BOOTSTRAPPING NON-STATIONARY STOCHASTIC VOLATILITY

H. Peter Boswijk ${ }^{a}$, Giuseppe Cavaliere ${ }^{b, c}$, Iliyan Georgiev ${ }^{b, d}$ and Anders Rahbek ${ }^{e}$

A Online Appendix

A. 1 Auxiliary Results

Throughout, we make use of the following version of Skorokhod's representation theorem.

Theorem A. 1 [Kallenberg, 1997, Corollary 5.12] Let f and $\left\{f_{n}\right\}_{n \geq 1}$ be measurable functions from a Borel space \mathcal{S} to a Polish space \mathcal{T}, and let ξ and $\left\{\xi_{n}\right\}_{n \geq 1}$ be random elements in \mathcal{S} with $f_{n}\left(\xi_{n}\right) \xrightarrow{w} f(\xi)$. Then there exist some random elements $\tilde{\xi} \stackrel{d}{=} \xi$ and $\tilde{\xi}_{n} \stackrel{d}{=} \xi_{n}$ defined on a common probability space with $f_{n}\left(\tilde{\xi}_{n}\right) \xrightarrow{\text { a.s. }} f(\xi)$.

The next lemma contains a result about the asymptotic continuity of the distribution function of Dickey-Fuller type-statistics under non-stationary stochastic volatility.

Lemma A. 1 With M and V defined in Lemma 1, under Assumptions 1 and 2, let

$$
\tau_{1}:=\frac{\int_{0}^{1} M(u) \mathrm{d} M(u)}{\int_{0}^{1} M^{2}(u) \mathrm{d} u} \quad \text { and } \quad \tau_{2}:=\frac{\int_{0}^{1} M(u) \mathrm{d} M(u)}{\sqrt{V(1) \int_{0}^{1} M^{2}(u) \mathrm{d} u}} .
$$

Then the random cdfs $F_{1}(\cdot):=P\left(\tau_{1} \leq \cdot \mid \sigma\right)$ and $F_{2}(\cdot):=P\left(\tau_{2} \leq \cdot \mid \sigma\right)$ are sample-path continuous a.s.

Proof of Lemma A.1. We reduce the proof to the following well-known result (Rao and Swift, 2006, pp. 472-473). Let $\{X(u)\}_{u \in[0,1]}$ be a Gaussian process with mean zero and a continuous covariance kernel, let $q:[0,1] \rightarrow \mathbb{R}$ be a square-integrable function and let $\alpha \in \mathbb{R}$ be arbitrary. Then the distribution of $\int_{0}^{1}(X(u)+\alpha q(u))^{2} \mathrm{~d} u$ is that of an infinite series of independent non-central χ^{2} random variables and, as a result, it has a continuous cdf.

[^0]The random cdfs F_{1} and F_{2} are determined, up to a modification, by the distribution of $\left(B_{z}, \sigma\right)$, such that the structure of the probability space on which $\left(B_{z}, \sigma\right)$ is defined is irrelevant for the claim of interest. We therefore assume, without loss of generality, that the independent processes B_{z} and σ are defined on a product probability space. Let $\left(\Omega_{\sigma}, \mathcal{F}_{\sigma}, P_{\sigma}\right)$ be the factor-space on which σ is defined. Fix $A \in \mathcal{F}_{\sigma}$ with $P_{\sigma}(A)=1$ such that $V(\omega, \cdot):=\int_{0} \sigma^{2}(\omega, u) \mathrm{d} u$ is well-defined, continuous and $0<V(\omega, 1)<\infty$. Let $\Gamma:=\{\sigma(\omega, \cdot): \omega \in A\}$ be the set of trajectories for σ when $\omega \in A$. For every $\gamma \in \Gamma$, the process $M_{\gamma}(\cdot):=\int_{0}^{j} \gamma(u) \mathrm{d} B_{z}(u)$ is a.s. well-defined and $\int_{0}^{1} M_{\gamma}^{2}(u) \mathrm{d} u>0$ a.s. The result in the lemma will follow if the deterministic cdfs $P\left(\tau_{\gamma 1} \leq \cdot\right)$ and $P\left(\tau_{\gamma 2} \leq \cdot\right)$ are continuous for every $\gamma \in \Gamma$:

$$
\begin{equation*}
P\left(\tau_{\gamma 1}=x\right)=0, \quad P\left(\tau_{\gamma 2}=x\right)=0, \quad \forall(x, \gamma) \in \mathbb{R} \times \Gamma \tag{A.1}
\end{equation*}
$$

where

$$
\tau_{\gamma 1}:=\frac{\int_{0}^{1} M_{\gamma}(u) \mathrm{d} M_{\gamma}(u)}{\int_{0}^{1} M_{\gamma}^{2}(u) \mathrm{d} u}, \quad \tau_{\gamma 2}:=\frac{\int_{0}^{1} M_{\gamma}(u) \mathrm{d} M_{\gamma}(u)}{\sqrt{V(1) \int_{0}^{1} M_{\gamma}^{2}(u) \mathrm{d} u}} .
$$

In fact, (A.1) implies that F_{1} and F_{2} have sample-path continuous modifications, and moreover, by continuity, F_{1} and F_{2} are indistinguishable from these modifications.

We turn to the proof of (A.1). For an arbitrary fixed $\gamma \in \Gamma$, define the time-changed 'bridge' process X_{γ} by

$$
X_{\gamma}(u):=M_{\gamma}(u)-\frac{V_{\gamma}(u)}{V_{\gamma}(1)} M_{\gamma}(1), \quad u \in[0,1] .
$$

Then X_{γ} and $M_{\gamma}(1)$ are independent, for they are jointly Gaussian with covariance function

$$
\operatorname{Cov}\left(X_{\gamma}(u), M_{\gamma}(1)\right)=V_{\gamma}(u)-\frac{V_{\gamma}(u)}{V_{\gamma}(1)} V_{\gamma}(1)=0, \quad u \in[0,1] .
$$

In terms of X_{γ} and $M_{\gamma}(1)$, we find

$$
\tau_{\gamma 1}=\frac{1}{2} \frac{M_{\gamma}(1)^{2}-V_{\gamma}(1)}{\int_{0}^{1} M_{\gamma}^{2}(u) \mathrm{d} u}=\frac{1}{2} \frac{M_{\gamma}(1)^{2}-V_{\gamma}(1)}{\int_{0}^{1}\left(X_{\gamma}(u)+M_{\gamma}(1) q_{\gamma}(u)\right)^{2} \mathrm{~d} u}
$$

and

$$
\tau_{\gamma 2}=\frac{1}{2} \frac{M_{\gamma}(1)^{2}-V_{\gamma}(1)}{\sqrt{V_{\gamma}(1) \int_{0}^{1}\left(X_{\gamma}(u)+M_{\gamma}(1) q_{\gamma}(u)\right)^{2} \mathrm{~d} u}},
$$

for $q_{\gamma}(u):=V_{\gamma}(u) / V_{\gamma}(1)$. The equality

$$
P\left(\tau_{\gamma i}=x\right)=E\left[P\left(\tau_{\gamma i}=x \mid M_{\gamma}(1)\right)\right]=0
$$

will hold for $i=1,2$ and any $x \in \mathbb{R}$ iff

$$
P\left(\tau_{\gamma i}=x \mid M_{\gamma}(1)\right)=0 \text { a.s. }
$$

for $i=1,2$ and any $x \in \mathbb{R}$. In its turn, using the independence of $X_{\gamma}(u)$ and $M_{\gamma}(1)$, the latter will hold if

$$
\begin{aligned}
& P\left(\frac{1}{2} \frac{\alpha^{2}-V_{\gamma}(1)}{\int_{0}^{1}\left(X_{\gamma}(1)+\alpha q_{\gamma}(u)\right)^{2} \mathrm{~d} u}=x\right)=0 \\
& P\left(\frac{1}{2} \frac{\alpha^{2}-V_{\gamma}(1)}{\sqrt{V_{\gamma}(1) \int_{0}^{1}\left(X_{\gamma}(u)+\alpha q_{\gamma}(u)\right)^{2} \mathrm{~d} u}}=x\right)=0
\end{aligned}
$$

hold for all $x \in \mathbb{R}$ and $\alpha \neq \pm \sqrt{V_{\gamma}(1)}$ (because $P\left(M_{\gamma}^{2}(1)=V_{\gamma}(1)\right)=0$), which in its turn will hold if

$$
P\left(\int_{0}^{1}\left(X_{\gamma}(u)+\alpha q_{\gamma}(u)\right)^{2} \mathrm{~d} u=x\right)=0
$$

for any $\alpha, x \in \mathbb{R}$. Since X_{γ} is a zero-mean Gaussian process with a continuous covariance and q_{γ} is square integrable, the equality in the previous display indeed holds, by Rao and Swift (2006, pp. 472-473).

A. 2 Proofs

Proof of Lemma 1. We follow the approach of the proof of Lemma 1 and other intermediate results in Cavaliere and Taylor (2009). First, defining $e_{t}=z_{t}^{2}-1$,

$$
\sup _{u \in[0,1]}\left|U_{n}(u)-V_{n}(u)\right|=\sup _{u \in[0,1]}\left|n^{-1} \sum_{t=1}^{\lfloor n u\rfloor} \sigma_{t}^{2} e_{t}\right| \xrightarrow{p} 0
$$

by Theorem A. 1 of Cavaliere and Taylor (2009), since $\left\{e_{t}, \mathcal{F}_{t}\right\}_{t \geq 1}$ is an mds by Assumption 1 and $\sigma_{\lfloor n \cdot\rfloor+1}^{2}=\sigma_{n}^{2}(\cdot) \xrightarrow{w} \sigma^{2}(\cdot)$ by Assumption 2 and the CMT; this proves (8), because convergence in the sup norm implies convergence in the Skorokhod metric, i.e., in $\mathscr{D}[0,1]$. Next, we apply Theorem 2.1 of Hansen (1992) to

$$
M_{n}(\cdot)=\int_{0}^{\cdot} \sigma_{n}(u) \mathrm{d} B_{z, n}(u)
$$

noting that Assumption 1 implies $\sup _{n \geq 1} n^{-1} \sum_{t=1}^{n} E\left(z_{t}^{2}\right)=1$, so that using Assumption 2, we have

$$
\left(\sigma_{n}(\cdot), B_{z, n}(\cdot), M_{n}(\cdot)\right) \xrightarrow{w}\left(\sigma(\cdot), B_{z}(\cdot), M(\cdot)\right) .
$$

The CMT together with (8) then implies (7), because

$$
\int_{0}^{u} \sigma_{n}^{2}(s) \mathrm{d} s=\frac{1}{n} \sum_{t=1}^{\lfloor n u\rfloor} \sigma_{t}^{2}+\sigma_{\lfloor n u\rfloor+1}^{2}\left(u-\lfloor n u\rfloor n^{-1}\right), \quad u \in[0,1]
$$

so that $U_{n}(\cdot)=V_{n}(\cdot)+o_{p}(1)=\int_{0}^{\cdot} \sigma_{n}^{2}(s) \mathrm{d} s+o_{p}(1)$, i.e., $U_{n}(\cdot)$ is a continuous functional of $\sigma_{n}(\cdot)$ plus an asymptotically negligible term.

Proof of Theorem 1. The idea of the proof is to construct on a special probability space random elements distributed like $\left(\sigma_{n}, M_{n}, U_{n}, M_{n}^{*}, U_{n}^{*}\right)$ and such that on this probability space the convergence asserted in Theorem 1 holds weakly a.s.; on a general probability space it will then hold \xrightarrow{w}_{w}. Throughout, we use repeatedly the fact that for independent random elements ξ and η and for a measurable real ϕ such that $E(|\phi(\xi, \eta)|)<\infty$, it holds that $E(\phi(\xi, \eta) \mid \eta)=\left.E(\phi(\xi, v))\right|_{v=\eta}$ a.s., with $E(\phi(\xi, v))$ defining a function of a non-random v; see Dudley (2004, p. 341).

By Assumption 3, $\psi_{n t}$ are $\mathcal{G}_{n 0}$-measurable and hence are measurable functions of σ_{n} that we denote, with a slight abuse of notation, by $\psi_{n t}\left(\sigma_{n}\right)$. Let

$$
e_{n m}(\gamma):=E\left(v_{n t}^{2} \psi_{n t}^{2}(\gamma) \mathbb{I}_{\left\{\left|v_{n t} \psi_{n t}(\gamma)\right|>\sqrt{n} / m\right\}}\right)
$$

for $m \in \mathbb{N}$ and a generic non-random γ; then $e_{n m}\left(\sigma_{n}\right)$ is a version of the conditional expectation $E\left(z_{t}^{2} \mathbb{I}_{\left\{\left|z_{t}\right|>\sqrt{n} / m\right\}} \mid \sigma_{n}\right)$ because $\left\{v_{n t}\right\}_{t=1}^{n}$ and σ_{n} are independent. Define $B_{v, n}(\cdot):=n^{-1 / 2} \sum_{t=1}^{\lfloor n \cdot\rfloor} v_{n t}$. We apply Theorem A. 1 with $\xi_{n}=\left(\sigma_{n}, B_{v, n}\right), \xi=\left(\sigma, B_{z}\right)$,

$$
f_{n}\left(\xi_{n}\right)=\left(\sigma_{n}, Q_{\psi, n}, Q_{z, n}, \mathcal{L}_{n}, L_{n}\right) \text { and } f(\xi)=\left(\sigma, Q, Q, 0^{\infty}, 0^{\infty}\right)
$$

where $Q_{\psi, n}(\cdot)=n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \psi_{n t}^{2}, Q_{z, n}(\cdot)=n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} z_{t}^{2}, \mathcal{L}_{n}=\left\{n^{-1} \sum_{t=1}^{n} e_{n m}\left(\sigma_{n}\right)\right\}_{m \in \mathbb{N}}$ $\in \mathbb{R}^{\infty}, L_{n}=\left\{n^{-1} \sum_{t=1}^{n} z_{t}^{2} \mathbb{I}_{\left\{\left|z_{t}\right|>\sqrt{n} / m\right\}}\right\}_{m \in \mathbb{N}} \in \mathbb{R}^{\infty}, Q(u)=u, u \in[0,1]$, and 0^{∞} is the zero sequence in \mathbb{R}^{∞}, the Frechet space. The domain of f_{n} and f is the Borel space $\mathscr{D}_{2}[0,1]$ with the Skorokhod metric and the induced Borel σ-algebra, and the codomain is the Polish space $\mathscr{D}_{3}[0,1] \times \mathbb{R}^{\infty} \times \mathbb{R}^{\infty}$ with the product of the Skorokhod and the Frechet metric. The assumptions imply $\left(Q_{\psi, n}, Q_{z, n}\right) \xrightarrow{p}(Q, Q)$, because $\left(Q_{\psi, n}-Q, Q_{z, n}-Q\right)$ is the partial sum process of $n^{-1}\left(\psi_{n t}^{2}-1, z_{t}^{2}-1\right)$, which is an mda with respect to \mathcal{F}_{t} since $E\left(\psi_{n t}^{2} \mid \mathcal{F}_{t-1}\right)=E\left(z_{t}^{2} \mid \mathcal{F}_{t-1}\right)=1$ by the tower property; this partial sum converges to the zero function in probability by the corollary to Theorem 3.3 of Hansen (1992). Noting that $L_{n} \xrightarrow{p} 0^{\infty}$ follows from the corresponding result for $\mathcal{L}_{n}=E\left(L_{n} \mid \mathcal{G}_{n 0}\right)$, applying Markov's inequality, the assumptions therefore imply $f_{n}\left(\xi_{n}\right) \xrightarrow{w} f(\xi)$.

Theorem A. 1 then implies the existence of $\tilde{\xi}_{n}=\left(\tilde{\sigma}_{n}, \tilde{B}_{v, n}\right) \stackrel{d}{=}\left(\sigma_{n}, B_{v, n}\right)$ and $\tilde{\xi}=$ $\left(\tilde{\sigma}, \tilde{B}_{z}\right) \stackrel{d}{=}\left(\sigma, B_{z}\right)$, defined on a single probability space and such that

$$
\begin{equation*}
\left(\tilde{\sigma}_{n}, \tilde{Q}_{\psi, n}, \tilde{Q}_{z, n}, \tilde{\mathcal{L}}_{n}, \tilde{L}_{n}\right):=f_{n}\left(\tilde{\xi}_{n}\right) \xrightarrow{\text { a.s. }} f(\tilde{\xi})=\left(\tilde{\sigma}, Q, Q, 0^{\infty}, 0^{\infty}\right) . \tag{A.2}
\end{equation*}
$$

Finally, we complete the set up by introducing a product extension of the previous probability space where a sequence $\left\{\tilde{w}_{t}^{*}\right\} \stackrel{d}{=}\left\{w_{t}^{*}\right\}$ and a standard Brownian motion \tilde{B}_{z}^{*} are defined and are independent of $\left\{\left(\tilde{\sigma}_{n}, \tilde{B}_{v, n}\right)\right\}_{n \geq 1}$ and $\left(\tilde{\sigma}, \tilde{B}_{z}\right)$.

As $\tilde{B}_{v, n}$ and $\tilde{\sigma}_{n}$ are independent (because $B_{v, n}$ and σ_{n} are), it holds for any integrable random variable $h\left(\tilde{\sigma}_{n}, \tilde{B}_{v, n}\right)$ that $E\left(h\left(\tilde{\sigma}_{n}, \tilde{B}_{v, n}\right) \mid \tilde{\sigma}_{n}\right)=\left.E\left(h\left(\gamma, \tilde{B}_{v, n}\right)\right)\right|_{\gamma=\tilde{\sigma}_{n}}$. A similar equality holds for the independent \tilde{B}_{z} and $\tilde{\sigma}$. Therefore, to prove any convergence of the form

$$
\begin{equation*}
E\left(h_{n}\left(\tilde{\sigma}_{n}, \tilde{B}_{v, n}\right) \mid \tilde{\sigma}_{n}\right) \xrightarrow{\text { a.s. }} E\left(h\left(\tilde{\sigma}, \tilde{B}_{z}\right) \mid \sigma\right), \tag{A.3}
\end{equation*}
$$

it is sufficient to prove that $E\left(h_{n}\left(\gamma_{n}, \tilde{B}_{v, n}\right)\right) \rightarrow E\left(h\left(\gamma, \tilde{B}_{z}\right)\right)$ for all deterministic sequences $\left\{\gamma_{n}\right\}_{n \geq 1}$ in some set $\Gamma \subset \mathscr{D}_{\infty}[0,1]$ such that $P\left(\left\{\tilde{\sigma}_{n}\right\}_{n \geq 1} \in \Gamma\right)=1$. We now choose and fix Γ. Consider all the outcomes $\tilde{\omega}$ such that convergence (A.2) holds; the set of such outcomes $\tilde{\omega}$ has probability 1 . Define $\Gamma \subset \mathscr{D}_{\infty}[0,1]$ as the set of sequences $\left\{\tilde{\sigma}_{n}(\cdot, \tilde{\omega})\right\}_{n \geq 1}$ corresponding to such $\tilde{\omega}$, then $P\left(\left\{\tilde{\sigma}_{n}\right\}_{n \geq 1} \in \Gamma\right)=1$ as required.

As noted in Remark 4.4, we may recover (M_{n}, U_{n}) (and hence the original data D_{n}) from ($\sigma_{n}, B_{v, n}$) as some measurable transformation, say $m_{n}\left(\sigma_{n}, B_{v, n}\right)$. Define accordingly $\left(\tilde{M}_{n}, \tilde{U}_{n}\right):=m_{n}\left(\tilde{\sigma}_{n}, \tilde{B}_{v, n}\right)$ (and analogously \tilde{D}_{n}). With $\tilde{z}_{n t}:=\tilde{\psi}_{n t} \tilde{v}_{n t}$, where $\tilde{\psi}_{n t}=\psi_{n t}\left(\tilde{\sigma}_{n}\right)$ and

$$
\tilde{v}_{n t}:=n^{1 / 2}\left(\tilde{B}_{v, n}(t / n)-\tilde{B}_{v, n}((t-1) / n)\right),
$$

define also the process $\tilde{B}_{z, n}(\cdot):=n^{-1 / 2} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{z}_{n t}=: m_{z, n}\left(\tilde{\sigma}_{n}, \tilde{B}_{v, n}\right)$, such that

$$
\left(\tilde{\sigma}_{n}, \tilde{B}_{z, n}, \tilde{M}_{n}, \tilde{U}_{n}\right) \stackrel{d}{\stackrel{d}{ }\left(\sigma_{n}, B_{z, n}, M_{n}, U_{n}\right) . . . ~}
$$

We proceed to the convergence of ($\tilde{M}_{n}, \tilde{U}_{n}$) conditional on $\tilde{\sigma}_{n}$ and prove that

$$
\begin{equation*}
E\left(g\left(\tilde{B}_{z, n}, \tilde{M}_{n}, \tilde{U}_{n}\right) \mid \tilde{\sigma}_{n}\right) \xrightarrow{\text { a.s. }} E\left(g\left(\tilde{B}_{z}, \tilde{M}, \tilde{V}\right) \mid \tilde{\sigma}\right) \tag{A.4}
\end{equation*}
$$

for continuous bounded real g of matching domain; this convergence is of the form (A.3) with $h_{n}=g \circ\left(m_{z, n}, m_{n}\right)$. In so doing, for any random element $Z=\phi\left(\tilde{\sigma}_{n}, \tilde{B}_{v, n}\right)$ we write $Z\left(\gamma_{n}\right)$ for $\phi\left(\gamma_{n}, \tilde{B}_{v, n}\right)$; e.g., $\tilde{B}_{z, n}\left(\gamma_{n}\right)=m_{z, n}\left(\gamma_{n}, \tilde{B}_{v, n}\right)$. By the discussion in the previous paragraph, (A.4) will follow from the standard weak convergence of $\left(\tilde{B}_{z, n}\left(\gamma_{n}\right), \tilde{M}_{n}\left(\gamma_{n}\right), \tilde{U}_{n}\left(\gamma_{n}\right)\right)$, for all $\left\{\gamma_{n}\right\}_{n \geq 1} \in \Gamma$, that we establish next.

For $\left\{\tilde{\sigma}_{n}\right\}_{n \in \mathbb{N}}$ replaced by a fixed $\left\{\gamma_{n}\right\}_{n \geq 1} \in \Gamma, \tilde{z}_{n t}\left(\gamma_{n}\right)=\psi_{n t}\left(\gamma_{n}\right) \tilde{v}_{n t}$ is an mda satisfying the conditions of Brown (1971)'s functional central limit theorem. First, $E\left(\psi_{n t}\left(\gamma_{n}\right) \tilde{v}_{n t} \mid\left\{\tilde{v}_{n i}\right\}_{i=1}^{t-1}\right)=\psi_{n t}\left(\gamma_{n}\right) E\left(\tilde{v}_{n t} \mid\left\{\tilde{v}_{n i}\right\}_{i=1}^{t-1}\right)=0$ because the mda property of $\tilde{v}_{n t}$ is inherited from the original probability space as $\left\{\tilde{v}_{n i}\right\}_{i=1}^{n} \stackrel{d}{=}\left\{v_{n i}\right\}_{i=1}^{n}$. Second, $n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} E\left(\psi_{n t}^{2}\left(\gamma_{n}\right) \tilde{v}_{n t}^{2} \mid\left\{\tilde{v}_{n i}\right\}_{i=1}^{t-1}\right)=n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \psi_{n t}^{2}\left(\gamma_{n}\right)=\tilde{Q}_{\psi, n}\left(\cdot, \gamma_{n}\right) \rightarrow Q(\cdot)$, where the first equality is again inherited from the original probability space, and the convergence by the definition of Γ. Third, as $\tilde{\mathcal{L}}_{n}\left(\gamma_{n}\right) \rightarrow 0^{\infty}$ again by the choice of Γ, it holds that $n^{-1} \sum_{t=1}^{n} e_{n m}\left(\gamma_{n}\right) \rightarrow 0$ for all $m \in \mathbb{N}$, which is equivalent to

$$
n^{-1} \sum_{t=1}^{n} E\left(\tilde{z}_{n t}^{2}\left(\gamma_{n}\right) \mathbb{I}_{\left\{\left|\tilde{z}_{n t}\left(\gamma_{n}\right)\right|>\sqrt{n} / m\right\}}\right) \rightarrow 0, \quad m \in \mathbb{N},
$$

by the definition of $e_{n m}$ and implies the Lindeberg condition in its usual form

$$
n^{-1} \sum_{t=1}^{n} E\left(\tilde{z}_{n t}^{2}\left(\gamma_{n}\right) \mathbb{I}_{\left\{\left|\tilde{z}_{n t}\left(\gamma_{n}\right)\right|>\sqrt{n} \epsilon\right\}}\right) \rightarrow 0
$$

for all $\epsilon>0$. Therefore,

$$
\tilde{B}_{z, n}\left(\gamma_{n}\right) \xrightarrow{w} \tilde{B}_{z},
$$

in the sense that $E\left(g\left(\tilde{B}_{z, n}\left(\gamma_{n}\right)\right)\right) \rightarrow E\left(g\left(\tilde{B}_{z}\right)\right)$ for continuous bounded real g with matching domain. For the same fixed γ_{n}, this in turn implies that

$$
\tilde{M}_{n}\left(\cdot, \gamma_{n}\right)=\int_{0} \gamma_{n}(u) \mathrm{d} \tilde{B}_{z, n}\left(u, \gamma_{n}\right) \xrightarrow{w} \int_{0} \gamma(u) \mathrm{d} \tilde{B}_{z}(u),
$$

where $\gamma=\lim \gamma_{n}$ exists by the choice of γ_{n}. More precisely, by Theorem 2.1 of Hansen (1995), as $\sup _{n \geq 1} \sum_{t=1}^{n} E\left(\tilde{z}_{n t}^{2}\left(\gamma_{n}\right)\right)=\sup _{n \geq 1} \tilde{Q}_{\psi, n}\left(1, \gamma_{n}\right)<\infty$, the previous convergence holds jointly with that of $\tilde{B}_{z, n}$, such that $E\left(g\left(\tilde{B}_{z, n}\left(\gamma_{n}\right), \tilde{M}_{n}\left(\cdot, \gamma_{n}\right)\right)\right) \rightarrow$ $E\left(g\left(\tilde{B}_{z}, \int_{0} \gamma \mathrm{~d} \tilde{B}_{z}\right)\right)$ for continuous bounded real g. Furthermore, using

$$
\begin{aligned}
\tilde{U}_{n}(\cdot) & =n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{\sigma}_{t}^{2} \tilde{\psi}_{n t}^{2}+n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{\sigma}_{t}^{2}\left(\tilde{z}_{n t}^{2}-\tilde{\psi}_{n t}^{2}\right) \\
& =\int_{0} \tilde{\sigma}_{n}^{2}(u) \mathrm{d} \tilde{Q}_{\psi, n}(u)+n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{\sigma}_{t}^{2} \tilde{e}_{n t},
\end{aligned}
$$

it follows that $\tilde{U}_{n}\left(\cdot, \gamma_{n}\right) \xrightarrow{p} \int_{0}^{0} \gamma^{2}(u) \mathrm{d} u$ by Theorem A. 1 of Cavaliere and Taylor (2009), since $\tilde{z}_{n t}^{2}\left(\gamma_{n}\right)-\tilde{\psi}_{n t}^{2}\left(\gamma_{n}\right)$ is an mda. As convergence in probability to a constant is joint with any weak convergence of random elements defined on the same probability space, it follows that

$$
E\left[g\left(\tilde{B}_{z, n}\left(\gamma_{n}\right), \tilde{M}_{n}\left(\cdot, \gamma_{n}\right), \tilde{U}_{n}\left(\cdot, \gamma_{n}\right)\right)\right] \rightarrow E\left[g\left(\tilde{B}_{z}, \int_{0} \gamma \mathrm{~d} \tilde{B}_{z}, \int_{0} \gamma^{2}\right)\right]
$$

for continuous bounded real g. Since $P(\Gamma)=1,\left.\left(\tilde{B}_{z}, \int_{0}^{\dot{0}} \gamma \mathrm{~d} \tilde{B}_{z}, \int_{0}^{\dot{\gamma}} \gamma^{2}\right)\right|_{\gamma=\tilde{\sigma}}=\left(\tilde{B}_{z}, \tilde{M}, \tilde{V}\right)$ and \tilde{B}_{z} is independent of $\tilde{\sigma}$, we can conclude that (A.4) holds.

We turn to the bootstrap processes. Define

$$
\tilde{B}_{z, n}^{*}(\cdot):=n^{-1 / 2} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{z}_{n t} \tilde{w}_{t}^{*}, \quad \tilde{M}_{n}^{*}(\cdot):=n^{-1 / 2} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{\sigma}_{t} \tilde{z}_{n t} \tilde{w}_{t}^{*}, \quad \tilde{U}_{n}^{*}(\cdot):=n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{\sigma}_{t}^{2} \tilde{z}_{n t}^{2} \tilde{w}_{t}^{* 2} .
$$

Here we show that

$$
E\left(g\left(\tilde{B}_{z, n}^{*}, \tilde{M}_{n}^{*}, \tilde{U}_{n}^{*}\right) \mid \tilde{\sigma}_{n}, \tilde{B}_{v, n}\right) \xrightarrow{\text { a.s. }} E\left(g\left(\tilde{B}_{z}^{*}, \tilde{M}^{*}, \tilde{V}\right) \mid \tilde{\sigma}\right)
$$

for continuous bounded real g, where \tilde{B}_{z}^{*} is a standard Brownian motion independent of $\left(\tilde{\sigma}, \tilde{B}_{z}\right)$, and $\tilde{M}^{*}(\cdot):=\int_{0}^{v} \tilde{\sigma} \mathrm{~d} \tilde{B}_{z}^{*}$. Given that $\left\{\tilde{w}_{t}^{*}\right\}$ and $\left(\tilde{\sigma}, \tilde{B}_{z}\right)$ are independent, as in the proof of (A.4), we could proceed by fixing $\left\{\left(\gamma_{n}, b_{n}\right)\right\}_{n \geq 1} \in \Gamma$, where $Г$ B is an appropriate set with $P\left(\left(\tilde{\sigma}_{n}, \tilde{B}_{v, n}\right)_{n \geq 1} \in \Gamma \mathrm{~B}\right)=1$, and then discuss the standard weak convergence of $\left(\tilde{B}_{z, n}^{*}, \tilde{M}_{n}^{*}, \tilde{U}_{n}^{*}\right)$ as a transformation of $\left(\gamma_{n}, b_{n},\left\{\tilde{w}_{t}^{*}\right\}\right)$ instead of $\left(\tilde{\sigma}, \tilde{B}_{z},\left\{\tilde{w}_{t}^{*}\right\}\right)$. Since now ($\tilde{\sigma}_{n}, \tilde{B}_{v, n}$) and $\left\{\tilde{w}_{t}^{*}\right\}$ are defined on a product space, we implement this equivalently by fixing outcomes $\tilde{\omega}$ in the component space of ($\tilde{\sigma}_{n}, \tilde{B}_{v, n}$) and
letting the outcome in the component space of $\left\{\tilde{w}_{t}^{*}\right\}$ be the only source of randomness. In what follows, fix an $\tilde{\omega}$ in a probability-one set where convergence (A.2) holds. Then

$$
n^{-1 / 2} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{z}_{n t}(\tilde{\omega}) \tilde{w}_{t}^{*} \xrightarrow{w} B_{z}^{*}(\cdot),
$$

because $n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{z}_{n t}^{2}(\tilde{\omega})=Q_{z, n}(\cdot, \tilde{\omega}) \rightarrow Q(\cdot)$ and $L_{n}(\tilde{\omega}) \rightarrow 0^{\infty}$ by the choice of $\tilde{\omega}$, where

$$
L_{n}(\tilde{\omega})=\left\{n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{z}_{n t}^{2}(\tilde{\omega}) \mathbb{\mathbb { H }}\left(\left|\tilde{z}_{n t}(\tilde{\omega})\right|>\sqrt{n} / m\right)\right\}_{m \in \mathbb{N}}
$$

It follows that $\tilde{M}_{n}^{*}(\cdot, \tilde{\omega})=n^{-1 / 2} \sum_{t=1}^{\lfloor n \cdot 1} \tilde{\sigma}_{t}(\tilde{\omega}) \tilde{z}_{n t}(\tilde{\omega}) \tilde{w}_{t}^{*} \xrightarrow{w} \int_{0}^{i} \tilde{\sigma}(\tilde{\omega}) \mathrm{d} \tilde{B}_{z}^{*}$. Further,

$$
\begin{aligned}
\tilde{U}_{n}^{*}(\cdot, \tilde{\omega}) & =n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{\sigma}_{t}^{2}(\tilde{\omega}) \tilde{z}_{n t}^{2}(\tilde{\omega}) \tilde{w}_{t}^{* 2} \\
& =\tilde{U}_{n}(\cdot)+n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \tilde{\sigma}_{t}^{2}(\tilde{\omega}) \tilde{z}_{n t}^{2}(\tilde{\omega})\left(\tilde{w}_{t}^{* 2}-1\right) \xrightarrow{p} \tilde{V}(\cdot, \tilde{\omega}),
\end{aligned}
$$

using Theorem A. 1 of Cavaliere and Taylor (2009). Since $\tilde{V}(\cdot, \tilde{\omega})$ is non-random, the last two convergences are joint:

$$
E\left[g\left(\tilde{M}_{n}^{*}(\cdot, \tilde{\omega}), \tilde{U}_{n}^{*}(\cdot, \tilde{\omega})\right)\right] \rightarrow E\left[g\left(\tilde{M}^{*}(\cdot, \tilde{\omega}), \tilde{V}(\cdot, \tilde{\omega})\right)\right]
$$

for continuous and bounded real g. This implies, by the product structure of the probability space and the probability-one set of eligible outcomes $\tilde{\omega}$, that

$$
E\left(g\left(\tilde{M}_{n}^{*}, \tilde{U}_{n}^{*}\right) \mid \tilde{\sigma}_{n}, \tilde{B}_{v, n}\right) \xrightarrow{\text { a.s. }} E\left(g\left(\tilde{M}^{*}, \tilde{V}\right) \mid \tilde{\sigma}\right),
$$

and eventually, as $\left(\tilde{M}^{*}, \tilde{V}, \tilde{\sigma}\right) \stackrel{d}{=}(\tilde{M}, \tilde{V}, \tilde{\sigma})$, that

$$
E\left(g\left(\tilde{M}_{n}^{*}, \tilde{U}_{n}^{*}\right) \mid \tilde{\sigma}_{n}, \tilde{B}_{v, n}\right) \xrightarrow{\text { a.s. }} E(g(\tilde{M}, \tilde{V}) \mid \tilde{\sigma}) .
$$

Notice that conditioning on $\tilde{\sigma}_{n}, \tilde{B}_{v, n}$ can be replaced by conditioning on \tilde{D}_{n} because $\left(\tilde{M}_{n}^{*}, \tilde{U}_{n}^{*}\right)$ is a measurable function of \tilde{D}_{n} and $\left\{\tilde{w}_{t}^{*}\right\}$.

We can conclude from (A.4) and this result that

$$
\left(E\left[h\left(\tilde{M}_{n}, \tilde{U}_{n}\right) \mid \tilde{\sigma}_{n}\right], E\left[g\left(\tilde{M}_{n}^{*}, \tilde{U}_{n}^{*}\right) \mid \tilde{D}_{n}\right]\right) \xrightarrow{\text { a.s. }}(E[h(\tilde{M}, \tilde{V}) \mid \tilde{\sigma}], E[g(\tilde{M}, \tilde{V}) \mid \tilde{\sigma}])
$$

for all continuous and bounded real h, g, whereas on a general probability space

$$
\begin{equation*}
\left(E\left[h\left(M_{n}, U_{n}\right) \mid \sigma_{n}\right], E\left[g\left(M_{n}^{*}, U_{n}^{*}\right) \mid D_{n}\right]\right) \xrightarrow{w}(E[h(M, V) \mid \sigma], E[g(M, V) \mid \sigma]), \tag{A.5}
\end{equation*}
$$

because $\left(\tilde{\sigma}_{n}, \tilde{M}_{n}, \tilde{U}_{n}, \tilde{D}_{n}, \tilde{M}_{n}^{*}, \tilde{U}_{n}^{*}\right) \stackrel{d}{=}\left(\sigma_{n}, M_{n}, U_{n}, D_{n}, M_{n}^{*}, U_{n}^{*}\right)$. This is precisely the definition of the joint \xrightarrow{w}_{w} convergence in the theorem.

Proof of Corollary 1. From (A.5) with $h=g=\tau$, if the random $\operatorname{cdf} P(\tau(M, V) \leq$ $\cdot \mid \sigma)$ a.s. has continuous sample paths, conditional validity of the bootstrap as in Corollary 1 follows from Corollary 3.2 of Cavaliere and Georgiev (2020).

Proof of Lemma 1. For any $K \in \mathbb{R}$, consider the continuous function $g_{K}: \mathbb{R} \rightarrow[0,1]$ defined by $g_{K}(x)=\mathbb{I}_{(-\infty, K]}(x)+(K+1-x) \mathbb{I}_{(K, K+1]}$. Then $\mathbb{I}_{(-\infty, K]} \leq g_{K} \leq \mathbb{I}_{(-\infty, K+1]}$ and the convergence $\tau_{n}^{*} \xrightarrow{w_{w}^{*}} \tau^{*} \mid \sigma$ implies that

$$
F_{n}^{*}(K) \leq E^{*}\left(g_{K}\left(\tau_{n}^{*}\right)\right) \xrightarrow{w} E\left(g_{K}(\tau) \mid \sigma\right) \leq F^{*}(K+1),
$$

where $F^{*}(K+1)=P\left(\tau^{*} \leq K+1 \mid \sigma\right)$. Therefore, for all $q \in(0,1)$,

$$
\liminf _{n \rightarrow \infty} P\left(F_{n}^{*}(K) \leq q\right) \geq P\left(F^{*}(K+1) \leq q\right) .
$$

As a result,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} P\left(F_{n}^{*}\left(\tau_{n}\right) \leq q\right) & \geq \liminf _{n \rightarrow \infty} P\left(F_{n}^{*}\left(\tau_{n}\right) \leq q, \tau_{n} \leq K\right) \\
& \geq \liminf _{n \rightarrow \infty} P\left(F_{n}^{*}(K) \leq q, \tau_{n} \leq K\right) \\
& \geq \liminf _{n \rightarrow \infty} P\left(F_{n}^{*}(K) \leq q\right)-\lim _{n \rightarrow \infty} P\left(\tau_{n}>K\right) \\
& \geq P\left(F^{*}(K+1) \leq q\right),
\end{aligned}
$$

since $\tau_{n} \xrightarrow{p}-\infty$ means that $\lim _{n \rightarrow \infty} P\left(\tau_{n}>K\right)=0$ for all $K \in \mathbb{R}$. By Markov's inequality,

$$
P\left(F^{*}(K+1) \leq q\right) \geq 1-q^{-1} E\left(F^{*}(K+1)\right)=1-q^{-1} P\left(\tau^{*} \leq K+1\right),
$$

and the proof is completed by letting $K \rightarrow-\infty$.
Proof of eq. (23). Notice that

$$
\begin{aligned}
\hat{U}_{n}(\cdot) & =n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor}\left(\sum_{i=0}^{t-1} \psi_{i} \varepsilon_{t-i}\right)^{2} \\
& =n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \sum_{i=0}^{t-1} \psi_{i}^{2} \varepsilon_{t-i}^{2}+2 n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \sum_{i=0}^{t-1} \sum_{j=0}^{i-1} \psi_{i} \psi_{j} \varepsilon_{t-i} \varepsilon_{t-j} \\
& =: a_{1 n}(\cdot)+a_{2 n}(\cdot),
\end{aligned}
$$

with $a_{1 n}(\cdot)$ and $a_{2 n}(\cdot)$ implicitly defined. First, $a_{2 n}(\cdot)=o_{p}(1)$ uniformly in $\cdot \in[0,1]$, similarly to Lemma A. 7 in Cavaliere et al. (2010a). Second,

$$
a_{1 n}(\cdot)=n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \varepsilon_{t}^{2}\left(\sum_{i=0}^{\lfloor n \cdot\rfloor-t} \psi_{i}^{2}\right)=\left(\sum_{i=0}^{\infty} \psi_{i}^{2}\right) U_{n}(\cdot)+b_{n}(\cdot),
$$

with

$$
b_{n}(\cdot):=n^{-1} \sum_{t=1}^{\lfloor n \cdot\rfloor} \varepsilon_{t}^{2}\left(\sum_{i=\lfloor n \cdot\rfloor-t+1}^{\infty} \psi_{i}^{2}\right) .
$$

Since the ψ_{i} 's are exponentially decaying, there exist constants C and $\rho \in(0,1)$ such that $\sum_{i=\lfloor n \cdot\rfloor-t+1}^{\infty} \psi_{i}^{2} \leq C \rho^{\lfloor n \cdot\rfloor-t+1}$. Using the facts that $\max _{t=1, \ldots, n} \sigma_{t}^{2}=O_{p}(1)$ by Assumption 2 and $E\left(z_{t}^{2}\right)=1$ by Assumption 1, it holds that

$$
\begin{aligned}
\sup _{u \in[0,1]} b_{n}(u) & \leq C n^{-1} \sup _{u \in[0,1]} \sum_{t=1}^{\lfloor n u\rfloor} \sigma_{t}^{2} z_{t}^{2} \rho^{\lfloor n \cdot\rfloor-t+1} \\
& \leq C\left(\max _{t=1, \ldots, n} \sigma_{t}^{2}\right)\left(n^{-1} \max _{t=1, \ldots, n} z_{t}^{2}\right) \sup _{u \in[0,1]}\left(\sum_{t=1}^{\lfloor n \cdot\rfloor} \rho^{\lfloor n \cdot\rfloor-t+1}\right) \\
& =O_{p}(1) o_{p}(1) \sum_{t=1}^{n} \rho^{t}=o_{p}(1) .
\end{aligned}
$$

Hence, $\hat{U}_{n}(\cdot)=\left(\sum_{i=0}^{\infty} \psi_{i}^{2}\right) U_{n}(\cdot)+o_{p}(1)$.

References

Brown, B. M. (1971), "Martingale Central Limit Theorems", Annals of Mathematical Statistics 42, 59-66.
Cavaliere, G. and I. Georgiev (2020), "Inference Under Random Limit Bootstrap Measures", Econometrica 88, 2547-2574.
Cavaliere, G., A. Rahbek and A. M. R. Taylor (2010a), "Testing for Co-Integration in Vector Autoregressions with Non-Stationary Volatility", Journal of Econometrics 158, 7-24.
Cavaliere, G. and A. M. R. Taylor (2009), "Heteroskedastic Time Series with a Unit Root", Econometric Theory 25, 1228-1276.
Dudley, R. M. (2004), Real Analysis and Probability. Cambridge: Cambridge University Press.
Hansen, B. E. (1992), "Convergence to Stochastic Integrals for Dependent Heterogeneous Processes", Econometric Theory 8, 489-500.
Hansen, B. E. (1995), "Regression with Nonstationary Volatility", Econometrica 63, 1113-1132.
Kallenberg, O. (1997), Foundations of Modern Probability. New York: Springer.
Rao, M. M. and R. J. Swift (2006). Probability Theory with Applications. New York: Springer.

[^0]: ${ }^{a}$ Amsterdam School of Economics and Tinbergen Institute, University of Amsterdam, The Netherlands
 ${ }^{b}$ Department of Economics, University of Bologna, Italy
 ${ }^{c}$ Department of Economics, Exeter Business School, UK
 ${ }^{d}$ Institut d'Anàlisi Econòmica-CSIC, Spain
 ${ }^{e}$ Department of Economics, University of Copenhagen, Denmark
 Correspondence to: Giuseppe Cavaliere, Department of Economics, University of Bologna, Piazza Scaravilli 2, I-40126 Bologna, Italy. email: giuseppe.cavaliere@unibo.it.

