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Abstract—5G heterogeneous networks have become a promis-
ing platform to connect a growing number of Internet-of-Things
(IoT) devices and accommodate a wide variety of vertical services.
IoT has not been limited to traditional sensing systems since the
introduction of 5G, but also includes a range of autonomous
moving platforms, e.g., autonomous flying vehicles, autonomous
underwater vehicles, autonomous surface vehicles as well as
autonomous land vehicles. These platforms can be used as an
effective means to connect air, space, ground, and sea mobile
networks for providing a wider diversity of Internet services.
Deep learning has been widely used to extract useful information
from network big data for enhancing network quality-of-service
and user quality-of-experience. Privacy preservation for user and
network data is a burning concern in 5G heterogeneous networks
due to various attacks in this environment. In this paper, we
conduct an in-depth investigation on how deep learning can cope
with privacy preservation issues in 5G heterogeneous networks,
in terms of heterogeneous radio access networks (RANs), beyond-
RAN networks, and end-to-end network slices, followed by a set
of key research challenges and open issues that aim to guide
future research.

Index Terms—Deep learning, 5G, Heterogeneous networks,
Privacy Preservation, Network slicing.

I. INTRODUCTION

According to a Statista report, by 2025, the number of
connected Internet-of-Things (IoT) devices would be approx-
imately 75.44 billion1. The IoT devices will be used to
provide a wide variety of vertical services in the sectors
of e.g., automotive, transportation, energy, city management,
agriculture, and manufacturing [1], [2], [3]. Therefore, these
devices have various connection demands e.g., in terms of
different radio technologies [4]. These vertical services also
have diversified Quality-of-Service (QoS) requirements, rang-
ing from ultra-low latency to ultra-dense connectivity [5].
The fifth-generation (5G) mobile communication system has
been widely recognised as a promising platform to connect
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IoT devices by using bandwidth spectrum of heterogeneous
networks (HetNets) and provide accommodation to the vertical
services [6].

Since the introduction of 5G, IoT has not been limited
to traditional sensing systems, but also includes a wide
variety of autonomous moving platforms (AMP), including
autonomous flying vehicles (AFV), autonomous underwater
vehicles (AUV), autonomous surface vehicles (ASV) as well
as autonomous land vehicles (ALV) [7]. These AMPs are
usually designed for specific tasks. For example, some AFVs
are designed to deliver goods, while some are designed for
monitoring [8]. AUVs and ASVs are robotic vehicles that are
particularly designed for performing tasks under the sea and
on the sea surface, respectively. ALVs have been designed
to undertake tasks, ranging from mining and agriculture to
bushfire fighting and defence. Different from before, the fast
development of 5G can enable the communication between
different types of AMPs, creating the so-called 5G-enabled
AMPs. This in turn catalyses a wider range of emerging
services that span over a unification of air, space, ground,
and sea mobile networks, and can therefore further reshape
the sectors of automotive, transportation, energy, city man-
agement, agriculture, and manufacturing.

The heterogeneity of the 5G infrastructure, in terms of
heterogeneous radio access networks (RANs), heterogeneous
beyond-RAN networks2, such as cross-domain environment
and heterogeneous connectivity technologies, and heteroge-
neous network slices, provides an advanced solution for ful-
filling various QoS and Quality-of-Experience (QoE) require-
ments of many emerging services [9]. The growing volume of
data generated by the huge amount of connected IoT devices
over air, space, ground, and sea mobile networks, results in
an extra burden on the 5G infrastructure to maintain QoS
and QoE requirements. Deep learning (DL) has been widely
used to extract useful information from network big data
to enhance network QoS and user QoE [10]. Due to the
heterogeneous nature of 5G infrastructure, various network
providers along with different parts of networks, and different
owners of diversified IoT devices, as well as the related privacy
preservation concerns, network and service data are not always
fully available for network management and business opera-
tions [11]. The network and service would be better managed

2The network initiates from the point where a packet leaves the RAN, until
the point where the packet reaches the destination. Beyond-RAN may include
core networks, industrial networks, private networks, and so on.

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
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TABLE I
POTENTIAL EXAMPLES / ALIAS OF DIFFERENT TYPES OF AUTONOMOUS MOVING PLATFORMS

Types of AMPs Potential examples / alias

Autonomous flying vehicles Unmanned aerial vehicles, self-flying cars, autonomous flying taxi, autonomous flying vehicles transporting commuters

Autonomous underwater vehicles Unmanned underwater vehicles, underwater gliders, bionic autonomous underwater vehicles

Autonomous surface vehicles Automated ships, drone ships, wave gliders, autonomous boat, autonomous cargo ship, saildrone

Autonomous land vehicles Self-driving cars, unmanned ground vehicle, agricultural robot

if more data could be available by using effective techniques
for protecting privacy.

Privacy preservation is a burning issue in 5G HetNets since
many services are expected to be running on top of them
[12], [13], [14], [15]. The main concerns, in 5G heterogeneous
RANs, include privacy leakage in radio spectrum sharing,
in-network access, and in edge computing. In beyond-RAN
networks, privacy concerns are more about privacy preser-
vation in shared resource infrastructure, under cross-domain
environment, and for heterogeneous connectivity technologies.
Network slicing is a unique feature of 5G networks, consisting
of heterogeneous shared resources from underlying physical
infrastructure. The key privacy concerns for network slicing
include privacy leakage of resource scheduling in slices,
slice orchestration, and communication between devices and
network slices. In addition to the traditional IoTs that cause
the above privacy issues, 5G-enabled AMP, while providing
benefits to a number of related businesses, have produced
growing privacy concerns [16], [17], [18].

In this paper, we first give a systematic introduction of 5G-
enabled AMPs in Section II, along with how they amplify the
privacy issues in 5G HetNets. After that, in Sections III - V
we elaborate on how DL can cope with privacy preservation
issues in 5G HetNets. Then, we outline a set of challenging
and open issues for future research in this area in Section VI.
Finally, Section VII concludes this work.

II. 5G-ENABLED AUTONOMOUS MOVING PLATFORMS

The AMP has gained significant attention since the in-
troduction of 5G [7]. It includes AFVs, AUVs, ASVs, and
ALVs. They are essentially self-propelled, unmanned, unteth-
ered robots that are capable of carrying out activities and
performing tasks with little or no human supervision. Recall
that AUVs usually operate under the sea, e.g., unmanned
underwater vehicles, while ASVs work on the sea surface, such
as automated ships. ALVs usually run on the ground, where
self-driving cars are typical examples. AFVs operate in the
air or space, such as unmanned aerial vehicles and unmanned
spacecraft. Table I shows a list of typical examples for each
type of AMPs.

Before the era of 5G, each type of AMPs essentially works
in isolation. For example, an unmanned underwater vehicle
may not be able to communicate with an unmanned aerial
vehicle to work on a task in a collaborative manner. 5G and
B5G/6G provide a heterogeneous infrastructure over the air,
space, ground, and sea mobile networks, to provide not only
true ubiquitous communications, but also the support of a wide
variety of services over this infrastructure [19]. To enable

the ubiquitous communications, AMPs are now equipped
with 5G-capable modules, creating 5G-enabled AMPs3. The
introduction of 5G and B5G/6G, together with the advances
in artificial intelligence (e.g., DL) and computing paradigms
(e.g., edge computing), revolutionises the way how an AMP
works. One type of 5G-enabled AMPs can readily work with
another to complete a task in a collaborative way. This in turn
enables a wide spectrum of services for the air, space, ground,
and sea mobile networks, under the support of 5G/B5G and
6G HetNets.

There are two roles of 5G-enabled AMPs. One is serving
as part of the infrastructure of 5G HetNets. For example, an
unmanned aerial vehicle can be mounted with a lightweight
base station to become a moving 5G base station. This can
be used in certain areas and circumstances, e.g., rural areas
and bushfire scenes, to quickly establish a communication
environment. The other role is acting as 5G users. For example,
a self-driving car equipped with 5G modules, can commu-
nicate with other devices through 5G HetNet infrastructure.
This includes offloading computation tasks to edge computing
nodes, exchanging data with roadside vehicle-to-infrastructure
facilities, etc.

Fig. 1 shows typical example services in this horizon. In
this example, there are self-driving cars operating on the
roads, self-driving firefighting vehicles working on bushfire
fighting, unmanned underwater vehicles and unmanned surface
vehicles carrying out their duties on deep-sea exploration,
unmanned aerial vehicles providing necessary computing and
communications facilities and carrying goods, and satellites
providing communication facilitates. Let us consider a rural
area, if a bushfire occurs around the road connecting villages,
self-driving cars ought to be alerted, through satellite commu-
nications, and alternative routes shall be calculated with the
help of edge computing provided by unmanned aerial vehicles.
Unmanned surface vehicles can be communicated by self-
driving firefighting vehicles, through satellite communications,
for requesting water to fight the bushfire in emergencies.
Unmanned surface vehicles can decide whether to accept the
request considering their on-going deep-sea exploration jobs,
through local computing or nearby edge computing provided
by unmanned aerial vehicles. If they decide to accept the
request, unmanned aerial vehicles that have been designed for
that purpose, can be used to deliver seawater to help fight
bushfire.

Different from ordinary mobile devices, AMPs have some
characteristics that need to be considered when we design and

3With the evolution of mobile communication systems, 6G-enabled AMPs
would be present in the future.
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Fig. 1. The 5G-enabled autonomous moving platforms.

deploy them. Specifically, AMPs should have the ability to
make decisions independently, and perform a series of actions
including route planning, target detection, obstacle avoidance,
etc [7]. More importantly, AMPs need to move autonomously.
Therefore, compared to ordinary mobile devices (e.g., mobile
phones, laptops), AMPs would consume more energy and have
higher requirements for continuous energy supply. The use
of solar energy to provide energy for AMPs requires certain
weather conditions. The use of fuel to provide power and
electricity requires timely refueling. In recent years, more
devices use batteries to provide energy. No matter which
energy supply method is used, AMPs need to save as much
energy as possible while they are working.

Thanks to the low latency and high bandwidth features of
5G networks, AMPs can appropriately reduce the allocation
of computing and storage resources [20], [21], [22]. Part of
the computing and storage requirements of AMPs can be
completed in edge computing and/or remote data centers, and
AMPs perform corresponding operations based on the returned
results. This working mode helps reduce the weight of AMPs
and reduce energy consumption [23].

5G-enabled AMPs cause rapid growth of data pouring into
the 5G HetNet infrastructure. Recall that before 5G, each type
of AMPs is working in isolation, i.e., the data generated by
a type of AMPs, e.g., AFV, stay in the system of that type
of AMPs, or more accurately in the system of applications
carried out by that type of AMPs. Since the introduction of
5G, different types of AMPs can communicate and exchange
data with each other. On the one hand, this can inevitably
enhance the QoS provided by each type of AMPs. On the other
hand, this enables orders of magnitude more data traversing
over 5G HetNets. Although causing additional burdens on
network infrastructure, the significant growth of data can
enable better service provisions. Whilst the fast development

of machine learning, especially DL, can help with extracting
useful information from massive data [24], [25], [26], privacy
preservation has become a burning issue [27], [28]. In what
follows, we will elaborate on how to overcome this issue in
5G HetNets.

III. PRIVACY PRESERVATION IN 5G HETEROGENEOUS
RADIO ACCESS NETWORKS

As an important component in 5G HetNets, 5G RAN
consists of a wide diversity of evolved NodeBs (eNBs or
base stations), AMPs, user equipment (UE), and IoT devices,
which generate massive wireless data. Data analytics on 5G
RAN data can extract valuable information, which is beneficial
for mobile network operators (MNOs) to identify the perfor-
mance bottleneck, detect malicious behaviours, improve user
QoE, optimise network operation, and reduce the operational
cost [29], [30]. However, the benefits brought by 5G RAN data
are also accompanied by privacy and security vulnerabilities
as illustrated in the following aspects (as shown in Fig. 2):

• Privacy leakage in radio spectrum sharing. Radio spec-
trum is becoming a precious resource especially in
5G RAN which requires a large portion of the radio
spectrum to fulfill the increased throughput demands.
It is a necessity to enforce efficient spectrum sharing
and management in 5G RAN. However, the widely-
adopted approaches including either cooperative spectrum
sensing [31] or database-driven spectrum access [32]
inevitably lead to potential privacy exposure of legitimate
primary users (PUs) and secondary users (SUs) during the
spectrum data sharing process [33].

• Privacy leakage in network access. Due to the openness
of wireless media, network complexity, and the diversity
of UEs, 5G RAN is susceptible to various malicious
attacks such as eavesdropping [34], identification (ID)
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Fig. 2. Privacy preservation in 5G heterogeneous RAN.

spoofing [35], distributed denial-of-service (DDoS) [36],
and system intrusion [37]. Following these malicious at-
tacks, user privacy-sensitive data can be stolen, misused,
sold, and even falsified.

• Privacy leakage in edge computing. The integration of
5G HetNets with cloud computing and mobile edge
computing (MEC) is serving as an enabling technology to
cater for the growing demands of both communications
and computations. MEC that serves as a complement for
cloud computing, can potentially overcome the weakness
of cloud computing by offloading computation-intensive
tasks to edge servers (or nodes) which are usually de-
ployed at eNBs, base stations, access points, and IoT
gateways. However, data stored at MEC servers is also
vulnerable to privacy leakage due to illegal access or
malicious attacks [38], [39].

Thanks to the latest advances in DL, the above privacy
and security vulnerabilities can be tackled. We next show
how DL approaches can solve the above challenges in 5G
heterogeneous RAN in the following aspects.

A. Deep learning approaches in privacy preservation in radio
spectrum sharing

DL approaches can be used to protect the privacy of both
PUs and SUs during the radio spectrum sharing process, where
PUs and SUs can be any AMPs, UEs, or IoT devices. In
particular, DL approaches can analyse footprints (i.e., records
or clues) left by malicious users, consequently identifying
malicious behaviours and making the corresponding counter-
measures. For example, when malicious users spy upon the
spectrum sharing of legitimate users (in database-driven radio
spectrum access), they may leave query reports attached with
timestamps in the spectrum database. However, it is challeng-
ing for conventional analytical methods based on either manual
operations or statistics analysis to extract key information from
massive query data. DL approaches including recurrent neural
networks (RNNs) and its alternatives, such as long short-term

memory (LSTM) and gated recurrent units (GRU) can be used
to extract the key information from the time-series data and
identify the malicious behaviors since DL approaches are ben-
eficial to analyse massive data. Consequently, countermeasures
(e.g., warning or banning malicious users) can be made.

Regarding cooperative spectrum sensing, spectrum bidding
has often been leveraged to achieve dynamic spectrum shar-
ing while both spectrum buyers and sellers are also facing
potential privacy exposure during the spectrum auction proce-
dure [40]. Therefore, sophisticated cryptographic mechanisms
have been typically used to anonymise both spectrum buyers
and sellers [41] while also posing the challenges in data analyt-
ics. The recent work [42] that can fasten the training process
of deep neural networks on encrypted data is a potentially
good solution to data analytics on encrypted spectrum data.
Moreover, [43] presents an RNN approach to analyse the
encrypted data.

Meanwhile, malicious users may send the falsified spectrum
data to the central entity (a.k.a. the fusion centre), so as to
confuse the fusion centre and interfere with the decision-
making process [44]. For example, malicious users sending
wrong spectrum availability information (i.e., absence or pres-
ence) to the fusion centre can lead to the poor spectrum
usage [45]. DL approaches have the potential to address this
emerging issue through analysing the activities of malicious
users. No matter what kind of malicious behaviors, malicious
users will inevitably leave some footprints, such as channel
state information (CSI), locations, and received signal strength
indicator (RSSI). The work [46] presents an end-to-end DL
framework to collect, preprocess, and analyse spectrum data,
as shown in Fig. 3. In addition, this article also shows that
a CNN-based model can effectively analyse spectrum data
with high accuracy. Moreover, the work [47] collected radio
signals via the software-defined radio (SDR) devices. GRU
neural networks were then used to analyse radio signals and
demonstrated a high classification accuracy (more than 90%
accuracy).
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The joint analysis of these footprints with falsified spectrum
reports together can help us detect and identify malicious
behaviors while it may require advanced DL methods to
process the data from multiple sources. Multi-modal DL
approaches [48] may be beneficial to address this issue. In
particular, multi-modal DL algorithms need to learn from
multi-modal data sources via deep auto-encoder as well
as other techniques. Although multi-modal DL approaches
demonstrate their effectiveness in analysing video, audio, and
sensor data [48], [49], there are few studies on multi-modal
spectrum data (including spectrum footprints and reports).

B. Deep learning approaches in privacy preservation in net-
work access management

Regarding privacy preservation in network access manage-
ment, DL approaches can be adopted to detect and identify
malicious attacks through collecting and analysing the user
activity data. Due to the network complexity and the device
diversity (e.g., diverse AMPs, UEs, and IoT devices), conven-
tional attack detection methods, e.g., machine learning (ML)
methods like k-nearest neighbor (k-NN) have low detection
accuracy and high false-alarm rate in detecting malicious
attacks, especially for those unidentified attacks [61]. In con-
trast to conventional ML methods, DL methods have the
advantages in higher detection accuracy while requiring no (or
less) domain knowledge when processing and analysing user
activity data [50]. In addition, the advances in unsupervised
or semi-supervised DL methods are also helpful to detect and
identify unknown attacks [51], [52].

The HetNets bring the challenges in network access man-
agement in 5G RAN. Take data roaming across different
networks as an example, in which an AMP that is intended
to access another guest network must first transfer the au-
thentication of its host network to the guest network. How-
ever, the transmission of the authentication as well as the
AMP’s ID can cause the network latency across multiple
networks and can also bring the privacy leakage risk since
the confidential information can be wiretapped by malicious
users [62], [63]. The convergence of blockchains and deep
reinforcement learning (DRL) may potentially overcome this
disadvantage. In particular, a blockchain is essentially a chain
of data records, which have kept growing with the increment of
the committed transactions. Thanks to the built-in mechanisms
with distributed consensus, cryptographic schemes, peer-to-
peer network, and smart contracts, blockchains can ensure
traceability, immutability, and non-repudiation of blockchain
data [64]. For example, smart contracts running on top of

blockchain can automate the authentication in network roam-
ing, whereas blockchain can essentially preserve the privacy
of users [53]. During this process, DRL can help to establish
dynamic network access rules across different networks as well
as flexible data sharing services [54], [65].

DL approaches can also cope with issues in the network
authorisation management. The appropriate network authori-
sation can protect the security and privacy of user data while
facilitating the data sharing and accessing across different 5G
RANs as well as diverse AMPs, UEs, and IoT devices [66].
The access control schemes such as attribute-based encryption
(ABE) can achieve the fine-grained permissions for multiple
authorities across different networks [67]. However, it is
challenging for ML/DL approaches to analysing the encrypted
data. The recent advancement in learning partially-encrypted
data [55], deep neural networks (DNN) on encrypted data [56],
a classifier based on DNN on encrypted data [57] can address
this challenge.

C. Deep learning approaches in privacy preservation in edge
computing

Edge servers are vulnerable to privacy leakage risks. On
the one hand, the privacy leakage risks exist when raw data
collected from AMPs, UEs, or IoT devices is sent to untrust-
worthy edge servers, which can be hijacked or misused by
malicious users. Consequently, data stored at edge servers can
be stolen or misused. Recent advances in differential privacy,
homomorphic encryption, and federated deep learning (FDL)
bring opportunities in offering privacy protection in edge
computing. The main idea of differential privacy mechanisms
is to either annex additive noise to the collected data or obscure
sensitive metadata so that other parties obtaining the data
cannot restore the original data [68]. Homomorphic encryption
schemes encrypt the data while computing on cybertexts is
still permitted [69]. In contrast to differential privacy and
homomorphic encryption, FDL [70] is more suitable for edge
computing since it allows training a DL model at each edge
server locally without the necessity of uploading the data to
the central servers. In this way, data privacy can be preserved.

On the other hand, edge servers, due to their limited
computing and storage capabilities, are vulnerable to mali-
cious attacks. First, computation-complicated cryptographic
algorithms that have been well adopted in cloud servers cannot
be directly employed at edge servers. Second, it is also difficult
to deploy DDoS countermeasures such as quarantining (or
isolating) at edge servers due to their limited computing
and storage resources inferior to cloud servers [71]. Data
stored at edge servers therefore can be compromised (i.e.,
tampered and accessed illegally) to privacy breaches. In this
regard, DL approaches can help to identify these malicious
attacks by analysing the activity reports and suggest relevant
countermeasures [72]. For example, Tian et al. [58] showed
that DL approaches can be used to detect web attacks at edge
nodes by analysing URL data. Moreover, an unsupervised DL
approach is adopted to detect unknown malicious attacks [59].
In addition, a DL approach based on the stacked autoencoder
has been proposed in [60] for cyber-attack detection. Experi-
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TABLE II
SUMMARY OF DEEP LEARNING APPROACHES FOR PRIVACY PRESERVATION IN 5G HETEROGENEOUS RAN NETWORKS

Issues Potential Solutions Representative Works Main Contributions

Privacy leakage in radio
spectrum sharing

DL approaches to analyse
encrypted spectrum data

Lou et al. [42] Propose a deep neural network based on the shift-
accumulation-based leveled-homomorphic encryption

Podschwadt et al. [43] Propose an integrated method to combine RNNs and homo-
morphic encryption

DL to analyse footprints
from radio spectrum data

Kulin et al. [46] Develop a CNN-based deep model to analyse spectrum data

Utrilla et al. [47] Design a GRU neural network to analyse radio signals

Privacy leakage in
network access

Supervised, unsupervised
and semi-supervised DL
approaches

Elmasry et al. [50] Design a double particle swarm optimization to optimise the
selection of features and parameters for DL approaches

Choi et al. [51] Propose an unsupervised DL approach based on autoencoders

Ran et al. [52] Propose an semi-supervised DL approach based on the ladder
network

Blockchain and deep
reinforcement learning

Refaey et al. [53] Propose a blockchain-based roaming policy in RAN

Yin et al. [54] Design a FDL framework

DL approaches on
encrypted data for
network access
management

Ryffel et al. [55] Design a DL approach based on functional encryption to
analyse partially-encrypted data

Nandakumar et al. [56] Propose a stochastic gradient descent-based deep neural net-
work

Hesamifard et al. [57] Develop a DNN-based classifier for encrypted data

Privacy leakage in edge
computing

DL approaches to
identify malicious attacks
at edge nodes

Tian et al. [58] Develop a DL approach to detect web attacks at edge nodes
through analysing URL data

Chen et al. [59] Propose a unsupervised DL approach to detect unknown
attacks

Abeshu et al. [60] Design a DL approach based on the stacked autoencoder to
detect cyber-attacks

mental results demonstrated higher accuracy and lower false-
alarm rate than shallow learning approaches.

Table II summarises the above three challenges, potential
solutions, preventative studies as well as their major contribu-
tions.

IV. PRIVACY PRESERVATION IN 5G HETEROGENEOUS
BEYOND-RAN NETWORKS

5G-enabled AMPs may experience beyond-RAN networks
to communicate with each other if they are not staying in the
coverage of the same RAN. Since AMPs may work in different
application fields, beyond-RAN may include various types of
networks including private networks (e.g., formed by a certain
type of AMPs such as a swarm of unmanned aerial vehicles or
unmanned surface vehicles) and public networks (e.g., public
data centres). It may also involve multiple network domains
(e.g., AMPs may be operated by different network operators
and thus form different network domains) and diversified
connectivity technologies (e.g., various private connectivity
technologies within private networks and the Ethernet in public
networks).

It has been a trend to leverage virtualisation technologies
to enable various resources of beyond-RAN networks virtu-
alised, in order to allow flexible resource provision. Emerging
IT technologies, e.g., network virtualisation [73], software-
defined networking (SDN) [74], [75] and network functions

virtualisation (NFV) [76], [77], have been fast developed
in recent years. Heterogeneous computing, networking, and
storage resources can now be virtualised, creating a pool of
shared resources for use in multiple vertical services, as shown
in Fig. 4. These emerging IT technologies bring flexibility and
efficiency for 5G and B5G/6G networks, while challenging its
security architecture in the following ways:

• Privacy preservation in shared resource infrastructure.
In the shared resource infrastructure, user privacy will
be more easily compromised due to the unauthorised
user data access attacks, e.g., exploitation of bugs in the
hypervisor and distributed DDoS attacks. In the presence
of 5G-enabled AMPs, the user privacy issues across
multiple applications may get even worse as AMPs may
provide services to many applications on the fly.

• Privacy preservation under cross-domain environment.
For a certain range of applications enabled by diverse
AMPs collaboratively, the data generated by an AMP may
need to traverse multiple network domains, since AMPs
may belong to different network operators. In addition,
for some applications where the requested data needs to
be retrieved from a data centre, the communication in
5G networks usually needs to traverse multiple network
domains to reach the data centre. Protecting the privacy
of each network domain in a cross-domain environment
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is an important concern.
• Privacy preservation under heterogeneous connectivity

technologies. For certain applications such as Industrial
Internet of Things (a.k.a. Industrial Internet), 5G net-
works mixed with a large number of legacy connectivity
technologies, e.g., the Industrial Ethernet, are being used
to support the communication. In addition, AMPs may
easily form private networks with private connectivity
technologies, and thus the communication between AMPs
may experience heterogeneous connectivity technologies.
Ensuring the privacy preservation across multiple connec-
tivity technologies is of paramount importance for the
success of the applications running over them.

In what follows, we will discuss the emerging DL tech-
niques that can be applied to cope with the privacy issues
in the above three aspects of 5G HetNets. Tables III and IV
summarise the relevant DL approaches for privacy preservation
in 5G beyond-RAN. The privacy-preserving DL models devel-
oped for shared resource infrastructure can also be modified
and adapted in a cross-domain environment and heterogeneous
connectivity technologies. The DL models developed for either
cross-domain environment or heterogeneous connectivity tech-
nologies in Table IV can essentially be leveraged to tackle each
other’s issues since these two issues share common features.

A. Privacy preservation in shared resource infrastructure

One strand of research in this direction is to employ DL
approaches to efficiently detect unauthorised user data access
attacks in the shared resource infrastructure. In the presence
of AMPs, virtualised resources may be used to serve a wider
range of users. For example, an unmanned aerial vehicle
acting as a kind of AFVs, can be equipped with a lightweight
computing device which can then be virtualised to provide
services to the users coupled with different applications if the
unmanned aerial vehicle is scheduled to perform tasks between
those applications. An intrusion detection system (IDS) is an
important tool to prevent and mitigate unauthorised access to

the user data over network virtualisation, computing virtuali-
sation, storage virtualisation, and even function virtualisation.
Numerous DL models that have been developed for flow-based
anomaly detection, spatial-temporal traffic analysis, and so
on, can be readily adapted for unauthorised access detection.
These DL models include RNN [78], [92], convolutional
neural network (CNN) [79], [93], bidirectional long short-
term memory [80], contractive autoencoder (CAE) [81], gated
recurrent unit with attention [82], meta-learning [83], deep
belief network [84], as well as a combination of multiple DL
models.

Another strand of research for privacy preservation in shared
resource infrastructure is to modify the original DL models
to make them work in a privacy preservation environment.
In other words, the modified DL models should be able to
be trained using the encrypted data [90], since applications
require the traffic data to be encrypted for privacy preservation.
In this strand, the modification of DL models usually needs
to consider the methods of traditional privacy preservation
technologies such as homomorphic encryption [94], secure
multi-party computation [95], and differential privacy [96]. A
number of modified DL models have been developed, e.g.,
E2DM [85] and Gazelle [86] for the cases under homomorphic
encryption, DeepSecure [87] and ABY3 [88] for secure multi-
party computation, and PATE [89] for differential privacy
based scenarios. Further, Ma et al. [90] proposed a privacy-
preserving learning model that applied DL over encrypted
data with multiple keys. In addition, many emerging privacy-
preserving learning frameworks, e.g., federated learning, can
be adopted to develop privacy-preserving DL models [91].

B. Privacy preservation under cross-domain environment

Recall that 5G-enabled AMPs contain various types of
platforms, e.g., AFVs, AUVs, ASVs, and ALVs. Each type
of AMPs is usually designed for a specific task, and different
AMPs may work in different application areas. In addition,
the AMPs working on a task are usually operated by a
network/service provider, forming a private network domain.
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TABLE III
SUMMARY OF DEEP LEARNING APPROACHES FOR PRIVACY PRESERVATION FOR SHARED RESOURCE INFRASTRUCTURE IN 5G BEYOND-RAN

NETWORKS

Issues Potential Solutions Representative Works Main Contributions

Privacy leakage in shared
resource infrastructure

Use DL based IDS to
detect unauthorised data
access

Yin et al. [78] Develop an RNN based IDS

Wang et al. [79] Develop a hierarchical spatial-temporal features based IDS,
using CNN to learn low-level spatial features of network
traffic and long short-term memory network to learn temporal
features

Alkadi et al. [80] Propose an IDS that employs bidirectional long short-term
memory DL algorithm to deal with sequential network data

Wang et al. [81] Develop an IDS that uses a stacked contractive autoencoder
method for unsupervised feature extraction and then adopts
support vector machine classification algorithms for intrusion
detection

Liu et al. [82] Develop a bidirectional gated recurrent unit (GRU) based IDS
with hierarchical attention mechanism

Xu et al. [83] A meta-learning framework is proposed for few-shot detection
of some intrusion scenarios like zero-day attacks

Zhang et al. [84] An IDS with two parts: 1) a real-time detection algorithm
based on flow calculations and frequent patterns, and 2) a
classification algorithm based on the deep belief network and
support vector machine

Develop privacy
preserving DL models
that consider
homomorphic encryption,
multi-party computation
and differential privacy

Jiang et al. [85] Propose an encrypted data and encrypted model (E2DM) to
handle homomorphic encrypted data for DL models. E2DM
provides a practical solution to encrypt a matrix homomorphi-
cally and perform arithmetic operations on encrypted matrices

Juvekar et al. [86] Design GAZELLE, a scalable and low-latency system for
secure neural network inference, considering a combination
of homomorphic encryption and traditional two-party compu-
tation techniques

Rouhani et al. [87] Propose a framework called DeepSecure that enables scalable
execution of DL models in privacy-preservation settings.

Mohassel et al. [88] Design a general framework called ABY3 for privacy-
preservation machine learning, and used it to obtain new
solutions for training linear regression, logistic regression and
neural network models. ABY3 can be applicable for multi-
party computation scenarios.

Papernot et al. [89] Propose an approach that can provide strong privacy guaran-
tees for training data of DL: Private Aggregation of Teacher
Ensembles (PATE)

Ma et al. [90] Propose a privacy-preserving learning model, called PDLM,
to apply DL over the multi-key encrypted data.

Liu et al. [91] Propose a privacy-preserving machine learning technique
named federated learning and developed a Federated
Learning-based Gated Recurrent Unit neural network

From a global point of view, AMP enhanced 5G HetNets
are naturally a cross-domain environment, which hinders data
sharing between domains.

The modification of DL models in the second strand of the
above section is also applicable to the privacy preservation
under a cross-domain environment, since traditional privacy
preservation technologies are still being widely used in this en-
vironment. Besides, due to the performance issues of applying
the classic privacy preservation technologies in a cross-domain
environment, several other privacy preservation technologies
like PYCRO [97] have been proposed. The modification of DL
models also needs to consider these new technologies for more

efficient privacy preservation in a cross-domain environment.
The main trend of research is shifting towards using the data

of each network domain to train DL models so that the data
does not need to be transferred outside of the domain in which
it originates. The models that are separately trained in each
domain are then jointly optimised for a cross-domain purpose.
This is a fairly intuitive way to achieve the privacy preser-
vation in a multi-domain environment without sharing the
data between domains. There are a number of research results
dedicated in this area, e.g., the well-known federated learning
[98] and the privacy preserving DL technique proposed by
Shokri and Shmatikov [99]. In the event that the model training
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TABLE IV
SUMMARY OF DEEP LEARNING APPROACHES FOR PRIVACY PRESERVATION FOR CROSS-DOMAIN ENVIRONMENT AND HETEROGENEOUS

CONNECTIVITY TECHNOLOGIES IN 5G BEYOND-RAN NETWORKS

Issues Potential Solutions Representative Works Main Contributions

Privacy leakage in
cross-domain
environment

Develop privacy
preserved DL models

Chen et al. [97] Propose a cryptographic protocol, named PYCRO, that is
specifically designed for privacy-preserving cross-domain
routing optimisation in Software Defined Networking (SDN)
environments

Use local data to train
the DL model

Aledhari et al. [98] A comprehensive introduction of federated learning that al-
lows the use of local data to train a DL model locally

Shokri et al. [99] Develop a practical system that enables multiple parties to
jointly learn an accurate neural-network model for a given
objective without sharing their input dataset

Ramakrishnan et al. [100] Develop a solution to provide interpretable explanations for
transfer learning in sequential tasks

Privacy leakage in
heterogeneous
connectivity technologies

Consider diverse trust
degrees of different
connectivity technologies

Wang et al. [101] Propose a two-phase framework that computes the average
value while preserving heterogeneous privacy for nodes’
private data that may happen in heterogeneous connectivity
technologies environment

has to be performed sequentially across multiple domains, i.e.,
the output of a model trained in one network domain is the
input for the model to be trained in another network domain,
the transfer learning paradigm has been proposed for this
purpose. With the use of transfer learning, the trustworthiness
of the model output needs to be considered [100]. Many
studies have been devoted to improving the reliability of DL,
but this is out of the scope of this paper.

C. Privacy preservation under heterogeneous connectivity
technologies

Given the fact that AMPs have been used in various appli-
cations for many years, although 5G-enabled AMPs are being
widely used, there are a fair amount of legacy connectivity
technologies in those applications. For example, the backhaul
connecting RAN and core networks have a number of choices
for the connectivity technologies, including copper-line, fibre-
optic, microwave, and even satellite backhaul and WiFi back-
haul links. In addition, many private networks established by
AMPs may use private connectivity technologies. The het-
erogeneity of connectivity technologies has caused significant
challenges on privacy preservation.

The key issue for privacy preservation with heterogeneous
connectivity technologies is that different connectivity tech-
nologies may adopt different privacy preservation paradigms.
The training of DL models needs to consider diverse trust
degrees of different connectivity technologies. This actually
creates the noisy label issue of machine learning. This issue
may also apply for the model training in a cross-domain
environment when the degrees of the fidelity of collected data
at each domain are different. Wang et al. [101] proposed a
two-phase framework that is able to calculate the average
trust degree while preserving heterogeneous privacy for the
collected data with different trust degrees. In addition, based
on the definition of Kullback–Leibler (KL) privacy [102], they
derived the analytical expressions of the privacy preservation
degree and quantify the relation between different privacy

preservation degrees. The modification of DL models needs
to take privacy preservation degrees into account in order
to develop a unified model for privacy preservation across
heterogeneous connectivity technologies.

V. PRIVACY PRESERVATION FOR END-TO-END NETWORK
SLICING IN 5G

With the increase in the number of AMPs and the emergence
of various new scenarios, it is expected that user demands
for communications and services will increase dramatically
in the future, in terms of scale and variability. This requires
wireless networks (e.g., 5G networks) to become more agile to
meet the changing needs of users. However, there are various
proprietary hardware devices in the current network, which
increases the investment cost of network operators and is not
conducive to the introduction of new services in the Internet.
Therefore, new technologies are needed to reduce investment
in infrastructure and management.

5G networks are designed with these factors in mind.
The emergence of various new technologies is expected to
technically ensure that operators are able to provide diverse
5G services in a flexible, economical, and sustainable manner.
Among them, network slicing is considered as a promising
direction and has become a key technology for meeting the
various requirements of different use cases [103], [104], [105].

Network slicing aims to divide (slice) the physical network
in the network infrastructure into isolated and independently
managed resource pools, and to create the concept of end-
to-end (E2E) logically virtual networks [106]. Each virtual
network can be customised and optimised for different users
or specific types of applications. In a slice-based 5G network,
resources in infrastructures belonging to different domains can
be efficiently allocated to multiple slices according to users
needs. In other words, network slicing allows multiple network
operators to share a network infrastructure, so that each
network operator can provide its own unique functions and
services to users [107]. In addition, network slicing should not
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only have the bespoke functions required by the corresponding
services, but also the ability to adapt to changing needs. By us-
ing virtualisation technologies, physical network resources can
be dynamically and efficiently scheduled to logical network
slices based on changing user needs [108], [109]. It should be
pointed out that providing a virtualised end-to-end environ-
ment that is open to third parties is one of the key functions
to distinguish network slicing and network sharing. Through
network slicing technologies, 5G networks can support users’
diverse needs and a wide range of services in a sustainable and
flexible manner. However, this also complicates the situation in
the network. How to protect the privacy of network users when
deploying and running heterogeneous end-to-end slicing is a
challenge [110], [111]. In particular, a network slice may span
different parts of 5G networks such as RANs, core networks,
and carrying networks. Therefore, when proposing solutions
for privacy preservation in network slicing, it is necessary
to consider the heterogeneous components across the entire
network.

When discussing which information of AMPs face a higher
risk of privacy leakage when they use network slicing, we
analyze the two roles that AMPs may play separately. One is
as a user who uses network slicing, and the other is to play the
role of a service provider with data forwarding functions and
can provide slicing services. As users, AMPs may leak their
identities, locations, behaviors, plans, and even transmitted
data when using end-to-end network slicing. When AMPs act
as service providers, malicious users may obtain information
about the node’s resource scale, capabilities, and resource
usage, and even steal the AMP’s valuable algorithms and
execution strategies.

Before discussing potential solutions, let us analyse the
existing privacy issues from the perspectives of resource
scheduling, orchestration of slices, communication between
device and slice, and communication between slices.

• Privacy leakage in resource scheduling in slices. User
demands for resources (in slices) may cause privacy
leakage. This is because users have different requirements
for the resources in the network slices that are used
to accommodate different applications or services [110].
User’s requirements for specific functions will reflect the
scale of deployment of corresponding resources in a slice,
which may leak information on user behaviours. For such
problems, we should explore the allocation of resources
in a way that does not reveal privacy, and at the same
time, without affecting users’ needs.

• Privacy leakage in slice orchestration. The process of
orchestrating and managing network slices is complex.
For example, from the perspective of system security, the
order in which network traffic passes through network
functions will affect where to deploy security mechanisms
and security policies. Consequently, resource orchestra-
tion in slices based on user needs will determine network
topology and specific services. So similar to resource
scheduling in a slice, orchestration of network slices
may also be used to infer user behaviours [112], [113].
Therefore, 5G systems need to provide adequate security
guarantees during the orchestration process, including

reducing user privacy concerns, and the relevance and
consistency of resources shared between services need to
be efficiently guaranteed. In addition, network slices need
to be effectively isolated between each other. Otherwise,
sensitive data processed or managed in one network slice
may be obtained by applications running in another.

• Privacy leakage in communication between device and
network slice. 5G networks need to support the access to
a large number of devices, so the management of device
access is an important issue. Considering that delay in
5G networks should be ultra low for certain services, the
process of device accessing slices needs to be completed
efficiently and without introducing security issues. The
communication between the device and the network slice
includes a lot of information, such as signaling and
data sent by the user, which may involve user privacy.
However, such communications may be tampered with,
causing the user to select the wrong network slice and
enter an untrusted and insecure network slice [114]. In
addition, if the device’s access to the network slice lacks
effective authentication measures, unauthorised commu-
nication may enter the slice. Such behaviors will occupy
and consume the resources of network slices and affect
the rights and interests of legitimate users. What is more
serious is that the user’s privacy information may be
intercepted in the slice.

• Privacy leakage in communication between slices. An
attacker can attack from one slice to another. Therefore,
even in the same Internet service provider (ISP) or
the same network infrastructure, effective access control
approaches should be implemented between different
slices [115]. Unauthorised access should be blocked to
prevent internal attacks from the same network domain.

Fig. 5 shows the processes that a data packet passes through
when users use end-to-end network slices. It shows user pri-
vacy may be leaked in the communication between device and
slice, and in the interaction between slices. Therefore, effective
isolation measures and other new technologies (including those
based on DL) are needed to strengthen the privacy protection
of users. The same challenge also exists when data packets
are transmitted across the network infrastructure before or
after they reach different network functions. Privacy protection
measures should cover the entire process of users using end-
to-end network slices [106], [116].

Based on the above analysis of the processes that may cause
the leakage of user privacy, we can consider solving such
problems from the following aspects.

A. Privacy preservation in accessing slices

The security of accessing slices can be analysed from two
perspectives: network slices and users. From the perspective of
network slices, in 5G networks, effective authentication mech-
anisms are needed to prevent users from illegally accessing
slices [117], [118], [119].

When users access slices, DL techniques can be used in
access control and identity authentication. Attribute based
access control (ABAC) [120], [121] is an important access
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Fig. 5. An overview of the isolation between end-to-end network slicing.

control mechanism. According to an estimate, 70% of enter-
prises will use ABAC mechanisms in 2020 [122]. However,
in ABAC, the policy authoring task requires a lot of overhead
and is a limiting factor. In the recent work [122], the authors
proposed a method using DL to automatically convert the
natural language access control policy (NLACP) in ABAC to a
machine-readable form. This work is beneficial to the efficient
implementation of ABAC strategies in 5G HetNets.

Identity authentication is an important technology for access
control. In a recent study [123], the authors proposed a privacy
preservation scheme in the Internet of Vehicles (IoVs), which
is a typical application scenario of AMPs. Large-scale IoV
networks are usually divided into different fogs [124]. Each
fog has its own fog head, which is similar to the central
processing unit in the fog that can centrally manage members
in the fog. This structure effectively reduces the latency and
position awareness in the vehicle communication. The process
of joining the fog naturally requires identity authentication.
Based on this background, a two-way authentication and
security monitoring method using the random forest algorithm
of a DL scheme, named FBIA, was proposed to protect system
security and user privacy in IoV. The evaluation results showed
that the FBIA scheme has higher authentication accuracy
and better adaptability to the high-speed mobile network
environment. In addition, in recent years, some traditional
authentication methods for access control have also begun
to use DL techniques [125], [126]. Effective and reliable
authentication methods help improve the service provider’s
access control capabilities.

From the user’s perspective, it is also necessary to ensure
that the device is accessing or is about to access the correct and
trusted slice, instead of a fake network slice or service [127].
DL techniques can be used to find anomalies in slices. Users
can use the exception as a clue to further determine whether a
correct slice is accessed. Efficient access control mechanisms
and anomaly detection mechanisms with the help of DL
technologies are expected to improve the security of 5G
networks and prevent the leakage of user privacy. In addition,
users should have the right and opportunity to use suitable
slices. DL approaches can be used to help ISPs select a suitable

set of slices for a user. Research on this field can refer to a
series of personalised recommendation algorithms based on
DL technologies [128].

Whether an AMP is a service provider that provides network
slicing or a user who uses slices, they all expect to cooperate
with trusted objects. Trust management can be used by the
slice provider to confirm that the user is not malicious for
the sake of system security. For users, they can also select
slices from trusted service providers through trust management
technology to ensure that their private information is properly
handled. The traditional trust management mechanism is insuf-
ficient for AMPs [129]. DL technology can help improve the
efficiency and effectiveness of trust management mechanisms.
In [130], Raya et al. evaluated several techniques, including
Bayesian inference and the Dempster-Shafer Theory. Then, the
authors used them for trust computation. In [131], the authors
proposed a RESTful message exchanging architecture, and a
trust model based on the solution of a multi-class classification
problem using machine learning techniques. In [132], a DL
based driver classification and trust computation (DL-DCTC)
scheme was proposed. The authors developed a sequential
deep neural network model to calculate reward points based
on the behavior of equipment (e.g., vehicles), and classify
fraudulent and non-fraudulent messages.

B. Privacy preservation for applications in slices

In addition to strengthening access control to prevent mali-
cious users from entering a slice to obtain information about
other users and to prevent users from entering fake slices to
cause privacy leakage, the security of the slice itself should
also be considered. In particular, a network slice may contain
a series of services or network functions. These network
functions can be considered as different applications. We
should therefore focus on the security of these services and
functions as we do in our end devices. This is because if
an application in the slice is malicious, it will easily obtain
the user’s information and abuse it, causing the leakage of
user privacy. With excellent feature extraction capabilities,
DL approaches can be used to perform anomaly detection,
network intrusion detection, and malware detection [133],
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[134], [135], [136]. Schultz et al. [137] first applied machine
learning methods to malware detection. Since then, more and
more studies have tried to use various artificial intelligence
techniques to detect malware. Among them, methods based on
DL can improve detection accuracy within a range of sample
sizes and traffic anomaly types [138].

In a recent study [133], the authors represented malware as
opcode sequences and detected it using a deep belief network
(DBN). In the field of malware detection, it usually takes
a lot of manpower to determine whether an executable is a
malware. Therefore, it is difficult for researchers to build a
data set that contains a sufficient number of data samples for
training. Considering this factor, the authors proposed a DBN-
based malware detection model in this paper, which can learn
from unlabeled data. In [139], Hardy et al. proposed a DL
architecture using a stacked AutoEncoders (SAEs) model for
intelligent malware detection. Its input is based on Windows
Application Programming Interface (API) calls extracted from
a portable executable (PE). The SAEs model uses a greedy
layerwise training operation for unsupervised feature learning,
followed by supervised fine-tuning of parameters such as
weights and offset vectors. Different network functions in the
slice can be regarded as different software programs. Using
similar methods of SAEs can effectively detect malicious
network functions in slices, thereby reducing the risk of user
privacy leakage.

In [140], the authors discussed the problems faced by
existing intrusion detection technologies. In this regard, they
proposed a new DL technology for intrusion detection, with
nonsymmetric deep autoencoder (NDAE) for unsupervised
feature learning. Furthermore, they proposed a novel DL clas-
sification model constructed using stacked NDAEs. In [78],
the authors explored how to model an IDS based on DL, and
proposed a DL method for intrusion detection using recurrent
neural networks (RNN-IDS). In addition, the authors studied
the performance of the proposed model in binary classification
and multiclass classification, as well as the influence of
the number of neurons and different learning rates on the
performance of the proposed model.

End-to-end slicing requires the support of SDN technol-
ogy [141], [75]. Some studies have proposed DL methods
specifically for intrusion detection in SDN [142], [143], [144],
[145], [146]. In [145], the authors proposed a DDoS detection
system in SDN. The authors implemented the system as a
network application in the SDN controller. DL methods are
used for feature extractors and traffic classification. In [146],
the authors proposed a lightweight DDoS flooding attack de-
tection solution, using an intelligent mechanism based on self
organising maps (SOM) [147], which is a kind of unsupervised
artificial neural networks trained by the features of the traffic
flow. The authors used SOM to classify network traffic as
normal traffic or abnormal traffic, and used traffic statistics as
parameters for the SOM computation.

C. Privacy preservation in slice resource management

In 5G networks, slice resources need to be allocated ac-
cording to user needs. In addition, the user’s demand for

the resources of a network slice is dynamically changing.
Especially with the increase in the number of AMPs and
the continuous diversification of AMP requirements, it is
necessary to use machines for automated management instead
of manual operations to manually allocate resources [148]. DL
can play an important role in the allocation and scheduling
of slice resources, and it can also strengthen the privacy
protection of users in this process [149], [150], [151].

In view of the fact that the service provider needs to
periodically obtain some data belonging to the user, such as
the user’s needs, in order to adjust the resources allocated
to the slice [110]. Data-sharing methods need to be carefully
designed in order to protect the privacy of users. Differential
privacy is a method for data publishing and sharing. Using
differential privacy technology can effectively protect users’
privacy when they provide information to ISPs or service
providers (SPs). The effect of differential privacy can also be
enhanced with DL technologies [152], [153]. In [154], the
authors proposed a new method for learning and a refined
analysis of privacy costs within the framework of differential
privacy. The proposed method can effectively address the
user’s concerns about the leakage of private information during
the training of models.

Besides differential privacy protection methods, DL ap-
proaches can be used to achieve data sharing with privacy
protection. Wang et al. [155] proposed a mechanism for
sharing user information using DL approaches. To protect
sensitive information, the authors introduced a lightweight
privacy protection mechanism, which consists of arbitrary
invalid data and random noise to provide a strong privacy
guarantee. However, the added interference to the original data
will inevitably have a negative impact on the effectiveness of
further inference in the cloud. To mitigate this adverse effect,
the authors proposed a noise training method to enhance the
robustness of the cloud-side network to the interfered data.
This mechanism can solve the problem of privacy leakage
when transmitting data from the device to the ISPs and SPs.

D. Privacy protection in data transmission

There are some interesting research topics on how to ensure
the confidentiality of data during transmission. As we know,
encryption is an important means to protect users’ private
information. In 2016, Google Brain devised a method to
apply DL to encryption technology [156]. In the proposed
method, the authors assumed that a system consists of neural
networks named Alice and Bob, and the goal is to limit what
a third neural network named Eve learns by eavesdropping on
the communication between Alice and Bob. In the learning
process, there is no need to prescribe a particular set of cryp-
tographic algorithms, nor to indicate ways of applying these
algorithms Such research showed us the broad application
prospects of DL in the field of privacy preservation.

E. Other privacy preservation considerations

End-to-end slicing spans various network infrastructures,
including RAN, carrying networks, and core networks. In this
section, we show which areas in an end-to-end network slice
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TABLE V
DIFFERENT ROLES THAT NEED TO CONSIDER PRIVACY IN AN END-TO-END NETWORK SLICE

Region
Roles

Regulators (government) ISP User Data User Equipment (UE) IT Company
Network Function or

Virtual Network Function

RAN
√ √ √ √

×
√

Carrying Network
√ √ √

×
√

×
Core Network

√ √ √
× ×

√

TABLE VI
DIFFERENT EVENTS THAT NEED TO CONSIDER PRIVACY IN AN END-TO-END NETWORK SLICE

Region
Events

Access Control Resource Request Resource Management (Scheduling) Data Transmission

RAN
√ √ √ √

Carrying Network × ×
√ √

Core Network
√ √ √ √

need to consider privacy protection from two perspectives:
different roles and different events. Specifically, Table V shows
whether different roles need to implement privacy protection
measures in different areas of the network. Table VI lists sev-
eral common behaviors in 5G networks and describes whether
it is necessary to take measures to protect user privacy. From
these tables, we can clearly observe that privacy protection
needs to be considered in various processes in 5G HetNets.
New technologies (including DL) are therefore expected to
bring higher efficiency and better results in terms of privacy
protection. Table VII summarises the relevant DL approaches
for privacy preservation in 5G end-to-end network slicing.

VI. RESEARCH CHALLENGES AND OPEN ISSUES

Although DL approaches have been used to ensure privacy
preservation in 5G HetNets, there are still many on-going
challenges and open issues that need to be considered in future
research. In this section, we discuss a set of issues in 5G
heterogeneous RANs, beyond-RAN networks, and also end-
to-end network slices.

A. Privacy preservation in 5G heterogeneous RANs

• Heterogeneous data in 5G RAN has different privacy-
preservation requirements. It is a challenge to preserve the
privacy at different levels of requirements from different
AMPs, UEs, and IoT devices. For example, healthy data
from body sensor networks may have higher privacy-
preservation requirements than vehicular network data,
which is mainly used for traffic management and in-
telligent transportation system (ITS). Future DL models
should take different privacy-preservation requirements
into account. Moreover, multi-authority attribute-based
encryption schemes should be integrated with DL models
to meet this emerging demand.

• Edge servers are often resource-limited whereas most of
the incumbent DL models have stringent requirements
on computing capabilities (e.g., using GPUs to fasten the
training process) and storage capacity (e.g., DNNs often
have large models). In addition, federated DL models

also require homomorphic encryptions, which are often
computationally intensive. Compacted DNNs technolo-
gies include network pruning, knowledge distillation, and
network structure modifying while the feasibility of these
technologies in AMPs is still worth investigating. It
is expected to design portable privacy-preservation DL
models being suitable for edge servers in the future.

• DL models are also vulnerable to malicious attacks, e.g.,
small perturbations can essentially paralyse the whole
CNN model. Moreover, some malicious users may in-
tentionally add adversarial data samples to contaminate
the training dataset so as to poison the entire DL models.
How to prevent DL models from adversary attacks is an
open question that is worthwhile for further investigation
in the future. For example, the integration of DL models
with blockchain has the potential to overcome this issue
due to the traceability of blockchain, which can trace
newly-added data and identify potential threats.

B. Privacy preservation in 5G beyond-RAN networks

• In the shared 5G core resource infrastructure, more types
of resources will be virtualised to support diversified re-
quirements of services. It is a challenging issue to ensure
the consistency of privacy preservation requirements that
have been enforced by each resource, e.g., computing,
networking, storage, and function, when data are col-
lected across resources for DL model training. In addi-
tion, virtualised resources carried by 5G-enabled AMPs
can be used to provide services in different application
fields. Given the fact that different application fields
may have different privacy preservation requirements, the
above consistency issue will become more challenging.

• With the emergence of a growing number of AMPs
involved in 5G HetNets, the privacy protection of data
is becoming more significant. The performance of DL
models usually degrades when encrypted data are col-
lected for the model training. How to mitigate the impact
of encrypted data e.g. by homomorphic encryption, on
the performance of DL model training is an important
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TABLE VII
SUMMARY OF DEEP LEARNING APPROACHES FOR PRIVACY PRESERVATION IN 5G END-TO-END NETWORK SLICING

Issues Potential Solutions Representative Works Main Contributions

Privacy leakage in
accessing slices

DL approaches for access
control

Alohaly et al. [122] Propose a method using DL to automatically convert the
natural language access control policy (NLACP) in ABAC
to a machine-readable form

Song et al. [123] Design a two-way authentication and security monitoring
method using the random forest algorithm of a DL scheme,
named FBIA, to protect system security and user privacy in
IoV

Zou et al. [126] Design DL techniques to learn and model the biometrics to
obtain good person identification and authentication perfor-
mance

DL approaches for trust
management

Refaey et al. [130] Proposed an architecture using DL for trust computation

Tangade et al. [132] Design a DL based driver classification and trust computation
(DL-DCTC) scheme

Privacy leakage by
malicious applications in
slices

DL approaches in
malware detection

Ding et al. [133] Represent malware as opcode sequences and detected it using
a deep belief network (DBN)

Hardy et al. [139] Proposed a DL architecture using a stacked AutoEncoders
(SAEs) model for intelligent malware detection

DL approaches in
intrusion detection

Shone et al. [140] Propose a DL technique for intrusion detection with nonsym-
metric deep autoencoder (NDAE) for unsupervised feature
learning

Yin et al. [78] Propose a DL method for intrusion detection using recurrent
neural networks (RNN-IDS)

DL approaches attack in
detection

Niyaz et al. [55] Proposed a DDoS detection system using DL methods for
feature extractors and traffic classification

Privacy leakage in slice
resource management

DL approaches in
resource management

Abadi et al. [154] Propose a new method for learning and a refined analysis of
privacy costs within the framework of differential privacy

Wang et al. [155] Propose a mechanism for sharing user information using DL
approaches

Encryption Abadi et al. [156] Propose a method to apply DL to encryption technology

future research direction. It is becoming more challenging
if DL models consider the data that are encrypted by
heterogeneous encryption technologies.

• Many 5G vertical services such as Industrial Internet of
Things (IIoT) ask for stringent requirements, e.g., ultra-
high reliability and ultra-low latency. 5G-enabled AMPs
are in place to assure such stringent requirements. For
example, 5G-enabled unmanned aerial vehicles equipped
with edge computing devices are widely used to reduce
computation delay for nearby IIoT devices. Balancing
the accuracy of privacy preservation DL models with a
number of other service requirements is an open issue
that needs to keep a watchful eye on it.

• Given the nature of heterogeneous connectivity technolo-
gies and cross-domain infrastructure of 5G networks, the
scalability issue will become a bottleneck that hinders the
efficient and online training of privacy preservation DL
models. How to build scalable DL models in this context
with HetNets, heterogeneous connectivity technologies,
heterogeneous encryption technologies, heterogeneous
vertical services, heterogeneous service requirements, and
heterogeneous 5G-enabled AMPs, is still a challenging
issue.

C. Privacy preservation for end-to-end network slicing in 5G

• In a 5G HetNet, it is a challenge to maintain the policy
consistency of the various parts involved in the communi-
cation process. Because this involves the collaboration of
different components (e.g., different network functions)
in the network. DL techniques are expected to make
better and timely decisions for communication systems
(including network functions that traffic needs to pass
through), but they still faces efficiency issues. Especially,
the low latency required by 5G networks puts forward
higher requirements on the design of the mechanism.
Therefore, the update and synchronization mechanisms
(without losing user privacy) suitable for 5G HetNets
need further research.

• In 5G networks, there are HetNets composed of different
types of networks. Therefore, the establishment of trust
relationships between different network architectures and
different network domains is more complicated. For net-
work domains or network slices that have not interacted
with each other and may belong to different ISPs, how to
accurately establish a trust relationship is a challenging
problem. The establishment of the relationship between
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slices, as well as between users (devices) and slices, can
refer to the research of social networks. This is because,
to some extent, the relationship in the network is an
extension of the relationship in reality. DL approaches
have been applied to social networks and achieved ideal
results. Therefore, the study of social networks combined
with DL technologies may be applied to build trust
relationships in 5G HetNets. In this way, it is expected
to establish a trust relationship without directly obtaining
the information of a specific user, which will help protect
the privacy of users.

• SDN and NFV are key technologies in implementing
network slicing. Among them, SDN is a suitable tech-
nology for configuring and controlling the resource for-
warding plane. The NFV technology can manage the life-
cycle of network slices and orchestrate virtual network
functions (VNF) effectively. Therefore, when solving
privacy protection issues (or other security issues) caused
by communication through end-to-end network slicing,
it is necessary to consider improving SDN and NVF
technologies that have been applied to 5G.

Through the investigation and analysis in this paper, we
can find that similar work may be involved in different
communication processes given that 5G networks are HetNets.
Authentication is a typical example. In a 5G network, the
system needs to identify and verify the user’s identity and
manage user behavior in multiple processes. However, in a
heterogeneous 5G network, Internet service providers and
network function providers may come from different orga-
nizations or companies. Therefore, the pursuit of unified and
efficient identity verification faces challenges in 5G HetNets. If
the user’s performance in multiple processes during communi-
cation cannot be judged together, we may miss the opportunity
to find malicious users. For the work that requires similar data
sets as the basis for judgment in 5G networks, we can refer to
the idea of distributed machine learning [157], [158], [159],
[160] and use technologies such as federated learning [70] and
shared machine learning [161], [162] to design mechanisms
based on 5G HetNets.

In recent years, federated learning has attracted attention
as an emerging artificial intelligence technology [70], [163],
[164], [165]. Its design goal is to develop efficient machine
learning approaches between multiple participants or multiple
computing nodes on the premise of ensuring information
security during data exchange and protecting user data security
and user privacy [91], [166]. In the future, we can consider
relying on the concept of federated learning to return the
results to the data center after training in each network domain
(or slice). The data can then be further analysed using DL
techniques. The user’s data will not leave the slice during this
process. We still take identity authorization as an example.
The ideal goal is that different parts of the 5G network can
continuously learn and train separately, and discover potential
security risks through collaboration, and then improve the
results of identity authorization.

When using distributed machine learning technologies, it is
inevitable to face a series of problems such as policy con-
sistency and communication efficiency in distributed systems.

However, with the low latency requirements of 5G networks,
designing such a reliable and efficient solution is a challenging
problem. In addition, the differences in the standards and
methods of identity authentication in different processes may
also become challenges. Despite the need for further research,
this case shows that DL has a good prospect in promoting
collaboration between different parts of the 5G HetNets.

VII. CONCLUSION

This article has investigated the use of DL to handle privacy
preservation issues in 5G HetNets, targeting at heterogeneous
RANs, beyond-RAN networks, and end-to-end networks slice.
In particular, the effects of 5G-enabled AMPs on privacy issues
in 5G HetNets have been thoroughly investigated. A set of
relevant research challenges and open issues has been outlined
to guide future research. We hope this article provides useful
insights and summary that can help the development of AMPs
in the era of 5G/B5G and 6G.
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[89] N. Papernot, M. Abadi, Ú. Erlingsson, I. J. Goodfellow, and
K. Talwar, “Semi-supervised knowledge transfer for deep learning
from private training data,” in 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, 2017. [Online]. Available:
https://openreview.net/forum?id=HkwoSDPgg

[90] X. Ma, J. Ma, H. Li, Q. Jiang, and S. Gao, “Pdlm: Privacy-preserving
deep learning model on cloud with multiple keys,” IEEE Transactions
on Services Computing, pp. 1–1, 2018.

[91] Y. Liu, J. J. Q. Yu, J. Kang, D. Niyato, and S. Zhang, “Privacy-
preserving traffic flow prediction: A federated learning approach,” IEEE
Internet of Things Journal, vol. 7, no. 8, pp. 7751–7763, 2020.

[92] X. Zhou, Y. Hu, W. Liang, J. Ma, and Q. Jin, “Variational lstm
enhanced anomaly detection for industrial big data,” IEEE Transactions
on Industrial Informatics, pp. 1–1, 10.1109/TII.2020.3022432, 2020.

[93] X. Zhou, Y. Li, and W. Liang, “Cnn-rnn based intelligent rec-
ommendation for online medical pre-diagnosis support,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, pp. 1–1,
10.1109/TCBB.2020.2994780, 2020.

[94] H. Pang and B. Wang, “Privacy-preserving association rule mining
using homomorphic encryption in a multikey environment,” IEEE
Systems Journal, pp. 1–11, 2020.

http://papers.nips.cc/paper/8701-partially-encrypted-deep-learning-using-functional-encryption.pdf
http://papers.nips.cc/paper/8701-partially-encrypted-deep-learning-using-functional-encryption.pdf
https://doi.org/10.1145/3292006.3300044
http://www.sciencedirect.com/science/article/pii/S1389128618303037
http://www.sciencedirect.com/science/article/pii/S0140366420310227
http://www.sciencedirect.com/science/article/pii/S0140366420310227
http://www.sciencedirect.com/science/article/pii/S1084804519300037
https://doi.org/10.1145/3298981
https://doi.org/10.1145/2983637
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1145/3243734.3243760
https://openreview.net/forum?id=HkwoSDPgg


JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXX 18

[95] M. Djatmiko, D. Schatzmann, X. Dimitropoulos, A. Friedman, and
R. Boreli, “Collaborative network outage troubleshooting with secure
multiparty computation,” IEEE Communications Magazine, vol. 51,
no. 11, pp. 78–84, 2013.

[96] W. Jung, S. Kwon, and K. Shim, “Tidy: Publishing a time interval
dataset with differential privacy,” IEEE Transactions on Knowledge
and Data Engineering, pp. 1–1, 10.1109/TKDE.2019.2952351, 2019.

[97] Q. Chen, C. Qian, and S. Zhong, “Privacy-preserving cross-domain
routing optimization - a cryptographic approach,” in 2015 IEEE 23rd
International Conference on Network Protocols (ICNP), Nov 2015, pp.
356–365.

[98] M. Aledhari, R. Razzak, R. M. Parizi, and F. Saeed, “Federated learn-
ing: A survey on enabling technologies, protocols, and applications,”
IEEE Access, vol. 8, pp. 140 699–140 725, 2020.

[99] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 1310–1321. [Online].
Available: https://doi.org/10.1145/2810103.2813687

[100] R. Ramakrishnan and J. A. Shah, “Towards interpretable explanations
for transfer learning in sequential tasks,” in 2016 AAAI Spring
Symposia, Stanford University, Palo Alto, California, USA, March
21-23, 2016, 2016. [Online]. Available: http://www.aaai.org/ocs/index.
php/SSS/SSS16/paper/view/12757

[101] X. Wang, J. He, P. Cheng, and J. Chen, “Privacy preserving collab-
orative computing: Heterogeneous privacy guarantee and efficient in-
centive mechanism,” IEEE Transactions on Signal Processing, vol. 67,
no. 1, pp. 221–233, Jan 2019.

[102] Z. Li, T. J. Oechtering, and D. Gündüz, “Privacy against a hypothesis
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