BOOTSTRAPPING NON-STATIONARY STOCHASTIC VOLATILITY

H. Peter Boswijk a, Giuseppe Cavaliere $^{b,c},$ Iliyan Georgiev b,d and Anders Rahbek e

A Online Appendix

A.1 AUXILIARY RESULTS

Throughout, we make use of the following version of Skorokhod's representation theorem.

THEOREM A.1 [Kallenberg, 1997, Corollary 5.12] Let f and $\{f_n\}_{n\geq 1}$ be measurable functions from a Borel space S to a Polish space T, and let ξ and $\{\xi_n\}_{n\geq 1}$ be random elements in S with $f_n(\xi_n) \stackrel{w}{\to} f(\xi)$. Then there exist some random elements $\tilde{\xi} \stackrel{d}{=} \xi$ and $\tilde{\xi}_n \stackrel{d}{=} \xi_n$ defined on a common probability space with $f_n(\tilde{\xi}_n) \stackrel{a.s.}{\to} f(\xi)$.

The next lemma contains a result about the asymptotic continuity of the distribution function of Dickey-Fuller type-statistics under non-stationary stochastic volatility.

Lemma A.1 With M and V defined in Lemma 1, under Assumptions 1 and 2, let

$$\tau_1 := \frac{\int_0^1 M(u) \mathrm{d} M(u)}{\int_0^1 M^2(u) \mathrm{d} u} \quad and \quad \tau_2 := \frac{\int_0^1 M(u) \mathrm{d} M(u)}{\sqrt{V(1) \int_0^1 M^2(u) \mathrm{d} u}}.$$

Then the random cdfs $F_1(\cdot) := P(\tau_1 \leq \cdot | \sigma)$ and $F_2(\cdot) := P(\tau_2 \leq \cdot | \sigma)$ are sample-path continuous a.s.

PROOF OF LEMMA A.1. We reduce the proof to the following well-known result (Rao and Swift, 2006, pp. 472–473). Let $\{X(u)\}_{u\in[0,1]}$ be a Gaussian process with mean zero and a continuous covariance kernel, let $q:[0,1]\to\mathbb{R}$ be a square-integrable function and let $\alpha\in\mathbb{R}$ be arbitrary. Then the distribution of $\int_0^1 (X(u) + \alpha q(u))^2 du$ is that of an infinite series of independent non-central χ^2 random variables and, as a result, it has a continuous cdf.

Correspondence to: Giuseppe Cavaliere, Department of Economics, University of Bologna, Piazza Scaravilli 2, I-40126 Bologna, Italy. email: giuseppe.cavaliere@unibo.it.

 $[^]a$ Amsterdam School of Economics and Tinbergen Institute, University of Amsterdam, The Netherlands

^bDepartment of Economics, University of Bologna, Italy

^cDepartment of Economics, Exeter Business School, UK

^dInstitut d'Anàlisi Econòmica-CSIC, Spain

^eDepartment of Economics, University of Copenhagen, Denmark

The random cdfs F_1 and F_2 are determined, up to a modification, by the distribution of (B_z, σ) , such that the structure of the probability space on which (B_z, σ) is defined is irrelevant for the claim of interest. We therefore assume, without loss of generality, that the independent processes B_z and σ are defined on a product probability space. Let $(\Omega_\sigma, \mathcal{F}_\sigma, P_\sigma)$ be the factor-space on which σ is defined. Fix $A \in \mathcal{F}_\sigma$ with $P_\sigma(A) = 1$ such that $V(\omega, \cdot) := \int_0^{\cdot} \sigma^2(\omega, u) du$ is well-defined, continuous and $0 < V(\omega, 1) < \infty$. Let $\Gamma := \{\sigma(\omega, \cdot) : \omega \in A\}$ be the set of trajectories for σ when $\omega \in A$. For every $\gamma \in \Gamma$, the process $M_\gamma(\cdot) := \int_0^{\cdot} \gamma(u) dB_z(u)$ is a.s. well-defined and $\int_0^1 M_\gamma^2(u) du > 0$ a.s. The result in the lemma will follow if the deterministic cdfs $P(\tau_{\gamma 1} \le \cdot)$ and $P(\tau_{\gamma 2} \le \cdot)$ are continuous for every $\gamma \in \Gamma$:

$$P(\tau_{\gamma 1} = x) = 0, \quad P(\tau_{\gamma 2} = x) = 0, \quad \forall (x, \gamma) \in \mathbb{R} \times \Gamma,$$
 (A.1)

where

$$\tau_{\gamma 1} := \frac{\int_0^1 M_\gamma(u) \mathrm{d} M_\gamma(u)}{\int_0^1 M_\gamma^2(u) \mathrm{d} u}, \qquad \tau_{\gamma 2} := \frac{\int_0^1 M_\gamma(u) \mathrm{d} M_\gamma(u)}{\sqrt{V(1) \int_0^1 M_\gamma^2(u) \mathrm{d} u}}.$$

In fact, (A.1) implies that F_1 and F_2 have sample-path continuous modifications, and moreover, by continuity, F_1 and F_2 are indistinguishable from these modifications.

We turn to the proof of (A.1). For an arbitrary fixed $\gamma \in \Gamma$, define the time-changed 'bridge' process X_{γ} by

$$X_{\gamma}(u) := M_{\gamma}(u) - \frac{V_{\gamma}(u)}{V_{\gamma}(1)} M_{\gamma}(1), \quad u \in [0, 1].$$

Then X_{γ} and $M_{\gamma}(1)$ are independent, for they are jointly Gaussian with covariance function

$$Cov(X_{\gamma}(u), M_{\gamma}(1)) = V_{\gamma}(u) - \frac{V_{\gamma}(u)}{V_{\gamma}(1)} V_{\gamma}(1) = 0, \quad u \in [0, 1].$$

In terms of X_{γ} and $M_{\gamma}(1)$, we find

$$\tau_{\gamma 1} = \frac{1}{2} \frac{M_{\gamma}(1)^2 - V_{\gamma}(1)}{\int_0^1 M_{\gamma}^2(u) \mathrm{d}u} = \frac{1}{2} \frac{M_{\gamma}(1)^2 - V_{\gamma}(1)}{\int_0^1 (X_{\gamma}(u) + M_{\gamma}(1)q_{\gamma}(u))^2 \mathrm{d}u}$$

and

$$\tau_{\gamma 2} = \frac{1}{2} \frac{M_{\gamma}(1)^2 - V_{\gamma}(1)}{\sqrt{V_{\gamma}(1) \int_0^1 (X_{\gamma}(u) + M_{\gamma}(1) q_{\gamma}(u))^2 \mathrm{d}u}},$$

for $q_{\gamma}(u) := V_{\gamma}(u)/V_{\gamma}(1)$. The equality

$$P(\tau_{\gamma i} = x) = E\left[P(\tau_{\gamma i} = x | M_{\gamma}(1))\right] = 0$$

will hold for i = 1, 2 and any $x \in \mathbb{R}$ iff

$$P(\tau_{\gamma i} = x | M_{\gamma}(1)) = 0$$
 a.s.

for i = 1, 2 and any $x \in \mathbb{R}$. In its turn, using the independence of $X_{\gamma}(u)$ and $M_{\gamma}(1)$, the latter will hold if

$$\begin{split} P\left(\frac{1}{2}\frac{\alpha^2-V_{\gamma}(1)}{\int_0^1(X_{\gamma}(1)+\alpha q_{\gamma}(u))^2\mathrm{d}u}=x\right)&=0,\\ P\left(\frac{1}{2}\frac{\alpha^2-V_{\gamma}(1)}{\sqrt{V_{\gamma}(1)\int_0^1(X_{\gamma}(u)+\alpha q_{\gamma}(u))^2\mathrm{d}u}}=x\right)&=0 \end{split}$$

hold for all $x \in \mathbb{R}$ and $\alpha \neq \pm \sqrt{V_{\gamma}(1)}$ (because $P(M_{\gamma}^{2}(1) = V_{\gamma}(1)) = 0$), which in its turn will hold if

 $P\left(\int_0^1 (X_{\gamma}(u) + \alpha q_{\gamma}(u))^2 du = x\right) = 0$

for any $\alpha, x \in \mathbb{R}$. Since X_{γ} is a zero-mean Gaussian process with a continuous covariance and q_{γ} is square integrable, the equality in the previous display indeed holds, by Rao and Swift (2006, pp. 472–473).

A.2 Proofs

PROOF OF LEMMA 1. We follow the approach of the proof of Lemma 1 and other intermediate results in Cavaliere and Taylor (2009). First, defining $e_t = z_t^2 - 1$,

$$\sup_{u \in [0,1]} |U_n(u) - V_n(u)| = \sup_{u \in [0,1]} \left| n^{-1} \sum_{t=1}^{\lfloor nu \rfloor} \sigma_t^2 e_t \right| \xrightarrow{p} 0$$

by Theorem A.1 of Cavaliere and Taylor (2009), since $\{e_t, \mathcal{F}_t\}_{t\geq 1}$ is an mds by Assumption 1 and $\sigma^2_{\lfloor n\cdot\rfloor+1} = \sigma^2_n(\cdot) \stackrel{w}{\to} \sigma^2(\cdot)$ by Assumption 2 and the CMT; this proves (8), because convergence in the sup norm implies convergence in the Skorokhod metric, i.e., in $\mathcal{D}[0,1]$. Next, we apply Theorem 2.1 of Hansen (1992) to

$$M_n(\cdot) = \int_0^{\cdot} \sigma_n(u) dB_{z,n}(u),$$

noting that Assumption 1 implies $\sup_{n\geq 1} n^{-1} \sum_{t=1}^n E(z_t^2) = 1$, so that using Assumption 2, we have

$$(\sigma_n(\cdot), B_{z,n}(\cdot), M_n(\cdot)) \xrightarrow{w} (\sigma(\cdot), B_z(\cdot), M(\cdot))$$
.

The CMT together with (8) then implies (7), because

$$\int_0^u \sigma_n^2(s) \mathrm{d} s = \frac{1}{n} \sum_{t=1}^{\lfloor nu \rfloor} \sigma_t^2 + \sigma_{\lfloor nu \rfloor + 1}^2(u - \lfloor nu \rfloor n^{-1}), \qquad u \in [0, 1],$$

so that $U_n(\cdot) = V_n(\cdot) + o_p(1) = \int_0^{\cdot} \sigma_n^2(s) ds + o_p(1)$, i.e., $U_n(\cdot)$ is a continuous functional of $\sigma_n(\cdot)$ plus an asymptotically negligible term.

PROOF OF THEOREM 1. The idea of the proof is to construct on a special probability space random elements distributed like $(\sigma_n, M_n, U_n, M_n^*, U_n^*)$ and such that on this probability space the convergence asserted in Theorem 1 holds weakly a.s.; on a general probability space it will then hold $\stackrel{w}{\to}_w$. Throughout, we use repeatedly the fact that for independent random elements ξ and η and for a measurable real ϕ such that $E(|\phi(\xi,\eta)|) < \infty$, it holds that $E(\phi(\xi,\eta)|\eta) = E(\phi(\xi,v))|_{v=\eta}$ a.s., with $E(\phi(\xi,v))$ defining a function of a non-random v; see Dudley (2004, p. 341).

By Assumption 3, ψ_{nt} are \mathcal{G}_{n0} -measurable and hence are measurable functions of σ_n that we denote, with a slight abuse of notation, by $\psi_{nt}(\sigma_n)$. Let

$$e_{nm}(\gamma) := E\left(v_{nt}^2 \psi_{nt}^2(\gamma) \mathbb{I}_{\{|v_{nt}\psi_{nt}(\gamma)| > \sqrt{n}/m\}}\right),$$

for $m \in \mathbb{N}$ and a generic non-random γ ; then $e_{nm}(\sigma_n)$ is a version of the conditional expectation $E\left(z_t^2\mathbb{I}_{\{|z_t|>\sqrt{n}/m\}}|\sigma_n\right)$ because $\{v_{nt}\}_{t=1}^n$ and σ_n are independent. Define $B_{v,n}(\cdot) := n^{-1/2} \sum_{t=1}^{\lfloor n \cdot \rfloor} v_{nt}$. We apply Theorem A.1 with $\xi_n = (\sigma_n, B_{v,n}), \ \xi = (\sigma, B_z)$,

$$f_n(\xi_n) = (\sigma_n, Q_{\psi,n}, Q_{z,n}, \mathcal{L}_n, L_n)$$
 and $f(\xi) = (\sigma, Q, Q, 0^{\infty}, 0^{\infty})$,

where $Q_{\psi,n}(\cdot) = n^{-1} \sum_{t=1}^{\lfloor n \cdot \rfloor} \psi_{nt}^2$, $Q_{z,n}(\cdot) = n^{-1} \sum_{t=1}^{\lfloor n \cdot \rfloor} z_t^2$, $\mathcal{L}_n = \left\{ n^{-1} \sum_{t=1}^n e_{nm}(\sigma_n) \right\}_{m \in \mathbb{N}}$ $\in \mathbb{R}^{\infty}$, $L_n = \left\{ n^{-1} \sum_{t=1}^n z_t^2 \mathbb{I}_{\{|z_t| > \sqrt{n}/m\}} \right\}_{m \in \mathbb{N}} \in \mathbb{R}^{\infty}$, $Q(u) = u, u \in [0, 1]$, and 0^{∞} is the zero sequence in \mathbb{R}^{∞} , the Frechet space. The domain of f_n and f is the Borel space $\mathscr{D}_2[0, 1]$ with the Skorokhod metric and the induced Borel σ -algebra, and the codomain is the Polish space $\mathscr{D}_3[0, 1] \times \mathbb{R}^{\infty} \times \mathbb{R}^{\infty}$ with the product of the Skorokhod and the Frechet metric. The assumptions imply $(Q_{\psi,n}, Q_{z,n}) \stackrel{p}{\to} (Q, Q)$, because $(Q_{\psi,n} - Q, Q_{z,n} - Q)$ is the partial sum process of $n^{-1}(\psi_{nt}^2 - 1, z_t^2 - 1)$, which is an mda with respect to \mathcal{F}_t since $E(\psi_{nt}^2 | \mathcal{F}_{t-1}) = E(z_t^2 | \mathcal{F}_{t-1}) = 1$ by the tower property; this partial sum converges to the zero function in probability by the corollary to Theorem 3.3 of Hansen (1992). Noting that $L_n \stackrel{p}{\to} 0^{\infty}$ follows from the corresponding result for $\mathcal{L}_n = E(L_n | \mathcal{G}_{n0})$, applying Markov's inequality, the assumptions therefore imply $f_n(\xi_n) \stackrel{w}{\to} f(\xi)$.

Theorem A.1 then implies the existence of $\tilde{\xi}_n = (\tilde{\sigma}_n, \tilde{B}_{v,n}) \stackrel{d}{=} (\sigma_n, B_{v,n})$ and $\tilde{\xi} = (\tilde{\sigma}, \tilde{B}_z) \stackrel{d}{=} (\sigma, B_z)$, defined on a single probability space and such that

$$\left(\tilde{\sigma}_n, \tilde{Q}_{\psi,n}, \tilde{Q}_{z,n}, \tilde{\mathcal{L}}_n, \tilde{L}_n\right) := f_n(\tilde{\xi}_n) \stackrel{a.s.}{\to} f(\tilde{\xi}) = (\tilde{\sigma}, Q, Q, 0^{\infty}, 0^{\infty}). \tag{A.2}$$

Finally, we complete the set up by introducing a product extension of the previous probability space where a sequence $\{\tilde{w}_t^*\} \stackrel{d}{=} \{w_t^*\}$ and a standard Brownian motion \tilde{B}_z^* are defined and are independent of $\{(\tilde{\sigma}_n, \tilde{B}_{v,n})\}_{n\geq 1}$ and $(\tilde{\sigma}, \tilde{B}_z)$.

As $\tilde{B}_{v,n}$ and $\tilde{\sigma}_n$ are independent (because $B_{v,n}$ and σ_n are), it holds for any integrable random variable $h(\tilde{\sigma}_n, \tilde{B}_{v,n})$ that $E(h(\tilde{\sigma}_n, \tilde{B}_{v,n})|\tilde{\sigma}_n) = E(h(\gamma, \tilde{B}_{v,n}))|_{\gamma = \tilde{\sigma}_n}$. A similar equality holds for the independent \tilde{B}_z and $\tilde{\sigma}$. Therefore, to prove any convergence of the form

$$E\left(h_n(\tilde{\sigma}_n, \tilde{B}_{v,n})|\tilde{\sigma}_n\right) \stackrel{a.s.}{\to} E\left(h(\tilde{\sigma}, \tilde{B}_z)|\sigma\right),$$
 (A.3)

it is sufficient to prove that $E(h_n(\gamma_n, \tilde{B}_{v,n})) \to E(h(\gamma, \tilde{B}_z))$ for all deterministic sequences $\{\gamma_n\}_{n\geq 1}$ in some set $\Gamma \subset \mathscr{D}_{\infty}[0,1]$ such that $P(\{\tilde{\sigma}_n\}_{n\geq 1} \in \Gamma) = 1$. We now choose and fix Γ . Consider all the outcomes $\tilde{\omega}$ such that convergence (A.2) holds; the set of such outcomes $\tilde{\omega}$ has probability 1. Define $\Gamma \subset \mathscr{D}_{\infty}[0,1]$ as the set of sequences $\{\tilde{\sigma}_n(\cdot,\tilde{\omega})\}_{n\geq 1}$ corresponding to such $\tilde{\omega}$, then $P(\{\tilde{\sigma}_n\}_{n\geq 1} \in \Gamma) = 1$ as required.

As noted in Remark 4.4, we may recover (M_n, U_n) (and hence the original data D_n) from $(\sigma_n, B_{v,n})$ as some measurable transformation, say $m_n(\sigma_n, B_{v,n})$. Define accordingly $(\tilde{M}_n, \tilde{U}_n) := m_n(\tilde{\sigma}_n, \tilde{B}_{v,n})$ (and analogously \tilde{D}_n). With $\tilde{z}_{nt} := \tilde{\psi}_{nt}\tilde{v}_{nt}$, where $\tilde{\psi}_{nt} = \psi_{nt}(\tilde{\sigma}_n)$ and

$$\tilde{v}_{nt} := n^{1/2} \left(\tilde{B}_{v,n}(t/n) - \tilde{B}_{v,n}((t-1)/n) \right),$$

define also the process $\tilde{B}_{z,n}(\cdot) := n^{-1/2} \sum_{t=1}^{\lfloor n \rfloor} \tilde{z}_{nt} =: m_{z,n}(\tilde{\sigma}_n, \tilde{B}_{v,n})$, such that

$$(\tilde{\sigma}_n, \tilde{B}_{z,n}, \tilde{M}_n, \tilde{U}_n) \stackrel{d}{=} (\sigma_n, B_{z,n}, M_n, U_n).$$

We proceed to the convergence of $(\tilde{M}_n, \tilde{U}_n)$ conditional on $\tilde{\sigma}_n$ and prove that

$$E\left(g(\tilde{B}_{z,n},\tilde{M}_n,\tilde{U}_n)\middle|\tilde{\sigma}_n\right) \stackrel{a.s.}{\to} E\left(g(\tilde{B}_z,\tilde{M},\tilde{V})\middle|\tilde{\sigma}\right) \tag{A.4}$$

for continuous bounded real g of matching domain; this convergence is of the form (A.3) with $h_n = g \circ (m_{z,n}, m_n)$. In so doing, for any random element $Z = \phi(\tilde{\sigma}_n, \tilde{B}_{v,n})$ we write $Z(\gamma_n)$ for $\phi(\gamma_n, \tilde{B}_{v,n})$; e.g., $\tilde{B}_{z,n}(\gamma_n) = m_{z,n}(\gamma_n, \tilde{B}_{v,n})$. By the discussion in the previous paragraph, (A.4) will follow from the standard weak convergence of $(\tilde{B}_{z,n}(\gamma_n), \tilde{M}_n(\gamma_n), \tilde{U}_n(\gamma_n))$, for all $\{\gamma_n\}_{n\geq 1} \in \Gamma$, that we establish next.

For $\{\tilde{\sigma}_n\}_{n\in\mathbb{N}}$ replaced by a fixed $\{\gamma_n\}_{n\geq 1}\in\Gamma$, $\tilde{z}_{nt}(\gamma_n)=\psi_{nt}(\gamma_n)\tilde{v}_{nt}$ is an mda satisfying the conditions of Brown (1971)'s functional central limit theorem. First, $E(\psi_{nt}(\gamma_n)\tilde{v}_{nt}|\{\tilde{v}_{ni}\}_{i=1}^{t-1})=\psi_{nt}(\gamma_n)E\left(\tilde{v}_{nt}|\{\tilde{v}_{ni}\}_{i=1}^{t-1}\right)=0$ because the mda property of \tilde{v}_{nt} is inherited from the original probability space as $\{\tilde{v}_{ni}\}_{i=1}^n\stackrel{d}{=}\{v_{ni}\}_{i=1}^n$. Second, $n^{-1}\sum_{t=1}^{\lfloor n\cdot\rfloor}E(\psi_{nt}^2(\gamma_n)\tilde{v}_{nt}^2|\{\tilde{v}_{ni}\}_{i=1}^{t-1})=n^{-1}\sum_{t=1}^{\lfloor n\cdot\rfloor}\psi_{nt}^2(\gamma_n)=\tilde{Q}_{\psi,n}(\cdot,\gamma_n)\to Q(\cdot)$, where the first equality is again inherited from the original probability space, and the convergence by the definition of Γ . Third, as $\tilde{\mathcal{L}}_n(\gamma_n)\to 0^\infty$ again by the choice of Γ , it holds that $n^{-1}\sum_{t=1}^n e_{nm}(\gamma_n)\to 0$ for all $m\in\mathbb{N}$, which is equivalent to

$$n^{-1} \sum_{t=1}^{n} E\left(\tilde{z}_{nt}^{2}(\gamma_{n}) \mathbb{I}_{\{|\tilde{z}_{nt}(\gamma_{n})| > \sqrt{n}/m\}}\right) \to 0, \quad m \in \mathbb{N},$$

by the definition of e_{nm} and implies the Lindeberg condition in its usual form

$$n^{-1} \sum_{t=1}^{n} E\left(\tilde{z}_{nt}^{2}(\gamma_{n}) \mathbb{I}_{\{|\tilde{z}_{nt}(\gamma_{n})| > \sqrt{n}\epsilon\}}\right) \to 0$$

for all $\epsilon > 0$. Therefore,

$$\tilde{B}_{z,n}\left(\gamma_{n}\right) \stackrel{w}{\to} \tilde{B}_{z},$$

in the sense that $E(g(\tilde{B}_{z,n}(\gamma_n))) \to E(g(\tilde{B}_z))$ for continuous bounded real g with matching domain. For the same fixed γ_n , this in turn implies that

$$\tilde{M}_n(\cdot,\gamma_n) = \int_0^{\cdot} \gamma_n(u) d\tilde{B}_{z,n}(u,\gamma_n) \stackrel{w}{\to} \int_0^{\cdot} \gamma(u) d\tilde{B}_z(u),$$

where $\gamma = \lim \gamma_n$ exists by the choice of γ_n . More precisely, by Theorem 2.1 of Hansen (1995), as $\sup_{n\geq 1} \sum_{t=1}^n E(\tilde{z}_{nt}^2(\gamma_n)) = \sup_{n\geq 1} \tilde{Q}_{\psi,n}(1,\gamma_n) < \infty$, the previous convergence holds jointly with that of $\tilde{B}_{z,n}$, such that $E(g(\tilde{B}_{z,n}(\gamma_n), \tilde{M}_n(\cdot, \gamma_n))) \to E(g(\tilde{B}_z, \int_0^{\cdot} \gamma d\tilde{B}_z))$ for continuous bounded real g. Furthermore, using

$$\begin{split} \tilde{U}_n(\cdot) &= n^{-1} \sum_{t=1}^{\lfloor n \cdot \rfloor} \tilde{\sigma}_t^2 \tilde{\psi}_{nt}^2 + n^{-1} \sum_{t=1}^{\lfloor n \cdot \rfloor} \tilde{\sigma}_t^2 \left(\tilde{z}_{nt}^2 - \tilde{\psi}_{nt}^2 \right) \\ &= \int_0^{\cdot} \tilde{\sigma}_n^2(u) \mathrm{d} \tilde{Q}_{\psi,n}(u) + n^{-1} \sum_{t=1}^{\lfloor n \cdot \rfloor} \tilde{\sigma}_t^2 \tilde{e}_{nt}, \end{split}$$

it follows that $\tilde{U}_n(\cdot, \gamma_n) \stackrel{p}{\to} \int_0^{\cdot} \gamma^2(u) du$ by Theorem A.1 of Cavaliere and Taylor (2009), since $\tilde{z}_{nt}^2(\gamma_n) - \tilde{\psi}_{nt}^2(\gamma_n)$ is an mda. As convergence in probability to a constant is joint with any weak convergence of random elements defined on the same probability space, it follows that

$$E\left[g(\tilde{B}_{z,n}(\gamma_n),\tilde{M}_n(\cdot,\gamma_n),\tilde{U}_n(\cdot,\gamma_n))\right] \to E\left[g\left(\tilde{B}_z,\int_0^\cdot\gamma\mathrm{d}\tilde{B}_z,\int_0^\cdot\gamma^2\right)\right]$$

for continuous bounded real g. Since $P(\Gamma) = 1$, $(\tilde{B}_z, \int_0^{\cdot} \gamma d\tilde{B}_z, \int_0^{\cdot} \gamma^2)|_{\gamma = \tilde{\sigma}} = (\tilde{B}_z, \tilde{M}, \tilde{V})$ and \tilde{B}_z is independent of $\tilde{\sigma}$, we can conclude that (A.4) holds.

We turn to the bootstrap processes. Define

$$\tilde{B}_{z,n}^*(\cdot) := n^{-1/2} \sum_{t=1}^{\lfloor n \cdot \rfloor} \tilde{z}_{nt} \tilde{w}_t^*, \quad \tilde{M}_n^*(\cdot) := n^{-1/2} \sum_{t=1}^{\lfloor n \cdot \rfloor} \tilde{\sigma}_t \tilde{z}_{nt} \tilde{w}_t^*, \quad \tilde{U}_n^*(\cdot) := n^{-1} \sum_{t=1}^{\lfloor n \cdot \rfloor} \tilde{\sigma}_t^2 \tilde{z}_{nt}^2 \tilde{w}_t^{*2}.$$

Here we show that

$$E\left(g(\tilde{B}_{z,n}^*, \tilde{M}_n^*, \tilde{U}_n^*)\middle| \tilde{\sigma}_n, \tilde{B}_{v,n}\right) \stackrel{a.s.}{\to} E\left(g(\tilde{B}_z^*, \tilde{M}^*, \tilde{V})\middle| \tilde{\sigma}\right)$$

for continuous bounded real g, where \tilde{B}_z^* is a standard Brownian motion independent of $(\tilde{\sigma}, \tilde{B}_z)$, and $\tilde{M}^*(\cdot) := \int_0^{\cdot} \tilde{\sigma} d\tilde{B}_z^*$. Given that $\{\tilde{w}_t^*\}$ and $(\tilde{\sigma}, \tilde{B}_z)$ are independent, as in the proof of (A.4), we could proceed by fixing $\{(\gamma_n, b_n)\}_{n\geq 1} \in \Gamma B$, where ΓB is an appropriate set with $P((\tilde{\sigma}_n, \tilde{B}_{v,n})_{n\geq 1} \in \Gamma B) = 1$, and then discuss the standard weak convergence of $(\tilde{B}_{z,n}^*, \tilde{M}_n^*, \tilde{U}_n^*)$ as a transformation of $(\gamma_n, b_n, \{\tilde{w}_t^*\})$ instead of $(\tilde{\sigma}, \tilde{B}_z, \{\tilde{w}_t^*\})$. Since now $(\tilde{\sigma}_n, \tilde{B}_{v,n})$ and $\{\tilde{w}_t^*\}$ are defined on a product space, we implement this equivalently by fixing outcomes $\tilde{\omega}$ in the component space of $(\tilde{\sigma}_n, \tilde{B}_{v,n})$ and

letting the outcome in the component space of $\{\tilde{w}_t^*\}$ be the only source of randomness. In what follows, fix an $\tilde{\omega}$ in a probability-one set where convergence (A.2) holds. Then

$$n^{-1/2} \sum_{t=1}^{\lfloor n \cdot \rfloor} \tilde{z}_{nt}(\tilde{\omega}) \tilde{w}_t^* \stackrel{w}{\to} B_z^*(\cdot),$$

because $n^{-1} \sum_{t=1}^{\lfloor n \cdot \rfloor} \tilde{z}_{nt}^2(\tilde{\omega}) = Q_{z,n}(\cdot, \tilde{\omega}) \to Q(\cdot)$ and $L_n(\tilde{\omega}) \to 0^{\infty}$ by the choice of $\tilde{\omega}$, where

$$L_n(\tilde{\omega}) = \left\{ n^{-1} \sum_{t=1}^{\lfloor n \cdot \rfloor} \tilde{z}_{nt}^2(\tilde{\omega}) \mathbb{I}(|\tilde{z}_{nt}(\tilde{\omega})| > \sqrt{n}/m) \right\}_{m \in \mathbb{N}}.$$

It follows that $\tilde{M}_n^*(\cdot,\tilde{\omega}) = n^{-1/2} \sum_{t=1}^{\lfloor n \rfloor} \tilde{\sigma}_t(\tilde{\omega}) \tilde{z}_{nt}(\tilde{\omega}) \tilde{w}_t^* \stackrel{w}{\to} \int_0^{\cdot} \tilde{\sigma}(\tilde{\omega}) d\tilde{B}_z^*$. Further,

$$\begin{split} \tilde{U}_n^*(\cdot,\tilde{\omega}) &= n^{-1} \sum_{t=1}^{\lfloor n \cdot \rfloor} \tilde{\sigma}_t^2(\tilde{\omega}) \tilde{z}_{nt}^2(\tilde{\omega}) \tilde{w}_t^{*2} \\ &= \tilde{U}_n(\cdot) + n^{-1} \sum_{t=1}^{\lfloor n \cdot \rfloor} \tilde{\sigma}_t^2(\tilde{\omega}) \tilde{z}_{nt}^2(\tilde{\omega}) (\tilde{w}_t^{*2} - 1) \stackrel{p}{\to} \tilde{V}(\cdot,\tilde{\omega}), \end{split}$$

using Theorem A.1 of Cavaliere and Taylor (2009). Since $\tilde{V}(\cdot, \tilde{\omega})$ is non-random, the last two convergences are joint:

$$E\left[g\left(\tilde{M}_n^*(\cdot,\tilde{\omega}),\tilde{U}_n^*(\cdot,\tilde{\omega})\right)\right]\to E\left[g\left(\tilde{M}^*(\cdot,\tilde{\omega}),\tilde{V}(\cdot,\tilde{\omega})\right)\right]$$

for continuous and bounded real g. This implies, by the product structure of the probability space and the probability-one set of eligible outcomes $\tilde{\omega}$, that

$$E\left(g(\tilde{M}_n^*, \tilde{U}_n^*)|\tilde{\sigma}_n, \tilde{B}_{v,n}\right) \stackrel{a.s.}{\to} E\left(g(\tilde{M}^*, \tilde{V})|\tilde{\sigma}\right),$$

and eventually, as $(\tilde{M}^*, \tilde{V}, \tilde{\sigma}) \stackrel{d}{=} (\tilde{M}, \tilde{V}, \tilde{\sigma})$, that

$$E\left(g(\tilde{M}_n^*, \tilde{U}_n^*)|\tilde{\sigma}_n, \tilde{B}_{v,n}\right) \stackrel{a.s.}{\to} E\left(g(\tilde{M}, \tilde{V})|\tilde{\sigma}\right).$$

Notice that conditioning on $\tilde{\sigma}_n$, $\tilde{B}_{v,n}$ can be replaced by conditioning on \tilde{D}_n because $(\tilde{M}_n^*, \tilde{U}_n^*)$ is a measurable function of \tilde{D}_n and $\{\tilde{w}_t^*\}$.

We can conclude from (A.4) and this result that

$$\left(E\left[\left.h(\tilde{M}_{n},\tilde{U}_{n})\right|\tilde{\sigma}_{n}\right],E\left[\left.g(\tilde{M}_{n}^{*},\tilde{U}_{n}^{*})\right|\tilde{D}_{n}\right]\right)\overset{a.s.}{\rightarrow}\left(E\left[\left.h(\tilde{M},\tilde{V})\right|\tilde{\sigma}\right],E\left[\left.g(\tilde{M},\tilde{V})\right|\tilde{\sigma}\right]\right)$$

for all continuous and bounded real h, g, whereas on a general probability space

$$(E\left[h(M_n, U_n) | \sigma_n\right], E\left[g(M_n^*, U_n^*) | D_n\right]) \xrightarrow{w} (E\left[h(M, V) | \sigma\right], E\left[g(M, V) | \sigma\right]), \quad (A.5)$$

because $(\tilde{\sigma}_n, \tilde{M}_n, \tilde{U}_n, \tilde{D}_n, \tilde{M}_n^*, \tilde{U}_n^*) \stackrel{d}{=} (\sigma_n, M_n, U_n, D_n, M_n^*, U_n^*)$. This is precisely the definition of the joint $\stackrel{w}{\to}_w$ convergence in the theorem.

PROOF OF COROLLARY 1. From (A.5) with $h = g = \tau$, if the random cdf $P(\tau(M, V) \le |\sigma)$ a.s. has continuous sample paths, conditional validity of the bootstrap as in Corollary 1 follows from Corollary 3.2 of Cavaliere and Georgiev (2020).

PROOF OF LEMMA 1. For any $K \in \mathbb{R}$, consider the continuous function $g_K : \mathbb{R} \to [0,1]$ defined by $g_K(x) = \mathbb{I}_{(-\infty,K]}(x) + (K+1-x)\mathbb{I}_{(K,K+1]}$. Then $\mathbb{I}_{(-\infty,K]} \le g_K \le \mathbb{I}_{(-\infty,K+1]}$ and the convergence $\tau_n^* \stackrel{w^*}{\to}_w \tau^* | \sigma$ implies that

$$F_n^*(K) \le E^*(g_K(\tau_n^*)) \xrightarrow{w} E(g_K(\tau)|\sigma) \le F^*(K+1),$$

where $F^*(K+1) = P(\tau^* \le K+1|\sigma)$. Therefore, for all $q \in (0,1)$,

$$\liminf_{n \to \infty} P(F_n^*(K) \le q) \ge P(F^*(K+1) \le q).$$

As a result,

$$\liminf_{n \to \infty} P(F_n^*(\tau_n) \le q) \ge \liminf_{n \to \infty} P(F_n^*(\tau_n) \le q, \tau_n \le K)$$

$$\ge \liminf_{n \to \infty} P(F_n^*(K) \le q, \tau_n \le K)$$

$$\ge \liminf_{n \to \infty} P(F_n^*(K) \le q) - \lim_{n \to \infty} P(\tau_n > K)$$

$$\ge P(F^*(K+1) < q),$$

since $\tau_n \stackrel{p}{\to} -\infty$ means that $\lim_{n\to\infty} P(\tau_n > K) = 0$ for all $K \in \mathbb{R}$. By Markov's inequality,

$$P(F^*(K+1) \le q) \ge 1 - q^{-1}E(F^*(K+1)) = 1 - q^{-1}P(\tau^* \le K+1),$$

and the proof is completed by letting $K \to -\infty$.

PROOF OF EQ. (23). Notice that

$$\hat{U}_{n}(\cdot) = n^{-1} \sum_{t=1}^{\lfloor n \cdot \rfloor} \left(\sum_{i=0}^{t-1} \psi_{i} \varepsilon_{t-i} \right)^{2}$$

$$= n^{-1} \sum_{t=1}^{\lfloor n \cdot \rfloor} \sum_{i=0}^{t-1} \psi_{i}^{2} \varepsilon_{t-i}^{2} + 2n^{-1} \sum_{t=1}^{\lfloor n \cdot \rfloor} \sum_{i=0}^{t-1} \sum_{j=0}^{i-1} \psi_{i} \psi_{j} \varepsilon_{t-i} \varepsilon_{t-j}$$

$$=: a_{1n}(\cdot) + a_{2n}(\cdot),$$

with $a_{1n}(\cdot)$ and $a_{2n}(\cdot)$ implicitly defined. First, $a_{2n}(\cdot) = o_p(1)$ uniformly in $\cdot \in [0, 1]$, similarly to Lemma A.7 in Cavaliere *et al.* (2010a). Second,

$$a_{1n}(\cdot) = n^{-1} \sum_{t=1}^{\lfloor n \rfloor} \varepsilon_t^2 \left(\sum_{i=0}^{\lfloor n \rfloor - t} \psi_i^2 \right) = \left(\sum_{i=0}^{\infty} \psi_i^2 \right) U_n(\cdot) + b_n(\cdot),$$

with

$$b_n(\cdot) := n^{-1} \sum_{t=1}^{\lfloor n \cdot \rfloor} \varepsilon_t^2 \left(\sum_{i=\lfloor n \cdot \rfloor - t + 1}^{\infty} \psi_i^2 \right).$$

Since the ψ_i 's are exponentially decaying, there exist constants C and $\rho \in (0,1)$ such that $\sum_{i=\lfloor n\cdot \rfloor -t+1}^{\infty} \psi_i^2 \leq C \rho^{\lfloor n\cdot \rfloor -t+1}$. Using the facts that $\max_{t=1,\dots,n} \sigma_t^2 = O_p(1)$ by Assumption 2 and $E(z_t^2) = 1$ by Assumption 1, it holds that

$$\sup_{u \in [0,1]} b_n(u) \leq C n^{-1} \sup_{u \in [0,1]} \sum_{t=1}^{\lfloor nu \rfloor} \sigma_t^2 z_t^2 \rho^{\lfloor n \cdot \rfloor - t + 1} \\
\leq C \left(\max_{t=1,\dots,n} \sigma_t^2 \right) \left(n^{-1} \max_{t=1,\dots,n} z_t^2 \right) \sup_{u \in [0,1]} \left(\sum_{t=1}^{\lfloor n \cdot \rfloor} \rho^{\lfloor n \cdot \rfloor - t + 1} \right) \\
= O_p(1) o_p(1) \sum_{t=1}^n \rho^t = o_p(1).$$

Hence, $\hat{U}_n(\cdot) = (\sum_{i=0}^{\infty} \psi_i^2) U_n(\cdot) + o_p(1)$.

REFERENCES

Brown, B. M. (1971), "Martingale Central Limit Theorems", Annals of Mathematical Statistics 42, 59–66.

Cavaliere, G. and I. Georgiev (2020), "Inference Under Random Limit Bootstrap Measures", *Econometrica* 88, 2547–2574.

Cavaliere, G., A. Rahbek and A. M. R. Taylor (2010a), "Testing for Co-Integration in Vector Autoregressions with Non-Stationary Volatility", *Journal of Econometrics* 158, 7–24.

Cavaliere, G. and A. M. R. Taylor (2009), "Heteroskedastic Time Series with a Unit Root", *Econometric Theory* 25, 1228–1276.

Dudley, R. M. (2004), *Real Analysis and Probability*. Cambridge: Cambridge University Press.

Hansen, B. E. (1992), "Convergence to Stochastic Integrals for Dependent Heterogeneous Processes", *Econometric Theory* 8, 489–500.

Hansen, B. E. (1995), "Regression with Nonstationary Volatility", *Econometrica* 63, 1113–1132.

Kallenberg, O. (1997), Foundations of Modern Probability. New York: Springer.

Rao, M. M. and R. J. Swift (2006). *Probability Theory with Applications*. New York: Springer.