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Abstract

In this paper we investigate to what extent the bootstrap can be applied to con-

ditional mean models, such as regression or time series models, when the volatility

of the innovations is random and possibly non-stationary. In fact, the volatility of

many economic and financial time series displays persistent changes and possible

non-stationarity. However, the theory of the bootstrap for such models has focused

on deterministic changes of the unconditional variance and little is known about

the performance and the validity of the bootstrap when the volatility is driven

by a non-stationary stochastic process. This includes near-integrated exogenous

volatility processes as well as near-integrated GARCH processes, where the condi-

tional variance has a diffusion limit; a further important example is the case where

volatility exhibits infrequent jumps. This paper fills this gap in the literature by de-

veloping conditions for bootstrap validity in time series and regression models with

non-stationary, stochastic volatility. We show that in such cases the distribution of

bootstrap statistics (conditional on the data) is random in the limit. Consequently,

the conventional approaches to proofs of bootstrap consistency, based on the no-

tion of weak convergence in probability of the bootstrap statistic, fail to deliver

the required validity results. Instead, we use the concept of ‘weak convergence in

distribution’ to develop and establish novel conditions for validity of the wild boot-

strap, conditional on the volatility process. We apply our results to several testing

problems in the presence of non-stationary stochastic volatility, including testing
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in a location model, testing for structural change using CUSUM-type functionals,

and testing for a unit root in autoregressive models. Importantly, we work under

sufficient conditions for bootstrap validity that include the absence of statistical

leverage effects, i.e., correlation between the error process and its future conditional

variance. The results of the paper are illustrated using Monte Carlo simulations,

which indicate that a wild bootstrap approach leads to size control even in small

samples.

Keywords: Bootstrap; Non-stationary stochastic volatility; Random limit mea-

sures; Weak convergence in Distribution.

JEL Classification: C32.

1 Introduction

In this paper we consider bootstrap and asymptotic inference on the conditional mean

in econometric time series models when the (conditional) volatility is allowed to show a

large degree of persistence due to possible permanent and stochastic changes, reflecting

the well established fact that volatility in many economic and financial time series

displays high persistence, and covariance non- stationarity.

Earlier references in macroeconomics include Kim and Nelson (1999) and McConnell

and Perez-Quiroz (2000), who find evidence of an (unanticipated) structural change

in the volatility of US GDP growth rates. Evidence of changes in the unconditional

volatility appear in many key time series, such as aggregate consumption and income,

in interest rate data and in nominal and real price variables; see Sensier and van Dijk

(2004). Evidence on changes in the long-run component of volatility in stock and

currency markets are initially reported in Loretan and Phillips (1994) and Hansen

(1995), who show that when stochastic volatility [SV] models are taken to the data,

the largest autoregressive root in the SV process is so close to one that the assumption

of stationary volatility seems to be at odds with the data. Similarly, it is a well-

known stylized fact that GARCH models fit to stock market returns display parameter

estimates which reflect high persistence as they (nearly) violate covariance stationarity

conditions (often referred to as “near-integrated GARCH”), and that such parameters
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are smaller when a slowly-varying long run component is accounted for in the model,

see Engle and Rangel (2008). Harvey et al. (2016) list a number of empirical studies

that have found strong evidence of structural breaks in the unconditional variance of

asset returns, with break dates driven by major financial and macroeconomic crises.

Such (possibly random) volatility shifts are known to affect the asymptotic properties

of estimators of the parameters of models for the conditional mean; see Cavaliere and

Taylor (2007), Xu and Phillips (2008) and, for multivariate models, Cavaliere, Rahbek

and Taylor (2010a;b) and Boswijk, Cavaliere, Rahbek and Taylor (2016).

In the framework of a conditional mean, or a general (stationary, or non-stationary)

regression type model, the wild bootstrap is an important tool to deliver consistent es-

timation of the asymptotic distributions of test statistics or parameter estimators. The

wild bootstrap allows in particular to track changes in the quadratic variation of an

econometric model by simply mimicking the (unknown) volatility dynamics through

the squared model residuals, see Gonçalves and Kilian (2004, 2007) for applications to

stationary time series models and Cavaliere et al. (2010a,b) for non-stationary multi-

variate models.

Consider the simple case where the volatility, say σt, can be approximated by a non-

stochastic element of the space D [0, 1] of càdlàg functions on [0, 1], such that σt = σ(t/n)

(t = 1, . . . , n, n denoting the sample size) with σ ∈ D [0, 1]. Simple special cases are

a single volatility break at time bnτc (with b·c denoting the (floor) integer value), for

some τ ∈ (0, 1), as given by (with IA(·) denoting the indicator function of the set A)

σ(u) := σA + (σB − σA)I[τ ,1](u), for u ∈ [0, 1] ,

where σA > 0 and σB > 0; or the case of trending volatility,

σ(u) := σA + (σB − σA)uδ,

where σA > 0, σB > 0 and δ > 0. A classic wild bootstrap, based on the resampling

scheme ε∗t = ε̂tw
∗
t , where the ε̂t’s are the estimated residuals from the regression model

and the w∗t ’s are i.i.d. (0, 1) bootstrap shocks, independent of the original sample, is in

general able to track the volatility path (in terms of quadratic variation) of the original

data, without any assumption on the initial values of the volatility process as, loosely
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speaking, under standard assumptions

n−1
bnuc∑
t=1

(ε∗t )
2 = n−1

bnuc∑
t=1

ε̂2t (w
∗
t )

2 ≈ n−1
bnuc∑
t=1

ε2t + op(1) =

∫ u

0
σ(s)2ds+ op(1).

Existing theory of the bootstrap mainly focuses on such deterministic changes of the

unconditional variance and little is known about the performance and the validity1 of

the bootstrap when the volatility is driven by a high-persistent, or (second order) non-

stationary stochastic process. This includes leading key cases such as near-integrated

exogenous volatility processes (as analyzed by Hansen, 1995), as well as near-integrated

GARCH processes, where the conditional variance has a diffusion limit (Nelson, 1990).

This paper fills this gap in the literature by developing conditions for bootstrap

validity and consistency of the associated bootstrap tests in regression and time se-

ries models with persistent stochastic volatility. That is, we replace the deterministic

volatility assumption by allowing that volatility is the realization of a (non-stationary)

stochastic process σt; specifically, we derive results under the general assumption that,

for the càdlàg version of the volatility, it holds that

σbun+1c
w→ σ(u) for u ∈ [0, 1] , (1)

where σ is some random element in D [0, 1].

The analysis of the bootstrap under a weak convergence assumption like (1) is not

straightforward. As we show in the paper, a key fact under non-stationary stochastic

volatility is that the distribution of bootstrap statistics (conditional on the data), rather

than converging to the unconditional distribution of the statistic of interest, converges

weakly to a random limit. By this we mean that the distribution function of the

bootstrap statistic (conditional on the data) is stochastic not only for finite sample

sizes n, but also in the limit as n → ∞. Consequently, the conventional approach,

based on the notion of weak convergence in probability of the bootstrap statistic to

the limiting distribution of the original statistic (which is obviously non-stochastic),

fails to deliver the required result of validity of the bootstrap. This problem is not

new in the bootstrap literature, as it appears in various areas of application of the

1Throughout the paper, with ‘validity’ of the bootstrap we mean that the associated bootstrap tests

control size asymptotically. With ‘consistency of the bootstrap test’ we mean that the (bootstrap) test

rejects with probability tending to one under the alternative.
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bootstrap; for example, in models with infinite variance innovations (Knight, 1989) and

in autoregressive models with unit roots (Basawa et al., 1991; Cavaliere et al., 2015).

Specifically, in this paper we analyze the wild bootstrap under (non-stationary)

stochastic volatility by adopting a new approach to assess bootstrap validity under

random limit bootstrap measures. Thus, rather than focusing on the usual weak con-

vergence in probability of the bootstrap conditional distribution, we make use of the

concept of weak convergence in distribution (see Cavaliere and Georgiev, 2020, for a

general introduction) to develop novel conditions for validity of the wild bootstrap,

conditional on the volatility process. This allows us to establish that, although the

presence of a random limiting distribution for the bootstrap statistic makes the boot-

strap unable to estimate the unconditional distribution of the statistic of interest, the

bootstrap can still deliver hypothesis tests with the desired size. In particular, we do

this by establishing that the high-level conditions for bootstrap validity in Cavaliere

and Georgiev (2020) can be shown to hold for a large class of models with stochastic

volatility, including the aforementioned near-integrated GARCH model and the non-

stationary stochastic volatility model. We do so by showing new weak convergence

results conditional on volatility paths.

To illustrate our new approach and its applicability, we apply our results to three

leading testing problems in the presence of non-stationary stochastic volatility, including

testing a hypothesis on the location of a time series, testing for a unit root and testing

for stability of the conditional mean using CUSUM-type statistics. These illustrative

examples can easily be extended to cover more general cases, such as cointegration

(as in Cavaliere et al., 2010a, Cavaliere et al., 2015 and Boswijk et al., 2016) with

multivariate stochastic volatility, or multivariate stability tests (see Perron, 2006 and

Casini and Perron, 2019). Importantly, for all examples we show that conditions for

conditional wild bootstrap validity include the absence of statistical leverage effects, i.e.

correlation between the error process and its future conditional variance. The results

of the paper are illustrated using Monte Carlo simulations, which indicate that under

the conditions developed in our paper, the wild bootstrap leads to excellent size control

even in small samples.
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Structure of the paper

The structure of the paper is the following. In Section 2 we introduce the reference

data generating process and our main assumptions, in particular on the volatility. Here

we also introduce three examples which are used throughout the paper to illustrate the

main results. We also derive the reference limit distribution for non-bootstrap statistics

under non-stationary volatility. In Section 3 we introduce the main (wild) bootstrap

algorithm. We show that when volatility is non-stationary, the bootstrap fails to mimic

the asymptotic distribution of the corresponding statistics, and hence it is not valid in

the usual sense. In Section 4 we discuss the wild bootstrap and prove, under proper

assumptions, validity conditionally on the volatility path, as well as consistency of the

bootstrap tests under the alternative. We first introduce in Section 4.1 the concept

of weak convergence in distribution and discuss how to prove validity of the bootstrap

in the presence of random limit bootstrap distributions, as it happens here under non-

stationary volatility. Then in Section 4.2 we provide our main results under the required

additional conditions on the original data. In Section 4.3 we apply our results about

validity of the bootstrap in our three applications. Finally, in Section 4.4 we discuss

consistency of the bootstrap tests under the alternative hypothesis. Results from a

Monte Carlo study on the finite sample behavior of the bootstrap tests are reported in

Section 5. Section 6 concludes. All proofs are reported in the online appendix.

Notation

The following (standard) notation is used throughout. With x := y (y =: x) we mean

that x is defined by y (y defined by x). For any q ∈ R (R denoting the set of real

numbers), bqc denotes the integer part of q. For random elements (Xn, X) of a metric

space, weak convergence of Xn to X is denoted by Xn
w→ X. Also,

d
= denotes equality in

distribution. We use P ∗, E∗ and V ∗ respectively to denote probability, expectation and

variance, conditional on the original sample. With
w∗
→p we denote weak convergence in

probability; in particular, for random varables (X∗n, X), the notation X∗n
w∗
→p X means

that, as the sample size n diverges, the cumulative distribution function [cdf] G∗n of

Xn, conditional on the original data, converges in probability to the cdf G of X, at

all continuity points of G. For a given sequence X∗n of random elements, computed
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from the bootstrap data, X∗n − X = o∗p(1), in probability, or X∗n
p∗→p X, means that

for any ε > 0, P ∗(||X∗n − X|| > ε)
p→ 0, as n → ∞. Similarly, X∗n = O∗p(1), in

probability, means that, for every ε > 0, there exists a constant M > 0 such that, for

all large n, P (P ∗(||X∗n|| > M) < ε) is arbitrarily close to one. Weak convergence in

distribution and the related notation are introduced in Section 4.1. The Skorokhod

spaces of càdlàg functions [0, 1] → Rm×n and [0, 1] → Rn are denoted by Dm×n[0, 1]

and Dn[0, 1], respectively; for the latter, when n = 1 the subscript is suppressed. The

Skorokhod space of càdlàg functions R→ R is denoted by D(R).

2 Set-up and preliminaries

In this section we introduce our reference class of models for the conditional mean under

stochastic volatility as well as the (test) statistics of interest. In Section 2.1 we focus

on statistics which can be expressed (at least when the associated null hypothesis holds

true) as functionals of the partial sum of the innovations and of the partial sum of

the squared innovations. To illustrate ideas, we consider three simple univariate cases

(which can easily be extended to multivariate cases) throughout: (i) testing a hypothesis

on the mean in a simple location model; (ii) CUSUM testing for parameter constancy

in a location model; (iii) testing for an autoregressive unit root in an AR(1) model.

The main assumption on the volatility — which, inter alia, allows for non-stationary

stochastic volatility or near-integrated GARCH dynamics — is discussed next in Section

2.2. Under the assumptions in Sections 2.1 and 2.2, the asymptotic (null) distributions

can be derived. We do this in Section 2.3, where we show that the limiting distribution

can be expressed in terms of a continuous martingale and its quadratic variation process.

The implications of these results on bootstrap inference and hypothesis testing are the

focus of the main Sections 3 and 4.

2.1 Model and hypotheses of interest

We are concerned with inference and hypothesis testing on the regression parameters

of a heteroskedastic time series regression model in a triangular array form:

yn,t = β′xn,t + εn,t, t = 1, . . . , n; n = 1, 2, . . . (2)
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where εn,t is a martingale difference sequence (mds) relative to a suitable filtration Fn,t,

with conditional variance σ2n,t = E(ε2n,t|Fn,t−1). To simplify notation, unless strictly

required we simply write (2) as yt = β′xt + εt, with σ2t := E(ε2t |Ft−1).

Inference focuses on test statistics, which we assume can be expressed (at least under

the null hypothesis) as functionals of partial sum processes in terms of the innovations

and squared innovations

(Mn(u), Un(u)) :=

(
n−1/2

∑bnuc

t=1
εt, n

−1
∑bnuc

t=1
ε2t

)
, u ∈ [0, 1]. (3)

as is the case for many testing problems, see also the discussion and examples below.

Defining Fn(u) := Fbnuc, the mds assumption implies that {Mn(u),Fn(u)}u∈[0,1] is

a martingale for all n, and Un(u) is its quadratic variation process, i.e.,

Un(u) = [Mn](u) =

bnuc∑
t=1

(
Mn

(
t

n

)
−Mn

(
t− 1

n

))2

, u ∈ [0, 1]. (4)

Throughout it will also be useful to define the predictable quadratic variation or angle

bracket process (see Jacod and Shiryaev, 2003):

Vn(u) := 〈Mn〉(u) = n−1
∑bnuc

t=1
σ2t , u ∈ [0, 1], (5)

with the defining property that
{
M2
n(u)− 〈Mn〉(u),Fn(u)

}
u∈[0,1] is a martingale.

The following three testing problems are discussed in the paper. These are all special

cases of (2) where the statistic of interest is indeed a functional of (Mn, Un).

Example 1 (testing in a location model). Consider the location model yt =

θ + εt, which is trivially obtained from (2) by setting β = θ and xt = 1. The true

location parameter is denoted by θ0. Suppose that interest is in testing the simple null

hypothesis θ = θ̄. Then, one can consider the test statistic Sn :=
√
n(yn − θ̄), where

yn = n−1
∑n

t=1 yt, or, alternatively, its studentized version Tn :=
√
n(yn − θ̄)/sn, with

s2n = n−1
∑n

t=1(yt − ȳn)2. It is not difficult to see that, under the null hypothesis, it

holds that Sn and Tn can be expressed in terms of Mn and Un defined in (3) as

Sn =
√
n(yn − θ̄) = Mn(1), Tn =

√
n

(yn − θ̄)
sn

=
Mn(1)√

Un(1)− n−1Mn(1)2
.

If sn is constructed with the null imposed, i.e. s2n = n−1
∑n

t=1(yt − θ̄)2, then under the

null hypothesis Tn simplifies to

Tn =
Mn(1)√
Un(1)

.
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Example 2 (CUSUM test in a location model). Consider the time-varying

location model yt = θt + εt, and suppose that interest is in testing the null hypothesis

of a constant location parameter, i.e. H0 : θt = θ1, t = 2, . . . , n. A standard CUSUM

test can be constructed by considering the statistic (see e.g. Deng and Perron, 2008,

and the references therein)

CSn :=
1

n1/2
max
t=1,...,n

∣∣∣∣∣
t∑
i=1

(yi − ȳn)

∣∣∣∣∣ ,
or its studentized version,

CTn :=
1

snn1/2
max
t=1,...,n

∣∣∣∣∣
t∑
i=1

(yi − ȳn)

∣∣∣∣∣ ,
which, as in Example 1, reduce to

CSn = sup
u∈[0,1]

|Mn(u)− uMn(1)|, CTn =
supu∈[0,1] |Mn(u)− uMn(1)|√

Un(1)− n−1M2
n(1)

under H0.

Example 3 (Testing for a unit root) Consider the first-order autoregression yt =

(1 + θ)yt−1 + εt, with y0 = 0 (which again follows from (2) by setting β = 1 + θ and

xt = yt−1). A test of the unit root hypothesis θ = 0 can be based on the Dickey-

Fuller ‘coefficient’ statistic Rn := nθ̂n, where θ̂n =
∑n

t=1 yt−1∆yt/
∑n

t=1 y
2
t−1 is the

least-squares estimator from the regression of ∆yt on yt−1. Under the null hypothesis,

θ̂n =
∑n

t=1 εt(
∑t−1

i=1 εi)/
∑n

t=1(
∑t−1

i=1 εi)
2 and the test statistic may be expressed as

Rn =

∫ 1
0 Mn(u)dMn(u)∫ 1

0 M
2
n(u)du

=
1
2

(
M2
n(1)− Un(1)

)∫ 1
0 M

2
n(u)du

.

If the test is based on the Dickey-Fuller ‘ratio’ statistic Wn := θ̂n(sn/(
∑n

t=1 y
2
t−1))

−1/2,

where s2n := n−1
∑n

t=1(∆yt − θ̂yt−1)2, then

Wn =

∫ 1
0 Mn(u)dMn(u)√∫ 1

0 M
2
n(u)du

1√
Un(1)− n−1(

∫ 1
0 Mn(u)dMn(u))2/

∫ 1
0 M

2
n(u)du

under the null hypothesis. �

Some remarks are in order.
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Remark 2.1 Although for fixed n, Un can be determined from Mn as seen in (4), it

does not define a continuous function h : D [0, 1] → D [0, 1]. Therefore, limit results

for Un cannot be obtained from weak convergence of Mn together with the continuous

mapping theorem [CMT]. Joint weak convergence of (Mn, Un) is required to obtain the

asymptotic null distribution of the statistics Tn, CTn, Rn and Wn. This is related

to the well-known fact that weak convergence of
∫ 1
0 MndMn to the stochastic integral∫ 1

0 MdM does not follow from Mn
w→M and the CMT; see e.g. Chan and Wei (1988).

Remark 2.2 The above examples involve single-parameter models. In more general

testing situations, such as testing for a unit root in higher-order autoregressive models,

the statistic of interest may be written as a functional of (Mn, Un) plus an asymptotically

negligible term. The theory developed in this paper can be extended to cover such

cases. �

2.2 Non-stationary stochastic volatility

We now introduce our basic hypotheses on the dynamic behavior of the conditional

volatility σ2t of the shocks εt. More specifically, we will allow volatility to be a per-

sistent stochastic process, with a stochastic volatility weak limit, as formulated in the

next two assumptions. These are in the spirit of the seminal paper by Hansen (1995),

who considers conditional variances driven by nearly-integrated autoregressive shocks,

although we do not constrain the behavior of the conditional variance to be of the

autoregressive type.

Assumption 1 In (2), we have εt = σtzt, where zt is a martingale difference sequence

relative to Ft = σ({zi}ti=1 , {σi}
t+1
i=1), satisfying E(z2t |Ft−1) = 1.

Define now the D [0, 1] version of the partial sum of the zt’s as Bz,n(u) := n−1/2
∑bnuc

t=1 zt,

u ∈ [0, 1], and σn(u), u ∈ [0, 1], the D [0, 1] version of σt, as:

σn(u) := σbnu+1c, for u ∈ [0, 1), (6)

with σn(1) := σn. In the following, the process σn(u), u ∈ [0, 1], will be referred to as

σn; this should not be confused with σt for t = n, as also will be clear from the context

where the notation is used.
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Assumption 2 As n → ∞, (σn(u), Bz,n(u))
w→ (σ(u), Bz(u)) in D2 [0, 1], where σ ∈

D [0, 1] is a stochastic process satisfying infu∈[0,1] σ(u) > 0 a.s., and Bz is a standard

Brownian motion on [0, 1].

While the convergence of the partial sum Bz,n ∈ D [0, 1] is standard, the requirement on

σn ∈ D [0, 1] is not. More specifically, this assumption requires the conditional variance

process {σ2t }nt=1 to be persistent enough such that its behavior can be approximated by

an element of the space of càdlàg functions D [0, 1]. No higher moment conditions are

required on {σ2t }nt=1 or {εt}nt=1. Some examples of processes satisfying Assumptions 1

and 2 are presented next. These will be analyzed in detail throughout the paper; for

additional cases and discussions see e.g. Cavaliere and Taylor (2009).

Example V.1 (Stochastic volatility) Let σ2t be generated by

log σ2t = φn log σ2t−1 + (1− φn) log σ̄2 + n−1/2ηt−1, t = 1, 2, . . .

where σ20 = σ̄2 for some σ̄ > 0, φn = e−κ/n for some κ ≥ 0, and ηt ∼ i.i.d. N(0, σ2η),

independent of zt ∼ i.i.d. N(0, 1). Then (σn, Bz,n)
w→ (σ,Bz) in D2[0, 1], where:

d log σ2(u) = κ(log σ2(u)− log σ̄2)du+ σηdBη(s), u ∈ [0, 1].

with σ2(0) = σ̄2, and where (Bη, Bz) is a bivariate standard Brownian motion.

Example V.2 (Near-integrated GARCH) Consider the case where σ2t is gener-

ated by the standard GARCH recursion

σ2t = ωn + αnε
2
t−1 + βnσ

2
t−1 = ωn + αnσ

2
t−1z

2
t−1 + βnσ

2
t−1, t = 1, 2, . . .

where σ20 = σ̄2 for some σ̄ > 0, αn + βn = 1− n−1κ for some κ ≥ 0, αn = (2n)−1/2ση

for some ση > 0, ωn = n−1σ̄2κ and zt ∼ i.i.d. N(0, 1). Then it follows from Nelson

(1990) that (σn, Bz,n)
w→ (σ,Bz) in D2[0, 1], where

dσ2(u) = κ(σ2(u)− σ̄2)du+ σησ
2(u)dBη(u), u ∈ [0, 1],

with σ2(0) = σ̄2, and where (Bη, Bz) is a bivariate standard Brownian motion. �

Remark 2.3 In both examples, the process generating σ2t depends on the sample size

n, so that
{
σ2nt
}
1≤t≤n;n≥1 is actually a triangular array. We will not make this explicit

in the notation in this section.
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Remark 2.4 The initial condition σ20 equals σ̄2 in both examples; this value represents

the unconditional variance in the GARCH model, and log σ̄2 is the (unconditionally)

expected log-variance in the stochastic volatility model, in both cases assuming κ > 0.

However, this has only been assumed for simplicity: the examples can be generalized to

allow for an arbitrary initial condition, fixed or random, as long as it satisfies σ20
w→ σ2(0)

for some strictly positive random variable σ2(0), independent of Bη.

Remark 2.5 The main difference between the examples is that in Example V.1, the

volatility shocks {ηt}t≥1 are independent of {zt}t≥1, whereas in Example V.2, the vari-

ance is driven by ηt = (z2t −1)/
√

2, which is fully determined by (although uncorrelated

with) zt. In both examples, however, the limit volatility process σ(·) is independent of

the Brownian motion Bz generated by {zt}. If we think of εt as the deviation of a finan-

cial return from its conditional expectation, and {σt} as its conditional volatility, then

this rules out so-called leverage effects, i.e., asymmetric effects of positive and negative

return shocks εt on future volatility σt+h, h > 0. Although the results given in this

section also apply to processes with leverage, we will assume (asymptotic) independence

in order to establish bootstrap validity.

Remark 2.6 In Example V.1, the log-volatility follows a near-integrated first-order

autoregression, converging weakly to an Ornstein-Uhlenbeck [OU] process. Similarly,

in Hansen (1995) {σt} satisfies Assumption 2 with σ(·) a (possibly nonlinear) transfor-

mation of an OU process (or Brownian motion). Cases where the volatility is allowed

to jump at a countable number of times (while being constant between these jump

times) are also allowed by our assumption. For instance, let σt = exp(ω0 +ω1Jt), Jt :=∑t
i=1 δiηi, J0 = 0 a.s., where for all t, δt is a Bernoulli random variable which equals one

if and only if a volatility jump occurs at time t. If the ηt’s (which denote the random

jump sizes) are i.i.d., independent of δt’s, and if P (δt = 1) = λn−1, then in D [0, 1]

(see Georgiev, 2008) Jn(u) := Jbnuc converges weakly to the compound Poisson process

Cλ(u) :=
∑N(u)

i=1 ηi, where N is a Poisson process in D [0, 1] with intensity parameter λ.

As expected, the limiting volatility process is σ(u) = exp (ω0 + ω1Cλ(u)), a piecewise

constant process with number of discontinuities given by N(1). �
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2.3 Standard asymptotics under non-stationary stochastic

volatility

Assumptions 1 and 2 allow to analyze the asymptotic behavior of the functional (Mn, Un),

as is done in the following Lemma.

Lemma 1 Under Assumptions 1 and 2, we have in D2 [0, 1] as n→∞,

(Mn(u), Un(u))
w→ (M(u), V (u)) :=

(∫ u

0
σ(s)dBz(s),

∫ u

0
σ2(s)ds

)
, u ∈ [0, 1], (7)

with V (u) = 〈M〉 (u). Furthermore,

sup
u∈[0,1]

|Un(u)− Vn(u)| p→ 0. (8)

The implications for the testing problems in Section 2.1 are given next.

Example 1 (cont’d). Consider the location model of Example 1. A straightforward

application of Lemma 1 along with the CMT yields that, under H0, Sn = Mn(1)
w→

M(1), which corresponds to the mixed normal distribution N(0,
∫ 1
0 σ

2(u)du) and hence

is non-pivotal. For Tn it holds that

Tn =
Mn(1)√
Un(1)

+ op(1)
w→ M(1)√

V (1)
=

∫ 1
0 σ(u)dBz(u)√∫ 1

0 σ
2(u)du

. (9)

Notice that the limit distribution in (9) is non-pivotal in cases where σ and Bz are not

stochastically independent. In contrast, should independence hold, then (9) corresponds

to a standard Gaussian distribution.

Example 2 (cont’d). For the CUSUM test statistics of Example 2 it holds that, again

by Lemma 1 and the CMT, that under H0

CSn = sup
u∈[0,1]

|Mn(u)− uMn(1)| w→ sup
u∈[0,1]

|M(u)− uM(1)|,

CTn =
supu∈[0,1] |Mn(u)− uMn(1)|√

Un(1)− n−1M2
n(1)

w→
supu∈[0,1] |M(u)− uM(1)|√

V (1)
.

Both statistics have a non-pivotal asymptotic null distribution, even in cases where the

limit stochastic volatility process and the limit Brownian motions are stochastically

independent.
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Example 3 (cont’d). Finally, as shown in Cavaliere and Taylor (2009), for the unit

root testing problem the presence of non-stationary volatility renders the null distri-

bution of the Dickey-Fuller coefficient and t-statistics non-pivotal. More specifically,

under the unit root null hypothesis it holds that

Rn =
1
2

(
M2
n(1)− Un(1)

)∫ 1
0 M

2
n(u)du

w→
1
2(M(1)2 − V (1))∫ 1

0 M
2(u)du

=

∫ 1
0 M(u)dM(u)∫ 1
0 M

2(u)du
,

and

Wn =

∫ 1
0 Mn(u)dMn(u)√∫ 1

0 M
2
n(u)du

1√
Un(1) + op(1)

w→
∫ 1
0 M(u)dM(u)√
V (1)

∫ 1
0 M

2(u)du

as the sample size diverges. �

3 Bootstrap under non-stationary stochastic

volatility

Consider the standardized sample mean statistic Sn for the location model, see Exam-

ple 1. Lemma 1 implies that under the null hypothesis Sn
w→ M(1) =

∫ 1
0 σ(u)dBz(u),

see (7). The distribution of M(1) depends on the limit volatility process σ, implying

that critical values cannot be tabulated without providing a complete specification of

this process. When the Brownian motion Bz and the limit volatility process σ are in-

dependent, then in the location model of Example 1 this problem can be avoided by

considering the studentized test statistic Tn, which has a standard normal limit distri-

bution under the null. However, in other testing problems (such as those in Examples

2 and 3) it is generally not possible to find such asymptotically pivotal statistics.

This motivates the development of bootstrap tests. Following much of the literature

(e.g. Cavaliere and Taylor, 2008, 2009), we consider the wild bootstrap, which replicates

the volatility patterns in the original data. Let w∗t be an i.i.d. sequence with mean zero

and variance one2, independent of {σt, zt}t≥1, and define the bootstrap shocks as

ε∗t = εtw
∗
t , t = 1, 2, . . . , n.

Accordingly, we can define the bootstrap partial sum and the bootstrap partial sum of

2Further conditions on the moments of w∗
t may be required in some specific applications.
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squares,

(M∗n(u), U∗n(u)) =

(
n−1/2

∑bnuc

t=1
ε∗t , n

−1
∑bnuc

t=1
(ε∗t )

2

)
, u ∈ [0, 1].

These processes are the bootstrap analogs of the processes Mn and Un of Section 2.

Notice that this implementation of the bootstrap assumes that εt is observed under the

null hypothesis, which is the case in Examples 1 and 3 (location and unit root test). In

more general testing problems, including Example 2 (CUSUM test), εt will be replaced

by some residuals ε̂t (either restricted by the null hypothesis or unrestricted).

3.1 Failure of classic bootstrap validity

Classic validity of the bootstrap (usually denoted as ‘bootstrap consistency’) is usually

understood as the convergence in probability (or almost surely) of the conditional (on

the original data) cdf of the bootstrap statistic to the limit cdf of the original statistic.

We show here that, in the presence of stochastic volatility as in the previous section,

in general classic validity of the bootstrap fails. This is essentially because the con-

ditional cdf of the bootstrap statistic remains random in the limit. In this section

we discuss this fact and its implications on bootstrap inference using, as the reference

bootstrap algorithm, a wild bootstrap scheme as is typically applied when the data are

heteroskedastic.

Focusing again on the location statistic Sn, its bootstrap counterpart is S∗n =

n−1/2
∑n

t=1 ε
∗
t = M∗n(1) where M∗n is as previously defined. Define P ∗ as the boot-

strap measure conditional on the original data, Dn. The bootstrap (conditional) cdf

is

F ∗n(x) := P ∗(S∗n ≤ x) = P (S∗n ≤ x|Dn).

The classical condition for bootstrap validity is that, as n → ∞, S∗n
w∗
→p S :=

M(1). If the limit cdf F (x) := P (S ≤ x) is continuous, then this weak convergence in

probability corresponds to the property

sup
x∈R
|F ∗n(x)− F (x)| p→ 0, (10)

where F denotes the cdf of the asymptotic distribution of Sn:

F (x) := P (N(0, V (1)) ≤ x) =

∫
Φ(V (1)−1/2x)dP (V (1)),
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where Φ(·) is the standard normal cdf. Because F (x) is the marginal cdf of S = M(1),

under independence of the processes Bz and σ it corresponds to the cdf of the mixed

normal random variable S = V (1)1/2Z, where Z ∼ N(0, 1), independent of V (1).

However, under Assumption 2, condition (10) fails to hold, which is seen as follows.

Choosing w∗t ∼ i.i.d. N(0, 1) for convenience, it is seen that

S∗n|Dn ∼ N(0, Un(1))|Un(1). (11)

This follows because, conditional on the original data,

S∗n = n−1/2
∑n

t=1 εtw
∗
t ∼ N(0, n−1

∑n
t=1 ε

2
t ) ∼ N(0, Un(1)).

In terms of the conditional distribution F ∗n of S∗n given the data Dn, (11) corresponds

to

F ∗n(x) := P ∗(S∗n ≤ x) = P (N(0, Un(1)) ≤ x|Un(1))

= P (N(0, 1) ≤ Un(1)−1/2x|Un(1)) = Φ(Un(1)−1/2x).

Letting n → ∞, the limit distribution of the bootstrap statistic given the data follows

from Lemma 1 and the CMT. Specifically, we have that

F ∗n(x)
w→ Φ(V (1)−1/2x) (12)

for all x ∈ R; eq. (12) implies that the limit distribution of the bootstrap cdf is in fact

random. That is, the bootstrap cdf F ∗n does not converge in probability but weakly, and

the limiting cdf is random, as it depends on the random variable V (1). Therefore, there

is no reason to expect that the difference between the random function F ∗n and the non-

random function F converges in probability to 0, as required for standard bootstrap

validity to apply.

The fact that the conditional cdf F ∗n converges weakly (in D(R)), rather than in

probability, to a random cdf, will be referred to as ‘weak convergence in distribution’,

and denoted as ‘
w→w’. More specifically, for sequences of random variables (Zn, Yn) and

(Z, Y ) (possibly defined on different probability spaces), the notation Zn|Yn
w→w Z|Y ,

when the conditional distribution of Z|Y is diffuse (non-atomic), means that

Fn(·|Yn) := P (Zn ≤ ·|Yn)
w→ P (Z ≤ ·|Y ) =: F (·|Y ), in D(R). (13)
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A more general definition of Zn|Yn
w→w Z|Y , which includes non-diffuse conditional

distributions and that is applicable to the case where (Zn, Yn) and (Z, Y ) are random

elements of the metric spaces SZ×SYn and SZ×SY , respectively (and hence to stochastic

processes), is that E(g(Zn)|Yn)
w→ E(g(Z)|Y ) for all bounded continuous functions

g : SZ → R, see Cavaliere and Georgiev (2020) and the references therein. We generalize

this definition to multivariate (joint) convergence in Section 4.1 below and employ it to

prove bootstrap validity conditionally on the volatility path.

When Zn represents a bootstrap statistic and the conditioning set Yn is the original

data Dn, we use the notation ‘
w∗
→w’. Hence, eq. (12) corresponds to the weak convergence

in distribution

S∗n
w∗
→w N(0, V (1))|V (1).

Unless V (1) is non-random (which is not the case under stochastic volatility as consid-

ered here), this convergence shows that the limit bootstrap measure is indeed a random

measure. Hence, the bootstrap cannot be valid in the usual sense of weak convergence

in probability of F ∗n to F .

3.2 Examples (continued)

The result in Section 3.1 applies to the other examples considered, except for the asymp-

totically pivotal statistic Tn.

Example 1 (cont’d). Consider the location model example and assume that the

bootstrap data are generated as y∗t = ε∗t , with ε∗t as defined above. The bootstrap test

statistics are S∗n :=
√
nε̄∗n and T ∗n :=

√
nε̄∗n/s

∗
n, s∗n = (n−1

∑n
t=1(ε

∗
t − ε̄∗n)2)1/2. Using

the argument discussed above, we have that S∗n
w∗
→w M∗(1)|V (1), where M∗(u) :=∫ u

0 σ(s)dB∗z (s) with B∗z a standard Brownian motion, stochastically independent of σ,

and V (1) :=
∫ 1
0 σ(u)2du. The conditional distribution of M∗(1)|V (1) is equal (a.s.) to

the conditional normal distribution N(0, V (1))|V (1). In contrast, for T ∗n it holds that

T ∗n
w∗
→w

M∗(1)√
V (1)

∣∣∣∣∣V (1),

where the limit corresponds to a conditional N(0, 1) distribution (independent of V (1)),

following from the conditional N(0, V (1)) distribution of M∗(1)|V (1). Since weak con-
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vergence of a conditional distribution to a non-random cdf corresponds to weak conver-

gence in probability, in this special case T ∗n
w∗
→p N(0, 1).

Two facts are worth stressing. First, in the above representations of the limit con-

ditional distribution of the bootstrap statistic, σ and B∗z are independent, even if the

original processes σ and Bz are not. This result stems from the assumption that the

wild bootstrap shocks w∗t are independent of the original data. Second, if σ and Bz

are stochastically independent, then the conditional distributions of M∗(1)|V (1) and

M(1)|V (1) are equal (a.s). This distributional equality is crucial to determine validity

of the bootstrap.

Example 2 (cont’d). For the bootstrap CUSUM statistics, suppose that the boot-

strap data are generated as ε∗t = ε̂tw
∗
t where ε̂t := yt − ȳn, such that when the null

hypothesis is true ε̂t = εt − ε̄n. The bootstrap statistics are defined as

CS∗n = sup
u∈[0,1]

|M∗n(u)− uM∗n(1)|, CT ∗n =
supu∈[0,1] |M∗n(u)− uM∗n(1)|√

U∗n(1)− n−1M∗n(1)2
,

with M∗n(u) := n−1/2
∑bn·c

t=1 ε
∗
t as above and U∗n(1) := n−1

∑n
t=1(ε

∗
t )

2. Under the null

hypothesis,

n−1/2
bnuc∑
t=1

ε∗t = n−1/2
bnuc∑
t=1

ε̂tw
∗
t = n−1/2

bnuc∑
t=1

εtw
∗
t +O∗p(n

−1/2),

uniformly in u ∈ [0, 1], and it holds that

CS∗n
w∗
→w sup

u∈[0,1]
|M∗(u)− uM∗(1)|

∣∣∣σ,
CTn

w∗
→w

supu∈[0,1] |M∗(u)− uM∗(1)|√
V (1)

∣∣∣∣∣σ,
where again M∗(u) :=

∫ u
0 σ(s)dB∗z (s) with B∗z a standard Brownian motion, stochas-

tically independent of σ, and V (1) :=
∫ 1
0 σ(u)2du. Both bootstrap statistics have a

random non-pivotal asymptotic null distribution.

Example 3 (cont’d). Finally, consider the unit root example. To avoid the problems

described in Basawa et al. (1991), the bootstrap data are generated with the unit root

imposed, i.e. y∗t = y∗t−1+ε∗t , with y∗0 = 0 and ε∗t := (∆yt)w
∗
t ; see e.g. Cavaliere and Taylor
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(2008). Under the null, clearly ε∗t := εtw
∗
t . As discussed earlier for the non-bootstrap

case, we have that

R∗n =
1
2

(
M∗2n (1)− U∗n(1)

)∫ 1
0 M

∗2
n (u)du

, (14)

and, up to a negligible term,

W ∗n =
1
2

(
M∗2n (1)− U∗n(1)

)√
U∗n(1)

∫ 1
0 M

∗2
n (u)du

.

In this case it holds that

R∗n
w∗
→w

∫ 1
0 M

∗(u)dM∗(u)∫ 1
0 M

∗2(u)du

∣∣∣∣∣σ, W ∗n
w∗
→w

∫ 1
0 M

∗(u)dM∗(u)√
V (1)

∫ 1
0 M

∗2(u)du

∣∣∣∣∣∣σ, (15)

where M∗(u) :=
∫ u
0 σ(s)dB∗z (s) with B∗z a standard Brownian motion, stochastically

independent of σ, and V (u) :=
∫ u
0 σ(s)2ds. The asymptotic distributions in (15) are

random, except in the special case where σ is non-stochastic. �

Cavaliere and Georgiev (2020) provide a number of other examples where the boot-

strap validity condition (10) fails for any non-random cdf F , and develop an alternative

criterion for conditional bootstrap validity. We will apply this concept to the present

situation and extend it to the analysis of consistency of the bootstrap tests in the next

section.

4 Validity of the bootstrap

Despite the fact that under non-stationary stochastic volatility the bootstrap is unable

to consistently estimate the limiting distribution of the original statistic, it can still be

valid, in the sense that it delivers control over type one error probabilities as n diverges.

This can be seen by focusing on the bootstrap p-value. Taking the statistic Sn and

associated bootstrap analog S∗n to illustrate, the bootstrap p-value is defined as

p∗n := P (S∗n ≤ Sn|Dn) = F ∗n(x)|x=Sn ,

where F ∗n(·) is the cdf of S∗n, conditional on the data (this definition of the p-value

assumes a left-tailed test, which will be assumed below unless indicated otherwise). As

in Cavaliere and Georgiev (2020), we say that the bootstrap based on Sn, S
∗
n is valid
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conditionally on the volatility process {σt}nt=1 if p∗n is asymptotically U(0, 1) distributed

conditionally on {σt}nt=1, i.e.

P (p∗n ≤ q|{σt}nt=1)
p→ q, q ∈ (0, 1). (16)

If this is the case, even if (as shown in the previous section) the limiting conditional dis-

tribution of S∗n is random, the bootstrap test can still be correctly sized in large samples.

Moreover, proofs of validity in the form of (16) also imply3 that, unconditionally,

P (p∗n ≤ q)→ q, q ∈ (0, 1).

In the next subsections we discuss a set of sufficient conditions for (16) to hold. These

are new in the literature on bootstrapping conditional mean models when the volatility

can be stochastic. First, in Section 4.1 we provide our strategy to assess bootstrap

validity. Our main results are given in Section 4.2. Application to our examples are

provided in Section 4.3. Finally, the behavior under the alternative is analyzed and

applied to our examples in Section 4.4.

4.1 Weak convergence in distribution and bootstrap validity

In this section, we summarize the approach developed by Cavaliere and Georgiev (2020),

applied here to establish conditional bootstrap validity in the presence of non-stationary

stochastic volatility. Before turning to bootstrap validity, we introduce a multivariate

version of the concept of weak convergence in distribution that we anticipated in Section

3.1.

Precisely, let Zn := (Z
(1)
n , Z

(2)
n ) and Z := (Z(1), Z(2)) be random elements of the

(complete and separable) metric space SZ(1) × SZ(2) , and Yn := (Y
(1)
n , Y

(2)
n ) and Y :=

(Y (1), Y (2)) be random elements of the (complete and separable) metric spaces S ′
Y (1) ×

S ′
Y (2) and SY (1) × SY (2) , respectively. We say that

(Z(1)
n |Y (1)

n , Z(2)
n |Y (2)

n )
w→w (Z(1)|Y (1), Z(2)|Y (2)) (17)

jointly if, for all bounded continuous g : SZ(1) → R and h : SZ(2) → R,(
E(g(Z(1)

n )|Y (1)
n ), E(h(Z(2)

n )|Y (2)
n )

)
w→
(
E(g(Z(1))|Y (1)), E(h(Z(2))|Y (2))

)
;

3For fixed q ∈ (0, 1), Qn := P (p∗n ≤ q| {σt}nt=1), is a random sequence in [0, 1], and hence uniformly

integrable. Result (16), i.e. Qn
p→ q, together with uniform integrability of Qn, implies L1 convergence

and hence P (p∗n ≤ q) = E(Qn)→ q (see Kallenberg, 1997, Lemma 3.11).
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see Kallenberg (1997) and Cavaliere and Georgiev (2020). If Z
(i)
n , Z(i), i = 1, 2 are

random variables and the conditional distributions Z(1)|Y (1), Z(2)|Y (2) are diffuse, then

the above convergence is equivalent to(
P (Z(1)

n ≤ ·|Y (1)
n ), P (Z(2)

n ≤ ·|Y (2)
n )

)
w→
(
P (Z(1) ≤ ·|Y (1)), P (Z(2) ≤ ·|Y (2))

)
in D(R)×D(R). (18)

Finally, if Z(1) and Z(2) are the same random element (and similary for Y (1) and Y (2)),

then we use the following alternative notation for (17):

(Z(1)
n |Y (1)

n , Z(2)
n |Y (2)

n )
w→w (Z|Y,Z|Y ) =: (1, 1)Z|Y ,

and for Zn = (Z
(1)
n , Z

(2)
n ) a bivariate random variable, (18) becomes(

P (Z(1)
n ≤ ·|Y (1)

n ), P (Z(2)
n ≤ ·|Y (2)

n )
)

w→ ((P (Z ≤ ·|Y ) , (P (Z ≤ ·|Y )) in D(R)×D(R).

Given this definition, we turn the attention to a statistic τn which is a function

of the data Dn, which in our general set-up may be represented by (Mn, Un); that is,

τn = τ(Mn, Un). Its bootstrap equivalent is τ∗n = τ(M∗n, U
∗
n), and we let τ = τ(M,V ),

with (M,V ) denoting the weak limit of (Mn, Un), see Section 2.3.

Recall that, with σn ∈ D [0, 1] the volatility process defined in (6), conditioning on

σn is equivalent to conditioning on {σt}nt=1, and moreover that σ ∈ D [0, 1] is the weak

limit of σn by Assumption 2. It then follows by Cavaliere and Georgiev (2020, Corollary

3.2) that if the condition

(τn|{σt}nt=1, τ
∗
n|Dn) = (τn|σn, τ∗n|Dn)

w→w (τ |σ, τ |σ) = (1, 1) τ |σ (19)

is satisfied, with the random cdf of τ |σ being sample-path continuous, then

sup
x∈R
|P (τn ≤ x|{σt}nt=1)− P (τ∗n ≤ x|Dn)| p→ 0.

This means that the bootstrap consistently estimates the distribution of the original

statistic conditional on the volatility process, which in turn implies that the bootstrap

is conditionally valid, i.e.,

P (p∗n ≤ q|{σt}nt=1)
p→ q

for all q ∈ (0, 1), where p∗n = P (τ∗n ≤ τn|Dn) is the bootstrap p-value. The key condition

to verify is therefore the one given in (19), along with continuity of the limiting (random)

cdf.
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Because τn = τ(Mn, Un) with (Mn, Un) ∈ D2[0, 1], proving (19) involves proving

conditional functional limit theorems. It is known, see Goggin (1994) and Crimaldi

and Pratelli (2005), that joint weak convergence of e.g. ((Mn, Un) , σn) is not sufficient

for conditional weak convergence. For example, Goggin (1994) shows that a sufficient

condition is that (Mn, Un) is independent of σn, or that a change of measure can be found

(with weakly convergent Radon-Nikodym derivative) under which this independence

holds. These conditions do not seem to be directly applicable to the present case.

Remark 4.1 An alternative approach to proving conditional limit theorems would be

to strengthen the joint weak convergence of (σn, Bz,n) in Assumption 2 to G-stable

convergence, see Häusler and Luschgy (2015), with G the σ-algebra generated by the

limit volatility process σ(·). This approach would require σn and σ to be defined on

a common probability space, which is a natural assumption in the analysis of boot-

strapping realized volatility, see e.g. Dovonon et al. (2013); here σn is a discretization

of σ, converging in probability to σ by in-fill asymptotics. However, it does not cover

Example V.2, where only weak convergence of σn to σ may be established, and the two

processes are defined on different probability spaces.

In contrast, our approach to proving (19) involves Skorokhod’s representation theo-

rem, and in particular the version of Kallenberg (1997), see Corollary A.1 in the online

appendix. This allows us to obtain limit results “as if” the conditioning element σn

converges almost surely to σ. By restricting the dependence between (Mn, Un) and

σn, we may then fix a realization of the volatility process and prove an unconditional

functional limit theorem for each convergent sequence of realizations (except on a set

with measure zero). �

4.2 Main results

Recall that the main assumption used to derive the limiting distribution of the original

statistic and the limiting (conditional) distribution of the bootstrap statistic is that the

errors form a mds with respect to the past information set. This condition, however,

is not sufficient for conditional bootstrap validity, unless the volatility is deterministic

or stationary. In the presence of non-stationary stochastic volatility, further conditions

are required. A sufficient set of conditions is provided in the following assumption.
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Assumption 3 Define Gnt := σ
(
{zi}ti=1 , {σi}

n
i=1

)
and hence Gn0 := σ ({σi}ni=1), and

define ψ2
nt := E(z2t |Gn,t−1) and vnt := zt/ψnt. Then:

(a) for all n, {vnt}nt=1 is independent of Gn0, and {ψnt}nt=1 is Gn0-measurable.

(b) {zt,Gnt}1≤t≤n,n≥1 is a martingale difference array (mda), satisfying for all ε > 0:

n−1
n∑
t=1

E
(
z2t I{|zt|>√nε}|Gn0

)
p→ 0. (20)

A few remarks are in order.

Remark 4.2 If {zt}t≥1 is independent of {σt}t≥1, as in Example V.1, then Assumption

3 is trivially satisfied with ψnt = 1 and vnt = zt (the Lindeberg condition (20) is

implicitly assumed in Assumption 2, to guarantee Bz,n
w→ Bz). The dependence allowed

by the assumption is needed to cover situations such as the GARCH process in Example

V.2, where for all t < n,

z2t =
σ2t+1 − ωn − βnσ2t

αnσ2t
,

which is known given {σt}nt=1, such that ψnt = |zt| and hence vnt = zt/ |zt| = sgn(zt),

which because of symmetry of the Gaussian distribution will indeed be independent of

|zt| and hence {σt}nt=1.

Remark 4.3 The mda assumption E(zt|Gn,t−1) = 0 rules out leverage effects, such as

implied by non-zero correlation between zt and the volatility shocks ηt in the stochastic

volatility model of Example V.1. It may be possible to weaken this assumption for

the results to follow, and allow for dependencies for finite n, as long as they vanish

asymptotically (such that σ and Bz are independent). In the latter case it would be

guaranteed that at least the unconditional validity property P (p∗n ≤ q)→ q for q ∈ (0, 1)

holds for the bootstrap, by Theorem 3.1 of Cavaliere and Georgiev (2020).

Remark 4.4 Part (a) of Assumption 3 implies that we may recover

Mn(·) = n−1/2
bn·c∑
t=1

σtψntvnt, Un(·) = n−1
bn·c∑
t=1

σ2tψ
2
ntv

2
nt,

and Vn(·) from the two independent sequences {σt}nt=1 and {vnt}nt=1. This independence

facilitates the analysis of conditional distributions, as will be evident from the proof of

Theorem 1. �
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The main result in this section is given in Theorem 1 and Corollary 1 below.

Theorem 1 Under Assumptions 1–3, we have as n→∞, (Mn, Un) | σn

(M∗n, U
∗
n) | Dn

 w→w

(
1

1

)
(M,V )

∣∣∣σ.

The key result of Theorem 1 is that the bootstrap processes M∗n and U∗n, condi-

tionally on the data, replicate in the limit the distribution of the original processes Mn

and Un, conditionally on the volatility process σn (or, equivalently, on {σt}nt=1). The

implication of Theorem 1 on the behaviour of the bootstrap p-values is provided in the

following corollary, which applies to a statistic τn = τ(Mn, Un) (which, under the null,

converges weakly to τ = τ(M,V )) and its bootstrap equivalent τ∗n = τ(M∗n, U
∗
n).

Corollary 1 Under the conditions of Theorem 1, the bootstrap is valid conditionally

on {σt}nt=1, i.e. with p∗n := P ∗(τ∗n ≤ τn),

p∗n|{σt}nt=1
w→w U(0, 1),

provided that the conditional distribution of τ = τ(M,V ) given σ is sample-path con-

tinuous and the function τ is itself continuous.

4.3 Examples revisited

In this section we check whether the conditions for bootstrap validity hold for the

examples. We assume throughout that Assumptions 1 and 2, strengthened by 3, hold.

Example 1 (cont’d). As earlier, the bootstrap statistics are given by S∗n :=
√
nε̄∗n

and T ∗n :=
√
nε̄∗n/s

∗
n. Under the null hypothesis, the original statistics are given by S∗n =

√
nε̄n and T ∗n =

√
nε̄n/ŝn. The original (bootstrap) statistics obtain as a continuous

transformation of (Mn, Un) (of (M∗n, U
∗
n)). Hence by Theorem 1 and a version of the

CMT (see Cavaliere and Georgiev, 2020, Theorem A.1) it holds that

(Sn|{σt}nt=1, S
∗
n|Dn) = (Sn|σn, S∗n|Dn)

w→w (1, 1)M(1)|σ,

with M(1) =
∫ 1
0 σ(u)dBz(u). With V (1) =

∫ 1
0 σ(u)2du, the cdf of M(1)|σ is given by

Φ(uV (1)−1/2), which is sample-path continuous with probability 1. Hence, by Corollary
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1, the bootstrap is valid conditionally on the volatility path σ. For the studentized

statistic it holds that

(Tn|σn, T ∗n |Dn)
w→w (1, 1)Z|σ a.s

= (1, 1)Z, (21)

where Z ∼ N(0, 1), independent of σ; this implies that the bootstrap is conditionally

valid. Notice also that, see the discussion in Section 4.1, (21) and continuity of the

limiting Gaussian cdf Φ imply that supx∈R |P ∗(T ∗n ≤ x)−Φ(x)| = op (1). As Tn
w→ Z, the

bootstrap test based on the studentized statistics Tn, T
∗
n is also valid in the classic sense,

i.e. the distribution of the bootstrap statistic T ∗n conditional on the data consistenty

estimates the (unconditional) distribution of the original statistic Tn. The same type of

result does not hold for the bootstrap based on Sn, S
∗
n; however, bootstrap conditional

validity is guaranteed by Corollary 1.

Example 2 (cont’d). As for the previous example, since the CUSUM (bootstrap)

statistics are continuous transformations of (Mn, Un) (of (M∗n, U
∗
n)), from Theorem 1 and

the CMT in Cavaliere and Georgiev (2020) we have that, for τS := supu∈[0,1] |M(u) −

uM(1)|

(CSn|σn, CS∗n|Dn)
w→w (1, 1)τS |σ;

similarly, for τT := V (1)−1/2 supu∈[0,1] |M(u)− uM(1)|,

(CTn|σn, CT ∗n |Dn)
w→w (1, 1)τT |σ.

Both conditional asymptotic distributions are continuous with probability 1. As dis-

cussed in Andrews (1997), this holds using the results in Lifshits (1982) because the

limiting random distribution corresponds (up to an almost surely strictly positive term)

to the supremum of a conditionally Gaussian process with conditional covariance func-

tion which is nonsingular almost surely. Hence, by Corollary 1 the bootstrap is valid

conditionally on the volatility process σ.

Example 3 (cont’d). Finally, in the unit root example we have that, under the stated

assumption and if the null hypothesis holds, with τR := (
∫ 1
0 M

2(u)du)−1
∫ 1
0 M(u)dM(u),

(Rn|σn, R∗n|Dn)
w→w (1, 1)τR|σ.
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Similarly, for the t ratio test, with τW := (
∫ 1
0 M

2(u)du)−1/2
∫ 1
0 M(u)dM(u),

(Wn|σn,W ∗n |Dn)
w→w (1, 1)τW |σ.

As proved in Lemma A.1 in the online appendix, the limiting conditional cdfs have

almost surely continuous sample paths, and hence by Corollary 1, the bootstrap is valid

conditionally on σ. �

4.4 Power considerations

We now briefly discuss the behavior of the bootstrap tests under the alternative hy-

pothesis when the stochastic volatility process induces randomness of the limiting dis-

tribution of the bootstrap statistic. As before, consider a left-sided test based on the

statistic τn = τ(Mn, Un) and its bootstrap equivalent τ∗n = τ(M∗n, U
∗
n). Suppose that

under the alternative the original statistic diverges, say to −∞, while the bootstrap

statistic satisfies

τ∗n
w∗
→w τ

∗|σ (22)

for some random element τ∗. Then, the following lemma holds.

Lemma 2 Suppose that (22) holds and that τn
p→ −∞ as n → ∞. Then, with p∗n :=

P ∗(τ∗n ≤ τn), it holds that p∗n
p→ 0.

Lemma 2 shows that the fact that the limit distribution of the bootstrap statistic

is random and depends on the volatility path does not affect the consistency of the

bootstrap test. Essentially, weak convergence in distribution of τ∗n given the data implies

that the bootstrap statistic is O∗p(1), in probability. If the original statistic diverges to

−∞, it then holds that the bootstrap test rejects with probability converging to 1.4 We

now apply this result to the three leading examples.

Example 1 (cont’d). Consider the location model example, where the econometrician

is interested in testing the simple null hypothesis θ = θ̄ when θ̄ > θ0, θ0 being the true

parameter value. A wild bootstrap with the null imposed generates bootstrap data as

ε∗t := ε̂tw
∗
t with w∗t i.i.d. N(0, 1) and ε̂t := yt−θ̄ = εt+δ, δ := θ0−θ̄ < 0. It follows that,

4Notice that a consistent right-sided test can be obtained by focusing on the bootstrap p-value

p̃∗n := 1− p∗n.
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conditionally on the data, M∗n(·) := n−1/2
∑bn·c

t=1 ε
∗
t is a zero-mean Gaussian process with

independent increments and with conditional variance function Ûn(·), where

Ûn(u) := n−1
bnuc∑
t=1

ε̂2t = Un(u) + uδ2 +Op(n
−1/2)

w→ V (u) + uδ2, in D .

Hence, under Assumptions 1 and 2, we have, as n → ∞, that5 M∗n
w∗
→w M̃∗|σ, where

M̃∗(u) :=
∫ u
0 σ̃(s)dB∗z (s), with σ̃(s) := (σ(s)2 + δ2)1/2. This implies that S∗n

w∗
→w

M̃∗(1)|σ. As Sn → −∞ as n→∞, the conditions of Lemma 2 are satisfied and p∗n
p→ 0.

Consistency of the test based on Tn follows by standard arguments as T ∗n
w∗
→p N(0, 1).

Example 2 (cont’d). For the bootstrap CUSUM statistics, consider the alterna-

tive θt = θ1 + g(t/n), where g : [0, 1] → R is an arbitrary function satisfying 0 <∫ 1
0 g

2(u)du < ∞, see Ploberger and Krämer (1992). The wild bootstrap partial sum

process is M∗n(·) := n−1/2
∑bn·c

t=1 ε
∗
t , a zero-mean Gaussian process with independent in-

crements and with conditional variance function Ûn(·) := n−1
∑bn·c

t=1 ε̂
2
t = Un(·)+Gn(·)+

Op(n
−1/2), with

Gn(u) := n−1
bnuc∑
t=1

(
g(t/n)− n−1

n∑
t=1

g(t/n)

)2

→
∫ u

0

(
g(s)−

∫ 1

0
g(r)dr

)2

ds =: G(u),

in D . This implies that

M∗n(u)
w∗
→w M̃

∗(u) :=

∫ u

0
σ̃(s)dB∗z (s)

∣∣∣∣σ, in D ,

with σ̃(s) := (σ(s)2 + (g(s) −
∫ 1
0 g(r)dr)2)1/2 and B∗z a standard Brownian motion,

stochastically independent of σ. The limiting distribution of the bootstrap statistic

CS∗n is then given by

CS∗n
w∗
→w sup

u∈[0,1]
|M̃∗(u)− uM̃∗(1)|

∣∣∣σ.
In order to analyze the CT ∗n statistic, notice that its denominator satisfies, in probability,

U∗n(1)− n−1M∗n(1)2 = U∗n(1) +O∗p(n
−1) = Ûn(1) +O∗p(n

−1/2)
w→ V (1) +G(1),

which implies that

CT ∗n
w∗
→w

supu∈[0,1] |M̃∗(u)− uM̃∗(1)|√
V (1) +G(1)

∣∣∣∣∣σ.

5The proof reduces to the standard characterization of weak convergence to a Gaussian process by

means of a Skorokhod representation.
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As both Sn and Tn diverge under the alternative considered, Lemma 2 applies and for

both tests p∗n
p→ 0.

Example 3 (cont’d). Consider the unit root example with wild bootstrap shocks gen-

erated with the null hypothesis, i.e. ε∗t := (∆yt)w
∗
t . The bootstrap R∗n statistic is given

as in (14) with M∗n(u) := n−1/2
∑bnuc

t=1 (∆yt)w
∗
t and U∗n(u) := n−1/2

∑bnuc
t=1 (∆yt)

2w∗t
2.

Conditionally on the data, M∗n is a zero-mean Gaussian process with independent in-

crements and conditional variance function Ûn(·) := n−1
∑bn·c

t=1 (∆yt)
2. Under the alter-

native that yt = (1 + θ)yt−1 + εt with θ ∈ (−2, 0), ∆yt can be written as the linear

process with exponentially decaying coefficients ∆yt =
∑t−1

i=0 ψiεt−i with ψ0 = 0 and

ψi = θ(1+θ)i−1, i = 1, 2, . . .. Hence, by standard decompositions for squared stationary

autoregressions it holds that (the proof is reported in the online appendix)

Ûn(u) = ψ
2
Un(u) + op(1), ψ

2
:=

∞∑
i=0

ψ2
i , (23)

where the op(1) term is uniform in · ∈ [0, 1], which implies that Ûn
w→ ψ

2
V . Hence,

M∗n
w∗
→w ψM

∗|σ. Finally, using the fact that U∗n = ψ
2
Ûn + o∗p(1), in probability, where

Ûn
w→ V , it holds that

R∗n
w∗
→w

1
2(ψ

2
M∗2(1)− ψ2

V (1))

ψ
2 ∫ 1

0 M
∗2(u)du

∣∣∣∣∣σ =
1
2(M∗2(1)− V (1))

ψ
2 ∫ 1

0 M
∗2(u)du

∣∣∣∣∣σ.

Hence, under the alternative the bootstrap replicates the null distribution of the original

statistic conditional on the volatility process and consistency of the bootstrap test

follows from Lemma 2. An identical result holds for the t-ratio test based on Wn. �

Remark 4.5 While in this section we focused on asymptotic power against fixed alter-

natives, it is possible to extend our analysis to cover power against local alternatives.

To illustrate, consider the test based on Sn for the hypothesis H0 : θ = θ̄ in the location

model yt = θ + εt (Example 1). Under a sequence of local alternatives of the form

Hn : θn = θ̄ + δn with δn = n−1/2c, it is straightforward to show that Sn = c+Mn(1),

which converges weakly to c+M(1) under Assumptions 1–2. For the bootstrap statistic,

the results obtained above with δn → 0 imply S∗n
w∗
→w M(1)∗|V (1) = V (1)1/2Z∗|V (1),

with Z∗ being N(0, 1) (independent of V (1)); hence, the bootstrap distribution under
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the local alternative is the same as under the null. Suppose now that Assumption 3

holds; then, by Theorem 1,

(Sn|σn, S∗n|Dn)
w→w (c+M(1)|σ,M(1)|σ) .

Hence the limiting cdf of Sn|{σt}nt=1 is given by Fc(x) = Φ((x − c)V (1)−1/2), which

is continuous with probability 1, while the bootstrap cdf F ∗n(x) converges weakly to

F ∗(x) = Φ(xV (1)−1/2). Then, by application of Theorem 3.3 in Cavaliere and Georgiev

(2020) it holds that the power of the bootstrap test at the 100α% nominal level, condi-

tionally on the volatility process, is given by

P (p∗n ≤ α|σn) = P (F ∗n(Sn) ≤ α|σn)
w→ Fc(F

∗−1(α))

= Φ((V (1)1/2Φ−1(α)− c)V (1)−1/2)

= Φ(Φ−1(α)− cV (1)−1/2).

By construction, the local power function depends on c; we observe that it also depends

on V (1), and hence is random in the limit. In more general testing problems, the

conditional local power function will depend on the entire volatility process. In the

next section, we illustrate, by Monte Carlo simulations, the dependence on c as well as

on (the limit of) σn. �

5 Numerical results

In this section we analyze finite sample size and power properties of bootstrap tests

under non-stationary stochastic volatility using Monte Carlo simulations. To study

the behavior of the tests from Examples 1–3 under the null hypothesis, we report the

Monte Carlo (empirical) cdfs of bootstrap p-values, both unconditionally over all Monte

Carlo replications and conditionally on specific simulated volatility paths. Following

Cavaliere and Georgiev (2020), we report the results in the form of fan charts of the

conditional cdfs, displayed together with the unconditional cdf and the theoretical cdf

of the U(0, 1) distribution. Similarly, we display conditional power curves of the tests

under local alternatives in fan charts.

In all experiments, we draw observations {εt}nt=1 from the GARCH(1,1) process
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from Example V.2, with

ωn = 1− αn − βn = n−1κ, αn = (2n)−1/2ση,

corresponding to a limit process σ2(u) with unit unconditional variance σ̄2 = 1, mean-

reversion parameter κ, and volatility-of-volatility parameter ση. The conditional vari-

ance sequence is initialized at the unconditional variance, i.e., σ21 = 1. We set κ = 5

and ση =
√

10, corresponding to a rather persistent volatility process with a reasonable

amount of short-run variability of the volatility, which we know from earlier simula-

tion studies to lead to substantial size distortions in tests based on standard (constant-

volatility) asymptotic critical values. We expect similar results from stochastic volatility

processes (Example V.1) with the same type of persistence and volatility-of-volatility

properties. We report results for two sample sizes, n ∈ {100, 500}. The standardized

errors zt are drawn from three different distributions, discussed below.

For each distribution and sample size, we first simulate 100 different realizations of

the volatility path {σt}nt=1. For each of these paths, we draw 50, 000 replications from

the conditional distribution of {εt = σtzt}nt=1 given {σt}nt=1. As discussed in Remark 4.2,

this is equivalent to drawing vnt = sgn(zt) conditional on ψnt = |zt| for t = 1, . . . , n− 1,

and drawing zn from its unconditional distribution (independent of {σt}nt=1). For each

choice of the distribution of {zt}nt=1, we can check the conditions of Assumption 3 for

conditional validity of the bootstrap.

The first data-generating process, labelled DGP 1, is defined by zt ∼ N(0, 1). In

that case the conditional distribution of the signs vnt is discrete uniform over {−1, 1},

independent of |zt|. This in turn implies that the mda condition of Assumption 3 is

satisfied (as well as the independence, measurability and Lindeberg conditions), such

that the bootstrap is conditionally valid.

In DGP 2, zt is drawn from the following mixed normal density

f(z) = 1
3φ(z;µ1, σ1) + 2

3φ(z;µ2, σ2), (24)

where φ(z;µ, σ) is the pdf of the N(µ, σ2) distribution, and where µ1 = −2a, σ1 =

a, µ2 = a, σ2 = a
√

2, with a =
√

3/11. This distribution was constructed by Meijer

(2000) to be asymmetric but with skewness 0 (and with mean zero and unit variance).

Because vnt = sgn(zt) in this case has a conditional distribution depending on ψnt = |zt|,
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Figure 1: Monte Carlo conditional cdfs of bootstrap p-values of Tn

with P (vnt = 1|ψnt) = f(ψnt)/(f(ψnt) + f(−ψnt)) 6= 1
2 , it follows that Assumption 3

is violated, and conditional validity of the bootstrap is not guaranteed. On the other

hand, the zero skewness implies that the limit result of Example V.2 still applies, with

Bz independent of Bη and hence σ. As conjectured in Remark 4.3, we may expect

unconditional bootstrap validity in this case.

In DGP 3, zt is drawn from another version of (24), but now with µ1 = −2b, σ1 =

b
√

2, µ2 = b, σ2 = b, with b =
√

3/10. This is a distribution with mean zero, unit

variance and negative skewness, so that Bz and Bη in Example V.2 have a negative

correlation, corresponding to long-run leverage effects. This implies that the wild boot-

strap is invalid in this case, both conditionally and unconditionally.

Figures 1–3 display the results for the behavior of bootstrap p-values (based on 199

bootstrap replications) under the null hypothesis, for the studentized tests based on

Tn, CTn and Wn, respectively. Unreported results for the other three test statistics Sn,

CSn and Rn are very similar to the results for the corresponding studentized tests.
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Figure 2: Monte Carlo conditional cdfs of bootstrap p-values of CTn

From Figure 1, we observe that when the standardized errors zt are standard normal

(DGP 1, left panels), then the conditional distribution of the bootstrap p-values is very

close to uniform, and appears to be independent of σ for both sample sizes considered.

Thus the theoretical conditional validity of the bootstrap in this case is clearly reflected

in finite-sample behavior. When the distribution of zt is asymmetric with zero skewness

(DGP 2, centre panels), then the bootstrap appears to be valid on average (indicated

by the solid line almost coinciding with the U(0, 1) cdf, especially for n = 500), but the

conditional cdfs of bootstrap p-values do depend on the volatility path and deviate from

the uniform cdf, illustrating the conjectured violation of conditional bootstrap validity.

Finally, for DGP 3 (right panels, skewed zt), we observe more extreme dependence of

bootstrap p-values on the volatility path. In this case the bootstrap does not appear to

be valid on average either, as predicted by the dependence between Bz and σ implied

by this DGP, which is not replicated by the wild bootstrap.

Figure 2 displays the results for the studentized CUSUM test based on CTn. For
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Figure 3: Monte Carlo conditional cdfs of bootstrap p-values of Wn

this test, the finite-sample size distortion (indicated by the difference between the solid

and dashed line) is more pronounced than for the location test, in particular for the

smaller sample size (n = 100). Unreported additional simulations show that these size

distortions are even stronger for the test based on CSn. The results improve when the

sample size increases, and it should be noted that the rejection frequencies at the 5%

significance level are still fairly close to 0.05; the deviations are larger at the centre of

the distribution. For this test, the dependence of the conditional cdf of p-values on σ is

much weaker than for the location test. For DGP 2, we do not observe any deviation

of conditional cdfs from their average; in case of DGP 3, there is a clear violation of

conditional bootstrap validity, but the deviations are less pronounced than for Tn.

The results for the unit root test based on Wn are given in Figure 3. For DGP 1 and

2, the size distortions appear to be negligible for both sample sizes. Similarly to the

CUSUM test, the dependence of bootstrap p-values on the volatility path for DGP 1

and 2 appears to be very weak. On the other hand, for DGP 3 we find this dependence
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Figure 4: Monte Carlo conditional rejection frequencies of bootstrap tests

to be clearly present, illustrating again a violation of conditional bootstrap validity.

On average, the bootstrap appears to be valid even for DGP 3, although theoretically

we would not expect this to be the case because of the dependence between Bz and

σ. Unreported simulations have shown that in case of stronger leverage effects (i.e., a

stronger correlation between Bz and Bη), the unconditional cdf of bootstrap p-values

does differ from the U(0, 1) cdf, as predicted by the theoretical results.

Next, we investigate the local power of the bootstrap tests, again conditional on

the same realizations of the volatility path as considered for the size of the tests. As

in Remark 4.5, for the location tests we evaluate the rejection frequency of the test for

H0 : θ = 0 against local alternatives θn = −n−1/2c, with c ∈ [0, 8]. For the CUSUM

tests, the local alternative is a break in the mean of the series, at t = n/2, from θn,t = 0

to θn,t = n−1/2c, with c ∈ [0, 15]. For the unit root tests, we consider local alternatives

θn = −n−1c, with c ∈ [0, 20]. We provide results for the tests based on the studentized

statistics Tn, CTn and Wn, and for the sample size n = 100.
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Figure 4 displays the rejection frequencies of the bootstrap tests, based on 10, 000

replications of the test for each volatility path, plotted against c. We observe that the

conditional rejection probabilities under the alternative hypothesis depend on both the

non-centrality parameter c and the volatility process σ, for each test and DGP 1–3.

While the dependence on the volatility is as expected for DGP 2 and 3, we note that for

DGP 1, where the rejections probabilities under the null hypothesis are conditionally

independent of the volatility process, the power of the tests clearly depends on the

volatility (as discussed in Remark 4.5).

To gain some insight in the sensitivity of the simulation results to the chosen pa-

rameter values, we have repeated the Monte Carlo experiments with κ = 0, implying

an integrated GARCH process (αn + βn = 1) with infinite unconditional variance. As

in the original simulations, the initial condition is σ21 = 1, the volatility of volatility

is ση =
√

10, and the same three DGPs for zt have been used. The corresponding

figures (available from the authors upon request) show qualitatively very similar results

as those displayed in Figures 1–4. The increased persistence and variation in the re-

alizations of {σ2t }nt=1 leads to a bigger bias in DGP 3 for the Wn test statistic, and a

bit more variation in the conditional distributions for DGP 3 for the Wn and CTn test

statistics. Furthermore, we find more variation in conditional power functions and a

slightly higher average (unconditional) power.

6 Conclusions

In this paper we have analyzed the properties of wild bootstrap inference in time series

models for the conditional mean under non-stationary stochastic volatility. In our

setting, we do not make any specific assumption on the volatility process, rather than

assuming that it admits a weak limit in D [0, 1]. The additional advantage of this

semi-parametric nature of our analysis is that we do not need any assumptions on

the existence of higher moments, or on the initial condition of the conditional variance

process. On the other hand, if the parametric form of the volatility process was known to

the econometrician, then other model-based estimators and tests (such as Seo (1999),

for the unit root testing problem under GARCH(1,1) errors) and related bootstrap

methods could be implemented. These approaches, although particularly interesting
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and likely to deliver power improvements over our wild bootstrap methods, are beyond

the scope of this paper.

A central ingredient in our analysis is that the bootstrap distribution (the distribu-

tion of a bootstrap statistic conditional on the data) has a random limit. In our case,

this random limit can be characterized as the conditional distribution of the limiting

statistic conditional on a continuous-time volatility process (which is itself the weak limit

of the finite-sample volatility process). The random nature of the limit of bootstrap

distributions is not new: a well-known example in the unit-root literature is Basawa et

al. (1991), and Sen et al. (2010) provide another example from non-parametric statistics

involving cube-root asymptotics. Cavaliere and Georgiev (2020) analyze a number of

other examples of this phenomenon. In the examples encountered so far, this random

limit distribution can always be expressed as a conditional distribution, but its specific

form is determined by a combination of model assumptions, statistical methods and

bootstrap implementation details. Some of these combinations lead to bootstrap inva-

lidity, which we may try to resolve by another bootstrap implementation. For example,

the randomness of the bootstrap limit distribution in the unit-root testing problem,

and the associated invalidity of the standard recursive-design bootstrap, is resolved by

the use of restricted residuals (with the unit root imposed) in the bootstrap algorithm.

The challenging part of our work is to show that the bootstrap distribution matches a

particular conditional distribution of the original statistic, in our case conditional on the

volatility process {σt}nt=1. If we were to change the bootstrap scheme (e.g., by using an

i.i.d. or ‘m out of n’ bootstrap), then such a match would not occur, and the bootstrap

would be invalid.

Our results can be generalized in several directions. First, our applications deal

with univariate time series models and it is naturally of interest to apply our results to

multivariate (time series) models, where volatilities and correlations are time-varying,

stochastic and non-stationary. In particular, in Boswijk et al. (2016) the bootstrap

was considered for multivariate cointegrated vector autoregressions in the presence of

stationary volatility, in combination with possible deterministic changes in the volatility;

we conjecture that our results obtained here also apply to the case of non-stationary

multivariate stochastic volatility. Second, it would be important to understand how to
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bootstrap conditional mean time series models in the presence of leverage. Although, as

we have shown, the wild bootstrap is not valid in this context, our theory may be useful

for assessing validity of other bootstrap methods when the volatility displays leverage

effects.
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