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Abstract—Network slicing has emerged as a promising net-
working paradigm to provide resources tailored for Industry 4.0
and diverse services in 5G networks. However, the increased
network complexity poses a huge challenge in network man-
agement due to virtualised infrastructure and stringent Quality-
of-Service (QoS) requirements. Digital twin (DT) technology
paves a way for achieving cost-efficient and performance-optimal
management, through creating a virtual representation of slicing-
enabled networks digitally to simulate its behaviours and predict
the time-varying performance. In this paper, a scalable DT of
network slicing is developed, aiming to capture the intertwined
relationships among slices and monitor the end-to-end (E2E)
metrics of slices under diverse network environments. The
proposed DT exploits the novel Graph Neural Network model
that can learn insights directly from slicing-enabled networks
represented by non-Euclidean graph structures. Experimental
results show that the DT can accurately mirror the network
behaviour and predict E2E latency under various topologies and
unseen environments.

Index Terms—Digital twins, network slicing, Graph Neural
Networks, end-to-end modelling.

I. INTRODUCTION

With the emergence of Industry 4.0, Industrial Internet-of-
Things (IIoT) and smart city, the network infrastructure is
envisioned to meet manifold technical demands and diverse
Quality-of-Service (QoS) requirements with respect to latency,
throughput, capacity and reliability [1]. To efficiently accom-
modate a wide range of services and ensure that the network
can be flexibly tailored for distinct applications, the concept of
network slicing has been proposed as a promising approach
to fulfil the prominent paradigm shift from one-size-fits-all
solution to softwarised and virtualised design [2]. Network
slicing offers an effective means to meet the diverse use case
requirements, and is a critical enabler for realising industrial
applications with stringent latency requirements on a shared
infrastructure [3].

Network slices are logically isolated End-to-End (E2E) vir-
tualised networks operating on a shared physical infrastructure
and can be controlled and managed independently to support
flexible and efficient service provisioning [2]. Such flexibility
and efficiency are realised through the combination of two
emerging technologies, i.e., Software Defined Networking
(SDN) and Network Function Virtualisation (NFV) [4], which
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decompose traditional monolithic and proprietary network
appliances into multiple small and software-based modular
network capabilities called Virtual Network Functions (VNFs)
running on standard servers.

However, employing network slicing in 5G networks en-
genders huge challenges in network management, due to soft-
warised and virtualised infrastructure and significant differen-
tiation in QoS requirements [5]. Especially, it is intractable for
ensuring E2E performance to meet the variety of requirements,
since slices share the same infrastructure and cross multiple
domains [6]. To leverage network slicing properly, it is crucial
to efficiently monitor the network and accurately generate
E2E metrics. Such measurements can be effectively used to
accomplish autonomous management and dynamic network
orchestration to guarantee the associated QoS requirements.

The fast development of digital twin (DT) technology in the
industry paves a way to cyber-physical integration, through
creating virtual replicas of physical objects in a digital way to
simulate their behaviours [7]. The management of network
slicing can greatly benefit from a network DT. Firstly, a
network DT creates a virtual representation of the physical
slicing network and can be used to conduct various what-if
scenarios and resource allocation approaches without affecting
the physical network. Secondly, through interactions with the
physical network, a network DT can generate and process its
own data and predict the QoS performance after any configura-
tion changes. A DT of network slicing is important to achieve
cost-efficient and performance-optimal slicing management
and keep monitoring the performance under a diverse set of
operating conditions without impacting the physical network.
However, different from a DT in the industrial domain, a
network DT needs to merge both the physical and virtual
components in slicing-enabled networks. Such virtual elements
add much more complexity for developing the DT, since they
change frequently and can be created or destroyed in real-time.

The recent advances in Artificial Intelligence (AI) provides
a promising means to fulfil the demands of network DT
development. The emergence of data-driven Machine Learning
(ML) techniques especially Deep Learning [8] has gained pop-
ularity in networking areas and led to a new breed of models
that learn from data, instead of being explicitly programmed.
Researchers are using Deep Neural Networks (DNN) to model
complex network behaviours [9] and develop decision-making
strategies based on Deep Reinforcement Learning [10]. Most
of these works are based on acclaimed learning architectures
such as Convolutional Neural Networks (CNNs) [11], Recur-
rent Neural Networks (RNNs) [12] and AutoEncoders [13]
and their variants. However, communication networks are
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fundamentally represented in the form of graphs, and most of
the existing learning architectures are not designed to learn
such information structured in non-Euclidean domain, due
to irregular topology of graphs and interdependency between
nodes. As a result, these models are limited in providing accu-
rate results on graph data and hard to achieve generalisation on
dynamic topologies and configurations. This challenge hinders
the creation of a network DT and its wide applications in
slicing-enabled networks.

To solve the above challenge, we design a network DT
based on Graph Neural Networks (GNN) to discover the
complicated relationships and interdependency among network
slicing, resource utilisation and physical infrastructure, and
to generate the E2E metrics prediction of each slice under
diverse scenarios. GNNs facilitate the learning of rich relation
information among elements in a graph structure and cap-
ture the dependency of neighbourhood. This is achieved by
generating the virtual representation of the shared nodes and
links of slicing infrastructure based on the dynamic resource
utilisation as state features, and collectively aggregate these
states within the source-destination path of a slice to form E2E
slice metrics. Moreover, the proposed network DT exploits an
inductive graph framework to gain the generalised capability
that can produce E2E metrics under different topologies and
network configurations.

The network DT model proposed in the paper achieves a
vital step towards realising the ambitious vision of autonomous
management of network slicing by providing the ability to
map the network status to E2E QoS performance for complex
slicing-enabled networks. Such an ability ensures that the QoS
requirements are constantly met after any changes performed
on slices, and the allocation of resources between slices will
not exceed the resource capacity of servers, e.g., base stations
or edge servers. To the best of our knowledge, this is the first
work to build a DT for network slicing management. The main
contributions of this paper are threefold:

(i) We model the intricate interactions between multiple
slices deployed on a shared physical infrastructure into
a graph structure and design a novel GNN-based virtual
representation model. Instead of processing features of
each node, the model captures the hidden interdepen-
dencies among nodes by examining and aggregating the
information from multi-hop neighbour nodes.

(ii) We propose a DT of network slicing to investigate
the composite traffic generated by slices and produce
accurate predictions of E2E slice latency. The DT adopts
the inductive graph learning framework to achieve gen-
eralisation and perform prediction under various envi-
ronments.

(iii) We demonstrate the high accuracy of the DT for estimat-
ing E2E latency of slices under arbitrary topologies, di-
verse slice deployment and traffic distributions that have
not been seen during the training process. Hypothetical
what-if scenarios are performed using the DT to evaluate
the E2E performance with QoS constraints.

The remainder of this paper is organised as follows. In
Section II, the related work is presented. Section III is devoted

to the design of the system model. Section IV proposes the
GNN-based DT for 5G network slicing. The accuracy of the
proposed DT is evaluated in Section V. Finally, Section VI
concludes the paper.

II. RELATED WORK

Network slicing has been investigated in the context of
industrial communication as a means to manage the increasing
complexity of manufacturing networks [1], [3]. The existing
works focus on the architecture and framework design rather
than slicing of the physical networks due to the lack of
virtualisation support in specialised infrastructure. Outside the
industrial domain, E2E network slicing has become one of the
key enabling forces for fulfilling the full capabilities of 5G and
has been recognised as a high-priority technical gap to tackle
for application quality.

To bridge the gap, considerable efforts have been dedicated
towards the problem of slicing resource allocation. Eichhorn et
al. [14] proposed an SDN-based slicing solution for 5G core
networks, but the problem of RAN slicing among multiple
applications was not addressed. Taleb et al. [15] presented
a multi-domain network slicing architecture, including RAN,
edge and core, to achieve E2E resource orchestration. How-
ever, the problem of meeting the stringent latency requirements
of industrial applications was not fully addressed. Therefore,
there is a clear gap on the research of the E2E performance
of network slicing across multiple domains. Fulfilling such
challenges demands the methods that can monitor and predict
E2E slicing metrics to ensure the QoS.

Network modelling that has been used to conduct the eval-
uation and prediction of network performance is a promising
candidate to establish a DT to observe whether current network
configurations are able to meet the QoS requirements. The
networking community has developed numerous analytical
models for decades, in particular based on queuing theory [16],
[17] and network calculus [18], [19]. However, to ensure
model tractability in complex networks, such models typi-
cally rely on simplifying assumptions about the properties of
underlying architecture (e.g., traffic with Poisson distribution
and static routing), which sacrifice their accuracy. For the
DT to deliver its promise, it must have sufficient fidelity so
as to accurately reflect the network dynamics that can cause
networks to behave unpredictably. The network dynamics are
typically created by the interplay among the slices, system
configurations, network topology, physical infrastructure, and
application traffic. Unfortunately, reflecting the intertwined
relationships of the preceding components lies beyond the
reach of analytical models.

Machine learning-based approaches have attracted many
efforts for network optimisation. Kasgari et al. [20] proposed a
deep reinforcement learning (DRL)-based resource allocation
approach to allocate wireless resources to end-users under
the URLLC scenario and leveraged generative adversarial net-
works (GANs) to generate training data for extreme network
circumstance. Although DRL shows promising potential in
network management, it still suffers from two challenges. It
needs large amounts of samples to learn a comprehensive
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experience, and the agent needs to keep interacting with a sim-
ulated or real environment, which may slow down the training
process. Such challenges can be addressed by integrating DRL
with a DT model. A DT model can generate unlimited training
samples through assigning various network configurations and
can act as an environment to perform model-based DRL to
largely reduce the training time.

Extending Deep Learning (DL) [8] operating on data rep-
resented in a graph structure has been investigated under
the umbrella of GNN [21], and has attracted a significant
amount of research efforts in recent years [22]. Recently, a
Graph Convolutional Network (GCN) architecture for learning
and reasoning over graphs has been proposed in [23]. It
performs semi-supervised learning in a transductive setting
and requires the information of a whole graph during training.
Therefore, GCN has scalability issue and works on fixed
graphs, which is not suitable for network slicing with stringent
QoS requirements and dynamic topologies.

Achieving continuous slicing performance monitoring un-
der various network configurations and different topologies
presents additional challenges, as we have to deal with the
intertwined impacts between slices with different resource
demands and various QoS requirements. Therefore, it is critical
to leverage novel DT technology to achieve efficient and
accurate performance monitoring for E2E slices.

III. SYSTEM MODEL

In this section, we present the system model of the network
slicing DT, including the models of 5G substrate network and
network slicing system, and then we propose the E2E network
slicing graph representation. Table I summarises the notations
used in this paper.

A. Network slicing model

Network slices are deployed on a general 5G substrate
network that is equipped with various types of resources.
In our model, the substrate network is represented as an
undirected graph, denoted as Gp = (Vp, Lp), where Vp is
the set of physical nodes that consist of multiple commodity
servers and Lp indicates the set of links connecting the nodes.
Each physical node of the network ni ∈ Vp supplies r different
types of resources (e.g., CPU, memory, storage, GPU). The
resources provided by a node ni are expressed as a vector
nRes
i = [R1(ni), R2(ni), . . . , Rr(ni)], and the various types

of resources will be illustrated in numbers in order to have a
uniform input. In our model, we consider that the number of
resource types on each node is identical, and thus the length of
vector nRes

i is the same for ∀ni ∈ Vp. If devices from different
network domains have various types of resources, each type
of resources is set at a specific position in the resource vector.
For example, a node in a specific network domain does not
have certain types of resources, and those positions can be set
to 0. Each link in the substrate network lp(i, j) ∈ Lp denotes
the physical connection between ni and nj with an amount
of bandwidth. The total available bandwidth for link lp(i, j)
is denoted by Bp(i, j).

TABLE I
FREQUENTLY USED NOTATIONS

Parameter Meaning

Gp Physical 5G substrate network
Vp The node set in the substrate network
Lp The link set in the substrate network
ni A physical node providing multiple resources

Rr(ni) Capacity of r resource on node ni

lp(i, j) A physical link connecting ni and nj

Bp(i, j) Network bandwidth of lp(i, j)

su A network slice deployed on the physical network Gp

Vu The VNF nodes in slice su

Lu The virtual links in slice su

nf u,i A VNF of su on substrate node ni

nf Res
u,i Resource vector of VNF nf u,i

lu(i, j) A virtual link between two VNFs nf u,i and nf u,j
fi Superposed resource utilisation on physical node ni

fli,j Superposed resource utilisation on physical link lp(i, j)

ds Delay of a link between two nodes
hi Node state representation

hs(u) State representation of su
dsu Current E2E latency of slice su

Φ(ni) The set of neighbour nodes of ni

N (ni) Sampled neighbour nodes of ni

K The neighbour sample depth
Ek The number of neighbours sampled at layer k

The network slices support diverse services, such as mul-
timedia streaming, vehicular communication and Internet-of-
Things (IoT), which have different requirements on latency.
To achieve the diversity, the 5G networks adopt the SDN
and NFV network techniques, in which the nodes and links
support virtualisation and can be divided into multiple iso-
lated virtual containers and virtual links to accommodate
VNFs. In this way, each network slice consists of multiple
associated VNFs deployed on different physical nodes, and
these VNFs are chained together through multiple virtual
links. Thus, a network slice su can be represented as a
directed graph denoted by su = (Vu, Lu), where Vu and
Lu represent the sets of VNFs and virtual links respectively.
Each VNF is characterised by a three-tuple, namely the
slice to which it belongs, the physical hosting node and the
demands of each type of resources. From a modelling point
of view, a VNF of slice su deployed on node ni can be
indicated by nf u,i = (su, ni,nf

Res
u,i ),∀nf u,i ∈ Vu, where

nf Res
u,i = [R1(nf u,i), . . . , Rr(nf u,i)], Rr(nf u,i) ≤ Rr(ni).

Similarly, a virtual link can be characterised by the slice it
belongs to, the two VNFs it connects with, and the bandwidth
requirement, which can be expressed as lu(nf u,i,nf u,j) =
(su, L

′(i, j), Bu(i, j)), where L′(i, j) is a set of physical links
between ni and nj that depends on the routing scheme of Gp.
For the sake of simplicity, we substitute lu(nf u,i,nf u,j) with
lu(i, j). Therefore, a network slice su in a shared infrastructure
Gp can be depicted as

su =
(
{nf u,i}ni∈Vp , {lu(i, j)}ni 6=nj∈Vp

)
(1)

An E2E slicing model is crucial for developing a DT to
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Fig. 1. Network shared by multiple network slices and associated graph-based virtual representation.

capture the whole picture of a network and to evaluate the
E2E QoS metrics of slices. In this paper, we consider the
E2E latency as the main metric, since latency is one of the
most important factors of industrial applications and always
has a strict requirement. Delivering an E2E network slice on
the substrate network Gp involves managing the resources of
nodes allocated for each VNF and selecting a set of proper
links connecting them to meet the requirements and ensure
optimal utilisation of resources.

B. Graph-based virtual representation

We formalise the problem of producing E2E latencies of
multiple slices that share the same infrastructure, as shown in
Fig. 1. The left part of the figure shows a network that contains
three slices sharing the same substrate network, including a
radio access network (RAN), an edge network and a core
network. Each slice is dedicated with respect to a service
that requires specific functionalities in a particular order. Each
network function requires resources from different domains of
the substrate network.

The right part of the figure presents the graph-based rep-
resentation corresponding to the left network slicing infras-
tructure. Each physical node in any domain may host multiple
VNFs that belong to different slices. Physical links are shared
by several virtual links, and a virtual link may also be deployed
through many physical links. For example, the slices in blue
and green colours all have virtual links based on two or more
physical links. Therefore, an E2E slicing latency depends on
the traffic flows that traverse an ordered set of VNFs, which is
further determined by the state of every link connecting these
VNFs.

A graph-based virtual representation is the foundation of
a GNN model. The sliced network with different types of
resources as illustrated in the right part of Fig. 1 is often
represented as a high-dimensional array, neglecting the inter-
action between slices and the relationship between resources
and network topology. To address this challenge, we propose a
graph-based virtual representation which retains those complex
relations. To establish the graph-based virtual representation,
we denote the state of a node in the graph as hi which
embodies the information of the slicing traffic traversing this
node and the utilisation of links connected by the node. The
state of a slice hs is subject to the states of all the nodes
within it, which contains the key information to obtain the
E2E latency. Next, we develop a graph-based DT to produce

accurate E2E slicing latency and have enough flexibility to
adapt to the dynamic slice deployment, including the change of
number of slices, different physical topologies and variations
of slice utilisation. Furthermore, since the traffic has to travel
through predefined ordered VNFs in a network slice, the
packet losses and delay on any link would affect the overall
latency. We will also propose a nonlinear method to aggregate
the states of nodes of a slice.

IV. GNN-BASED DIGITAL TWIN OF E2E NETWORK
SLICING

In this section, we provide the detailed mathematical de-
scription of the proposed DT of network slicing, which per-
forms on the graph representing the physical network and
slices.

A. GNN-based digital twin model

To establish the DT, we need to model the interdependent
VNFs with predefined orders and different resource require-
ments, and the QoS requirements for isolated slices. In this
regard, we propose a topology-free and generalised graph
model as the core component for predicting the E2E latency
of slices based on GNNs. The model is motivated by the fact
that in network slicing, the physical infrastructure is shared
by multiple slices, and the flow traffic in the network is the
composition of these slices. In addition, the flow traverses
multiple VNFs in each slice sequentially. This implies that
the latency of traffic running on one slice is highly related to
the traffic behaviours of the other slices that share the same
physical nodes and links. Such a dependency of slices makes
the GNN model as an appealing approach for solving the inter-
twined relationship between slices, since most of the existing
learning frameworks are not designed to learn from data in
non-Euclidean structure and are limited in providing accurate
results on graph data and hard to achieve generalisation on
dynamic topologies and configurations. In our proposed DT,
instead of treating each slice sharing the same infrastructure
individually as vectorised number of resources, we propose
a GNN-based model that turns the whole substrate network
including the deployed network slices into a directed graph
leveraging the graph-based virtual representation developed
in Section III-B. Then, we adopt the GraphSAGE framework
that has been used in chemistry and biology [24], to develop
an efficient and scalable GNN-based model to enable latency
inferring under dynamic network slicing scenarios.
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Fig. 2. Working mechanism of the proposed DT.

To build the DT representing the multi-network slicing
scenario as a graph, we combine all individual graphs of slice
su = (Vu, Lu) into a synthetic network graph G = (V,L).
The topology of the synthetic graph is the same as the physical
graph, in which the features of each node are derived from the
metrics of VNFs deployed on the node and the link features are
the composition of virtual links. We indicate the set of slices
in the substrate network as a set S = {s1, s2, . . . , su . . . }, and
thus the resources taken by the VNFs of each slice at node ni
and link li,j are superposed by

fi =
∑
su∈S

nf Res
u,i (2)

fli,j =
∑
su∈S

Bu(i, j) (3)

where fi denotes the aggregated resources allocated to the
VNFs running on a node ni, and each VNF nfu,i deployed
on node ni belongs to a specific slice su. Similarly, fli,j is
defined as the superposed physical link resources taken by the
slices. Bu(i, j) denotes the allocated link resource to slice su.
Since a virtual link in a network slicing may cross multiple
physical links that are known in advance when the slice was
deployed, the same feature of Bu(i, j) will be applied to all
physical links.

Next, we design the DT based on the above graph model to
produce E2E latency for each slice. The main principle is to
obtain the state of each node and link in G based on their own
features and the observed states of their neighbours. Since the
traffic travels through a sequential of VNFs in a slice, the order
of nodes and links remain the same in a slice, which means the
resource utilisation of a directed link explicitly depends on the
nodes it is connected. To enhance the efficiency of the model,
we integrate the link features into node features by adding
new features of the port number that sends out the traffic to
a specific neighbour with the utilised bandwidth, unifying the
node state hi with link state hl.

hl(i,j) = hi = P
( ∑
j∈N (ni)

fi t fli,j
)
, ni, nj ∈ V (4)

where t denotes the concatenation of the two features, and P
is the state generation method based on the observed features
of the node and its neighbours.

The working mechanism of the proposed DT is shown
in Fig. 2 and described in Algorithm 1. The model ac-
cepts the network graph G = (V,L), the node feature vectors
{xi}, vi ∈ V and the model depth K that indicates how

Algorithm 1: GNN-based DT for E2E slicing
Input : Network G = (V,L); input features of

physical nodes {fi}ni∈V ; depth K; initial
weight for aggregation W;

Output: E2E latency of slices {s1, . . . , su}
1 Initialise node states h(0)i = fi,∀ni ∈ V;
2 for k ∈ {1, 2, . . . ,K} do
3 for ni ∈ V do
4 N (ni) = Sample (Φ(ni));
5 h

(k)
N (ni)

= A
(
{h(k−1)j |vj ∈ N (ni)}

)
;

6 h
(k)
i = σ

(
W(k) · (h(k)N (ni)

t h(k−1)i )
)
;

7 h
(k)
i = Normalise(h

(k)
i );

8 end
9 end

10 zi = h
(k)
i ,∀ni ∈ V;

11 for each su ∈ S do
12 hs(u) = I(z0, . . . , z|Vu|), su ∈ S;
13 dsu = D(hs(u)), su ∈ S;
14 end

many hops of neighbours’ information to be observed as the
inputs, and will return the predicted E2E latency of each
slice dsu . Several components are designed in the model,
including the sample function (line 4), aggregation method
(line 5 and 6) and normalisation (line 7), which will be detailed
in Section IV-B. The forward computational process of the
model works iteratively layers by layers and nodes by nodes.
Formally, the states of nodes at each layer can be represented
as vectors {h(k)i }, ni ∈ V, k ∈ {1, 2, . . . ,K}, where h

(k)
i

denotes the states of ni at the kth layer. For all the nodes,
their states at layer 0 are initialized with their feature vectors,
i.e., h(0)i = {xi}, vi ∈ V . Given a node vi, its neighbours can
be represented as set Φ(ni) = {nj |nj ∈ V ∧ (ni, nj) ∈ L}.
The designed DT will effectively aggregate the neighbours’
states to learn a node embedding representation. Instead of
directly working on the complete neighbourhood set Φ(ni),
the model uses a subset of the neighbours prior to information
aggregation to improve the generalisation and efficiency. After
we get the states {zi} of nodes in the graph G (line 10), we
can further derive the slice state hs(u) (line 12). To integrate
the states of the nodes a slice contains into a slice state, we
define a parametric function that expresses the dependence
of the state of a slice on the aggregation of the nodes of it,
which can be written as hs(u) = I(z0, . . . , z|Vu|), su ∈ S. In
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Fig. 3. An illustration of the sample and aggregation process of the GNN
model.

this work, the function is implemented as the inner product
iteratively for all nodes in the slice. Finally, with the slice
states as input, we can generate the E2E latency (line 13).
We define a function D(hs(u)), su ∈ S to generate the E2E
latency dsu , where D represents the dependence of the slice
E2E latency on its state. This dependence is learned as a fully
connected neural network with a linear activation. Next we
will detail the proposed sample and aggregation method.

B. Samples and Aggregation of states

We design a sample and aggregation method to perform
the local neighbourhood sampling and generate the states
for the sampled neighbours. To make the model efficient
and scalable, the designed neighborhood sampling method
uniformly samples a fixed size of neighbours, instead of
using a full-neighbourhood set, aiming to keep computing and
memory complexity consistent when inferring a batch of target
nodes with diverse degrees in parallel.

We show an example of neighbour sampling and aggre-
gation in Fig. 3. In the figure, the sampling depth is set as
K = 2, and E1 = E2 = 2 neighbours are sampled for each
layer. The figure depicts that the states of nodes in the current
layer only depend on the previous sampled layer. For instance,
states of nodes in Layer 2 only need information from Layer 1.
Between the layers, the aggregators accept a neighbourhood
as input and combine each neighbour’s states with weights
to create a neighbourhood embedding. In other words, the
state of the current node is derived from its own features and
information from the node’s neighbourhood. Each aggregator
has its own weights that are learned during the training. The
sampling process (Line 4 in Algorithm 1) is defined by

N (ni) =

{
{ni}, k = 0

∪ni∈Nk−1
(ni)
M
(
Φ(ni), Ek

)
, k = 1, 2, . . . ,K

(5)

where Φ(ni) is a set of neighbouring nodes of ni, Ek is the
sampling size at depth k, andM is a defined function for sam-
pling the neighbouring nodes Φ(ni). The proposed DT model
does not visit all the neighbours, therefore, M

(
Φ(ni), Ek

)
follows a uniform distribution U

(
1, deg(ni)

)
to randomly

choose Ek nodes from Φ(ni). In this way, the number of
sampled neighbours of a single node grows with respect
to the number of layers K, i.e., the total sampling size of
∪Kk=1N k(ni) is

∏K
k=1Ek.

After the sampling, we aggregate the states of nodes in
the sampled set toward the original node ni. The process is
shown between Line 5 and 7 in Algorithm 1. The initial node
states in layer 0, h(0)i for a sampled set, are the input node
features. Unlike traditional machine learning, the sampled
neighbour node set has an orderless characteristic, since in an
arbitrary topology of network each node has different number
of neighbours. To achieve symmetric and orderless, we adopt
the mean aggregator proposed in [24] in our model, which
derives an average state from the states of the neighbouring
nodes in the previous layer. The aggregation of states from the
neighbours of node ni (Line 5) can be depicted by

h
(k)
N (ni)

=
1

|N (ni)|
∑

vj∈N (ni)

Pρdrop
(
h
(k−1)
j

)
(6)

where Pρdrop is a random dropout with probability ρ to state
vector of h(k−1)j . So the aggregation process of Lines 5 and
6 in Algorithm 1 can be written as

h
(k)
i = σ

(
W(k) ·

(
Pρdrop(h

(k−1)
i ) t h(k)N (ni)

)
+ bk

)
(7)

where h
(k)
i is the state presentation for node ni at layer k,

W (k) is the trainable weight matrix of Layer K aggregator for
all nodes and bk is the bias.

At last, the aggregated states are normalised by dividing
with their modulus, and thus the Normalise function in Line
7 can be written as

h
(k)
i =

h
(k)
i

‖ h(k)i ‖2
,∀ni ∈ V (8)

C. Training Algorithm

The GNN model in the DT is a general neural architecture
capable of modeling various network performance metrics. In
order to apply it to particular problems, we define the size of
the hidden states for each node of slice (hi), the size of hidden
states for each slice (hs), the number of aggregation layers K,
and the number of sampled neighbours Ek as hyperparameters.
The input layers of the DT depend on the size of K and
Ek. Since the number of sampled neighbours N increase
exponentially with these two parameters, a large sample depth
can lead to a huge input set. We need to carefully choose their
sizes. Normally, K = 2 and Ek = 3 are enough for most of
the scenarios, which means we consider the effects of nodes
that are 4 hops away. Each aggregator and state embedding
layer is followed by a dropout layer. Typically, when a neural
network is optimised to minimize the error for a particular
output, the solution may be too optimistic. Thus, repeating an
inference multiple times with random dropout can provide a
probabilistic distribution of results, and this distribution can
be used to generalise the predictions.

We train the model and optimise its performance in a
stepping manner. In each step, the model will receive a matrix
of network traffic generated by a set of slices and output the
E2E latency for each slice under such scenario. In each training
iteration, the aggregators of GNN are trained to generate
similar states for the nodes that are near to each other, while
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enforcing that the states of nodes far from each other are
highly discrepant. After the processing of K layers, the final
states of slices hs(u) are generated. They are fed into a dense
layer to predict the E2E latency. The DT model is trained
to minimise the Log-Cosh loss,

∑n
i=1 log(cosh(ypi − yi))

between the predicted latency and the ground truth. The Log-
Cosh loss function is chosen for its ability to smooth the
impact of abnormal samples that are caused by network device
failure, due to the logarithm of the hyperbolic cosine of the
prediction error. It can work like Mean Squared Error (MSE)
for normal training samples, but will not be significantly
drifted by abnormal samples. Adam [25], a gradient-based
optimisation technique is employed to tune the parameters of
the aggregators, weight matrices W (k) and the prediction layer.

From a computational perspective, the loops over neigh-
bours of different layers are the most time-consuming process
of the model. An upper bound estimate of time complexity
can be obtained as O(N (ni)

K |V||fi|2), where N (ni) is the
number of sampled neighbours per node, K is the number of
layers, |V| is the number of nodes in the network, and |fi|
is the size of features. To improve the training efficiency, the
model is trained in a mini-batch manner, i.e., a fixed-size of
neighbours are sampled. For each batch, the time complex-
ity is determinate at O(

∏K
k=1Ek). The space complexity is

O(bN (ni)
K |fi|+ |V||fi|2), where b is the training batch size.

V. PERFORMANCE EVALUATION

In this section, the effectiveness and accuracy of the de-
veloped DT are validated. We first describe the setting of
our experiments under three different topologies, and then
present the experimental results to demonstrate the accuracy of
predicted E2E latency from the DT. At last, we show three use
cases of the DT in resource allocation, link failure mitigation
and latency violation monitoring.

A. Experiment environments

As there is no large-scale dataset that contains network
slicing data that we could take advantage of in the literature,
we convert the datasets generated in [26], which represents the
pairwise source-destination traffic matrices in different topolo-
gies, routing scheme and traffic patterns to the slicing-style
data. The datasets are chosen not only because of its gener-
alised configurations, but also due to the per-source/destination
measurements, which can mimic the E2E network slicing
metrics that are needed for the performance evaluation. We
transform the traffic matrices under three topologies into three
network slicing scenarios to fit the E2E slicing model. The
first dataset is based on the NSFNET network [27] including a
topology of 14 nodes and 42 links with 10 slices deployed. The
second dataset is collected from the GEANT2 [28] network
that contains 24 nodes and 74 links with 30 slices deployed.
The third dataset is a synthetically-generated network that
embrace 50 nodes and 276 links with 50 slices deployed.
The features of each VNF in a slice include the volume of
traffic generated and the number of packets sent with different
resource utilisation rates. The ground truth is the mean E2E

latency of each slice under a given resource utilisation. Note
that we keep the labels in the original dataset that were mea-
sured from the networks with predefined propagation delay,
and thus the latency may be higher than the requirement of
network slicing applications in 5G. The labelled latencies are
only to evaluate the accuracy in predicting E2E latencies of
the proposed model.

The proposed DT is implemented in TensorFlow and Stel-
largraph [29], a graph machine learning library. For each slice
scenario, the graph model of the DT is trained for 2000 steps
with a minibatch forward propagation manner with size 64.
The parameters for the DT are set as follows: the rectified
linear units are used as the activation function; K = 2
aggregators are trained to explore neighbours within 4 hops;
and the state sizes are set as 256 for each VNF. The size of
sampled neighbours at each layer is set as E1 = 3, E2 = 3 for
NSFNET, E1 = 6, E2 = 4 for GEANT2, and E1 = 9, E2 = 6
for the synthetic network, respectively. To avoid over fitting,
we set the dropout rate as 0.3. During the training, we
minimise the Log-Cosh loss between the prediction and the
ground truth, and use an Adam optimiser with an initial
learning rate of 0.0005. To evaluate the scalability of the DT
model, we convert the time series data into hundreds of graph
screenshots, i.e., we construct a single graph using the slicing
traffic matrices and the resources allocated to the slices at
time slot t. We then combine 500 single graphs with different
configurations into a huge graph, e.g., a combined GEANT2
graph containing 12000 nodes and 37000 links, and use it as
the input graph for the developed DT model. To improve the
generalisation of the DT, we remove 30 percent of the nodes
including the links connecting them from the graph. The DT is
trained on the reduced graph with the remaining 70 percent of
the nodes from the original graph. Then, during the evaluation
step, we re-integrate the removed nodes and manage to predict
the E2E latency of slices without re-training the DT.

B. Performance evaluation of the DT

To demonstrate the accuracy of the proposed DT, we
compare the predicted latencies of slices from the DT with the
measured true latency. Fig. 4 depicts the results generated by
the trained DT that are applied to three different scenarios with
various number of slices. Each bar in the figure is the median
values of the generated E2E latency predictions after running
the DT for 30 times for each scenario. The error bars illustrate
the range of 95% of the predictions. The results and predicted
ranges show that the latencies predicted by the DT match
well with the true latencies under all three scenarios, which
have less than 5% error rate and small variance, validating the
accuracy of the proposed DT.

To evaluate the generalisation capability of the DT, we
apply it on the GEANT2 topology but with different slice
deployment strategies that were not seen during the training.
In each experiment, we deploy different quantities of slices
ranging from 10 to 100 with interval 10, and each slice has
its own resource utilisation. The slices are deployed in the
network using various strategies that are derived from 10
different routing algorithms. Besides the slice traffic, we add
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(a) NSFNet with 10 slices deployed
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(b) GEANT2 with 30 slices deployed
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(c) Synthetic network with 50 slices deployed

Fig. 4. The predicted E2E latency of each slice vs. true latency under three
network configurations.

background traffic between the nodes to represent the traffic
generated by non-slicing applications and control signals. 550
pairs of predicted latencies and true latencies are collected
through 10 experiments. In Fig. 5, we show the regression
plot of the results on GEANT2 with 500 randomly selected
latencies of slices. The dots represent the median value of
the predictions and yellow lines show the 95% confidence
level. The results show that the overall prediction error is
considerably low, but the errors of high latency is more
noticeable than low ones. This is caused by the fact that high
latency slices are rare during the training, and they may be
treated as abnormal points of the data during the training as
they generate large gradients. The loss function Log-Cosh is
capable of alleviating such effects so the information of such
data points will be fully absorbed. However, this problem is
relatively easy to solve by using an inclusive training set that
contains a wider range of latency distributions.

The DT model is designed with generalisation and transfer-
ability in mind. Fig. 6 depicts the transfer learning capability
of the DT, where we adapt the trained E2E latency model for
predicting an unseen jitter metric of network slicing, using the
same aggregation and sampling parameters and the features of
nodes. By aggregating information from a few neighbouring
nodes, the model can achieve good performance in just a few
training steps. The results show that the original latency model
is converged around 600 steps, but the training speed for the

Median of predictions

95%  confidence interval

Fig. 5. Evaluating the generalisation capability of the model on GEANT2
with diverse configurations.
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Fig. 6. Evaluating the adaptive capability of the DT for predicting new jitter
metric on GEANT2 Topology.

jitter metric is much faster (around 250 steps). The results
indicate that the developed GNN-based DT has good adaptive
capability and can be easily used to predict new metrics, which
is important for working on the dynamic slicing network,
where new services emerge everyday.

C. Potential exploitation and application

The developed DT can be used as an efficient tool to
investigate the impact of key metrics on the E2E performance
of slices, which can be used in network slicing orchestration
and operation. We present three potential applications of the
DT to network slicing operation tasks.

The resource utilisation of network slices is dynamic and
time-varying. To guarantee the performance of slices, network
operators need to know E2E slicing latencies under different
resource utilisation situations in near real-time before making
any decisions. With this regard, we use the DT to monitor
the latency of certain network slices, and explore whether
the Service Level Agreement (SLA) requirements are violated
as the utilisation of the resources increases. We deploy 3
slices with E2E latency requirements on the GEANT2 net-
work starting with low overall resource utilisation (30%). To
illustrate high network loads situations, we increase both the
slice traffic and the background traffic (which is not generated
by the applications of slices) by 30% in each experiment,
through multiplying the traffic volume by 1.3. We repeat
the experiment 4 times and the results are shown in Fig. 7
that presents the changes of slice latencies against different
resource utilisations. It demonstrates that the DT can be used
to monitor the SLA violation through comparing the predicted
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Fig. 7. Monitored latency of slices with different SLA requirements vs.
dynamic resource utilisation.
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Fig. 8. Evaluating the adaptive ability of the DT under link failure event for
finding new paths for slices and predicting the latencies after the changes on
GEANT2 topology.

performance of slices with the predefined SLA, and can
generate alert when the latency has been violated. For example,
when the network utilisation increases to 90%, the latency
of Slice 1 violates the SLA and needs to either increase the
allocated resources or to migrate some VNFs to other nodes
and links with low resource utilisation, which can still satisfy
the QoS requirement.

Next, we evaluate the adaptiveness of the proposed DT
model under the presence of a rare event, such as link
failures. When a certain link with slices running on fails, it is
necessary to find a new path that avoids this link and migrate
the affected slices. In the experiment, three slices with low
resource utilisation are deployed in GEANT2 network and any
two slices have at least one shared physical link. We randomly
remove links that have slices deployed on them, and use the
shortest path routing to find an alternative path for the affected
slices. We remove 1 to 5 links each time and exploit the DT to
predict new E2E latency after migrating the three slices. Fig. 8
depicts the adaptive ability of the DT model. Each point in the
figure is the mean latency obtained from 5 experiments. As
the number of failed links increases, the latencies of all three
slices become higher. Due to less paths available, the slices
are sharing more links and occupy more resources. As shown
in the results, the proposed DT can work with rare events and
generate latencies for slice migrations, which provide valuable
insights for resource optimisation.

At last, we investigate that how to leverage the DT for
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Fig. 9. Deployment optimisation for Slice 1 to achieve SLA guarantee.

optimising the decision-making when the SLA of a certain
slice is not met. Fig. 9 depicts the optimisation of Slice 1 to
satisfy the latency requirement under the same environment
as Fig. 7. A simple greedy-based optimiser is developed to
search for deployment solutions when the SLA is violated. We
design two objectives, which aim to minimise the latency and
maximise the network efficiency respectively, while ensuring
the SLA. The green line shows the latency changes of Slice
1 and the red solid line denotes the average latency of
Slice 2 and 3 without any optimisation. The line labelled as
“Latency” represents the results of the solution with minimum
latency among all possible deployment cases that have enough
resources for Slice 1. The “Efficiency” optimisation balances
the resource utilisation of all physical nodes and links, which
keeps high scalability of slices and remains high possibility
to embed new slices. The results demonstrate that the DT
can be easily exploited for various network operation and
optimisation tasks and can also be integrated with other ma-
chine learning frameworks, for example using Reinforcement
Learning to replace the greedy optimiser for autonomous
network management.

VI. CONCLUSIONS

In this paper, we investigated the key challenges in en-
suring the E2E network slicing performance in Industry 4.0
and various 5G applications, and developed a network DT
for network slicing. We exploited the state-of-the-art GNN
model to solve the E2E slicing challenges, by developing a
virtual representation to construct a graph from the network
consisting of slices and discovering insights directly on the
graph, instead of converting the network into matrices. We
proposed a GNN-based DT based on an inductive graph
framework to generate feature embeddings of the network
slices represented as graphs, which were then used to predict
the E2E metrics. The experimental results showed that the
proposed DT is able to monitor the E2E performance of slices
through generating the accurate predictions of slice latencies.
We also leveraged the DT as a cost-effective tool to monitor
SLA violations, mitigate the impact of link failures and find
optimal deployment solutions for slices.
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[26] K. Rusek, J. Suárez-Varela, A. Mestres et al., “Unveiling the potential
of Graph Neural Networks for network modeling and optimization in
SDN,” in SOSR ’19, 2019, pp. 140 – 151.

[27] X. Hei, J. Zhang et al., “Wavelength converter placement in least-load-
routing-based optical networks using genetic algorithms,” Journal of
Optical Networking, vol. 3, no. 5, pp. 363–378, 2004.

[28] F. Barreto, “Fast Emergency Paths Schema to Overcome Transient Link
Failures in OSPF Routing,” Int. J. Comput. Net. Commun., vol. 4, no. 2,
pp. 17–34, 2012.

[29] C. Data61, “StellarGraph Machine Learning Library,” GitHub Reposi-
tory, 2018.

Haozhe Wang is currently a Research Associate
with the Computer Science Department within the
College of Engineering, Mathematics and Physi-
cal Sciences at the University of Exeter, UK. He
received his B.S. and M.S. degrees from Dalian
University of Technology, Dalian, China in 2005 and
2012, respectively, and the Ph.D. degree from Uni-
versity of Exeter, Exeter, UK, in 2017. His research
interest includes network slicing resource manage-
ment, learning-based network optimisation, future
Internet architecture, Information-Centric Network-

ing and network analytical modelling.

Yulei Wu is a Senior Lecturer with the Department
of Computer Science, College of Engineering, Math-
ematics and Physical Sciences, University of Exeter,
United Kingdom. He received the B.Sc. degree (First
Class Honours) in Computer Science and the Ph.D.
degree in Computing and Mathematics from the
University of Bradford, United Kingdom, in 2006
and 2010, respectively. His expertise is on intelligent
networking, and his main research interests include
computer networks, networked systems, software de-
fined networks and systems, network management,

and network security and privacy. He is an Editor of IEEE Transactions on
Network and Service Management, IEEE Transactions on Network Science
and Engineering, IEEE Access, and Computer Networks (Elsevier) and. He is
a Senior Member of the IEEE, and a Fellow of the HEA (Higher Education
Academy).

Geyong Min is a Professor of High Performance
Computing and Networking in the Department of
Computer Science within the College of Engineer-
ing, Mathematics and Physical Sciences at the Uni-
versity of Exeter, United Kingdom. He received
the PhD degree in Computing Science from the
University of Glasgow, United Kingdom, in 2003,
and the B.Sc. degree in Computer Science from
Huazhong University of Science and Technology,
China, in 1995. His research interests include Com-
puter Networks, Wireless Communications, Parallel

and Distributed Computing, Ubiquitous Computing, Multimedia Systems,
Modelling and Performance Engineering.

Wang Miao received his Ph.D. degree in Computer
Science from the University of Exeter, United King-
dom in 2017. He is currently a Postdoctoral Research
Associate at the College of Engineering, Mathe-
matics, and Physical Sciences of the University of
Exeter. His research interests focus on Network
Function Virtualization, Software Defined Network-
ing, Unmanned Aerial Networks, Wireless Commu-
nication Networks, Wireless Sensor Networks, Edge
Artifical Intelligence, and Performance Modelling
and Analysis.


