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Summary 50 

 Soil nutrient availability can strongly affect root traits. In tropical forests, phosphorus (P) 51 

is often considered the main limiting nutrient for plants. However, support for the P 52 

paradigm is limited, and N and cations might also control tropical forests functioning.  53 

 We used a large-scale experiment to determine how the factorial addition of nitrogen (N), 54 

P and cations affected root productivity and traits related to nutrient acquisition strategies 55 

(morphological traits, phosphatase activity, arbuscular mycorrhizal colonisation and 56 

nutrient contents) in a primary rainforest growing on low-fertility soils in Central 57 

Amazonia after one year of fertilisation.  58 

 Multiple root traits and productivity were affected. Phosphorus additions increased annual 59 

root productivity and root diameter, but decreased root phosphatase activity. Cation 60 

additions increased root productivity at certain times of year, also increasing root diameter 61 

and mycorrhizal colonisation. P and cation additions increased their element 62 

concentrations in root tissues. No responses were detected with N addition. 63 

 Here we show that rock-derived nutrients determine root functioning in low-fertility 64 

Amazonian soils, demonstrating not only the hypothesised importance of P, but also 65 

highlighting the role of cations. The changes in fine root traits and productivity indicate 66 

that even slow-growing tropical rainforests can respond rapidly to changes in resource 67 

availability.  68 

 69 

Key words: Amazon rainforest; arbuscular mycorrhiza; fine root productivity; large-scale 70 

nutrient fertilisation experiment; multiple nutrient limitation; phosphatase enzyme; root 71 

morphology. 72 

 73 

Tropical rainforests are the most diverse and productive terrestrial ecosystem on Earth (Beer 74 

et al., 2010) representing a terrestrial carbon (C) sink of 2.89 ± 0.6 Pg C per year (Pan et al., 75 

2011), with the Amazon forest alone storing about one quarter of global terrestrial C sinks (Le 76 

Quéré et al., 2018). Moreover, tropical net primary production (NPP) may be further stimulated 77 

under atmospheric CO2 enrichment (Kimball & Idso, 1983; Ainsworth & Long, 2004; Norby 78 

et al., 2005). Future CO2 uptake could, however, ultimately be controlled by the amount of 79 

available nutrients in the soil to support new growth (Hungate et al., 2006; Fleischer et al., 80 

Introduction
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2019) as well as by how efficiently plants can acquire and use nutrients. In temperate forests, 81 

nitrogen (N) is usually considered to limit plant growth, whereas phosphorus (P), or other rock-82 

derived elements are considered more likely to be the limiting nutrient in tropical lowland 83 

forests (Walker & Syers, 1976; Vitousek & Sanford, 1986; Wardle, 2004). Phosphorus and 84 

cations, are supplied to soil predominantly by weathering of the parent material (Walker & 85 

Syers, 1976), and are essential in several metabolic process of plants, such as ATP production, 86 

stability of cells and enzyme activation (Aerts & Chapin, 1999; Lambers et al., 2006; 87 

Hawkesford et al., 2012). Approximately 60% of the Amazonian forests grow in highly-88 

weathered soils, characterised by very low concentrations of rock-derived P and cations, with 89 

evidence for P affecting plant growth (Aragão et al., 2009; Quesada et al., 2010, 2012). 90 

However, even in tropical forests, N availability may be important in controlling key aspects 91 

of forest function (Wright et al., 2011; Wright, 2019), and/or greater N availability could help 92 

alleviate limitation by other elements (Chen et al., 2020). Therefore, there remain major gaps 93 

in our understanding of the role different elements play in controlling tropical forest function, 94 

especially in Amazonia.  95 

Plants can adapt their root morphological, physiological, biochemical and molecular 96 

properties to optimise nutrient acquisition (Chapin, 1980; Bloom et al., 1985; Aerts, 1999; 97 

Raghothama, 1999; Addo-Danso et al., 2020). Because of the low mobility of P in soils, roots 98 

usually move towards P, getting thinner and longer to facilitate the exploration of greater soil 99 

volume in P patches (Hodge, 2004; Lambers et al., 2008; Metcalfe et al., 2008; McCormack 100 

& Iversen, 2019). Alternatively, roots displaying more conservative morphological features 101 

(i.e. lower specific root length - SRL, greater diameter) may invest more in mycorrhizal 102 

associations to meet nutrient demands (Hodge, 2004; Comas et al., 2014; Eissenstat et al., 103 

2015; Liu et al., 2015; Kong et al., 2016; Ma et al., 2018). The very fine hyphal network typical 104 

of arbuscular mycorrhizas (AM) allows the fungi to forage for P away from P-depleted zones 105 

around roots, resulting in high inorganic P uptake in exchange for photosynthetically fixed C 106 

from the host plant (Hodge, 2004; Smith & Read, 2010; Eissenstat et al., 2015). There is also 107 

evidence for the role of AM in acquiring other elements, such as Ca, Mg, K and sulphur 108 

(Siqueira et al., 1998; Zangaro et al., 2003) and micronutrients such as zinc and copper (Smith 109 

& Read, 2010). The main source of P in low-fertility tropical soils is, however, bound in organic 110 

compounds or occluded in secondary minerals (Walker & Syers, 1976; Cross & Schlesinger, 111 

1995; Quesada et al., 2010) and, consequently, they need to be degraded before being 112 
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assimilated by roots (Lambers et al., 2006). The hydrolysis of organic P happens mainly 113 

through the activity of phosphatase enzymes released by microbes and plant roots (Hinsinger, 114 

2001; Treseder & Vitousek, 2001; Vance et al., 2003; Olander & Vitousek, 2004). Therefore, 115 

strong investment in the production of phosphatase enzymes that can become bound to root 116 

surfaces or released into the soil matrix may be necessary to mine organic P in these forests 117 

(Liu et al., 2015; Kong et al., 2016; Lugli et al., 2020).  118 

Plant trait-based approaches are especially useful tools to increase understanding of plant 119 

function in species-rich environments, such as tropical forests. Although tropical trees may use 120 

a range of complementary adaptations to optimise P-uptake (Zemunik et al., 2015; Lugli et al., 121 

2020), it remains uncertain how plastic these strategies are in response to short-term changes 122 

in the availability of different nutrients. Root functional traits are considered to represent a 123 

balance between maximising the acquisition of limiting resources and minimising the costs of 124 

root tissue construction and maintenance (Bloom et al., 1985; Aerts & Chapin, 1999; 125 

Wurzburger & Wright, 2015; McCormack & Iversen, 2019). For example, about 20% of plant 126 

C could be transferred to AM fungi associates, whilst root exudates (i.e. organic acids, 127 

enzymes) can represent up to half of belowground C allocation (Bago et al., 2003; Lynch et 128 

al., 2005; Parniske, 2008). Therefore, trade-offs between uptake strategies are likely, with plant 129 

investment in root biomass and nutrient uptake strategies usually increasing with decreasing 130 

supply of the limiting nutrient (Bloom et al., 1985). In naturally P-poor soils in Central 131 

Amazon, Lugli et al. (2020) demonstrate that due to the different levels of soil P availability in 132 

different pools (i.e. organic and inorganic P), plants need to invest in multiple P-uptake 133 

mechanisms.  134 

Nutrient manipulation experiments greatly contribute to directly testing for nutrient 135 

limitation in terrestrial ecosystems (Cleveland et al., 2011; Sullivan et al., 2014; Wright et al., 136 

2018). Although the hypothesis of P-limitation in tropical forests is widely accepted, clear 137 

evidence from large-scale experiments is variable and limited (Yavitt et al., 2011; Mirabello et 138 

al., 2013; Wurzburger & Wright, 2015; Alvarez-Clare & Mack, 2015; Wright, 2019). In a 139 

recent meta-analysis, Wright (2019) compiled data from 48 nutrient manipulation experiments 140 

in tropical forests and concluded that N and P limitation are widespread, but no evidence was 141 

found for a greater role for P than N, and it is uncertain how other nutrients, including cations, 142 

affect these ecosystems. Furthermore, root responses are particularly poorly understood, with 143 

nutrient addition experiments in Central America tending to have not measured productivity 144 
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responses and having observed contrasting changes in standing stocks and root traits. For 145 

example, after two years of nutrient addition, root biomass (<2 mm diameter) decreased with 146 

K addition but increased with P addition for thicker roots (2-5 mm diameter) in Panama (Yavitt 147 

et al., 2011), and no root biomass responses were detected in Costa Rica (Alvarez-Clare & 148 

Mack, 2015). In these same experiments, changes in fine root morphology following P addition 149 

were observed in Panama, with roots becoming less dense and with greater specific root length 150 

(Wurzburger & Wright, 2015), whilst increased root nutrient concentrations were detected in 151 

Costa Rica (Alvarez-Clare & Mack, 2015). However, current experiments in Neotropical 152 

forests are located on natural soils with total P concentrations ranging from 400-1,600 mg kg-153 
1 (Wright et al., 2011; Alvarez-Clare et al., 2013). In contrast, in the dominant soil type across 154 

Amazonia, the world’s largest tropical forest, total P ranges from 100-200 mg kg-1 (Quesada et 155 

al., 2010). Given the range of responses observed in these Neotropical studies and the differing 156 

soil fertilities, we clearly cannot extrapolate to how fine root traits and productivity are 157 

controlled by soil nutrient status in Amazonian forests. 158 

We used the first large-scale nutrient manipulation experiment installed in Central 159 

Amazonian forests (the Amazon Fertilisation Experiment; AFEX) to determine whether key 160 

nutrient uptake mechanisms adopted by fine roots were altered by the factorial addition of N, 161 

P and cations (Ca, Mg and K) in low-fertility soils. Our study quantified the short-term 162 

responses in the first year of manipulations, thus investigating how rapidly roots can respond 163 

to the addition of the different nutrients. We hypothesized that given the low availability of P 164 

in soils at our site, there would be a strong and immediate effect of P addition on root traits and 165 

productivity, but that N addition would have limited impacts. This is based on the high C-costs 166 

of production and maintenance of fine roots as well as allocation towards nutrient uptake 167 

strategies. Thus, we expected that fertilisation would decrease plant investment in such traits. 168 

Consequently, we predicted that with P addition alleviating belowground P limitation, there 169 

would be decreased root productivity, together with a reduction in root phosphatase activities 170 

and AM colonisation, with morphological changes reflecting shifts from acquisitive to more 171 

conservative traits, decreasing, for example, SRL and SRA and increasing tissue density and 172 

mean diameter. Furthermore, due to the very low concentrations of cations in Central 173 

Amazonian soils, we also expected that cations would trigger changes in root traits, shifting 174 

from acquisitive to more conservative morphological traits, but with no effect on root 175 

phosphatase activity.  176 
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 177 

Site description and experimental design 178 

This study was carried out within the AFEX experiment in Central Amazonia, installed ca. 70 179 

km north of Manaus/Amazonas, Brazil in the area of the Biological Dynamics of Forest 180 

Fragments Project (BDFFP) Reserve at ZF-3, a collaborative project between the National 181 

Institute for Amazonian Research (INPA) and the Smithsonian Institute (STRI). Mean air 182 

temperature is 26 ºC and mean annual precipitation is 2,400 mm (Araújo et al., 2002). The 183 

vegetation is an old growth, lowland terra firme forest, associated with clay-rich (75%) 184 

Ferralsols and very low total P content (~ 85 mg kg-1 for the 0-30 cm soil depth). AFEX is 185 

composed of thirty-two 50 m x 50 m plots separated at least 50 m from each other and 186 

distributed in four blocks. Each of the four blocks (installed at least 300 m apart) includes eight 187 

plots representing seven nutrient addition treatments and one control applied in a factorial 188 

design: control (with no addition of nutrients), N, P, cations (Ca, Mg, K), N+P, N+cations, 189 

P+cations, and N+P+cations. All plots (n=4 for each treatment and control) were established 190 

in areas with similar soil, vegetation, and terrain, being restricted to plateaus.  191 

Nutrient additions are split into three equal applications over the course of each wet 192 

season, with nutrients added every year since 2017 at the following total rates: (1) N: 125 kg 193 

ha-1 yr-1 as Urea; (2) P: 50 kg ha-1 yr-1 as triple superphosphate, and (3) Cations: 160 kg ha-1 yr-194 
1 as dolomitic limestone for Ca and Mg, plus 50 kg ha-1 yr-1 as potassium chloride for K. Aiming 195 

to make our data comparable to other nutrient fertilisation experiments, the amount and rates 196 

of nutrients added to our site follow rates proposed by Wright et al. (2011) in Panama. Dry 197 

fertilisers were applied to the soil surface by hand covering the whole plot area (50 m x 50 m), 198 

including the surface of the ingrowth cores. Our results represent the root responses to the first 199 

year of nutrient additions, and thus also investigate how rapidly trees can respond to changes 200 

in soil fertility. 201 

 202 

Fine root productivity 203 

Key monitoring measurements were limited to the central 30 m x 30 m (900 m2 area) of each 204 

plot. In each plot (n=32), five 12 cm-diameter, 30 cm-deep, root-free ingrowth cores (2 cm 205 

plastic mesh) were installed in August 2017 in the central 30 m x 30 m plot area. Ingrowth 206 

cores were collected every three months after installation and the five core replicates were 207 

Material and methods 
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homogenised in the field by plot and by soil depth (0-10 and 10-30 cm; N=64) in each 208 

collection. Fine roots (< 2mm in diameter living roots) produced in the first year of nutrient 209 

addition (four ingrowth core campaigns from August 2017-September 2018) were used to 210 

determine productivity. All fine roots from the two soil depths were manually extracted during 211 

a period of 60 minutes in four intervals of 15 minutes and root-free soil reinserted into the 212 

existing holes (Metcalfe et al., 2007). After sampling, roots were washed and cleaned by gently 213 

brushing to remove soil particles. The cumulative root biomass sampled at each time point (one 214 

sample for every 15 minutes = four samples) was used to estimate the amount of roots that 215 

would be sampled after the 60 minutes sampling collection (Metcalfe et al., 2007). We tested 216 

four different types of curves (logarithmic curve, Michaelis-Menten asymptotic curve, power 217 

law curve and asymptotic exponential curve) to extrapolate to the amount of roots that would 218 

be sampled during 180 minutes, choosing the curve that resulted in the best model fit 219 

(Michaelis-Menten asymptotic curve; Equation 1).  220 

 221 

                                          𝑦 =
∗

                                   Equation 1. 222 

 223 

where y is total fine root biomass estimated in each sample after 180 minutes of sampling; x is 224 

accumulated time (15 to 180 minutes), α and β are fitted parameters from the equation for each 225 

plot and depth. 226 

Fine root productivity was calculated as dry mass of roots produced per day for the 227 

entire ingrowth core sample and by depth (0-10 and 10-30 cm). Root net primary productivity 228 

was calculated summing the biomass of fine roots produced in each ingrowth core census and 229 

was expressed in Mg ha-1 year-1. 230 

 231 

Root morphology 232 

Subsamples of fine roots from the ingrowth core campaign held in February 2018 (newly 233 

produced roots < 3 months old) were used to determine morphological traits. Fine roots from 234 

both soil depths (0-10 and 10-30 cm) were cleaned and fresh root samples (<2 mm diameter) 235 

were spread homogeneously in a plastic tray with approximately one quarter of the root 236 

biomass picked randomly for the subsequent scanning (Holdaway et al., 2011). Roots were 237 

scanned at 600 dpi and images analysed using WinRHIZO (WinRHIZO Regular 2015, Regent 238 

Instruments, Canada) to provide root mean diameter, total length, area and volume, then 239 



9 
 

 
 

samples were dried at 60 ºC for 72 hours to determine dry root mass. These were used to 240 

determine specific root length (SRL), specific root area (SRA), root tissue density (RTD) and 241 

mean root diameter (Metcalfe et al., 2008). SRL (cm g-1) was calculated as root length per unit 242 

root dry mass, SRA (cm2 g-1) was calculated as root superficial area per unit dry mass and RTD 243 

(g cm-3) was calculated as root dry mass per unit root volume.  244 

 245 

Root phosphatase activity 246 

Root subsamples collected in February 2018 were analysed for root-surface potential acid 247 

phosphomonoesterase activity (phosphatase). Phosphatase was measured within 3 days of root 248 

sampling using triplicate subsamples per plot and per soil depth (0-10 and 10-30 cm) using a 249 

fluorimetric microplate assay (Turner & Romero, 2010; German et al., 2011) as described in 250 

Lugli et al. (2020). About 10 mg of the root sample (washed, fresh weight basis) were incubated 251 

with Methylumbelliferyl-phosphate (MUF), which was used as an analogue substrate for the 252 

enzyme acid phosphomonoesterase. In addition, sample, buffer and substrate blanks were 253 

prepared. Samples were incubated for 30 min at ~ 25 ºC while gently shaking, then 50 µL of 1 254 

M NaOH were added to all samples and standard vials to terminate the reaction. Aliquots of 255 

the sample solution were pipetted into a black 96-well microplate and 20 min after termination, 256 

fluorescence was read on a fluorometer (Tecan Infinite® 200 PRO, Grödig, Austria), at 365 257 

nm excitation and 450 nm emission. Roots were removed from vials, rinsed with Milli-Q water, 258 

scanned and subsequently dried at 60 ºC for 72 hours. Root phosphatase activity per plot and 259 

depth was expressed in μmol MUF g−1 root dry mass h−1.  260 

 261 

Mycorrhizal colonisation 262 

To determine AM colonisation, roots collected in February 2018 were subsampled, cleaned 263 

and scanned, and segments were stored in 50% ethanol. Only root fragments from the 0-10 cm 264 

soil layer were used for AM analyses. The clearing and staining processes were adapted for 265 

tropical roots based on Brundrett et al. (1984) and Wurzburger and Wright (2015). Briefly, 266 

roots were cleared using a 2.5% KOH solution and autoclaved at ~ 120 °C for ± 10 minutes, 267 

then placed in alkaline H2O2 solution for further bleaching for ± 30 minutes. Before staining, 268 

roots were acidified in 2% HCl solution for 30 minutes and were then added to a beaker with 269 

Trypan Blue 0.05% until constantly blue. Roots were rinsed in tap water and ten uniformly 270 

stained 1 cm root fragments per plot were mounted on slides to quantify total root length 271 
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colonised by AM fungi (40 x optical) (McGonigleE et al., 1990). Mycorrhizal colonisation was 272 

assessed as the percentage of the total root points along the root length that had any mycorrhizal 273 

fungi structures.  274 

 275 

Nutrient concentration in fine roots 276 

To ensure there was enough material for nutrient analysis, root material <2 mm diameter from 277 

all four collections spanning the first year of fertilisation (August 2017-September 2018) was 278 

bulked. Dried and ground roots from each collection were composited by plot and soil depth. 279 

Analyses were performed at the Soil and Plant laboratory (LTSP) at the National Institute of 280 

Amazonian Research (INPA) in Manaus, Brazil, and followed established methods that have 281 

also been used to characterise variability in the plant and soil variables across the Amazon 282 

basin (Quesada et al., 2010). Carbon and N contents were determined using an automatic C 283 

and N analyser (VARIO MAX CHN Element Analyzer) (Nelson and Sommers, 1996). 284 

Concentrations of P and cations in roots were analysed by nitroperchloric digestion described 285 

by Malavolta et al., (1989). Phosphorus concentrations were determined by colorimetry 286 

(Anderson and Ingram, 1993), and quantified by spectrophotometry (UV-120-01, Shimadzu, 287 

Kyoto, Japan). Ca, Mg and K were determined by atomic absorption spectrophotometry (AAS, 288 

1100 B, Perkin-Elmer, Ueberlingen, Germany). 289 

 290 

Statistical analyses 291 

Linear mixed-effect models were used to test the effect of added nutrients and their interaction 292 

in the factorial design N*P*cations. The presence/absence of each of the main nutrients were 293 

used as a fixed factor and the four blocks as random factor. All models were run in the R 294 

packages ‘lme4’ and ‘lmerTest’ (Bates et al., 2014; Kuznetsova et al., 2017). Full factorial 295 

models were simplified using backward elimination performed by the step function in 296 

‘lmerTest’ package. The significant model was then re-run and only the significant effects of 297 

nutrient additions are reported. Since no significant interaction effects were detected between 298 

the different nutrients added, results are shown for single nutrient additions only, following 299 

Wright et al., (2011). To graphically assess the effect of specific nutrients, all plots where a 300 

specific nutrient was not added (i.e. –P; n=16) are compared to all plots where that nutrient was 301 

added (i.e. +P; n=16) (Wright et al. 2011). Results are shown for the whole soil core and for 302 

both soil depths separately, but since our aim was to detect the effect of the addition of different 303 
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nutrients, depth was not used as a factor in the statistical models and differences between depths 304 

themselves are therefore not discussed in detail (Supporting Information; Table S1 and S2). 305 

Data were checked for normality and variance homogeneity and the selection for the best model 306 

was made based on functions from ‘LMERConvenienceFunctions’ R package (Tremblay & 307 

Ransijn, 2015). All analyses were conducted in R version 3.4.4 (R Core Team, 2018). 308 

 309 

Root productivity 310 

After one year of nutrient addition, mean fine root productivity across all control plots (n=4) 311 

was 2.98 ± 0.33 Mg ha-1 year-1 (0-30 cm soil depth). Total root productivity for the 0-30 cm 312 

soil depth, significantly increased by 23% in P-addition plots compared to plots without added 313 

P (-P: 3.50 ± 0.30 versus +P: 4.31 ± 0.33 Mg ha-1 year-1; F1,24=4.67, p=0.04; Fig. 1). The 314 

significant increase in mean root productivity with P addition for the whole core was mainly 315 

driven by changes in the 0-10 cm soil layer (-P: 2.03 ± 0.15 versus +P: 2.64 ± 0.20 Mg ha-1 316 

year-1; F1,24=6.62, p=0.017), with no significant effect in the 10-30 cm layer with the addition 317 

of any nutrient (Fig. 1). No significant effects were found for total root productivity with the 318 

addition of N or cations (Fig. 1). Although the addition of cations did not significantly affect 319 

annual root productivity, there were short-term effects of cations at certain times of the year. 320 

No interactions among nutrient treatments were found for root productivity in any sampling 321 

time. When analysing root productivity for the 3-month interval used for our root trait analyses 322 

(November 2017 – February 2018), the addition of cations increased fine root productivity by 323 

52% for the whole 0-30 cm soil layer (F1,26=8.28, p=0.008) and this increase was mainly driven 324 

by a significant effect detected for the 0-10 cm layer (F1,26=12.32, p=0.002; Supporting 325 

Information Fig. S1). 326 

 327 

Root morphological traits 328 

Mean root diameter (0-30 cm) across control plots (n=4) was 0.99 ± 0.03 mm, SRL 1,310 ± 76 329 

cm g-1, SRA 311 ± 14 cm2 g-1 and RTD 0.15 ± 0.007 g cm-3. In plots where P was added, root 330 

diameter significantly increased in the 0-10 cm soil layer when compared to plots without P 331 

addition (F1,26=4.78, p=0.038; Table 1), with no changes for the full 0-30 cm layer (F1,25=3.61, 332 

p=0.07). The addition of cations increased mean root diameter from 1.03 to 1.12 mm for the 333 

Results
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whole 0-30 cm soil layer (F1,25=8.55, p=0.007). The same trend was found for the 0-10 cm 334 

(F1,26=3.78, p=0.06) and 10-30 cm (F1,27=3.36, p=0.08) soil layer. For mean root diameter, the 335 

addition of N did not result in any changes for any soil layer. The addition of N, P and cations 336 

separately had no effect on SRL, SRA or RTD (Table 1).  337 

 338 

Root phosphatase activity 339 

Mean root phosphatase activity across control plots (n=4) was 40.80 ± 6.74 μmol g-1 h-1 for the 340 

0-30 cm soil layer. Compared to plots without P, the addition of P significantly decreased root 341 

phosphatase activity only in the top 10 cm by 23% (-P: 41.84 ± 2.70 versus +P: 31.97 ± 2.95 342 

μmol g-1 h-1; F1,27=7.30, p=0.01; Fig. 2). No significant changes in root phosphatase activity 343 

were detected with the addition of N, P or cations for the whole core (0-30 cm), although a 344 

decline of root phosphatase activity was captured with P addition (-P: 38.90 ± 2.52 versus +P: 345 

33.21 ± 3.07 μmol g-1 h-1; F1,27=3.45, p=0.07; Fig. 2). When analysing soil layers separately, 346 

the addition of N or cations did not affect root phosphatase activity.  347 

 348 

Mycorrhizal colonisation 349 

Mean total root AM colonisation in control plots was 38.46 ± 4.75% for the 0-10 cm soil layer. 350 

The addition of cations increased total AM colonisation from 41.90% in plots where cations 351 

were not added to 50.40% with cation addition (F1,27= 4.57, p=0.042; Fig. 3). Neither the 352 

addition of N nor the addition of P significantly affected root AM colonisation. No significant 353 

effects of nutrient addition were detected when analysing AM structures separately (Supporting 354 

Information; Table S3). 355 

 356 

Nutrient concentration in fine roots 357 

Mean C and N concentrations in roots growing in control plots were 43.82 ± 0.19 and 0.74 ± 358 

0.13 %, and mean P, Ca, Mg and K concentrations were 0.46 ± 0.02, 0.92 ± 0.09, 0.84 ± 0.12, 359 

2.80 ± 0.20 g kg-1 for the whole 0-30 cm soil layer. In plots where P was added, concentrations 360 

of P and Ca increased in roots growing in the 0-10, 10-30 and for the mean 0-30 cm soil layer 361 

(Fig. 4). Concentrations of P in roots more than doubled with P addition (F1,27= 40.97, 362 

p<0.001), whilst Ca concentrations increased by at least 50% (F1,26= 17.08, p=0.0003). The 363 

addition of cations significantly increased Ca, Mg and K concentrations in roots. Ca 364 

concentrations increased about 30% in plots where cations were added, being significantly 365 
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higher only for the 0-10 cm (F1,25= 4.29, p=0.048; Fig. 4) and mean 0-30 cm soil layer (F1,26= 366 

4.67, p=0.04; Fig. 4). Mg concentrations increased by more than 50% (F1,26= 23.81, p<0.0001 367 

for the 0-30 cm layer), with K concentrations increasing by 20-30% with cations addition 368 

(F1,27= 7.02, p=0.013 for the 0-30 layer; Fig. 4). The addition of N did not significantly affect 369 

the concentrations of nutrients in roots one year after fertilisation commenced. 370 

 371 

Here we demonstrate experimental support for the hypothesis that rock-derived nutrients play 372 

a more important role than N in controlling fine root functional traits in highly weathered, 373 

ancient soils, such as those found in most Amazonian forests. Phosphorus addition had major 374 

impacts on root productivity and functional traits analysed here, but cation additions also 375 

affected root dynamics. The addition of N, as expected, did not affect root productivity or any 376 

root trait analysed here. Overall, the results demonstrate that trees in these slow-growing forests 377 

show high plasticity in response to shifts in P and cation availability. 378 

 379 

Fine root productivity was stimulated by short-term P addition 380 

Due to the high costs of construction and maintenance of fine acquisitive roots (McCormack 381 

et al., 2015), we expected that P addition would decrease fine root productivity as a sign of 382 

alleviation of P limitation. Our results demonstrate that in the short-term, P addition increased 383 

root productivity by 23%, suggesting that, contrary to what we expected, the construction costs 384 

of short-lived acquisitive roots might be less than the maintenance costs of long-lived fine 385 

roots. The increase in root productivity in our study is not consistent with the lack of responses 386 

(Alvarez-Clare & Mack, 2015) and declines in root biomass (Yavitt et al., 2011) observed in 387 

previous fertilisation experiments in tropical forests, nor observed variation in root productivity 388 

between soil types with contrasting fertility in the Colombian Amazon (Jiménez et al., 2009), 389 

but are in more agreement with the study of  Waring et al., (2019) in a tropical dry secondary 390 

forest. The response also contrasts with the reductions in root productivity and C allocation 391 

belowground following alleviation of N limitation in temperate and boreal forests (Janssens et 392 

al., 2010; Peng et al., 2017). However, our results are actually consistent with large-scale 393 

spatial patterns observed within Amazonia; higher fine root productivity has been observed in 394 

more fertile soils of the Western Amazon basin than in low-fertility soils in the Central portion 395 

of the basin (Aragão et al., 2009). The agreement between our results and the broader spatial 396 

Discussion
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patterns in Amazonia (Aragão et al., 2009) may suggest a common response to greater P and 397 

cation concentrations across natural gradients and in response to experimental manipulation. 398 

At this stage, however, it is not clear if the increase in root productivity in our study site after 399 

one year of P additions is transient and could change with chronic nutrient enrichment and how 400 

these responses, together with turnover rates, will affect partitioning of plant biomass allocation 401 

and stocks between above and belowground compartments (Ostertag, 2001; Jiménez et al., 402 

2009; Wurzburger & Wright, 2015). Nonetheless, our results demonstrate a rapid change in 403 

productivity rates in response to P additions in Central Amazonia, pointing to an increased role 404 

of direct root nutrient uptake in a more P-fertile system.  405 

A trend towards greater root productivity with cation addition was also observed, with 406 

the increase in productivity being greater in some of the sampling points but not overall. In 407 

Panama, four years of K additions elicited changes in fine root dynamics, decreasing root 408 

stocks while increasing root turnover (Yavitt et al., 2011). Therefore, despite its potential 409 

importance, it remains less clear the extent to which the availability of specific cations controls 410 

root productivity in tropical forests and how such responses would change in the short and 411 

longer term. 412 

 413 

Phosphorus and cations additions cause rapid increase in average root diameter 414 

Together with other factors, soil fertility is expected to control the expression of fine root 415 

morphological traits (Valverde-Barrantes et al., 2013, 2017; Freschet et al., 2017; Addo-Danso 416 

et al., 2020). Hence, we hypothesised that the addition of nutrients would alleviate limitation, 417 

resulting in a shift from acquisitive to more conservative root traits, decreasing, for example, 418 

SRL and SRA and increasing RTD and mean diameter. Root diameter increased ~10% with 419 

cation and P addition, but no responses were detected for SRL, SRA and RTD in our 420 

fertilisation experiment. The direct effect of P addition on root diameter is, however, not 421 

conclusively demonstrated in our study, since our P fertiliser (triple superphosphate) includes 422 

~15% of Ca in its composition and root diameter also increased in plots where we added 423 

cations. Therefore, we cannot exclude the possibility that the responses in both treatments were 424 

driven by Ca. Contrary to our findings, Wurzburger & Wright, (2015) reported root 425 

morphological traits shifting toward more acquisitive roots with K, P and NPK additions, with 426 

lower tissue density and higher specific length after 14 years of nutrient manipulation in 427 

Panama. Such contrasting responses compared to our study could also be attributed to 428 
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differences in root age, with our results representing < 3 month old fine roots, whilst  429 

Wurzburger & Wright, (2015) studied mixed-age roots sampled from standing stocks.  430 

The addition of P and cations could have favoured the root production of some species 431 

with naturally thicker roots in our study site, but since our measurements refer to the 432 

community-level, we cannot determine the species-specific effect in our results. Also, roots 433 

can maximize nutrient uptake employing very contrasting root morphologies (Chen et al., 434 

2016) diluting the signal at the community level. Although small diameter roots are more 435 

efficient in exploring larger soil volumes in terms of plant biomass investment per unit volume 436 

of soil (Bates & Lynch, 2001; Hodge, 2004; Liu et al., 2015), the increase in root diameter 437 

detected here could also provide increased mechanical protection against pathogens and 438 

herbivores (Laliberté et al., 2015; Valverde-Barrantes et al., 2017) and increased number or 439 

size of root cortical cells which could consequently increase levels of mycorrhizal colonisation 440 

(Brundrett, 2002; Guo et al., 2008; Comas et al., 2014). Since nutrient concentrations in root 441 

tissues increased following fertilisation, thicker diameter roots could be related to increased 442 

nutrient uptake through AM networks, either as a result of greater nutrient delivery per unit 443 

root length colonised or due to greater AM colonisation (see below; Eissenstat & Yanai, 1997; 444 

Eissenstat et al., 2000; McCormack & Iversen, 2019). 445 

 446 

Reduction in fine root phosphatase activity with P addition 447 

A strong line of evidence for the role of P in controlling nutrient uptake strategies used by 448 

plants in our study is the significant decrease in root phosphatase activity with short-term P 449 

addition. A previous study demonstrated that root-surface phosphatase potential activity was a 450 

prevalent mechanism adopted by fine roots in Central Amazonian forests (Lugli et al., 2020). 451 

Our results, therefore, support the idea that the exudation of phosphatase by plants is an 452 

important avenue for P acquisition in soils with low P availability in Central Amazonia 453 

(Guilbeault‐Mayers et al., 2020; Lugli et al., 2020), and its rapid reduction suggests that this is 454 

indeed a resource-costly strategy. Together with the increase in fine root productivity captured 455 

here, the decrease in phosphatase potential activity point to a possible shift in soil P sources in 456 

our system, from organic to inorganic P, benefiting root foraging (i.e. direct root nutrient uptake 457 

or AM colonisation) over mining strategies. In soils with low P concentrations, plants tend to 458 

be efficient in acquiring P, which is usually accompanied with higher root phosphatase activity 459 

(Raghothama & Karthikeyan, 2005; Kitayama, 2013). However, the negative relationship 460 



16 
 

 
 

between root-surface phosphatase potential activity and P availability captured in previous soil 461 

gradient studies (e.g. Kitayama, 2013; Nasto et al., 2014; Ushio et al., 2015) could also be a 462 

result of differences in plant species composition and soil physical properties. By controlling 463 

such factors in our large-scale experiment, we demonstrate that plants can rapidly detect 464 

increased P availability, changing their investment in key root traits. The addition of N and 465 

cations, on the other hand, did not affect root-surface phosphatase potential activity rates, 466 

suggesting there had been no increase in P limitation following the addition of other nutrients.  467 

 468 

Increase in AM colonisation with cations addition 469 

We expected that the addition of nutrients would decrease root AM colonisation levels, under 470 

the assumption that with greater nutrient availability, plants would not invest as much in the 471 

fungal symbiosis to acquire nutrients. In contrast, we observed AM colonisation increasing 472 

with cation additions, suggesting that plants could be relying on the association with AM fungi 473 

to acquire cations or other nutrients. Long-term addition of P, but not K, increased AM 474 

colonisation in standing-stock roots growing in forests in Panama (Wurzburger & Wright, 475 

2015). Although the major benefit of AM fungi symbiosis has been considered the 476 

translocation of P to the host plant (Smith & Read, 2010), AM fungi also have been shown to 477 

acquire other macro and micronutrients such as N, Ca, Mg, K and S in pioneer and early 478 

successional tree species (Siqueira et al., 1998; Zangaro et al., 2003). Moreover, the higher 479 

levels of AM colonisation found here could be related to thicker root diameter detected in plots 480 

where cations were added (Table 1; Supporting Information Fig. S2). Trees with thicker 481 

absorptive roots would benefit more from AM fungi increasing their nutrient foraging capacity 482 

(Eissenstat et al., 2015; Liu et al., 2015; Kong et al., 2016; Chen et al., 2016). In contrast, trees 483 

with  with thinner roots may take up nutrients directly from the soil solution or rely on 484 

phosphatase activity, thus using complementary mechanisms to acquire nutrients (Lugli et al., 485 

2020). Nevertheless, the higher investment in AM fungi with cation addition detected in this 486 

Central Amazon forest, could also suggest AMs benefit plants by increasing the uptake of other 487 

macro and micronutrients. Alternatively, it has been suggested that greater investment in AM 488 

fungi can alter the microbial community in the rhizosphere and decrease plant susceptibility to 489 

pathogens (Koide, 1991; Herre et al., 2007; Laliberté et al., 2015). 490 

 491 
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Stimulation of fine root nutrient concentrations  492 

The addition of P and cations increased the concentrations of most elements in fine roots. Due 493 

the chemical composition of the fertiliser used in our P treatment (triple superphosphate: about 494 

45% of P2O5 and 15% of Ca), the addition of P not only increased P concentrations in fine roots 495 

but also of Ca (Wright, 2019). It is important to highlight that even with no changes in AM 496 

colonisation and lower levels of root-bound phosphatase activity, the addition of P increased 497 

both P and Ca concentrations in roots. This points to either i) a greater role of direct root 498 

nutrient uptake or ii) increased nutrient uptake efficiency per unit AM and/or per unit 499 

phosphatase exuded in our study site. Such trends are likely due to higher nutrient availability 500 

in the soil solution after fertilisation and a change of P source from primarily organic to 501 

inorganic P. The higher concentrations of Ca, Mg and K in fine roots after cations addition, 502 

demonstrates that we successfully increased cation availability and could also be a result of the 503 

higher levels of AM colonisation detected in our study site (Siqueira et al., 1998; Zangaro et 504 

al., 2003). The addition of N, however, did not affect the concentration of N or any other 505 

element in fine roots, suggesting that the extra N added to these already N-rich soils was not 506 

taken up by plants and/or that N concentrations in the root could be already at their optimal 507 

levels, with N being retranslocated to other plant tissues (Wurzburger & Wright, 2015). 508 

Therefore, plants growing in this Central Amazon forest strongly respond to the alleviation of 509 

rock-derived nutrient limitation and increase nutrient uptake, with a potential role for AM fungi 510 

driving some of these responses.  511 

  512 

Implications for root functioning in Amazonian forests 513 

By analysing a range of key root traits and root productivity, our study supports the hypothesis 514 

that P availability controls root functioning in Central Amazon forests, but the responses to 515 

cations also suggests that the role of rock-derived elements other than P has previously been 516 

underestimated. We found partial support for our hypothesis that nutrient addition would shift 517 

root traits from an acquisitive to a more conservative strategy. With P addition, we did find 518 

evidence for reduced investment in P acquisition, with reduced investment in mining P via 519 

phosphatases, and there was equivocal evidence for increases in root diameter. On the other 520 

hand, in contrast to our hypothesis, total root productivity increased suggesting direct root 521 

foraging for available P had become a more important strategy. With cations, we did observe 522 

a shift towards more conservative root traits with greater average root diameter, but AM 523 
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colonisation increased suggesting a change in nutrient acquisition strategy rather than an 524 

overall shift to less acquisitive root traits. Direct comparisons with other studies in tropical 525 

forests are complicated because there is limited information on root productivity responses to 526 

nutrient manipulation, and traits have tended not been measured on roots of a known age. 527 

However, previous tropical nutrient manipulation experiments, installed in relatively more 528 

fertile soils in Central America, did not find strong support for P controlling root traits and fine 529 

root biomass, and only one studied the effect of cations (K, only) (Yavitt et al., 2011; 530 

Wurzburger & Wright, 2015; Alvarez-Clare & Mack, 2015). Based on the different responses 531 

among fertilisation experiments, we suggest that soil nutrient availability may be even more 532 

important in determining fine root dynamics in Amazonian forests than Central American 533 

forests. Nevertheless, we stress the importance of continuous monitoring in long-term 534 

manipulation experiments, to determine whether responses persist with chronic nutrient 535 

addition. Overall, our findings increase understanding of the plasticity of belowground plant 536 

traits and the factors controlling these responses, demonstrating that multiple nutrients shape 537 

belowground processes in Central Amazonian forests and that even slow-growing tropical 538 

rainforest in low fertility soils can respond very rapidly to nutrient additions. Phosphorus and 539 

cation availability, and changes in resource allocation to nutrient acquisition by Amazonian 540 

trees, thus, will likely play a key role in determining responses to future environmental change 541 

in these forests. 542 
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Table 1 Mean root diameter, specific root length (SRL), specific root area (SRA) and root 813 

tissue density (RTD) ± standard errors with and without the addition of N, P and cations in two 814 

soil depths (0-10 cm and 10-30 cm) and for the mean 0-30 cm depth. n= 16 per treatment per 815 

depth. Significant effects of the N, P and cations by depth (e.g. -P versus +P) are indicated by 816 

* and **, representing probability at the 5 and 1 % levels, respectively. 817 

Nutrient Depth 
Diameter SRL SRA  RTD   

(mm)  (cm g-1) (cm2 g-1) (g cm-3) 

-N 

0-10 cm 1.05 ± 0.03 1,150 ± 56 290 ± 11.14 0.16 ± 0.005 
10-30 cm 1.06 ± 0.03 1,260 ± 69 308 ± 10.01 0.15 ± 0.004 
0-30 cm 1.05 ± 0.02 1,200 ± 53 299 ± 9.30 0.15 ± 0.004 

+N 

0-10 cm 1.09 ± 0.03 1,310 ± 102 320 ± 18.68 0.15 ± 0.004 
10-30 cm 1.11 ± 0.03 1,220 ± 82 308 ± 16.19 0.15 ± 0.007 

0-30 cm 1.10 ± 0.02 1,267 ± 64 313 ± 11.01 0.15 ± 0.003 

-P 

0-10 cm 1.02 ± 0.04 1,250 ± 94 304 ± 15.89 0.16 ± 0.005 
10-30 cm 1.07 ± 0.03 1,220 ± 61 305 ± 10.66 0.15 ± 0.005 
0-30 cm 1.05 ± 0.02 1,240 ± 60 304 ± 9.71 0.15 ± 0.005 

+P 

0-10 cm 1.11 ± 0.02* 1,210 ± 75 306 ± 15.81 0.15 ± 0.005 
10-30 cm 1.09 ± 0.03 1,260 ± 88 310 ± 15.74 0.15 ± 0.006 

0-30 cm 1.10 ± 0.02 1,230 ± 58 308 ± 10.94 0.15 ± 0.004 

-Cations 

0-10 cm 1.03 ± 0.03 1,260 ± 83 308 ± 14.63 0.15 ± 0.005 
10-30 cm 1.04 ± 0.03 1,330 ± 68 322 ± 13.20 0.14 ± 0.005 
0-30 cm 1.03 ± 0.03 1,290 ± 57 315 ± 10.60 0.15 ± 0.004 

+Cations 

0-10 cm 1.11 ± 0.03 1,200 ± 87 302 ± 16.95 0.15 ± 0.006 
10-30 cm 1.13 ± 0.03 1,150 ± 76 293 ± 12.61 0.15 ± 0.006 

0-30 cm 1.12 ± 0.02** 1,180 ± 57 297 ± 9.57 0.15 ± 0.003 
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 829 

Fig. 1. Fine root productivity in Mg ha-1 year-1 for the 0-10 and 10-30 cm soil depths and sum 830 

of the whole soil core (0-30 cm) with and without the addition of N, P and cations in a lowland 831 

tropical forest in Central Amazon, Brazil. Each panel contrasts 16 plots with and without the 832 

addition of nutrients in each depth. Means ±1SE (n=16) are presented. Significant effects of 833 

the N, P and cations are indicated by ** representing probability at the 1% level. 834 
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 838 

Fig. 2. Mean root phosphatase activity in μmol g-1 root dry weight hour-1 for the 0-10 and 10-839 

30 cm soil depths and mean of the whole soil core (0-30 cm) with and without the addition of 840 

N, P and cations in a lowland tropical forest in Central Amazon, Brazil. Each panel contrasts 841 

16 plots with and without the addition of nutrients in each depth. Means ±1SE (n=16) are 842 

presented. Significant effects of the N, P and cations are indicated by ** representing 843 

probability at the 1% level. 844 
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 847 

 848 

Fig. 3. Total root arbuscular mycorrhizal colonisation in % root length for roots from the 0-10 849 

cm soil layer with and without the addition of N, P and cations in a lowland tropical forest in 850 

Central Amazonia, Brazil. Each panel contrasts 16 plots with and without the addition of 851 

nutrient. Means ±1SE (n=16) are presented. Significant effects of the N, P and cations are 852 

indicated by * representing probability at the 5% level. 853 
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 856 

Fig. 4. Element concentrations in fine root tissues for the 0-10 and 10-30 cm soil depths and 857 

mean of the whole soil core (0-30 cm) with and without the addition of N, P and cations in a 858 

lowland tropical forest in central Amazon, Brazil. Concentrations of C and N are given as % 859 

and concentrations of P, Ca, Mg and K are given in g kg-1. Each panel contrasts 16 plots per 860 

depth with and without the addition of nutrient. Means ±1SE (n=16) are presented. Significant 861 

effects of the N, P and cations are indicated by *, **, and ***, representing probability at the 862 

5, 1, and 0.1 % levels, respectively. 863 


