X X n
τ

,      (23) 

where,n represents the sample value of the unit normal 

random variable ( )0,1 , τ represents relaxation time and c 

represents diffusion constant. Based on the Langevin equation, 

the constants τ and c can be defined to represent the parameters 

of the SDE defined  as:  
21 ,c= =τ ó .                  (24) 

The values of  , ó  for the load demand and wind velocity 

are obtained in [67], [68]. The wind velocity is converted into 

equivalent wind power using the model in (14). 

C. Real Datasets as the Input Profiles 

Beside synthetic profiles as described above, real data is used 

from the Dalrymple ESCRI battery energy project [79] where 

the load demand, solar irradiation and wind power values are 

obtained at 4-sec, 1 min and 4-sec interval respectively. One-

month data has been used for our analysis. The per-second 

values are generated using a higher-order interpolation 

algorithm ( )interp1  in Matlab with modified Akima method 

as described in [80], although other interpolators could have 

been used as well. After the data is read and partitioned as per 

5 mins interval, it is conditioned (by adjusting the gain and bias) 

so that the output value is within the given prescribed limits. 

Randomly selected 1000 samples (out of ~8350) are used in the 

simulations. The solar power is obtained from the solar 

irradiance values using (15). Since in the real data, for some 

instants, the solar and wind power are not available, care has 

been taken that the data is normalized and cleaned before using 

in the LFC simulations. 

IV. RESULTS AND DISCUSSIONS 

A. PID Controller Tuning for LFC as Global Optimization 

The PSO algorithm, as described in Section II.D, is used to 

minimize the stochastic objective function in (9) for tuning the 

two PID controllers simultaneously through a random search 

and optimization process. Simulations were run on a Windows 

PC Intel Xeon E5-2687W CPU, 3 GHz processor with 12 

parallel cores. The LFC model in Simulink is run with the 

( )ode8  Dormand Prince solver with a fixed step size of 0.1 sec. 

The default recommended values 
1 2 1, 2,, , , ,    k k

i i
 has been 

considered in the PSO algorithm as in [81], using the function 

particleswarm() from the Global Optimization Toolbox in 

MATLAB [82]. Objective function tolerance value of 10-6 has 

been used for convergence of the PSO algorithm. The search 

range for the three controller gains is   , , 1,1p i d i
K K K  −  

for both the areas and the filter constants  0,1iN  , using 80 

particles to navigate the 8D controller parameter space for both 

the areas. The search ranges were limited to ensure faster 

convergence of the optimizer. The optimum PID controller 

parameters are obtained considering a 0.01 pu step load change 

in area 1 and a 0.02 pu step load change in area 2. Tuning both 

areas with different magnitude of step input makes the LFC 

scheme more robust to other disturbances. The PSO algorithm 

has been run 10 times independently with the convergence 

characteristics shown in Figure 4, with the best solution found 

in each iteration from a stack of all datapoints visited in the 

random search process. It is observed that in some cases the 

PSO algorithm converges quickly, while in some others, it 

converges after a larger number of iterations which is due to the 

high complexity of the proposed LFC with NCS considerations. 

The best controller parameters for the LFC system is considered 

in the run, which yielded the lowest objective function value. 

Average time for convergence of the 10 PSO runs is 3500 

seconds  58.33 minutes, as shown in Figure 4. 

The objective function values traversed by the particles in the 

successive PSO iterations are stacked together to visualize the 

exploration characteristics. Moreover, in the search process, the 
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feasible or stabilizable region are also obtained in the controller 

parameter space [83]. The Jbest
obtained from 

,

x
best

swarm

k

 is plotted 

in Figure 5. It shows the pairwise approximate bivariate 

distribution of the objective function as a function of the PID 

controller parameters in both the areas. The sampled data points 

shown in Figure 5 correspond to a threshold of 0.01J best
.  

The colorbar represents the objective function values which 

converge towards the expected global minima of the stochastic 

objective function. The graph shows a nonconvex pattern 

revealing the need of meta-heuristic optimization and the 

trajectory of the particles moving towards the expected minima 

after randomly navigating the objective function space. We 

observe a thicker blue patch for area 1 as compared to area 2, 

which suggests that the particles moved towards the minima 

faster in area 1 as compared to area 2, which can be primarily 

accounted due to smaller magnitude of the load disturbance in 

area 1 as compared to in area 2. The exploration of the particles 

in the joint controller parameter space is shown in Figure 6. It 

reveals the stabilizable region in the controller parameter space. 

The cluster of particles around the optima is thicker for area 1 

as compared to the one in area 2, which indicates that the 

convergence for area 2 is slower than area 1.  

 
Figure 4: (left) 10 independent simulation runs of PSO and its convergence 
characteristics, (right) total time taken for PSO to converge. 

 
Figure 5: Convergence/bivariate distribution of the objective functions in terms 

of the PID controller parameters; (top panels) area 1, (bottom panels) area 2.  

B. Testing with Deterministic Change in Load Demand  

Deterministic step inputs of 0.01 pu and 0.02 pu are now 

applied in two areas, and the responses are analyzed. Since the 

parameters in the NCS like 
DoSa  and 

d  are sampled from the 

respective stochastic processes, the grid frequency fluctuations 

are analyzed considering 100 Monte Carlo system simulations 

and shown in Figure 7 for three different packet dropout levels. 

The controller tuning was done considering 99% packet drop 

probability. The maximum frequency fluctuations ( )
maxif

obtained in our case are lesser than as it was obtained in 

benchmarks results by Nanda et al. [84] and also for similar step 

load responses, albeit being tested on a much complex LFC 

model. The response is also better than the complex LFC model 

considering the time delay in [31] with a PID controller. Our 

results are also better in terms of maximum deviation ( )
maxif  

for the LFC problem with time delays reported in [27], [28], 

[30] where ( )
maxif  is 3 35 10 ,5 10− −  and 0.1 pu, respectively. 

Similarly, event-triggered problems with cyber-attack for LFC 

solved in [32], [33], [35] have ( )
maxif as 0.05 ,0.06 and 0.04 pu 

respectively. Combination of cyber-attack and time delay was 

studied in [39], which resulted ( )
maxif  as 

52 10−  pu, but the 

time delay ( )  was considered to be quite small. The cyber-

attack considered in [39] is limited by frequency and time 

duration, unlike this paper, where a much higher packet drop 

rate is considered. 

Moreover, previous analyses were conducted mostly on 

simpler LFC models without considering any nonlinearities in 

the energy storage components. The control performance is 

superior in our work as compared to these because they mostly 

used some variants of convex optimizers like linear matrix 

inequalities (LMIs), semi-definite programming on simpler 

linear LFC models. These methods can ensure guaranteed 

convergence to global optima, considering the objective 

function being convex. However, in the present work, the 

models contain significant nonlinearities along with stochastic 

network induced delays and packet drops which makes the 

problem nonconvex. These realistic effects make the 

optimization problem intractable using the traditional convex 

optimization algorithms. It is better solved by meta-heuristic 

global optimizers involving nonconvex multi-agent search like 

PSO, which gives an improved performance. 

 
Figure 6: Multivariate distribution or feasible/stabilizable region in the PID 

controller parameters  , , ,p i dK K K N . Colorbar represents ISE values. 

The oscillations in the grid frequency can be compared to the 

results reported in [29] where the controller was tuned using 

computational intelligence techniques for a complex LFC with 

similar load changes in both the areas. The stochastic 

simulations conducted for different cases of packet drops and 

random delays are shown in Figure 8 and Figure 9. It is evident 

in Figure 8 that since the controller was tuned for 99% packet 

drop, the control input moving towards the steady-state value 

even though only fewer packets are successfully transmitted. 

However, when the packet transmission rate is even lower, the 

delayed control signal starts oscillating. The control signals 
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transmitted at an average 0.5% rate makes it oscillatory. 

However, when the packet transmission rate is reduced to 0.1%, 

the delayed control signals get unbounded and makes the LFC 

system unstable. Hence, we observe that with sparse packet 

transmission, control inputs work on a lesser amount of discrete 

levels exposing the system with a higher switch in control input 

magnitude. The effect of the control signal at several discrete 

levels is seen in Figure 8 and Figure 9. Figure 8 shows the 

comparison of having and not having random delays in the NCS 

as the delay makes the control signal larger and more 

oscillatory. 

 
Figure 7: Step response of proposed LFC with 99%, 99.5% and 99.9% packet 

drops as the DoS attack on both the areas with 100 Monte Carlo simulations. 

 
(a) 

 
(b) 

Figure 8: (a) Simulations of the delay-free and randomly delayed control signal 

for two areas with 99%, 99.5% and 99.9% packet drop. (blue)-randomly 

delayed control signal (red)-control signal with random delay and dropout. (b) 
Simulations of the delayed control signal for two areas with 99%, 99.5% and 

99.9% packet drop. 

 

Since the system was tuned with 1% packet transmission, the 

system is stable with the fluctuations being relatively small. The 

tie-line power fluctuations also quickly settle to steady-state 

values after the initial oscillations. The effect of stochasticity 

imposed by the imperfect communication networks is also 

small in case of 1% packet transmission, as we see a small 

deviation band between the ensemble runs. However, when 

dropp is increased to 99.5%, the stochastic nature of the NCS 

becomes predominant, creating a more considerable fluctuation 

in the frequency, thus causing oscillations in tie-line power. The 

higher deviation between the simulated ensembles is also 

observed, which is mainly because the control packet is 

working at higher discrete levels, as seen in Figure 8. When 

dropp is increased to 99.9%, the time instants of transmission 

decreases, which furthermore reduces N . Under these NCS 

settings, the oscillatory behaviour of the LFC system increases, 

making the system unstable. 

 
Figure 9: Step response of the LFC with µd = 1.5 seconds, 7.5 second and 15 

seconds of random delay with 100 Monte Carlo runs. 

 
Figure 10: Step response of the system with and without energy storage 

elements with 100 Monte Carlo runs. 

 

A similar effect is also visible by increasing the value of 
d

in the random time delay (
d ) samples in the simulation. An 

increase in the magnitude of the grid frequency and tie-line 

power is observed with the increase in
d . Even though 

d  is 

increased 10 times with the nominal controller parameters, it 

increases the oscillations of the systems, but it does not make 

the system to be unstable, unlike reduction in packet 

transmission rates. It confirms the fact that in an LFC problem 

as an NCS, the DoS cyberattack in the form of a high rate of 

packet losses are much more detrimental than simpler random 

communication delays. Energy storage devices play an 

essential role in keeping the frequency fluctuations within 

specified limits and shown in Figure 10. The LFC system will 

undergo higher fluctuations without the presence of energy 

storage elements. The frequency and the ROCOF fluctuations 

obtained without energy storage in Figure 10 are unacceptable 
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and might cause the relays in the protective system to trip, hence 

affecting the grid operation. Thus, while integrating stochastic 

RES generation profiles, it is essential to tune the LFC system 

with energy storage elements. 

C. Testing with Stochastic RES and Load Demand Profiles 

The LFC system with the PID controller parameters obtained 

has now been tested against stochastic profiles which has been 

defined in Section III after 100 Monte Carlo simulation runs on 

a Windows PC with Intel Core i5-8500 CPU, 3 GHz processor 

with 6 parallel cores. However, due to the complexity of the 

system, it becomes computationally intensive to run the Monte 

Carlo runs. The computation breaks down if the memory is not 

cleared after subsequent runs. The LFC model in Simulink was 

numerically integrated with ( )ode8  Dormand-Prince solver 

with a fixed step size of 0.01 seconds. The simulation was run 

for 300 seconds, thus generating 30000 samples per run. The 

memory was subsequently cleared after running the simulation 

10 times, thus improving the computing performance of the 

algorithm. The input solar power generation and load demand 

profiles are generated based on 100 Monte Carlo simulations of 

the models as described before. The input files are generated in 

a batch of 10 Monte Carlo iterations and automatically saved, 

in order to reduce the memory overload of the PC while testing. 

The input profiles, as shown in Figure 11, is generated by 

reading each of these stored files. The variations in the wind 

power input profiles in the case of fBm and gBm for different 

areas are due to the consideration of the different range of wind 

speeds in the respective areas. The ROCOF fluctuations are 

calculated as per 0.1-sec interval as per the IEEE standards [42]. 

It is evident from Figure 12, Figure 13, Figure 14 and Figure 15 

that the frequency fluctuations and the ROCOF are within the 

prescribed limits for connecting the RES to the smart grid [42] 

for different RNGs as filtered Gaussian, fBm, gBm and real 

data respectively. 

 
Figure 11: Stochastic input, real RES and load demand profiles for the smart 

grid LFC with the 100 Monte Carlo runs. 

 

The standard for over-frequency (OF) and under-frequency 

(UF) trips are defined as 1.2 and 1.5 Hz (for 60 Hz grid) which 

turns out to be 0.02 and 0.025 pu respectively. It is evident from 

our results that the maximum fluctuations ( )
maxif are 0.0015 pu 

in the case of filtered Gaussian inputs, 0.004 pu in case of fBm 

and gBm input profile and 0.0035 for real data set which are 

much below the prescribed limit, hence showing the efficacy of 

the designed LFC system for future smart grids with NCS 

considerations. The results obtained is also better than the 

( )
maxif obtained in [11], [25], [21], [22], [23], [24], [26] where 

this value lies in the range of 0.02, 0.1, 0.01, 0.02, 0.2 and 0.025 

pu respectively where the LFC contains stochastic RES models. 

 
Figure 12: Smart grid performance indicators for Gaussian input profile: (top 

left) frequency deviation, (top center) rate of change of frequency, (top right) 
control input to the thermal power plant, (bottom left) energy storage output, 

(bottom center) tie-line power between two areas, (bottom right), proportion of 

renewable energy usage for the 100 Monte Carlo runs. 

 
Figure 13: Smart grid performance indicators for fBm input profile: (top left) 
frequency deviation, (top center) rate of change of frequency, (top right) control 

input to the thermal power plant, (bottom left) energy storage output, (bottom 

center) tie-line power between two areas, (bottom right), proportion of 
renewable energy usage for the 100 Monte Carlo runs.  

 
Figure 14: Smart grid performance indicators for gBm input profile (top left) 

frequency deviation, (top center) rate of change of frequency, (top right) control 

input to the thermal power plant, (bottom left) energy storage output, (bottom 
center) tie-line power between two areas,  (bottom right) proportion of 

renewable energy usage for the 100 Monte Carlo runs.  

 

The ROCOF for the IEEE standard is given as 0.5 Hz/sec (for 

60 Hz grid), considering the minimum specifications in [42] 

which are calculated as 0.008 pu. We see in Figure 12, Figure 

13, Figure 14 and Figure 15 that the maximum ROCOF are 
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within 0.002 pu in the case of Gaussian input, 0.0005 pu in the 

case of fBm input, 0.003 pu in the case of gBm input and real 

input profile, which is bounded within the prescribed standards, 

showing the strength of our LFC design as a NCS. 

The thermal power generation reduction against these 

profiles are analyzed along with the frequency deviation in both 

the areas. In order to monitor the utility of the proposed LFC 

scheme, we calculate a custom parameter as the ratio between 

the renewable power generation and the total generation using 

both the renewable and thermal units as:  

( ) ( )ren ren th renPP 100 P P P=   + ,         (25) 

where,
thP represents a change in thermal power plant output 

meeting the stochastic load demand and
renP represents the 

power generated by RES. We have now analyzed the results 

based on the values of 
renPP : 

Case 1: 
renPP 0  

  ( )th ren thP P 0  P 0  +      since
renP 0 , 

Case 2: 
ren0 < PP  < 1  

( )ren th ren th0 < P P P   P 0   +     since
renP 0 , 

Case 3: 
renPP  > 1 

 ( )ren th ren thP P P   P 0   +     since
renP 0 .        (26) 

 
Figure 15: Smart grid performance indicators for real input profile (top left) 
frequency deviation, (top centre) rate of change of frequency, (top right) control 

input to the thermal power plant, (bottom left) energy storage output, (bottom 

centre) tie-line power between two areas (bottom right) proportion of renewable 
energy usage for the 100 Monte Carlo runs. 

 

We observe from Figure 14, the value of the 
renPP 1 for 

some time instants, hence thP 0
i

  , for real power profile.  It 

suggests that there is a reduction in the thermal power plant 

output. Similar trends are also observed for system response for 

fBm and gBm inputs in Figure 13 and Figure 14, especially in 

the latter case where the maximum value of 
renPP goes beyond 

5  suggesting that there is a considerable reduction in thermal 

power plant output thP
i

 . The control inputs to the actuators 

are also calculated as (3) which is constrained to be positive 

which ensure that the thermal power plants are always operated 

to meet the base-load demand but otherwise will maintain a 

minimum constant firing rate or increase the firing when the 

RES and storage elements together are incapable of meeting the 

increase in load demand. 

We can analyze the operation from the energy balance 

model. Since RES and thermal power plant produce power, we 

can write the expression of total power generated ( )Gen
P

i
 for 

each area i as: 

Power Generated ( ) ( )Gen ren thP P P
i i

= +  .        (27) 

Considering energy storage devices as power-consuming 

devices, we can write the total power consumed as: 

Power Consumer ( ) ( )ConP P PST Li i
= +  .        (28) 

Since the frequency fluctuations due to renewable energy 

sources are within limits, we can consider the energy balance 

condition is met. Hence from (27) and (28) we can write: 

( ) ( )

   

ren th

th ren

P P P P

P P P P .

ST Li i

ST Li i

+   + 

   +  −
           (29) 

Since for fBm, gBm and real input profiles 
renPP 1 , it is 

apparent that  thP 0
i

  . Thus we can infer from (29): 

     ren renP P P 0 P P PST L ST Li i i
+  −    −  .     (30) 

This means that the energy storage charging rate is not high 

enough to absorb the excess power generated by the renewable 

energy source. Hence thermal power plant output has to be 

reduced at some time instants. However, the value of 
renPP is 

between ( )0,1 , as shown in Figure 12 when the RES and load 

are modelled by a Gaussian profile, which suggests that thermal 

power plant output is   thP 0
i

  , which can be analyzed using 

the relation in (29) as: 

     ren renP P P 0 P P PST L ST Li i i
+  −    −     (31) 

As per the relation in (31), the discharging dynamics of 

energy storage elements are not fast enough to meet the load. 

Hence thermal power plant output is positive in the case of 

Gaussian input profiles. We also observe a common trend in 

these simulations that the fluctuations in energy storage outputs 

 PST i
is similar to the frequency fluctuation of the grid. Similar 

patterns are observed in the control signals to the thermal power 

plant, as shown in all the 4 stochastic input profile. The tie-line 

power exchange of nonstationary profiles like fBm and gBm 

are similar to the real input profile as compared to the Gaussian 

input profile. The similarity of the profiles can be ascertained 

more strongly in the next section by considering the norms of 

the frequency fluctuations and tie-line power and multivariate 

statistical analyses of the grid parameters. 

D. Hypothesis Testing Using the Datasets of Frequencies of 

Each Area and the Tie-Line Power Fluctuations 

The norms of the simulated signals 1 2, , tief f P   from the 

LFC system are calculated next, considering the samples after 

10 sec which discards the initial transient behavior of the solar 

and wind power generation systems due to filtered RNGs. The

p -norm of a real valued signal  , ,= 1 nx x x is given as: 

1

1

: .
=

 
=  

 

n

i
i

x x
p

p
p                (32) 



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 12 

For p=1, the 
1

x  represents the projection of the signal x on 

the coordinate axis. For p=2, 
2

x represents the Euclidean 

distance of the signal x  from the origin. In the case of f , L1-

norm and L2-norm represent the absolute deviation and squared 

deviation from the ideal value. 

The L∞-norm of the signals are defined as: 

( ): max , , .


= 1 nx x x                 (33) 

It represents the maximum value of a signal along its length. In 

the case of 
i

f , it is defined as the maximum deviation from 

the ideal value. The frequency fluctuations are now visualized 

by a scatter plot between their L1, L2, L∞-norms of the signals, 

obtained from the Monte Carlo runs, as shown in Figure 16. 

                                                                
Figure 16: Scatter-plots of the  L1, L2 and L∞ norms of the frequency fluctuations 

with different RNGs: (left top) Gaussian inputs, (left-right) fBm inputs, (left 
bottom) gBm inputs, (right bottom) real inputs. 

 
Figure 17:  Box-plots of the L1, L2 and L∞ norms of the frequency fluctuations 
in the two areas and tie-line power exchange for different input profiles. The p-

values are also reported for each case using the Kruskal-Wallis test. 

 

We can observe from Figure 16 that the frequency fluctuation 

is highest and lowest in the case of real and Gaussian input 

profiles, respectively, which is evident from the L1 and  L∞ norm 

axes. Lower fluctuation in the L1 and L∞ norm plots in the case 

of Gaussian input profile can be attributed due to the value of 

renPP between 0 and 1 thus making the 
thP 0   whose 

dynamics are slower than the RES, hence damping out the 

fluctuations. Higher L1 and L∞ norm in case of real input profiles 

can be attributed due to solar/wind power being zero at 

particular time instants since the power plant outputs have to 

deal with the stochastic nature of the load profiles. Range of 

variation of different norms are similar in case of fBm and gBm 

input profiles, but few small island formations are seen in the 

signal norms for the former case, which is because 
i

f has 

high-frequency components in case of fBm profile as compared 

to gBm. These differences in the pattern can be attributed due 

to higher complexity captured by the Hurst exponent H in the 

input profile, causing wilder fluctuations. 

The hypothesis test is conducted on the L1, L2, L∞-norms of 

the frequency fluctuation signals  
i

f  and tie-line power 

fluctuation 
TieP , as obtained from the Monte Carlo runs for 

different stochastic generation and demand profiles as shown in 

Figure 16. The similarity in the system operation for different 

stochastic profiles can be analyzed by comparing the respective 

p-values and 2 -values obtained from the nonparametric 

Kruskal-Wallis hypothesis testing, as shown in the boxplots 

Figure 17. In order to decide whether to perform a parametric 

or nonparametric test on the processed data (and derived signal 

norms), it is necessary to check their univariate normality. The 

univariate normality checks are conducted using the Anderson-

Darling,  Kolmogorov-Smirnov [85] and Lilliefors test [86] 

where the significance levels of all tests are kept at 0.01. The 

tests are conducted using the functions adtest(), kstest() and 

lillietest() from the Statistics and Machine Learning 

Toolbox in MATLAB. 

As given in the supplementary material, some of the signal 

norms usually are distributed while in some other cases, they 

are not, but the joint normality of all the input profiles 

(Gaussian, fBm, gBm, real data) are not encountered anywhere. 

Hence, the parametric version – analysis of variance (ANOVA) 

test cannot be performed on these samples. Instead, the 

nonparametric version - Kruskal Wallis test [87] needs to be 

used to compare the medians of these four different input 

profiles. This test has been performed using the null hypothesis 

that all the 4 cases come from the same distribution, against the 

alternative hypothesis that they do not. The p-values and 2  

values are obtained using the function kruskalwallis() from 

the Statistics and Machine Learning Toolbox in MATLAB, 

which compares the medians of the samples. The 2 -values 

defined for the tests are defined as the critical values, and the p-

values are defined as the probability that the test statistic is more 

than the critical value. The p-values are found to be zero,  

suggests that the norms of the input profiles do not follow a 

similar distribution. The 2 -values are smaller for L∞ norm as 

compared to 2 -values for L1 and L2 norms which suggests that 

maximum fluctuation is greater than the sum of absolute and 

square of the fluctuations of 1 2, , tief f P   around zero due to 

the stochastic nature of the input fluctuation. It makes the 

frequency and tie-line powers hover around zero, but the PID 

controller for the thermal power plant will keep them maximum 

fluctuation within limits.   

The L∞-norms in case of frequency fluctuations are smallest 

in the case of Gaussian input profile, as compared to other 

profiles, which is primarily due to higher active operation of the 

thermal power plant
thP 0  . The frequency fluctuations for 

fBm and gBm input signals are similar to the fluctuations in the 

case of real input profiles. These nonstationary profiles capture 

the behaviour of real input profiles more accurately and show a 

higher utilization of the RES since 
thP 0  . The fluctuation of 

gBm input profiles resembles more to the real input data. 
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Similar conclusions are also valid for the tie-line power 
TieP

between two areas except in the case of fBm where the variance 

is smaller than its other nonstationary counterparts. The small 

variance in the tie-line power within the ensembles can also be 

considered for the reason behind the small island formation in 

Figure 16. The norms for the tie-line power is similar for the 

gBm input profile as compared to the real input profile.  

 
Figure 18: Multivariate KDE plots of the grid parameters with the frequency 

fluctuations in each area. The colors represent different RNGs: red = fBm, green 

= Gaussian, blue = gBm, magenta = real data. 

 
Figure 19: Multivariate KDE plots of the energy storage operation, tie-line 

power with the control input to the governor in two areas. The colors represent 

different RNGs: red = fBm, green = Gaussian, blue = gBm, magenta = real data. 

 
Figure 20: Multivariate KDE plot of (a) Tie-line power and storage operation 

in area 1 (top-left) (b) Tie-line power and storage operation in area 2 (top-right) 

(c) Storage operation in both the areas (bottom-left) (d) Control input for both 
the areas (bottom-right). The colors represent different RNGs: red = fBm, green 

= Gaussian, blue = gBm, magenta = real data. 

E. Multivariate Analysis of Grid Performance Measures 

Multivariate kernel density estimate (KDE) plots are shown 

in Figure 18, Figure 19 and Figure 20, using the mean of the 

ensembles generated from the Monte Carlo simulations. There 

is a high correlation between the energy storage operation in 

both the areas and frequency fluctuations as shown in Figure 

18, which suggests that they play a crucial role in damping out 

the frequency fluctuations in the grid. The mean profile 

suggests that the energy storage devices work in discharge 

mode in case of real and normal input, and charge mode in case 

of gBm input, and both the modes in the case of fBm input. The 

higher control input to the governor is required to damp out the 

frequency fluctuations in area 1 in case of fBm input profile 

while control input is highest in area 2 for gBm input profile. 

We also observe a correlation between the control inputs in both 

the areas for normal and real input profile. High correlation is 

also observed between the storage operation in the two areas. 

The grid parameters show unusual behaviour when the input 

profile is fBm with higher fluctuation in the mean curve, thus 

creating an unusual spread in the multivariate plots and 

signifying low correlation amongst themselves which also 

explains the formation of the islands in the norm plots in Figure 

16. 

V.  CONCLUSIONS 

We demonstrate here the effect of packet dropouts and delays 

to the controller output posed by the communication network to 

the LFC loop. The LFC loop is designed in such a way to 

promote the usage of RES to mitigate the stochastic load 

demand. The system response is checked using the controller, 

which is tuned using the PSO algorithm. The LFC system 

response is checked with step-input and varying levels of 

communication transmission dropouts and delay. The tuned 

LFC system with delay and dropout is tested with stochastic 

renewable generation inputs and load demand profiles on the 

grid performance parameters. The system analysis is conducted 

using 100 Monte Carlo simulations from various stochastic 

input profiles, and the results are benchmarked with real input 

dataset. The data analysis is conducted to check the usage of 

RES in the control loop and its effect on the various frequency 

and tie-line power fluctuation measures. 

The main findings from our simulation studies are: 

• PSO serves as an efficient optimizer for maintaining 

control performance of the LFC loops with interrupted 

packet transmission as DoS cyberattacks and random 

delays. 

• The frequency fluctuations ( )f and the ROCOF are 

within the prescribed limits, as per the IEEE standard  [42] 

for all the four stochastic input profiles – Gaussian, fBm, 

gBm, and real data. 

• The renewable energy usage in the case of nonstationary 

profiles like fBm and gBm is similar to the real input 

profiles, where the LFC tends to decrease the thermal 

power plant output  thP 0
i

  . However, the opposite 

trend is observed in the case of Gaussian input where

 thP 0
i

  . Hence frequency and tie-line power 

fluctuations are smaller in the case of Gaussian input. 

Hence, the variability in the norms obtained from the real 

input profile is highest and in the case of Gaussian input 

profiles, it is the lowest.  

• The response of the LFC in the smart grid is more similar 

to real data in case of nonstationary profiles than the 

stationary profiles. 

• High correlation is obtained for the frequency response in 

both areas. The correlation is also visible in the frequency 

fluctuations and energy storage operation in LFC, thus 
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signifying that the latter plays an essential role in damping 

out the frequency fluctuations.  

Future work can be directed towards testing the LFC system 

with other complex controller structures and also studying the 

nature of frequency and tie-line power fluctuations to gain 

deeper insights about the system operations. The LFC with RES 

and battery storage can also be validated on larger grid models. 

The packet drop is considered to be a high-frequency signal. 

Hence its location in the feedback path causes it to produce 

filtered noise from the controller. Hence the results here cannot 

be generalized to interrupted data transmission at different 

control paths. This issue will be addressed in future papers.   

APPENDIX 

Parameters for Area 1: Tg=0.08 sec, Tt=0.4sec, R=3, D=0.015, 

2H=0.1667, B=0.3483, T12=0.2, 

Parameters for Area 2: Tg=0.06 sec, Tt=0.44sec, R=2.73, 

D=0.016, 2H=0.2017, B=0.3827, T21=0.2, 

Storage Parameters: Tuc=0.1 sec, Tes=1 sec, Tfw=0.1 sec, 

Tbat=0.1 sec, Tdg=0.3 sec, Tfc=4 sec, Kfc=0.01, 

Solar Parameters: TIN=0.04 sec, TI/C=0.004 sec, 

Wind Parameters: KWTG=1, TWTG=1.5 sec. 

Univariate normality tests for the synthetic and real input 

profiles are provided in the supplementary materials using three 

different hypothesis tests. High resolution images are also 

provided in the supplementary material. 
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Table 1: Univariate Normality Tests for the Norms of the Grid Parameters for Different Input Profiles using 3 Different Distribution Tests 

Signal 

norms 

Grid 

parameters 

Input 

Profile 

Anderson Darling Test Kolmogorov Smirnov Test Lilliefors Test 

h p 

Test 

Statistic 

Critical 

Value h p 

Test 

Statistic 

Critical 

Value h p 

Test 

Statistic 

Critical 

Value 

L1 Norm 

Δf1 

Gaussian 1 0.0005 37.817 1.033 1 0 0.99998 0.051 1 0.001 0.1732 0.033283294 

FBM 0 0.01217 0.9986 1.033 1 0 0.99933 0.051 0 0.0474 0.0288 0.033283294 

gBm 1 0.00255 1.2748 1.033 1 0 0.99992 0.051 0 0.0583 0.0281 0.033283294 

Real 1 0.0005 5.6454 1.033 1 0 0.99954 0.051 1 0.001 0.0484 0.033283294 

Δf2 

Gaussian 1 0.0005 23.509 1.033 1 0 0.99998 0.051 1 0.001 0.1379 0.033283294 

FBM 1 0.0005 2.05 1.033 1 0 0.9991 0.051 1 0.004 0.0357 0.033283294 

gBm 1 0.00212 1.3071 1.033 1 0 0.99993 0.051 0 0.0431 0.029 0.033283294 

Real 1 0.0005 5.5028 1.033 1 0 0.9998 0.051 1 0.001 0.0479 0.033283294 

ΔPtie 

Gaussian 1 0.0005 18.446 1.033 1 0 1 0.051 1 0.001 0.1218 0.033283294 

FBM 1 0.00068 1.5081 1.033 1 0 1 0.051 0 0.0308 0.0301 0.033283294 

gBm 1 0.00298 1.2468 1.033 1 0 1 0.051 1 0.0082 0.0338 0.033283294 

Real 1 0.0005 3.595 1.033 1 0 1 0.051 1 0.001 0.0452 0.033283294 

L2 Norm 

Δf1 

Gaussian 1 0.0005 24.328 1.033 1 8.13E-246 0.52994 0.051 1 0.001 0.1422 0.033283294 

FBM 1 0.00126 1.3996 1.033 1 1.15E-239 0.52326 0.051 1 0.0069 0.0343 0.033283294 

gBm 0 0.14136 0.5698 1.033 1 2.25E-244 0.52838 0.051 0 0.2877 0.0221 0.033283294 

Real 1 0.0005 3.0168 1.033 1 4.04E-241 0.52485 0.051 1 0.0067 0.0343 0.033283294 

Δf2 

Gaussian 1 0.0005 21.036 1.033 1 1.98E-246 0.5306 0.051 1 0.001 0.1316 0.033283294 

FBM 1 0.0005 2.4519 1.033 1 8.02E-239 0.52234 0.051 1 0.0074 0.0341 0.033283294 

gBm 0 0.08879 0.6511 1.033 1 5.60E-244 0.52795 0.051 0 0.2761 0.0223 0.033283294 

Real 1 0.0005 2.7622 1.033 1 1.40E-241 0.52535 0.051 0 0.0418 0.0292 0.033283294 

ΔPtie 

Gaussian 1 0.0005 17.833 1.033 1 0 0.6246 0.051 1 0.001 0.1405 0.033283294 

FBM 0 0.05001 0.7513 1.033 1 2.95E-255 0.54004 0.051 0 0.2153 0.0234 0.033283294 

gBm 0 0.02173 0.8972 1.033 1 7.91E-284 0.56951 0.051 0 0.0146 0.0322 0.033283294 

Real 1 0.0005 2.8499 1.033 1 3.15E-290 0.5759 0.051 1 0.001 0.0463 0.033283294 

L∞ Norm 

Δf1 

Gaussian 1 0.0005 19.251 1.033 1 8.64E-220 0.50105 0.051 1 0.001 0.1195 0.033283294 

FBM 1 0.0005 2.4057 1.033 1 9.44E-220 0.50101 0.051 1 0.0046 0.0353 0.033283294 

gBm 1 0.0005 11.461 1.033 1 1.25E-219 0.50087 0.051 1 0.001 0.0749 0.033283294 

Real 1 0.0005 2.4351 1.033 1 1.42E-219 0.50081 0.051 1 0.0016 0.0379 0.033283294 

Δf2 

Gaussian 1 0.0005 45.097 1.033 1 8.86E-220 0.50104 0.051 1 0.001 0.1869 0.033283294 

FBM 1 0.0005 3.0605 1.033 1 9.76E-220 0.50099 0.051 1 0.001 0.0483 0.033283294 

gBm 1 0.0005 11.166 1.033 1 1.12E-219 0.50092 0.051 1 0.001 0.0754 0.033283294 

Real 1 0.0005 2.2588 1.033 1 1.32E-219 0.50084 0.051 1 0.0033 0.0362 0.033283294 

ΔPtie 

Gaussian 1 0.0005 85.766 1.033 1 2.86E-222 0.50388 0.051 1 0.001 0.2805 0.033283294 

FBM 1 0.0005 4.1562 1.033 1 3.08E-220 0.50156 0.051 1 0.001 0.0553 0.033283294 

gBm 1 0.0005 2.414 1.033 1 5.16E-221 0.50245 0.051 1 0.001 0.0411 0.033283294 

Real 1 0.0005 4.6271 1.033 1 8.92E-221 0.50218 0.051 1 0.001 0.0616 0.033283294 
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High Resolution Images 

 

 

 
Figure 1: Schematic of the two-area LFC scheme with RES and energy storage with filtered PID controllers. The dead zones between the controller and 

governor increase the RES utilization in the smart grid.     

 

 
Figure 2: First order storage device models with nonlinearities like dead bands, output saturations and generation rate constraints. 
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Figure 3: RES generation and load model used in the LFC scheme. 

 

 
Figure 4: (left) 10 independent simulation runs of PSO and its convergence characteristics, (right) total time taken for PSO to converge. 
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Figure 5: Convergence/bivariate distribution of the objective functions in terms of the PID controller parameters; (top panels) area 1, (bottom panels) area 2.  

 

 

 
Figure 6: Multivariate distribution or feasible/stabilizable region in the PID controller parameters  , , ,p i dK K K N . Colorbar represents ISE values. 
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Figure 7: Step response of proposed LFC with 99%, 99.5% and 99.9% packet drops as the DoS attack on both the areas with 100 Monte Carlo simulations. 
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(b) 

Figure 8: (a) Simulations of the delay-free and randomly delayed control signal for two areas with 99%, 99.5% and 99.9% packet drop. (blue)-randomly delayed 

control signal (red)-control signal with random delay and dropout. (b) Simulations of the delayed control signal for two areas with 99%, 99.5% and 99.9% 

packet drop. 

 

 

 

 
Figure 9: Step response of the LFC with µd = 1.5 seconds, 7.5 second and 15 seconds of random delay with 100 Monte Carlo runs. 
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Figure 10: Step response of the system with and without energy storage elements with 100 Monte Carlo runs. 

 

 

 

 
Figure 11: Stochastic input, real RES and load demand profiles for the smart grid LFC with the 100 Monte Carlo runs. 
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Figure 12: Smart grid performance indicators for Gaussian input profile: (top left) frequency deviation, (top center) rate of change of frequency, (top right) 

control input to the thermal power plant, (bottom left) energy storage output, (bottom center) tie-line power between two areas, (bottom right), proportion of 
renewable energy usage for the 100 Monte Carlo runs. 

 

 
Figure 13: Smart grid performance indicators for fBm input profile: (top left) frequency deviation, (top center) rate of change of frequency, (top right) control 

input to the thermal power plant, (bottom left) energy storage output, (bottom center) tie-line power between two areas, (bottom right), proportion of renewable 

energy usage for the 100 Monte Carlo runs.  
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Figure 14: Smart grid performance indicators for gBm input profile (top left) frequency deviation, (top center) rate of change of frequency, (top right) control 
input to the thermal power plant, (bottom left) energy storage output, (bottom center) tie-line power between two areas,  (bottom right) proportion of renewable 

energy usage for the 100 Monte Carlo runs. 

 

 
Figure 15: Smart grid performance indicators for real input profile (top left) frequency deviation, (top centre) rate of change of frequency, (top right) control 
input to the thermal power plant, (bottom left) energy storage output, (bottom centre) tie-line power between two areas (bottom right) proportion of renewable 

energy usage for the 100 Monte Carlo runs. 
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Figure 16: Scatter-plots of the  L1, L2 and L∞ norms of the frequency fluctuations with different RNGs: (left top) Gaussian inputs, (left-right) fBm inputs, (left 
bottom) gBm inputs, (right bottom) real inputs. 

 

 

 
Figure 17:  Box-plots of the L1, L2 and L∞ norms of the frequency fluctuations in the two areas and tie-line power exchange for different input profiles. The p-
values are also reported for each case using the Kruskal-Wallis test. 
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Figure 18: Multivariate KDE plots of the grid parameters with the frequency fluctuations in each area. The colors represent different RNGs: red = fBm, green = 

Gaussian, blue = gBm, magenta = real data. 

 

 

 
Figure 19: Multivariate KDE plots of the energy storage operation, tie-line power with the control input to the governor in two areas. The colors represent 

different RNGs: red = fBm, green = Gaussian, blue = gBm, magenta = real data. 
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Figure 20: Multivariate KDE plot of (a) Tie-line power and storage operation in area 1 (top-left) (b) Tie-line power and storage operation in area 2 (top-right) (c) 

Storage operation in both the areas (bottom-left) (d) Control input for both the areas (bottom-right). The colors represent different RNGs: red = fBm, green = 
Gaussian, blue = gBm, magenta = real data. 


