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Abstract

In this thesis we study probabilistic limit theorems for one-dimensional non-uniformly

expanding maps with a single neutral fixed point, commonly known as intermittent

maps. In 2004, S. Gouëzel showed that generic Hölder observables satisfy a stable law

under the dynamics of the Liverani-Saussol-Vaienti (L.S.V.) family of intermittent maps

in the case that an absolutely continuous probability measure is preserved. A key reason

for the appearance of stable laws in the setting of Gouëzel’s result is the fact that the

return time to a particular reference set is regularly varying. We investigate what occurs

when this regular variation is not present. In particular, we consider modifications of

the L.S.V. map where stable laws fail to hold for generic Hölder observables and show

that instead semi-stable laws emerge. We further establish that these semi-stable laws

also appear in the context of the usual L.S.V. map for a certain class of oscillatory

observables.
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Introduction

The general problem we are interested in studying here may be described as follows.

We take an interval map T : [0, 1]→ [0, 1] which is intermittent :

∃x0 ∈ [0, 1] such that T (x0) = x0, T ′(x0) = 1, T ′(x) > 1 ∀x 6= x0,

and we seek to understand aspects of the long-term behaviour of the sequence (T n(x))n≥0

for points x ∈ [0, 1]. The term intermittent stems from the fact that a typical orbit

(T n(x))x≥0 will spend a large period of time close to the neutral fixed point x0 before

briefly behaving chaotically until it again returns close to x0. The global dynamical

picture of an intermittent system thus consists of long laminar phases interrupted by

chaotic bursts. Typical examples of such intermittent dynamical systems can be found

in [PM80].

Even for simple maps T it can be extremely difficult to gain information on the

behaviour of (T n(x))n≥0 using either analytic or computational techniques. An ap-

proach which is more fruitful, however, is to introduce a probability measure µ and

to attempt to understand the behaviour of (T n(x))n≥0 probabilistically. If we let

u : [0, 1] → R be a measurable function then we may view u ◦ T n as random variables

and thus try and understand the behaviour of averages of the sequence (u ◦ T n)n≥1

over our space. A very well known, and perhaps most simple result in this direction

is Birkoff’s ergodic theorem which gives an analogue of the strong law of large num-

bers. Birkoff’s ergodic theorem states that when the measure µ is ergodic for T (i.e.

T−1(E) = E ⇒ either (µ(E) = 0 or µ(Ec) = 0)) and u is integrable then the aver-

age 1
n

∑n−1
j=0 u ◦ T j(x) converges to

∫
udµ for µ-almost every x. The question we are

interested in answering is whether there exist sequences (An)n≥1 and (Bn)n≥1 such that

Zn :=

∑n−1
j=0 u ◦ T j −Bn

An
, (1)
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converges in distribution to something non-degenerate, or more generally, if the se-

quence (Zn)n≥0 has non-degenerate weak limit points. Here, by non-degenerate we

mean that limiting random variable is not almost surely constant. For example, one

might hope to obtain convergence results for the Zn analogous to the central limit

theorem.

A motivating result for the work we will present here is the following theorem due

to Sebastian Gouëzel which gives conditions for the convergence of the Zn to either

Gaussian or (non-Gaussian) stable random variables in the case that u is a Hölder

continuous function and T is the following intermittent map

T (x) :=


x(1 + 2βxβ) for x ∈ [0, 1/2)

2x− 1 for x ∈ [1/2, 1].

(2)

Theorem ([Gou04a, Theorem 1.3]). Let β ∈ (1/2, 1) and let T be the corresponding

map as defined in (2). Let u : [0, 1] → R be Hölder continuous with
∫
udµ = 0. Then

there are two cases.

1. If u(0) 6= 0, then we have convergence to a stable law

∑n−1
j=0 u ◦ T j

nβ
d−→

n→∞
V1/β,

where V1/β is a stable random variable of index 1/β.

2. If u(0) = 0, and the Hölder exponent ν of u such that ν > β − 1/2 then we have

a central limit theorem

∑n−1
j=0 u ◦ T j√

n

d−→
n→∞

V ∼ N (0, σ2),

for some σ2 ≥ 0.
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A key property of the map defined in (2) that is responsible for the appearance of the

stable law in second case of the theorem above is following. If we induce on the set

Y := [1/2, 1] and and consider the induced observable

uY (x) :=

τ(x)−1∑
j=0

u ◦ T j(x),

where τ : Y → N is the first return time to Y (i.e. τ(x) := min{n ≥ 1 : T nx ∈ Y }) one

may show that when u(0) 6= 0 the tail distribution

F (y) = µ(uY > y), (3)

is regularly varying :

F (y) = y−
1
β `(y) where lim

y→∞

`(λy)

`(y)
= 1 ∀λ > 0. (4)

Indeed, as we will see in Section 1.1.3, having regularly varying tail distributions is

essential in the context of independent and identically distributed random variables to

obtain convergence to stable random variables (see Theorem 1.1.7). It is the behaviour

of the map T near its neutral fixed point which is responsible for the fact that Hölder

observables with u(0) 6= 0 induce to observables with tail distributions F of the form

given in (4).

We are interested in the case that this regular variation is not present in (3), in par-

ticular we be interested in the case that an additional oscillatory factor appears in (3)

above. We will study three different situations where this oscillatory factor is present

in (3), each scenario being a map of the unit interval and class of observables. We

will informally introduce our main results here. For precise definitions of the maps we

consider and the for the formal statements of our main results we refer the reader to

Chapter 2.
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In order to introduce the systems we will study we need to introduce the function

M : (0,∞)→ (0,∞). For some ε > 0 we define

M(x) := 1 + ε sin

(
2π

log c
log x

)
, (5)

where c > 1 is some parameter. A key property of this is that it is log-periodic:

M(cx) = M(x) for all x > 0. In what follows, the function M will be our prototypical

example of a log-periodic function. In this thesis we will primarily study the following

maps.

1. For α ∈ (1, 2) we set x0 = 1, x1 = 1/2 and xn := n−αM(n) for n ≥ 2. We then

define the map

Texp(x) :=


0, if x = 0

gn(x), x ∈ [xn+1, xn] n ≥ 2

2x− 1, if x ∈ [1/2, 1],

(6)

where

gn(x) := 1 + xn + (1− an)ρn(x− xn+1)− exp

{
log(1− an∆n−1)

x− xn+1

∆n

}
, (7)

and

∆n := xn − xn+1, ρn :=
∆n−1

∆n

,

and (an) is some strictly decreasing sequence of positive reals converging to 0. The

key property of this system is that it maps each interval [xn+1, xn] smoothly and

bijectively onto the [xn, xn−1] with the intervals ([xn+1, xn])n≥1 forming a Markov

partition for Texp, this is similar to the piecewise quadratic map studied in [KT18].
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2. For β ∈ (1/2, 1) we define

Tw(x) :=


0, if x = 0

x(1 + aM(x)xβ), if x ∈ (0, 1/2)

2x− 1, if x ∈ [1/2, 1],

(8)

where a is some constant chosen so that 1
2
(1 + aM(1

2
)(1

2
)β) = 1.

3. For β ∈ (1/2, 1) we set

TLSV (x) :=


x(1 + 2βxβ), if x ∈ [0, 1/2)

2x− 1, if x ∈ [1/2, 1].

(9)

For each of these maps we establish a semi-stable law, that is, for certain observ-

ables u we show the distributional convergence of the Zn along subsequences to a

non-degenerate semi-stable random variable. Semi-stable random variables are gener-

alisation of stable random variables and will be discussed in detail in Section 1.1.4. We

show that for T ∈ {Texp, Tw, TLSV } there exists sequences (kn) and (An) (which may be

determined) so that for certain observables u we have that

∑kn−1
j=0 u ◦ T j − kn

∫
udµ

An

d−→
n→∞

V, (10)

where V is a semi-stable random variable and µ is the absolutely continuous invariant

probability measure for T . In the case of Texp and Tw we are able to establish (10)

for Hölder observables u which are non-zero at 0, and for TLSV we establish (10) for

observables of the form u(x) = M(x). Moreover we can strengthen the distributional

convergence which appears in (10) to the following merging result. We introduce a

function γ : (0,∞) → (0,∞), which is defined in terms of the sequence (kn) that
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appears in (10) in the following way: for all s > 0 small enough we put

γ(s) = skn(s) (11)

where kn(s) is the unique element of (kn)n≥1 such that 1
kn
≤ s < 1

kn−1
. One can show that

for any all s > 0 small enough γ(s) is contained in a compact set K. The strengthening

of (10) we obtain is

lim
n→∞

sup
x∈R

∣∣∣∣∣µ
(∑n−1

j=0 u ◦ T j − n
∫
udµ

An
≤ x

)
− µ(Vγ(1/n) ≤ x)

∣∣∣∣∣ = 0, (12)

where {Vλ : λ ∈ K} is a continuous family of semi-stable random variables, which we

introduce in Section 1.1.4, defined in terms of the V which appears (10).

We will now proceed in Chapter 1 to recall relevant background material before giving

the formal statements of main findings in Chapter 2. The remainder of this document

is then devoted to the proofs of the results given in Chapter 2.



Chapter 1

Background and Terminology

1.1 Limit theorems for sums of i.i.d. random variables

1.1.1 Terminology and Notation

In this section we let (Ω,B, µ) be a probability space, where (Ω, d) a Polish metric

space and B is the Borel σ-algebra. Given a sequence of measures (νn)n∈N on (Ω,B)

we say that νn converges weakly to ν and write νn
w−→

n→∞
ν if for every continuous

bounded function u : Ω → R we have that limn→∞ νn(u) = ν(u) where for a measure

λ we write λ(u) :=
∫

Ω
udλ. We say that a sequence of random variables (Xn)n∈N,

Xn : Ω → R converges in distribution to X : Ω → R, and write Xn
d−→

n→∞
X if the

corresponding distributions converge weakly: µX−1
n

w−→
n→∞

µX−1. The topology induced

by weak-convergence on the space of probability measures on Ω is metrisable by the

Prokhorov metric [Bil99]:

dP(µ, ν) := inf{ε > 0 : µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε ∀A ∈ B},

where we denote by Aε an ε neighbourhood of a set A. A special case of this metric is

the Lévy-Prokhorov dL metric [Bil99] which captures the notion of weak convergence

15



16 CHAPTER 1. BACKGROUND AND TERMINOLOGY

on the space of distribution functions F where

F := {F : R ∪ {−∞,+∞} → [0, 1]|F right continuous and decreasing and

F (−∞) = 0, F (+∞) = 1},

and

dL(F,G) := inf{ε > 0 : F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε}.

We also recall here the concepts of tightness and stochastic compactness. We say that

a collection F of measures is tight if for every ε > 0 there exists a compact set K ⊂ Ω

so that µ(K) > 1 − ε for every µ ∈ F . A collection of random variables is said

to be tight if the corresponding collection of distributions are tight. A collection of

measures F is stochastically compact if every sequence of in F has a sub-sequence that

is weakly convergent. Similarly a collection of random variables is called stochastically

compact if the corresponding family of distributions is stochastically compact. Thus,

both tightness and stochastic compactness are necessary conditions for convergence

in distribution, however the converse is in general false: in Section 1.1.4 we will see

examples of sequences that are tight but do not converge weakly. The correspondence

between stochastic compactness and tightness are given by Prokhorov’s theorem which

for completeness we state below.

Theorem 1.1.1 (Prokhorov 1956 [Pro56]). Let (Ω, d) be a metric space and let F be a

collection of Borel probability measures on Ω. Then if F is tight then F is stochastically

compact. Moreover, if (Ω, d) is Polish then F is tight if and only if it is stochastically

compact.

Remark 1.1.2. As a consequence of the theorem above we have that for real-valued

random variables the concepts of tightness and stochastic compactness are equivalent.



1.1. LIMIT THEOREMS FOR SUMS OF I.I.D. RANDOM VARIABLES 17

1.1.2 Infinitely divisible distributions

For a sequence of independent identically distributed (i.i.d.) random variables (Xn)n∈N

one knows by virtue of the strong law of large numbers that the average 1
n

∑n
j=1Xj will

converge to the expectation E(X1) almost surely. The central limit theorem tells us that

if these random variables satisfy E(X2
n) < ∞ and we replace scaling 1

n
by 1√

n
then we

no longer have almost sure convergence to a constant, but instead we have convergence

in distribution to a normal random variable.

Theorem 1.1.3. [see for example [Bil12, Theorem 27.1]] Let (Xn)n≥1 be a sequence of

independent identically distributed random variables with common distribution µ and

with finite variance σ2. Then

∑n
j=1Xj − nE(X1)

√
n

d−→
n→∞

Z ∼ N (0, σ2).

The above result has a very simple and elegant proof which utilises Levy’s continuity

theorem. We present this proof below as it captures some of the key ideas in the

arguments that will follow.

Proof of Theorem 1.1.3. We will assume that E(X1) = 0, the general case will then

follow from considering X̃n = Xn − E(Xn). Let Zn = 1√
n

∑n
j=1Xj, and consider the

characteristic function (c.f.) of Zn,

ϕn(t) := E(eitZn) = ϕ(t/
√
n)n, (1.1)

where ϕ is the characteristic function of X1. By Lévy’s continuity theorem (for example

see [Kle14, Theorem 15.23]), and the fact that characteristic functions of distributions

are unique, it is enough to show that ϕn converges point-wise to the c.f. of a normal

distribution. Considering the second order Taylor expansion of ϕn(t) about 0 for we
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see that for fixed t and n large

ϕn(t) =

(
1− σ2t2

2n
+ o(1/n)

)n
→
n→∞

eσ
2t2/2,

which concludes the proof. �

Later we shall be interested in proving analogous results for identically distributed

but non-independent sequences, namely we will replace the i.i.d. random variables

X1, X2, . . . with the deterministic sequence u, u ◦ T, u ◦ T 2, . . . where T : Ω → Ω is

some measure preserving transformation and u : Ω → R is some observable. In this

case, if we set Xn = v ◦T n we note that the sequence (Xn)n≥0 is identically distributed,

as T is measure preserving, but not necessarily independent. Let us note that the key

reason why the simple proof above no longer works for this choice of (Xn)n≥0 is that

the equality (1.1) breaks down when the Xn are not independent. In the remainder of

this section we will examine the possible distributional limits of appropriately scaled

and centred sums of i.i.d. random variables, in particular we are interested in the case

that we no longer have finite variance and Theorem 1.1.3 does not apply. We will as-

sume that all random variables appearing in this section are non-degenerate, that is to

say that they are almost-surely non-constant, or equivalently, that their distribution is

not a point mass. Consider a sequence (Xn) of i.i.d. random variables with common

distribution µ. Suppose that there exist sequences (An)n≥1, (Bn)n≥1 of real numbers so

that ∑n
j=1 Xj − An

Bn

d−→
n→∞

Y, (1.2)

for some random variable Y with distribution ν. It is well-known that in such a situation

the limiting object Y must an infinitely-divisible distribution.

Definition 1.1.4. We say that the distribution of a random variable X is infinitely-
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divisible if for each n ≥ 1 there exists i.i.d. random variables X1, X2, . . . Xn so that

X
d
= X1 +X2 + · · ·+Xn.

Typical examples of infinitely divisible distributions are the point mass δx, the Normal

distribution and the Poisson distribution. Moreover, it is clear from the definition that

finite sums of infinitely divisible distributions are infinitely-divisible.

Given a random variable Y with distribution ν it is natural to ask which, if any, se-

quences of random variables (Xn) satisfy (1.2) for some choice of (An)n≥1, (Bn)n≥1. If

the (Xn) are a sequence of i.i.d. random variables with common distribution µ which

satisfy (1.2). we say that µ is in the domain of attraction of ν and we write µ ∈ D(ν)

(or equivalently F ∈ D(G) where F (x) := µ(−∞, x]), G := ν(−∞, x]).

For example, the central limit theorem (Theorem 1.1.3) tells us that {µ :
∫
x2dµ(x) =

σ2} ⊂ D(ν) when ν is the normal distribution with variance σ2 and mean 0. Let

us now give a the representation formula due to Lévy-Khintchine that describes the

characteristic function of an infinitely divisible random variable.

A function ϕ : R→ C is the characteristic function of an infinitely divisible distribution

if and only if there exist:

1. functions L : (−∞, 0) → R and R : (0,∞) → R, which we call the left and right

Lévy functions respectively, that are non-decreasing on their domains and satisfy

L(−∞) = R(∞) = 0,

and for every ε > 0

∫ 0

−ε
u2 dL(u) +

∫ ε

0

u2 dR(u) <∞.
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2. constants σ2 > 0, γ such that

ϕ(t) = iγt+
σ2

2
t2 +

∫ 0

−∞
(eiut− 1− iut

1 + u2
) dL(u) +

∫ ∞
0

(eiut− 1− iut

1 + u2
) dR(u).

Moreover, the choice of L,R, γ and σ2 above is unique.

1.1.3 Stable laws

An important subclass of infinitely divisible distributions are stable distributions. The

distribution of a random variable X is called stable if whenever X1, X2, . . . , Xn are n

independent copies of X there exists An, Bn ∈ R with An > 0 and

X1 +X2 + · · ·+Xn
d
= AnX +Bn.

It is clear from this definition that stable distributions are infinitely divisible and more-

over we see that every stable distribution µ is in its own domain of attraction: µ ∈ D(µ).

In fact, we have the following important result:

Theorem 1.1.5 (Gnedenko, Kolmogorov [GK54, Theorem 1, Section 33]). Let µ be a

Borel probability measure on R. Then the domain of attraction D(µ) of µ is non-empty

if and only if µ is stable.

Let us now refine the definition of a stable distribution by introducing the notion of its

index.

Definition 1.1.6 (stable distribution of index α). We will say that a stable random

variable is stable if index α ∈ (0, 2] if

X1 +X2 + · · ·+Xn = n1/αX +Bn
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for some Bn ∈ R, whenever X1, X2, . . . , Xn are n independent copies of X.

In fact, every stable distribution is stable of some index α ∈ (0, 2], moreover α = 2

corresponds to the distribution being normal [Kle14, Theorem 16.22]. Thus we may

unambiguously talk of stable distributions of index α. So far we have that every possible

limiting distribution of (1.2). is stable and that every stable distribution appears as

a limiting distribution of (1.2). It is also possible to classify completely the domain

of attraction D(µ) for a stable distribution µ in terms of the tail behaviour of the

distribution. We say that ` : R → R is slowly varying at ∞ if for every t ∈ R \ 0 we

have that

lim
x→∞

`(tx)

`(x)
= 1;

and, we say that f : R → R is regularly varying at ∞ with index p ∈ R if there exists

a slowly varying function ` such that

f(x) = xp`(x).

We may now give the classification of D(µ) for non-normal stable distributions µ due

to Gnedenko and Kolmogorov.

Theorem 1.1.7 ([GK54]). Let µ be a stable distribution of index α ∈ (0, 2). Then

ν ∈ D(µ) if and only if the following two conditions are satisfied.

tail-balancing

lim
x→∞

µ(x,∞)

µ(−∞,−x) + µ(x,∞)
= C ∈ [0, 1],

regularly varying tails the left and right tail distributions µ(−∞,−x) and µ(x,∞)

for x > 0 are regularly varying of index −α.
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1.1.4 Semi-stable Laws

A natural way to extend the class of stable distributions is by permitting the convergence

in (1.2) to occur along sub-sequences. For a sub-sequence (kn)n≥1 of N we now consider

the class of permissible distributions of the limiting random variable Y in the case that

Zkn :=

∑kn
j=1 Xj −Bkn

Akn

d−→
n→∞

Y. (1.3)

In order to obtain a non-trivial subset of infinitely-divisible distributions it makes sense

to impose some additional conditions on the sub-sequence (kn)n≥1, these conditions are

outlined in the following definition of what it means for a distribution to be semi-stable.

Definition 1.1.8 (semi-stable, domain of partial geometric attraction). Let (kn)n≥ be

a sequence of positive integers satisfying one of the following conditions:

lim inf
n→∞

kn+1

kn
= c ∈ (1,∞) (1.4)

lim sup
n→∞

kn+1

kn
= c ∈ [1,∞) (1.5)

lim
n→∞

kn+1

kn
= c ∈ [1,∞) (1.6)

Non-degenerate distributions which arise as the limit of (1.3) along such sequences (kn)

are called semi-stable. We say that a distribution µ is in the domain of partial geometric

attraction of a semi-stable law ν, written1µ ∈ Dgp(ν) along a sequence (kn) if (1.3) holds

and limiting random variable Y has distribution ν.

Remark 1.1.9. We note that trivially any sequence (kn)n≥1 satisfying either (1.4) or (1.5)

will have a further sub-sequence satisfying (1.6). To simplify the following statements

we will only consider semi-stable distributions that arise along sub-sequences satisfying

1We will also write F ∈ Dgp(G) if µ ∈ Dgp(ν), and F is the distribution function of µ and G is the
distribution function of ν
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(1.6).

We see from the above definition that stable distributions are also semi-stable, in fact

we have the following series of strict inclusions

stable ⊂ semi-stable ⊂ infinitely divisible.

Associated to each semi-stable distribution is an index α ∈ (0, 2] and a period c ≥ 1.

If the period of semi-stable distribution is equal to 1 then the distribution is stable

and if its index is equal to 2 then the distribution is normal. From here on we will

only consider semi-stable distributions with index α ∈ (0, 2) and period c > 1. A

distribution να,c is semi-stable with index α and period c if and only if its left and right

Lévy functions L : (−∞, 0)→ R and R : (0,∞)→ R are given by

L(x) =
ML(x)

|x|α
, R(x) = −MR(x)

xα
, (1.7)

where ML and MR are not both identically zero and each non-zero M ∈ {MR,ML}

satisfies the condition A1 :

A1 • M is right continuous

• M is bounded away from both 0 and ∞

• M(x)/xα is monotone decreasing

• M is logarithmically periodic with period c1/α

M(c1/αx) = M(x), ∀x > 0. (1.8)

Let us fix a non-stable semi-stable distribution of index α ∈ (0, 2) and period c > 1

and let G denote its distribution function. Letting (kn)n≥1 be a sequence satisfying
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(1.6) and putting Akn := k
1/α
n `(kn) for some slowly varying ` we may now state the

description of Dgp(G) given in [Meg00, Corollary 3]. A distribution function F lies in

Dgp(G) along the sequence (kn)n≥1 and with normalising coefficients (Akn)n≥1 (written

F ∈ Dgp(G, kn, Akn)) if and only condition A2 below is satisfied.

A2 For all x > 0 sufficiently large we have that

F (x) := 1− F (x) = x−α`∗(x)(MR(δ(x)) + hR(x)), (1.9)

and

F−(−x) = x−1/α`∗(ML(−δ(x)) + hL(x)) (1.10)

where F− is the left continuous version of F

• `∗ : (0,∞)→ (0,∞) is determined by

x−α`∗(x) = sup{t : t−1/α`(1/t) > x}, (1.11)

so that x1/α`(x) and yα/`∗(y) are asymptotic inverses of each other,

• the function δ is defined for all x sufficiently large by δ(x) = x/a(x) where

a(x) is the unique element element of the sequence (Akn) so that

Akn ≤ x < Akn+1 ,

• the error functions hK : (0,∞)→ (0,∞) with K ∈ {R,L} are any functions

for which

lim
n→∞

hK(Aknx0) = 0,

for every continuity point x0 of MK .
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Remark 1.1.10. We have given above a description of Dgp(µ) for µ semi-stable for a

fixed choice of kn and Akn . If one wishes to fix only the sequence kn then one can

take a free choice of the slowly varying function ` in the definition of Akn . On the

other hand, if one wishes to fixes only the normalising sequence An with the property

that limn→∞An+1/An = c1/α > 1 then the convergence in (1.3) may occur along any

sequence (kn) with limn→∞ kn+1/kn = c.

We now state a theorem due to Csörgö and Megyesi which establishes that whenever

(1.3) holds along a sequence (kn)n≥1 satisfying (1.6) then we also have convergence

of (Zn)n≥1 to related semi-stable distributions along additional sub-sequences. Let us

denote by Fn the distribution function of the scaled and centred sum Zn:

Fn(x) := P

(
Zn =

∑n
j=1 Xj −Bn

An
≤ x

)
, (1.12)

and let us suppose that the common distribution µ of the Xn is in Dgp(ν) for some

semi-stable ν. Letting G be distribution function of µ we denote by Gλ for λ > 0 the

distribution function of the semi-stable distribution Lévy functions

Lλ(x) :=
ML(λ1/αx)

|x|α
, Rλ(x) := −MR(λ1/αx)

xα
. (1.13)

In an analogous way to the definition of the function δ we define γ for all s > 0 small

enough by putting

γ(s) = skn(s) (1.14)

where kn(s) is the unique element of (kn)n≥1 such that 1
kn
≤ s < 1

kn−1
. We note that for

any ε > 0 we have that γ(s) ∈ [1, c + ε] for all s > 0 small enough. Given a sequence

(sn)n≥1 we say that (γ(sn))n≥1 converges circularly to λ ∈ [1, c) and write γ(sn)
cir−→

n→∞
λ

if limn→∞ γ(sn) = λ or if (γ(sn))n≥1 has exactly two limit points 1 and c.

From [CM02, Theorem 1] we know that the sequence (Zn)n≥1 is stochastically compact.

Moreover (Zn)n≥1 is convergent in distribution to a non-degenerate distribution Y ′ along
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a sub-sequence (nr)r≥1 if and only if γ(1/nr)
cir−→

r→∞
λ, and if this is the case Y ′ necessarily

has distribution function Gλ. The following result further strengthens the mode of this

convergence.

Theorem 1.1.11 (merging of semi-stable distributions [CM02, Theorem 2]). Let G

be a semi-stable distribution of index α ∈ (0, 2) and period c > 1. Suppose that

X1, X2, . . . are i.i.d. with common distribution function F ∈ Dgp(G, kn, Akn), where

Akn := (kn)1/α`(kn) for some slowly varying function `, and where (kn) is a sequence

satisfying (1.6). Then,

lim
n→∞

sup
x∈R
|Fn(x)−Gγ(1/n)(x)| = 0,

where Fn is defined in (1.12), and where the family (Gλ)λ∈[1,c) is defined in terms of G

as in (1.13).

Example 1.1.12 (St. Petersburg Paradox). Let us now give a classical example of

where semi-stable distributions appear. Consider the following game. A fair coin is

tossed until it shows heads, if the coin shows heads on the nth trial the player is rewarded

with 2n units of money. If X is the gain after a single trial of this game we have that

P(X = 2n) = 2−n, and the distribution function of X is given by

P(X ≤ x) = 1− 2−blog2 xc.

Let us note that the expectation of X is infinite. There have been various investigations

into the statistical properties of scaled and centred sums of (Xn)n≥1 where (Xn)n≥1 is

an infinite sequence of independent trials of the game. In 1945 W. Feller [Fel45] proved

that ∑n
j=1 Xj

log2 n
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converges to 1 in probability. In 1985 Martin-Löf [ML85] showed that Zn =
∑n
j=1Xj

n
−

log2 n has non-degenerate limit points, in particular he showed that Z2n is convergent

in distribution to a non-degenerate random variable. Using the results of Csörgö and

Megyesi mentioned above we may classify all the possible weak limit points of the

sequence (Zn)n≥1.

First let us rewrite the tail distribution of X:

F (x) = P(X > x) = 2−blog2 xc = x−12−{log2 x},

where we have denoted by {·} the fractional part of a number {x} := x− bxc. Setting

c = 2, α = 1 and M(x) = 2−{log2 x} we see that M satisfies condition A1 and moreover

the distribution function F satisfies A2. Thus employing [Meg00, Corollary 3] we

retrieve the result of Martin-Lof. Moreover we see from [CM02, Theorem 1] that the

set of weak limit points of (Zn)n≥1 is the set {Vλ : λ ∈ (1/2, 1]} where each Vλ has

distribution function Gλ as described above.

An observation about mixtures

Consider the following lemma (the proof of which is given in Section 4.6 of the ap-

pendix).

Lemma 1.1.13. Suppose that M1,M2 : R>0 → R are two right-continuous log-periodic

functions with period a and b respectively. Then the function

M = M1 +M2

is log periodic with period of some period c if and only if a = bp/q for some rational p/q

in which case we can take c = aq = bp.
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A mixture is a (finite) convex combination of distribution functions:

F (x) =
n∑
j=1

ωjFj(ω).

A natural question to ask is whether mixtures of finite collections {Fj} ⊂
⋃
G∈G Dgp(G)

remain in
⋃
G∈G Dgp(G), where here G denotes the set of all non-stable semi-stable dis-

tributions. In fact Lemma 1.1.13 shows that
⋃
G∈G Dgp(G) is not closed under finite

convex combinations and moreover this lemma provides necessary and sufficient condi-

tions on a when a mixture of {Fi} ⊂
⋃
G∈G Dgp(G) is an element of

⋃
G∈G Dgp(G). For

example consider

F (x) =
1

2
(F1(x) + F2(x)),

where F1 ∈ Dgp(G1) and F2 ∈ Dgp(G2) for two distribution functions G1, G2 ∈ G of

period and index c1, α1 and c2, α2 respectively. If α1 6= α2, then we can assume without

loss of generality that α1 > α2. In this case it is clear (from (1.9) and (1.10)) that F will

be in Dgp(G) for some G of index α2 and period c2. On the other hand, if α1 = α2 = α

then Lemma 1.1.13 implies that there exists a G ∈ G such that F ∈ Dgp(G) if and only

if there exists p/q ∈ Q such that

c
1/α
1 =

(
c

1/α
2

)p/q
,

in which case G will have index α and period c1.

1.2 Limit theorems for intermittent dynamical sys-

tems

One of our primary aims is to establish versions of Theorem 1.1.11 where the i.i.d.

sequence (Ωn)n≥1 is replaced by the deterministic sequence (u ◦ T n)n≥0 for certain

observables u : Ω→ R and certain maps T : Ω→ Ω. Before stating our main results in
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this direction we recall some necessary background as well as some existing results in

dynamics on which we shall build.

1.2.1 Preliminaries on Gibbs-Markov Maps

Let T : Ω → Ω be a non-singular transformation of a standard probability space

(Ω,B,m), that is we assume that (Ω, d) is a compact Polish metric space, B is the

Borel σ-algebra on Ω, and m is the Lebesgue measure on (Ω,B). In this context T

being non-singular means that m(T−1(E)) = 0 if and only if m(E) = 0.

We say that an (at most) countable partition P of Ω is Markov for T if

1. T |q : q → Tq is a bijection for each partition element q ∈ P ,

2. the σ-algebra generated by the preimages of the partition elements P := σ({T−nq :

q ∈ P , n ≥ 0}) coincides with the Borel σ-algebra B up to a sets of measure zero2,

3. for each q ∈ P we have Tq ∈ σ(P).

A map with Markov partition is called a Markov map. Given a Markov map T with

partition P there is natural measure of distance on the space Ω which comes from the

notion of the separation time s(x, y) of time two points x, y ∈ Ω which is the smallest

amount of time for two distinct points to lie in different elements of P

s(x, y) := min{n ≥ 0 : T nx, T ny lie in different elements of P}. (1.15)

Then for θ ∈ (0, 1) we may define the distance dθ by putting

dθ(x, y) := θs(x,y). (1.16)

We note that the space (Ω, dθ) is Polish and T is Lipschitz with respect to dθ3.

2This means that for each A ∈ B there exists B ∈P such that m(A4B) = 0 and vice-versa.
3To see that (Ω, dθ) is Polish one quickly verifies that if xn → x in (Ω, dθ) then xn → x in (Ω, d) and
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For a function v : Ω → R and a partition element q ∈ P we denote by Dθ(v)(q) the

least Lipschitz constant of v|q with respect to the distance dθ:

Dθ(v)(q) := sup
x,y∈q

|v(x)− v(y)|
dθ(x, y)

.

We define the semi-norm

|v|θ := sup
q∈P

Dθ(v)(q). (1.17)

If |v|θ <∞ we will say that v is locally θ-Hölder. We note that locally θ-Hölder functions

may be unbounded. Then, following Section 1 of [AD01] we denote by Lθ the space of

bounded locally θ-Hölder functions

Lθ := {v : Ω→ R : ‖v‖θ := ‖v‖L∞(m) + |v|θ <∞}, (1.18)

and remark that (Lθ, ‖ · ‖θ) forms a Banach space. By definition a Markov map is

invertible on each partition element. Denoting by vq : T nq → q the inverse of T n on

q ∈ Pn :=
∨n−1
j=0 T

−jP we let v′q be the Radon-Nikodym derivatives

v′q :=
dm ◦ vq
dm

.

If T is Markov with partition P then we say that the tuple (Ω,B,m, T,P) is Gibbs-

Markov if two additional properties are satisfied

1. big images:

inf
q∈P

m(Tq) > 0,

2. θ-distortion: there exists a θ ∈ (0, 1) and there exists a C > 0 so that for all

moreover one can easily check that sequences which are Cauchy in (Ω, dθ) are also Cauchy in (Ω, d).
To see that T is Lipschitz one simple observes that dθ(Tx, Ty) = θs(Tx,Ty) ≤ θs(x,y)−1.
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n ≥ 0, all q ∈ Pn and almost every x, y ∈ q we have that

∣∣∣∣v′q(x)

v′q(y)
− 1

∣∣∣∣ ≤ Cdθ(x, y).

Uniformly expanding C2 interval maps

Example 1.2.1. A important example of Gibbs-Markov maps are uniformly expanding

C2 Markov interval maps. A non-singular map T : Ω→ Ω of a compact interval Ω ⊂ R

is a C2 Markov interval map if there is a Markov partition P of Ω into sub-intervals for

which T |q is strictly monotone and admits a C2 extension on a neighbourhood of the

closure q of each q ∈ P , and Adler’s condition is satisfied:

sup
x∈Ω

|T ′′(x)|
T ′(x)2

<∞. (1.19)

If T is a C2 Markov interval map that is uniformly expanding :

inf
x∈Ω
|T ′(x)| = λ > 1

then it is shown in [Aar97, Proposition 4.3.3] that there exists some θ ∈ (0, 1) so that

T is Gibbs-Markov with θ-distortion.

1.2.2 Existence of the a.c.i.p. and properties of the transfer op-

erator

Throughout this section we let (Ω,B,m, T, I) be a topologically mixing Gibbs-Markov

map with θ-distortion. We consider the Frobenius-Perron-Ruelle transfer operator L :

L1(m)→ L1(m) defined by the relation

∫
L(f) · g dm =

∫
f · g ◦ T dm, ∀f ∈ L1(m), g ∈ L∞(m), (1.20)
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one checks that L(f) is given by the equation

L(f) =
∞∑
q∈P

1qv
′
qf ◦ vq.

It is straightforward to check from the definition that the operator L is bounded positive

linear operator L1 → L1 with ‖L‖L1 = 1. From [AD01] we know by the Corollary to

Renyi’s property that T preserves an exact probability measure µ = ρ dm with h ∈ L∞

which is bounded from below away from 0. Moreover, from [AD01, Corollary 1.5] and

[AD01, Theorem 1.6] we have that h ∈ Lθ, L ∈ Hom(Lθ, Lθ) and that L|Lθ has a simple

isolated eigenvalue at 1 and a spectral gap.

Definition 1.2.2 (spectral gap). We say that a bounded linear operator T : B → B

acting on a Banach space (B, ‖ · ‖) has a spectral gap if

T = λP +N, (1.21)

where P is a projection onto a 1-dimensional subspace of B, N is a bounded linear

operator with spectral radius ρ(N) < |λ| and NP = PN = 0.

Remark 1.2.3. Let us briefly remark on some consequences of an operator T : B → B

having a spectral gap. Writing T as in equation (1.21) above we note that the fact

that ρ(N) < |λ| and the fact that NP = PN = 0 imply that λ−nT n converges to the

projection P exponentially fast. Indeed, we have that

T n = λnP +Nn, (1.22)

and moreover, employing the spectral radius formula, we have for ε > 0 small enough

and n large enough that ‖Nn‖ = (ρ(N) + ε)n < λn.
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We also note that as the name suggests T having a spectral gap implies that the spec-

trum σ(T ) of T consists of simple isolated eigenvalue at λ with remaining eigenvalues

lying within a disc of radius strictly smaller that |λ|:

σ(T ) = {λ} ∪ A, where ∃γ > 0 such that A ⊂ {z ∈ C : |z| ≤ e−γ|λ|}.

Moreover, one can check that the projection P is the projection onto the eigenspace

associated with λ, in particular T v = λv if and only if v ∈ ImP .

1.2.3 Inducing and invariant measures

Later we shall exploit the properties of Gibbs-Markov maps described above in order to

establish statistical limit theorems. However, the systems for which we wish to establish

these limit theorems are intermittent interval maps that are not Gibbs-Markov. A

common approach to overcome this obstacle is to induce. The main idea is to choose a

reference set, say Y , and for points x ∈ Y define a new system TY : Y → Y , by letting

TY (x) = x′ where x′ is the first point in the orbit of x under our original system that lies

in Y . By inducing one hopes that the new system is easier to study than the original

and that we may gain information about the original system by examining the induced

one. In this section we will introduce this notion formally and briefly discuss some of

the consequences when the induced system preserves an ergodic absolutely continuous

probability measure.

Let T : Ω → Ω be a non-singular transformation of a standard probability space

(Ω,B,m) and let Y ⊂ Ω be of positive measure. Let us suppose that the orbit under

T of almost every x ∈ Ω hits the set Y in the sense that

Ω =
∞⋃
n=1

T−nY mod m.
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In this case we may define the first return time τ : Y → N to Y by setting

τ(x) := min{n ≥ 1 : T n(x) ∈ Y }.

We may then define the induced map TY : Y → Y on Y by setting TY (x) = T τ(x)(x).

We denote by mY := m|Y
m(Y )

the normalised Lebesgue measure restricted to Y and we

assume that TY preserves an ergodic absolutely continuous probability measure which

we denote by µY . Let us now define a new measure µ on Ω by setting

µ(E) :=
∞∑
n=0

µY (T−n(E) ∩ {τ > n}). (1.23)

As T is non-singular by assumption it is clear that µ is absolutely continuous with

respect to m. Since µ(Ω) =
∑

n≥0 µY (τ > n) =
∫
Y
τdµY that the measure µ is finite if

and only if τ is integrable with respect to µY . Regardless of whether or not µ is finite

we see that µ is an invariant measure for T . To see this we calculate that

µ(T−1(E)) =
∑
n≥0

µY (T−(n+1)E ∩ {τ > n})

=
∑
n≥1

µY (T−nE ∩ {τ = n}) +
∑
n≥1

µY (T−nE ∩ {τ > n)).

Examining the first series on the right hand side above and using the fact that ({τ =

n})n≥1 forms a disjoint partition of Y we see that

∑
n≥1

µY (T−n(E) ∩ {τ = n}) =
∑
n≥1

µY (T−1
Y (E ∩ Y ) ∩ {τ = n})

= µY

(⋃
n≥1

T−1
Y (E ∩ Y ) ∩ {τ = n}

)

= µY (T−1
Y (E ∩ Y ))

= µY (E ∩ Y ) = µY (T−0(E) ∩ {τ > 0}),
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and so we can conclude that

µ(T−1(E)) = µ(E),

as required. Proceeding in a similar way to the above one can also show µ is ergodic4.

In summary, we have seen that if the induced systems posses an ergodic absolutely con-

tinuous invariant probability measure and the return time is integrable with respect to

this measure then the measure defined in (1.23) forms an ergodic absolutely continuous

probability measure for the original system.

1.2.4 Intermittent interval maps

In this thesis we will study semi-stable laws for certain intermittent interval maps.

The intermittent maps we consider are all derived from the Pomeau-Manneville (P.M.)

family of maps. The P.M. maps are a one-parameter family of piecewise expanding

maps of the unit interval of the form TPM(x) := x + x1+β mod 1, where β > 0 is a

positive parameter. These maps are named after Pomeau and Manneville who in the

late 1970s first studied numerical approximations of these maps to investigate phenom-

ena of intermittency in certain physical systems, namely the intermittent transition

to turbulence in convective fluids [PM80]. Such maps have also seen applications to

modelling various intermittent phenomena outside of physics, for example one can see

[BHK07, BH07] where P.M. maps are used in the statistical analysis of long memory

processes in financial markets.

We will focus on the Liverani-Saussol-Vaienti (L.S.V.) family of maps and modifications

thereof. The L.S.V. map, first introduced in [LSV99], with parameter β > 0 is the map

4In the sense that invariant sets have zero measure or their complement have zero measure, in this
way ergodicity makes sense regardless of whether the measure is finite or not.
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TLSV : [0, 1]→ [0, 1] given by

TLSV (x) :=


x(1 + 2βxβ) for x ∈ [0, 1/2)

2x− 1 for x ∈ [1/2, 1].

(1.24)

Figure 1.1: The L.S.V. map with parameter β = 2
3
.

We note that the L.S.V. maps are a simplification of the P.M. maps where the second

non-linear branch of TPM is replaced by the the linear branch that appears in (1.24).

This map has been a large subject of interest in dynamical systems in the last two

decades. The map TLSV provides one the simplest examples of a non-uniformly hyper-

bolic dynamical system: the uniform hyperbolicity is violated at a single neutral fixed

point T ′LSV (0) = 1, and away from this fixed point the map is uniformly expanding. A

significant challenge in studying limit theorems for this map lies precisely in the fact

that it is not uniformly expanding.

The L.S.V. map preserves an absolutely continuous invariant probability measure when

β ∈ (0, 1), and when β > 1 there still exists an absolutely continuous invariant measure,

though in this case the measure is infinite. Both the finite and the infinite measure

cases have been of interest in recent years. In the infinite measure case one can see for

example [TZ06, MT12]. In the finite measure case several developments have been made



1.2. LIMIT THEOREMS FOR INTERMITTENT DYNAMICAL SYSTEMS 37

in the study of the statistical properties of TLSV (see for example [LSV99, You99, Sar02,

Gou04b, BT16] and the references therein), here we highlight some recent results that

are of particular interest to us as they relate to the long-term distributional behaviour

of scaled and centred Birkoff sums of regular observables.

In [You99], amongst many other things, estimates on the decay of correlations are used

to give a central limit theorem for Hölder observables u under the dynamics of the L.S.V.

map in the case that β < 1/2, as in the case that β < 1/2 the correlations are summable.

In [Gou04a] Gouëzel gave a complete picture of the limiting behaviour appropriately

scaled and centred Birkoff sums Zn := 1
An

(
∑n−1

k=1 u◦T j−Bn) for Hölder observables u. If

β = 1/2 then a central limit theorem still holds, but with a non-standard normalisation

(An =
√
n log(n)). If β ∈ (1/2, 1) Gouëzel showed that Zn will converge5 to a Gaussian

random variable if u(0) = 0, and will converge to a stable random variable if u(0) 6= 0.

This result, and the techniques used to establish it, form the principal foundation for the

work presented in this thesis; in the following sub-section we will discuss result in further

detail. Stronger results in the same direction are established in [DM09, MZ15] where

a weak invariance principle is given. Roughly speaking the weak invariance principle

ensures that whenever Zn converges to a Gaussian random variable the process Z̃n(t) :=

Zbntc will converge weakly to a Brownian motion, and whenever Zn converges to a stable

random variable the process Z̃n(t) will converge weakly to a stable Lévy process. More

recently in [CDKM20] in the situations where Z̃n(t) converges weakly to a Brownian

motion an almost sure invariance principle has been established: Z̃n = Wn + rn almost

surely where Wn is a Brownian motion, and rn is an error or rate of convergence (this

rate is further quantified in [CDKM20]).

Stable laws for the L.S.V. map

In this section we examine in further detail some of the results in [Gou04a] on stable

laws for the L.S.V. map. As we shall see later, the L.S.V. map preserves a measure µ

5Under some mild additional assumptions on the Hölder exponent of u
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that is absolutely continuous with respect to Lebesgue. If β ∈ (0, 1) then µ is finite,

and if β > 1 then µ is only σ-finite with µ([0, 1]) = +∞. In [Gou04a, Theorem 1.3]

Gouëzel establishes the following result:

Let β ∈ (1/2, 1) and let T be the corresponding L.S.V. map. Suppose that u : [0, 1]→ R

is Hölder with
∫
udm = 0. Then we have two cases

• If u(0) 6= 0, then we have convergence to a stable law

∑n−1
j=0 u ◦ T j

nβ
d−→

n→∞
V1/β,

where V1/β is a stable random variable of index 1/β.

• If u(0) = 0, and the Hölder exponent ν of u such that ν > β − 1/2 then we have

a central limit theorem

∑n−1
j=0 u ◦ T j√

n

d−→
n→∞

V ∼ N (0, σ2),

for some σ2 ≥ 0.

To understand the dichotomy present in the above result let us describe very briefly

some aspects of its proof.

As the map T is not uniformly expanding it is somewhat difficult to study the statistical

properties of T directly. Inducing on the set Y := [1/2, 1] one can check that the

resulting map TY is a uniformly expanding C2 Markov interval map with respect to the

partition (Jn := {τ = n}) and thus (see Example 1.2.1) is Gibbs-Markov.

One can calculate the tail distribution of the return time using the following procedure.

Consider the sequence x0 = 1, and xn+1 = T−1(xn)∩[0, 1/2]. If we then set I0 := [1/2, 1],

In := [xn+1, xn) then T maps In+1 bijectively onto In for each n ≥ 1 and T (I1) = Y \{1}

and we note that the map T is Markov with respect to the partition (In)n≥0. Letting
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J1 :=
[

1
2
x1 + 1

2
, 1

2
x0 + 1

2

]
and Jn :=

[
1
2
xn + 1

2
, 1

2
xn−1 + 1

2

)
we see that T (Jn) = In−1, and

that {τ = n} = Jn. We may then find the tail distribution of the return time in terms

of the sequence xn by calculating

mY (τ > n) =
∑
k=n+1

mY (Jk) = xn.

The asymptotics of the sequence xn may be estimated by using the definition of the

map

1

xβn
=

1

xβn+1

(
1 + 2βxβn+1

)−β
=

1

xβn+1

(
1− β2βxβn+1 +O(x2β

n+1))
)

=
1

xβn+1

− β2β + o(1),

Summing we then find that

1

xβn
= 1 + β2βn+ o(n),

and so

=⇒ xn =
1

2
(βn)−

1
β (1 + o(1)).

In particular one finds that xn is regularly varying with index α := 1
β
. By considering

higher order terms in the expansion above one finds that

xn =
1

2
ααn−α(1 +O((log n)/n), (1.25)

see for example [Hol05], or [Ter16] for even higher order terms. As the induced map is

Gibbs-Markov we know that the density h lies in Lθ, and so

µY (τ > n) =

∫ 1
2
xn+ 1

2

1
2

hdmY = h

(
1

2

)
xn(1 + o(1)). (1.26)
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From (1.26) and our comments in Section 1.2.3 that the measure µ defined by (1.23)

gives and invariant measure for T . Moreover, we note that as τ is only integrable with

respect to µY if α > 1 we see that µ is an a.c.i.p. for T if and only if β ∈ (0, 1).

We can begin to see where the two cases in the Gouëzel’s result above emerge when

consider the tail distribution of the induced observable uY :=
∑τ−1

j=0 u ◦ T k for a Hölder

function u : [0, 1] → R. Gouëzel shows that if u(0) = 0 and the Hölder exponent ν

of u is such that ν > β − 1/2 then u ∈ L2(µY ), which is why a central limit theorem

appears in the second case in [Gou04a, Theorem 1.3] (see [Gou04a, Theorem 1.1] for

why central limit theorems appear when the induced observable is in L2 in more general

settings). On the other hand if u(0) 6= 0 Gouëzel shows that

µY (uY ≥ x) = CµY (τ ≥ x)(1 + o(1)). (1.27)

Note that the sequence (uY ◦ T n)n≥1 is identically distributed but not independent.

However, if we imagined that the sequence (uY ◦ T nY )n≥0 was i.i.d. we would know from

the previous sections that we may obtain a stable law as from (1.25) and (1.27) we

know that the tail distribution of uY is regularly varying with index −α.

In what follows we are interested in systems similar to the L.S.V. map where this regular

variation is not present in the tail distribution of the observable. We will either work

with a different intermittent map whose return time no longer has a regularly varying

tail, or we will consider observables for the L.S.V. that do not inherit the distribution of

the return time. In either scenario we will see that the induced observable will have tail

distribution of the form f(x)M(x) where f is regularly varying and M is oscillatory.

Let us summarise briefly the key steps involved in obtaining a stable law for the L.S.V.

maps, one can find a detailed survey of the approach outlined below in [Gou15].

1. Induce on the set Y and show that the induced map is Gibbs-Markov, and whence

preserves an a.c.i.p. µY and the transfer operator of the induced map will have
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good functional analytic properties on a Banach space Lθ

2. For the observable which we want to prove the limit theorem for we study the

behaviour of the tail distribution of induced observable, in particular we show

that tail distribution is in the domain of attraction of a stable law.

3. We then obtain a limit theorem for the induced system using the spectral method

(also referred to as the Nagaev-Guivarc’h, or Aaronson-Denker method) see [AD01]

or the aforementioned review [Gou15].

4. Pull back the limit theorem using techniques due to Melbourne and Török [MT04]

(see also [Gou08] for a simple application of this method)

In what follows we will adapt this general regime in order to prove the limit theorems

which we will now present.
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Chapter 2

Results

We will now give precise statements of our main results. Throughout this chapter we

let p : R → R be a non-constant periodic Lipschitz function with period 1
α

log c where

α ∈ (1, 2) and c > 1, and we assume further that the second derivative of p is bounded.

We let a > 0 be constant and let ε > 0 be a small parameter. We define the function

M : (0,∞)→ (0,∞) by setting

M(x) := a(1 + εp(log(x))), (2.1)

and note that M is log-periodic with period c1/α. We let ε > 0 be small enough so that

M is bounded away from 0. As p is Lipschitz we know that p and p′ are bounded, thus,

decreasing ε if required, we know that the function x 7→M(x)/xα is strictly decreasing.

In particular we note that the function M satisfies A1 . For example we could take

M(x) = a

[
1 + ε sin

(
2π

α

log x

log c

)]
. (2.2)

43
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Figure 2.1: Plot of M as given in (2.2) with c = 2 and α = 3/2.

2.1 Semi-stable limit theorems for a non-i.i.d. Markov

Chain

We now turn to our first main result: a semi-stable law for a non-i.i.d. Markov chain.

The Markov chain that we study is formed by taking an intermittent interval interval

map T : [0, 1] → [0, 1] together with a “generic” Hölder observable u : [0, 1] → R and

then considering the sequence (u ◦ T n)n≥0, here by “generic” we mean u(0) 6= 0. The

map T is to be defined piecewise on intervals (In)n≥0 forming a partition of [0, 1]. In

particular we will stipulate that T =
∑

n≥0 1Ingn where for n ≥ 1, gn maps In smoothly

and bijectively onto In−1 and T0 maps I0 smoothly and bijectively onto [0, 1].

We define the sequence (xn)n≥0 by setting

x0 := 1, xn := n−αM(n) for n ≥ 1 (2.3)

and choose the constant a in the definition of M so that x1 = 1
2
, i.e. we set a :=

(2(1 + εp(0)))−1. We then define the intervals (In)n≥0 by setting

I0 := [1/2, 1], In := [xn+1, xn) for n ≥ 1,

and define

∆n := xn − xn+1, ρn :=
∆n−1

∆n

.
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We will take ε > 0 small enough in the definition ofM so that ∆n is strictly decreasing1

and whence

ρn > 1. (2.4)

We define the map Texp : [0, 1]→ [0, 1] by setting

Texp(x) :=


0, if x = 0

gn(x), x ∈ [xn+1, xn] n ≥ 2

2x− 1, if x ∈ [1/2, 1],

(2.5)

where gn : In → In−1 is given by

gn(x) := 1 + xn + (1− an)ρn(x− xn+1)− exp

{
log(1− an∆n−1)

x− xn+1

∆n

}
, (2.6)

and where (an) ⊂ (0, 1) is any strictly decreasing sequence converging to zero so that

for each n ∈ N we have

a2
n <

(
1− 1

ρn

)
∆n−1. (2.7)

The map Texp|[0,1/2) is continuous and piecewise C∞. One can readily verify by our

choice of (an) that T ′(x) > 1 for each x 6= 0 (see (4.1)). Moreover we have that T is

differentiable from the right at 0 with T ′(0) = 1. To see this, suppose that yn → 0 with

yn > 0 and let the sequence jn be such that yn ∈ Ijn for each n. We then obtain the

bounds

1 =
xjn
xjn
≤ Texp(yn)− T (0)

yn − 0
≤ xjn−1

xjn+1

=
xjn−1

xjn

xjn
xjn+1

.

As M is assumed to be continuous and as n−αM(n) is strictly decreasing we can use

Proposition 4.4.1 in the Appendix in order to conclude that the product on the right

of the above converges to 1.

1One can check this is possible by taking the derivative of the map x 7→ x−αaM(x) − (x −
1)−αaM(x− 1) and checking the derivative is negative for ε > 0 sufficiently small.
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We later show that Texp has an a.c.i.p. which here we denote by µ. We fix a Hölder

continuous observable with u(0) 6= 0 and set

Fn(x) := µ

(∑n−1
j=0 u ◦ T jexp −

∫
udµ

n1/α
≤ x

)
. (2.8)

We let G be the distribution function of a semi-stable random variable whose left and

right Lévy functions, L and R are given by

L(x) ≡ 0, R(x) = −M(x)

xα
,

in the case that u(0) > 0, and

L(x) =
M(x)

|x|α
, R(x) ≡ 0,

if u(0) < 0. We let kn = bcnc, An = n1/α where c is as in the definition of the function

M . For λ ∈ [1, c) we define the distribution function Gλ in terms of G as in (1.13) and

define the function γ in terms of (kn)n≥1 as in (1.14). The following theorem states

that the observable u will satisfy a semi-stable law under the dynamics of Texp, with

Fkn(x) → G(x), and that the distribution functions (Fn)n≥1 will merge to the family

(Gλ)λ∈[1,c̃).

Theorem A. Let α ∈ (1, 2) and let c > 1. Let (an) be any strictly sequence in (0, 1)

that satisfies (2.7) and let ε > 0 in the definition of M be small enough so that (2.4)

holds. Then, for any Hölder observable u : [0, 1] → R with u(0) 6= 0 the distribution

functions (Fn)n≥1 given in (2.8) merge to the family (Gλ)λ∈[1,c) in the following sense:

lim
n→∞

sup
x∈R
|Fn(x)−Gγ(1/n)(x)| = 0. (2.9)

In particular, whenever (k′n) is a strictly increasing sequence of positive integers with
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γ(an)
cir−→

n→∞
λ ∈ [1, c), we know

∑k′n−1
j=0 v ◦ T jw − k′n

∫
vdµ

Ak′n

d−→
n→∞

Vλ, (2.10)

where Vλ is a semi-stable random variable with distribution function Gλ.

We will see when we turn to the proof of Theorem A that the return time τ has tail

distribution

µY (τ > n) = Cxn(1 + o(1)),

indeed, this is precisely how the map is constructed. The fact that in this case we know

the exact tail behaviour of the return time means that we are able to identify precisely

the limiting distributions Gλ in Theorem A. As we explain at the beginning of Part II,

knowing precisely the tail behaviour of the return will greatly simplify the proof of this

theorem. In this situation we have mostly just to check that the scheme presented in

[Gou15] and outlined in Section 1.2.4 may be applied in this setting. The main obstacle

in applying the general scheme presented at the end of Section 1.2.4 is that the argument

of Melbourne and Török for pulling-back the limit law from the induced setting (see

[MT04] and [Gou08]) does not hold when there is only subsequential convergence in the

induced system. In Section 3.1 we rectify this issue and present modification of pull-

back method of Melbourne and Török which allows for subsequential limit theorems

to be pulled back from the induced system. This somewhat artificial construction of

an intermittent interval map provides our first example of semi-stable laws existing

for a non-i.i.d. system and provides a relatively simple setting in which to check that

the general method of establishing limit theorems outlined Section 1.2.4 can be indeed

modified to prove semi-stable limit theorems in this context. Our following theorem

however will be a somewhat more “natural” perturbation of the L.S.V. map where a

semi-stable law holds and the proof of this fact is significantly more involved. Before

presenting our next result let us briefly make some comments on why the map presented
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here is non-i.i.d..

If, in the place of the definition given in (2.6), we had defined gn : In → In−1 to be the

affine map that takes In bijectively to In−1 we have obtained the same limit theorem

for the resulting map Texp. However, the Markov chain we would be studying would be

asymptotically i.i.d.. Let us briefly explain why this is the case in order to demonstrate

why the map we have described above leads to a non-i.i.d. Markov chain.

Let us assume that T : [0, 1] → [0, 1] is an interval map that maps each interval In+1

bijectively and smoothly onto In−1. Then T is Markov with respect to In. Let us

suppose for sake of simplicity that T |I0(x) = 2x− 1 as we have with Texp above. Then,

inducing on the interval Y := I0 we have that the induced map TY := T τ , is Markov

with respect to the partition formed by the intervals Jn := [1
2
xn + 1

2
], 1

2
xn−1 + 1

2
), and

consists of countably many full branches TY (Jn) = [0, 1].

If we suppose further that T |In is linear then so is TY |Jn and one readily verifies

that TY preserves the Lebesgue measure mY . For y0, . . . , yn−1 ∈ N let us denote by

[y0, . . . , yn−1] an n-cylinder so that x ∈ [y0, . . . , yn−1] if and only if T kY (x) ∈ Jyk for each

k = 0, 1, . . . , n− 1. We note that as TY is linear on each Jn the Lebesgue measure acts

in the following way on cylinders

mY [y0, . . . , yn−1] = mY

(
n−1⋂
j=0

T−jY Jyj

)
=

n−1∏
j=0

mY (Jyj).

Now we can see that the sequence (T jY )j≥1 is asymptotically independent in the following

sense. First let us take two cylinders C1 := [y0, y2, . . . , yj−1], C2 := [z0, z1, . . . , zk−1] ⊂ Y

of length j ≥ 1 and k ≥ 1 respectively. Now letting n be arbitrary we see that if m is
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large enough we have that

mY ({T nY ∈ C1} ∩ {T n+m
Y ∈ C2})

= mY

 ⋃
ξ0,...,ξn−1

[ξ0, . . . , ξn−1, y0, . . . , yj−1]

 ∩
 ⋃
ξ0,...,ξn+m−1

[z0, . . . , zk−1]


= mY

 ⋃
ξ0,...,ξn+m

[ξ0, . . . , ξn−1, y0, . . . , yj−1, ξn+j+1, . . . , ξn+m−1, z0, . . . , zk−1]


= mY (C1)mY (C2).

The key property that allows the above to occur is that

mY (Jn ∩ T−1
Y Jk) = mY (Jn)mY (Jk),

for each n and k. If the branches of the induced map TY are non-linear then the above

phenomenon does not usually occur. Imagine that for a given n and k the interval Jk

is contained in the in the left half [0, 1] and suppose that the slope of TY |Jn is steeper

on the left hand side of Jn than the right. Then

mY (Jn ∩ T−1
Y Jk) < mY (Jn)mY (Jk).

In general when TY |Jn is non-linear the Lebesgue measure is not invariant but, under

sufficient distortion conditions (as discussed in Section 1.2.2), there is an invariant

measure µ equivalent to Lebesgue and there is a distortion constant C ≥ 1 such that

1/C ≤ dµ
dmY

≤ C, and 1/C ≤ µ(Jn)µ(Jk)

µ(Jn∩T−1
Y (Jk))

≤ C (see [Aar97, 4.3.1]). The condition

µ(Jn ∩ T−1
Y (Jk)) = µ(Jn)µ(Jk) is then only verified if C = 1. If the sequence (T jY )j≥1

is asymptotically i.i.d., then we do not need the machinery introduced in the following

chapters in order to establish a semi-stable law. Though the asymptotically i.i.d. case

is slightly more involved than the i.i.d. scenario it is possible to apply the results of

Csörgö and Megyesi in [CM02] almost directly.
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2.2 Semi-stable laws for a wobbly intermittent map

In this section we present our second main result which is joint work with M. Holland

and D. Terhesiu (see [CHT19]). The map we consider in this section is alteration of

the L.S.V. where the constant 2β is replaced with the oscillatory function M .

Let α ∈ (1, 2) and define the map Tw : [0, 1]→ [0, 1] by

Tw(x) :=


0 for x = 0

x(1 +M(x)x1/α) for x ∈ [0, 1/2),

2x− 1 for x ∈ [1/2, 1],

(2.11)

where M is the logarithmically periodic function with period c1/α defined in (2.1) and

the constant a appearing in (2.1) is chosen to be such that 1
2
(1 +M(1

2
)1

2

1/α
) = 1.

Figure 2.2: Plot of the map Tw as defined in (2.11) withM given by (2.2) and α = 3/2,
c = 2 and ε = 1/10.

Let us now fix c̃ := c1/α, kn = c̃n, `(y) := c̃y/α

bc̃y/αc , An = n1/α`(n).

We fix a Hölder observable u : [0, 1]→ R with u(0) 6= 0 and define

Fn(x) := µ

(∑n−1
j=0 u ◦ T jw − n

∫
udµ

An
≤ x

)
. (2.12)
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We then define function γ in terms of the sequence (kn)n≥1 as in (1.14). The following

theorem then states that the observable u will satisfy a semi-stable law under the

dynamics of Tw along the sequence (kn) and that, as in Theorem 1.1.11, the distribution

functions (Fn) will merge to a family of semi-stable distribution functions (Gλ)λ∈[1,c̃).

Theorem B. Let α ∈ (1, 2) and c > 1. Then for all ε > 0 sufficiently small there exists

a semi-stable distribution G of index α and period c̃ so that for any Hölder observable

u : [0, 1]→ R with u(0) 6= 0 the distribution functions (Fn), defined in (2.12), merge to

the family (Gλ)λ∈[1,c̃), defined in terms of G as in (1.13), in the sense that:

lim
n→∞

sup
x∈R
|Fn(x)−Gγ(1/n)(x)| = 0. (2.13)

In particular, whenever (k′n)n≥1 is a strictly increasing sequence of positive integers with

γ(k′n)
cir−→

n→∞
λ, we have ∑k′n−1

j=0 u ◦ T jw − k′n
∫
udµ

Ak′n

d−→
n→∞

Vλ, (2.14)

where Vλ is a semi-stable random variable with distribution function Gλ.

The map Tw is in many senses a more natural modification of the L.S.V. map than

the piecewise map Texp defined previously. Here we are simply replacing the constant

coefficient of x1+β in the L.S.V. map with an oscillatory function. Unlike in the situation

of Theorem A here we are unable to determine precisely the tail behaviour of the return

time. We can show that there exists a semi-stable distribution G (of index α and period

c̃) and a F ∈ Dgp(G) so that µ(τ > n) = (1−F (n))(1 + o(1)), but we cannot determine

precisely what this F is. This is why we only have an existence result in Theorem B

above and is a consequence of the fact that in this situation it is far more involved to

study the behaviour of µ(τ > n) (see Section 4.2 for details), in particular we can no

longer just apply methods like those given in [Hol05], or [Ter16].

Theorem B is directly comparable to [Gou04a, Theorem 1.3]. We see that by altering



52 CHAPTER 2. RESULTS

the L.S.V. map in this way, that the stable laws of Gouëzel fail to hold and that we only

have subsequential convergence in distribution for generic Hölder observables. Though

not explicitly mentioned in the result above, in the situations of both Theorem A and

B a central limit theorem will hold in the case that u(0) = 0, provided that the Hölder

exponent ν of u is such that ν > β − 1/2. This follows from the fact that when

we induce the induced observables will be square integrable (see Lemma 3.0.3) when

ν > β − 1/2. We also have that, like in the case of the L.S.V. map, a central limit for

Hölder observables will hold for β ∈ (0, 1/2), regardless of the Hölder exponent (again

this is because the induced observable will always be square integrable). So for the

maps Texp and Tw we can give a complete picture of the distributional convergence of

scaled and centred Birkoff sums of Hölder observables for β ∈ (0, 1/2) ∪ (1/2, 1). We

cannot however draw any conclusion when β = 1
2
, nor can we draw any conclusion when

β ≥ 1. However, for the case β > 1, where the invariant measure is infinite, piecewise

linear and piecewise quadratic maps similar to Texp have been studied in [KT18] where

subsequential limit theorems similar to a Darling-Kac theorem have been established.

2.3 Wobbly observables for the L.S.V. map

Our next result establishes a semi-stable law for certain logarithmically periodic ob-

servables under the dynamics of the L.S.V. map. Throughout this section we let TLSV :

[0, 1]→ [0, 1] be the L.S.V. map as defined (1.24) with parameter β := 1
α
∈ (1/2, 1) and

denote by µ the a.c.i.p. for T (cf. section 1.2.4). We saw in section 1.2.4 that Hölder

observables that are non-zero at the neutral fixed point satisfy a stable law. The reason

that stable laws appear for such observables is the fact when we induce the induced

observable will inherit the distribution of the return time, which we know is regularly

varying (see Lemma 3.0.3 for a version of Gouëzel’s argument). In order to stop this

phenomenon from occurring we will consider observables that oscillate faster the closer

we get the neutral fixed point.
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Let u : (0, 1]→ R be given by u(x) = M(x) = a(1 + εp(log x)) with a > 0 an arbitrary

constant, ε > 0 a small parameter and p a periodic non-constant Lipschitz function with

period 1
α

log(c). This observable, as we show in Section 4.3.1, is not Hölder continuous.

Define

Fn(x) := µ

(∑n−1
j=0 u ◦ T

j
LSV −

∫
udµ

n1/α
≤ x

)
. (2.15)

We let c̃ = c1/α kn = bc̃nc, An = n1/α and define the function γ in terms of (kn)n≥1 as

in (1.14).

Our next result states that any such log-periodic observable u will satisfy a semi-stable

law along the subsequence (kn) under the dynamics of TLSV and that the distribution

functions (Fn)n≥1 will merge a family of distribution functions (Gλ)λ∈[1,c̃)

Theorem C. Let α ∈ (1, 2) and let c > 1. Let u : (0, 1] → R be a log-periodic

observable with period c1/α of the form u(x) = M(x), where M is as in (2.1). Then

there exists a distribution function G of index α and period c̃ such that the distribution

functions (Fn)n≥1, defined in (2.15) merge to the family (Gλ)λ∈[1,c̃), defined in terms of

G as in (1.13), in the sense that:

lim
n→∞

sup
x∈R
|Fn(x)−Gγ(1/n)(x)| = 0. (2.16)

In particular, if (k′n)n≥1 is any strictly increasing of integers with γ(k′n)
cir−→

n→∞
λ, then

∑k′n−1
j=0 v ◦ T jLSV − k′n

∫
vdµ

Ak′n

d−→
n→∞

Vλ, (2.17)

where Vλ is a semi-stable random variable with distribution function Gλ.

A remark on semi-stable laws for the doubling map

Theorem C shows tells us that if take a log-periodic observable of the form (2.1) then

we can obtain a semi-stable under the dynamics of the L.S.V. map. Let us now remark
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on a family of observables for which one can obtain a semi-stable law for a uniformly

expanding map. Let T : [0, 1]→ [0, 1] be the doubling map

T (x) = 2x mod 1,

and let us recall that T is a Gibbs-Markov map with a.c.i.p. given by the Lebesgue

measure m.

In [Gou08] it is shown that observables of the form u(x) = x−1/α for α ∈ (1, 2) we have

that ∑n−1
j=0 u ◦ T j(x)− n

∫
udm

n1/α
,

converges in distribution to an α stable law. We now comment on how this result

changes in the case that an additional oscillatory factor is introduced to the observable

u.

Let us fix α ∈ (1, 2) and let M : (0,∞)→ R be

• bounded away from 0 and ∞,

• continuous,

• log-periodic of period c: M(cx) = M(x), note the difference with condition A2

• so that x−1/αM(x) is strictly decreasing.

We then consider observables of the form

u(x) = x−1/αM(x).

We define kn := bcnc and put An = n1/α.

In this setting we can check directly that the tail distribution of u satisfies A2 with
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respect to the (kn) and (An), indeed

m(u > x) = inf{y : u(y) > x} = u−1(x).

By Theorem 3 and Corollary 3 in [Meg00] we know that if we put Q(1− x) = u(x) the

Q is the inverse of a distribution function F which lies in domain of partial geometric

attraction of a semi-stable distribution of index α and period c (i.e. F must satisfies

A2). Then one can use a slight modification of the techniques we present in Chapter 3

in order to establish a semi-stable for u under the dynamics of the doubling map. In

the case of the doubling map however it is not necessary to use the methods that are to

be presented in Chapter 3, as when we induce we form an asymptotically i.i.d. Markov

chain which can be studied using i.i.d. techniques alone.
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Introduction and outline of the proofs

Here we give the proofs to the results presented in Chapter 2. As mentioned before

we will adapt the regime presented at the end of Section 1.2.4 to establish the limit

theorems given in Chapter 2. The main steps are as follows

1. We induce on the set Y := [1/2, 1] and show that the induced map TY is a C2

Markov interval map. Whence the induced map will have an a.c.i.p. µY and the

Ruelle-Perron-Frobenius operator of TY will have a spectral gap on the space

Lθ for some θ ∈ (0, 1). In the case of Theorem C this is already known (see

[Gou04a]), and for Theorem A and Theorem B we show that Adler’s distortion

condition holds for the maps Texp and Tw.

2. For the observable for which we want to prove the limit theorem we study the

behaviour of the tail distribution of induced observable, in particular we show

that there is a semi-stable law G and a distribution function F ∈ Dgp(G) so

that mY (uY > x) = 1 − F (x). For Theorem A and Theorem B this amounts

to carefully studying the behaviour of the return time τ for the maps Texp and

Tw. As we mentioned before, for Texp the tail behaviour of τ follows almost

immediately from the construction of Texp. On the other hand, when studying

Tw we need to work much harder to understand the behaviour of τ . In the

case of Tw we first employ arguments similar to those presented in [Hol05] to

understand the leading asymptotics of the sequence (xn) satisfying the relation

T (xn+1) = xn (see Proposition 4.2.1 and [CHT19, Proposition 4.1] for details),

then we have to develop new methods to show that nαxn is asymptotically log-

periodic (see Proposition 4.2.2 and [CHT19, Proposition 4.3 and Lemma 4.4]).

Once the behaviour of the return time is established we can employ a version

of the argument given in [Gou04a, Proof of Theorem 1.1] (see Lemma 3.0.3) to

conclude the desired behaviour of uY . For Theorem C we have to examine the tail

behaviour of uY directly. We will show that there is a lot of similarity between
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µ(uY > x) and the tail behaviour of the return time of Tw and we are then able to

use techniques similar to those developed in Proposition 4.2.2 in order to examine

µ(uY > x).

3. We then obtain a limit theorem for the induced system using the spectral method

of Aaronson-Denker (see Sections 3.0.1 and 3.0.2 and [AD01]).

4. Pull back the limit theorem from the induced system using an adaptation of the

arguments given in [Gou08], namely we will adapt the proof of [Gou08, Theorem

4.6] so that distributional convergence along subsequences may be pulled back.

5. Finally we strengthen the distributional convergence in the previous step to a

merging using techniques developed from [CM02]

In Chapter 3 we will collect the common aspects of the proofs of each of the Theorems

given in Chapter 2. In particular, we will give a set of assumptions (A4 and A5)

under which we can establish merging to a semi-stable law using steps (3)-(5) of the

outline above. The remaining sections are then devoted to establishing that the systems

described in Chapter 2 satisfy A4 and A5 which we will do using step (1)-(2) of the

outline above.



Chapter 3

Semi-stable laws for intermittent

interval maps

Here we present the common elements of the proofs of the results presented in Chapter

2. In this chapter we will consider an interval map T : [0, 1] → [0, 1] with a neutral

fixed point that satisfies the following assumptions:

A4 1. T : [0, 1]→ [0, 1] is given by

T (x) :=


g(x) for x ∈ [0, 1/2),

2x− 1 for x ∈ [1/2, 1],

where

(a) g is continuous1, strictly increasing, injective and piecewise C1+ε

(b) g(0) = 0

1This assumption is not strictly necessary , see [CHT19] for a case when g has countably many
points of discontinuity. Although the approach in essence remains the same if g is discontinuous
the arguments are much more clear if we make this simplifying assumption. The key difference for a
discontinuous g as studied in [CHT19] is that one has to induce more than once to form a Gibbs-Markov
map.
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2. Letting Y = [1/2, 1] and letting τ : Y → N be given by τ(x) := min{n ≥ 1 :

T nx ∈ Y } we assume:

(a) The induced map TY := T τ on Y is a uniformly expanding Gibbs-Markov

map with θ-distortion with respect to the partition (Jn := {x ∈ Y :

τ(x) = n})n≥1, and whence preserves an absolutely continuous invariant

probability measure which we shall denote by µY .

(b) There exists a semi-stable distribution G̃ of index α ∈ (1, 2) and period

c̃ ≥ 1, a sequence (k̃n)n≥1 with limn→∞
k̃n+1

k̃n
= c̃, a slowly varying func-

tion ˜̀ : R→ R, and distribution function F̃ ∈ Dgp(G̃, k̃n, Ãn) such that

mY (τ > n) = 1− F̃ (n), where Ãn := n1/α ˜̀(n), and mY := m|Y
m(Y )

.

From A4 and Proposition 4.7.1 we know that τ is integrable, and so, following our

remarks in Section 1.2.3, we know that T has an ergodic a.c.i.p. µ which as defined in

equation (1.23). We define the sequence (xn)≥1 by setting

x0 = 1, x1 = 1/2, xn = g−n(1/2) for n ≥ 2. (3.1)

We note that as we have assumed g to be continuous and strictly increasing the sequence

(xn)n≥0 is well-defined, strictly decreasing and limn→∞ xn = 0. We define the intervals

In and Jn by setting:

I0 :=

[
1

2
, 1

]
, In := [xn+1, xn) for n ≥ 1, (3.2)

J1 :=

[
3

4
, 1

]
, Jn :=

[
1

2
xn +

1

2
,
1

2
xn−1 +

1

2

)
for n ≥ 2, (3.3)

and we note that T (In) = In−1, and T (Jn) = In−1. Moreover the map T is Markov

for the partition {In}n≥0, and the dynamics of T can be represented by the diagram in

Figure 3.1.

We see that the sets Jn are precisely the subsets of Y which will first return to Y under
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Figure 3.1: Diagram showing the symbolic dynamics of the the map T under the
assumption A4.

n iterations of T :

{τ = n} = Jn.

Moreover, as we saw in Section 1.2.4, the tail distribution of the τ is given by the xn:

mY (τ > n) =
∞∑

k=n+1

mY (Jk) = xn, (3.4)

and there is a constant Cτ such that

µY (τ > n) = Cτxn(1 + o(1)). (3.5)

In what follows we let s : Y ×Y → N denote the separation time under TY (see equation

(1.15)). We extend s to all of [0, 1]× [0, 1]: if x, y lie in the same element of the partition

{In}n≥1 we set

s(x, y) := s(x′, y′) + 1,

where x′, y′ ∈ [0, 1] are the first returns of x and y to Y respectively, otherwise we set

s(x, y) = 0.

Remark 3.0.1. We note that if T is the L.S.V. map (see (1.24)) with parameter β ∈

(1/2, 1) then T satisfies our assumption A4. As mentioned in Section 1.2.4 we know

that in the case of the L.S.V. map the map n 7→ mY (τ > n)) = xn is regularly varying

with index −α = − 1
β
, and so we know (see Theorem 1.1.7) that τ will satisfy A4 with

G̃ being a stable distribution , c̃ = 1 and k̃n = n. In Sections 4.1 and 4.2 we will
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show that the maps defined in Sections 2.1 and 4.2 respectively will also satisfy A4 by

studying the asymptotic behaviour of the sequence xn.

We will show that observables v : Y → R will satisfy a semi-stable law under the

dynamics of the induced map if v has the following properties:

A5 1. There exists δ ∈ (0, 1) such that

∞∑
n=1

Dθv(Jn)δmY (Jn) <∞, (3.6)

and
∞∑
n=1

‖v|Jn‖δ∞mY (Jn) <∞. (3.7)

2. There exists a semi-stable distribution G of index α and period c ≥ 1, a

sequence (kn)n≥1 with limn→∞
kn+1

kn
= c, a slowly varying function ` : R →

R, and distribution function F ∈ Dgp(G, kn, An) such that µY (v > x) =

1− F (x), where An := n1/α`(n).

Remark 3.0.2. We note that the return time τ : Y → N will satisfy A5. It is clear

from A4 and (3.5) that τ will satisfy A5.2. As τ is constant on each Jn we have that

Dθτ(Jn) = 0, which yields (3.6). Also, as choosing δ ∈ (0, 1) such that δ − α < −1

we see that
∑∞

n=1 ‖τ |Jn‖δ∞mY (τ = n) =
∑∞

n=1 n
δ(mY (τ > n − 1) − mY (τ > n)) =∑∞

n=1O(n−α+δ`(n)) is finite2, and so (3.7) holds. It is also clear from (3.4) and (3.5)

that A5.2 holds.

In the next lemma we will show that Hölder continuous observables u : [0, 1]→ R that

2This comes from the general fact that if a function f : R → R is regularly varying index p < −1,
so that f(x) = xpL(x) for some slowly varying function L : R→ R, we have that∫ ∞

x

f(t)dt = O(xp+1L(x)),

for each x > 0 (see Proposition 4.7.1).
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are non-zero at the neutral fixed point will induce to give to observables uY on Y which

satisfy A5.

Lemma 3.0.3. Assume the set up of A4. Let u : [0, 1] → R be Hölder continuous.

Then there exists a δ ∈ (0, 1) so that Equations (3.6) and (3.7) hold for uY , and we

have the following two cases.

1. If u(0) = 0 and the Hölder exponent ν of u is such that ν > 1
α
− 1

2
then uY ∈

L2(µY ).

2. If u(0) 6= 0 then uY satisfies A5. Moreover, if u(0) > 0 there exists a C > 0 such

that

µY (uY > x) = CuµY (τ > x)(1 + o(1)),

µY (uY < −x) = o(x−α),

or, if u(0) < 0

µY (uY < −x) = CuµY (τ > x)(1 + o(1)),

µY (uY > x) = o(x−α).

The below proof is taken from [Gou04a] with only small modifications to generalise to

the present setting.

Proof. As the induced map TY is uniformly expanding we then have that for each

x, y ∈ [0, 1], |x − y| < Cλ−s(x,y) where λ = inf T ′Y (x) > 1. Then as u is Hölder with

some exponent ν ∈ (0, 1] we obtain |u(x) − u(y)| ≤ Cθ
s(x,y)
0 where θ0 = λ−ν . For
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x, y ∈ Jn we know that s(T jx, T jy) = s(x, y) and thus the induced observable satisfies

|uY (x)− uY (y)| =

∣∣∣∣∣
n−1∑
k=0

u ◦ T k(x)− u ◦ T k(y)

∣∣∣∣∣ ≤ Cndθ0(x, y),

yielding Dθ0uY (Jn) ≤ Cn. Also, as u is Hölder, u is bounded and so

|u|Jn(x)| ≤ Cn.

Thus, in order to show that u satisfies (3.6) and (3.7) it is enough to find a δ ∈ (0, 1)

so that
∞∑
n=1

nδmY (Jn) <∞.

Letting δ ∈ (0, 1) be such that δα > 1 we see that
∑∞

n=1 n
δmY (Jn) = EmY (τ δ) is finite

by Proposition 4.7.1 as mY (τ > n) = O(n−α`(n)).

Let us first suppose that u(0) = 0. We note that for a point x ∈ Jn its orbit under T

will satisfy

T jx ∈ In−j, j = 1, 2, . . . , n,

and so we may calculate the following bound

|uY (x)| ≤ C
n−1∑
j=0

|T jx|ν ≤ C ′

(
1 +

n−1∑
j=1

xνj

)
≤ C ′′

(
1 +

n−1∑
j=1

j−αν

)
≤ C ′′n1−αν .

Thus, letting q > 0 we see that

∫
Y

|uY (x)|qdmY ≤ C ′′
∞∑
n=1

mY (Jn)nq(1−αν)

= C ′′

[
x0 +

∑
n=1

xn
(
(n+ 1)q(1−αν) − nq(1−αν)

)]

≤ C ′′′

[
x0 +

∑
n=1

n−αnq(1−αν)−1

]
.

If ν > 1
α
− 1

2
then we see from the above that uY ∈ L2(mY ). Since mY and µY are
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equivalent we have that uY ∈ L2(µY ), which concludes the first part of our claim which

concludes the first part of our claim.

Now let us suppose that u(0) 6= 0 and let us write

u(x) = u(0) + ũ(x),

where ũ(0) = 0. Then we have that

uY (x) = τ(x)u(0) + ũY (x).

Let us first consider the case that u(0) > 0. By what we have just seen we know that

we may take q > α so that ũY ∈ Lq(µY ) and so by Markov’s inequality

µY (ũY > x) ≤ x−q
∫
|ũY |qdµY = o(x−α).

Thus we obtain

µY (uY > x) = CuµY (τ > x)(1 + o(1)),

for some positive constant Cu, and

µY (uY < −x) = o(x−α).

To conclude the case that u(0) > 0 we note that as τ is integer valued we have from

(3.5) that

µY (τ > x) = µ(τ > bxc) = CτmY (τ > bxc)(1 + o(1)).

Letting F̃ , G̃, k̃n and Ãn be as in A4 we know that F̃ ∈ Dgp(G̃, k̃n, Ãn) is such that

1− F̃ (n) = mY (τ > n).

We can then use Lemma 4.5.1 in the appendix to see that the distribution function
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x 7→ mY (τ ≤ bxc) is also in Dgp(G̃, k̃n, Ãn), and thus F (x) := µY (uY ≤ x) is in

Dgp(G̃, k̃n, Ãn). This concludes that uY satisfies A5 with G ≡ G̃, kn ≡ k̃n and An ≡ Ãn.

The case that u(0) < 0 follows in the same way. �

We may now state the main result of this chapter. We define the function γ and the

distribution function Gλ for λ ∈ [1, c) in terms of the G and the (kn)n≥1 that appears

in A5 as in A1 . We also define the sequence (k′n)n≥1 by putting k′n := bknµ(Y )c and

define the function γ̃ in terms of the sequence (k′n)n≥1 as in A1 .

Theorem 3.0.4. Assume the set up of A4. If u : [0, 1] → R is such that the induced

observable uY : Y → R, given by uY (x) :=
∑τ(x)−1

j=0 u ◦ T j(x), satisfies A5 then

lim
n→∞

|Fn(x)−Gγ̃(1/n)| = 0,

where

Fn(x) := µ

(
1

An

(
n−1∑
j=0

u ◦ T j − n
∫
udµ

)
≤ x

)
.

In order to prove Theorem 3.0.4 we first will first prove that a semi-stable law holds for

the induced system.

Proposition 3.0.5. Assume the set up of A4. If v : Y → R satisfies A5 then for

every strictly increasing sequence of positive integers (an)n≥1 such that γ(1/an)
cir−→

n→∞
λ

we have that ∑an−1
j=0 v ◦ T jY − an

∫
vdµY

Aan

d−→
n→∞

Vλ,

where Vλ has distribution function Gλ.
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Remark 3.0.6. Proposition 3.0.5 implies that the sequence (Zn) given by

Zn :=

∑n−1
j=0 v ◦ T

j
Y − n

∫
vdµY

An
,

is stochastically compact (and whence tight by Remark 1.1.2). To see this we recall

that for any ε > 0 we have that γ(s) ∈ [1, c+ε] for all s > 0 sufficiently small. Thus, for

any sequence (an)n≥1 we know by Bolzano-Weierstrass that there exists a subsequence

(a′n)n≥1 so that γ(1/an)
cir−→

n→∞
λ ∈ [1, c) which yields

Za′n
d−→

n→∞
Vλ,

by the Lemma above. Although we could establish a merging for the induced system

this is not required in order to obtain Theorem 3.0.4. As we will see later, the stochastic

compactness of (Zn) is enough to allow us to conclude Theorem 3.0.4.

3.0.1 Preliminaries

Let us assume the set up of of assumption A4, and let us suppose that v : Y → R is an

observable on Y satisfying assumption A5.

We denote by L : Lθ → Lθ the Perron-Frobenius-Ruelle transfer operator associated

with the induced map TY (cf. equation (1.20) and Section 1.2.1). For t ∈ R we define

the characteristic function operator Lt by

Lt(f) = L(eitṽf),

where for convenience we write ṽ := v −
∫
vdµ. In this section we will establish some

key properties of the operators (Lt)t∈R. Our first claim is that the mapping t 7→ Lt

is continuous at 0 with respect to the operator norm inherited from the Banach space

(Lθ, ‖ · ‖θ) in the following sense.
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Proposition 3.0.7. There exists a C > 0 such that

‖Lt − L0‖θ ≤ C|t|δ.

Before proving the above proposition we introduce the operator Rn(f) := L(1{τ=n}f)

and establish the following Proposition.

Proposition 3.0.8. There exists a positive constant C such that for each n ≥ 1 we

have

‖Rn‖θ ≤ CmY (Jn).

Proof. Let ξn : Y → Jn denote the inverse of TY |Jn so that we may write

Lf(x) =
∞∑
n=1

1Jnξ
′
n(x) · f ◦ ξn(x).

Let us fix n ≥ 1 and let us estimate ‖Rnf‖θ for f ∈ Lθ.

Since TY |Jn is C1 there exists by the mean value theorem an x0 such that

T ′Y (x0) =
m(Y )

m(Jn)
=

1

m(Jn)
.

Thus, by the inverse function theorem, we have that

ξ′n(x0) = mY (Jn).

As we have assumed that TY has θ-distortion we know that for every x, y ∈ Jn,

∣∣∣∣ξ′n(x)

ξ′n(y)
− 1

∣∣∣∣ ≤ Cdθ(x, y).
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We may then calculate that for any x, y ∈ Jn

|ξ′n(x)f ◦ ξn(x)− ξ′n(y)f ◦ ξn(y)| ≤ |ξ′n(y)|
∣∣∣∣ξ′n(x)

ξ′n(y)
f ◦ ξn(x)− f ◦ ξn(y)

∣∣∣∣
≤ |ξ′n(y)|

∣∣∣∣f ◦ ξn(x)

(
ξ′n(x)

ξ′n(y)
− 1

)
+ f ◦ ξn(x)− f ◦ ξn(y)

∣∣∣∣
≤ |ξ′n(y)| (‖f‖∞Cdθ(x, y) + |f |θdθ(ξn(x), ξn(y)))

≤ C̃|ξ′n(y)|‖f‖θdθ(x, y), (3.8)

where in the final line we have used that dθ(ξn(x), ξn(y)) = θdθ(x, y). Then as

|ξ′n(y)| ≤ |ξ′n(x0)|
(

1 +

∣∣∣∣ ξ′n(y)

ξ′n(x0)
− 1

∣∣∣∣) ≤ mY (Jn)(1 + Cdθ(y, x0)),

and as dθ(y, x0) is bounded we obtain that

|ξ′n(x)f ◦ ξn(x)− ξ′n(y)f ◦ ξn(y)| ≤ BmY (Jn)‖f‖θdθ(x, y),

for some constant B > 0 which yields |Rnf |θ ≤ BmY (Jn)‖f‖θ.

Let us now estimate ‖Rnf‖∞. Since Rnf(x) = 1Jn(x)ξ′n(x)f ◦ ξn(x), we have from (3.8)

that

|Rnf(x)| ≤ |ξ′n(x0)f ◦ ξn(x0)|+ |ξ′n(x)f ◦ ξn(x)− ξ′n(x0)f ◦ ξn(x0)|

≤ |ξ′n(x0)|‖f‖∞ + C̃mY (Jn)‖f‖θ

≤ C ′m(Jn)‖f‖θ.

Putting these estimates together we obtain ‖Rn‖θ ≤ Dm(Jn), for some constant D > 0

independent of n. �

Now we may give a proof of Proposition 3.0.7.
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Proof of Proposition 3.0.7. Let us fix δ ∈ (0, 1) so that v satisfies (3.6) and (3.7).

Since L(f) =
∑∞

n=1Rnf , we have that

‖(Lt − L)f‖θ = ‖L(eitṽ − 1)f‖θ ≤
∞∑
n=1

‖Rn‖θ‖1Jn(eitṽ − 1)f‖θ.

Let us fix C > 1 so that |eia − 1| ≤ C|a|δ, for all a ∈ R (see Proposition 4.8.1 in the

appendix).

Let us first estimate |1Jn(eitṽ − 1)f |θ. Letting x, y ∈ Jn we have that,

|(eitṽ(x) − 1)f(x)− (eitṽ(y) − 1)f(y)| ≤ |(eitṽ(x) − 1)(f(x)− f(y))|+ |(eitṽ(x) − eitṽ(x))f(y)|

≤ C|t|δ|ṽ(x)|δ|f |θdθ(x, y) + |eitṽ(x)||f(y)||eit(ṽ(x)−ṽ(y)) − 1|

≤ C|t|δ‖ṽ|Jn‖δ∞|f |θdθ(x, y) + |t|δDθṽ(Jn)δdθ(x, y)δ‖f‖∞

≤ C|t|δ‖f‖θ(‖ṽ|Jn‖δ∞ +DθuY (Jn)δ)dθ(x, y)

Similarly we have that for x ∈ Jn,

|(eitṽ(x) − 1)f(x)| ≤ C‖f‖∞|t|δ|ṽ(x)|δ ≤ C|t|δ‖f‖θ‖ṽ|Jn‖∞.

Combining these estimates and using Proposition 3.0.8 together with (3.6) and (3.7)

we obtain

‖(Lt−L)f‖θ ≤ C|t|δ‖f‖θ

(
2
∞∑
n=1

‖ṽ|Jn‖δ∞mY (Jn) +
∞∑
n=1

Dθṽ(Jn)δmY (Jn)

)
≤ C ′|t|δ‖f‖θ,

which concludes the proof. �

We know that the operator L = L0 acting on the space Lθ has a simple isolated

eigenvalue at 1 and a spectral gap: L = P +N (see Definition 1.2.2 and the discussion

preceding it).
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As, from Proposition 3.0.7, we know that ‖Lt − L0‖ ≤ C|t|δ we also know that the

families of maximal eigenvalues (κt) and the corresponding eigenprojections (Pt) of

the operators Lt will depend continuously on t in a neighbourhood of t = 0 in the

same as the family (Lt). To conclude this fact we can employ [Gou15, Proposition

2.3] which itself is a reformulation of more general statements given in [Kat66, IV.3.6

and Theorem VII.1.8]. In the Lemma below we state formally the key consequences

of [Gou15, Proposition 2.3] in our present setting.

Lemma 3.0.9 ([Gou15, Proposition 2.3]). For |t| sufficiently small we have that Lt has

a spectral gap with

Lt = κtPt +Nt,

and moreover

|κt − κ| = O(|t|δ), and ‖Pt − P‖ = O(|t|δ),

as |t| approaches zero.

3.0.2 Proof of Lemma 3.0.5

With the preliminaries in place we now turn to concluding the proof of Lemma 3.0.5. In

the proof below we will first employ the spectral method in order to establish convergence

to semi-stable random variable along subsequences (an)n≥1 for which γ(1/an)
cir−→

n→∞
λ.

We will then to proceed to strengthen this convergence to that claimed in Lemma 3.0.5

by using techniques derived from [CM02].

Proof of Lemma 3.0.5. We let (Xn) be a sequence of independent identically distributed

random variables on (Y,BY , µY ) with common distribution equal to that of v.

Let (an)n≥1 be a strictly increasing sequence of positive integers such that γ(1/an)
cir−→

n→∞

λ. We know from our assumptions on the distribution of v (namely A5.2) and Theorem
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1.1.11 that ∑an−1
j=1 Xj − an

∫
Y
X1dµY

Aan

d−→
n→∞

Vλ, (3.9)

where Vλ is a semi-stable random variable with distribution function Gλ. We claim that

∑an−1
j=1 uj − an

∫
Y
u1dµY

Aan

d−→
n→∞

Gλ. (3.10)

Let us denote by ψn(t) :=
∫
eit

∑n−1
j=0 ṽ◦T

j

dµ the characteristic function of
∑n−1

j=0 ṽ ◦ T j

and let us denote by φn(t) =
∫
eit(

∑n−1
j=0 Xj−n

∫
Xdµ)dµ the characteristic function of the

corresponding i.i.d. sequence
∑n−1

j=0 Xj − n
∫
Xjdµ.

We will now relate the maximal eigenvalue κt of Lt with the characteristic function

φ1. Let ft := Pt1∫
Ptdm

and note that ft is an eigenvector of Lt corresponding to the

eigenvalue κt, in particular note that f0 ≡ 1. For |t| > 0 sufficiently small we know

from Proposition 3.0.7 and Lemma 3.0.9 that ‖Lt−L0‖ = O(|t|δ) and ‖ft−f0‖ = O(|t|δ).

We may then calculate that

κt =

∫
Ltftdm =

∫
Ltf0dm+

∫
(Lt − L)(ft − f0)dm = φ1(t) +O(|t|2δ).

Following Remark 1.2.3 we know that

‖Nn
t ‖ = ‖Lnt − P n

t ‖ = o(κnt ).
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So, for any strictly increasing sequence (an)n≥1 we may calculate that for large n

ψan(t/Aan) =

∫
Lt/AanhdmY

= κant/Aan

∫
Pt/AanhdmY +

∫
Nan
t/Aan

hdmY

= κant/Aan

[∫
(Pt/Aan − P )h+ PhdmY + o(1)

]
= κant/Aan (1 + o(1)),

= φ1(t/Aan)an(1 + o(1)).

(3.11)

We know from (3.9) that

lim
n→∞

φan(t/Aan) = lim
n→∞

φ1(t/Aan)an = ψVλ(t),

where ψVλ is the characteristic function of Vλ. By equation (3.11) we then obtain

lim
n→∞

ψan(t/Aan) = ψVλ(t),

which, by Lévy’s continuity theorem concludes (3.10) and the Lemma. �

3.1 Inducing semi-stable laws

Having established Lemma 3.0.5 we may now move to the proof of Theorem 3.0.4. In

the proof below we will pull back the semi-stable law established in Lemma 3.0.5 using

a modification of the argument given in the [Gou08, Theorem 4.3]. We will then argue

that the distributional convergence established can be strengthened to convergence

claimed in Theorem 3.0.4.

Proof of Theorem 3.0.4. We fix an observable u : [0, 1] → R and assume that the

induced observable satisfies A5. Let us suppose further that
∫
udµ = 0. The general

case then follows by applying the conclusion of the theorem to ũ = u−
∫
udµ.
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We begin by relating the ergodic sum un :=
∑n−1

j=0 u ◦ T j with the induced ergodic sum

Un :=
∑n−1

j=0 uY ◦ T
j
Y . We note that by the definition of U and TY we have that (un)n≥1

is a sub-sequence of (Un)n≥1. By passing to the natural extension if required we assume

without loss of generality that the map T is invertible. Then we may write

n−1∑
j=0

u ◦ T j(x) =

N(x,n)−1∑
j=0

uY ◦ T jY (x) +Hu ◦ T−k(x), ∀x ∈ Y,

where N(x, n) denotes the lap number

N(x, n) :=
n−1∑
j=1

1Y ◦ T j(x),

and

Hu(x) :=

ψ(x)∑
j=1

u ◦ T−k(x),

where we have put ψ(x) := inf{j ≥ 1 : T−j(x) ∈ Y }. Since An → ∞ and as µ is T

invariant we have that the quantity Hu ◦ T n converges to 0 in measure.

Let us fix a strictly increasing sequence (an)n≥1 ⊂ N such that γ(1/an)
cir−→

n→∞
λ. Then

by Lemma 3.0.5
Uan
Aan

d−→
n→∞

Vλ,

where Vλ has distribution function Gλ. Following Remark 3.0.2 we also know that τ

satisfies Lemma 3.0.5. Setting τn :=
∑n−1

j=0 τ ◦T
j
Y we then know from Remark 3.0.6 that

the sequence
τn − nµ(Y )

Ãn
,

is tight where Ãn is as in A4.

We set a′n := banµ(Y )c and claim that

ua′n
Aa′n

d−→
n→∞

Vλ. (3.12)



3.1. INDUCING SEMI-STABLE LAWS 77

From our discussion above we know that it is sufficient to show that

∑N(·,a′n)−1
j=0 U ◦ T jY

Aa′n

d−→
n→∞

Vλ. (3.13)

We will in fact show that (3.13) converges in distribution with respect to µY on Y , then

by Theorem 4.1 [Gou08] the result will follow.

As α ∈ (1, 2) we may choose an η > 0 small enough so that 1
α

+ η − 1 < 0. We set

β(n) := n
1
α

+η and aim to show that

N(·, a′n)− an
β(an)

µY−→
n→∞

0. (3.14)

From the definition of the lap number we have that N(x, k) ≥ n if and only if τn < k.

Thus we have that for any ε > 0

µY

{
x ∈ Y :

N(x, a′n)− an
β(an)

≥ ε

}
= µY {x : N(x, a′n) ≥ β(an)ε+ an}

= µY {x : τan+β(an)ε(x) < a′n}. (3.15)

As τ ≥ 1 we have that the trivial inequality

τan+β(an)ε ≥ τan + β(an)ε,

which yields

µY {x : τan+β(an)ε(x) < a′n} ≤ µ

(
τan − a′n
β(an)

< −ε
)
.

Proceeding as above we obtain

µY

{
x ∈ Y :

N(x, a′n)− an
β(an)

≤ −ε
}
≤ µ

(
τan − a′n
β(an)

≥ ε

)
.
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In particular we have that

µY

{
x ∈ Y :

|N(x, a′n)− an|
β(an)

≥ ε

}
≤ µ

(
|τan − a′n|
β(an)

≥ ε

)

Writing
τan − a′n
β(an)

= a−ηn
˜̀(an)

τan − anµ(Y )

Ãan
+
anµ(Y )− a′n

β(an)
,

we know that the last term on the right converges to 0 as β(n)→∞ and the first term

on the right converges to 0 in measure as the sequence

τan − anµ(Y )

Ãan
,

is tight and, since ˜̀ is slowly varying, a−ηn ˜̀(an)→ 0 . This concludes (3.14).

We now show that for each ε > 0

lim
n→∞

µY

x :

∣∣∣∑N(x,a′n)−1
j=0 uY ◦ T j(x)−

∑an−1
j=0 uY ◦ T j(x)

∣∣∣
Aan

≥ ε

 = 0. (3.16)

Letting ε > 0 we calculate

µY

(
|UN(·,a′n) − Uan|

Aan
≥ ε

)
≤ µY (|N(·, a′n)− an| ≥ β(an))

+ µY (x : ∃j ∈ [−β(an), β(an)] such that

N(x, a′n) = an + j and

|Uan+j − Uan| ≥ εAnr).

The first term on the right of above vanishes by what we have just shown so we only

need to deal with second term. Let us suppose that

x ∈ {x : ∃j ∈ [−β(an), β(an)] such that N(x, a′n) = an + j and |Uan+j − Uan| ≥ εAan},
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and to begin with let us suppose further that j ≥ 0. Then we see that

|Uan+j − Uan| = |Uj| ◦ T anY (x),

and

µY

(
|Uj| ◦ T anY
Aan

≥ a

)
= µY

(
|Uj|
Aj

Aj
Aan
≥ a

)
.

Moreover
|Uj|
Aj

Aj
Aa′n
≤ |Uj|

Aj

Aβ(a′n)

Aa′n
. (3.17)

Using the definition of β(n) we have that

Aβ(n)

An
= n

1
α( 1

α
+η−1) `(β(n))

`(n)
.

Letting 0 < δ < 1
α
and C > 1 we may choose an n0 by Potter’s bounds so that whenever

n, β(n) > n0 we have

`(β(n))

`(n)
≤ C

(
β(n)

n

)−δ
= Cnn

−δ( 1
α+η−1)

.

Thus, for n large enough we have that

Aβ(n)

An
≤ Cn( 1

α
−δ)( 1

α
+η−1),

which converges to 0 by our choice of η and δ.

We know from Remark 3.0.6 that the sequence |Uj|/Aj is tight which gives that (3.17)

converges to zero in measure as claimed. Proceeding in the same way as above one may

show that ifj ∈ [−β(n), 0) we also have that

|Uan+j − Uan|
Aan

,

converges to 0 in measure, which concludes our claim.
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We have shown that whenever (an) is such that γ(1/an)
cir−→

n→∞
λ we obtain (3.12) as

claimed.

We now claim that whenever (bn) is such that γ̃(1/bn)
cir−→

n→∞
λ we have that

ubn
Abn

d−→
n→∞

Vλ,

where we recall the function γ̃ is defined in terms of the sequence k′n := bknµ(Y )c.

First, let us note that whenever (an)n∈N and (bn)n∈N are two sequences with bn =

an(1 + o(1)) then
ubn
Abn

d−→
n→∞

V ⇔ uan
Aan

d−→
n→∞

Vλ.

Now let us suppose that (bn)n≥1 is such that γ̃(1/bn)
cir−→

n→∞
λ. Let an = bbn/µ(Y )c

and note that a′n = bn(1 + o(1). Thus, to conclude our current claim it is enough to

show that γ(1/an)→ λ. Letting kp(n) and k′p̃(n) be the elements of (kn)n≥1 and (k′n)n≥1

respectively so that

γ(1/an) =
kp(n)

an
, and γ̃(1/bn) =

k′p̃(n)

bn
.

Let us note that

k′p̃(n)−1 < bn ≤ k′p̃(n)

⇔ kp̃(n)−1

(
1−
{k′p̃(n)−1µ(Y )}

k′p̃(n)−1

)
<

bn
µ(Y )

≤ kp̃(n)

(
1−
{k′p̃(n)µ(Y )}

k′p̃(n)

)
.

Taking integer parts of the final inequality we may conclude that for all n large enough

kp(n) ∈ {kp̃(n)−2, kp̃(n)−1, kp̃(n)}. Thus

γ(1/an) =
kp(n)

an
=
kp̃(n)µ(Y )

bn

kp(n)

kp̃(n)

(1 + o(1)) =
k′p̃(n)

bn

kp(n)

kp̃(n)

(1 + o(1))
cir−→

n→∞
λ.

This establishes that whenever (bn)n≥1 is strictly increasing sequence of integers with
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γ̃(1/bn)
cir−→

n→∞
λ we have that

ubn
Abn

d−→
n→∞

Vλ.

Now, following the first part of the proof of [CM02, Theorem 2], we move to concluding

the merging aspect of the result. We will argue by the fact that the distribution function

Gλ is uniformly continuous for each λ ∈ [1, c) (see [CM02, Lemma 2, Theorem 2]).

Let (an)n≥1 be an arbitrary subsequence of N. For every ε > 0 we know that γ(1/an) ∈

[1, c + ε] for all n sufficiently large. So, Bolzano-Weierstrass we have that there exists

a further subsequence, say (anj)j≥1, such that γ(1/anj)
cir−→

j→∞
λ ∈ [1, c) and so by what

we have just shown that

lim
j→∞

dL(Fanj , Gλ) = 0. (3.18)

Moreover, one can check that the family (Gλ)λ∈[1,c) is continuous with respect to the

topology of weak convergence (cf. proof of [CM02, Theorem 2]). In particular we have

that

lim
j→∞

dL(Gγ(1/anj ), Gλ) = 0. (3.19)

We claim that the weak convergence of the distributions function in equations (3.18)

and (3.19) can be strengthened to uniform convergence.

Let ε > 0 be arbitrary. By the continuity of Gλ we may choose a 0 < δ < ε so that

|x1 − x2| ≤ 2δ ⇔ |Gλ(x1)−Gλ(x2)| ≤ ε.

Then by equations (3.18) and (3.19) we may take N ∈ N large enough so that for every

j ≥ N we have

dL(Fanj , Gλ) < δ, dL(Gγ(1/anj ), Gλ) < δ

Letting x ∈ R be arbitrary we know by the definition of the Lévy distance that

Gλ(x− δ)−Gλ(x+ δ)− δ ≤ Fanj (x)−Gλ(x+ δ) ≤ δ,
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and since 0 ≥ Gλ(x− δ)−Gλ(x+ δ) ≥ −ε we have that

|Fanj (x)−Gλ(x+ δ)| ≤ δ + ε ≤ 2ε

Thus we obtain

|Fanj (x)−Gλ(x)| ≤ |Fanj (x)−Gλ(x+ δ)|+ |Gλ(x)−Gλ(x+ δ)| ≤ 3ε.

Repeating the above calculation with Gγ(1/anj ) in the place of F we obtain

|Gγ(1/anj )(x)−Gλ(x)| ≤ 3ε.

Thus, our claim that

lim
j→∞
|Fanj −Gλ|∞ = 0 and lim

j→∞
|Gγ(1/anj ) −Gλ|∞ = 0

is established. By a further application of the triangle inequality, we see that

lim
j→∞
|Fanj −Gγ(1/anj )|∞ = 0.

Finally, as the sequence (an)n≥1 with which we started was arbitrary we obtain

lim
j→∞
|Fn −Gγ(1/n)|∞ = 0,

which concludes the proof. �



Chapter 4

Proofs of main results

In this chapter we give the proofs of our main results: Theorems A, B and C. In each

case we will verify that the system in question satisfies the assumptions A4 and the

induced observable satisfies A5 so that we may apply Theorem A to conclude. In the

case of Theorems A and B it is enough to verify A4 as we can then use Lemma 3.0.3 to

show that the induced observable will satisfy A5. In the case of Theorem C we know

already that TLSV satisfies A4 (see Remark 3.0.1), however our observable in this case

is chosen so that 3.0.3 does not apply. Thus for Theorem C we will need to verify A5

directly.

4.1 Proof of Theorem A

Throughout this section we let T ≡ Texp be as defined in Section 2.1 and let u :

[0, 1] → R be Hölder continuous observables which is non-zero at 0. It is clear from

the definition of T that (1) of A4 holds. We also know by the definition of T and the

discussion following of the statement of the assumptions A4 that

mY (τ > n) = xn,

83
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where xn is as given in (2.3). In particular, we recall that with mY (τ > n) = n−αM(n)

and M satisfies A1 . So, if F is such that 1− F (x) = x−αM(x) for all x large enough

we know that F ∈ Dgp(G, kn, An) where kn = bcnc, An = n1/α and G is the distribution

function of a semi-stable distribution with right Lévy function

R(x) = −M(x)

xα
,

and left Lévy function L ≡ 0. This establishes 2(b) of A4.

In order to see that T satisfies A4 it is sufficient to show that TY is a uniformly expanding

C2 Markov interval map (see Example 1.2.1).

Proof of Theorem A. Let gn be as defined in (2.6). Considering the first derivative

g′n(x) = (1− an)ρn −
1

∆n

log(1− an∆n−1) exp

{
log(1− an∆n−1)

x− xn+1

∆n

}
,

we note that g′n is positive and decreasing and so obtains its infimum at xn which yields

inf
x∈In

g′n(x) = (1− an)ρn −
1

∆n

log(1− an∆n−1)(1− an∆n−1)

≥ ρn(1− a2
n∆n−1) > 1 (4.1)

by our choice of the sequence an. This readily implies that TY := T τ will be uniformly

expanding. Now we argue that T has the Adler property. First we calculate

g′′n(x) = − 1

∆2
n

log(1− an∆n−1)2 exp

{
log(1− an∆n−1)

x− xn+1

∆n

}
,

which is negative and strictly increasing. Whence, |g′′n| will obtain its supremum at

xn+1, and so

sup
x∈In
|T ′′(x)| = 1

∆2
n

log(1− an∆n−1)2 ≤ a2
nρ

2
n.
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Thus we have that

sup
x∈In

|T ′′(x)|
|T ′(x)|2

≤ a2
n

(1− a2
n∆n)2

→ 0,

and so

sup
n

sup
x∈In

|T ′′(x)|
|T ′(x)|2

= C <∞.

Now we argue that the induced map also satisfies the Adler condition. Letting

Adl(f) =
|f ′′|
|f ′|2

,

a simple calculation shows that

Adl(T n)(x) ≤ Adl(T n−1) ◦ T (x) +
Adl(T )(x)

(T n−1)′ ◦ T (x)
,

for each x ∈ Y . Iterating the above relation we obtain that for all x ∈ Y

Adl(T n)(x) ≤ Adl(T ) ◦ T n−1(x) +
n−1∑
k=1

Adl(T ) ◦ T k−1(x)

(T n−k)′ ◦ T k(x)
≤

n−2∑
k=0

Adl(T ) ◦ T k(x).

Fixing x ∈ Jn we know that T k(x) ∈ In−k, and

Adl(T ) ◦ T k(x) ≤ sup
y∈In−k

|T ′′(y)|
(T ′(y))2

≤ a2
n−k.

Thus, using our assumption that the an satisfy (2.7), we find

Adl(T n)(x) ≤ C +
n−1∑
k=1

a2
k ≤ C +

n−1∑
k=1

∆k−1 ≤ C + 1,

yielding the Adler property for the induced map. This yields that T is uniformly

expanding C2 Markov interval map and concludes that A4 hold for T .

Now we may apply Lemma 3.0.3 to the observable u to see that uY satisfies A5 with

G, kn, and An as defined in Section 2.1. Applying Theorem 3.0.4 then concludes the
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proof. �

4.2 Proof of Theorem B

Throughout this section we will let T ≡ Tw as defined in 2.2 and let u : [0, 1] → R be

Hölder observable with u(0) 6= 0. In order to prove B we will verify the assumption

A4. Then, as in the previous section, we will use Lemma 3.0.3 to show that uY satisfies

A5 and employ Theorem 3.0.4 in order to conclude. We begin by examining the tail

behaviour of the return time.

4.2.1 Tail behaviour of the return time

Here we aim to show that the return time τ has tail distribution

mY (τ > x) = x−α(M̃(x) +H(x)),

which satisfies (1.9), in particular we will show that the M̃ that appears in the expression

above is log-periodic with period c1/α2 and satisfies A1 . The proofs presented here are

based on the arguments given in [CHT19, Section 4]

Proposition 4.2.1 (see [CHT19, Proposition 4.1]). Let the sequence xn be defined by

relation xn = T |[0,1/2](xn+1) with x0 = 1. Then

xn = n−α(M0(n) + E0(n)),

where

M0(n) =

(
1

αn

n∑
j=1

M(xj)

)−α
, E0(n) = O

(
log n

n

)
.
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Proof. Put β = 1
α
. Using the fact that T (xn+1) = xn, we calculate

1

xβn
=

1

xβn+1

(1 + xn+1(M(xn+1)))−β

=
1

xβn+1

(
1− βxβn+1M(xn+1) +

β(β + 1)

2
x2β
n+1(xn+1)2(1 + o(1))

)
=

1

xβn+1

− βM(xn+1) +
β(β + 1)

2
xβn+1M(xn+1)2(1 + o(1)) (4.2)

Since M bounded and xn → 0 we find that by summing that,

1

xβn
= 1 + β

n∑
j=1

M(xj)− ej, (4.3)

where ej := β(β+1)
2

xβjM(xn+1)(1 + o(1)). Since en = o(1) in the limit as n→∞, we see

by substituting (4.3) into the right hand side of (4.2) that

1

xβn
= 1 + β

n∑
j=1

M(xj)−
β(β + 1)

2

n∑
j=1

M(xj)
2

1 +
∑j

k=1(M(xk)− ej)
(1 + o(1))

= 1 + β
n∑
j=1

M(xj)−
β(β + 1)

2

n∑
j=1

M(xj)
2

1 +
∑j

k=1M(xk)
(1 + o(1))

Putting Ẽ0(n) := 1
n
− β(β+1)

2n

∑n
j=1

M(xj)
2

1+
∑j
k=1M(xk)

(1 + o(1)) the above yields: x−βn =

n
(
β
n

∑n
j=1M(xj) + Ẽ0(n)

)
, and thus

xn =
1

nα

(
M0(n)−1/α + Ẽ0(n)

)−α
=

1

nα

(
M0(n)− αM0(n)1+1/αẼ0(n)(1 + o(1))

)

Let us now study the error term E0(n) := −αM0(n)1+1/αẼ0(n)(1 + o(1)). As M is

bounded above and below by positive constants we know that M0(n) = O(1) and so

Ẽ0(n) ∼ 1
n

(
1 +

∑n
j=1

1
1+j

)
= O

(
logn
n

)
, which concludes our claim. �
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Proposition 4.2.2 (see [CHT19, Proposition 4.3 and Lemma 4.4]). The function M0

is asymptotically log-periodic with period c1/α2 in the sense that

M0(c1/α2
n)

M0(n)
= 1 +O

(
(log n)2

n

)
,

in the limit as n→∞.

Let us extend the functionsM0 and E0 to the positive reals by settingM0(x) = M0(bxc)

and E0(x) = E0(bxc).

Proof. Let us define m0(x) := 1
αx

∑bxc
j=1 M(xj) so that xn = (nm0(n))−α(1 + o(1)). Let

us note that as xn ∼ (nm0(n))−α we have that m0(n) ∼ 1
nα

∑n
j=1 M((nm0(n))−α).

Consider a continuous analogue m of m0 defined implicitly by the relation

m(x) :=
1

αx

∫ x

1

M((um(u))−α)du.

We will now show that with ĉ := log c
α2

m(eĉx)

m(x)
= 1 +O(1/x)

in the limit as x→∞.

Let v(x) := xm(x), then from the definition of m we find that

v(x) =
1

α

∫ x

1

M(v(u)−α)du.

Differentiating we then obtain

v′(x) =
1

α
M(v(x)−α).



4.2. PROOF OF THEOREM B 89

Using the definition of M we find that

v′(x) = a(1 + εp(−α log v(x))).

We now make the substitution eu(x) = v(x) in the above. Making the substitution we

obtain

u′(x)eu(x) = a(1 + εp(−αu(x)))⇒ x =
1

a

∫ u

0

ez

1 + εp(−αz)
dz − C,

for some integration constant C. Let us define

g(u) :=
1

a

∫ u

0

ez

1− εp(−αz)
dz − C,

so that g(u(x)) = x. The integral g(u) does not admit a closed form, however we can

study some of its properties by exploiting the log-periodicity of M .

Let us note that if u = ĉ` + z0 and with ` ∈ N and z0 ∈ [0, ĉ) we may divide up the

integral in g(u) in the following way

g(u) =
1

a

(
`−1∑
j=0

∫ ĉ(j+1)

ĉj

ez

1 + εp(−αz)
dz +

∫ ĉ`+z0

ĉ`

ez

1 + εp(−αz)
dz.

)
− C.

Now, making the substitution w + ĉj = z in each of the integrals above, and using the

fact that p is periodic with period log c
α

= αĉ, we obtain

g(u) =
1

a

(
`−1∑
j=0

eĉg(ĉ) + eĉ`g(z0)

)
− C,

=
1

a

(
eĉ` − 1

eĉ − 1
g(ĉ) + eĉ`g(z0)

)
− C.

Now for x > 0 arbitrary let us write x = eĉk+w0 for some k ∈ N and some w0 ∈ [0, ĉ)

and let x′ be such that u(x′) = u(x) + ĉ. Then letting ` ∈ N and x0 ∈ [0, ĉ) be such
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that u(x) = ĉ`+ x0, we see that

x′ = g(u(x′)) =
1

a

(
eĉ(`+1) − 1

eĉ − 1
g(ĉ) + eĉ(`+1)g(z0)

)
− C

=
eĉ

a

(
eĉ` − 1 + (1− e−ĉ)

eĉ − 1
g(ĉ) + eĉ`g(z0)

)
− C

= eĉ
(
g(u(x)) +

1− e−ĉ

eĉ−1
+ C

)
− C.

In particular, we find that for some constant C1 independent of x, x′, we have that

x′

x
= eĉ +

C̃

x
.

Thus in the limit as x→∞ we see that x′ = eĉx+O(1). Now we may calculate that

u(eĉx)− u(x)− ĉ = u(eĉx)− u(x′),

and by the mean value theorem we may choose ξx between eĉx and x′ so that

u(ĉx)− u(x) = u′(ξx)(e
ĉx − x′) = O(u′(ξx)).

Since u′(x) = v′(x)
v(x)

= O(1/x) and since ξx ∼ eĉx we find that

u(eĉx)− u(x) = ĉ+O(1/x).

Thus
m(eĉx)

m(x)
=

1

eĉ
eĉ+O(1/x) = 1 +O(1/x).

Now we relate m with m0. Let us note that the function

y 7→M(y−α) = a (1 + εp(−α log(y))) ,

is log-periodic with period c1/α2 and has a finite number of intervals of monotonic-
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ity in
[
c1/α2

, c2/α2
]
. Then since C1x ≤ m0(x) ≤ C2x we see that function h(x) :=

M((xm0(x))−α) has O(log x) intervals of monotonicity within the interval [1, x]. Then

for each interval I on which h is monotone we see that

∣∣∣∣∣
∫
I

h(u)du−
∑
j∈I∩N

h(j)

∣∣∣∣∣ ≤ sup
I
h− inf

I
h ≤ C̃,

for some constant C̃ independent of I. Thus, as there O(log(x)) intervals of monotonic-

ity, we obtain ∫ x

1

h(u)du =

bxc∑
j=1

h(j) +O(log x). (4.4)

We now wish to compare m0(x) and 1
αx

∑bxc
j=1 h(j). First we calculate

log xn − log((nm0(n))−α) = log((nm0(n))−α + n−αE0(n))− log((nm0(n))−α)

= log

(
1 +

E0(n)

m0(n)α

)
= O(E0(n)) = O

(
log n

n

)
.

Then since p is Lipschitz by assumption we see that

M(xn)−M((nm0(n))−α) = O

(
log n

n

)
,

and thus

m0(n)− 1

αj

n∑
j=1

h(j) = O

(
1

n

n∑
j=1

log j

j

)
= O

(
(log n)2

n

)
.

Thus, we can relate m0 and m0 as (4.4) yields

m0(x) =
1

αx

bxc∑
j=1

M((jm0(j))−α) +O

(
(log x)2

x

)
=

1

αx

∫ x

1

M((um0(u))−α)du+O

(
(log x)2

x

)
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and so

m0(x) = m(x)

(
1 +O

(
(log(x))2

x

))
(4.5)

Now we may compute

m0(eĉx)

m0(x)
=
m(eĉx)

(
1 +O

(
(log eĉx)2

eĉx

))
m(x)

(
1 +O

(
(log x)2

x

))
=
m(eĉx)

m(x)

(
1 +O

(
(log x)2

x

))
= 1 +O

(
(log x)2

x

)
.

The proposition then follows as M0 = m−α0 . �

Set c̃ := c1/α and set kn = bc̃nc, `(y) := cy/α
2

bcy/α2c
and An = n1/α`(n). Then, by definition,

we have that

lim
n→∞

kn+1

kn
= c̃,

lim
y→∞

`(y) = 1,

Akn = c̃n/α, lim
n→∞

Akn+1

Akn
= c̃1/α.

Proposition 4.2.3. For each x > 0 the limit

lim
n→∞

M0(Aknx)

exists and moreover the function

M̃(x) = lim
n→∞

M0(Aknx)
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is right continuous and log-periodic with period c̃1/α.

Proof. Let us fix some x > 0. We claim that the sequence M(knx) is Cauchy. Indeed,

as Akn+1 = c1/α2
Akn we may use the previous proposition to see that

|M0(Akn+1x)−M0(Aknx)| ≤M0(Aknx)

∣∣∣∣∣M0(c1/α2
Aknx)

M0(Aknx)
− 1

∣∣∣∣∣ = O

(
log(Aknx)2

Aknx

)
.

From this we obtain that

|M0(Akn+mx)−M0(Aknx)| = O

(
m−1∑
j=0

(log(Akn+jx))2

Akn+jx

)

= O

(
m−1∑
j=0

(log(cj/α
2
Aknx))2

cj/α2Aknx

)

= O

(
(logAknx)2

Aknx

m−1∑
j=0

1

cj/α2 +
2 logAknx log c1/α2

Aknx

m−1∑
j=0

j

cj/α2

+
(log c1/α2

)2

Aknx

m−1∑
j=0

j2

cj/α2

)
= O

(
(logAknx)2

Aknx

)

It is then clear that M̃ is log-periodic with period c̃1/α = c1/α2 as

M̃(c1/α2

x) = lim
n→∞

M0(Akn+1x) = M̃(x).

In order to see that M̃ is continuous we let x > 0 be arbitrary and let δ > 0. Then we

see that

1

bcn/α2(x+ δ)c

bcn/α2 (x+δ)c∑
j=1

M(xj)−
1

bcn/α2xc

bcn/α2xc∑
j=1

M(xj)

=

(
bcn/α2

xc
bcn/α2(x+ δ)c

− 1

)
1

bcn/α2xc

bcn/α2xc∑
j=1

M(xj) +
1

bcn/α2(x+ δ)c

bcn/α2 (x+δ)c∑
j=bcn/α2xc

M(xj),
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and so

M̃(x+ δ)−1/α − M̃(x)−1/α = −M̃(x)
δ

x+ δ
+O (δ/x+ δ) ,

which yields the right continuity of M̃ . �

We know that F (x) := mY (τ > x) = x−α(M0(x) + E0(x)). We may rewrite this as

F (x) = x−α(M̃(x) +H(x)),

where H(x) := M0(x) − M̃(x) + E0(x). We aim to show that F satisfies (1.9). We

have already established that M̃ is log-periodic with period c̃1/α, right continuous, and

bounded away from both 0 and ∞. It remains to show that the error function H

satisfies limn→∞H(Aknx) = 0 for each x > 0. Fixing x > 0 we see that

lim
n→∞

H(Aknx) = lim
n→∞

M0(Aknx)− lim
m→∞

M0(AknAkmx) +E0(Aknx) = M̃(x)− M̃(x) = 0,

as AkmAkn = Akn+m . This concludes that (2,b) of A4 holds.

4.2.2 Distortion properties and concluding the theorem

We now turn to establishing 2(a) of A4 before concluding the proof.

Proposition 4.2.4. The induced map TY : Y → Y satisfies Adler’s distortion condition

sup
x∈Y

|T ′′(x)|
T 2
Y (x)2

<∞.

Proof. Calculating the first and second derivatives of T we find

T ′(x) = 1 + (β + 1)xβM(x) + xβ+1M ′(x),

T ′′(x) = β(β + 1)xβ−1M(x) + 2(β + 1)xβM ′(x) + xβ+1M ′′(x).
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We recall that In = [xn+1, xn) and Jn = {τ = n}, and T (Jn) = In−1. Note that

T j(In) = In−j+1 for 1 ≤ j ≤ n − 1. Since M(x) = a(1 + εp(log x)) and p is Lipschitz

we know that M(x) = O(1), M ′(x) = O(x−1). Moreover as we have assumed that

the second derivative of p is bounded, we see that M ′′(x) = O(x−2) and we obtain the

following bounds for each n ∈ N

T ′′|In ≤ Bnα−1.

for some positive constantB independent of n. Let us put C := max{sup |p(x)|, sup |p′(x)|},

we then obtain that

T ′|In(x) ≥ 1 + a((β + 1)(1− εC)− εC)xβ

≥ 1 + a((β + 1))(1− εC)− εC)xβn+1

From Proposition 4.2.1 we know that

xβn+1 =
M0(n+ 1)β

n+ 1

(
1 +

En(n)

M0(n)

)
,

and

M0(n+ 1)β =

(
1

α(n+ 1)

n+1∑
j=1

a(1 + εp(log(xj)))

)−1

≥ α

a
(1 + εC)−1.

Combining these three estimates and using the fact that E0(n) = o(1) we know that

there exists a constant A > 0 such that

T |In(x) ≥ 1 + An−1. (4.6)

Moreover, as α(β + 1) = 1 + α > 2, we may fix ε > 0 small enough so that α((β +

1))(1− εC)− εC)(1 + εC)−1 > 2. Then for all n large enough we have that (4.6) holds

for some A > 2.

Denoting by D the operator T 7→ T ′ we find, by a simple application of the chain rule
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that for any n ≥ 1

log(DT n) =
n∑
j=1

log(DT ) ◦ T j−1.

Applying D to both sides of the above we obtain

D2T n

DT n
=

n∑
j=1

DT j−1

(
D2T

DT

)
◦ T j−1,

and so
|D2T n|
(DT n)2

≤
n∑
j=1

∣∣∣∣DT j−1

DT n

∣∣∣∣ ∣∣∣∣(D2T

DT

)
◦ T j−1

∣∣∣∣ (4.7)

Using the bounds found above for the derivatives of T we see that

∣∣∣∣(D2T

DT

)
◦ T j−1(x)

∣∣∣∣ ≤
∣∣∣∣∣supy∈In−j+1

D2T (y)

infy∈In−j+1
DT (y)

∣∣∣∣∣ ≤ B(n− j + 1)α−1

1 + A
n−j+1

≤ C ′(n− j + 1)α−1,

(4.8)

for some C ′ > 0 independent of n. We then calculate that

log

(
DT j−1

DT n
(x)

)
= −

n∑
k=j

log(DT ) ◦ T k−1(x)

≤ −
n∑
k=j

log

(
1 +

A

n− k + 1

)

≤ −
n∑
k=j

A

n− k + 1 + A
≤ −A log(n− j + 2) + C ′′,

for some C ′′ > 0 independent of n. Thus, for x ∈ Jn, we have that

DT j−1

DT n
(x) ≤ eC

′′ 1

(n− j + 2)−A
. (4.9)

Combining (4.8) and (4.9)

|D2T n|
(DT n)2

(x) ≤ C ′eC
′′

n∑
j=1

(n− j + 2)α−1

(n− j + 2)A
. = C ′eC

′′
n+1∑
k=2

nα−1−A

From our comments following (4.6) we know that there exists an A > 2 such that (4.6)
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holds for all but finitely many n, so we obtain

|D2T n|
(DT n)2

(x) ≤= C ′eC
′′

(
C ′′′ +

∞∑
k=2

kα−3

)
<∞,

concluding the proof. �

We may now conclude the proof of Theorem B.

Proof of Theorem B. We have seen that T satisfies the A4. Now we may apply Lemma

3.0.3 to the observable u to see that uY satisfies A5 and then we can apply Theorem

3.0.4 to conclude. �

4.3 Proof of Theorem C

Throughout this section we let T ≡ TLSV and let u(x) = M(x) where M is as defined

in (2.1). As we have mentioned before we know already from Remark 3.0.1 that T

satisfies A4. We will show in this section that u satisfies A5 and use Theorem 3.0.4 in

order to conclude Theorem C. We begin by studying the tail distribution of the induced

observable uY .

4.3.1 Calculating the tail distribution of the induced observable

In this section we aim to show that the induced observable satisfies (2) of A5. Let us

first remark that we cannot apply Lemma 3.0.3 to u, in particular we note that u is not

Hölder for any ν ∈ (0, 1]. To see this fix x, y ∈ (0, 1] with |u(x)− u(y)| = C > 0. Then

for any ν ∈ (0, 1] and any k ∈ N we have that

|u(c−k/αx)− u(c−k/αy)

|c−k/αx− c−k/αy|
= cνk/α

C

|x− y|
.

As the above converges to ∞ as k →∞ we see that u is not ν-Hölder.
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In what follows we define M0 for x ≥ 1 by setting M0(x) := 1
x

∫ x
0
u
(

1
2
ααz−α

)
dz. We

note that M0 is log-periodic with period c1/α2 :

M0(c1/α2

x) =
1

c1/α2x

∫ c1/α
2
x

0

u

(
1

2
ααz−α

)
dz = M0(x),

where in the final equality we make the substitution z = c1/α2
w.

Our first step towards verifying A5 is to establish the following Lemma.

Lemma 4.3.1. For any x ∈ Jn we have

uY (x) = n(M0(n) +O((log(n))2/n)).

Before proving this Lemma we give a series of intermediate results.

For x ∈ Y let us denote by (yj = yj(x))j≥0 the orbit of x under T . For x ∈ {τ = n} = Jn

we have by definition that

uY (x) =
n−1∑
j=0

u(yj).

Lemma 4.3.2. If y ∈ In then |u(xn+1)− u(y)| = O(n−1).

Proof. First we calculate | log(xn) − log(y)|. As y ∈ [xn+1, xn) we may write y =

xn+1 + t(xn − xn+1) for some t ∈ [0, 1). Thus

log(xn+1)− log(y) = − log

(
1 + t

(
xn
xn+1

− 1

))
.

We recall from Section 1.2.4 that xn = 1
2
ααn−α(1 + O( logn

n
)) and we also recall from
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[LSV99] that |xn − xn+1| = O(n−(1+α)). Since xn
xn+1

= 1 + 1
xn+1

(xn − xn+1) we have that

log(xn+1)− log(y) = log(1 +O(n−1)) = O(n−1).

Then, as p is Lipschitz by assumption, we have that

|u(xn+1)− u(y)| = O(n−1),

as required. �

Using Lemma 4.3.2 we may write

uY (x) =
n∑
j=1

u(xj) +O(j−1) =
n∑
j=1

u(xj) +O(log(n)). (4.10)

For x > 1 let M0(x) := 1
x

∫ x
1
u
(

1
2
ααz−α

)
dz and note that

M0(x) = M0(x) +O(1/x). (4.11)

Let us put M̃0(x) = 1
bxc
∑bxc

j=1 u(xj). We now wish to compare M̃0 and M0.

Lemma 4.3.3.

|M0(x)− M̃0(x)| = O

(
(log x)2

x

)

Proof. First let us calculate the difference between u(xn) and u(1
2
ααn−α). Writing

xn = 1
2
ααn−α(1 + en) where en = o(1) we have that | log(xn)− log(1

2
ααn−α)| = O(en).

So we find that ∣∣∣∣u(xn)− u
(

1

2
ααn−α

)∣∣∣∣ = O(en).

Letting h(x) := u(1
2
ααx−α) for x > 1 know that h is log-periodic with period c1/α2 .

Moreover h has finitely many intervals of monotonicity in [c1/α2
, c2/α2

]. Thus h has
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O(log x) intervals of monotonicity in [1, x] and so as in the case of Tw in the previous

section we have that

M0(x) =
1

x

∫ x

1

h(u)du =
1

x

 bxc∑
j=1

h(j) +O(log(x))

 .

Thus

M0(x)−M̃0(x) =
1

x

bxc∑
j=1

u

(
1

2
ααj−α

)
−u(xj)+O

(
log x

x

)
=

1

x

bxc∑
j=1

O(ej)+O

(
log x

x

)
.

Since en = O(log(n)/n) we obtain that

|M0(x)− M̃0(x)| = O

(
log(x)

x

)
,

as required. �

Proof of Lemma 4.3.1. From (4.10) we know that

uY |Jn = n(M̃0(n) +O(log(n)/n)),

thus using Lemma 4.3.3 and (4.11)

uY |Jn(x) = n(M0(n) +O(log(n)2/n)), (4.12)

which concludes the proof. �

Since the map x 7→ xM0(x) is continuous and strictly increasing (at least for ε > 0

sufficiently small) we know that it is invertible. Let g be the inverse of x 7→ xM0(x) so

that if xM0(x) = y then g(y) = x. If xM0(x) = y then c1/α2
xM0(c1/α2

x) = c1/α2
y and

thus we obtain g(c1/α2
y) = c1/α2

g(y). Writing g(y) = yf(y) we then see that f must be

log-periodic with period c1/α2 , and also f must be bounded as f(y) = 1/M0(g(y)).
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Then we may compute that

mY (uY > y) ∼ mY (τ > g(y)) =
1

2
ααg(y)−α(1 + o(1)) =

1

2
ααy−αf(y)−α(1 + o(1)).

This concludes that uY satisfies (2) of A5.

4.3.2 Concluding the proof

In the previous section we established (2) of A5. In this section we will verify the

remaining assumptions in A5 and then apply Theorem 3.0.4 to conclude.

Proof of Theorem C . As in the proof of Lemma — we begin by noting that as the

induced map is uniformly expanding: λ := infx∈Y T
′
Y (x), we know that |x − y| ≤

Cλ−s(x,y) where s is the separation time under TY for some C > 0. Letting x, y ∈ Jn

with s(x, y) = k we have |T jx− T jy| ≤ Cλ−k.

Thus we see that for any 0 ≤ j ≤ n− 1

log(T jx)− log(T jy) = O(|T jx− T jy|/T jy) = O(λ−k(n− j)α),

and so

|uY (x)− uY (y)| ≤
n−1∑
j=0

|u ◦ T j(x)− u ◦ T j(y)| = aε
n−1∑
j=0

|p(log T j(x))− p(log T j(y))|

≤ C ′λ−kn1+α,

for some C ′ > 0. Taking θ = λ−1 we obtain

DθuY (Jn) ≤ C ′n1+α.
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As u is bounded we also have trivially that for x ∈ Jn

|uY (x)| ≤ Bn.

Let us now take δ ∈ (0, 1) close enough to 0 so that (α+ 1)(δ − 1) < −1. Then we see

that since mY (Jn) ∼ n−(1+α) we have

∞∑
n=1

‖uY |Jn‖δ∞mY (Jn) ≤ B
∞∑
n=1

nδn−1−α <∞,

and
∞∑
n=1

DθuY (Jn)δmY (Jn) ≤ B
∞∑
n=1

n(1+α)δn−1−α <∞,

by our choice of δ. This concludes that uY satisfies A5. We then conclude the proof by

an application of Theorem 3.0.4. �
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4.4 Some properties of distribution functions in Dgp(G)

Proposition 4.4.1. Let G be the distribution function of a non-negative semi-stable

random variable of index α ∈ (0, 2) and period c > 1. Let F ∈ Dgp(Gα, kn, An) satisfying

A2 be given by

1− F (x) = x−α(M(δ(x)) + h(x)).

Suppose that F is continuous and suppose that 1 − F is strictly decreasing, then the

sequence xn := F (n) satisfies

lim
n→∞

xn−1

xn
= 1.

Proof. As we are assuming that M is continuous we know that h(x) → 0 as x → ∞

and thus if

lim
n→∞

M(δ(n− 1))

MR(δ(n))
= 1,

we can conclude that

lim
n→∞

xn−1

xn
= 1,

Let us restrict the domain of M to [1, c1/α + ε] for some ε > 0 and let us note that

as MR is continuous on this compact set it must also be uniformly continuous on

[1, c1/α+ε]. In the remainder of the proof we will assume that n is large enough so that

δ(n) ∈ [1, c1/α + ε].

With the function a as in A2 we note that for each n large enough we also have that

a(n − 1) ∈ {a(n), a(n)c−1/α(1 + ε(n))} where ε(n) → 0 as n → ∞. Let separate n

into two disjoint subsequences n′ and n′′ so that a(n′ − 1) = a(n′) and a(n′′ − 1) =

a(n′′)c−1/α(1 + ε(n′′)). Then

M(δ(n′ − 1))

M(δ(n′))
=
M(δ(n′)(1− 1/a(n′))

M(δ(n′))
→ 1,
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in the limit as n′ →∞ by the uniform continuity of M and

M(δ(n′′ − 1))

M(δ(n′′))
=
M(δ(n′′)(1 + ε(n)))

M(δ(n′′))
→ 1

in the limit as n′′ →∞ concluding the proof. �

Proposition 4.4.2. Let F ∈ Dgp(Gα, kn, Akn) for a non-stable semi-stable distribution

Gα so that F is given by (1.9). Then for any continuity point x0 of M we have the

following

1. limn→∞M(δ(Aknx0)) = limn→∞M(δ(Aknx0(1 + o(1))) = M(x0).

2. limn→∞ h(Aknx0(1 + o(1))) = 0.

Proof. Let x0 be a continuity point of M .

1. First let us suppose that x0 ∈ [1, c1/α) then clearly M(δ(Aknx0)) = M(x0) for

every n ∈ N large enough. Now suppose that x0 is an arbitrary continuity point

of M and let us write x0 = cp/αx′0 where p ∈ Z and x′′0 ∈ [1, c1/α). Then using the

fact that Akn+1/Akn → c1/α we may deduce that for in the limit as n→∞

Aknx0 = Akn+px
′
0(1 + o(1)).

For large n we deduce that

a(Aknx0) ∈ {Akn+p−1 , Akn+p , Akn+p+1},

and whence the set of limit points of the sequence

δ(Aknx0)
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is certainly contained in

{cp−1/αx′0, c
p/αx′0, c

p+1/αx′0},

yielding, by the log-periodicity of M , that

lim
n→∞

M(δ(Aknx0)) = M(x′0) = M(x0).

An almost identical argument establishes that

lim
n→∞

M(δ(Akn(x0 + o(1))) = M(x0).

2. First let us suppose that xn converges to x0 from above. Then by part 1 above

we know that

lim
n→∞

M(δ(Aknxn)) = M(x0),

and so
F̄ (Aknxn)

`∗(Aknxn)(Aknxn)−α
− h(Aknxn) = M(x0) + o(1).

We also know that

M(x0) = lim
n→∞

F̄ (Aknx0)

`∗(Aknx0)(Aknx0)−α
.

Thus

h(Aknxn) =
(Aknxn)αF̄ (Aknxn)

`∗(Aknxn)
− (Aknx0)αF̄ (Aknx0)

`∗(Aknx0)
+ o(1) (4.13)

≤ [(Aknxn)α`∗(Aknx0)− (Aknx0)α`∗(Aknxn)]

`∗(Aknxn)`∗(Aknx0)
F̄ (Aknx0) + o(1), (4.14)

=

[
`∗(Aknx0)

`∗(Aknxn)
(Aknxn)α − `∗(Aknxn)

`∗(Aknx0)
(Aknx0)

]
F̄ (Aknx0) + o(1) (4.15)

=
[
Aαkn(xn − x0)(1 + o(1))

]
F̄ (Aknx0) →

n→∞
0, (4.16)
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where in the second line we have used the monotonicity of F̄ and in the final line

we have employed Potter’s Theorem to conclude that

lim
n→∞

`∗(Aknxn)

`∗(Aknx0)
= 1.

Proceeding in the same way one obtains a lower bound h(Aknx0). Finally assuming

that xn converges to x0 from below we obtain the same bounds as above but

reversed which concludes the proof.

�

4.5 Going from continuous to discrete tails

Lemma 4.5.1. Let Gα be a non-stable semi-stable distribution and let F ∈ Dgp(Gα, kn, Akn)

be given by (1.9). Suppose now that X is a non-negative integer valued random variable

on a probability space (Ω,F ,P) whose distribution satisfies

P(X > n) = F̄ (n),

for every n sufficiently large. Then the distribution function FX of X is in Dgp(Gα, kn, Akn).

Proof. We show that FX(x) = P(X ≤ x) satisfies the criteria of Corollary 3 in [Meg00]

in order to conclude that FX ∈ Ggp(Gα, kn, Akn).

By our hypothesis for each n large enough we have

1− FX(x) = 1− F (bxc) (4.17)

= x−α ˜̀∗(x)(M(δ(x)) + h̃(x)), (4.18)
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where in the final line of the above we have set

h̃(x) := M(δ(bxc))−M(δ(x)) + h(bxc),

and

˜̀∗(x) :=

(
bxc
x

)−α
`∗(bxc).

We then know that it is sufficient to check that l̃∗ is slowly varying at ∞ and that for

every continuity point x0 of M

lim
n→∞

h̃(Aknx0) = 0.

Indeed, whenever x0 is a continuity point of M we have

M(Aknx0) = M

(
δ

(
Aknx0

(
1− {Aknx0}

Aknx0

)))
−M(δ(Aknx0))+h

(
Aknx0

(
1− {Aknx0}

Aknx0

))

which converges to 0 in the limit as n→∞ by an application of Proposition 4.4.2.

By definition ˜̀∗ is right continuous, to see that ˜̀∗(x) is slowly varying at ∞ we note

that it is sufficient to show that

lim
x→∞

`∗(x)

`∗(bxc)
= 1,

which holds true by Potter’s Theorem. �

4.6 Sums of two log period functions

Here we give the proof of Lemma 1.1.13.

First we prove the following.
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Lemma 4.6.1. Let M : R>0 → R be a right continuous function and let a, b > 0 be

two numbers where b is not a rational power of a. Suppose that M(ax) = M(x) and

M(bx) = M(x) for all x. Then the M is a constant function.

Proof. Suppose that M is log-periodic with periods a, b, and suppose moreover that b

is not a rational power of a. Then loga(b) ∈ R \Q. Let ψa = loga mod 1, then ψa is a

bijection ψa : R/aZ → R/Z and so we can write

M(x) = M̃ ◦ ψa(x),

where M̃ satisfies

M̃(x) = M̃(x+ 1),

for every x > 0. By assumption for every integer n,

M(x) = M(bnx) = M̃ ◦ ψa(bnx).

Since loga(b) is irrational we have that for every x the set {ψa(bnx) = n loga b + ψa(x)

mod 1}n∈Z is dense in [0, 1] - irrational circle rotations have dense orbits. Thus for every

x > 0 there is a dense set Ex on which M is constant. Letting y ∈ [0, 1) be arbitrary

we may find for a given x a sequence nr of integers such that limr→∞ ψa(b
nrx) = y and

moreover may take ψa(bnrx) to be monotone decreasing. Then by right continuity we

find that M must indeed be constant on all of R>0. �

Proof of Lemma 1.1.13. If b is a rational power of a, i.e. ap/q = b then letting c = bq = ap

we see that M(cx) = M(x) for every x.

Now suppose that b is not a rational power of a and suppose that there is some c such
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that M(cx) = M(x) for all x. Then we have that

M1(cx)−M1(x) = M2(x)−M2(cx).

The function x 7→ M1(cx) − M1(x) is log-periodic with period a and the function

x 7→M2(x)−M2(cx) is log-periodic with period b. Thus

H(x) = M1(cx)−M1(x) = M2(x)−M2(cx),

satisfies H(x) = H(ax) = H(bx) for every x and so by Lemma 4.6.1 must be constant.

�

4.7 Integrating regularly varying functions with index

less than −1

Proposition 4.7.1. Let f : R → R be regularly varying at ∞ with index p < −1 so

that f(x) = xpL(x) with L : R→ R slowly varying. Then

∫ ∞
x

f(t) = O(xp+1L(x)),

as x→∞.

Proof. Let A > 1 and let δ > 0 be small enough so that p+ δ < −1. Then by Potter’s

bounds we know that there exists x0 > 0 such that

L(y)

L(x)
≤ Amax

{(y
x

)δ
,

(
x

y

)δ}
,
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for every x, y > x0. Then we may calculate that

(xp+1L(x))−1

∫ ∞
x

f(t)dt = x−1

∫ ∞
x

(
t

x

)p
L(t)

L(x)
dt

=

∫ ∞
1

zp
L(zx)

L(x)
dt

≤ A

∫ ∞
1

tp+δ = const,

where in the second line we make the substitution z = t/x. �

4.8 An estimate on |eia − 1|

Proposition 4.8.1. For any δ ∈ (0, 1) there exists C > 1 such that

|eia − 1| ≤ C|a|δ.

Proof. Fix δ ∈ (0, 1) and let C > 1 be such that

|eia − 1| ≤ C|a|δ,

for each a 6∈ (1,−1). Then for each a ∈ (1,−1) we note that |eia− 1| ≤ |a| as the arc of

the circle spanned by the angle a is of length |a| and this is clearly larger than |eia− 1|

which allows us to conclude that |eia − 1| ≤ C|a|δ. �
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