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A.1 Auxiliary results

Throughout, we make use of the following version of Skorokhod’s representation theo-

rem.

Theorem A.1 [Kallenberg, 1997, Corollary 5.12] Let f and {fn}n≥1 be measurable

functions from a Borel space S to a Polish space T , and let ξ and {ξn}n≥1 be random

elements in S with fn(ξn)
w→ f(ξ). Then there exist some random elements ξ̃

d
= ξ and

ξ̃n
d
= ξn defined on a common probability space with fn(ξ̃n)

a.s.→ f(ξ).

The next lemma contains a result about the asymptotic continuity of the distribution

function of Dickey-Fuller type-statistics under non-stationary stochastic volatility.

Lemma A.1 With M and V defined in Lemma 1, under Assumptions 1 and 2, let

τ1 :=

∫ 1
0 M(u)dM(u)∫ 1
0 M

2(u)du
and τ2 :=

∫ 1
0 M(u)dM(u)√
V (1)

∫ 1
0 M

2(u)du
.

Then the random cdfs F1(·) := P (τ1 ≤ ·|σ) and F2(·) := P (τ2 ≤ ·|σ) are sample-path

continuous a.s.

Proof of Lemma A.1. We reduce the proof to the following well-known result (Rao

and Swift, 2006, pp. 472–473). Let {X(u)}u∈[0,1] be a Gaussian process with mean zero

and a continuous covariance kernel, let q : [0, 1] → R be a square-integrable function

and let α ∈ R be arbitrary. Then the distribution of
∫ 1
0 (X(u) +αq(u))2du is that of an

infinite series of independent non-central χ2 random variables and, as a result, it has a

continuous cdf.
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The random cdfs F1 and F2 are determined, up to a modification, by the distribution

of (Bz, σ), such that the structure of the probability space on which (Bz, σ) is defined

is irrelevant for the claim of interest. We therefore assume, without loss of generality,

that the independent processes Bz and σ are defined on a product probability space.

Let (Ωσ,Fσ, Pσ) be the factor-space on which σ is defined. Fix A ∈ Fσ with Pσ(A) = 1

such that V (ω, ·) :=
∫ ·
0 σ

2(ω, u)du is well-defined, continuous and 0 < V (ω, 1) <∞. Let

Γ := {σ(ω, ·) : ω ∈ A} be the set of trajectories for σ when ω ∈ A. For every γ ∈ Γ,

the process Mγ(·) :=
∫ ·
0 γ(u)dBz(u) is a.s. well-defined and

∫ 1
0 M

2
γ (u)du > 0 a.s. The

result in the lemma will follow if the deterministic cdfs P (τγ1 ≤ ·) and P (τγ2 ≤ ·) are

continuous for every γ ∈ Γ:

P (τγ1 = x) = 0, P (τγ2 = x) = 0, ∀(x, γ) ∈ R× Γ, (A.1)

where

τγ1 :=

∫ 1
0 Mγ(u)dMγ(u)∫ 1

0 M
2
γ (u)du

, τγ2 :=

∫ 1
0 Mγ(u)dMγ(u)√
V (1)

∫ 1
0 M

2
γ (u)du

.

In fact, (A.1) implies that F1 and F2 have sample-path continuous modifications, and

moreover, by continuity, F1 and F2 are indistinguishable from these modifications.

We turn to the proof of (A.1). For an arbitrary fixed γ ∈ Γ, define the time-changed

‘bridge’ process Xγ by

Xγ(u) := Mγ(u)− Vγ(u)

Vγ(1)
Mγ(1), u ∈ [0, 1].

Then Xγ and Mγ(1) are independent, for they are jointly Gaussian with covariance

function

Cov(Xγ(u),Mγ(1)) = Vγ(u)− Vγ(u)

Vγ(1)
Vγ(1) = 0, u ∈ [0, 1].

In terms of Xγ and Mγ(1), we find

τγ1 =
1

2

Mγ(1)2 − Vγ(1)∫ 1
0 M

2
γ (u)du

=
1

2

Mγ(1)2 − Vγ(1)∫ 1
0 (Xγ(u) +Mγ(1)qγ(u))2du

and

τγ2 =
1

2

Mγ(1)2 − Vγ(1)√
Vγ(1)

∫ 1
0 (Xγ(u) +Mγ(1)qγ(u))2du

,

for qγ(u) := Vγ(u)/Vγ(1). The equality

P (τγi = x) = E [P (τγi = x|Mγ(1))] = 0

will hold for i = 1, 2 and any x ∈ R iff

P (τγi = x|Mγ(1)) = 0 a.s.
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for i = 1, 2 and any x ∈ R. In its turn, using the independence of Xγ(u) and Mγ(1),

the latter will hold if

P

(
1

2

α2 − Vγ(1)∫ 1
0 (Xγ(1) + αqγ(u))2du

= x

)
= 0,

P

1

2

α2 − Vγ(1)√
Vγ(1)

∫ 1
0 (Xγ(u) + αqγ(u))2du

= x

 = 0

hold for all x ∈ R and α 6= ±
√
Vγ(1) (because P (M2

γ (1) = Vγ(1)) = 0), which in its

turn will hold if

P

(∫ 1

0
(Xγ(u) + αqγ(u))2du = x

)
= 0

for any α, x ∈ R. Since Xγ is a zero-mean Gaussian process with a continuous covariance

and qγ is square integrable, the equality in the previous display indeed holds, by Rao

and Swift (2006, pp. 472–473). �

A.2 Proofs

Proof of Lemma 1. We follow the approach of the proof of Lemma 1 and other

intermediate results in Cavaliere and Taylor (2009). First, defining et = z2t − 1,

sup
u∈[0,1]

|Un(u)− Vn(u)| = sup
u∈[0,1]

∣∣∣∣∣∣n−1
bnuc∑
t=1

σ2t et

∣∣∣∣∣∣ p→ 0

by Theorem A.1 of Cavaliere and Taylor (2009), since {et,Ft}t≥1 is an mds by Assump-

tion 1 and σ2bn·c+1 = σ2n(·) w→ σ2(·) by Assumption 2 and the CMT; this proves (8),

because convergence in the sup norm implies convergence in the Skorokhod metric, i.e.,

in D [0, 1]. Next, we apply Theorem 2.1 of Hansen (1992) to

Mn(·) =

∫ ·
0
σn(u)dBz,n(u),

noting that Assumption 1 implies supn≥1 n
−1∑n

t=1E(z2t ) = 1, so that using Assumption

2, we have

(σn(·), Bz,n(·),Mn(·)) w→ (σ(·), Bz(·),M(·)) .

The CMT together with (8) then implies (7), because

∫ u

0
σ2n(s)ds =

1

n

bnuc∑
t=1

σ2t + σ2bnuc+1(u− bnucn
−1), u ∈ [0, 1],

so that Un(·) = Vn(·) + op(1) =
∫ ·
0 σ

2
n(s)ds+ op(1), i.e., Un(·) is a continuous functional

of σn(·) plus an asymptotically negligible term. �
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Proof of Theorem 1. The idea of the proof is to construct on a special proba-

bility space random elements distributed like (σn,Mn, Un,M
∗
n, U

∗
n) and such that on

this probability space the convergence asserted in Theorem 1 holds weakly a.s.; on a

general probability space it will then hold
w→w. Throughout, we use repeatedly the

fact that for independent random elements ξ and η and for a measurable real φ such

that E(|φ(ξ, η)|) <∞, it holds that E(φ(ξ, η)|η) = E(φ(ξ, v))|v=η a.s., with E(φ(ξ, v))

defining a function of a non-random v; see Dudley (2004, p. 341).

By Assumption 3, ψnt are Gn0-measurable and hence are measurable functions of

σn that we denote, with a slight abuse of notation, by ψnt(σn). Let

enm(γ) := E
(
v2ntψ

2
nt(γ)I{|vntψnt(γ)|>

√
n/m}

)
,

for m ∈ N and a generic non-random γ; then enm(σn) is a version of the conditional

expectation E
(
z2t I{|zt|>√n/m}|σn

)
because {vnt}nt=1 and σn are independent. Define

Bv,n(·) := n−1/2
∑bn·c

t=1 vnt. We apply Theorem A.1 with ξn = (σn, Bv,n), ξ = (σ,Bz),

fn(ξn) = (σn, Qψ,n, Qz,n,Ln, Ln) and f(ξ) = (σ,Q,Q, 0∞, 0∞) ,

where Qψ,n(·) = n−1
∑bn·c

t=1 ψ
2
nt, Qz,n(·) = n−1

∑bn·c
t=1 z

2
t , Ln =

{
n−1

∑n
t=1 enm(σn)

}
m∈N

∈ R∞, Ln =
{
n−1

∑n
t=1 z

2
t I{|zt|>√n/m}

}
m∈N

∈ R∞, Q(u) = u, u ∈ [0, 1], and 0∞ is the

zero sequence in R∞, the Frechet space. The domain of fn and f is the Borel space

D2[0, 1] with the Skorokhod metric and the induced Borel σ-algebra, and the codomain

is the Polish space D3[0, 1]×R∞×R∞ with the product of the Skorokhod and the Frechet

metric. The assumptions imply (Qψ,n, Qz,n)
p→ (Q,Q), because (Qψ,n −Q,Qz,n −Q) is

the partial sum process of n−1(ψ2
nt−1, z2t −1), which is an mda with respect to Ft since

E(ψ2
nt|Ft−1) = E(z2t |Ft−1) = 1 by the tower property; this partial sum converges to the

zero function in probability by the corollary to Theorem 3.3 of Hansen (1992). Noting

that Ln
p→ 0∞ follows from the corresponding result for Ln = E(Ln|Gn0), applying

Markov’s inequality, the assumptions therefore imply fn(ξn)
w→ f(ξ).

Theorem A.1 then implies the existence of ξ̃n = (σ̃n, B̃v,n)
d
= (σn, Bv,n) and ξ̃ =

(σ̃, B̃z)
d
= (σ,Bz), defined on a single probability space and such that(

σ̃n, Q̃ψ,n, Q̃z,n, L̃n, L̃n
)

:= fn(ξ̃n)
a.s.→ f(ξ̃) = (σ̃, Q,Q, 0∞, 0∞) . (A.2)

Finally, we complete the set up by introducing a product extension of the previous

probability space where a sequence {w̃∗t }
d
= {w∗t } and a standard Brownian motion B̃∗z

are defined and are independent of {(σ̃n, B̃v,n)}n≥1 and (σ̃, B̃z).

As B̃v,n and σ̃n are independent (because Bv,n and σn are), it holds for any integrable

random variable h(σ̃n, B̃v,n) that E(h(σ̃n, B̃v,n)|σ̃n) = E(h(γ, B̃v,n))|γ=σ̃n . A similar

equality holds for the independent B̃z and σ̃. Therefore, to prove any convergence of

the form

E
(
hn(σ̃n, B̃v,n)|σ̃n

)
a.s.→ E

(
h(σ̃, B̃z)|σ

)
, (A.3)
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it is sufficient to prove that E(hn(γn, B̃v,n)) → E(h(γ, B̃z)) for all deterministic se-

quences {γn}n≥1 in some set Γ ⊂ D∞[0, 1] such that P ({σ̃n}n≥1 ∈ Γ) = 1. We now

choose and fix Γ. Consider all the outcomes ω̃ such that convergence (A.2) holds; the

set of such outcomes ω̃ has probability 1. Define Γ ⊂ D∞[0, 1] as the set of sequences

{σ̃n(·, ω̃)}n≥1 corresponding to such ω̃, then P ({σ̃n}n≥1 ∈ Γ) = 1 as required.

As noted in Remark 4.4, we may recover (Mn, Un) (and hence the original data

Dn) from (σn, Bv,n) as some measurable transformation, say mn(σn, Bv,n). Define ac-

cordingly (M̃n, Ũn) := mn(σ̃n, B̃v,n) (and analogously D̃n). With z̃nt := ψ̃ntṽnt, where

ψ̃nt = ψnt(σ̃n) and

ṽnt := n1/2
(
B̃v,n(t/n)− B̃v,n((t− 1)/n)

)
,

define also the process B̃z,n(·) := n−1/2
∑bn·c

t=1 z̃nt =: mz,n(σ̃n, B̃v,n), such that

(σ̃n, B̃z,n, M̃n, Ũn)
d
= (σn, Bz,n,Mn, Un).

We proceed to the convergence of (M̃n, Ũn) conditional on σ̃n and prove that

E
(
g(B̃z,n, M̃n, Ũn)

∣∣∣ σ̃n) a.s.→ E
(
g(B̃z, M̃ , Ṽ )

∣∣∣ σ̃) (A.4)

for continuous bounded real g of matching domain; this convergence is of the form

(A.3) with hn = g ◦ (mz,n,mn). In so doing, for any random element Z = φ(σ̃n, B̃v,n)

we write Z(γn) for φ(γn, B̃v,n); e.g., B̃z,n(γn) = mz,n(γn, B̃v,n). By the discussion

in the previous paragraph, (A.4) will follow from the standard weak convergence of

(B̃z,n(γn), M̃n(γn), Ũn(γn)), for all {γn}n≥1 ∈ Γ, that we establish next.

For {σ̃n}n∈N replaced by a fixed {γn}n≥1 ∈ Γ, z̃nt(γn) = ψnt(γn)ṽnt is an mda

satisfying the conditions of Brown (1971)’s functional central limit theorem. First,

E(ψnt(γn)ṽnt|{ṽni}t−1i=1) = ψnt(γn)E
(
ṽnt|{ṽni}t−1i=1

)
= 0 because the mda property of

ṽnt is inherited from the original probability space as {ṽni}ni=1
d
= {vni}ni=1. Second,

n−1
∑bn·c

t=1 E(ψ2
nt(γn)ṽ2nt

∣∣ {ṽni}t−1i=1) = n−1
∑bn·c

t=1 ψ
2
nt(γn) = Q̃ψ,n(·, γn) → Q(·), where

the first equality is again inherited from the original probability space, and the conver-

gence by the definition of Γ. Third, as L̃n(γn)→ 0∞ again by the choice of Γ, it holds

that n−1
∑n

t=1 enm(γn)→ 0 for all m ∈ N, which is equivalent to

n−1
n∑
t=1

E
(
z̃2nt(γn)I{|z̃nt(γn)|>

√
n/m}

)
→ 0, m ∈ N,

by the definition of enm and implies the Lindeberg condition in its usual form

n−1
n∑
t=1

E
(
z̃2nt(γn)I{|z̃nt(γn)|>

√
nε}

)
→ 0

for all ε > 0. Therefore,

B̃z,n (γn)
w→ B̃z,
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in the sense that E(g(B̃z,n(γn)))→ E(g(B̃z)) for continuous bounded real g with match-

ing domain. For the same fixed γn, this in turn implies that

M̃n(·, γn) =

∫ ·
0
γn(u)dB̃z,n(u, γn)

w→
∫ ·
0
γ(u)dB̃z(u),

where γ = lim γn exists by the choice of γn. More precisely, by Theorem 2.1 of

Hansen (1995), as supn≥1
∑n

t=1E(z̃2nt(γn)) = supn≥1 Q̃ψ,n(1, γn) < ∞, the previous

convergence holds jointly with that of B̃z,n, such that E(g(B̃z,n(γn), M̃n(·, γn))) →
E(g(B̃z,

∫ ·
0 γdB̃z)) for continuous bounded real g. Furthermore, using

Ũn(·) = n−1
bn·c∑
t=1

σ̃2t ψ̃
2
nt + n−1

bn·c∑
t=1

σ̃2t

(
z̃2nt − ψ̃

2
nt

)

=

∫ ·
0
σ̃2n(u)dQ̃ψ,n(u) + n−1

bn·c∑
t=1

σ̃2t ẽnt,

it follows that Ũn(·, γn)
p→
∫ ·
0 γ

2(u)du by Theorem A.1 of Cavaliere and Taylor (2009),

since z̃2nt(γn)− ψ̃2
nt(γn) is an mda. As convergence in probability to a constant is joint

with any weak convergence of random elements defined on the same probability space,

it follows that

E
[
g(B̃z,n(γn), M̃n(·, γn), Ũn(·, γn))

]
→ E

[
g

(
B̃z,

∫ ·
0
γdB̃z,

∫ ·
0
γ2
)]

for continuous bounded real g. Since P (Γ) = 1, (B̃z,
∫ ·
0 γdB̃z,

∫ ·
0 γ

2)|γ=σ̃ = (B̃z, M̃ , Ṽ )

and B̃z is independent of σ̃, we can conclude that (A.4) holds.

We turn to the bootstrap processes. Define

B̃∗z,n(·) := n−1/2
bn·c∑
t=1

z̃ntw̃
∗
t , M̃∗n(·) := n−1/2

bn·c∑
t=1

σ̃tz̃ntw̃
∗
t , Ũ∗n(·) := n−1

bn·c∑
t=1

σ̃2t z̃
2
ntw̃
∗2
t .

Here we show that

E
(
g(B̃∗z,n, M̃

∗
n, Ũ

∗
n)
∣∣∣ σ̃n, B̃v,n) a.s.→ E

(
g(B̃∗z , M̃

∗, Ṽ )
∣∣∣ σ̃)

for continuous bounded real g, where B̃∗z is a standard Brownian motion independent

of (σ̃, B̃z), and M̃∗(·) :=
∫ ·
0 σ̃dB̃

∗
z . Given that {w̃∗t } and (σ̃, B̃z) are independent, as

in the proof of (A.4), we could proceed by fixing {(γn, bn)}n≥1 ∈ ΓB, where ΓB is

an appropriate set with P ((σ̃n, B̃v,n)n≥1 ∈ ΓB) = 1, and then discuss the standard

weak convergence of (B̃∗z,n, M̃
∗
n, Ũ

∗
n) as a transformation of (γn, bn, {w̃∗t }) instead of

(σ̃, B̃z, {w̃∗t }). Since now (σ̃n, B̃v,n) and {w̃∗t } are defined on a product space, we imple-

ment this equivalently by fixing outcomes ω̃ in the component space of (σ̃n, B̃v,n) and
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letting the outcome in the component space of {w̃∗t } be the only source of randomness.

In what follows, fix an ω̃ in a probability-one set where convergence (A.2) holds. Then

n−1/2
bn·c∑
t=1

z̃nt(ω̃)w̃∗t
w→ B∗z (·),

because n−1
∑bn·c

t=1 z̃
2
nt(ω̃) = Qz,n(·, ω̃) → Q(·) and Ln(ω̃) → 0∞ by the choice of ω̃,

where

Ln(ω̃) =

{
n−1

∑bn·c

t=1
z̃2nt(ω̃)I(|z̃nt(ω̃)| >

√
n/m)

}
m∈N

.

It follows that M̃∗n(·, ω̃) = n−1/2
∑bn·c

t=1 σ̃t(ω̃)z̃nt(ω̃)w̃∗t
w→
∫ ·
0 σ̃(ω̃)dB̃∗z . Further,

Ũ∗n(·, ω̃) = n−1
bn·c∑
t=1

σ̃2t (ω̃)z̃2nt(ω̃)w̃∗2t

= Ũn(·) + n−1
bn·c∑
t=1

σ̃2t (ω̃)z̃2nt(ω̃)(w̃∗2t − 1)
p→ Ṽ (·, ω̃),

using Theorem A.1 of Cavaliere and Taylor (2009). Since Ṽ (·, ω̃) is non-random, the

last two convergences are joint:

E
[
g
(
M̃∗n(·, ω̃), Ũ∗n(·, ω̃)

)]
→ E

[
g
(
M̃∗(·, ω̃), Ṽ (·, ω̃)

)]
for continuous and bounded real g. This implies, by the product structure of the

probability space and the probability-one set of eligible outcomes ω̃, that

E
(
g(M̃∗n, Ũ

∗
n)|σ̃n, B̃v,n

)
a.s.→ E

(
g(M̃∗, Ṽ )|σ̃

)
,

and eventually, as (M̃∗, Ṽ , σ̃)
d
= (M̃, Ṽ , σ̃), that

E
(
g(M̃∗n, Ũ

∗
n)|σ̃n, B̃v,n

)
a.s.→ E

(
g(M̃, Ṽ )|σ̃

)
.

Notice that conditioning on σ̃n, B̃v,n can be replaced by conditioning on D̃n because

(M̃∗n, Ũ
∗
n) is a measurable function of D̃n and {w̃∗t }.

We can conclude from (A.4) and this result that(
E
[
h(M̃n, Ũn)

∣∣∣ σ̃n] , E [g(M̃∗n, Ũ
∗
n)
∣∣∣ D̃n

])
a.s.→
(
E
[
h(M̃, Ṽ )

∣∣∣ σ̃] , E [g(M̃, Ṽ )
∣∣∣ σ̃])

for all continuous and bounded real h, g, whereas on a general probability space

(E [h(Mn, Un)|σn] , E [g(M∗n, U
∗
n)|Dn])

w→ (E [h(M,V )|σ] , E [g(M,V )|σ]) , (A.5)

because (σ̃n, M̃n, Ũn, D̃n, M̃
∗
n, Ũ

∗
n)

d
= (σn,Mn, Un, Dn,M

∗
n, U

∗
n). This is precisely the

definition of the joint
w→w convergence in the theorem. �
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Proof of Corollary 1. From (A.5) with h = g = τ , if the random cdf P (τ(M,V ) ≤
·|σ) a.s. has continuous sample paths, conditional validity of the bootstrap as in Corol-

lary 1 follows from Corollary 3.2 of Cavaliere and Georgiev (2020). �

Proof of Lemma 1. For any K ∈ R, consider the continuous function gK : R→ [0, 1]

defined by gK(x) = I(−∞,K](x) + (K + 1− x)I(K,K+1]. Then I(−∞,K] ≤ gK ≤ I(−∞,K+1]

and the convergence τ∗n
w∗
→w τ

∗|σ implies that

F ∗n(K) ≤ E∗(gK(τ∗n))
w→ E(gK(τ)|σ) ≤ F ∗(K + 1),

where F ∗(K + 1) = P (τ∗ ≤ K + 1|σ). Therefore, for all q ∈ (0, 1),

lim inf
n→∞

P (F ∗n(K) ≤ q) ≥ P (F ∗(K + 1) ≤ q).

As a result,

lim inf
n→∞

P (F ∗n(τn) ≤ q) ≥ lim inf
n→∞

P (F ∗n(τn) ≤ q, τn ≤ K)

≥ lim inf
n→∞

P (F ∗n(K) ≤ q, τn ≤ K)

≥ lim inf
n→∞

P (F ∗n(K) ≤ q)− lim
n→∞

P (τn > K)

≥ P (F ∗(K + 1) ≤ q),

since τn
p→ −∞ means that limn→∞ P (τn > K) = 0 for all K ∈ R. By Markov’s

inequality,

P (F ∗(K + 1) ≤ q) ≥ 1− q−1E(F ∗(K + 1)) = 1− q−1P (τ∗ ≤ K + 1),

and the proof is completed by letting K → −∞. �

Proof of eq. (23). Notice that

Ûn(·) = n−1
bn·c∑
t=1

(
t−1∑
i=0

ψiεt−i

)2

= n−1
bn·c∑
t=1

t−1∑
i=0

ψ2
i ε

2
t−i + 2n−1

bn·c∑
t=1

t−1∑
i=0

i−1∑
j=0

ψiψjεt−iεt−j

=: a1n(·) + a2n(·),

with a1n(·) and a2n(·) implicitly defined. First, a2n(·) = op (1) uniformly in · ∈ [0, 1],

similarly to Lemma A.7 in Cavaliere et al. (2010a). Second,

a1n(·) = n−1
bn·c∑
t=1

ε2t

bn·c−t∑
i=0

ψ2
i

 =

( ∞∑
i=0

ψ2
i

)
Un(·) + bn(·),

8



with

bn(·) := n−1
bn·c∑
t=1

ε2t

 ∞∑
i=bn·c−t+1

ψ2
i

 .

Since the ψi’s are exponentially decaying, there exist constants C and ρ ∈ (0, 1) such

that
∑∞

i=bn·c−t+1 ψ
2
i ≤ Cρbn·c−t+1. Using the facts that maxt=1,...,n σ

2
t = Op(1) by

Assumption 2 and E(z2t ) = 1 by Assumption 1, it holds that

sup
u∈[0,1]

bn(u) ≤ Cn−1 sup
u∈[0,1]

bnuc∑
t=1

σ2t z
2
t ρ
bn·c−t+1

≤ C

(
max
t=1,...,n

σ2t

)(
n−1 max

t=1,...,n
z2t

)
sup
u∈[0,1]

bn·c∑
t=1

ρbn·c−t+1


= Op(1)op(1)

n∑
t=1

ρt = op(1).

Hence, Ûn(·) = (
∑∞

i=0 ψ
2
i )Un(·) + op (1) . �
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