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Using long short-term memory networks for river flow

prediction

Wei Xu, Yanan Jiang, Xiaoli Zhang, Yi Li, Run Zhang and Guangtao Fu
ABSTRACT
Deep learning has made significant advances in methodologies and practical applications in recent

years. However, there is a lack of understanding on how the long short-term memory (LSTM)

networks perform in river flow prediction. This paper assesses the performance of LSTM networks to

understand the impact of network structures and parameters on river flow predictions. Two river

basins with different characteristics, i.e., Hun river and Upper Yangtze river basins, are used as case

studies for the 10-day average flow predictions and the daily flow predictions, respectively. The use

of the fully connected layer with the activation function before the LSTM cell layer can substantially

reduce learning efficiency. On the contrary, non-linear transformation following the LSTM cells is

required to improve learning efficiency due to the different magnitudes of precipitation and flow.

The batch size and the number of LSTM cells are sensitive parameters and should be carefully tuned

to achieve a balance between learning efficiency and stability. Compared with several hydrological

models, the LSTM network achieves good performance in terms of three evaluation criteria, i.e.,

coefficient of determination, Nash–Sutcliffe Efficiency and relative error, which demonstrates its

powerful capacity in learning non-linear and complex processes in hydrological modelling.

Key words | hydrological modelling, LSTM, machine learning, river flow prediction
HIGHLIGHTS

• Long short-term memory (LSTM) networks are assessed for river flow prediction.

• The impacts of network structures and parameters on learning efficiency are analysed.

• The batch size and the number of LSTM cells are sensitive parameters for learning.

• LSTM has good predictive accuracy compared to hydrological and data-driven models tested.
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INTRODUCTION
The rainfall–runoff process of a river basin is normally

characterized by a high degree of nonlinearity. The process

is one of the most important components in the hydrological

cycle and its accuratemodelling is crucial for water resources

and floodmanagement (Clarke ; Nourani ). Rainfall–
runoff models are usually classified into three main classes:

distributed, conceptual and black box models (Clarke ).

Distributed and conceptual models are based on various

hydrological processes; however, they are limited by our

understanding and ability to accurately represent these pro-

cesses and computational resources. By contrast, black box

models are normally data-driven but can provide an accurate

prediction in many situations (Tanty & Desmukh ;

Nourani ). Artificial neural network (ANN) models are
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one of the typical black box models. Since Daniell ()

applied ANNs to streamflow modelling, ANNs have been

widely applied in hydrological modelling because of its

strong non-linear fitting ability (ASCE Task Committee

a, b). Currently, various ANN models have been

employed to study the rainfall–runoff process, such as fuzzy

neural networks (Nayak et al. ), wavelet neural networks

(Wang&Ding ; Alexander & Thampi ) and Bayesian

neural networks (Bateni et al. ; Kayabası et al. ). Tra-

ditionally, the ANN learns the relationships between input

and output variables from historical data provided and does

not have the ability to automatically select the input variables

or factors. ANNs with multiple hidden layers have excellent

learning ability (Hinton & Salakhutdinov ), thus, deep

neural networks are increasingly used in hydrology to simulate

the rainfall–runoff relationships building on big data which

have become available in recent years (Hu et al. , ;

Kratzert et al. ; Le et al. ).

In recent years, deep learning has made significant

advances in the field of machine learning and data science

(Negnevitsky & Pavlovsky ). Many deep learning algor-

ithms have shown great potential in solving real-world

problems (Khan & Yairi ), for example, recurrent

neural networks (RNN) (Shin et al. ) and convolutional

neural networks (Zhou et al. ). In particular, the RNN

network has a strong learning ability for time series data

(Bengio et al. ; Hochreiter & Schmidhuber ; Saon

& Picheny ) as it includes loops to allow the information

from previous time steps to be passed to the next time step.

However, the gradient disappearance or explosion problem

makes the RNN gradually lose the ability to learn long-dis-

tance information (Bengio et al. ). To overcome the

deficiency, the long short-term memory (LSTM) network,

a special type of RNN, was developed for learning with

long sequence data (Hochreiter & Schmidhuber ), as

it is capable of learning long-term dependencies in the

data series. Based on the concept of LSTM networks,

many similar networks have been constructed to improve

the learning ability for different tasks (Sutskever et al. ;

Bellegarda & Monz ). At present, the LSTM has been

successfully used in speech recognition and text translation

(Bellegarda & Monz ; Rocha et al. ).

In the last few years, LSTM networks have been tested

and studied in watershed hydrological modelling, and their
://iwaponline.com/hr/article-pdf/51/6/1358/791074/nh0511358.pdf
potential has been demonstrated in many applications,

such as river flow and flood predictions (Shen ). Kratzert

et al. () applied the LSTM network to simulate the daily

flows of 241 basins and found that it greatly outperforms

hydrological models that are calibrated both at the regional

level and at the individual basin level. Lee et al. () devel-

oped an LSTM for daily runoff simulations based on the

water level data of 10 stations at the upper Mekong River

and showed that the LSTM performs better than the Soil

and Water Assessment Tool model (SWAT). Zhang et al.

() compared four different neural networks, namely mul-

tilayer perceptron, wavelet neural network (WNN), LSTM

and gated recurrent unit (GRU), in predicting the daily

discharges of combined sewer overflow structures, and

showed that LSTM and GRU are highly capable of multi-

step-ahead time series prediction. Sahoo et al. () applied

LSTM to forecast daily flows during low-flow periods in the

Mahanadi River basin, India. Kratzert et al. () proposed

an Entity-Aware-LSTM (EA-LSTM), which performed sub-

stantially better at the regional level with 531 basins than

several hydrological models calibrated individually for each

basin. Hu et al. () tested an LSTM model on 98 flood

events and indicated that the LSTM model outperformed

conceptual and physical models. Yan et al. () constructed

an LSTM with historical flow and weather data and weather

forecasts and indicated that the LSTM outperforms support

vector machines in flood predictions, especially for flood

peak flow forecasts. Karimi et al. () compared three

data-driven methods, i.e., ANN, LSTM and Least Absolute

Shrinkage and Selection Operator (LASSO) for flood flow

predictions in sewer systems, and concluded that all three

models provide acceptable prediction performance, but

LSTM outperforms ANN due to the inherent memory inte-

grated with a feedback structure. Muhammad et al. ()

proposed a hybrid model by combining LSTM and GRU for

river flow simulations, which was used for early flood warn-

ing. Hu et al. () integrated an LSTM and reduced order

model to represent the spatial–temporal distribution of

floods. Le et al. () used the LSTM in modelling 1-, 2-

and 3-day flood events in Vietnam’s Da River basin. In sum-

mary, previous research has shown the ability of LSTM in

river flowpredictions.However, there is a lack of understand-

ing on how LSTM structures and parameters are linked to

predictive accuracy in hydrological modelling.
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The main aim of this paper is to assess the performances

of LSTM networks in river flow predictions in terms of LSTM

structures and parameters. In this study, the LSTM networks

with different network structures, i.e., fully connected layers

and LSTM cells are trained and their performances com-

pared using two case studies of different characteristics –

the Hun river basin and the upper river basin of Yangtze

River, China. The trained LSTM networks are used to predict

the river flows in the two case study river basins. Finally, the

LSTM networks are compared with four models, i.e., the

SWAT, Xinanjiang model (XAJ), multiple linear regression

model (MLR) and back-propagation neural networks (BP).
METHODOLOGY

In this section, the LSTM network for flow simulation and

predication is first presented and the key components

including the network structure, LSTM cells and loss func-

tion are explained. Then the data pre-processing and

evaluation criteria used in this study are introduced. Finally,

different simulation scenarios designed to study the perform-

ance of the LSTM network are explained.

LSTM network

Network structure

In the LSTM network, the key components are fully con-

nected layers and LSTM cells. As shown in Figure 1, the

LSTM network contains four types of layers: (a) the input

layer which receives the input sequence data; (b) the fully

connected layer a which transfers the dimensions of the

input data into the dimensions of LSTM cells and
Figure 1 | The structure of the LSTM network.
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establishes a bridge between the input layer and the LSTM

cell layer; (c) the LSTM cell layer of n cells (i.e., simple net-

works) which provides different memory abilities; (d) output

layers including fully connected layers b1, b2 and the output

flow vector, which transfer the outputs of LSTM cells to

flows.

In the LSTM network training, a batch of training

samples is used for each learning process (Kratzert et al.

). The sequence precipitation data of the meteorological

stations in the watershed are formulated as an input matrix

[�xt, �xtþ1, � � � �xtþT ] ¼
x1t x1tþ1 � � � x1tþT

x2t x2tþ1 � � � x2tþT
� � � � � � � � � � � �
xmt xmtþ1 � � � xmtþT

2
664

3
775 (1)

where m is the number of meteorological stations; T is the

batch size of precipitation data; t is the start time step; �xt
is the precipitation vector at time step t and represented as

�xt ¼ [x1t , x
2
t , � � � xmt ].

The observed flow data at hydrological stations are used

as targets for training, i.e., to compare with the simulated

flows from the LSTM network

[�qt, �qtþ1, � � � �qtþT ] ¼
q1t q1tþ1 � � � q1tþT

q2t q2tþ1 � � � q2tþT
� � � � � � � � � � � �
qgt qgtþ1 � � � qgtþT

2
664

3
775 (2)

where g is the number of hydrological stations; qgt is the

observed flow of the gth hydrological station at time step t;
�qt is the flow vector at time step t.

During the training processes of the LSTM network at a

time step, as shown in Figure 1, the fully connected layer a



Figure 2 | The structure of the LSTM cell.
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transfers the precipitation vector (e.g., �xt) withm dimensions

into n dimensions (i.e., n is the number of LSTM cells) as

yout[n] ¼ �x[m] ×W [m, n]þ b[n] (3)

where yout is the output vector of layer a; W and b are the

weight matrix and bias, respectively; n is the total number

of the LSTM cells.

After recurrent learning of the LSTM cells, an output of

n dimensions is generated and sent to the fully connected

layer b1. The fully connected layers b1 and b2 are neural

layers with activation functions and used to transfer the

LSTM cell output to flow as:

yfout[k] ¼ fReLU(�xin[h] ×W [h, k]þ b[k]) (4)

where �xin is the input vector of fully connected layer with h

dimensions; in the fully connected layers b1, the input

vector should be the output of the LSTM cells with n dimen-

sions (i.e., h¼ n). yfout is the output vector of layer b1, which

is transferred by activation function fReLU. k is the dimension

of the output vector. The output flow vector is the output

of the final layer, and k should be the number of hydro-

logical stations (i.e., k¼ g). fReLU represents the ReLU

activation function which was chosen according to prelimi-

nary analysis and suggestions from the literature (Khan et al.

).

LSTM cell structure

Figure 2 shows the structure of the LSTM cell. There are two

key states in LSTM cell calculation, i.e., cell state and hidden

state. In Figure 2, Ct�1 and Ht�1 represent the cell state and

hidden state at time step t� 1, respectively. The cell state is

the main chain of the data stream, which allows the data to

flow forward substantially unchanged. However, the data in

the hidden state can be added or removed from the cell

state (Le et al. ), which is carefully controlled by ‘forget

gate’, ‘input gate’ and ‘output gate’, represented by the

dashed boxes in Figure 2. The gates are neural network

layers with a series of matrix operations, which contain differ-

ent individual weights and biases. The LSTM cell uses gates

to control the memory process to avoid the long-term depen-

dency problem (Hochreiter & Schmidhuber ). The cell
://iwaponline.com/hr/article-pdf/51/6/1358/791074/nh0511358.pdf
learns from time series data using five simple network

layers, including three sigmoid layers and two tanh network

layers (Le et al. ).

The ‘forget gate’ determines what information in the

hidden state is forgotten, shown as the ft process in Figure 2.

By the forget gate, the meteorological precipitation infor-

mation of the past time steps can be recalled at the

current time step as:

ft ¼ σ(Wf � [Ht�1, xt]þ bf) (5)

where σ represents the sigmoid network layer where the sig-

moid function is used as the activation function; xt is the

input data; Wf and bf are weight matrix and bias in the sig-

moid network layer, respectively; ft is the forget vector

with values in the range [0, 1], where 1 means ‘completely

reserved’ and 0 means ‘completely forgotten’.

The ‘input gate’ determines what information in the cell

state Ct is to be updated by xt and Ht�1. There are a sigmoid

layer and a tanh layer at this gate. The tanh layer is

expressed by the output weights as a one-dimensional

matrix, which determines how the information of the cell

state is to be updated according to xt and Ht�1 as:

�Ct ¼ tanh(WC � [Ht�1, xt]þ bC) (6)

where �Ct is a one-dimensional matrix with values in the

range [0,1]; WC and bC are the weight matrix and bias in

the tanh network layer in the ‘input gate’.

The sigmoid layer in the ‘input gate’ determines the

information in the hidden state to participate in the
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it ¼ σ(Wi � [Ht�1, xt]þ bi) (7)

where it is a one-dimensional matrix with values in the

range [0,1]; Wi and bi are the weight matrix and bias in the

sigmoid network layer in the ‘input gate’.

Combining the outputs from ‘forget gate’ and ‘input gate’,

the information in the cell state Ct can now be updated by:

Ct ¼ ft × Ct�1 þ it × �Ct (8)

where the first component represents the passthrough infor-

mation from the forget gate and the second component

represents the update information from the input gate. In

this way, the impact of precipitation from previous times on

the runoff at the current time step can be learned.

The ‘output gate’ uses the sigmoid layer to determine

which information of the hidden state is taken as the output.

ot ¼ σ(Wo � [Ht�1, xt]þ bo) (9)

where Wo and bo are the weight matrix and bias in the

output gate; ot is the output of the LSTM cell; the hidden

state Ht can be determined based on the output of cell and
Algorithm 1 | The pseudo code of the LSTM neural network.

Input:
Input data matrix: [T, m].
Target data matrix: [T, g].

Initial Parameters:
(1) Fully connected layers: Weights and Bias.
(2) The number of LSTM cells is n; Set initial states of Ck,0 and Sk,0 (k

Fully Connected Layer:
Transforms input matrix [T, m] to [T, n] using Equation (3);

LSTM Cells:
For t¼ 0 in length (T ):
For k¼ 0 in length (n):
Update states for LSTM cell: Ct and Ht using Equations (8) and (1
Generate cell output: ok,t using Equation (9).

Get the outputs of LSTM cells after the iteration of the loop: [T,n].
Fully Connected Layers:

Get the outputs yfout,t: Transform matrix [T,n] to [T,g] using fully conne
Loss Function:

Comparing the simulated flows (yfout,t) and observed flows (�qt) and, the
Weights Updating:

Based on the loss value, the weights of the networks are updated usin

om http://iwaponline.com/hr/article-pdf/51/6/1358/791074/nh0511358.pdf
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hidden state Ct.

Ht ¼ ot × tanh (Ct) (10)
Loss function

In this study, observed flow data of the hydrological station

are used as targets to evaluate the loss values of the simu-

lated flows by LSTM network, and the Adam algorithm

which was proposed by Kingma & Ba () is applied to

optimize and update the network weights. The loss values

are estimated below using the difference between network

outputs and target values

Loss(y, z) ¼
XT
t¼1

MSE(yfout,t, �qt) (11)

where T is the batch size of training samples for each train-

ing; �qt is the target value at time step t; yfout,t is the LSTM

network output; MSE is the mean square error.
Pseudo code of LSTM network

The pseudo code of the LSTM network training is shown in

Algorithm 1. In the pseudo code, the parameters include the
∈ n) to zero matrix.

0), separately;

cted layers b1 and b2.

loss value is evaluated using Equation (11).

g the Adam algorithm.
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batch size of training input data (T ), the dimensions of the

input data (m), the dimensions of the output flow vector

(g), LSTM cell size (n) and the input and output dimensions

of the fully connected layers (i.e., h and k). In the case study,

the LSTM network training ends after 1,500 epochs.
Structure scenarios

In this section, the scenarios of different LSTM structures

and parameters are presented to test the network perform-

ances as shown in Table 1. The LSTM network structure

in Figure 1 is taken as scenario A1 and used as a benchmark

for comparison of the other network structures. Building on

scenario A1, Scenario A2 has a fully connected neural layer

with an activation function added between the input layer

and the fully connected layer a. Scenario A3 is developed

by removing the activation functions in the fully connected

layers b1 and b2 based on A1.

Comparing the performances between scenarioA1 andA3

allows us to analyse the impact of activation functions which

establish a non-linear transformation between the LSTM cells

and the output runoff vector. To evaluate the impacts of the

number of layers on the learning efficiency of LSTM, scenarios

B1 and B2 are constructed by adding one and two fully con-

nected layers to the benchmark A1, respectively.

The batch sizes of training samples (T ) and number of

LSTM cell (n) are important network parameters, which

determine the learning efficiency of the LSTM network.

Table 1 shows their values tested in this study.
Table 1 | The four scenarios of the CNN convolutional layers

Scenarios Structures

A1 P[T,m]→ FC[m,n]→Cell[n]→ FCa[n,50]→ FCa[50,

A2 P[T,m]→ FCa[m,n]→ FC[m,m]→Cell[n]→ FCa[n,5

A3 P[T,m]→ FC[m,n]→Cell[n]→ FC[n,50]→ FC[50,30

B1 P[T,m]→ FC[m,n]→Cell[n]→ FCa[n,50]→ FCa[50,

B2 P[T,m]→ FC[m,n]→Cell[n]→ FCa[n,50]→ FCa[50,

P Input matrix

O Output flow vector

FC Fully connected layer without activation function

FCa Fully connected layer with ReLU activation funct

Cell LSTM cells

://iwaponline.com/hr/article-pdf/51/6/1358/791074/nh0511358.pdf
Streamflow data pre-process

In a large river basin with multiple flow stations, the flow

rates at different stations may vary in a wide range due to

different sizes of drainage areas. The difference may cause

the network to ignore small flows, leading to learning

inefficiency or failure. Thus, the flow processes for each

hydrological station are pre-processed as:

q0t,i ¼
qt,i
�qi

i ∈ [1, g]; t ∈ [1, N], (12)

where qt,i represents the observed flow of the hydrological

station i at time step t. �qi represents the mean value of the

observed flow process of the hydrological station i. q0t,i rep-

resents the pre-processed flow; g is the number of

hydrological stations;N represents the length of theflowdata.
Model evaluation criteria

In this study, the simulation performances of the models are

evaluated by the following three criteria. The coefficient of

determination (R2) provides a statistical measure that

assesses how well a hydrological model explains and predicts

future flows, and it indicates the level of explained variability

in the data set. The Nash–Sutcliffe Efficiency (NSE) is used to

quantitatively describe the accuracy of the hydrological

model (Nash & Sutcliffe ). The NSE value is between 1

and negative infinity. An NSE value of 1 corresponds to a

perfect match of simulated flows to observed data. The
30]→O[T,g]

0]→ FCa[50,30]→O[T,g]

]→O[T,g]

100]→ FCa[100,30]→O[T,g]

100]→ FCa[100,50]→ FCa[50,30]→O[T,g]

T Batch size of precipitation data

M Number of meteorological stations

N Number of LSTM cells

ion g Number of hydrological stations
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relative error (RE) represents the degree of difference

between the observed and simulated values (Kan et al. ).

R2 ¼
PN
t
[(qo,t� �qo)× (qs,t� �qs)]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

t¼1
(qo,t� �qo)

2

s
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
t¼1

(qs,t�qs)
2

s" #2

0
BBBBB@

1
CCCCCA×100% (13)

NSE = 1�
PN
t
(qo,t � qs,t)

2

PN
t¼1

(qo,t � �qo)
2

0
BBB@

1
CCCA × 100% (14)

RE =

PN
t
(qo,t � qs,t)

PN
t¼1

qo,t

0
BBB@

1
CCCA × 100% (15)

where qs,t and qo,t represent the simulated and observed flow

at time step t, respectively. �qs and �qo represent the means of

the simulated and observed flows, respectively.
Figure 3 | Location map for the Hun river and Upper Yangtze river.
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CASE STUDY

Study area

In this study, two basins are taken as case studies, the Hun

river basin and the upper Yangtze river basin, which are

located in the northeast and southwest of China, respect-

ively (Figure 3). The basic characteristics of the two basins

are shown in Table 2.

The Hun river originates from the Changbai Mountain.

The precipitation is affected by temperate monsoon continen-

tal climate. The vegetation in this basin is well maintained

and is rarely interrupted by human activities. 70% of the

annual precipitation occurs from June to September.

The Upper Yangtze river originates from the Qinghai-

Tibet Plateau. The drainage area above the Three Gorges

dam in the Yangtze River is the upper reach. The precipi-

tation of the basin is affected by the topography and the

monsoon, which makes the annual precipitation unevenly

distributed both spatially and temporally. The precipitation



Table 2 | The basic characteristics of the two study basins

Characteristic Upper Yangtze river Hun river

Location 106�140∼111�280 E,
28�160∼31�440 N

124�430∼126�500 E,
40�400∼42�150 N

Area (104 km2) 100.23 1.48

Channel length (km) 4,000 435

Mean annual rainfall (mm) 1,250 860

Mean annual streamflow
(m3/s)

14,300 227

Table 3 | Key parameters of SWAT for Hun and Upper Yangtze river basins

Parameters Definition
Hun
river

Upper
Yangtze river

CN2 SCS runoff curve number for
moisture condition II

72 35

ALPHA_BF Base flow recession constant
(days)

0.8 0.61

GW_DELAY Delay time for aquifer recharge
(days)

31 15

CH_N2 Manning’s n value for the main
and tributary channels

0.1 0.3

CH_K2 Effective hydraulic
conductivity of channel
(mm/hr)

5 20

SOL_AWC Available water capacity
(mm/mm)

0.005 0.004

SMTMP Snow melt minimum
temperature (�C)

� 1 � 2

CANMX Canopy maximum storage(mm) 4 9

ESCO Soil evaporation compensation
factor (mm)

0.95 0.6

REVAPMN Threshold depth for
evaporation to occur (mm)

71 120
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increases from northwest to southeast, and about 70% of the

precipitation occurs from May to September.

Data source

In the Hun river, the 10-day average meteorological data

from 10 stations (i.e., m¼ 10) and river flow data from the

Huanren station (HR) (i.e., g¼ 1) from 1970 to 2010 were

obtained. The 30-year data from 1970 to 1999 are used to

train LSTM networks and calibrate the comparison

models which are introduced in Section Comparison

models. The data from 2000 to 2010 are used to verify the

performances of the models.

In the Upper Yangtze river, the daily meteorological data

were obtained from 1991 to 1998, including 57 meteorologi-

cal stations (i.e.,m¼ 57). The observed daily streamflow from

six hydrological stations (i.e., g¼ 6) as shown in Figure 3 was

obtained from 1991 to 1998, i.e., Shi gu (SG), Pan zhi hua

(PZH), Bei bei (BB), Wu long (WL), Xiang jia ba (XJB) and

Wang zhou (WZ). The data from 1991 to 1995 are used for

model training and calibration, and the data from 1996 to

1998 are used for verification.

Comparison models

In the Hun river basin case study, four models are con-

structed as comparison models to evaluate the performance

of the proposed LSTM network, i.e., SWAT, XAJ, MLR and

BP. In the upper Yangtze river basin, SWAT is used only.

SWAT model

The SWAT model is a distributed hydrological model devel-

oped by the U.S. Department of Agriculture and the
://iwaponline.com/hr/article-pdf/51/6/1358/791074/nh0511358.pdf
Agricultural Research Service (Guzman et al. ). The

SWAT model has strong physical mechanisms. In this study,

the DEM raster data with a resolution of 90 m and the land

use raster data with a resolution of 3 km were obtained in

Hun river basin. The DEM and land use data of 3 km×

3 km in the Upper Yangtze river basin were obtained. In

this study, the SWATmodel is calibrated using the Calibration

Uncertainty Procedure (SWAT-CUP) program, which is an

auto-calibration tool that allows for sensitivity analysis, cali-

bration, validation and uncertainty analysis of the SWAT

model (Abbaspour ; Abbaspour et al. ). Finally, the

key parameters for the two basins are listed in Table 3.
XAJ model

The XAJ model is a conceptual rainfall–runoff model, which

was developed by Zhao (). This model has been widely

used in China, particularly in humid and semi-humid regions

(Xu et al. ). The XAJmodel assumes that runoff is not pro-

duced until the soil water content of the aeration zone

reaches its field capacity. The actual evapotranspiration is
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computed from potential evapotranspiration while soil sto-

rage deficit is calculated in three layers, i.e., upper, lower

and deep soil layers. The XAJ model parameters of the Hun
Table 4 | Parameters of XAJ model

Parameters Physical meaning (unit) Value

Um Tension water capacity of upper layer (mm) 5

Lm Tension water capacity of lower layer (mm) 50

Dm Tension water capacity of deep layer (mm) 10

IMP Ratio of impervious area to the total catchment
area (%)

0.05

C Evapotranspiration coefficient of the deeper
layer (–)

0.1

B Exponential of the distribution of tension water
capacity (–)

0.36

Sm Free water capacity (mm) 5

Ex Exponent of the distribution of free water
capacity (–)

1.4

kg Outflow coefficient of the free water storage to
groundwater (–)

0.2

ki Outflow coefficient of the free water storage to
interflow (–)

0.5

Table 5 | Equations of different time steps in the MLR model

Time step Equation

1 Ft¼ 3.5þ 0.55Qt�1

2 Ft¼ 2.75þ 0.65Qt�1

3 Ft¼ 1.94þ 0.33(Qt�1þQt�2)

4 Ft¼ 2.97þ 0.66Qt�1

5 Ft¼ 1.06þ 0.45(Qt�1þQt�2)

6 Ft¼ 4.47þ 0.68Qt�1

7 Ft¼ 10.50þ 0.49Qt�1

8 Ft¼ 17.10þ 1.18Qt�1

9 Ft¼ 35.0þ 1.0Qt�1

10 Ft¼�20.0þ 0.6Qt�1þ 0.1Pt�1þ 0.1Pt

11 Ft¼ 3.0þ 0.44Qt�1þ 0.1Pt�1þ 0.15Pt

12 Ft¼�10þ 0.37Qt�1þ 0.07Pt�1þ 0.19Pt

13 Ft¼�10þ 0.4Qt�1þ 0.16Pt�1þ 0.04Pt

14 Ft¼�40þ 0.56Qt�1þ 0.08Pt�1þ 0.14Pt

15 Ft¼�90þ 0.32Qt�1þ 0.11Pt�1þ 0.28Pt

16 Ft¼�45þ 0.28Qt�1þ 0.14Pt�1þ 0.19Pt

17 Ft¼�40þ 0.35Qt�1þ 0.06Pt�1þ 0.25Pt

18 Ft¼�270þ 0.54Qt�1þ 0.07Pt�1þ 0.55Pt

Ft is the simulated runoff at the time step t; Qt�1 is the observed runoff at time step t� 1; Pt is
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river basin have been calibrated using a Genetic Algorithm

(Xu & Peng. ). In calibration, NSE andRE are used to

evaluate the performance of the parameters as shown in

Equations (14) and (15), respectively.

The calibrated parameters of the XAJ model are shown

in Table 4. In this model, the surface runoff, interflow and

groundwater are routed using instantaneous unit lines, and

the parameters of the three lines, i.e., (n and k) are set to

(3, 4), (4, 5) and (4.5, 7), respectively.
MLR model

In the MLR model, one regression model was developed

for each time step to identify the factors of physical and

statistical significance in the Hun river basin. There are

36 time steps in a year, i.e., 10 days for each time step. In

the MLR models, the least square method is used to esti-

mate the parameters of the regression equations based on

the observed runoffs and factors, and the equations are

shown in Table 5.
Time step Equation

19 Ft¼ � 250þ 0.05Qt�1þ 0.31Pt�1þ 0.48Pt

20 Ft¼�50þ 0.33Qt�1� 0.04Pt�1þ 0.43Pt

21 Ft¼�70þ 0.29Qt�1þ 0.06Pt�1þ 0.39Pt

22 Ft¼�25þ 0.25Qt�1þ 0.09Pt�1þ 0.26Pt

23 Ft¼ 13þ 0.49Qt�1þ 0.01Pt�1þ 0.09Pt

24 Ft¼�5.0þ 0.7Qt�1þ 0.01Pt�1þ 0.08Pt

25 Ft¼�7þ 0.51Qt�1þ 0.05Pt�1þ 0.17Pt

26 Ft¼�3þ 0.67Qt�1þ 0.05Pt�1þ 0.04Pt

27 Ft¼�12þ 0.73Qt�1þ 0.03Pt�1þ 0.13Pt

28 Ft¼ 60.0þ 0.75Qt�1

29 Ft¼ 90.0þ 0.05(Qt�1þQt�2)þ 0.4Pt�1

30 Ft¼ 50.0þ 0.35(Qt�1þQt�2)þ 0.2Pt�1

31 Ft¼ 2.50þ 0.48Qt�1þ 0.13Pt�1

32 Ft¼�1.0þ 0.90Qt�1

33 Ft¼ 11.0þ 0.48Qt�1

34 Ft¼ 10.0þ 0.44Qt�1

35 Ft¼ 3.5þ 0.65Qt�1

36 Ft¼ 3.5þ 0.65Qt�1

the average precipitation at time step t.
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BP neural network

The BP model takes the flows at time step t� 2 and t� 1 and

the average precipitation of the watershed at time step t� 2,

t� 1 and t as inputs and takes the flow at time step t as

output. The BP model constructed using four-layer neural

network, and the network nodes for each layer are 5 (input

layer), 50 (hidden layer), 50 (hidden layer) and 1 (output

layer), respectively. The outputs of the hidden layer are trans-

formed by the sigmoid activation function. The BP network

was trained for 900 epochs as it was already converged.
RESULTS

The network structure and parameters have a great influence

on the learning efficiency. In this study, the LSTM networks

are tested on the Hun and Upper Yangtze river basins, respect-

ively. First, the effects of LSTM network structure are analysed

and the performances of the network parameters are evalu-

ated in terms of the number of cells (n) and the batch size

(T ). Then, the structure and parameters with the best perform-

ance are selected to predict the river flows of the two study

cases. Finally, the performances of the LSTMs are compared

with the results from the comparison models.

Learning efficiency with different structures

Effects of activation function

Scenarios A1, A2 and A3 are trained for the Hun river and

Upper Yangtze river case studies, and the variations of the
Figure 4 | The training loss variations of different LSTM network structures.

://iwaponline.com/hr/article-pdf/51/6/1358/791074/nh0511358.pdf
loss function values are shown in Figure 4. For each network

structure, the network weights are trained for 1,500 epochs.

The training loss values of each scenario in Figure 4 are the

average values of 10 independent training runs. Note that

the model parameter values used for the results in Figure 4

are those optimal values identified in Table 6. The results

from the two case studies in Figure 4 show the following

key points:

(1) The loss value of A1 is rapidly decreased, demonstrating

a rapid learning.

(2) The inputs in A2 are nonlinearly transferred by acti-

vation functions before being passed to the LSTM

cells; as a result, the LSTM cells cannot effectively cap-

ture the long-term time dependencies in the time series

data. Thus, the loss values cannot be reduced rapidly

during the training.

(3) In A3, there is only a simple linear transformation

between the LSTM cells and output layer. This makes

learning difficult with a slow reduction in loss values

before they start to increase after 500 epochs.

The results from Figure 4 show the LSTM structures in

Scenarios A2 and A3 could not provide efficient learning

and the model outputs cannot match the target values well.
Effects of fully connected layers

The test results from Scenarios B1 and B2 are shown in

Figure 5. The results indicate that all the scenarios can

learn effectively in the two case studies. However, the

detailed loss value variations between epochs 1,250 and



Table 6 | The structure and parameters of the LSTM network for the study cases

Watershed Structures and parameters

Hun river P[T¼ 90,m¼ 10]→ FC[m,n]→Cell[n¼ 20]→
FCa[n,50]→ FCa[50,30]→O[T,g¼ 1]

Upper Yangtze
river

P[T¼ 360,m¼ 57]→ FC[m,n]→Cell[n¼ 50]→
FCa[n,50]→ FCa[50,30]→O[T,g¼ 6]

1368 W. Xu et al. | Using long short-term memory networks for river flow prediction Hydrology Research | 51.6 | 2020

Downloaded fr
by guest
on 04 January
1,500 as shown in Figure 5(a2,b2) reveals that scenario A1

converges faster and is more stable than the other two scen-

arios. This implies that the network does not need a large

number of fully connected layers between the LSTM cells

and the output layer to improve the learning efficiency.

Therefore, the LSTM structure in A1 is selected to predict

the river flows in the two case study basins.
Learning efficiency with different parameters

Effects of T

In the LSTM network training, the batch size (T ) of training

samples has a significant effect on the learning efficiency. In

this study, a number of T values are tested for Hun river (i.e.,

10, 30, 50, 70 and 90) and Upper Yangtze river (i.e., 30, 60,

120, 180 and 360). Figure 6 shows the training loss variations

of the Hun river and Upper Yangtze river. The loss values fluc-

tuate dramatically when the batch size is small, i.e., T¼ 10 or

30 in the case of Hun river and T¼ 30, 60 or 120 in the case of

Upper Yangtze river. This indicates that the LSTM cells

cannot capture the periodicity in the time series using small

batch sizes, when the network weights are updated frequently.

With T increasing, the amount of training samples used for
Figure 5 | The training loss variations for the different number of fully connected layers.
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learning can gradually reflect the periodicity. Therefore, the

fluctuation of the loss values is gradually reduced.

Figure 6(a2,b2) shows the magnified training loss curves

during epochs from 1,250 to 1,500. The results indicate that

the learning curves are stable after T¼ 50 and 180 for the

Hun river and Upper Yangtze river basins, respectively.

Figure 7 shows the means of the loss values from epochs

from 1,250 to 1,500 in Figure 6. The results show that the loss

means are gradually decreasing with T increasing, which rep-

resent the learning efficiencies of the LSTM network are

gradually improved. In the case of Upper Yangtze river,

when T> 180, the loss value cannot be reduced.

Effects of cell number

The LSTM cell is the core concept in the LSTM network. The

number of the cells (n) determines the performances of the net-

work. Figure 8 shows the means of the loss values from epochs

1,250 to 1,500 using different cell numbers. With the Hun river

basin, when the number of cells reaches 20, LSTM achieves a

good learning efficiency as shown in Figure 8(a). When the

cell number exceeds 20, the efficiency shows very slow

improvement. Figure 8(b) reflects the network performances

in the Upper Yangtze river. When the number of cells reaches

40, the learning efficiency begins to stabilize. In this study, 20

and 50 cells are used in the LSTM networks for the Hun river

and the Upper Yangtze river, respectively.

Performance evaluation

Based on the analysis of the structure and parameters of the

LSTM network as above, the structure and parameters with



Figure 6 | The training loss variations of the two study basins with different T scenarios.
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the best performance as shown in Table 6 are selected to

learn and predict the flows of the Hun river and Upper

Yangtze river, respectively.
Hun river basin

Figure 9(a) shows the observed and simulated flows from

1970 to 1999, and the performance evaluation criteria are

shown in Table 7. The simulated flows in Figure 9(a) fit

well with the observed flows. In training, the LSTM achieves

an NSE value of 0.98. The results show that LSTM has a

strong non-linear learning ability and it outperforms the

other models in the Hun river basin. During the models,

the MLR model performs worst.

In the verifying process, the predictive ability of the

LSTM is shown in Table 7 to be slightly worse than that

of the SWAT. However, the LSTM slightly outperforms the
://iwaponline.com/hr/article-pdf/51/6/1358/791074/nh0511358.pdf
XAJ model in terms of NSE but is much better than other

models. Figure 9(b) shows the predicted and observed

flows from 2000 to 2010. Though the predicted flows from

the LSTM did not match well with the observed in some

periods, most peak flows are predicted well. This is clearly

shown in the scatter plots of the observed and simulated

flows from the training and verification periods in Figure 10.

Though the overall performances of SWAT and XAJ in

terms of the three criteria are better than those of LSTM,

LSTM performs much better for peak flows, which are of

particular concern in flood predictions.
Upper Yangtze river

In the Upper Yangtze river basin, the daily data of 57

meteorological stations are used as inputs, and the daily

flow of six hydrological stations is used as target values.



Figure 7 | The mean loss values of epochs 1,250–1,500 for the five T scenarios.

Figure 8 | The means of the loss values from epochs 1,250 to 1,500 for different cell numbers.

Figure 9 | The observed and estimated flows from LSTM network and SWAT model.
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Table 7 | Performances evaluation criteria of the five models in Hun river

Models

Training Verification

NSE (%) R2 (%) RE (%) NSE (%) R2 (%) RE (%)

SWAT 84.55 85.96 3.74 79.43 80.87 � 4.79

XAJ 78.56 78.56 0.62 73.63 75.82 3.38

MLR 54.53 54.56 � 3.08 34.98 36.31 � 0.44

BP 85.47 85.48 0.30 68.93 69.26 6.42

LSTM 98.21 98.31 1.62 74.76 75.14 � 4.06
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The flows of the six stations are simulated using LSTM and

SWAT and their performances are shown in Table 8.

In the training, LSTM has a very high performance for

the flows of six stations. The NSE and R2 values indicate

that the LSTM outperforms the SWAT during training.

Figure 11 shows the simulated flows at a station (WZ).

The scatter plots of simulated and predicted flows for six

hydrological stations are shown in Figure 12. The results

indicate that the performance of LSTM in the verifying

period is worse than that in the training period. Predicted

peak flows are likely to be lower than those observed.
Figure 10 | The scatter plots of the observed and simulated flows of the five models.

://iwaponline.com/hr/article-pdf/51/6/1358/791074/nh0511358.pdf
Note that in Upper Yangtze river, the LSTM network is

constructed to predict flows at multiple stations at the same

time. The training results show that the LSTM network has a

strong fitting ability to learn the flow data of multiple hydro-

logical stations.
DISCUSSION

LSTM network training is significantly affected by the train-

ing dataset size. It is generally understood that the network

training requires a large amount of training sample data.

However, the dataset size depends on the characteristics

of the catchment and flows of concern, which determines

the complexity of the input–output relationships represented

by the LSTM. The LSTM has been shown to perform well

with a smaller dataset than 30 years used in the Hun river

basin. For example, Kratzert et al. () used the daily

meteorological data and observed flow data from 15 years

in 241 catchments to train LSTM networks, whose perform-

ances are comparable to process-based models. Lee et al.



Table 8 | Performance evaluation criteria of LSTM and SWAT in Upper Yangtze river

Criteria Category

Yangtze River

SG PZH BB WL XJB WZ

LSTM network

NSE (%) 89.63 90.77 91.09 90.96 89.84 90.35

Training R2 (%) 89.73 90.89 91.11 91.01 89.96 90.41

RE (%) 2.15 2.17 1.17 0.05 2.33 1.65

NSE (%) 54.60 54.13 56.56 61.62 62.48 71.51

Verification R2 (%) 64.92 61.6 58.13 69.79 64.11 72.72

RE (%) 0.94 6.10 � 12.71 11.18 8.48 1.85

SWAT model

NSE (%) 77.05 72.56 70.67 76.95 79.95 84.31

Training R2 (%) 77.89 80.41 75.65 78.93 81.55 88.67

RE (%) 13.34 � 0.29 4.35 8.07 � 2.74 9.66

NSE (%) 66.03 68.13 62.67 72.78 74.82 74.40

Verification R2 (%) 66.04 67.19 63.45 67.18 78.01 79.46

RE (%) 14.47 8.51 4.92 10.58 5.29 10.94

Figure 11 | The observed and estimated streamflow from LSTM network and SWAT model.
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Figure 12 | The scatter plots of the observed and simulated flows from LSTM.
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() trained a deep LSTM network using daily rainfall and

water level data during two periods: 2000–2002 and 2008–

2014 (a total of 9 years) and it outperformed a SWAT

model when verified using daily data from 2003 to 2007.

A main disadvantage of using large datasets is the com-

putational time required for LSTM training, particularly

when individual networks are trained for a large number

of catchments. This issue could be tackled from several

aspects: (1) using the advances in computing power such

as Graphics Processing Units and cloud computing; (2)

pooling the datasets from individual catchments of similar

hydrological characteristics to train an LSTM network as a

regional model which can predict the discharge for a

number of catchments in the region (Kratzert et al. );

(3) training the network off-line for real-time predictions.

The second aspect is also important for flow predictions in

ungauged catchments as suggested by Kratzert et al. ()

and provides a new application area in the use of the

LSTM network in hydrological predictions.

Transfer learning is powerful and useful in deep learning

as it can use the network knowledge gained from solving

one problem to help solve another similar problem. Due
://iwaponline.com/hr/article-pdf/51/6/1358/791074/nh0511358.pdf
to the focus of this work, transfer learning is not investigated

here. Future research should explore the potential of trans-

fer learning from two aspects: (1) building on a reference

architecture (e.g. Scenario A1 in this study), the network

knowledge (e.g. parameters) could be applied to other simi-

lar architectures in solving the same problem so training

could be continuously improved using prior network knowl-

edge; (2) transferring the LSTM learning knowledge from

data-rich catchments to data-scarce catchments, so the

flow predictions in data-scarce catchments could be

improved.
CONCLUSIONS

In this study, the performance of LSTM networks is assessed

for river flow simulations using two river basins: the Hun

river and Upper Yangtze river. Different LSTM structures

are analysed. The prediction performances are compared

against other models including hydrological models and

data-driven models. The key research conclusions are sum-

marized below.
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In the LSTM network, the activation function in the

fully connected layer before the LSTM cell layer can sub-

stantially reduce learning efficiency. In the LSTM network,

the transformation through activation functions weakens

the correlations between precipitation and flow, leading to

failure in learning the rainfall–runoff relationships in both

study basins. On the contrary, non-linear transformation fol-

lowing the LSTM cells is required to improve learning

efficiency due to the different magnitudes of precipitation

and streamflow. Further, increasing the number of fully con-

nected layers cannot improve the learning efficiency, instead

it needs more epochs due to the fluctuation in the loss

values.

In the LSTM network, the batch size and the number

of LSTM cells are the sensitive parameters that affect the

learning efficiency. The results of this study show that the

learning efficiency continues to increase with the batch

size and the number of cells increasing. However, when

the learning is stable, the number of cells should be kept

to the minimum to reduce the complexity of the network.

The LSTM has superior non-linear learning ability for

time series data and has a simple structure and few par-

ameters, which has strong application potential in

streamflow simulation. The results of this study show that

the non-linear learning ability in the training process is

very powerful.

The LSTM networks achieve good performance com-

pared to other models considering three criteria, i.e., NSE,

R2 and RE. In the case of Hun river, LSTM outperforms

MLR and BP and achieves a similar level of accuracy of

XAJ. It is slightly worse than a well-calibrated SWAT but

provides more accurate predictions for peak flows. In the

case of the Upper Yangtze river, LSTM outperforms

SWAT during the training but is worse than SWAT in the

verification period. This is mainly because predicted peak

flows are likely to be lower than those observed.
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