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Chapter 1

Introduction

Magnets have long been established as a key component data storage technologies, [1–4].

Information is stored in the internal magnetisation configuration of the magnet. Today,

collective waves of magnetisation precession, known as spin waves, are considered a promis-

ing information carrier in future spin wave devices [5, 6]. They offer several advantage

over electron for this purpose, lower energy consumption and heat generation whilst their

coherence lengths are greater, enabling wave computing phenomena [7]. This comes at the

expense of shorter lifetimes and a more complicated relationship between the propagation

characteristics and the geometry of the device [8, 9]. To control their propagation, periodic

media known as magnonic crystal have been developed which break the spin wave spectrum

into a series of minibands [10]. Recent interest into a new class of mobile bubble domains

known as magnetic skyrmions has reopened questions regarding the size, stability, mobility

and dynamic modes of bubble domains [11, 12]. Although the theory of domains and spin

waves are well established [13], there remains a long way to go before the two can be

combined into a feasible technology [14]. As new magnetic materials are synthesised and

fabrication techniques improve, new phenomena are still being discovered [15]. The research

in this thesis was aimed at both spin wave propagation in periodic media and the formation
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of new magnetic textures which could in the future find application in new magnonic crystals

or other devices.

Chapter 2 introduces the central topics addressed in this thesis. First, the history of

magnetism research is condensed into a few short paragraphs. Followed by a more detailed

discussion of micromagnetic physics and the origins of ferromagnetism, which forms the

theoretical basis upon which the rest of the work is built. Ferromagnetic resonance of

magnetic media is then introduced which naturally leads to the topic of spin waves, which are

discussed in the context of ferromagnetic films. Magnonic crystals, periodic magnetic media

which open band gaps in the spin wave spectrum, and Magnetic bubble domains, cylindrical

magnetic domains, are both introduced here, as they both appear in multiple chapters. The

chapter closes with a short description of micromagnetic simulations which are a key tool in

micromagnetism research.

Chapter 3 is concerned with the Bloch oscillation of spin waves in a periodic magnetic

medium. An approximate theory is first derived that describes the Bloch oscillations and then

it is applied to backward volume spin waves in a periodically modulated Yttrium Iron Garnet

film. Periodic field modulation and periodic modulation of the magnetisation saturation are

both used to open band gaps in the spin wave spectrum. When gradient in the bias magnetic

field is introduced, spin waves are induced to perform Bloch oscillations. Micromagnetic

simulations are used to validate the theory and both Bloch oscillations and Bloch-Zener

oscillations are observed and characterised. Finally an experimental method is proposed to

observe Bloch Oscillations of spin waves for the first time.

Chapter 4 follows the story of X-ray scattering experiments aimed at imaging a recently

discovered and exotic domain structure known as a biskyrmion. Publications reporting

Lorentz transmission electron microscopy image of biskyrmion domains in MnNiGa films

have the disadvantage of only being sensitive to in-plane magnetic flux density. Using off

axis X-ray holography we show that the reported biskyrmion domains are more likely to be
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traditional, type 2 bubble domains. This analysis was reinforced by our collaborators who

performed micromagnetic simulations showing that type 2 bubble domains and biskyrmions

give rise to nearly identical images when measured using Lorentz transmission electron

microscopy images.

Chapter 5 reports a micromagnetic simulation of a complex magnonic crystal composed

of a honeycomb array of magnetic bubble domains, confined within a hexagonal lattice of

antidots. The low frequency modes corresponding to the oscillation of the bubble domain

walls are shown to interact with one another to form a band structure. The breathing mode

dominates the response of the system to exeternal magnetic field pulses and forms the widest

band with the greatest group velocities. Higher order oscillations of the bubble domain wall

form much flatter, weakly propagating bands. The domains interact through their magnetic

fields and a simple model of interaction is developed with qualitatively explains the trend

towards zero group velocity for higher order modes.

Chapter 6 rounds off this thesis with concluding remarks regarding the research presented

within it.





Chapter 2

Micromagnetism

" .. all the twistings and turnings that must go on in all those atomic magnets.

(Some people like to amuse themselves with the theory of these things!) "

-Feynman

Magnetism takes its name from the ancient Greek territory of Magnesia, where magnetic

magnetite ore was discovered that attracted iron. They used it as a novelty and for supersti-

tious medicine. Today our modern, scientific understanding enables us to use magnetism for

real medicine, [16]. In fact magnetism underpins many technologies we rely on, from elec-

trical power generation [17, 18] to microwave signal processing in our telecommunications

[19] and magnetic data storage in our computers [1–3], to name just a few.

The first breakthroughs in understanding magnets came with Orsted’s experiment that

showed a current-carrying wire exerts a force on magnets and other current-carrying wires

[20]. This inspired Ampere to study the problem and he suggested that magnets possessed

microscopic currents circulating constantly inside them which generated the magnetic field.

Mathematical treatment of the relationship between electricity and magnetism was established

by Maxwell, unified electricity, magnetism and light, setting the foundation of electromag-

netism [21]. None the less, Weiss was to show that classical electromagnetism cannot explain
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the strength of permanent magnets [22, 23]. It took the development of Quantum mechanics

in the early 20th to explain the origin of permanent magnets as arising from the exchange

interaction, an effect with no classical analogue [24, 25]. Understanding of the internal

magnetic structure of magnets and their dynamics remained a challenging problem.

Micromagnetism is the study of magnetisation on length scales great enough that a

continuous medium approximation can be applied, but small enough that magnetic textures

such as domain walls can be resolved. Approximately nanometre to micrometre length scales.

Built on the theory of Landau and Lifshitz [26] and refined by Brown [27], it boasts success

in predicting the domain patterns formed in ferromagnets [26], magnetisation dynamics such

as spin-waves [28, 5], domain wall motion [29] and more. With the advent of micromagnetic

simulations, researchers can go beyond the limitations of analytical theory and explore the

full range of non-linear phenomena that occur within magnetic materials [30–32]. Today

research is aimed at increasingly exotic phenomena to develop materials and devices which

have applications in information technologies [12, 33].

The micromagnetic model has three pieces. The first being the free energy of a ferro-

magnet which is composed of all the energies which affect the magnetisation. The second

piece is the effective field, so-called because it takes the form of a magnetic field but not

all of its contributions are true magnetic fields. It is the functional derivative of the free

energy with respect to the magnetisation and it feeds into the final piece which is the equation

of motion of magnetisation. This determines the time evolution of magnetisation and was

originally developed by Landau and Lifshitz [13, 26, 34]. The equilibrium magnetisation

configuration is determined by minimising the free energy, while the magnetisation dynamics

are determined by the free energy combined with the equation of motion.
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2.1 Free energy of a ferromagnet

The free energy of a ferromagnet can in principle contain many terms, many of which

describe either rare or extremely weak phenomena. There are however some terms which

cannot be left out and these essential contributions to the free energy are discussed here.

2.1.1 External field

The simplest contribution to the free energy is the influence of external fields. Since the

magnetisation is the density of dipole moments, the energy density is just the energy of a

dipole in an external field,

εext =−M ·Hext, (2.1)

where Hext is the external magnetic field and εext is the Zeeman energy density, named

in honour of Pieter Zeeman who made his name showing the splitting of spectral lines

due to external magnetic fields [35]. In addition to controlling the static magnetic state,

time-dependent external fields can be used to induce dynamics. For example, short pulses

to excite broadband behaviour, or continuous wave excitation to excite specific frequencies

[36, 5].

2.1.2 Demagnetising field

The most complicated term in the free energy is the interaction of the magnetisation with

itself via its magnetic field. It is known as the demagnetising field because it acts to minimise

the total magnetic moment. In principle, every magnetic moment in the system affects every

other moment. Therefore the field is found by integrating over the entire volume as,

Hd =− 1
4π

∫
V

∇ ·M r
|r|3

dV, (2.2)
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where Hd is the demagnetising field and r is the vector between the element of volume

dV and the point where the field is evaluated.

This solution for the magnetic field is a solution of Maxwell’s equations in the static

limit. Relieved of their time dependence, electrostatics and magnetostatics take the same

forms. Here Divergent and convergent magnetisation take the role of positive and negative

magnetostatic charges. As do magnetisation components normal to a surface. The associated

energy density take the form,

εd =−1
2

M ·Hd, (2.3)

where the shape of a system can induce strong anisotropy through the formation of

magnetostatic charges at the surfaces. The most important examples are thin films where the

demagnetising field makes perpendicular magnetisation energetically unfavourable, creating

a hard axis [37, 38]. Weiss showed that the dipolar interaction is not responsible for the

spontaneous magnetic ordering observed in ferromagnets and that a molecular field thousands

of times stronger must be responsible. [22, 23].

2.1.3 Exchange interaction

The true nature of Weiss’ molecular field was explained by Heisenberg, who suggested

that the exchange interaction is responsible [24]. In ferromagnets, the exchange interaction

promotes the parallel alignment of neighbouring atomic moments. Fundamentally it arises

from the difference in electrostatic energy states that arise from the condition that electron

wave-functions must change sign when exchanged.

Direct exchange is the simplest manifestation that is concerned with localised valence

electrons of neighbouring atoms. Consider the textbook case of molecular hydrogen, com-

posed of two electrons and two protons. It has a hamiltonian,
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H = H0 +H1, (2.4)

where, H0 is the Hamiltonian the isolated hydrogen atoms,

H0 =− h̄2

2m
(∆1 +∆2)−

e2

r1
− e2

r2
(2.5)

and H1 represents their coloumb interaction,

H 1 =

(
e2

Rab
+

e2

r12
− e2

ra1
− e2

rb2

)
, (2.6)

where Rab is the separation between protons, r12 between electrons and ra1, rb2 are the

separation vectors between the electrons.

The spatial component of the two electron wavefunction can be composed of symmetric

or antisymmetric linear combinations of single electron wave functions,

ψ
(±)(r1,r2) =

1√
2
[Φa(r1)Φb(r2)±Φa(r2)Φb(r1)] , (2.7)

where Φa(r1) the wave function of the electron 1 in state a, with Φa(r2) the same for

electron 2 and (±) indicates the symmetry of the combination (+) for symmetric and (-) for

antisymmetric.

Two eigenvalues of the Hamiltonian are found, for the spatially symmetric and antisym-

metric wave functions respectively.

E(±) = E0 ±
C+ Jex

1+S2 , (2.8)

where C is the expectation value of the coulomb intergral, Jex is the exchange integral

and S is the overlap integral. Considering the interaction as a perturbation on the internal

energy of the separate hydrogen atoms, the overlap integral S → 0,
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E(±)
2 =C± Jex (2.9)

where,

C =
∫∫

Φa(r1)
2H1Φb(r2)

2d3r1d3r2,

Jex =
∫∫

Φ
∗
a(r1)Φ

∗
b(r2)H1Φb(r1)Φa(r2)d3r1d3r2,

(2.10)

The exchange integral Jex is negative for Hydrogen, therefore the symmetrical spatial

wavefunction has the lower energy. Thus far, the spin part of the electron wavefunction has

not been considered. They are indirectly related to the energy by the rule that the two-electron

wavefunction must be antisymmetric. This connects the spin state to the Coulomb energy.

It follows that the spinor component of the two-electron wavefunction must, therefore,

be anti-symmetric. Like the spatial component, the two-electron spinor is also a linear

combination of the individual spin components, which can be either up or down.

χ
(±)
s =

1√
2

[
χ
(1)
s χ

(2)
s ±χ

(2)
s χ

(1)
s

]
(2.11)

where χ
(i)
s is the spinor of electron i with spin state s. There is one antisymmetric

combination that has one spin up and one spin down, for a total S=0.

χ
(−)
m=0 =

1√
2

[
χ
(1)
↑ χ

(2)
↓ −χ

(2)
↑ χ

(1)
↓

]
(2.12)

There are three states with S = 1 known as the triplet states with m =−1,0,1 respectively.

χ
(+)
m=1 =

1√
2

[
χ
(1)
↑ χ

(2)
↑

]
χ
(+)
m=0 =

1√
2

[
χ
(1)
↑ χ

(2)
↓ +χ

(2)
↑ χ

(1)
↓

]
χ
(+)
m=−1 =

1√
2

[
χ
(1)
↓ χ

(2)
↓

] (2.13)
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The total wavefunction is given by the product of spatial and spinor. It must be antisym-

metric (-) for electrons.

Ψ
(−) = ψ

(±)
χ
(∓) (2.14)

In the hydrogenic case, the lower energy state is obtained for antisymmetric spin states.

However, in Ferromagnetic materials, the lower energy state is obtained for symmetric spin

states and this is the cause of ferromagnetism. Direct exchange is dominant for local moments

in non-metals in non-metallic ferromagnets.

Dirac pointed out that the critical feature of the Heisenberg Hamiltonian could be simply

expressed as the dot product of the neighbouring spins,

Hi, j =−J ∑
i,k

(
si · s j

)
, (2.15)

which is known as the Heisenberg Hamiltonian, [25]. Here J is the exchange integral [24,

13] which represents the strength of exchange interaction, while si and s j are neighbouring

spins. In ferromagnets J is positive, favouring parallel alignment of neighbouring atomic

magnetic moments. Negative values of J results in an anti-parallel alignment of neighbouring

atomic magnetic moments, known as antiferromagnetic ordering. But for most materials, the

exchange interaction is not strong and there is no magnetic ordering. Despite being negative

for the hydrogen molecule, Heisenberg argued that the sign of J might reverse at some critical

inter-atomic distance. Calculations of the exchange integral ab-initio are very challenging,

[39]. Moreover, direct exchange only considers the valence electrons of nearest neighbour

atoms. Different forms of exchange interaction have been discovered which provide magnetic

ordering in different chemical situations.

Super-exchange is the coupling of the magnetic moments of two magnetic cations that

are both bonded to an intermediate anion, such as in Mn-O-Mn [40]. According to the

Goodenough-Kanamori rule [41], the coupling is anti-ferromagnetic where the cations have
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half-filled orbitals, which is usually the case, and ferromagnetic where one is half-fill and the

other is full. This interaction is strongest when the cation-anion-cation bond angle is 180

degrees and minimal at 90 degrees. It is the dominant cause of magnetic ordering insulators,

antiferromagnetic, ferrimagnetic or ferromagnetic.

RKKY exchange is named after the main contributors, Ruderman, Kittel, Kasuya, Yosida

[42]. It is the theory of exchange coupling between 3d electron spins which is mediated by

conduction band electrons and is the dominant cause of magnetic ordering in conducting

ferromagnets.

Antisymmetric exchange or Dzayoshinskii-Moriya interaction (DMI) is found only in

crystals with no inversion symmetry and it promotes canted spins instead of parallel/antipar-

allel spins [43]. It arising from the spin-orbit interaction and promotes helical, conical and

skyrmion lattice phases. It is written in a similar form to the Heisenberg exchange except the

scalar product is replaced with a vector product,

EDMI = Di, j[Si ∧Sk], (2.16)

where EDMI is the DMI energy between two spins Si and S j and Di j is the DMI vector. In

the case of the super-exchange interaction, the DMI vector Di j is proportional to the vector

product of the vectors from the intermediary ion to the magnetic ions, Di j ∝ ri ∧ r j.

In ferromagnetic systems where the magnetisation varies slowly with respect to the lattice

constant, the exchange energy can be expanded in the small angle limit. Now the exchange

energy density for continuous magnetisation can be expressed as quadratic with respect to

the gradient of magnetisation as,

εexch = Aex (∇M)2 , (2.17)

where Aex is the exchange constant of the material, A = NJ/2a, with N the number of

nearest neighbours and a the lattice constant. The exchange stiffness is more useful as it is
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abstracted from consideration regarding the crystal lattice and is measured experimentally

by a variety of techniques [44]. However, DMI must be treated separately because it is

qualitatively different.

On the mesoscopic scale, the different mechanisms of the exchange interaction are lumped

together into an effective exchange stiffness as in Eq. (2.17). Moreover, this description is

commonly used in micromagnetic simulations, regardless of whether the exchange interaction

takes the form of direct exchange, super-exchange or RKKY interactions. Furthermore, the

exchange interaction is usually considered to be isotropic, even when the structure of the

material is not. The effect of the crystal lattice structure on the magnetisation is known as

magneto-crystalline anisotropy.

2.1.4 Magneto-crystalline anisotropy

The crystal structure of a material is coupled to its magnetisation principally through the

spin-orbit interaction [13]. This couples the spin moments to the orbital moments, which

are coupled to the crystal electric field. The result is that magnetisation favours certain

crystallographic axes or planes, known as easy axis or easy plane anisotropy. A much weaker

contribution to anisotropy comes from the magnetic dipolar interactions between atoms in

non-cubic crystal lattices. Both types of magneto-crystalline anisotropy can be described by

a phenomenological model that parameterises the anisotropy energy in terms of the angle

between the anisotropy axis and the magnetisation. It takes the form of a power series

expansion, typically, only the first term is necessary,

εa =−K1
(
M̂ · û1

)2 −K2
(
M̂ · û2

)4 (2.18)

where Kn is the amplitude of anisotropy of the nth degree along the axis ûn. Only even

powers of the dot product are allowed because anisotropy does not prefer one direction

over another. If K is positive then the energy is minimized when M ∥ û, which is known
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as easy-axis anisotropy. The opposite case is known as hard axis, or easy plane anisotropy

and this favours magnetisation to take some position on a plane M ⊥ û. Multiple axes of

anisotropy may be present depending on the crystal, for example, cubic crystals have three

axes of anisotropy, while hexagonal lattices tend to have one. The pattern of magnetic

domains formed in a system depends on the magnetocrystalline anisotropy.

Consider a ferromagnetic film that has easy-axis anisotropy perpendicular to the plane

(PMA), with no external fields applied. The PMA favours perpendicular magnetisation, whilst

the shape of the film favours in-plane magnetisation. The ratio between the demagnetising

and anisotropy energy determines whether the film is magnetised perpendicular or parallel to

the plane. This figure of merit is known as the Q factor for magnetic films and takes the form,

Q =
2K

µ0M2
s

(2.19)

where K is the magnetocrystalline anisotropy, Ms is the saturation magnetisation and Q is

the quality factor. If Q > 1 the magnetisation is orientated perpendicular to the plane, giving

rise to stripe domains and bubble domains can be formed as shown in fig. (2.6) [4]. In the

case when Q < 1, magnetisation is uniform for infinite films, and forms in-plane domains in

finite-size films, as shown in fig. (2.1), often called Landau or flux closure patterns [26].

2.1.5 Yttrium Iron Garnet

Yttrium Iron Garnet is an important material for the study of spin waves due to its excep-

tionally low damping, α10−5, which gives spin-wave lifetimes many times greater than

other magnetic materials [6]. It has a complicated garnet structure, with a cubic unit cell

measuring 12.376±0.004Å on each edge and containing 24 Y3+ ions, 40 Fe3+ ions, and 96

O2- ions. Super-exchange is responsible for the ferrimagnetic order of YIG, which comes

from the 24 Fe3+ ions in the tetrahedral site (d) being anti-ferromagnetically coupled to the

16 Fe3+ ions in the octahedral site (a). Naively, this gives the unit cell a magnetic moment of
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approximately 40 Bohr magnetons and therefore a magnetisation saturation of Ms 195kA/m.

However, the configuration is more complex and the experimental value is Ms ≈ 140 kA/m

[45].

Despite having 40 Fe3+ ions in the unit cell, only one band, known as the ferromagnetic

band, lies within room temperature energies, making the mesoscopic scale approximation of

YIG as a homogeneous ferromagnetic material valid at low temperature. The exceptionally

low damping comes from two attributes. Firstly, the lack of conduction electrons which

prevents coupling of spin waves to electron bands. Secondly, the 3d orbital of the Fe3+

ions are half full and therefore no net orbital moment L=0, which suppresses coupling to

the crystal lattice, reducing the scattering from lattice vibrations and causing the magneto-

crystalline anisotropy to be small. The latter is negligible when compared to the bias fields

used in experiments and is typically discounted.

2.2 Effective magnetic field

The free energy functional takes the magnetisation function and returns the scalar value of

the total free energy in the system. It takes the form of a volume integral of the free energy

density,

E f ree =
∫

V
εdV, (2.20)

where E f ree is the total free energy and ε is the volume density of free energy arising

from the various interactions within the ferromagnet, see Sec. (2.1). A small variation in

magnetisation results in a small variation of the free energy,

δE f ree =
∫

V
−δM · δε

δM
dV, (2.21)
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where δM is a small variation in the magnetisation function. At equilibrium, the free

energy must be minimal and therefore δEfree = 0. As the amplitude of |M| is constant, δM

is constrained to be perpendicular to M. Thus, −δε/δM is parallel to the magnetisation at

equilibrium. In general this quantity acts as an effective magnetic field,

Heff =− δε

δM

=− ∂ε

∂M
+

∂

∂ ri

∂ε

∂
∂M
∂ ri

,
(2.22)

where Heff is the effective field. It is so called as it combines all the interactions within

a ferromagnet into a single effective magnetic field that exerts torque on the magnetisation

just as a true magnetic field. This is a key quantity that feeds into the equation of motion of

magnetisation.

This variational approach was used by Landau and Lifshitz to determine the structure of

magnetic domains [26]. Where competition between the exchange energy, which dominates

on local length scales, and the demagnetisation energy which dominates at longer lengths

scales, naturally gives rise to domains of uniform magnetisation, separated by domain walls

of tightly curving magnetisation. The domains cost demagnetising energy while the domain

walls cost exchange energy.

The magnetic structure is further broken up by the presence of grain boundaries between

different crystal grains in a material. In this way, ferromagnetic materials do not always

possess a strong net magnetic moment. However, they can be induced to do so by application

of a strong enough magnetic field to align the magnetisation. When the field is removed a net

magnetic moment remains. The magnetisation state depends on the history of the magnetic

field, a property known as hysteresis. It underpins magnetic data recording technologies.
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Fig. 2.1 Original sketch of magnetic domains at the edge of a ferromagnetic film. The
orientation of domains are shown by arrows. Stripe domains terminating in triangle domains
such that the magnetisation flux forms a closed loop, minimising the magnetostatic energy.

2.3 Equation of motion

The equation of motion for magnetisation was developed by Landau-Lifshitz, who predicted

collective Larmour precession and showed that it was responsible for the high-frequency

permeability of ferromagnets [26]. It described the damped precession of magnetisation

under the influence of the effective magnetic field, Eq. (2.22).

dM
dt

=−γM∧Heff +λM∧ (M∧Heff) , (2.23)

where, γ is the gyromagnetic ratio [13, 23], λ is the phenomenological damping parame-

ter.

Different variations of this equation can be found in the literature which have been

developed to tackle particular problems, such when the magnitude of Ms is reduced due to

demagnetisation [46], or to account for spin transfer torque [47]. However, the most common

variation is that of Gilbert, which is equivalent to Landau and Lifshitz original equation when

damping parameter is small [48]. It takes the form,
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Fig. 2.2 Sketch of major hysteresis loops of ferromagnets. The Y-axis is the total magnetic
moment, which at its maximum when the magnetisation is saturated, whilst the x-axis is the
bias field. Left) Hysteresis of a hard ferromagnet along its easy axis of magneto-crystalline
anisotropy. Centre) A soft ferromagnet. Right) A paramagnet, it has no spontaneous
magnetisation when the external field is zero, but becomes magnetised when a field is
applied.

dM
dt

=−γM∧Heff +αM∧ dM
dt

, (2.24)

where α is the Gilbert damping parameter.

In the simplest case, all varieties describe the damped precession of magnetisation,

which spirals in towards the equilibrium position, as depicted in fig. (2.3). However, it

is a non-linear, integral differential equation with no general solution. The full range of

phenomena is much greater and more interesting, from the formation of different domain

patterns to the gyration of magnetic vortices and more. In general micromagnetic simulations

are required to integrate a trajectory from initial conditions but an analytical solution can

be found under certain circumstances. At low energies, the magnetisation does not deviate

far from equilibrium and the LL equation can be linearized. The demagnetising field can be

calculated analytically for systems with convenient symmetry.



2.4 Ferromagnetic resonance 19

Fig. 2.3 Sketch of magnetic damped magnetic precession described by the Landau-Lifshitz
equation. Red shows the precessional term, while Blue shows the damping term. The
trajectory magnetisation deflected from equilibrium is a spiral inwards to the equilibrium.
Note that the damping is exaggerated in this sketch to be visible.

2.4 Ferromagnetic resonance

In 1946, Griffiths measured an anomalous frequency-dependent conductivity in ferromagnets

[49]. Two years later, Kittel successfully calculated the frequency of uniform, ferromagnetic

resonance (FMR) of ellipsoids magnetised to saturation with his famous formula [50]. If an

elliptical sample is magnetised by to saturation by bias field H that is orientated along one of

the principle axes of the ellipse, the frequency of uniform precession is given by,

ωFMR = γ

√
H(H+ N̄M), (2.25)

where H is the saturating external field and the demagnetising field is given as a proportion

of the static magnetisation M according to the demagnetising tensor N̄ of the system. It

should be pointed out that as the magnetisation remains uniform throughout, therefore, the

frequency does not depend on the exchange interaction at all. In the case of ferromagnetic

films this reduces to,



20 Micromagnetism

ω∥ = γ
√

H(H+4πMs),

ω⊥ = γ (H−4πMs)) ,

(2.26)

where ω∥ and ω⊥ are the FMR frequencies for a film magnetised parallel and perpen-

dicular to its plane respectively. Magneto-crystalline anisotropy can be incorporated as an

effective demagnetising field HK =−N̄K ·M, where K is the first order anisotropy constant,

HK is the effective field of anisotropy and N̄K is the effective demagnetising tensor for

anisotropy. For a film with perpendicular easy axis anisotropy, the FMR frequency is given

by,

ω⊥ = γ

(
H+

2K
Ms

−4πMs

)
, (2.27)

where K is the first order easy axis anisotropy constant. In this case, the anisotropy

reinforces the bias field and increases the frequency of FMR.

The Kittel formula describes uniform precession, which in Fourier space corresponds to

k = 0. This can be considered a limiting case of the more general phenomena of waves of

magnetic precession where k ̸= 0. These waves of precession are known as spin waves.

2.5 Spin waves

First theorised by Bloch to explore the origins of ferromagnetism and explain the dependence

of magnetisation saturation at low temperatures [51]. The study of spin waves has developed

into a growing field of its own, known as Magnonics [5, 6].

The spin-wave spectrum has two distinct limiting cases of low and high k. The develop-

ment of spin-wave theory grew from either limit and met in the middle.

In the limit, k → 0, the exchange interaction contribution to the free energy tends to-

wards zero. This is due to the exchange interaction being proportional to the change in
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magnetic angle with position ∇M, which tends to zero when M is uniform. Therefore, the

magneto-dipole interaction dominates in what is known as the magnetostatic regime. As

the group velocity of spin waves are much lower than c, retardation effects can also be

excluded. The dispersion of magnetostatic spin waves depends strongly on the geometry

and equilibrium magnetisation configuration. In a confined system a discrete spectrum of

standing modes is formed [52]. When positioned close enough these modes can interact and

in an extended system, continuous bands of spin waves form [28, 53, 54]. The dispersion of

these magnetostatic waves can be derived from Walker’s micromagnetic equations [55] which

themselves are a solution of Maxwell’s equations in a medium with a chiral permeability

[13, 34].

As k increases, the exchange interaction overtakes the demagnetising field as the dominant

term in the effective field. This intermediate regime is known as the dipole-exchange regime

and the dispersion relation of magnetostatic modes can be extended to include the effect of

the exchange interaction [56].

Damon and Eshbach studied the spectrum magnetostatic spin waves in uniformly magne-

tised ferromagnetic films [28, 57]. They showed that the spectrum of magnetostatic waves

spectrum smoothy transitions into the spectrum of exchange spin waves, tying together the

quantum mechanical and classical theories of spin waves. They also showed the surface

character of magnetostatic spin waves when M ⊥ k . For the case of uniformly magnetised

ferromagnetic films there exists three limiting cases according to the relative orientation of

the magnetisation and wave vector.

• k ∥ M and M ⊥ n̂, Backward volume geometry

• M ∥ n̂, Forward volume geometry

• k ⊥ M with M ⊥ n̂, Damon Eshbach geometry

where n̂ is the surface normal of the film.
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Kalinkos derived an approximate dispersion relation for the uniform thickness modes

[56] which are used here. In principle there is a series of thickness modes for spin waves in

the forward and backward volume geometries. In the latter these draw closer together as k

sweeps away from M, eventually coming together as one in the surface wave geometry, as

shown in fig. (2.5). However, it is reasonable to restrict our analysis to the uniform thickness

mode as they are most strongly excited by external fields and tend to dominate the dynamic

response [13]. Furthermore, in the limit of k → 0 they are the only modes with finite group

velocity. They take the following forms,

ω
2 =


ωex

(
ωex +ωM

1−e−kd

kd

)
, Backward volume

ωex

(
ωex +ωM

(
1− 1−e−kd

kd

))
, Forward volume

ωex (ωex +ωM)+
ω2

M
4

(
1− e2kd) , Surface

(2.28)

where ωex is the contribution to the frequency from the internal field and exchange

interaction, while ωM is the contribution from the dynamic demagnetising field field ωM =

γMs,

ωex =


γH +AexωMk2, Backward volume and Damon-Eshbach geometry,

γ(H −Ms)+AexωMk2, Forward volume geometry,
(2.29)

where the term AexωMk2 is the contribution to the dispersion from the exchange interac-

tion. It is quadratic at low k, at higher k this model breaks down as the spin-wave dispersion

must flatten out at the Brillouin zone of the crystal lattice.

For larger k, the exchange interaction dominates the effective field and the profound

difference that different geometries made in the magnetostatic case are drastically minimised

and serve only to perturb the dispersion [13, 58, 59]. In Yttrium Iron Garnet, the parabolic
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Fig. 2.4 Spin wave dispersions for spin waves in a film [56], Ms = 0.25 T, |Hext| = 0.5
T, Aex = 5.34e− 17 m−2 and thickness d = 1 µm. Left. Forward volume geometry, the
dispersion is isotropic in the plane of the film. Centre. Backward volume geometry. Right.
Surface spin wave geometry. The orientation of magnetisation, external field and wave
vector are shown as a sketch inset to each panel. The dispersion in the dipole-exchange and
magnetostatic regimes are shown as solid and dashed lines respectively.

dispersion obtained by micromagnetics has been shown to deviate from the measured dis-

persion by 5% for k ≈ 10% of the way towards the BZ boundary along the Γ−H direction,

representing 0.1% of the BZ by volume, see [60]. In the simplest model of a chain of spins

modelled with the Heisenberg Hamiltonian eq. (2.15), the dispersion takes the familiar cosine

shape found in tight-binding models of electrons [13].

2.5.1 Magnonic crystals

Chapters 3 and 5 are concerned with spin-wave propagation in periodic magnetic media

known as magnonic crystals [5]. The periodic modulation is used to open band gaps in the

spin-wave spectrum, which are in turn used to control the propagation of spin waves. For

this reason, they are considered an important component of future magnonic devices, where

information is carried by spin waves. In this respect, they can be considered the magnonic

equivalent of semiconductors, or photonic crystal which take similar roles in electronics and

photonics [61].
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Fig. 2.5 Damon and Eshbach’s original sketch of the dispersion of magnetostatic spin waves in
a ferromagnetic film magnetised in its plane along the z axis [28]. The spin wave modes split
from ferromagnetic resonance at k = 0, into many backward volume thickness modes which
sweep up into a single surface wave as the angle of k changes from parallel to perpendicular
to the static magnetisation.

In principle, magnonic crystals can be realised by periodic modulation of any parameter

that affects spin dynamics [62]. Traditionally, geometrical patterning is used [63–66] but

magnonic crystals made using different magnetic materials, [67, 68] modulated applied

magnetic field [69] or heating [70, 71] have also been studied. Of these methods, only

periodic modulation of the temperature or applied field can be switched on and off. This

dynamic control is desirable, however, these methods require a constant delivery of energy

and additional components which take up space. One promising solution is the development

of magnonic crystals which use periodic modulation of the magnetisation configuration to

open band gaps [72–75]. They are of special interest as they may enable reprogrammable

magnonic crystals and other devices. For a review of this topic see [14].
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2.6 Bubble domains

Magnetic bubble domains make multiple appearances in this work so it is convenient to

introduce them here. They are cylindrical domains of reversed magnetisation, in an otherwise

uniformly magnetised sample, fig. (2.6). They can be formed in magnetic films and platelets

that have easy axis magneto-crystalline anisotropy directed perpendicular to the plane. The

ground state of such films, in the absence of an external field, is a labyrinth of perpendicularly

magnetised stripe domains. When an external field is applied perpendicular to the film, the

domains parallel to the field are enlarged, at the expense of the domains opposing the field.

As the field increases, the stripe domains break into individual bubble domains. Ultimately,

above a critical field, these bubble domains are unstable and collapse into a uniformly

magnetised state. An example of this behaviour is shown experimentally in Chapter 4.

Fig. 2.6 A sketch of magnetic domains in a perpendicularly magnetised film. Arrows indicate
the direction of magnetisation while shaded surfaces indicate domain walls. a) Bubble
domain in the onion state. b) Bubble domain in the skyrmion state. c) A stripe domain
terminating. d) A continuous stripe domain.

In the 1970s, bubble domains were a hot topic of research as their mobility and long

lifetimes led to their application in bubble memory devices proposed by Bobeck, [4, 76].

Traditionally research was focused on the stability [77], size and mobility of the bubbles [78].

From the LLG equation Eq. (2.24), Thiele derived an equation of steady state motion for

magnetic domains and used it to predict the translational motion of bubble domains [29]. It

takes the form,
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G ∧v−D ·v+∇U = 0, (2.30)

where U is the potential energy as a function of position of the spin texture, v is the

velocity, G is the magnetic gyro-vector, D is the dissipation dyadic, which take the form,

G =−
∫∫ 1

Msγ
M · (∇xM∧∇yM)dxdy,

D =−
∫∫

α

Msγ
∇iMk∇kM jdxdy,

(2.31)

The gyro-coupling vector has its genesis in gyration term of the Landau-Lifshitz equation

and it causes spin textures to gyrate about their equilibrium position, whilst the dissipation

term is derived from the damping term and is responsible for the return to equilibrium. While

all spin textures have a dissipation dyadic, only certain spin textures have a gyro-coupling

vector. It is determined by the topological winding number of the magnetisation unit vector

field onto a unit sphere.

A central example is the magnetic bubble domain. There are different forms of magnetic

bubble, depending on how the magnetisation in the domain wall is aligned. The two important

cases for this thesis are the skyrmion like bubble domain and the onion bubble domain, both

are sketched in fig. (2.6). The difference is that the skyrmion like bubble domain has a domain

wall in which the magnetisation circulates continuously, with no defects, either clockwise or

anticlockwise. The magnetisation unit vector field wraps the unit sphere once. This is the

definition of a magnetic skyrmion and it comes with a finite gyro-coupling vector. On the

other hand, the onion bubble domain is characterised by half the domain wall circulating

clockwise and half circulating anti-clockwise. This results in two magnetic poles, one where

the magnetisation is converging and one where it is diverging, giving the onion bubble

domain a finite in-plane dipole moment. In this case, the magnetisation of one half wraps

half the unit sphere, but the other half unwraps it to give a net-zero wrapping. Therefore, the

onion state does not have a gyro-coupling vector.
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In this treatment, the spin textures were assumed to be rigid. Whereas in reality domain

walls are at liberty to flex and oscillate [79]. In the case of bubble domains, the oscillation

of the domain walls gives the moving domain an effective mass that has implications for

the translational movement of bubble domains and skyrmions. Thiele’s approach can be

extended to consider the density of gyro-vector along the 1D line of the domain wall and it

has been shown that in a skyrmion like a bubble domain, spin waves have a different group

velocity depending on which direction they are travelling in [80]. This has motivated various

studies into the internal modes of bubble domains [81, 80, 82].

2.6.1 Internal modes of a skyrmion-bubble domain

Several internal modes of skyrmion like bubble domains have shown to reside below the

spin-wave continuum [83]. These internal modes consist of oscillations in the domain wall

with km =±m/r which are non-reciprocal with respect to clockwise and counter-clockwise

due to the gyro-coupling effect [84]. It has been shown that as the bias field increases, the

number of internal modes below the magnon continuum decreases [82], thus only the low

order modes need be considered and typically only the lower frequency direction is observed.

We enumerate them below and their corresponding diagrams are shown in fig. (2.7).

• m = 0, breathing mode, uniform expansion and contraction of radius

• |m|= 1, gyration mode, orbit of the domain centre about its equilibrium position

• |m|= 2, elliptical deformation, rotating ellipse

• |m|= 3, triangular deformation, rotating triangle

In the cases where the internal modes intersect with the spin-wave continuum, it has been

shown that spin waves scatter asymmetrically from skyrmions, creating a hall effect for spin

waves and imparting momentum to the skyrmions [85].



28 Micromagnetism

Fig. 2.7 Illustration of the low frequency modes of a bubble domain wall at an instance in
time. a) Breathing mode b) gyration mode c) elliptical mode. The dashed loop indicates
the equilibrium position of the domain wall. The loop line shows the current position of the
domain wall whilst faded lines show the preceding positions.

Fig. (2.7), shows a schematic of the internal modes of a bubble domain. The most

important mode is the breathing mode, where m=0, the bubble expands and contracts

uniformly [86]. It is the only mode which changes the dipolar moment of the domain and

thus can be excited by an A.C. magnetic field directed perpendicular to the film. Expansion

of the domain wall costs exchange energy, whilst the contraction costs demagnetisation

energy. Next is the clockwise and counterclockwise gyration modes, m = ±1. These are

the only modes which change the centre mass position of the domain or leave the domain

shape unchanged. The lower frequency of the pair is a Goldstone mode that corresponds to

the translational motion of the domain or lattice of domains. The action of clockwise and

counter-clockwise modes together results in a hypo-cycloidal orbit around the equilibrium

position [87]. Finally, we consider the elliptical modes, where m =±2, they take the form

of an elliptical deformation of the domain which rotates clockwise or anti-clockwise at

different frequencies. To describe the internal modes of skyrmions and skyrmion like bubbles,

how they interact with spin-wave continuum and accurately predict their inertia, remain the

subject of ongoing research in this field.
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2.7 Micromagnetic simulations

Micromagnetic simulations have become an important tool in magnetism research ,[30–32].

They form the third pilar, after theory and experiment and compliment both by helping to

interpret results and guiding new efforts. They integrate the Landau-Lifshitz equation in

incremental steps, evaluating the effective field according to equation (2.22) before updating

the magnetisation configuration typically using an adaptive time step integration scheme

such as Runge-Kutta 4/3 [88]. The volume is discretised into a mesh of cells each with its

magnetic moment that represents the average magnetisation in that volume [89]. There are

two choices in how the mesh is generated, finite difference methods use cuboid cells which

are less demanding in memory so have the advantage of higher cell resolution, while finite

element methods use a variable mesh of tetrahedra enabling the more accurate representation

of curved geometries. In both cases the angle between neighbouring spins must remain small

at all time, otherwise, the small-angle approximation used to calculate the exchange fails.

In this thesis, numerical simulations were performed with Mumax3, a GPU accelerated

micromagnetic package which boasts high performance for large simulations. It uses a

finite difference time domain (FDTD) methods to solve the Landau-Lifshitz equation eq.

(2.23). Details of the design and verification of Mumax3 can be found in reference [32]. The

practical considerations include the maximum number of cells which is determined by the

available memory on the graphics card, as simulations must fit entirely into a single card.

Another consideration is that the maximum angle in magnetisation between adjacent cells

must be small, as the exchange interaction energy uses a small angle approximation which

will overestimate the exchange energy of large angles. For Mumax3 a maximum angle of 20

degrees is recommended [32].





Chapter 3

Bloch and Zener oscillations of

spin-waves

3.1 Introduction

In 1929, Bloch made the surprising prediction that electrons in a perfect lattice, when subject

to a uniform electric field, do not propagate. Instead, they oscillate back and forth around a

stationary mean position, the electric field increases the electron wave-vector until it reaches

the band edge, where it is reflected, in a phenomenon known as Bloch oscillations (BOs)

[90]. Alternatively, the electron can tunnel across to the next band, in a process as resonant

Zener tunnelling or Zener breakdown. This occurs when the electric field is strong or the

bandgaps are small [91]. The combination of Bloch oscillations and Zener tunnelling is

known as Bloch-Zener oscillations (BZOs). Here electrons tunnel across the many bands

before being reflected, resulting in oscillations periods which are an integer multiple of the

BO period.

This result contradicts the common knowledge that a current will flow through a conductor

when a bias voltage is applied across it. The reason is that perfect crystals do not exist in

nature. Scattering from imperfections breaks the coherence of electrons, killing BOs and
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enabling current to flow. Imperfections can take the form of vacant lattice sites, impurities,

plane and line dislocations like grain boundaries. In natural materials, these imperfections

cause the mean scattering time to be much shorter than the time period of BOs, TB. The

period of BO is inversely proportional to the lattice constant, so to reduce the time period

artificially patterned materials with much longer lattice periods were required. In 1992,

improvements in fabrication technology provided semiconductor superlattices of sufficient

quality that Bloch oscillations of electrons were measured for the first time when a bias

voltage was applied, [92]. This was soon followed by experiments showing electronic BOs

at room temperature [93] and emitting THz radiation [94] among other novelties.

There is no law which gives electrons a monopoly on Bloch oscillations. In general, any

periodic system which supports waves can be induced to perform BOs through a gradual

change is a relevant parameter across the lattice. Recently, Bloch oscillations & Zener

tunneling have been studied in optical [95–97], acoustic [98–100] and cold atom systems

[101–103], while analogous effects were observed in Josephson junctions [104, 105].

On the other hand, Bloch oscillations of spin-waves have not been measured experimen-

tally as the time period of oscillations is much greater than the spin-wave lifetime. However,

the development of high-quality magnonic crystals, introduced in chapter 2, section 2.5.1,

provides a solution to this problem by opening bandgaps in the spin-waves spectrum and

greatly reducing the Brillouin zone. In this role, magnonic crystals perform the same function

for spin-waves that semiconductor superlattices did for electrons.

On the theoretical side, spin-wave BOs have been studied in a 1D chain of Heisenberg

spins, where a gradient in the bias field is used to induce Bloch oscillations [106]. This

model has the advantage of being a strong analogue for tight binding electrons, replicating

the same physics [23]. However, it is far removed from experimental works on magnonic

crystals where dipolar and dipole-exchange waves are typically used as they are more readily

excited and detected.
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In this chapter, the Bloch and Zener oscillations of spin-waves in artificially periodic

Yttrium Iron Garnet films are studied. First, a classical theory of Bloch oscillations is

developed and then applied to the case of backward volume magnetostatic spin-waves.

Micromagnetic simulations are then used to validate this theory for backward volume spin-

waves in two different magnonic crystals. BOs and BZOs of spin-waves are observed

in the simulations which show close agreement with the theory in the limit that the bias

magnetic field is greater than the magnetisation saturation of the material. Moreover, realistic

parameters are used throughout in order to describe a feasible experiment to observe Bloch

oscillations of spin-waves for the first time.

3.2 Theory

Consider a spin-wave packet with a central frequency ω0 that propagates in a magnonic

crystal which is subject to a static bias magnetic field H(x) that varies linearly along the x

coordinate with a gradient G = ∂H/∂x. The central frequency remains constant,

ω0 = ω(k(x),H(x)) = const, (3.1)

where k(x) is the packets central wave number, which we assume to follow adiabatically

with the magnetic field so as to ensure that the spin-wave dispersion relation ω(k,H) may

still be introduced and satisfied for each value of x. This assumption is justified when the

bias field gradient is small, G → 0, such that wave-vector is effectively constant over the

length scale of the lattice constant. Differentiating Eq. (3.1), we obtain,

(
∂ω

∂k

)
H

dk+
(

∂ω

∂H

)
k
dH = 0 (3.2)
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where the first and second terms may be interpreted as the changes in kinetic and potential

energy of the wave packet respectively. To conserve the frequency, the two changes must be

equal and opposite. Differentiation with time we can write Eq. (3.2) as,

∂k
∂ t

=−G
(

∂ω

∂H

)
k
= F, (3.3)

which can be identified as the equation of motion of the wave packet under the action of

the effective force F due to the non-uniform magnetic field. The central wave-vector of the

wave-packet increases under the influence of this force, until it reaches the Brillouin zone

boundary, where ω(k = π/a) = ω0.

Bloch oscillations (BO) occur due to the wave packet making round trips within the

Brillouin zone after being backscattered from the Brillouin zone boundary. In other words,

the wave packet is accelerated by the gradient in the magnetic field, trading its potential

energy for kinetic energy. However, it is then reflected by the lattice at the Brillouin zone

boundary, trading it’s kinetic energy back for potential energy and repeating the cycle. This

is an adiabatic process, where the wave-packet remains in its original state. Zener tunnelling,

(ZT), is a diabatic process, where the wave packet tunnels across the bandgap and into the

next band. The combination of BOs and ZT is known as Bloch Zener oscillations (BZOs)

and occur when wave packets perform oscillations that traverse multiple bands. First, we

consider the case of Bloch oscillations in a single band.

3.2.1 Bloch oscillations in an isolated band

The period of Bloch oscillations TB is obtained by integrating the equation of motion (3.3) as

TB =−
∫ k0+2π/a

k0

dk
F

(3.4)
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When F does not depend on x, it must also be independent of k, due to Eq. (3.1). Then,

the wave number is expected to depend linearly on time, while Eq. (3.4) reduces to the

conventional form,

TB =
2π

aF
or ωB = aF (3.5)

where ωB is the angular frequency of Bloch oscillations and a is the lattice period. For

instance, in the previously considered case of exchange spin-waves, F = −µ0γG, where

µ0 is the permeability of free space, γ is the gyromagnetic ratio, while G < 0 for waves

with a positive group velocity. This mirrors the frequency of electronic Bloch oscillations,

ωBelectronic = eEa/h̄, where e is the electronic charge, E is the electric field and h̄ is the reduced

Planck constant. In the case of spin-wave Bloch oscillations, the role of the electric field E is

played by the gradient of the magnetic field G, whilst the factor e/h̄ is taken by µ0γ . For a

quantum-mechanical particle, we can associate H with the potential energy, then F =−h̄−1G,

with −G being the usual mechanical force.

The trajectory of a spin-wave packet is described by the integral of the group velocity

over time,

x(t) =
∫ t

t0

∂ω

∂k
dt. (3.6)

It is helpful to substitute Eq (3.3) to change the variable of integration from t to k. This

yeilds,

x(t) =
∂x
∂ω

∫ k(t)

k0

∂ω

∂k
dk, (3.7)

where ∂x/∂ω = 1/F = 1/γG. Evaluating the integral yields,

x(ω0, t) =
1

γG
[ω (k0 + γGt)−ω(k0)]+ x0(ω0), (3.8)
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where ω(k) is the band structure in the unperturbed system when G = 0. The perturbation

of G > 0 is accounted for by the time evolution of wave-vector, k(t) = γGt + k0, where k0 is

the initial wavenumber and x0 is the initial position.

x0 = ω0
∂x
∂ω

, (3.9)

which represents the position where ω(k = 0) = ω0.

Eq (3.8) shows that when G > 0, wave-packets perform Bloch oscillations which follow

a trajectory in space and time that has the same curve shape as the band structure of the

unperturbed system in frequency and wave-vector respectively.

3.2.2 Zener tunneling

Zener tunnelling (ZT) is the diabatic transition from one energy level to another that can

occur when the Hamiltonian is varying in time such that the separation of the two states is a

linear function of time [91, 107]. In the context of the band theory of solids, ZT manifests as

wave-packets tunnelling from one band to the next when accelerated by an external driving

force F . As the central wave-vector approaches the avoided crossing, there is a probability

that it will tunnel across to the next band (ZT) instead of being reflected (BO). Under the

Landau-Zener conditions, 1, the probability of such a transition is given by the Landau-Zener

formula,

PD = e−
∆2

E
h

1
∂t (E1−E2) , (3.10)

1

• Separation in energy levels is linear in time

• Perturbation parameter in Hamiltonian is a known, linear function time

• Diabatic states are not coupled by the perturbation



3.2 Theory 37

where ∆E is half the bandgap of the adiabatic energy levels, which avoid one another. E1

and E2 are the diabatic energy levels, they are not coupled and so cross one another. In our

system, the diabatic states can be identified with the dispersion of backward volume spin-

waves in a uniform film, folded back at the band edge to give a gapless band structure as shown

in red in Fig. (3.3). Whilst the bandgap can be obtained from the band structures obtained

from simulations of periodically modulated films shown in greyscale in Fig. (fig:band-gaps-

forming). The diabatic bands can be approximated as linear in k by taking a Taylor expansion

of the backward volume spin-wave dispersion curve at the band edge.

E1 = h̄ω(k)→ mk+ c,

E2 = h̄ω

(
k+

2π

a

)
→−mk+ c,

(3.11)

where m≈ ∂ω/∂k(nπ/a) as derived from the dispersion of backward volume spin-waves,

Eq. (3.13). Substitution into Eq. (3.10)

PD = e−
∆2

E
h

1
2mγG , (3.12)

where the bandgap 2∆E is measured from the simulation of band structures. The intuitive

result is that ZT increases when the bandgap decreases or the accelerating field increases.

3.2.3 Backward volume spin-wave Bloch oscillations

For the case of backwards volume spin-waves, the first order thickness mode is the dominant

mode and has a dispersion given by Eq. (2.28) which we reprint here for backward volume

spin-waves in the magnetostatic limit,

ω
2 = ωH

[
ωH +ωM

(
1− e−kd

kd

)]
, (3.13)
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here, d is the film thickness, ωH = γH and ωM = γMs with γ being the gyromagnetic ratio in

units of rad / Ts. In this limit, k ≪ π/c, where c is lattice constant of the medium. Therefore

the Brillouin zone (BZ) boundary associated with the lattice unit cell of the medium is

inaccessible and band structure of this mode is a single curve.

The acceleration due to the field gradient is given by the partial derivative of the dispersion

relation with respect to the position, ∂ω/∂x. For a linear increase in the bias magnetic field,

∂H/∂x = G it is given by,

∂ω

∂x
= γG

1+ M
2H

1−e−kd

kd√
1+ M

H
1−e−kd

kd

, (3.14)

which is non-linear and diverges when H → 0 and k → 0. This is problematic as the

theory developed in section 3.2 assumes a uniform acceleration that does not depend on k.

Fortunately, a uniform acceleration can be achieved in the limit Ms/H ≪ 1, as Eq (3.14)

tends towards a constant value.

lim
Ms
H →0

∂ω

∂x
= γG, (3.15)

In practice, it is impossible to have Ms/H = 0 as finite Ms is necessary for spin-waves.

However, it can be approximated by subjecting the system to a uniform bias magnetic field

that is much greater than the saturation magnetisation, H0 ≫ Ms. Therefore the angular

frequency of backward volume spin-waves Bloch oscillation is,

ωB ≈ aγG, (3.16)

This is analogous to the electronic case where ωB = aeE/h̄, where e is the electronic

charge, E is the electric field and h̄ is the reduced Plank’s constant. In the case of spin-waves,

γ takes the role of e/h̄ while G takes the role of E.
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Fig. 3.1 Plot of Eq.(3.14), showing the acceleration term for backward volume spin-waves.
Iso-wave-vector curves are plotted showing the limits of acceleration found at either edge of
the spin-wave manifold. At H/Ms → 0 the accelerating term diverges, while at H/Ms > 2 it
is approximately linear.

Substitution of the dispersion relation Eq. (3.13) and the accelerating field Eq. (3.15) into

Eq. (3.8) gives an approximate expression for the trajectory of backward volume spin-wave

BOs in the limit H >> Ms,

lim
Ms/H→0

x(t) =
H
G

√
1+

Ms

H

(
1− e−kd

kd

)∣∣∣∣∣
k(t)

k0

+ x0, (3.17)

The dispersion relation ω is in general dependent on H, which depends on position as

H = H0+Gx. This dependence is eliminated by applying a binomial expansion of the square

root,
√

1+Ms/H → 1+Ms/2H to yield,

x(t)≈−H0

2G
−Ms

(
1− e−kd

kd

)∣∣∣∣∣
k(t)

k0

+ x0 (3.18)

where x0 is the position of the band in space dependent on the frequency of the wavepacket

ω0. It corresponds to the position of the first band where k = 0. From Eq. (3.13) the frequency



40 Bloch and Zener oscillations of spin-waves

is ω0 =
√

ωH(ωH +ωM. Rearranging to find x the expression for the position is,

x0 =
−(2H0 +Ms)+

√
−2H2

0 +M2
s −2H0Ms +4

(
ω0
γ

)2

2G
(3.19)

Substitution of this expression in to Eq. (3.17) gives the trajectory of a spin-wave packet

with a given angular frequency ω0 and an initial wave-vector k0 in the limit where H ≫ Ms

which in it’s explicit form reads,

lim
Ms
H →0

x(ω0,k0, t) = − H0

2G
−Ms

(
1− e−(−γGt+k0)d

(−γGt + k0)d

)
+Ms

(
1− e−k0d

k0d

)

+
−(2H0 +Ms)+

√
−2H2

0 +M2
s −2H0Ms +4

(
ω0
γ

)2

2G

(3.20)

3.3 Numerical methods

A semi-infinite film is simulated using MuMax3. A stripe of YIG like material measuring

6.144 mm along the x-axis, 1 µm along the y-axis and 1 µm along the z-axis, is discredited

into 16384×1×1 cuboid cells with dimensions of 0.375µm×1µm×1µm, respectively. To

simulate a semi-infinite film, two dimensional (2D) periodic boundary conditions are applied

along the x and y-axis. This configuration has two key limitations. Firstly, magnetisation

cannot vary in along either y or z directions. Therefore, the only spin-waves that can be

simulated are uniform in thickness and width, k = kxx̂. Secondly, the lengths of the cell edges

are all greater than the exchange length of YIG, which is 10 nm. This means that the exchange

interaction cannot be accurately simulated. However, as the equilibrium magnetisation is

uniform and only perturbed by long wavelength, magneto-static spin waves the exchange

interaction does not play a role in this investigation. Therefore, in this limit the simulation

still provides accurate results. This is a consequence of the small-angle approximation

used in MuMax 3 to calculate the exchange energy between neighbouring cells [32]. If
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the simulation cell size is greater than the exchange length, non-uniform equilibrium states

cannot be accurately simulated as their exchange energy is overestimated. Despite these

limitations, this configuration was chosen as it enables the simulation of magnetostatic

spin-waves with a high resolution in kx, whilst staying within the graphic memory limitations

associated with MuMax3.

We use material parameters similar to high-quality YIG samples. YIG is the ideal

material because its low damping enables the observation spin-wave BOs as the spin-wave

lifetime must be longer than the time period of BO. For a discussion of the properties of

YIG, see [108, 109]. The saturation magnetisation of 200 kA / m, the exchange stiffness of

4pJ/m3, and zero magneto-crystalline anisotropy. The assumed value of the Gilbert damping

parameter is 5×10−5.

The sample is always magnetised along the x-axis due to a bias magnetic field. As spin-

waves in this simulation can only propagate along the x-axis, the system is said to be in the

backward volume magneto-static spin-wave geometry [13]. In a typical simulation, localised

magnetic field pulses excite the uniform backward volume magnetostatic spin-wave mode

and the time evolution of magnetisation is recorded by saving the unit vector of magnetisation,

M̂, periodically. As the equilibrium magnetisation is saturated along the x axis only the ŷ

and ẑ components of magnetisation are analysed. To avoid aliasing in the frequency domain,

the sampling rate is 60 GHz, yielding a maximum resolvable frequency of 30 GHz that is

greater than the maximum exciting frequency of 20 GHz. Simulations were run for 2184.53

ns, gathering 217 samples in time and giving a frequency resolution of 0.457 MHz.

Fourier transforms techniques [36] are used to convert results of real space - time-domain

simulations into more informative representations in reciprocal space and/or frequency

domain. This allows us to recover the dispersion and other characteristics of spin-waves in

our system.
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3.4 Periodic modulation of bias field

3.4.1 Introduction

A miniband structure can be induced by periodic modulation of any parameter that affects

the magnetic energy, section (2.5.1). One way to open bandgaps this is to modulate the bias

magnetic field periodically which can be achieved by the Oersted field from an array of

current-carrying wires near the sample [69, 110].

H(x) =
[

H0 +Gx+h0sin
(

2π

a
x
)]

x̂, (3.21)

where H0 is the bias field strength at the left edge of the sample x = 0, x is the position along

the sample, G is the gradient of the magnetic field, h0 is the amplitude of periodic modulation

and a is the period of modulation.

To be observable, the period of Bloch oscillations must be smaller than the BVMSW

lifetime in YIG, which is typically of the order of hundreds of nanoseconds [108, 109].

According to Eq. (3.16), this favours greater lattice constants and field gradients. At the same

time, the lattice constant must remain much smaller than the length of the system L, within

which the wave packet oscillates back and forth (Fig. 3.2 (a)), so that we could justify our

approximation of an adiabatic variation of the wave-vector. To maintain the field gradient,

the increase in size L required to accommodate a greater lattice constant needs to be matched

by an increase of the bias magnetic field. However, the strength of the field (and therefore its

gradients) achievable in the lab is limited. Here we explore the onset of Bloch oscillations as

the field gradient is increased from 0 to 60 T/m. This should be feasible (albeit challenging)

to achieve experimentally.
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Fig. 3.2 The geometry of the problem is shown schematically. (a) Non-uniform magnetic
field H(x), combining the gradient and sinusoidal contributions, is applied to a uniform
film of YIG along the direction of spin-wave propagation. (b) The field corresponds to the
uniform ferromagnetic resonance (FMR) frequency (k = 0) in point x0 (field H0) and to the
first Brillouin zone boundary (k = ±π/a) in point x1 (field H1), for which the BVMSW
dispersion is schematically shown. The spin-wave wave packet is excited by a uniform
microwave magnetic field in point x0 and then bounces back and forth periodically between
points x0 and x1.

3.4.2 Opening bandgaps

The first step is to introduce a periodic modulation to the bias magnetic field. The Zeeman

energy is proportional to the bias magnetic field strength and therefore it takes the role of the

magnonic potential. This breaks the band structure of spin-waves in the uniform film into

many minibands, just as a crystal lattice breaks the free electron dispersion into bands. Fig.

(3.3) shows the opening of bandgaps as the amplitude of periodic modulation of the bias is

increased.

Fig. 3.3, shows the magnonic dispersion relation calculated from the results of dynamic

simulations with a broadband excitation (both in the frequency domain and reciprocal space

[111]) for a uniform bias magnetic field of 0.5 T. Although the bias field and sample are



44 Bloch and Zener oscillations of spin-waves

Fig. 3.3 Mini band structures induced in a uniform film through the application of periodically
modulated bias fields, of varying amplitude h0, all with a period a = 3µm and in addition
to a uniform bias field of 0.5 T. Dashed lines show the empty lattice approximation of the
miniband structure; the dispersion of the uniform backward volume spin-wave in a uniform
field, as described by Eq.(2.28), folded back into the 1st BZ. Good qualitative agreement
between the empty lattice approximation and simulated band structure is observed as h0 → 0.
As h0 is increased, bandgaps are observed to open, the largest gap being between the 1st and
2nd bands. The strong signal centred at k = 0 and extending over all frequencies is interpreted
as an artefact arising from the uniform relaxation of the equilibrium state and not directly
related to propagating spin-waves.
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both uniform, we use the empty lattice approximation and show the dispersion folded back

into the first Brillouin zone corresponding to the same sample but spatially modulated by

an additional sinusoidal static magnetic field with a period of 3µm. The band structure for

different amplitudes of periodic field modulation from 0.1 - 10 mT are shown. Starting at

the Brillouin zone centre, (k = 0) at the FMR frequency of about 17 GHz the frequency

descends as k increases. The group velocity is negative, and so the magnonic bands are

ordered in frequency from top to bottom. The periodic sinusoidal modulation induces a large

first bandgap at a frequency of about 16.1 GHz, while the other (higher-order) bandgaps

are significantly smaller. Since the dispersion flattens at large k values, the higher-order

magnonic bands also become increasingly flat.

Fig. 3.4 The bandgap widths as a function of the amplitude of periodic modulation, h0. The
1st bandgap is observed to increase linearly with h0 at a rate of 27 GHz / T.

Fig. (3.4) shows the width of the first bandgap as a function of the amplitude of periodic

modulation. Therefore, the 1st bandgap can be interpolated as,

∆ f = 27h0, (3.22)
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where ∆ f is the width of the 1st bandgap in units of GHz and h0 is the amplitude of

periodic modulation in units of Telsa. This interpolation can be used to inform the bandgap

width parameter in the ZT probability equation, Eq. (3.12).

3.4.3 Band structure Bloch oscillations

According to Eq. (3.8) a single wave-packet should trace out a trajectory that has the same

shape as the mini-band that it originates from. To reveal the shape of BOs in every band, the

system was excited using a spatially uniform pulse that has a Gaussian profile in time with a

central frequency of 18 GHz and a full width at half maximum of 10 MHz. This principally

excites spin-waves at the edge of the 1st BZ where k = 0 rad/m and ω(k = 0) = 2π18

GHz. The edge of higher BZs, where k = nπ/a, are more weakly excited. The result is the

synchronous generation of identical wave-packets in every band that goes on to perform BOs

which are in phase with one another.

Fig. 3.5 The trajectory of spin-waves packets excited by a spatially uniform pulse centred at
18 GHz ±10 MHz shown in the time/position domain. The greyscale image shows deflection
angle of magnetisation from its equilibrium state saturated along the x̂ direction. Theoretical
predictions given by Eq. (3.17) are shown in red.
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Simulations were conducted using a magnetic field of the form,

H(x, t) =
[

H0 +Gx+h0sin
(

2π

a
x
)]

x̂

+
[
Be−(t−t0)2/2σ2

sin(ω0t)
]

ŷ,
(3.23)

where the field oriented along the x axis is the static bias field and the field orented along

the y axis is the excitation pulse. The bias field has three terms. The first is a uniform field

term of 0.5 T, the second is a linear increase in the bias field with position and this provides

the accelerating force on the spin-wave packet. The same bias field is used throughout this

section. The final term in the bias is the periodic modulation which is responsible for opening

a band structure. The excitation is uniform in space and Gaussian in time, centred at 18 GHz,

with a full width at half maximum of 10 MHz and arriving at t = 300 ns.

Fig. (3.5) shows the trajectory of spin-wave packets excited by the pulse at t = 300 ns.

Spin wave packets are excited at the edge of each band and perform synchronous BOs. The

frequency of BOs extracted from the simulations show close agreement with Eq. (3.16),

ωB/aγG = 1±0.17, (3.24)

which is accurate within the uncertainty associated with the linewidth of the spin-wave-

packets. Comparing the simulation results, shown in greyscale, against Eq. (3.17), shown

in red, there is a strong agreement on the time period of oscillation, whilst the trajectory of

spin-wave packets show only a loose agreement. This is expected as the BO frequency only

depends on the lattice constant a and the derivative of the dispersion relation with respect

to position ∂xω , Eq. (3.16). It is independent of the shape of the original band structure.

In contrast, the trajectory of spin-wave packets performing BOs depends explicitly on the

original band structure, Eq. (3.17). Since the empty lattice approximation was used to

calculate this band structure, the error is carried forward to yield inaccuracies, foremost of

which is the lack of bandgaps and differences in position. The simulation results show a
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Fig. 3.6 The position/frequency representation of Fig. (3.5) obtained by Fourier transform
along the time domain. Grey scale shows the deflection of the unit vector of magnetisation
from the equilibrium whilst dashed lines show iso-wave-vector contours of the uniform
backward volume spin-wave mode Eq. (3.13) with k = 0 (dashed line), k = π/a (dashed
and dotted line) and k → ∞ (dotted line). An external field pulse is applied to the system
at rest, exciting spin-waves. The pulse is uniform in space and has a gaussian profile in
time that is centred at 18 GHz and has a full width at half maximum of 10 MHz. This
excites spin-wave packets at the point on the edge of each Wannier Zeeman ladder where the
conditions k = nπ/a and ω(k) = 18 GHz are met.

significant bandgap between the leftmost band and its neighbour, with no discernible band-

gaps between subsequent bands. This result is consistent with simulations of the mini-band

structure of the film when G = 0 Fig. (3.3). Indeed, comparing figures (3.3,3.5) it can be

seen that when rotated by 90◦, the mini-band structure and wave-packet trajectories follow

very similar curves.

Also, the spin-wave packets show very little broadening across many oscillation periods

due to the spectral purity of the excitation pulse. Moreover, the period is the same for all

minibands which indicates that the ratio of H/Ms > 2 is sufficiently large to justify the

approximation of the acceleration term as ∂k/∂ t → γG, independent of k.



3.4 Periodic modulation of bias field 49

Fig. 3.7 Bloch Oscillation time periods plotted in a log/log scale as a function of field gradient.
The dashed lines shows the linear theory Eq. (3.16) for different periods of field modulation,
which are labelled. The red crosses show the time period taken from simulations. BOs do
not occur when G = 0.

Fig. (3.6), show the same data, represented in the position, frequency domain. The pulse

creates a strong horizontal line at 18.0 GHz. In the case where G = 0, the pulse excites the

k = 0 state off-resonance, resulting in a strong line at 17.2 GHz. For the case where G > 0,

spin-waves are excited when it intersects the Wannier ladder. The discrete Wannier states are

not resolved in Fig. (3.6) as they are spaced at the fB = aγG/2π which is on the order of 1

MHz.

3.4.4 Breathing mode Bloch oscillations

The "breathing mode" is characterised by the periodic expansion and contraction of spin-

waves at the BO frequency. It is generated by an external magnetic field pulse that is tightly

focussed in time and space and broadband in wave-vector and frequency, exciting every

available spin-wave state at the location of the pulse. These spin-waves then propagate from

the origin to perform BOs. Since every band is initiated at every possible phase of BO, the

result is a bulbous envelope that expands and contracts at the BO frequency. As all states
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are occupied, the envelope has reflection symmetry about the position axis, even though all

constituent wave-packets have asymmetric trajectories, as shown in Fig. (3.5).

Simulations to show the breathing mode were conducted using a bias magnetic field of

the form,

H(x, t) =
[

H0 +Gx+h0sin
(

2π

a
x
)]

x̂

+[Bsinc(ωC(t − t0)sinc(kC(x− x0))] ŷ,

(3.25)

where H0 = 0.5 T, giving a minimum ratio of H/Ms = 2 which is sufficiently high to

expect the acceleration of wave packets to be independent of k. G = 0,20,40,60 T/m, in

order to explore the effect of field gradient on the time period of oscillation, A = 10 mT,

B = 0.1mT and the sinc pulse excites frequencies up to ωc/2π = fc = 30 GHz2, t0 = 300 ns,

kc = π/0.33 rad/ns, which is the edge of Brillouin zone of the simulation mesh.

Fig. (3.8) shows the BO breathing mode for G = 0,20,40,60 T/m. In the case where

G = 0, there are no BOs and spin-waves propagate with a constant velocity until they are

reflected from the edge of the sample. For the simulations where there is a field gradient,

BOs are induced. In all cases, the uniform mode is most strongly excited and therefore

dominates the signal. This manifests in a classic breathing mode envelope which refocuses

with Bloch frequencies ωB/(aγG) = 0.98± 0.17 which is in strong agreement with Eq.

(3.16). A weaker, secondary signal is also observed which appear to have a much longer

period. These are identified as the higher-order modes, which are less strongly excited

by a spatially uniform pulse and have lower group velocities. The BO period of these

modes appears to be much longer, which indicates that ZT between some of these bands

is occurring, producing BZO which have a time period that is a multiple of the BO time

period. This is likely due to the much narrower bandgaps between these bands, shown in Fig.

(3.3). Tunnelling between bands is more closely inspected in subsection (3.4.5). Also, the

2The Fourier transform of a sinc function is a "top hat" function : F (sinc(k0x) = (1 where− k0 < k <
k0|0 elsewhere)
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Fig. 3.8 Panes show the propagation of spin-waves excited by a broadband sinc pulse focused
at x = 3 mm, t = 0 ns, for different values of bias field gradient G, as labelled inset. The
deflection angle of magnetisation from the equilibrium state is shown in real-time and real
space by the grey-scale colour map. At t = 0 ns, spin-waves with all allowed wave-vectors
and frequencies are excited. They propagate from the centre of the sample at different
group velocities, forming a cone of diverging spin-waves. In the case where G = 0, the
spin-waves propagate in straight lines before being reflected at the simulation edge. In the
case where G ̸= 0, spin-wave-packets perform BOs. Individual wave-packet follows an
asymmetric trajectory, identical in shape to those in Fig. (3.5). However, since all wave-
vectors are excited, BOs are initiated in every possible phase of BO. Thus when viewed as
a collective, they form a repeating pattern of uniform expansion and contraction that has
reflection symmetry around their origin at x = 3 mm. magnetisation dynamics at the edge of
the system at x = 6 mm are considered to be artefacts of simulation.

magnetisation procession observed emanating from the right edge of the sample is thought to

be an artefact of simulation where further relaxation towards equilibrium occurs after the

simulation is initiated.

The same data in the frequency domain is shown in Fig. (3.9). The excitation pulse

is the broadband vertical line located at x0 = 3mm. It directly excites all spin-wave state

that intersects this position. For the case where G = 0 the spin-wave states are continuous

bands of Bloch waves which extend across the entire sample. The 1st band is most strongly

excited and also has the greatest group velocity and it propagates to reflect from the edges
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Fig. 3.9 Position frequency plot showing the Wannier-Zeeman ladder states for different field
gradients. Red dashed lines show iso-wave-vector curves, indicating the upper and lower
frequency bounds and the position of the first bandgap as calculated by Eq. (3.13).

of the sample while the higher-order modes have lower group velocities which decrease

as frequency decreases. This manifests as shorter and shorter propagation lengths. When

G > 0, these appear as a distinctive rhombus shape centred on the pulse and correspond to

the breathing modes shown in Fig. (3.8). The rest of the ladder states are indirectly excited

and are therefore very weak. Iso-wave-vector curves are plotted to show the frequency and

position where k = 0,π/a,∞ the regions where the ladder states are expected according to

Eq. (3.13).

3.4.5 Zener tunneling simulations

Zener tunnelling is where a wave-packet tunnels through the bandgap into the next band.

It is a diabatic transition that is caused by the acceleration of the wave-packet towards the

bandgap. The probability that a single magnon makes such a transition is described by

the Landau-Zener formula, Eq. (3.10). Applied to a classical wave-packet, this gives the
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proportion of the packet that is transmitted across the bandgap. The remainder is reflected to

perform a Bloch oscillation.

Eq. (3.12) gives the approximate transmission coefficient for spin-wave-packets accel-

erated toward a band gap of width ∆ω by a gradient in the bias field G T/m. Applied to

backward volume spin-waves this yields,

PD(kn,d,∆ω ,G)≈ exp

−1
h

2∆2
ω

γG knd2e−knd−d(1−e−knd)
knd

ωmωH√
ω2

H+ωMωH χ

 (3.26)

where k = nπ/a, d is the film thickness, ∆ω is the bandgap width in frequency, G is the

gradient in bias field, whilst ωM = γMs and ωH = γH. It has been shown in Fig. (3.4) that the

bandgap is linearly dependent on h0, thus we can interpolate ∆ω/h0 ≈ 27 MHz per mT. Both

the numerator and denominator of the exponent in Eq. (3.26) can be controlled independently,

by varying the bias field gradient G, or the amplitude of its periodic modulation h0. This is

crucial for controlling the behaviour of spin-waves.

To study this relationship, simulations were performed with G = 20,40,60 T/m and

for each value of G, with h0 = 1,2,3,4,5 mT. In each simulation, spin-wave-packets are

excited in each band by a spatially uniform pulse centred at 18 GHz with a full width at half

maximum of 10 MHz. To isolate the effect of transmission or reflection at the band gaps,

damping of magnetisation precession was not included in these simulations.

Fig. (3.10) shows the results of these simulations. A spin-wave packet, in the first band,

approaches the bandgap separating it from the other bands. When h0 = 0, there is no band

gap and the packet continues undisturbed. As h0 increases, there are no effects on either TB or

the spatial amplitude of BOs whilst the transmission coefficient decreases rapidly until there

is no transmission, only BOs in the first band. Conversely, as G increases, the Bloch period,

TB and spatial amplitude of oscillation both decrease, while the transmission coefficient can

be seen to increase. It should be noted that the transmitted fraction of the wavepacket does
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Fig. 3.10 Grid of position, time plots showing the deflection angle of magnetisation in a
linear grey-scale colour map. Columns share the same amplitude of periodic modulating
field h0 (mT), whilst rows share the same gradient of bias field G (T/m).

not appear to be reflected at the next bandgap. This is likely since the first bandgap is much

wider than any of the others. Therefore, by Eq. (3.26), transmission between higher-order

bands is much more likely, giving rise to Bloch Zener Oscillations where a wave-packet

crossing these bands is only reflected at the edge of the set of bands.

The transmission and reflection of spin-waves at the first bandgap were studied. The first

band is the most strongly excited, making it the most pertinent band to study. Furthermore,

the first bandgap is the widest, making it the easiest to control. Coefficients were extracted

from the simulation data by the following method. Firstly, a subset of total data is extracted

that contains the time and position that the spin-wave packet approaches the band edge.

Secondly, the subset of data is split into two parts at the point in space that the bandgap

manifests. The two parts are then integrated along the x axis to create a time series of

integrated magnetic deflection in either band. The time series are normalised by their sum

to yield the proportion of total magnetic deflection in either band as a time series. Finally,

the time series are compared before and after the bandgap to determine the transition and

reflection coefficients. The results are shown in Fig. (3.11).
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The magnetic deflection angle is used instead of energy density as the simulation package

used, MuMax3, does not compute energy density with sufficient precision to resolve the

spin-wave-packets. Unfortunately, this substitution is a significant source of error as the

relationship between deflection angle and energy density is neither local nor linear.

Fig. 3.11 Transmission coefficient of spin-waves at the 1st band gap as a function of bias
field modulation amplitude h0 and bias field gradient G. Lines show theoretical predictions
and markers show the results of simulations, each are labelled inset.

Fig. (3.11) shows the extracted transmission coefficient and that predicted by Eq. (3.26).

A similar dependence on G and h0 is observed for both simulation and theory, however, the

predicted values significantly under-estimate the transmission probability. This discrepancy

is likely due to the simulation data being based on magnetic deflection angle as a substitute

for energy density.

In this section, we show that Zener tunnelling of spin-wave-packets can be promoted or

suppressed by modifying the bias field gradient, G, and amplitude of periodic modulation

h0. It can be concluded that ZT occurs in this system. Moreover, ZT appears to be the rule,
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rather than the exception for all bands gaps bar the first. Reflection at these boundaries is

very minimal due to the band gaps being very narrow. This leads to the formation of BZOs

that span the higher-order bands and have a period that is a multiple of the BO period. This

shows that BZOs are responsible for the oscillations observed in Fig. (3.8) that exhibit a time

period that is multiple of the Bloch period.

3.4.6 Low bias field regime

The theory presented in Sec. (3.2.3) is valid for the limit H >> Ms and becomes increasingly

inaccurate as the ratio of bias field approaches zero, H → 0. This is a direct consequence of

the dispersion relation of backward volume spin-waves, Eq. (3.13) which gives the width of

the spin-wave manifold as,

ω(k = 0)−ω(k → ∞) = γH

(√
1+

Ms

H
−1

)
, (3.27)

which tends to a constant, γMs when M/H << 1 and reduces down to 0 as H → 0.

In the latter case, Eq. (3.5) is expected to underestimate the Bloch frequency. To study

this breakdown a simulation was performed in which the bias field starts at 0 at x = 0 and

increases with a gradient dH/dx = G = 100 T/m,

H(x, t) =
[

Gx+Asin
(

2π

a
x
)]

x̂

+[Bsinc(ωc(t − t0))] ŷ,

(3.28)

where G = 100 T/m in order to include different regimes of H/Ms from 0 to above 2.

The sinc profile in time evenly excites frequencies up to ωc/2π = fc = 20 GHz. Whilst the

pulse is uniform in space and so excites the band edges k = nπ/a. The aim of this is to excite

all spin-wave states, to resolve the entire Wannier ladder of spin-wave states in the frequency

position domain for a range of H/M values.
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Fig. (3.12) shows the results of the simulation that has been Fourier transformed into

frequency and position space. Iso-wave-vector curves calculated using Eq. (3.13) are shown

by dashed red lines for the k = 0, k = π/a and k → ∞ which show the upper and lower

frequency bounds of the first band and other bands respectively. As the bias field approaches

0, the ladder states tamper to a point and intersect the frequency axis x = 0 at ω(0) = 0.

The diagonal stripes are composed of many confined spin-wave states known as Wannier

levels. These form a ladder, where the frequency step between levels is equal to the Bloch

frequency of ωB, which in this case is expected to be 8.6 MHz. Too small to be resolved in

this figure.

The darker stripe is the ladder that corresponds to the 1st band, which is most strongly

excited. The lighter stripe corresponds to a collection of higher-order bands, separated from

one another by small bandgaps such that they appear as a single band. Indeed, spin-wave-

packets have been shown to tunnel between these bands rather than be reflected, resulting in

BZOs.

In the limit where H > Ms, Wannier ladders appear as stripes of constant thickness that

have a gradient of γG/2π , as shown by the straight dotted line. As H is reduced, the Wannier

levels start to taper and bend downwards. The inset axes highlight the behaviour as H → 0.

Band gaps appear, splitting the higher-order bands from one another. Ultimately the bands

collapse into a single point at H = 0. Their envelope closes in qualitative agreement with the

spin-wave frequency limits shown by the dashed lines calculated by Eq. (3.13).

While the frequency gap between levels is too small to be observed, the Bloch frequency

is proportional to the gradient of the frequency with respect to position. Therefore it is

evident that ωB is a constant for H >> Ms and increases as H → 0.

Fig. (3.13) is composed of two subsets of Fig. (3.12 which show the discrete ladder

of Wannier states at two different points, with different ratios of H/Ms. In each case, the

separation between frequency levels is equal to the Bloch frequency of fB. Eq. (3.5) gives a
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Fig. 3.12 Frequency and position plot showing the Wannier ladder of spin-wave states created
by a bias field that starts at 0 at x = 0 and increase with G = 100 T/m. The ratio H/Ms is
shown as a second x axis along the top of the figure. Dashed lines show iso-wavevector
curves of Eq. (3.13), they correspond to the upper bound and lower bound of the dipolar
spin-wave manifold, with the first bandgap in between. The inset axes highlight the region
where H/Ms → 0. In this limit, the Wannier ladders taper in width and bent in frequency
towards zero, in a manner consistent with Eq. (3.13). As H increases,

.

predicted Bloch frequency of fB ≈ 8.6 MHz. In the top panel, where H/Ms ≈ 2, fB ≈ 8.7

MHz, whilst in the bottom panel, where H/Ms ≈ 0.2, fB ≈ 12.5 MHz for the first band and

10 MHz for the second band. This shows that different bands start to behave differently as

H/Ms → 0. In this regime, the approximation of the Bloch frequency as fB = aγG breaks

down due to the dependence of the acceleration term on the wave-vector.
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Fig. 3.13 Left panels. Subsets of Fig. (3.12) showing the individual Wannier levels in position
and frequency space. Right panels show their frequency spectrum, computer as the sum over
position. The top panels show the Wannier levels at f = 15.05±0.1 GHz, where H/Ms ≈ 2.
The difference between levels is approximately, 8.7 MHz and consistent between bands.
The bottom panels show the Wannier states at f = 2.5±0.1 GHz, where H/Ms ≈ 0.2. The
difference between levels is approximately, 12.5 MHz for the first band, reducing to 10 MHz
for the second band.

3.5 Ms modulated YIG film

Periodic modulation of the magnetisation saturation can be used to open bandgaps in the

spin-wave spectrum. It can be achieved by creating a two-component magnonic crystal or by

using lasers to locally heat a periodic pattern where magnetisation saturation is reduced. The

latter can be switched on and off and has the potential for reconfiguration. To study the effect

that modulating Ms has on Bloch oscillations, simulations were performed for a magnetic

film composed of alternating stripes of different magnetisation saturation.

The physical system is a magnetic film, 1µm in thickness and composed of two sublattices

that have different magnetisation saturation values, with a period of 2.93 µm. The first
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sublattice has a fixed value Ms = 200kA/m and occupies 7 out of 8 cells, stripes 2.563 µm

in width. The second sublattice has a variable magnetisation saturation 0 ≥ M′
s ≥ Ms and

occupies the remaining 1/8 cells in 0.365 µm width stripes. The same film as used in the

previous section is recovered when M′
s = Ms.

The bias magnetic starts at 0.185 T and increases across the sample with a gradient of

40 T/m. It is not periodically modulated as this function is performed by modulation of the

magnetisation saturation instead. A magnetic field pulse directed perpendicular to the film

is used to excite spin-waves. The pulse is uniform in space and Gaussian in time, with a

central frequency of 10 GHz ± 10 MHz. This excites spin-wave packets at the edge of each

band which proceed to perform BOs due to the field gradient. For a fixed frequency, each

band is spatially separated such that the bands do not overlap and according to Eq. (3.8) their

trajectory will trace out a curve similar to the original band structure.

Fig. 3.14 Time position plot showing the trajectory of spin-wave packets excited by a spatially
uniform pulse centred at 10 GHz ± 10 MHz. The bias field gradient is shown inset. The data
shown is the deflection angle of magnetisation from the uniform state.

Fig. (3.14), shows the trajectory of spin-waves packets as they perform BOs. In all

cases, the simulated oscillation period is TB = 288±25ns which agrees with the theoretical



3.6 Proposed experiment 61

prediction of 291 ns. This demonstrates that the period of oscillation is independent of the

mode of patterning and is, therefore, the most predictable feature of BOs. It is, therefore,

a good feature to measure experimentally to confirm the existence of spin-wave BOs. The

shape of the BOs, in time and space, vary with the respect to the value of M′
s. As M′

s → Ms,

the periodic patterning is removed and the bandgaps close. This is most clearly seen in

the right-hand panel of Fig. (3.14), where the BO trajectories resemble the empty lattice

approximation of the band structure.

3.6 Proposed experiment

Although we have been unable to perform an experimental investigation of the results

presented here. We show that the period of spin-wave Bloch oscillations are predictable

when the bias field is much greater than the saturation magnetisation. In this section, an

experiment to measure spin-wave BOs is proposed.

A periodically modulated YIG film positioned between two magnetic poles, one a sharp

point and the other a uniform slab. The two magnetic poles provide a constant flux density

gradient, as the field diverges from the sharp pole to the slab-shaped pole. The nature of the

periodic patterning is left to be decided by the experimentalist. We have simulated periodic

modulation of the saturation magnetisation and bias field, there is no reason that other forms

of periodic patterning cannot be used to obtain the desired effect. A coplanar waveguide

(CPW) is positioned across the centre of the sample and connected to an arbitrary signal

generator and a high-frequency oscilloscope. The CPW is used as a transducer for both

exciting the spin-wave packets in the system and for recording the spin-waves which return.

By sending a broadband pulse which is tightly focused in space, spin-waves of all wave

vectors would be excited. However, they will all have the same TB and so return at the same

time, as shown in Fig. (3.8). This should result in a spike in the recorded current signal

which occurs every TB.
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Fig. 3.15 Proposed experiment for the measurement of BO of spin-waves. Periodically
modulated YIG film is positioned between two magnetic poles which produce a gradient
in flux density which acts to accelerate spin-wave packets. Excitation and detection of
spin-waves packets is achieved through the Orsted field of a coplanar waveguide (CPW).

In order to measure BOs, they must have a period long enough to be measured by the

apparatus, yet shorter than the mean scattering time of spin-waves in YIG. An additional

consideration is that the bias field gradient exerts a force on the magnetic film F = MsV G,

where V is the volume of the film. This is potentially a threat to the structure of the sample.

Therefore, it is recommended that the lattice constant is sufficiently large enough that BOs

can be measured at a bias field gradient that is sufficiently small not to damage the sample.

In practice, the bias field gradient should be carefully increased from zero so that all possible

values are measured in case of failure in high fields. A larger lattice period has the added

advantage that it will be easier to fabricate. The details of these considerations depend upon

the particulars of the apparatus and sample and we leave them to be addressed by those who

may attempt such an experiment.

3.7 Conclusions

In conclusion, we have used micromagnetic simulations to demonstrate Bloch oscillations,

Landau-Zenner tunnelling and Wannier-ladder spectrum for magneto-dipole spin-waves in

the backwards-volume geometry under rather realistic experimental conditions. Scanning
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Brillouin Light Scattering (BLS) microscopy and vector network analyzer (VNA) based

spin-wave spectroscopy appear to be the best candidates to observe these phenomena in

YIG-based systems experimentally. The requirement of a uniformly large gradient of the bias

magnetic field appears to be the most stringent limitation. However, it could be overcome

either through magnet engineering or using alternative ways to create the required graded

magnonic index [9] These ideas could be extended to other magnonic geometries, systems

and concepts. Augmenting the graded magnonic index with a time dependence [112, 113]

appears a particularly interesting avenue for further research.

Our theory accurately predicts the time period of Bloch oscillations in the case where

H/Ms >> 1. Furthermore, it provides an estimate of the wave packet trajectory which is

good enough to inform micromagnetic simulations which can yield more accurate results

necessary for the support of future experimental efforts.





Chapter 4

X-ray holography imaging of magnetic

biskyrmions

4.1 Introduction

In this chapter, X-ray holography results are presented which suggest that recent reports of a

novel magnetic texture, known as a Bi-Skyrmion, are possibly traditional bubble domains

that were misinterpreted. Further analysis of Lorentz Transmission Electron Microscopy

images confirms this hypothesis. Papers reporting the imaging of an exotic spin texture

called biskyrmions have been published [114–117]. They are effectively two skyrmions with

opposite chiralities bound together, fig. 4.1 and have been reported in La1.37Sr1.63Mn2O7

[15] and MnNiGa [114]. All of these reports rely on images of in-plane magnetic flux density

taken using Lorentz Transmission Electron Microscopy (LTEM)[118].

LTEM is so-called because high energy electrons are directed onto a magnetic sample,

where they are deflected as they pass through by the Lorentz force that arises from magnetic

flux density in the magnet. Deflection by the Lorentz force makes it is sensitive only to the

flux density component orthogonal to the beam and it cannot discriminate between elements.

However, the spatial resolution is very high, 2nm, whilst the time resolution is 40µs,
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Fig. 4.1 Sketch of magnetisation in a film showing a) A bubble domain in the onion state.
b) A biskyrmion. Each of which exists within a single contiguous domain of opposing
magnetisation. Arrows indicate the orientation of magnetisation. These two structures
formed into competing hypotheses during the investigation.

too slow to measure spin dynamics. Different modes of operation may be used to obtain

contrast from this effect. The most common mode is the Fresnel mode, in which the electron

beam is defocused. Domain walls appear bright for under-focus and dark for over-focus,

however uniform flux density cannot be imaged. Images formed in this manner are difficult to

interpret, especially when the magnetic texture is non-uniform. Micromagnetic simulations

are often used to help interpret these images and synthetic LTEM images can be generated

for a direct comparison. Furthermore, maps of the magnetic flux orthogonal to the beam can

be reconstructed from several Fresnel mode images, taken at different degrees of defocus

and using them to solve the transport of intensity equation (TIE)[119]. The in-plane flux

density is co-linear with the in-plane magnetisation under the condition that magnetisation

configuration has a flux closure structure in the plane. Therefore, structures such as domain

walls, vortices and skyrmions, are readily identified from LTEM flux maps. However, if this

condition is broken, in-plane magnetisation is no longer co-linear with in-plane magnetic

flux, and it is more difficult to infer the magnetisation from the flux map.

We use X-ray holography to search for biskyrmions in MnNiGa. This technique directly

measures the element-specific magnetisation component that is parallel to the X-ray beam

direction. Thus it complements LTEM by being able to measure the out of plane component
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of magnetisation at normal incidence [120]. Two lamellae of MnNiGa were extracted

from a single crystal. One was measured in LTEM by our collaborators and the other we

measured using X-ray holography with extended references and linear differential operator

(HERALDO) [121], the details of which are described below.

Measurements were conducted on the SEXTANTS beamline at the X-ray light source

Synchrotron SOLEIL [122]. Circularly polarised X-rays are generated from the relativistic

electrons by a periodic structure of permanent magnets, known as undulators, and diffracted

by our samples. The X-ray Circular Magnetic Dichroism (XMCD) effect yields a diffraction

pattern dependent on the magnetic configuration and circular polarisation, giving sensitivity

to magnetic moments parallel to the incident beam. Fourier transform holography is then

used to reconstruct the magnetic configuration of the sample in real space.

Fig. 4.2 The key elements of the HERALDO method. Circularly polarised, coherent x-rays
diffract from the reference slit and sample aperture, forming an interference pattern known
as a hologram that is imaged by a CCD. The difference between left and right circularly
polarised X-rays carries the magnetic signal. The reference slit is deconvolved from the
sample utilizing a differential filter. Finally, a Fourier transform is applied to represent the
magnetic contrast in real space.

Experiments at SOLEIL were a joint effort between Exeter and Durham university staff

and formed one part of a larger effort across the UK Skyrmion project 1. The focus of

this chapter is the X-ray holography experiments in which my contribution was to analyse

experimental results and advise the experimental effort. To support this I also developed

1UK skyrmion project homepage, https://www.skyrmions.ac.uk/
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holographic reconstruction routines that were used throughout this investigation and have

been adopted by our collaborators. The code is a fresh implementation of the HERALDO

algorithm, with the extension of automated reconstruction, a choice of deconvolution methods

and visualisation tools, see appendix A.1. Sample preparation, complementary experiments

using LTEM and micromagnetic simulations were performed by other members of the wider

collaboration as assigned in the project work breakdown structure.

4.2 HERALDO: Holography with Extended References And

Linear Differential Operator

4.2.1 SEXTANTS beamline

We worked on the Sextants beamline which was designed for elastic, inelastic and coherent

scattering experiments with soft X-rays. In particular, we are interested in circularly polarised,

soft X-rays in the region of 700 eV, to observe the XMCD effect.

Fig. 4.3 Schematic of the SEXTANTS beamline,[122] showing the COMET detector in the
centre.

X-rays are emitted by electrons in the storage ring when accelerated by the magnetic

fields of the 2 x HU44 APPLE 2 undulators. These are periodic arrangements of magnets

along the path of the electron beam which provide control over the polarisation of emitted
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X-rays. They work by inducing lateral oscillations in electron beam through the Lorentz

force, causing them to radiate X-rays. Polarisation is determined by the nature of the lateral

oscillations; if they are confined to a single plane the X-rays are linearly polarised and

if they are helical the X-rays are given a circular polarisation determined by the helicity.

X-rays generated in this way are considered partially coherent, with a finite coherence length

transverse and longitudinal to the direction of the beam.

A monochromator is used to filter the X-rays by their energy and increase the longitudinal

coherence of the beam. The X-rays are diffracted from a grating at an angle determined by

their wavelength and grating period. Only those diffracted at 5 degrees continue down the

beamline. Fine control of wavelength can be achieved by rotating the diffraction grating

to aim different wavelengths down the beamline, whilst coarse adjustments are made by

swapping the grating for one with a different period. In addition, bandwidth can be traded

for efficiency by changing the groove depth of the gratings. The depth of the grooves vary

with position across the gratings, therefore a translation of the gratings changes the depth of

groove upon which the X-rays are focused. This process improves the longitudinal coherence

of the beam up to 12µm.

Switching mirrors are used to direct the beam down the right-hand branch, to illuminate

our holography experiments housed within COMET experimental chambers. The beam

that illuminates the sample and mask has a transverse coherence of 25µm both horizontally

and vertically, which is greater than the size of the sample mask which is approximately

15µmx15µm. This is vital for Fourier imaging techniques, including HERALDO, as they

depend on interference pattern between the sample and a reference. If light from these

apertures is not coherent, then the interference pattern is scrambled and the real space image

cannot be reconstructed.
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Fig. 4.4 Diagram of the COMET detector showing the key features of the two chambers. The
sample vessel holds the sample on the rotating table, with a quadrupole magnet to control the
bias field. The CCD vessel houses the CCD detector which is used to record the diffracted
X-rays,[122].

4.2.2 COMET experimental chambers

COMET (COherent Magnetic scattering Experiments in Transmission) is an experimental

chamber, shown in fig. 4.4, that is designed for elastic scattering of coherent X-rays to study

the magnetisation of samples [122]. The key components and layout are shown in fig. 4.4.

X-rays enter the sample vessel, via a pinhole that skims the incoming beam, illuminating

the chosen region of the sample. The sample and holography mask are mounted on a rotating

table, enabling incident angles between 0 and 45 around a single axis. A quadrupole magnet

provides control over the bias field by moving the position and orientation of permanent

magnets. Details of the sample stage and quadrupole magnetic are shown in fig. 4.5.

A 1cm × 1cm Al-capped AXUV-100 diode is placed 15cm behind the sample in order to

perform energy scans to find the absorption edges related to the magnetisation of the sample

and aide with the alignment of the sample and beam. X-rays are scattered by the sample and

detected by a 16 bit PI-MTE CCD camera from Princeton Instruments that measures 27.7mm

x 27.7mm with 2048 x 2048 pixels. It is positioned 24cm behind the sample and 100nm thick

Al filter prevents visible light from reaching the CCD. Finally a spherical beam-stop roughly
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Fig. 4.5 Sample holder stage. Left and right show setup for normal and 45 degrees incidence
respectively. The sample is mounted between the four permanent magnets,[122].

2um in radius is positioned 2cm in front of the CCD, protecting it from the non-diffracted

X-rays.

4.2.3 Holography mask and sample holder

In typical X-ray holography experiments the holographic mask and sample are separate

objects. In our case, they are combined in a single object. A circular aperture and a reference

slit are milled into a gold plate. The sample is mounted on a Si3N4 membrane which is

transparent for X-rays and positioned to cover the aperture but not the reference slit. The

aperture is our window onto the sample.

One advantage of the slit, over traditional pinhole references, is that it allows the rotation

of the sample to access different incident angles. This allows the in-plane component

of magnetisation to be detected. Also, it provides a greater flux which gives a stronger

interference pattern. Ideally, the reference and aperture have identical flux so that their

interference patterns have the maximum contrast.
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Fig. 4.6 Diagram of sample mounted onto the holographic mask. Sample is deposited on
a Silicone Nitride membrane and positioned ontop of the gold holography mask’s circular
aperture. A reference slit enables holographic reconstruction.

4.2.4 XMCD: X-ray Magnetic Circular Dichroism

Circular Dichroism is the circular polarisation dependent absorption of light. It occurs in

materials with broken inversion symmetry, or when time-reversal symmetry is broken by

a magnetic field. X-ray circular magnetic Dichroism is an example of the latter and is

distinguished from magneto-optical effects such as the Faraday effect by the use of X-rays

instead of visible light. In both cases, the magnetic signal is obtained from the difference in

transmission spectra between photons of opposite circular polarisation.

The mechanism of XMCD is the absorption of circularly polarised X-rays to induce an

electric dipole transition of core p orbitals into d valence orbitals. Consider a ferromagnetic

3d transition metal, such as Fe. Its 3d orbital is responsible for its magnetic moment as it is

partially filled, with a spin population of 5 up, 1 down. The 2p orbital is spin split into j = 1/2

and j = 3/2, where the spin-orbit interaction is coupled antiparallel and parallel respectively.

Spin-orbit coupling correlates the circular polarisation of incident X-rays with the spin of the

excited electrons, providing a source of spin polarised excited electrons that need to find a

hole to occupy in the 3d valence orbitals. The transition 2p1/2 → 3d is the L2 absorption

edge, whilst 2p3/2 → 3d is the L3 edge. These are electric dipole transitions between orbitals

of odd, p and even, d centrosymmetry. As the parity of the electron must switch during

a transition and given that the orbital component is inverted, the spin component must be

conserved during the transition.
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Fig. 4.7 a) Electric dipole transition of electrons from 2p orbitals to 3d by left and right
circularly polarised X-ray photons µ . b) X-ray absorption spectra for different circular
polarisations and corresponding XMCD obtained by the difference between left and right
polarisation. The positive and negative XMCD signal, for L2 and L3 absorption edges
respectively, is due to the opposite spin orbital coupling of the orbitals. Figure taken from
[123]
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As the 3d orbital has more holes with spin down than spin up, the absorption of circularly

polarised X-rays depends on the component of the magnetic moment of the Fe atom co-linear

with the X-ray path. Thus XMCD can be used to detect the element-specific magnetic

moment co-linear to the incident X-ray beam. This is achieved by taking the difference

between the diffraction patterns for the left and right-hand polarised X-rays. If the intensity of

both images is equal, the subtraction cancels out the charge scattering, leaving only magnetic

information. In this experiment, the L3 edge of Mn at 637.5 eV was used as it gave the

greatest signal.

4.2.5 Reconstruction

The inverse scattering problem is the determination of the scatterer from its diffraction

pattern. In the long-distance limit, the diffracted fields are simply the Fourier transform of

the scatterer. In theory, an inverse Fourier transform of the complex diffracted fields yields

the original scattering object. However, in practice detectors only measure the intensity of

the diffracted fields, known as the diffraction pattern. With the loss of the phase information,

different methods are required to reconstruct the scatterer from the absolute value of the

diffraction pattern. Iterative phase retrieval algorithms are one approach.

Fourier transform holography is a way of achieving this in a single, deterministic step.

It utilises a known reference source that has a well-characterised diffraction pattern. The

diffracted X-rays from the reference interfere with those from the scatterer according to their

relative phase. Thus the phase of the diffraction pattern is encoded into the interference

pattern. This enables a deconvolution and inverse transform to reconstruct the original

scatterer from the diffraction pattern.
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4.2.6 Diffraction in the far field regime

When the plane of observation is far enough away from the aperture that the path distance

from two most remote parts of the aperture to a point on the detector differ less than one

wavelength then the diffraction pattern is said to be in the far-field regime,

W 2

Lλ
<< 1, (4.1)

where W is the width of the aperture, L is the distance to the detector and λ is the wavelength.

In our experiment, the CCD detector is positioned 24cm from the holography mask and

sample. The illuminating radiation has a wavelength on the order of 1.7nm and the aperture a

diameter approximately 3µm. This gives W 2/Lλ ≈ 0.021, Therefore the diffraction pattern

can be said to be in the far-field regime.

The Fraunhofer diffraction equation gives the diffraction pattern of a scatterer in the

far-field regime. It states the complex scattered field is proportional to the Fourier transform

of the complex field at the aperture.

lim
W2
Lλ

<<1
F(x,y,z) ∝

∫∫
dx′dy′

f (x′,y′)e−i 2π

λ z (x
′x+y′y) dx′ dy′, (4.2)

F ∝ F { f} , (4.3)

where F is the complex diffracted field, f is the incident field and A is the area of the

aperture. The primed coordinates are at the mask plane, while the unprimed coordinates are

at the detector. We use the shorthand of the second equation where the capitalised letter is

the Fourier transform of the lower case variable.

In our experiment, there are two apertures, the sample and reference, which are illu-

minated by the same coherent source. The total diffracted field F is the product of their

respective Fourier transforms. The CCD measures the intensity of the diffracted X-rays,



76 X-ray holography imaging of magnetic biskyrmions

which is given by the square of the modulus of the diffracted field,

F± ∝ (R± ·S±)(S± ·R±), (4.4)

where F+ and F− are the measured intensities of right and left-handed X-rays, R and S are the

Fourier transform of the reference and sample respectively. Because there is only magnetic

material in the sample aperture, R± = R and S− ̸= S+.

4.2.7 Magnetic contrast

The magnetic diffraction pattern is given by the difference between the left and right-hand

polarised X-rays diffraction patterns while the charge diffraction pattern is given by their

sum.

M = F+−F−, (4.5)

C = F−+F+, (4.6)

We are interested in the magnetic signal. In an ideal world there is no noise and the two

images F± have equal intensities. In practice there is some noise but the intensity of the

images can be normalised. Assuming the ideal case and expanding the terms out,

M =(R ·R+S+ ·S++R ·S++S+ ·R) (4.7)

− (R ·R+S− ·S−+R ·S−+S− ·R) , (4.8)

where the R ·R terms cancel out, everything else does not. We can simplify things by

recognising Sm = S+−S−, where Sm is the diffraction pattern of the magnetisation of the
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(a) M = F+−F− (b) C = F−+F+

Fig. 4.8 Sum and difference diffraction patterns. Left. The subtraction image containing
mainly magnetic information via the XMCD effect. Right. The sum image containing mainly
charge information. The blade shape in the upper left quadrant and the square in the upper
left are both stray light artefacts.

sample,

M = Sm ·Sm +R ·Sm +Sm ·R. (4.9)

4.2.8 Convolution theorem

The signal is still in reciprocal space and a Fourier transform is required to obtain the real

space contrast. The convolution theorem states that the convolution of two functions, p and

q, is equal to the inverse transform of the product of the Fourier transform of one function

with the Fourier transform of the other,

p∗q = F−1 {P ·Q} (4.10)

where P and Q are the fourier transforms of the functions p and q. Inverse Fourier transform

of the intensity to the real space gives,

m = sm ∗ sm︸ ︷︷ ︸
Autocorrelation

+r ∗ sm + sm ∗ r︸ ︷︷ ︸
Crosscorrelations

, (4.11)
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where the first term is the convolution of the sample with itself, this is also known as auto-

correlation. Autocorrelations are always centred at the origin, every object is collocated with

itself after all. The latter terms are the convolution of the reference and slit and slit with

the reference, also known as cross-correlations. The displacement between the reference

and the sample means that these images appear displaced from the origin in equal and

opposite directions as convolutions do not commute. These terms show the convolution of

the reference slit with the magnetic sample, therefore deconvolution is required to separate

them and recover just the magnetic sample.

4.2.9 Deconvolution

Traditionally the aperture is a pinhole, so the reference is approximately a point. The

convolution of a function with a point function simply yields the original function. In this

special case, a direct inverse Fourier transform of the diffraction pattern yields the real space

image. In general, deconvolution of the reference and sample aperture is necessary to recover

the sample. If the diffraction pattern of the reference is known, then the measured diffraction

pattern can be divided by the reference diffraction pattern R, to yield the Fourier transform

of the sample itself. Only an inverse transform is now required to image of the sample,

f = F−1
{

P
Q

}
(4.12)

however, in general, the diffraction pattern of the reference is not always known. In this case,

information about the reference can be used to estimate it’s Fourier transform and replicate

key features.
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In our experiments, a quick method is to divide the difference of the left and right-hand

diffraction patterns with their sum before performing an inverse transform, i.e.

sm ≈ F−1
{

M
C

}
, (4.13)

which is an approximation because the sum data, corresponding to the scattering by charges,

is dominated by the diffraction pattern of the reference slits. Meanwhile, the difference data

is dominated by the magnetic information of the sample. Due to the approximation, this

method produces inferior results, as shown in fig. 4.9.

To produce the figures in this thesis and publications, a more accurate method is used. A

gradient filter is applied to deconvolve the sample from the reference. The reference slit can

be considered a line source. The convolution of an image with a line yields a smeared image.

A gradient operation along its axis will yield two copies of the original image, separated by

the length of the slit and with positive and negative contrast respectively.

r(x) =


1, if 0 < x < L

0, elsewhere
(4.14)

∇r(x) = δ0,x −δL,x (4.15)

Therefore application of a gradient filter to the inverse transformed data gives four images of

the magnetic contrast. Two from each cross-correlation, separated by L,

m = ∇(sm ∗ sm)︸ ︷︷ ︸
Autocorrelation

+sm ∗ (δ0,x −δL,x)+(δ0,x −δL,x)∗ sm︸ ︷︷ ︸
Magnetic images

, (4.16)

where the first term is the autocorrelation of the sample with itself and the other terms are the

magnetic images. In practice, this filter is applied directly to the diffraction images which

are in the reciprocal space. Here the filter takes the form of an array with a linear gradient
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orientated along the slit. Careful alignment of this filter is important for the quality of results.

An inverse Fourier transform of the filtered data, with its origin at the centre of the diffraction

pattern, yields the real space data. Once the reconstructed magnetic image is obtained, further

Fig. 4.9 Real space magnetic contrast, red and blue show ±Mz respectively. a) The convo-
luted image, b) the deconvoluted image using the division method 4.13 and c) shows the
deconvoluted image using the gradient operator method 4.14. The Autocorrelation of the
sample with itself is in the centre. The sample aperture is circular so the autocorrelation is a
circle of double the radius. The four satellites are the recovered magnetic sample duplicated
due to the cross correlations being deconvolved.

image processing is then applied to isolate the magnetic signal from the noise. This is an

important part of the process because the signal to noise ratio is typically very low as the

autocorrelations are naturally very intense. Furthermore, stray light, hot pixels and other

unwanted artefacts can obscure the magnetic signal. These issues are not discussed here. A

guide to the common issues and how to solve them is available in the user guide for hero.py

attached in appendix A.12.

4.2.10 Resolution

A resolution of down to 20nm has been achieved in practice using this technique. Spatial

resolution is predominantly determined by the reference slit as it gives the spatial resolution

2also on GitHub https://github.com/AngusLaurenson/HERALDO
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of the phase on the detector. Temporal resolution is determined by the width of the X-ray

packets in time, from 100 ps to 10ps, depending on the filling mode of the storage ring [122].

In this experiment, a resolution of 25nm is achieved.

4.2.11 Sample

Fig. 4.10 Scanning electron microscope image of sample mask. a) the gold mask, circle
is the aperture and the slit is the reference. b) Sample film deposited onto the gold mask.
Annotated circle shows the position of the aperture.

The sample is a 200 nm thick, 10×5 µm single crystal plate of MnNiGa that is orientated

with its large surfaces normal to the magnetic easy axis, giving the plate a perpendicular

magneto-crystalline anisotropy (PMA). It was cut from a polycrystal using gallium ion

milling and lifted out with a micro-manipulator. Two identical platelets were prepared in the

same manner, from the same single crystal. One for X-ray holography to gather new results

and the other for LTEM, for direct comparison with published results [109].

MnNiGa has a hexagonal crystal structure with space group P63/mmc and lattice param-

eters a=b=4.15 Å and c=5.33 Å, Fig. (4.11). It has a Curie temperature of Tc = 350 K. Its

hexagonal structure gives rise to an easy-axis magneto-crystalline anisotropy normal to the

001 plane. The film was cut such that the large surfaces are parallel to the 001 plane within

7 degrees. As the unit cell has inversion symmetry, asymmetric exchange interaction is
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Fig. 4.11 The crystal structure of Mn1/3Ni1/3Ga1/3. The vertical direction is the easy axis,
normal to the 001 plane.

forbidden[43]. Therefore, the sample has no preference for the chirality of magnetic textures

such as skyrmion like bubble domains that can form in it.

The material parameters of the sample are not known from direct measurement. Instead,

they were inferred by fitting micromagnetic simulations to experimental data and informed

by existing literature. The estimated magnetisation saturation, µ0Ms ≈ 0.648T exchange

stiffness Aex = 20 pJm−1 [124].

4.3 Results

4.3.1 Formation of bubble domains from stripe domains

The formation of a sparse array of biskyrmions from stripe domains under the influence of a

perpendicular bias field has been reported in MnNiGa using LTEM [114]. In this section, we

attempt to replicate these results using HERALDO to measure the perpendicular component

of the magnetisation.

The sample was orientated perpendicular to the incident X-ray beam and a field sweep

from 0 to 310 mT was first carried out at room temperature, with the field applied normal to
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the sample’s surface, fig. (4.12). At the low field, stripe domains were observed. As the field

was increased, those domains opposed to the field first narrowed and then fragmented at 250

mT to become a sparse array of single-cored bubble domains each with an average diameter

of 120 nm separated by 650nm. This lattice of bubble domains was observed to be destroyed

at 310 mT, being replaced with uniform magnetisation perpendicular to the surface.

Fig. 4.12 Field sweep from 0 to 330 mT at room temperature. The colour scale red and blue
indicates different values of the out of plane magnetisation component. The stripe domains
move apart and finally break into a lattice of bubble domains. Stripes that have a weak out of
plane signal are due to the movement of the stripe during the collection of the image.

Stripe domains are a typical ground state magnetisation for ferromagnetic films with

perpendicular easy axis anisotropy when the bias field is weak. As the field increases, the

stripe domains split and reduce down to a sparse array of bubble domains. Fig. (4.12) shows

that the isolated domains formed have a single core structure and are therefore bubbles,

not biskyrmions. Indeed, this method of stabilising bubbles has been well studied for its
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application in magnetic bubble memory [125]. This suggests that such as genesis is indicative

of magnetic bubble domains and not biskyrmions.

4.3.2 Field cooled formation of dense bubble lattice

Field cooling is a process whereby the bias field is held constant and the temperature is raised

above the Curie temperature, erasing the magnetic order, before being reduced to a given

temperature. The thermal disordering enables magnetic states to be accessed that cannot be

obtained by continuous deformations of the magnetisation. Thus, field cooling is commonly

used to induce the formation of skyrmion lattices in chiral magnets, where they appear as a

metastable state near the curie temperature. A dense array of biskyrmions have also been

reported to be created by this process [114]. We investigate the magnetic structures formed

by field cooling using HERALDO.

The sample was heated above its Curie temperature (350 K) destroying the magnetic order

and resetting the history of the magnetisation. It was then cooled back to room temperature

under the influence of a perpendicular bias field. This process was repeated for bias fields

between 0 and 175 mT, a subset is shown in fig. 4.13.

Fig. 4.13 Magnetisation configuration generated by field cooling from 350 → 300K. Red
and blue show ±Mz, the magnetisation component perpendicular to the film and bias field
values are inset to each panel.
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In all cases, a dense hexagonal array of circular, single-core perpendicular domains is

stabilised. The magnetic state is created at high temperatures near the Tc and frozen in place

by the cooling to form a highly resilient metastable state. As MnNiGa does not exhibit an

asymmetric exchange interaction it would be surprising if these domains were magnetic

skyrmions. Instead, they are most likely bubble domains. They form a hexagonal lattice that

is stabilised by the magnetostatic interaction between the bubble domains.

4.3.3 Response of dense bubble lattice to external fields

A bubble domain lattice was generated by field cooling as in the previous section. It was then

subject to perpendicular bias field swept from 0 mT to 400 mT. The bubble domains reduce

in radius as the field increases, but their lattice constant does not change. At 400 mT the

bubbles are reduced in size to roughly half their original radius but are not eliminated. This

shows that a close-packed hexagonal array of bubble domains formed by field cooling has

much greater stability than a sparse array of bubble domains created from stripe domains.

The perpendicular component of magnetisation is shown to be reduced between bubble

domains along a specific axis of the bubble lattice. The magnetisation is assumed to be

constant in magnitude throughout the sample. Therefore, there is a significant in-plane

magnetic moment in between bubble domains along this axis.

Fig. (4.15) shows interpolated line scans of the Mz signal taken from centre to centre

between bubble domains. It is shown that magnetisation does not fully reverse between

bubbles along one direction, indicating an in-plane component of magnetisation. This

indicates that the bubbles are of the onion configuration, (type 2). They appear to be arranged,

head to toe, into chains that lie parallel to one another. This arrangement minimises the

dipolar energy by compensating the magneto-static charges that are by the converging and

diverging magnetisation in the domain walls of these type 2 bubble domains. Micromagnetic
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Fig. 4.14 Magnetisation configuration generated by field cooling from 350 → 300 K at 35
mT, then subject to a perpendicular bias field. Red and blue show ±Mz, the magnetisation
component perpendicular to the film and bias field values are inset to each panel.

simulations show that such arrangements do arise and help to explain the reduced out of

plane magnetisation between bubbles in one direction [124].

4.3.4 Discussion

HERALDO was used to directly image the magnetisation component of the Mn sublattice that

is normal to the plane, whereas LTEM measures the in-plane magnetic flux and the magnetic

configuration is inferred from that. Therefore, HERALDO images are less ambiguous than
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Fig. 4.15 a) Magnetisation normal to the surface for different bias fields labelled on top of
the panels. Red, white and blue indicates the value magnetisation component normal to the
sample at room temperature as +Ms 0 and −Ms respectively. b) The effect of increasing
the applied field on the average centre-to-centre spacing of the bubbles and their diameter.
c) Line-scans in the directions shown in (a) by the red and green lines. Solid black lines
indicate hyperbolic tangent fits to the magnetic domain walls that yield a domain wall width
of 47.5nm [124].

the LTEM images taken previously. Our images show a hexagonal lattice similar to those

measured in LTEM. Only one out of plane magnetic core per lattice site was observed. At no

point during the experiment were any double cores characteristic of biskyrmions observed.

The 25nm spatial resolution of HERALDO is sufficient to discriminate the difference between

a bubble domain and a biskyrmion, whose cores are separated by 100nm. This suggests

that LTEM images of biskyrmions are bubble domains in the onion state or skyrmion like

magnetic bubbles.

For traditional skyrmions and skyrmion like bubble domains, the in-plane magnetisation

forms a closed-loop so there is no stray field. In this case, the in-plane field is directly

proportional to the magnetisation. However, type 2 bubbles have a net magnetic moment
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and the magnetic flux from these magnetic textures are not directly proportional to the

magnetisation.

Fig. 4.16 From left to right: LTEM image and corresponding reconstructed in-plane B field.
Sketch of the magnetic biskyrmion, proposed as the source of this B field. Sketch of a bubble
domain in the onion state, in-plane B field computed by micromagnetic simulation and
magnetisation state from which the B field was computed. B fields are shown by contours
which are coloured depending on the direction of the field. The sketch is coloured with Red
showing perpendicular magnetisation points up out of the plane, Blue showing down into the
plane and white with arrows showing in-plane magnetisation.

Fig. 4.16 was produced by our collaborators and it shows the competing hypotheses

of a bubble domain or a biskyrmion. Micromagnetic simulations show that the in-plane

magnetic flux density generated by a type 2 bubble domain is very similar to that measured in

LTEM experiments of biskyrmions. This is because in both cases, the in-plane magnetic flux

has a figure of eight circulation pattern, which similarly deflects the electrons. This insight

supports our initial analysis that the biskrymion domains reported in the literature are likely

to be bubble domains.

4.3.5 Conclusion

Images of biskyrmions in MnNiGa using Lorentz Transmission Electron Microscopy (LTEM)

have been reported [114, 115]. We used HERALDO [121] experiments to directly measure

the perpendicular component of magnetisation of a sample of MnNiGa in the biskyrmion

lattice state [124]. However, instead of biskyrmions, a hexagonal lattice of type 2 bubble

domains (onion state) was found, fig. 4.13. Analysis by our collaborators shows that the

LTEM signal from type 2 bubble domains and biskyrmions are effectively indistinguishable
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from one another, fig. 4.16. Moreover, there have been no mathematical models known devel-

oped that can explain the stability of biskyrmions [124]. On the weight of this evidence, and

evoking Occam’s razor, we conclude that LTEM images purportedly showing biskyrmions

are highly likely to show lattices of traditional bubble domains. This work is published in

Advanced materials [124].





Chapter 5

Collective excitation of bubble domains

in an antidot lattice

5.1 Introduction

Magnonic crystals1 are periodically modulated magnetic media which exhibit bandgaps in

the spin-wave spectrum [5, 6]. These bandgaps can be used to control the propagation of

spin-waves [10]. The most primitive scheme is to etch grooves into an otherwise continuous

film [64] but this has the disadvantage that it cannot be switched on or off. One promising

line of research is to use periodic modulation of the magnetisation itself to open the bandgaps

[72–75]. The configuration of magnetisation in a system plays an important role in the

propagation of spin-waves. If several metastable states exist in the system, there exists the

possibility to switch between them. By doing so, the dynamic properties of the magnonic

crystal are also changed [14]. Dynamic control of spin-wave propagation is important for

the development of spin-wave switches and other devices of great utility in spin-wave logic

circuits [126]. Bubble domains2 are one candidate. They are cylindrical domains and their

1See section 2.5.1
2See section 2.6
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Fig. 5.1 The honeycomb array of magnetic bubble domains confined within a film with a
hexagonal array of antidots. The highlighted cuboid is the unit cell used in simulations.
It contains two of the diamond-shaped primitive cells of the bubble domain lattice due to
the cuboid mesh. Red and blue indicate positive and negative values of the out-of-plane
component of the magnetisation. The bubble domains are shown in red. They are confined
to the node regions of the magnetic film and surrounded by a majority domain of opposite
magnetisation, which is shown in blue.

stability and mobility enable them to store and carry information [4]. The recently discovered

magnetic skyrmion is of particular interest [12]. It can be considered a special type of

magnetic bubble domain which is defined by a topological winding number [127], which

gives them greater stability against collapse [128], enabling them to be reduced in scale

among other properties [129]. However, many authors distinguish skyrmions from bubble

domains with the additional condition that they are stabilised by an asymmetric exchange

interaction known as Dzyaloshinki-Moryia interaction (DMI) [43]. It is found in crystals

that lack inversion symmetry and favours canted neighbouring spins rather than parallel

neighbouring spins. This interaction means all the skyrmions in a crystal will have the same

chirality. However, bubble domains with a skyrmion topology can still form in materials

without any DMI interaction and these are known as skyrmion-bubbles. They have the same

topological properties and similar internal modes but will not all necessarily have the same

chirality. [130, 80].
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Fig. 5.2 The magnetisation configuration of a bubble domain confined within a node of the
antidot lattice. Colour indicates the component of magnetisation perpendicular to the film
while the direction of the arrows indicates the orientation of magnetisation the top and bottom
surface of the bubble domain. The centre of the domain wall is shown by the grey cylinder
which is defined as the contour where the magnetisation is entirely in the plane. In this case,
it circulates around the domain wall.

In this context, the collective excitations of an array of skyrmion-bubble domains in a film

patterned with a hexagonal array of antidots were studied using micromagnetic simulations.

In this system, shown in fig. (5.1), the bubble domains are confined to node regions between

antidots, forming a honeycomb array. The bubbles are stabilised by magneto-crystalline

anisotropy orientated perpendicular to the film and by the shape anisotropy induced by the

antidot lattice. The interaction between the dynamic modes of neighbouring bubble domains

gives rise to a band structure. We use the width of the calculated bands emerging from

different excited states of individual bubble domains as a measure of their magneto-dipole

interaction strength. It is observed that only the breath modes give rise to magnonic bands of

significant width and a group velocity large enough to enable energy to propagate through

the system. Our findings are interpreted in terms of the spatial profiles of individual modes.

5.2 System

In Ref. [131], it was shown that a hexagonal array of magnetic antidots can support a variety

of micromagnetic configurations, due to a complicated interplay between the exchange,
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anisotropy and demagnetizing fields and depending on the value of the applied bias magnetic

field. Furthermore, our subsequent micromagnetic simulations, which were performed using

Mumax3 [32] and OOMMF [31] software, have shown an even greater range of metastable

states exist when the parameters of the lattice and material are varied. Here, we focus on one

case, in which an array of magnetic antidots supports a honeycomb array of magnetic bubble

domains at zero bias magnetic field, fig. (5.1).

The antidot array is patterned from a 100 nm thick magnetic film. The antidots are 333

nm in diameter and form a hexagonal lattice with a lattice constant of 400 nm. We assumed

the saturation magnetization of 600 kA / m, the exchange stiffness of 5.5pJ / m3, and the

out-of-plane uniaxial magneto-crystalline anisotropy of 400 kJ / m, roughly corresponding to

a cobalt-based magnetic superlattice. The assumed value of the Gilbert damping parameter

was 0.001, i.e. artificially reduced to better resolve the magnonic band structure of the

system.

5.3 Methods

A cubic mesh was used with cell dimensions 2.7 x 2.7 x 3.3 nm3, while the exchange length

of the materials was 4 nm. Two dimensional (2D) periodic boundary conditions were used to

approximate an infinite sample. The equilibrium magnetization configuration was established

by relaxing the system under zero bias field from an initial state of saturated perpendicular

magnetization with reversed magnetic cylinders at the node regions, to nucleate formation of

bubble domains.

The magnetization dynamics were excited by a pulse of magnetic field oriented perpen-

dicular to the film plane. Spatially, the pulse had a Gaussian profile (with a full width at half

maximum of 140 nm) in the direction of propagation and was uniform in the two orthogonal

directions. The temporal profile of the pulse was given by a sinc function with an amplitude

of 10 mT and a cut-off frequency of 10 GHz. The results of real space - time-domain
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Fig. 5.3 Simulation volumes of 16 repeating units orientated along the principal symmetry
axes left and right show Γ →M and Γ →K. Red and blue show positive and negative
magnetisation component perpendicular to the plane. Inset figure shows the Weigner Ziets
cell of the bubble domain lattice, the red dashed lines indicate the cuts accessed by the
simulation.

simulations were converted, using Fourier transform, into reciprocal space-frequency domain,

to recover the band structure and spatial mode profiles of observed magnetic excitations [36].

To obtain the full band structure, first waves travelling in all directions must be simulated

before being transformed into reciprocal space. Unfortunately, the constraints of cell size,

which must be smaller than the exchange length, simulation size, which must cover many

Brillouin zones of the antidot lattice, combined with the limited available video card memory.

Instead, the 2D periodic boundary conditions were applied to a stripe of 16 x 2 unit cells

of the antidot lattice. Two unit cells are required across the short axis because the unit cell

of the antidot lattice is diamond in shape while the mesh cells are cuboid. Uniform and

antisymmetric modes are permitted across the width of the stripe. Spin waves are then sent

down the long axis to approximate propagation in one direction through an infinite medium.

We chose two important symmetry directions to investigate the dispersion at the M and K

points in the reciprocal space. This produces two separate pairs of bands, one going through

the centre of the Brillouin zone and the other along its edge, as shown in fig. (5.3).
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Fig. 5.4 Deformation modes of a bubble domain represented in the frequency domain. Panel a)
Breathing mode, the phase is uniform around the domain wall, m = 0 b) gyration mode, phase
varies by 2π around the domain wall, m = 1 c) elliptical mode, phase varies by 4π around
the domain wall, m = 2. The phase is given by the cyclic colour map, while the intensity of
the colour indicates the amplitude. The component of magnetisation perpendicular to the
magnetic film is used as it is normal to the equilibrium orientation of spins in the domain
wall.

The spatial character of the collective modes is shown for frequencies corresponding

to the band centre and edge. The colour shows the phase, while the intensity shows the

amplitude, of the out of plane component of magnetisation as it precesses. It is obtained by

taking a Fourier transform of the data from the time to the frequency domain. Fig. (5.4a),b),c))

show the frequency domain representation of the breathing, gyration and elliptical modes of

an individual bubble domain respectively.

5.4 Results

5.4.1 Band structure

Bubble domains interact with one another through their dipolar fields. In the static case, this

provides a level of mutual stability, as demonstrated in chapter 3 for bubble domain lattices.

In the dynamic case, oscillations in the bubble domain wall add a dynamic perturbation to

their dipolar field. In a lattice of bubble domains, this dynamic dipolar interaction gives rise

to the formation of a band structure, each band composed of the collective excitation of a

single internal mode of the bubble domains. Four bands are expected from the simulations as
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Fig. 5.5 Band structure of collective bubble domain oscillations along the Γ → K, Γ →M
cuts.

the unit cell of the simulation contains to meta-atoms (bubble domains) in its basis, thus this

method accesses two parallel cuts through reciprocal space, one through the centre and one

along the edge as shown in fig. (5.3).

The band structure formed by the collective oscillation of bubble domains is shown in

fig. (5.5). The frequency range is restricted to 3.1 GHz to clearly show the structure of the

dispersive modes. Higher frequency bands appear flat and therefore do not correspond to

propagating modes. Analysis of the spatial mode profiles shows that the widest bands arise

from the collective breathing modes, whilst the flatter, lower frequency bands correspond to

the collective gyration and elliptical modes. The spatial profile of these modes is shown for

waves propagating along the y axis and their characteristics are discussed below. The profiles

of waves travelling along the x axis are included in the appendix (B). One commonality of

the modes that are shown is that they are uniform across the film thickness.
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5.4.2 Collective breathing mode

Fig. 5.6 The band structure of the collective breathing modes propagating along the y axis is
shown in the centre, with the corresponding mode profiles on either side. For each frequency,
a slice through the centre of the film is shown, along with a vertical slice along the length of
the simulation showing the thickness mode profile. The colour shows the relative phase of
precession and intensity the amplitude as shown in the inset colour wheel. A uniform phase
around the domain wall of each bubble domains shows they are in the breathing mode. The
difference in phase between neighbours shows the wavelength of the collective breathing
modes.

Bubble domains in the breathing mode interact through the change in their dipolar

moment, which is orientated perpendicular to the film and oscillates in amplitude with the

periodic expansion and contraction of their radius. Consider two bubble domains located

near enough to one another that their dipolar fields have a significant effect but not close

enough that their domain walls are touching. Now the breathing mode of these domains split
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into symmetric and anti-symmetric modes. The anti-symmetric mode has lower energy than

the symmetric mode as it has a lower total magnetostatic energy. This gives the breathing

mode in a linear chain of bubbles a negative group velocity, [67]. The strong dynamic

dipolar interaction between breathing modes gives these bands the greatest width. The high

frequency of the breathing mode is due, on one hand, to the restoring force associated with

the exchange energy cost of an enlarged bubble and on the other, to the dipolar energy cost

of a contracted bubble. Thus the frequency is greater than the gyration or elliptical modes.

Figure (5.6) shows the band structure and mode profiles of the collective breathing modes.

The phase of magnetisation precession is shown by the colour, while the amplitude of is

shown by the intensity, as described in fig. (5.4,a)). In all modes presented here, the phase

is uniform through the thickness. Panels a)-d) show the modes where the phase is uniform

across the stripe, whilst e)-g) show the modes where the bubbles on the edge of the stripe

oscillate in anti-phase with those in the centre and therefore correspond to a cut along the

edge of the Brillouin zone. These bands have the greatest width and group velocity which

shows that the dipolar interaction between breathing modes is the strongest. Panels a) and

c) show the symmetric and anti-symmetric mode at |k|= 0, where all unit cells oscillate in

phase with one another. Panel b) shows the band edge where ky = π/a, kx = 0, the symmetric

and anti-symmetric branches converge and appear to cross here. Panel d) shows the mode

profile of an unexpected band which has non-uniform phase around the domain wall. The

band structure of coupled dipoles in a honeycomb array is not always straightforward [132].

In this case, it is reminiscent of the flat band which is known to occur in Kagome lattices

[133] and could be explained by considering collective mode structures more complex than a

linear combination of isolated bubble domain modes. Panels e) and g) show the symmetric

and anti-symmetric mode where the phase varies 2π across the stripe, corresponding to the

BZ edge, ky = 0, kx = π/2a.
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5.4.3 Collective gyration mode

Fig. 5.7 The band structure of the collective gyration modes propagating along the y axis is
shown in the centre, with the corresponding mode profiles on either side. the colour shows
the relative phase of precession and intensity the amplitude. The phase rotates 2π around the
domain wall of each bubble domains shows they are in the gyration mode.

In the gyration mode, the centre of mass of each bubble domain gyrates around its

equilibrium position. When represented in frequency space, it corresponds to the phase of

precession varying by 2π around the domain wall, as shown in fig. (5.4,b)). As the domain

wall does not deform, there is no exchange energy associated with this mode, only the dipolar

restoring forces. This gives the gyration bands the lowest frequency of any excitation in

the crystal. The geometrical patterning provides a confining magnetostatic potential which

prevents translational movement of the bubble domains and gives the collective breathing

mode a finite frequency at |k|= 0. Furthermore, the dipolar moment of the domains do not

change in amplitude, but they do oscillate in position with a gyration around the equilibrium

position. This can be considered as an oscillation in the quadrupole moment of the bubble

domain. The bandwidth is much thinner than for the breathing mode which shows the
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interaction energy between neighbouring gyration modes is much smaller which is to be

expected as the interaction energy of quadrupole moments drops off with distance more

strongly than for dipole moments.

Fig. (5.7) shows the band structure and mode profiles of the collective gyration modes. In

contrast to the breathing mode, the energy of the symmetric gyration mode is lower than the

anti-symmetric mode as it preserves the distances between the bubble domains and therefore

has no change in the interaction energy. There is however the confining magnetostatic

potential due to the geometry, which gives this mode a finite frequency. Therefore the order

of the modes in frequency is reversed with respect to the breathing mode. Panels a) and c)

show the anti-symmetric and symmetric gyration modes for the case where the bubbles in the

centre and edges of the stripe are in anti-phase. Panel b) shows the band edge where these

two branches converge.

5.4.4 Collective elliptical mode

The elliptical mode is a wave in the domain wall with wavelength half the circumference.

In frequency space, it appears as a ring with phase varying 4π around its circumference, as

shown in fig. (5.4,c)). The bending of the domain wall costs exchange energy and this mode

has a higher frequency than the gyration mode and in this system, lower than the breathing

mode. There is very little demagnetising energy associate with this mode, its centre of mass

does not move and the amplitude of the dipolar moment does not change either. Therefore

the splitting of this mode is expected to be weak which is reflected in the bandwidth formed

by the collective elliptical modes.

Fig. (5.8) shows the band structure and mode profiles of the collective elliptical modes.

Once again the frequency order is reversed, with higher frequencies going to modes with

neighbours oscillating in phase. Panels a)-c) show modes which are uniform in phase across

the width of the stripe whilst d)-f) show the modes where the bubbles on the edge are in
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Fig. 5.8 The band structure of the collective elliptical modes propagating along the y axis is
shown in the centre, with the corresponding mode profiles on either side. The colour shows
the relative phase of precession and intensity the amplitude. The phase of precession rotates
4π around the domain wall of each bubble domain showing they are in the elliptical mode.

anti-phase with those in the centre. Panel a) has the highest frequency and all bubbles are

oscillating in phase. Conversely, f) has the lowest frequency and all nearest neighbours

are approximately in anti-phase. The small bandwidths mean that more wave vectors are

measured as having the same frequency, therefore the mode profiles calculated are more

uncertain than for more strongly dispersive modes such as the breathing mode.

5.5 Discussion

The band structure of collective modes of a honeycomb lattice of bubble domains, confined

within a hexagonal antidot lattice, was simulated. The band-structure is populated by many

flat, non-propagating bands. The prevalence of flat bands in the numerical dispersion indicates
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that the coupling energy between excited bubble domains is small compared to the restoring

potential energy of each bubble domain and that the system is in the weakly coupled regime.

We focus our discussion on the bands found between 0-3 GHz as they exhibit the greatest

bandwidths and group velocities. Analysis of the spatial mode profiles in the frequency

domain shows that these correspond to the collective breathing (m = 0), gyration (m = 1)

and elliptical (m = 2) deformation modes. The collective breathing mode has the widest

band and the highest group velocity. It also dominates the response of the magnonic crystal

to external magnetic fields as it couples directly to uniform fields applied perpendicular to

the film. These two features make it the most promising candidate for carrying information.

Conversely, the other bands are both harder to excite and have many small bandwidths, group

velocities and propagation distances. The bandwidth is observed to be inversely proportional

to the mode number, m.

The width of a band is proportional to the interaction between energy between neighbour-

ing domains. Given that the system is operating at frequencies below the spin-wave manifold

and that the bubble domains are separated far beyond the exchange length λex ≈ 4 nm, neither

spin-waves nor direct exchange interactions contribute to bubble domain coupling. Therefore,

the principal coupling mechanism between domains is their dipolar interaction. As the bub-

ble domain walls oscillate, transient magnetostatic charges are formed and destroyed at the

surfaces, adding a dynamic perturbation to their stray magnetic field. These dynamic dipolar

fields couple bubble domains and cause them to oscillate together, forming propagating

bands. In the case of the breathing mode, the bubble domain radius expands and contracts

uniformly, giving it an oscillating dipole moment. Gyration and elliptical modes do not have

an oscillating dipolar moment but do have higher-order multipole moments which oscillate.

As dipoles interact much more strongly with distance than higher-order multipole moment.

The higher-order the bubble domain mode, the higher-order its dynamic multipole moment

is and therefore the lower its bandwidth. This explains qualitatively the inverse relationship
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between mode number and bandwidth. However, a more detailed analysis is required to

make numerical predictions of the band structure.

5.6 Conclusion

In conclusion, we have used micromagnetic simulations to demonstrate that a hexagonal

antidot lattice patterned from a film with a perpendicular magneto-crystalline anisotropy

can support a honeycomb array of interacting magnetic bubble domains. The interdomain

interaction has a magneto-dipole origin and gives rise to two dispersive collective magnonic

bands, besides numerous flat bands. In principle, the dispersive bands are suitable for

information transfer. Notably, the magnonic crystal presented here derives its properties from

its micromagnetic configuration. Beyond this report, our simulations have revealed that a

variety of other topologically complex micromagnetic configurations could be supported by

similar antidot arrays with other magnetic and geometrical properties. Although systematic

investigations of those systems and their dynamical properties is a subject of our ongoing

research, our results show that non-uniform magnetic textures stabilized by patterned media

radically change their response to the incident microwave magnetic field. Thus, as the

magnetic samples naturally support multiple metastable states, such magnonic crystals

and more generally metamaterials could offer an elegant way of achieving reconfigurable

magnonic devices.
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Summary

Spin waves are the collective precession of magnetisation and have potential as information

carriers in future spin wave devices. This requires control of their propagation which can be

achieved by controlling their environment. The research in this thesis was aimed at both spin

wave propagation in periodic media, and magnetic textures which could in the future find

application in new magnonic crystals or other devices. In this context, the results presented

in this thesis constitute a drop in the ocean.

In chapter 1, Bloch oscillations of spin waves are studied. They represent a novel means

to control the propagation of spin waves. Micromagnetic simulations of a Yttrium Iron

Garnet magnonic crystal, subject to a bias field that increases linearly across the system, show

Bloch and Bloch-Zener oscillations of spin waves. These results are in good agreement with

an analytical theory developed to treat the case of magnetostatic spin wave Bloch oscillations

in the empty lattice approximation. The challenge now is to measure spin wave BOs in an

experiment. This could be achieved using a YIG magnonic crystal, of which several have

been studied, and placing between two poles of a magnet, one pointed and the other concave

so as to produce a gradient in magnetic flux density. A coplanar waveguide could then be

used to both excite and detect the breathing mode of spin wave BOs. Another interesting

topic is the BO of dipole-exchange, backward volume spin waves as the dispersion of these
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spin waves does not increase monotonically with wavevector but rather has a minimum at a

non-zero value.

In chapter 4, X-ray holographic techniques were used to search for the recently reported

and highly exotic magnetic texture known as biskyrmions, in a film of MnNiGa. With

this technique we measured the perpendicular component of magnetisation which did not

show the reported biskyrmion structure. Instead of a lattice of biskyrmions, our analysis

revealed a lattice of traditional bubble domains. Complimentary experiments and further

simulations by our collaborators confirmed this hypothesis and showed that the imaging

technique used in other studies was unable to distinguish between the biksyrmion and bubble

domain. Therefore we conclude that the existence of biskyrmions is doubtful. Routines

for the reconstruction of real space magnetic contrast from the diffraction patterns was also

developed. It is publicly available and has been adopted by other scientists.

Chapter 5 is a micromagnetic study of a magnonic crystal composed of bubble domains

confined and stabilised within a hexagonal lattice of antidots. The dynamic modes of

neighbouring bubble domains interact through their stray magnetic fields, forming a band

structure of collective oscillations. However, only the collective breathing mode has a

significant bandwidth and group velocity and an inverse relationship was observed between

mode number of the bubble domain the width of the corresponding band structure. Given

the low bandwidth and frequency of these modes in comparison to spin waves, they are

not such promising candidates for carrying information. Further work in this area includes

developing a theoretical model for the system, the investigation of other metastable, periodic

magnetisation states and the transition between them.

In conclusion, a variety of numerical and experimental investigations are presented into

new spin wave phenomena and domain structures. Micromagnetic simulations are used to

demonstrate the Bloch oscillation of magnetostatic spin waves in a periodic magnetic film,

representing a new way of controlling the spin wave propagation. Moreover an approximate



107

theory has been developed which matches the simulation results in the limit of high applied

magnetic fields. This model could be used to develop a practical experiment to measure spin

wave Bloch oscillations for the first time. An experimental investigation into the existence of

a new magnetic domain known as a biskyrmion was conducted using elastic X-ray scattering

holography. It was not found and a competing hypothesis was developed arguing that the

biskyrmions imaging in previous works are more likely just traditional bubble domains. This

demonstrates the strength of X-ray holography and the need to use complimentary imaging

techniques. Finally the low frequency collective modes in a bubble domain lattice, confined

withing a lattice of antidots, are simulated using micromagnetic simulations. It is found that

only the collective breathing mode of the lattice has a significant group velocity and couples

the strongest to applied magnetic field directed perpendicular to the plane. The multitude of

equilibrium states possible in patterned films gives rise to the possibility of reconfigurable

magnonic crystals for use in spin wave logic circuits. However the low bandwidth and

frequency of collective bubble domain oscillation in comparison to spin waves means that

they are not as good a candidate for carrying information.
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Appendix A

Data analysis codes

A.1 Holographic reconstruction: hero.py

The following code is used to reconstruct real space magnetic contrast using off axis Fourier

transform holography with a slit reference, as described in section 4.2. This code is available

for download on github: https://github.com/AngusLaurenson/HERALDO

1 import h5py as hd

2 import scipy as sp

3 import fabio

4 from skimage import feature , transform , color , exposure

5 from scipy import ndimage , fftpack , optimize

6 import matplotlib.pyplot as plt

7 from matplotlib.colors import LogNorm

8 from matplotlib import colors

9 import colorcet

10

11 class reconstructor ():

12 """ Reconstructor object takes left and right polarised
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13 X-ray diffraction patterns as input and contains all the

14 methods required to automatically reconstruct the real

15 space magnetic contrast.

16

17 a = reconstructor(file_1 , file_2)

18 a.reconstruct ()

19

20 Complex , real space magnetic data is then stored as an

21 array attribute ,

22

23 a.magnetic ()

24

25 which can be further processed and plotted. If automatic

26 methods fail then manual inputs can be used to align the

27 inverse transform and differential filter.

28

29 This module lacks any functions for detecting or removing

30 hot pixels and stray light. This can be done by directly

31 editing the a.raw_1 and a.raw_2 arrays that hold the

32 raw data from each file.

33

34 """

35 def __init__(self , fname1 , fname2):

36 super(reconstructor , self).__init__ ()

37 self.raw_1 = self.load_data(fname1)

38 self.raw_2 = self.load_data(fname2)

39

40
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41 def load_data(self , fname):

42 # logic to open any data File

43 try:

44 return fabio.open(fname).data

45 except:

46 pass

47 try:

48 return self.load_nxs_data(fname)

49 except:

50 print(’failure to read data’)

51 pass

52

53 def load_nxs_data(self ,fname):

54 ’’’ Accepts either file number or full name:

55 if input is number , make file fname ’’’

56 if fname.isdigit () == True:

57 fnum = fname

58 fname = ’scanx_ ’ + str(fname) + ’.nxs’

59 # else assume the input is file name and make number

60 else:

61 fnum = ’’.join([a for a in fname.split(’/’)[-1] if a

.isdigit ()])

62 # open the nxs file and roots around for the data array

63 with hd.File(fname ,’r’) as f:

64 # explore the contents and scan group

65 group = [a for a in list(f.keys()) if a.find(str(

fnum))][0]
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66 # explore the contents of the scan data and find

nonzero array

67 dset = [a for a in list(f[group][’scan_data ’].keys()

) if sp.squeeze(f[group][’scan_data ’][a].size >= 200) ][0]

68 # make name for variable

69 return sp.squeeze(f[group][’scan_data ’][dset])

70

71 def sum_dif(self , equalisation=True):

72 ’’’

73 optimising equalisation of input images to maximise

signal to noise ratio , remove non magnetic signals

74 this section does not cancel out the aperture in the

magnetic images

75 it is likely that normalising over a subset of the image

would be better

76 ’’’

77 if equalisation is True and hasattr(self , ’ratio’) is

False:

78 def sum_abs_dif_data(ratio):

79 return sp.sum(sp.absolute(self.raw_1 [:500 ,1500:]

- ratio * self.raw_2 [:500 ,1500:]) ,axis =(0,1))

80

81 ratio = optimize.minimize(sum_abs_dif_data , 1).x[0]

82 self.ratio = ratio

83

84 elif equalisation is False:

85 self.ratio = 1

86
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87 self.dif_data = self.raw_1 - self.ratio * self.raw_2

88 self.sum_data = self.raw_1 + self.ratio * self.raw_2

89 self.div_data = self.raw_1/self.raw_2

90

91 def auto_centre(self , data , sigma=0, count =10):

92 # hough transform to fit circles and vote

93 # Load picture and detect edges

94 image = data / sp.amax(data)

95 edges = feature.canny(image , sigma)

96

97 # Detect two radii

98 hough_radii = sp.arange (20, 35, 2)

99 hough_res = transform.hough_circle(edges , hough_radii)

100

101 accums , cx, cy, radii = transform.hough_circle_peaks(

hough_res , hough_radii ,total_num_peaks=count)

102

103 self.centre = [sp.mean(cx),sp.mean(cy)]

104 self.centre_radius = sp.mean(radii)

105

106 def auto_angle(self , data , sigma =5):

107 slope , intercept , r_value , p_value , std_err = sp.stats.

linregress(

108 sp.arange(data.shape [0]), sp.argmax(ndimage.

gaussian_filter(data ,sigma), axis =1))

109 self.angle = sp.arctan(slope)

110

111 def display_callibration(self):
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112 # calculate the fit line from callibration parameters

113 x = sp.linspace(-self.sum_data.shape [0]/2, self.sum_data.

shape [0]/2, self.sum_data.shape [0])

114 # c = self.centre [0] - self.angle*self.centre [1]

115 y = sp.sin(self.angle)*x + self.centre [0]

116 z = sp.cos(self.angle)*x + self.centre [1]

117

118 plt.figure ();

119 plt.imshow(self.sum_data , cmap = ’plasma ’,

120 norm=LogNorm ())

121 plt.scatter (*self.centre ,marker=’x’,color=’orange ’)

122 plt.scatter(y,z,marker=’.’,color=’green’)

123 plt.show()

124

125 def beam_stop_blur(self , data , sigma=3, edge = 60):

126 index = sp.indices(self.sum_data.shape)

127 index [0,:,:] = index [0,:,:] - self.centre [1]

128 index [1,:,:] = index [1,:,:] - self.centre [0]

129

130 mask = 1-ndimage.gaussian_filter(sp.where(sp.sum(index

**2, axis =0) >(2*self.centre_radius+edge)**2+40 , 0.0, 1.0),

sigma)

131 return data*mask

132

133 def beam_stop_stopper(self , data , sigma=5, edge =10):

134 ’’’Uses circular smoothed mask to cutout beamstop at

centre ’’’

135 radius = self.centre_radius + edge
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136 # setup the metric space and empty mask

137 position = sp.array(self.centre)

138 indices = sp.indices(data.shape)

139 mask = sp.zeros(data.shape)

140 # filled circle of ones at the centre

141 mask[sp.where(sp.sum((indices -position[:,None ,None])**2,

axis =0) < radius **2)] = 1

142 # smooth the circle of ones out

143 mask = sp.ndimage.gaussian_filter(mask ,sigma)

144 # apply inverse mask to the data and return

145 return data * (1 - mask/sp.amax(mask))

146

147 # perform filtering , inverse fourier transform and phase

phase_correction

148 # requires prior callibration

149 def differential_filtering(self , data):

150 # differential_filter

151 x,y = sp.meshgrid(sp.arange(data.shape [1]),

152 sp.arange(data.shape [0]))

153 self.diff_filter = sp.pi * 2 * (+sp.cos(self.angle)*(x-

self.centre [0]) \

154 -sp.sin(self.angle)*(y-self.centre [1]))

155

156 # apply differential_filter

157 filtered_data = data * self.diff_filter

158 return filtered_data

159

160 def fourier_2D(self , data):
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161 # fourier transform

162 return fftpack.fftshift(fftpack.fft2(data),axes =(0,1))

163

164 def offset_correction(self , data):

165 # phase correct for offset fourier transform

166 x,y = sp.meshgrid(sp.arange(data.shape [1]),

167 sp.arange(data.shape [0]))

168

169 data = data * sp.exp(1j*2*sp.pi*(self.centre [0] * x /

self.sum_data.shape [0] + self.centre [1] * y / self.sum_data.

shape [1]))

170 return data

171

172 def display(self , data , cmap=’coolwarm ’, linthresh =10):

173 plt.figure ()

174 plt.imshow(data ,

175 norm=colors.SymLogNorm(linthresh=linthresh),

176 origin=’lower ’,

177 cmap = cmap ,

178 interpolation=’none’

179 )

180 plt.show()

181

182 def phase_amp_data(self , data):

183 # generate phase color array

184 norm = plt.Normalize ()

185 phase_colors = colorcet.cm[’cyclic_mygbm_30_95_c78_s25 ’

](norm(sp.angle(data)))
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186 # generate amplitude greyscale array

187 norm = plt.Normalize ()

188 amplitude_colors = colorcet.cm[’linear_grey_10_95_c0 ’](

norm(sp.absolute(data)**(0.2)))

189 # combine amplitude and phase

190 phase_amplitude = phase_colors*amplitude_colors

191 # return

192 return phase_amplitude

193

194 def max_real(self , data):

195 angles = sp.ravel(sp.angle(data))

196 amplitudes = sp.ravel(sp.absolute(data))

197 zipped = list(zip(angles ,amplitudes))

198 res = sorted(zipped , key = lambda x : x[0])

199 angles , amplitudes = list(zip(*res))

200 filtered = sp.ndimage.gaussian_filter1d(amplitudes , 100,

mode=’wrap’)

201 # print(angles[sp.where(filtered == sp.amax(filtered))

[0][0]])

202 return angles[sp.where(filtered == sp.amax(filtered))

[0][0]] , angles , amplitudes

203

204

205 return angle , angle2

206

207 def reconstruct(self , blur = True , equalisation=True):

208 # check for subtracted ’dif_data ’, else generate

209 # self.sum_dif () and check if callibration exists ,
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210 # if non try to auto detection

211 if hasattr(self , ’sum_data ’):

212 pass

213 else:

214 # create sum and difference images with automatic

equalisation

215 self.sum_dif(equalisation=equalisation)

216 if hasattr(self , ’angle’):

217 pass

218 else:

219 # calcualte automatically the angle of diffraction

line

220 self.auto_angle(self.sum_data)

221 if hasattr(self , ’centre ’):

222 pass

223 else:

224 try:

225 # find centre of diffraction rings

226 self.auto_centre(self.sum_data);

227 except:

228 print(’failed to fit centre automatically\n set

manually\n’)

229

230 # define intermediate data arrays

231 dif = self.dif_data.copy()

232 sum = self.sum_data.copy()

233 div = self.div_data.copy()

234
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235 # beam stop blurr application to the images

236 dif = self.beam_stop_blur(dif , 10, 50)

237 sum = self.beam_stop_blur(sum , 10, 50)

238 div = self.beam_stop_blur(div , 10, 50)

239

240 dif = self.differential_filtering(dif)

241 sum = self.differential_filtering(sum)

242 div = self.differential_filtering(div)

243

244 dif = self.fourier_2D(dif)

245 sum = self.fourier_2D(sum)

246 div = self.fourier_2D(div)

247

248 dif = self.offset_correction(dif)

249 sum = self.offset_correction(sum)

250 div = self.offset_correction(div)

251

252

253 # assign attributes

254 self.magnetic = dif

255 self.charge = sum

256 self.magnetic_div = div

257

258 def save_image(self , name , data):

259 plt.ioff

260 plt.figure ()

261 plt.imshow(data ,



130 Data analysis codes

262 norm=colors.SymLogNorm(linthresh =0.03, linscale

=0.03) ,

263 origin=’lower ’,

264 cmap = ’plasma ’,

265 interpolation=’none’

266 )

267 plt.savefig(name+’.png’)

268

269 def quick_reconstruction(self , data):

270 F = data/self.sum_data

271 self.auto_centre(self.sum_data)

272 return(self.offset_correction(self.fourier_2D(F)))



Appendix B

Mode profiles of bubble domains in an

antidot lattice

The band structure and correpsonding mode profiles of collective breathing, gyrating and

ellipitcal modes of the bubble domain array are shown in this appendix.
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Fig. B.1 The band structure of the collective breathing modes propagating along the x axis
is shown in the centre, with the corresponding mode profiles on either side. colour shows
relative phase of precession and intensity the amplitude as shown in the inset colour wheel.
A uniform phase around the domain wall of each individual bubble domains shows they are
in the breathing mode. The difference in phase between neighbours shows the wavelength of
the collective breathing modes.
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Fig. B.2 The band structure of the collective breathing modes propagating along the y axis
is shown in the centre, with the corresponding mode profiles on either side. colour shows
relative phase of precession and intensity the amplitude as shown in the inset colour wheel.
A uniform phase around the domain wall of each individual bubble domains shows they are
in the breathing mode. The difference in phase between neighbours shows the wavelength of
the collective breathing modes.
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Fig. B.3 The band structure of the collective gyration modes propagating along the y axis
is shown in the centre, with the corresponding mode profiles on either side. colour shows
relative phase of precession and intensity the amplitude as shown in the inset colour wheel.
A uniform phase around the domain wall of each individual bubble domains shows they are
in the gyration mode. The difference in phase between neighbours shows the wavelength of
the collective gyration modes.
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Fig. B.4 The band structure of the collective gyration modes propagating along the x axis
is shown in the centre, with the corresponding mode profiles on either side. colour shows
relative phase of precession and intensity the amplitude as shown in the inset colour wheel.
A uniform phase around the domain wall of each individual bubble domains shows they are
in the gyration mode. The difference in phase between neighbours shows the wavelength of
the collective gyration modes.
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Fig. B.5 The band structure of the collective elliptical modes propagating along the y axis
is shown in the centre, with the corresponding mode profiles on either side. colour shows
relative phase of precession and intensity the amplitude as shown in the inset colour wheel.
A uniform phase around the domain wall of each individual bubble domains shows they are
in the elliptical mode. The difference in phase between neighbours shows the wavelength of
the collective elliptical modes.
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Fig. B.6 The band structure of the collective elliptical modes propagating along the x axis
is shown in the centre, with the corresponding mode profiles on either side. colour shows
relative phase of precession and intensity the amplitude as shown in the inset colour wheel.
A uniform phase around the domain wall of each individual bubble domains shows they are
in the elliptical mode. The difference in phase between neighbours shows the wavelength of
the collective elliptical modes.
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