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Abstract 

In healthcare, opportunities to use real-time data to support quick and effective 

decision-making are expanding rapidly, as data increases in volume, velocity and 

variety. In parallel, the need for short-term decision-support to improve system 

resilience is increasingly relevant, with the recent COVID-19 crisis underlining the 

pressure that our healthcare services are under to deliver safe, effective, quality 

care in the face of rapidly-shifting parameters.  

A real-time hybrid model (HM) which combines real-time data, predictions, and 

simulation, has the potential to support short-term decision-making in healthcare. 

Considering decision-making as a consequence of situation awareness focuses 

the HM on what information is needed where, when, how, and by whom with a 

view toward sustained implementation. However the articulation between real-

time decision-support tools and a sociotechnical approach to their development 

and implementation is currently lacking in the literature.  

Having identified the need for a conceptual framework to support the 

development of real-time HMs for short-term decision-support, this research 

proposed and tested the Integrated Hybrid Analytics Framework (IHAF) through 

an examination of the stages of a Design Science methodology and insights from 

the literature examining decision-making in dynamic, sociotechnical systems, 

data analytics, and simulation. Informed by IHAF, a HM was developed using 

real-time Emergency Department data, time-series forecasting, and discrete-

event simulation. The application started with patient questionnaires to support 

problem definition and to act as a formative evaluation, and was subsequently 

evaluated using staff interviews.  

Evaluation of the application found multiple examples where the objectives of 

people or sub-systems are not aligned, resulting in inefficiencies and other quality 

problems, which are characteristic of complex adaptive sociotechnical systems. 

Synthesis of the literature, the formative evaluation, and the final evaluation found 

significant themes which can act as antecedents or evaluation criteria for future 

real-time HM studies in sociotechnical systems, in particular in healthcare.  The 

generic utility of IHAF is emphasised for supporting future applications in similar 

domains.  



3 
 
 

Acknowledgements 

The completion of this thesis has, in a large part, been thanks to those who have 

challenged, supported, and encouraged me over the last few years.  First and foremost, 

I would like to express sincere gratitude to my supervisors, Prof. Nav Mustafee and Prof. 

Martin Pitt. It has been a privilege to work with them both. 

I have been tremendously fortunate to have Prof. Nav Mustafee as my supervisor. His 

support, guidance and unending patience kept me going on this journey. Nav’s belief in 

me has been unwavering, and his selfless and generous supervision will always be 

remembered.  I would like to thank him for his friendship, kindness and sense of humour, 

which made difficult times easier and easier times enjoyable.  

Prof. Martin Pitt has been a steady source of wisdom, support and inspiration. I want to 

thank him for his positivity, motivation and understanding. Martin’s feedback, helpful 

ideas and expert advice have guided me, and I gratefully acknowledge his support, and 

encouragement.  I would also like to thank him for believing in me, and for his warm 

welcome and kindness in my new role. 

Special thanks are due to our NHS partners, in particular to Susan Martin and Andrew 

Fordyce, for their time, enthusiasm, facilitation and willing assistance, and to those who 

supported data collection. I would like to thank my colleagues and fellow researchers in 

CSAM, for their support and encouragement over the years, and to the team at 

PenCHORD who have always made me feel welcome. Thanks are due to Prof. John 

Powell, a kind mentor, to Prof. Mike Yearworth, for his guidance and encouragement, 

and to Prof. Mickey Howard, Prof. Andi Smart and Dr Sarah Hartley, for their welcome 

advice.  

I wouldn’t have got here without the encouragement, love and endless tolerance of my 

family, so thank you to my husband Richard, and my children Joseph, Olive, and Ivy for 

being the best. I hope I haven’t put you off academia, kids! To my friends who have been 

behind me all the way, I am very grateful, there are too many of you to name. I would 

like to thank my friends in CSAM whose personal support and humour I could rely on, in 

particular Dr Pikakshi Manchanda and Adela Boak.   

Most importantly, to my parents, who always taught me that no value can be put on 

education, I am eternally grateful. My love of learning and a good challenge comes from 

them both. My mother Bridie has modelled resilience, positivity and humour my whole 

life. Despite everything, her emotional support and encouragement has remained solid.  

Finally, I gratefully acknowledge the financial support that has been made available to 

fund this research. This has primarily been via a joint studentship from the South West 

Doctoral Training College, and the University of Exeter Business School, to whom I 

extend my appreciation.  In addition, the following funding is acknowledged: South West 

Academic Health Sciences Network, Torbay Medical Research Funds, ACM/SigSim 

Travel Award, IDSAI Early Career Travel Fund.   



4 
 
 

Table of Contents 

A Hybrid Modelling Framework for Real-time Decision-support for Urgent and 

Emergency Healthcare ....................................................................................... 1 

Abstract........................................................................................................... 2 

Acknowledgements ......................................................................................... 3 

Table of Contents ........................................................................................... 4 

List of Illustrations ......................................................................................... 13 

List of Tables ................................................................................................ 16 

Publications .................................................................................................. 18 

Abbreviations ................................................................................................ 19 

 Introduction ..................................................................................... 21 

 Background ............................................................................................. 21 

 Research focus ....................................................................................... 24 

 Research aims and objectives ................................................................ 28 

 Audience and scope ............................................................................... 31 

 Outline of the thesis ................................................................................ 32 

 Chapter Summary ................................................................................... 35 

 Literature Review ............................................................................ 36 

 Introduction ............................................................................................. 36 

 Structure of the review ............................................................................ 39 

 Healthcare as a sociotechnical system ................................................... 42 

 Quality Improvement in healthcare ................................................... 42 

 A sociotechnical system approach in ED ......................................... 43 

 ED activity ........................................................................................ 44 

 Adaptive capacity in ED ................................................................... 45 

 Demand and demand management in ED ....................................... 47 

 Organisational Decision Making ............................................................. 49 

 Knowledge as value ......................................................................... 49 



5 
 
 

 Situation Awareness in sociotechnical systems ............................... 52 

 Understanding the relationship between SA, workload and 

performance .......................................................................................... 54 

 Situation awareness in healthcare ............................................. 55 

 Data Analytics ......................................................................................... 57 

 Defining Analytics for healthcare ...................................................... 58 

 Positioning Analytics for OR ............................................................. 60 

 Modelling and Simulation in healthcare .................................................. 61 

 Simulation Methods .......................................................................... 61 

 Challenges for healthcare simulation modelling ............................... 63 

 The future of healthcare simulation modelling .................................. 66 

 Real-time simulation ......................................................................... 70 

 Introduction ................................................................................ 70 

 Defining real-time simulation...................................................... 71 

 Real-time Simulation in healthcare ............................................ 72 

 Hybrid systems modelling ....................................................................... 75 

 Definition .......................................................................................... 75 

 Application and challenges for a HM Approach ................................ 78 

 Applicability to healthcare ................................................................. 80 

 Hybrid modelling approach qualitative methods ............................... 81 

 Hybrid modelling approach quantitative methods ............................. 82 

 Chapter Summary ................................................................................... 86 

 Methodology ................................................................................... 92 

 Introduction ............................................................................................. 92 

 Research design: Mixed-methods .......................................................... 92 

 Philosophical Approach .......................................................................... 95 

 Introduction ...................................................................................... 95 

 Research philosophy in OR .............................................................. 97 



6 
 
 

 Critical Realism ................................................................................ 98 

 Research Strategy: Design Science ..................................................... 100 

 Introduction to Design Science ....................................................... 100 

 Justification for Design Science ..................................................... 101 

 Philosophical underpinnings of Design Science ............................. 103 

 Generalising from a use-case ........................................................ 104 

 Design Science Research Methodology ............................................... 105 

 Methods ................................................................................................ 108 

 Research Ethics .................................................................................... 109 

 Chapter Summary ................................................................................. 110 

 A generic framework supporting an integrated hybrid model for real-

time decision making in healthcare ................................................................ 111 

 Introduction ........................................................................................... 111 

 Existing hybrid frameworks ................................................................... 112 

 Stages of a Design Science research methodology ............................. 115 

 Defining the problem and the objectives ............................................... 122 

 Existing literature ............................................................................ 123 

 Individual situation awareness ................................................. 123 

 Team and distributed situation awareness .............................. 126 

 Existing real-time simulation frameworks ....................................... 129 

 The use of Data Analytics in Hybrid Modelling ...................................... 133 

 Descriptive analytics ....................................................................... 135 

 Diagnostic analytics ........................................................................ 136 

 Predictive Analytics ........................................................................ 137 

 Prescriptive analytics ...................................................................... 139 

 Integration of analytics methods ........................................................... 140 

 Evaluation of the model in context ........................................................ 142 

 Integrated Hybrid Analytics Framework (IHAF) ..................................... 144 



7 
 
 

 IHAF framework application to address research questions ................. 147 

 Chapter Summary ............................................................................... 149 

 Application of the Integrated Hybrid Analytics Framework in the use 

case NHS Trust .............................................................................................. 151 

 Introduction ........................................................................................... 151 

 The use-case: An NHS ED in the South-West of England .................... 152 

 NHSquicker: the use-case real-time data ....................................... 153 

 Research focus .............................................................................. 154 

 Methods overview ................................................................................. 155 

 IHAF: Problem definition stage ............................................................. 156 

 Site visits and direct observations .................................................. 156 

 Patient Questionnaires ................................................................... 159 

 Questionnaire development ..................................................... 160 

 Questionnaire setting and selection of participants .................. 161 

 Questionnaire design and validation ........................................ 161 

 Questionnaire analysis ............................................................ 162 

 Patient Questionnaire Development: Closed questions ........................ 162 

 Introduction .................................................................................... 162 

 Focus of questionnaire ................................................................... 163 

 Conceptual framework for analysis: Andersen’s Behavioural Model of 

Health Service Use ................................................................................. 164 

 Literature Review: closed questions ..................................................... 169 

 Variable classification description ......................................................... 174 

 Results: closed questions ..................................................................... 178 

 Study setting .................................................................................. 178 

 Results ........................................................................................... 179 

 Summary statistics ................................................................... 179 

 Statistical analysis ................................................................... 180 



8 
 
 

 Categorisation of variables ............................................................. 185 

 Validity and reliability ............................................................... 185 

 Results of categorisations ........................................................ 186 

 Summary of findings: closed questions .......................................... 187 

 Questionnaire development: open questions ........................................ 189 

 Summary of open data ................................................................... 191 

 Patient characteristics .................................................................... 191 

 Ease of access ........................................................................ 192 

 Anxiety ..................................................................................... 193 

 Uncertainty about alternative facilities ..................................... 194 

 Severity .................................................................................... 195 

 Referred by HCP ..................................................................... 195 

 Other categories ...................................................................... 196 

 Certainty about today’s decision .............................................. 196 

 Patient characteristics: conclusion ................................................. 197 

 Value in predicted wait times .......................................................... 200 

 Value to the NHS............................................................................ 202 

 Limitations ...................................................................................... 203 

 Chapter Summary ............................................................................... 204 

 Implications for IHAF........................................................................... 207 

 Application of IHAF – use-case NHS Trust ED ............................. 209 

 Introduction ........................................................................................... 209 

 Conceptualisation of the hybrid model .................................................. 210 

 Descriptive analytics: Real-time data .................................................... 212 

 Diagnostic analytics: What to forecast, and when to trigger.................. 215 

 ED performance data ..................................................................... 217 

 NHSquicker data and ED attendance data ..................................... 218 

 Time-dependent trigger .................................................................. 225 



9 
 
 

  Predictive analytics: Time-series forecasting of Total Patients ............ 228 

 Characteristics of time-series ......................................................... 229 

 Autoregression ......................................................................... 229 

 ARIMA ............................................................................................ 232 

 SARIMA ......................................................................................... 234 

 Resampling for 2 and 4 hour forecasts ........................................... 237 

 Forecasting .................................................................................... 241 

 Two hourly data ....................................................................... 241 

 Integration Component: forecasts ......................................................... 243 

 Prescriptive Analytics: Discrete-Event Simulation ................................. 245 

 Stages of a simulation study .......................................................... 246 

 Integration component: simulation ........................................................ 277 

 Chapter Summary ................................................................................. 278 

 Use-case evaluation of the application of IHAF ............................ 279 

 Introduction ........................................................................................... 279 

 Evaluation component of IHAF: Staff interviews ................................... 280 

 Measuring SA within evaluation ..................................................... 282 

 Criteria for evaluation of case study application of IHAF ................ 283 

 Data collection ................................................................................ 285 

 Analysis and Results ...................................................................... 288 

 Summary of analysis ...................................................................... 304 

 System-level value and challenges for real-time data applications ....... 306 

 The urgent care network ................................................................ 308 

 Patient decision-making ................................................................. 310 

  Manager-clinician tension .............................................................. 312 

 Situation awareness ....................................................................... 315 

 Model ownership, sustainability and long-term evaluation ............. 317 

 Chapter Summary ................................................................................. 319 



10 
 
 

 Revisiting the IHAF framework ..................................................... 321 

 Evaluation of the Integrated Hybrid Analytics Framework (IHAF) ......... 321 

 Revisiting the Design Science methodology .................................. 322 

 Revisiting the problem definition stage ........................................... 325 

 Revisiting the hybrid model stages ................................................. 326 

 Revisiting the evaluation phase ...................................................... 328 

 The transferability of IHAF .................................................................... 329 

 Examples of other applications of IHAF ......................................... 330 

 Chapter Summary ................................................................................. 331 

 Conclusion .................................................................................... 333 

 Research Findings ................................................................................ 333 

 Summary of the thesis .......................................................................... 336 

 The need and opportunity for short-term decision-support in 

healthcare ............................................................................................... 337 

 A framework for supporting the development of a real-time hybrid 

model for short-term decision-support in healthcare ............................... 339 

 The system-level implications of a real-time hybrid model in 

sociotechnical systems............................................................................ 340 

 Limitations ............................................................................................. 344 

 Future Work .......................................................................................... 346 

 Future work on IHAF ...................................................................... 346 

 Future work on the use-case .......................................................... 349 

 Future work on real-time simulation for short-term decision-making in 

healthcare and other sociotechnical systems .......................................... 350 

Appendix 1 Ethics Committee ........................................................................ 352 

Appendix 2a: Patient Questionnaire ............................................................... 354 

Appendix 2b: Field Notes (observational data) ............................................... 360 

A2.1 3rd IMPACT network event 21 June 2016, UEBS ............................... 360 

A2.1.1 Introduction .................................................................................. 360 



11 
 
 

A2.1.2 Thematic Summary of field notes................................................. 360 

A2.1.3 Breakout session ......................................................................... 362 

A2.1.3.1 Breakout session categories ................................................. 362 

A2.2 Qualitative System Dynamics Workshops 18 July 2018, 27/28 June 

2019. ........................................................................................................... 365 

A2.3 Questionnaire raw data ...................................................................... 366 

A2.4 NVivo 12 cross-tabs ........................................................................... 367 

A2.5 SPSS analysis .................................................................................... 368 

Appendix 3: Hybrid Model .............................................................................. 370 

A3.1 Hybrid model components of IHAF ..................................................... 370 

A3.1.1 ED Data ....................................................................................... 370 

A3.1.1.1 Available ED datasets ........................................................... 370 

A3.1.1.2 NHSquicker data and ED attendance data (expanded from 

Section 6.4.2) ...................................................................................... 372 

A3.1.2 Diagnostic component: Time dependent Trigger ......................... 374 

A3.1.3 Predictive analytics ...................................................................... 376 

A3.1.3.1 Time-series features .............................................................. 378 

A3.1.3.2 Evaluating forecast accuracy................................................. 381 

A3.1.3.3 ARIMA ................................................................................... 383 

A3.1.3.4 SARIMA ................................................................................ 389 

A3.1.4 Resampling the data .................................................................... 391 

A3.1.5 Forecasting (expanded from Chapter 6, Section 6.5.5). .............. 394 

A3.2 Prescribe component of IHAF ............................................................ 398 

A3.2.1 Historical data .............................................................................. 398 

A3.3 Discrete-Event Simulation .................................................................. 405 

A3.3.1 Model initialisation, warm-up and triage ....................................... 406 

A3.3.2 Patient agents and treatment blocks ............................................ 409 

A3.3.3 Discharge/admission delays, exit system .................................... 413 



12 
 
 

A3.3.4 Validation: simulated Patients Waiting by Triage category .......... 414 

Appendix 4 ..................................................................................................... 416 

References ..................................................................................................... 429 

  



13 
 
 

List of Illustrations 

Figure 1-1 Graphical structure of the thesis including links between chapters ........................... 33 

Figure 2-1 The relationship between real-time data, data analytics, SA and QI in healthcare 

decision support .......................................................................................................................... 37 

Figure 2-2 Structure of the literature review ................................................................................ 41 

Figure 2-3 Unifying HS-HM Conceptual Representation using Classification of Hybrid Simulation 

(Types A-D) with examples. Adapted from Mustafee & Powell, 2018 ........................................ 76 

Figure 2-4 Conceptual representation of a hybrid M&S study (… denotes other methods) 

Adapted from Powell and Mustafee (2016). ................................................................................ 77 

Figure 2-5  The relationship between real-time data, data analytics, SA and QI in healthcare 

decision support .......................................................................................................................... 86 

Figure 3-1 Typology of mixed methods research (Leech & Onwuegbuzie, 2009) ...................... 94 

Figure 3-2 Design Science Research Methodology (reproduced from Peffers et al., 2007) .... 106 

Figure 4-1 Design Science Research Methodology (reproduced from Peffers et al., 2007) .... 116 

Figure 4-2 Design Research Methodology Framework, reproduced from Blessing and 

Chakrabarti (2009) .................................................................................................................... 117 

Figure 4-3 Three-level model of situation awareness in dynamic decision making, adapted from 

Endsley (1995). ......................................................................................................................... 124 

Figure 4-4 Three-level model of situation awareness in dynamic decision making, adapted from 

Endsley (1995), including a conceptualisation of how real-time data can support situation 

awareness and performance. .................................................................................................... 125 

Figure 4-5 Model of team situation awareness, reproduced from Salmon et al. (2008) ........... 127 

Figure 4-6 Model of distributed situation awareness, adapted from Salmon et al. (2008) 

conceptualising the contribution of relevant real-time data to support SA ................................ 128 

Figure 4-7 Real-time (symbiotic) simulation architecture, reproduced from Fujimoto et al. (2002)

 ................................................................................................................................................... 130 

Figure 4-8 Human-in-the-loop closed-loop symbiotic simulation, reproduced from Aydt et al. 

(2008) ........................................................................................................................................ 131 

Figure 4-9 Human-in-the-loop closed-loop symbiotic simulation, mapped with SA, adapted from 

Aydt et al. (2008) ....................................................................................................................... 132 

Figure 4-10 A functional categorisation of data analytics, adapted from Shao, Shin & Jain (2014)

 ................................................................................................................................................... 134 

Figure 4-11 The timing of detection of a critical condition, and its relationship with recovery. 

Reproduced from Aydt et al. (2008b) ........................................................................................ 138 

Figure 4-12 Proposed use of the functional categories of data analytics in framework (Adapted 

from Shao, Shin & Jain, 2014) .................................................................................................. 139 

Figure 4-13 A conceptualisation of integration of components ................................................. 141 

Figure 4-14 Integrated Hybrid Analytics Framework (IHAF) ..................................................... 144 

Figure 4-15 Alignment of Design Science, the proposed framework, and the methods ........... 148 

Figure 5-1 Integrated Hybrid Analytics Framework (IHAF) with problem definition stage 

highlighted ................................................................................................................................. 151 

file://///isad.isadroot.ex.ac.uk/UOE/User/Desktop/PhD/h25022020/Chapters/FINAL/FinalFinal/AH_Thesis%20-%20Copy%20(2).docx%23_Toc49372981
file://///isad.isadroot.ex.ac.uk/UOE/User/Desktop/PhD/h25022020/Chapters/FINAL/FinalFinal/AH_Thesis%20-%20Copy%20(2).docx%23_Toc49372981


14 
 
 

Figure 5-2 Relationship between research questions, DS methodology, IHAF, and methods in 

use case .................................................................................................................................... 156 

Figure 5-3 Questionnaire development process ....................................................................... 162 

Figure 5-4 The Behavioural Model of Health, reproduced from Andersen (2013) .................... 166 

Figure 5-5 Mann-Whitney U mean ranks for age group (DV) and perceived usefulness of real-

time data (IV) ............................................................................................................................. 181 

Figure 5-6 Mann-Whitney U test for usual health (DV) and perceived usefulness of real-time 

data (IV) ..................................................................................................................................... 182 

Figure 5-7 Mann-Whitney U tests for perceived urgency, seriousness, and certainty (DVs) and 

perceived usefulness of real-time data (IV) ............................................................................... 182 

Figure 5-8 Chi square analyses for awareness of alternative facilities ..................................... 183 

Figure 5-9 Chi square analyses for perceived appropriateness of alternative facilities ............ 183 

Figure 5-10 Attendance factors by perceived usefulness of real-time descriptive data............ 185 

Figure 5-11 Chi squared analysis of categorical themes according to perceived usefulness of 

real-time information .................................................................................................................. 187 

Figure 5-12 Summary of open and closed questions analysis ................................................. 198 

Figure 5-13 Word cloud summarising open data terms ............................................................ 200 

Figure 6-1Integrated Hybrid Analytics Framework (IHAF) with HM components highlighted ... 210 

Figure 6-2 Conceptual framework of the HM component ......................................................... 212 

Figure 6-3 Time series plots for 56 days of data for Total Patients with missing data filled. Blue = 

available data. Orange = data outages interpolated using moving averages ........................... 214 

Figure 6-4 Time series plots for 56 days of data for Patients Waiting with missing data filled. 

Blue = available data. Orange = data outages interpolated using moving averages ................ 214 

Figure 6-5 Time series plots for 56 days of data for Maximum Wait Time with missing data filled. 

Blue = available data. Orange = data outages interpolated using moving averages ................ 214 

Figure 6-6 ED datasets available for IHAF implementation ...................................................... 216 

Figure 6-7 Counts of patients waiting less than 2 hours, and between 2-4 hours, and 

compliance against the 4 hour target ........................................................................................ 218 

Figure 6-8 Time series of Total Patients and Patients Waiting over 14 days (30 minute 

observations) ............................................................................................................................. 219 

Figure 6-9 Time series of Total Patients and Maximum Wait Time over 14 days (30 minute 

observations) ............................................................................................................................. 219 

Figure 6-10 Time series of Total Patients and ED arrivals (30 minute observations) over 14 days

 ................................................................................................................................................... 220 

Figure 6-11 Scatterplot and line of best fit of Total Patients and Patients Waiting ................... 221 

Figure 6-12 Total Patients (every 30 min) and Daily Compliance with the 4-hour target (24 

hourly) ........................................................................................................................................ 223 

Figure 6-13 115 days of 00:00 to 00:59 with mean and SD, 1.5*SD, 2*SD .............................. 226 

Figure 6-14 Scatterplot of Patients Waiting and Total Patient 00:00 to 00:59, with SD, 1.5*SD, 

2*SD for Total Patients .............................................................................................................. 226 



15 
 
 

Figure 6-15 Total Patients (00:00 to 00:59) and Daily Compliance with the 4-hour target (24 

hourly) ........................................................................................................................................ 227 

Figure 6-16 Conceptualisation of impact on KPIs of Total Patients forecasts .......................... 228 

Figure 6-17 Total Patients (every 30 minutes) for 115 days from 3/01/2018 ............................ 229 

Figure 6-18 Scatterplot of Total Patients and Total Patients -1 ................................................ 230 

Figure 6-19 AR(1) model on Total Patients dataset for one step ahead using 30 minute 

observations. ............................................................................................................................. 230 

Figure 6-20 ACF for Total Patients to lag = 96 ......................................................................... 231 

Figure 6-21 PACF for Total Patients to lag = 96 ....................................................................... 232 

Figure 6-22 Sample of Total Patients, with seasonal, and seasonal with first order differencing

 ................................................................................................................................................... 233 

Figure 6-23 SARIMA (1,1,2)(1,0,1)[48] with one-step ahead forecasts. ................................... 235 

Figure 6-24 SARIMA (1,1,2)(1,0,1)[48] with one-step ahead forecasts.  ---- Predicted values ---- 

Expected values ........................................................................................................................ 236 

Figure 6-25 One step-ahead (rolling) forecasts for 48 data points with 80% and 95% PIs ...... 236 

Figure 6-26 Resampling Total Patients: top left: half hourly. Bottom left: hourly. Top right: 2 

hourly Bottom right: 4 hourly ..................................................................................................... 238 

Figure 6-27 (a-c) SARIMA(1,1,2)(1,0,1)[s] on seasonally differenced Total Patients (a) 1, (b) 2, 

and (c) 4 hour resampled data with 80% and 95% prediction intervals. ................................... 240 

Figure 6-28 SARIMA (1,1,2)(1,1,1)[12] parameters (p,d,q,P,D,Q) ............................................ 241 

Figure 6-29 Conceptualisation of data processing and forecasts on Total Patients data ......... 243 

Figure 6-30 Integration of the hybrid model .............................................................................. 244 

Figure 6-31 Synergy of the real-time data, forecasts and simulation (descriptive, predictive, 

prescriptive) ............................................................................................................................... 245 

Figure 6-32 Method for conducting an M&S study, from Martin, Depaire and Caris (2018) ..... 247 

Figure 6-33 Geography of Torbay and South Devon:  MIU      ED ........................................... 249 

Figure 6-34 Conceptual flowchart of th use case Emergency Department mapping NHSquicker 

real-time data............................................................................................................................. 251 

Figure 6-35 Example of distribution of arrivals in one hour (12pm) on one weekday (Monday) 

2016-2018 ................................................................................................................................. 252 

Figure 6-36 Hourly arrivals per triage category, ED Attendance data, 2016 - 2018 ................. 253 

Figure 6-37 Average maximum wait and LWBS per hour of day .............................................. 255 

Figure 6-38 Scatterplot of Maximum Waits (NHSquicker) and LWBS (ED historical data) ...... 255 

Figure 6-39 Total Patients mapped to LWBS in 4 hours’ time .................................................. 256 

Figure 6-40 Probability distribution of LWBS and triage category ............................................ 257 

Figure 6-41 Flowchart of ED processes for DES. Rx= Treatment; Ix = Investigation. .............. 260 

Figure 6-42 Daily patient arrivals (one week, minutes). ............................................................ 263 

Figure 6-43 14-day plot of sample of Total Patients and Patients Waiting Data ...................... 263 

Figure 6-44 Average hourly Total Patients (2018) and simulated Total Patients ..................... 264 

Figure 6-45 Average hourly Patients Waiting and simulated number of patients waiting for 

treatment ................................................................................................................................... 264 

file://///isad.isadroot.ex.ac.uk/UOE/User/Desktop/PhD/h25022020/Chapters/FINAL/FinalFinal/AH_Thesis%20-%20Copy%20(2).docx%23_Toc49373012
file://///isad.isadroot.ex.ac.uk/UOE/User/Desktop/PhD/h25022020/Chapters/FINAL/FinalFinal/AH_Thesis%20-%20Copy%20(2).docx%23_Toc49373012


16 
 
 

Figure 6-46 Patients waiting by triage category. y-axis = number of patients waiting, x-axis = 

simulation date/time .................................................................................................................. 265 

Figure 6-47 Simulated Total Patients, 150 replications of 7 days ............................................. 266 

Figure 6-48 Category 4 simulated Patients Waiting, 150 replications of 7 days ....................... 266 

Figure 6-49 150 replications minimum, mean and average ED Wait Time for first assessment for 

each replication ......................................................................................................................... 267 

Figure 6-50  Sample 2015 Use Case Wait time for first assessment ....................................... 268 

Figure 6-51 NHSquicker Maximum Wait time for first assessment ........................................... 268 

Figure 6-52 150 replications minimum, mean and average ED LoS for each replication. ........ 269 

Figure 6-53  2015-2016 Use Case Length of Stay.................................................................... 269 

Figure 6-54 Patients who LWBS by triage category. ................................................................ 270 

Figure 6-55 Conceptual mapping of reactive and predictive triggers for recovery from ED 

crowding .................................................................................................................................... 272 

Figure 6-56 Summary statistics for 150 replications wait times for first assessment (a) baseline 

(b) Scenario 1 ............................................................................................................................ 274 

Figure 6-57 The change in patient wait times for a first assessment at (a) baseline, and (b) 

Scenario 2. ................................................................................................................................ 275 

Figure 7-1 Integrated Hybrid Analytics Framework (IHAF) ....................................................... 279 

Figure 7-2 Tree hierarchy chart to identify prominent themes. Child nodes are nested in parent 

nodes ......................................................................................................................................... 288 

Figure 7-3 System-level data used for analysis ........................................................................ 307 

Figure 8-1 Integrated Hybrid Analytics Framework (IHAF) ....................................................... 321 

Figure 8-2 IHAF following evaluation and modification ............................................................. 329 

List of Tables 

Table 1-1 Research Questions, Aims and Objectives................................................................. 30 

Table 1-2 Outline of the thesis .................................................................................................... 32 

Table 2-1 Research Question 1 .................................................................................................. 39 

Table 3-1 Research questions, aims and objectives and methods ........................................... 108 

Table 4-1 Mixed methods approaches and categorisations, adapted from Morgan et al. (2017)

 ................................................................................................................................................... 114 

Table 4-2 Research question 2, and its aim and objectives ..................................................... 147 

Table 4-3 Research question 3, and its aim and objectives ..................................................... 148 

Table 5-1 Search strategy for questionnaire development ....................................................... 170 

Table 5-2 Reasons for ED attendance by patients with low-acuity conditions, and 

categorisations .......................................................................................................................... 173 

Table 5-3 Questionnaire items grouped by validated classification criteria, with individual chi 

square analyses ........................................................................................................................ 184 

Table 5-4 Node/child node hierarchical analysis using NVivo .................................................. 190 

Table 5-5 Research Question 2 ................................................................................................ 204 

Table 6-1 Correlations between Total Patients and Patients Waiting at different partitions of 

Total Patients............................................................................................................................. 222 

file://///isad.isadroot.ex.ac.uk/UOE/User/Desktop/PhD/h25022020/Chapters/FINAL/FinalFinal/AH_Thesis%20-%20Copy%20(2).docx%23_Toc49373043
file://///isad.isadroot.ex.ac.uk/UOE/User/Desktop/PhD/h25022020/Chapters/FINAL/FinalFinal/AH_Thesis%20-%20Copy%20(2).docx%23_Toc49373049
file://///isad.isadroot.ex.ac.uk/UOE/User/Desktop/PhD/h25022020/Chapters/FINAL/FinalFinal/AH_Thesis%20-%20Copy%20(2).docx%23_Toc49373049
file://///isad.isadroot.ex.ac.uk/UOE/User/Desktop/PhD/h25022020/Chapters/FINAL/FinalFinal/AH_Thesis%20-%20Copy%20(2).docx%23_Toc49373050
file://///isad.isadroot.ex.ac.uk/UOE/User/Desktop/PhD/h25022020/Chapters/FINAL/FinalFinal/AH_Thesis%20-%20Copy%20(2).docx%23_Toc49373050


17 
 
 

Table 6-2 Correlations between Maximum Wait, Total Number, and Patients Waiting, with 

lagged half hourly Arrivals at 0-4 hour lags. .............................................................................. 224 

Table 6-3 Correlations between Maximum Wait, Patients Waiting, and lagged Total Patients at 

0-4 hour lags .............................................................................................................................. 224 

Table 6-4 Standard Deviations (StD) of Total Patients per hour ............................................... 225 

Table 6-5 Hourly trigger at 1.5 standard deviations .................................................................. 227 

Table 6-6 Multi-step forecasting using 30 minute seasonally differenced Total Patients Data with 

SARIMA (1,1,2)(1,0,1)[48] up to 4 hours ahead with 80% upper and lower PIs ....................... 237 

Table 6-7 Multi-step forecasting using seasonally differenced Total Patients Data with SARIMA 

(1,1,2)(1,0,1)[s] on resampled data with 80% upper and lower PIs .......................................... 241 

Table 6-8 Triage category probability distribution ..................................................................... 253 

Table 6-9 Probability distribution for walk-in and ambulance arrivals ....................................... 254 

Table 6-10 Summary of data available for DES at initialisation and execution ........................ 258 

Table 6-11 Summary statistics for NHSquicker and simulation output data for Total Patients and 

Patients Waiting (7 days) .......................................................................................................... 265 

Table 6-12 Summary statistics Wait time for first treatment and total LoS ............................... 269 

Table 6-13 Patients who LWBS given a maximum wait limit calibrated to proportions found in 

ED data ...................................................................................................................................... 270 

Table 6-14 Average number of daily presentations per triage category ................................... 272 

Table 6-15 KPIs for Scenario 1 ................................................................................................. 273 

Table 6-16 KPIs for Scenario 2 ................................................................................................. 274 

Table 7-1 Criteria for evaluation of application of IHAF ............................................................ 284 

Table 7-2 Interview participants: numbers completed and cancelled ....................................... 286 

Table 7-3 Criteria 1 themes and subthemes ............................................................................. 289 

Table 7-4 Criteria 2 themes and subthemes ............................................................................. 291 

Table 7-5 Criteria 3 themes and subthemes ............................................................................. 295 

Table 7-6 Criteria 4 themes and subthemes ............................................................................. 297 

Table 7-7 Criteria 5 themes and subthemes ............................................................................. 298 

Table 7-8 Criteria 6 themes and subthemes ............................................................................. 302 

Table 7-9 Research Questions 2 and 3 .................................................................................... 319 

Table 8-1Summary of changes to IHAF in light of application .................................................. 324 

Table 8-2 Examples of triggers in previous research, which can be implemented in IHAF ...... 327 

Table 9-1 Research questions, aims and objectives, and methods .......................................... 336 

 



18 
 
 

Publications related to this thesis: 

Tolk, A., Harper, A., and Mustafee, N. “Hybrid Models as Transdisciplinary Research 
Enablers” European Journal of Operational Research. (R&R) 

Harper, A., Mustafee, N., and Yearworth, M. “Facets of Trust in Simulation Studies” 
European Journal of Operational Research. doi.org/10.1016/j.ejor.2020.06.043 

Mustafee, N., Harper, A. and Onggo, S. (2020) “Hybrid Modelling and Simulation 
(M&S): Driving Innovation in the Theory and Practice of M&S”.  Accepted in: 
Proceedings of 2020 Winter Simulation Conference. 

Harper, A. and Mustafee, N. (2019) “A Hybrid Modelling Approach using Forecasting 
and Real-Time Simulation to Prevent Emergency Department Overcrowding.” In: 
Proceedings of 2019 Winter Simulation Conference, December 3-6, Washington, IEEE. 

Harper, A. and Mustafee, N. (2019) “Proactive Service Recovery in Emergency 
Departments: A Hybrid Modelling Approach using Forecasting and Real-time 
Simulation” In Proceedings of the 2019 SigSim PADS Conference, June 2-5, Chicago, 
USA, IEEE. 

Mustafee, N., Powell, J.H. and Harper, A. (2018) “RH-RT: A Data Analytics Framework 
for Reducing Wait Time at Emergency Departments and Centres for Urgent Care”. In: 
Proceedings of 2018 Winter Simulation Conference, December 9-12, Gothenburg, 
Sweden, IEEE. 

Mustafee, N., Powell, J.H. and Harper, A. (2018) “Right hospital-right time: A business 
analytics framework for analyzing urgent care/A&E wait time data”. In Proceedings of 
the 2018 Operational Research Society Simulation Workshop, April 11-13, Stratford, 
Worcs. 

Harper, A. and Mustafee, N. (2017). “A Hybrid Approach using Discrete-Event 
Simulation and Forecasting for Endoscopy Services” In: Proceedings of 2017 Winter 
Simulation Conference, December 3-6, Las Vegas, Nevada, IEEE. 

Mustafee, N., Powell, J.H., Martin, S., Fordyce, A. and Harper, A. (2017). 
“Investigating the Use of Real-time Data in Nudging Patients’ Emergency Department 
Attendance Behaviour” In Proceedings of the 2017 Spring Simulation Multi-
Conference, April 23-26, Virginia Beach, VA. 

  

https://doi.org/10.1016/j.ejor.2020.06.043


19 
 
 

Abbreviations 

ABS    Agent-Based Simulation 
ACF    Autocorrelation Function 
AR    Autoregressive 
ARIMA    Autoregressive Integrated Moving Average 
ARMA    Autoregressive Moving Average 
PACF    Partial Autocorrelation Function 
StD    Standard Deviation 
A&E Accident & Emergency 
ADF    Augmented Dickey Fuller Test 
AIC    Akaike’s Information Criterion 
CDM Critical Decision Method 
CDU Clinical Decision Unit 
CINAHL Cumulative Index To Nursing And Allied Health Literature 
CS Computer Science 
DA    Data Analytics 
DES    Discrete-Event Simulation 
DDDAS   Dynamic Data-Driven Application Systems 
DSA    Distributed Situation Awareness 
DV Dependent Variable 
ED    Emergency Department 
ED-RAG   ED Resilience Assessment Grid 
GP    General Practice/General Practitioner 
HCP    Health Care Professional 
HF    Human Factors 
HM    Hybrid Modelling 
HS    Hybrid Simulation 
IHAF    Integrated Hybrid Analytics Framework 
IMPACT Network Information, Modelling, Prediction and Evaluation to 

Inform ACTion) Network 
IoT    Internet of Things 
IS    Information Systems 
IT    Information Technology 
IV Independent Variable 
KPI    Key Performance Indicator 
LoS    Length of Stay 
LWBS    Leave without Being Seen 
M&S    Modelling and Simulation 
MA    Moving Average 
MIU    Minor Injury Unit 
ML    Machine Learning 
MSE    Mean Squared Error 
MCS    Montecarlo Simulation 
NHS National Health Service 
OPEL Operational Pressure Escalation Level 
OR    Operational Research 
PLE Personal Learning Edition 
PI Prediction Interval 
QI    Quality Improvement 
RAG    Resilience Assessment Grid 
RFID    Radio Frequency Identification 
RMSE    Root Mean Squared Error 
RQ    Research Question 
SA    Situation Awareness 
SAGAT   Situation Awareness and Global Assessment Tool 



20 
 
 

SARIMA   Seasonal ARIMA 
SCM    Supply Chain Management 
SPAM    Situation Present Assessment Method 
SD    Systems Dynamics 
SE Standard Error 
STS    Sociotechnical System 
TAM    Technology Acceptance Model 
UCC    Urgent Care Centre 
UCN    Urgent Care Network 
UK    United Kingdom 
UTAUT Unified Theory of Acceptance and Use of Technology 
UTC    Urgent Treatment Centre 
V&V Verification & Validation 
VARMA   Vector Autoregressive Moving Average 
WIC    Walk-In Centre 

 
  



21 
 
 

 Introduction 

 Background  

Healthcare is a basic need in any society, however the provision of healthcare 

increasingly faces enormous challenges. In the United Kingdom (UK), these 

include expanding costs, an ageing population, new disease patterns associated 

with wealth and human behaviour, and changes in patient expectations and 

actions.  Managing limited healthcare resources is further challenged by 

variability in demand, which can lead to unbalanced utilisation of resources. 

Emergency care in particular suffers from high variability and the UK National 

Health Service (NHS) has been under sustained pressure with unpredictable 

demand surges, in particular during the winter months when emergency hospital 

admissions rise (British Medical Association, 2019). A goal of healthcare policy 

is to move more acute healthcare provision into community settings, and deliver 

the “right care at the right time in the right place” (NHS, 2019). This is often 

assumed to bring benefits such as reduced costs, improved access to services 

and improved operational performance in relation to quality of care and time 

(Munton et al., 2011), however evaluating this is difficult.  A further assumption is 

that levelling demand and capacity across services will improve patient 

satisfaction in terms of reducing waiting times and perceived quality of services 

(Abo-Hamad & Arisha, 2013; Zhao et al., 2015). This is also relevant for 

operational performance against targets, and may support objectives such as 

improving the way Emergency Departments (ED) work within the wider urgent 

care network, and encouraging patients to access alternatives to emergency care 

where appropriate (Murray et al., 2018). This chapter sets the context, rationale 

and scope of this research, with this section outlining the status of healthcare in 

the UK, albeit prior to the acute worldwide COVID-19 crisis. The applicability and 

challenges of simulation modelling in healthcare, a complex system, are 

appraised.  

Healthcare systems are complex social systems, with non-linear processes and 

unpredictable outcomes, challenging operational decision-making and evaluation 

of interventions.  Simulation modelling is an effective decision-support tool for 

complex systems (Jahangirian et al., 2010; Marshall et al., 2016; Zhang et al., 

2020), allowing an understanding of the interdependencies between human and 



22 
 
 

system variables (Almagooshi, 2015). System Dynamics (SD), agent-based 

simulation (ABS), Monte-Carlo simulation (MCS) and discrete-event simulation 

(DES) are the most commonly used simulation methods in Operations Research 

(OR), although other methods are used. In healthcare, simulation modelling has 

been used for decades, aiming to improve outcomes, evidence changes in 

delivery, and reduce costs (Katsaliaki & Mustafee, 2011; Fakhimi & Probert, 

2013).   

Despite the large number of studies applying simulation in healthcare, 

considerable challenges exist and its application is far from routine in practice. 

Reviews of simulation modelling in healthcare highlight deficiencies in research 

design (Aboueljinane et al., 2013; Mohiuddin et al., 2017; Zhang et al., 2020), 

alongside an ongoing interest in the challenges of conducting simulation studies 

in healthcare (Brailsford et al., 2013; Jahangirian et al., 2015; Klein & Young, 

2015; Tako & Robinson, 2015; Long, McDermott & Meadows, 2019). These 

centre on the need for increased stakeholder engagement and the difficulty of 

accessing data, alongside messy problems and rapid organisational change, and 

have resulted in low levels of real-world implementation of the results (Katsaliaki 

& Mustafee, 2011; Jahangirian, 2016; Pitt et al., 2016). The number of reviews of 

simulation in healthcare published in the last decade suggest that applications 

are rapidly rising. For example, an umbrella review by Salleh et al. (2017) 

synthesised 37 reviews of healthcare simulation modelling, of which 30 were 

published since 2010. Of these, 21 were focussed on operational performance, 

and five reviews were specific to emergency care. Yet Mohiuddin et al. (2017) 

reported that only 14% of results from simulation studies in their review were 

implemented, while Katsaliaki and Mustafee (2011) found that just over 5% of 

published papers in healthcare simulation modelling reported evidence of real-

world implementation of results.  

Despite the challenges, the potential value and impact of simulation methods for 

healthcare operational improvement remains undisputed (Pitt et al., 2016; 

Brailsford et al., 2018; Crema & Verbano, 2019; Zhang et al., 2020). However, 

potential efficiency gains must be balanced against risks to quality and safety of 

care. This is particularly important in the current environment, where a crisis of 

public health has followed a prolonged period of financial austerity. Additionally, 

rising demand, increasing costs, and changing standards have placed huge 



23 
 
 

pressure on health systems, risking serious breakdowns in care. For example, 

Vincent and Amalberti (2016) took a direct approach to safety, arguing that 

healthcare in the UK is frequently delivered at ‘the illegal normal’ level, where 

care is unreliable, and quality is poor. The patient will usually escape harm, with 

staff using adaptive strategies to cope (Kadri et al., 2014; Vincent & Amalberti, 

2016; Amalberti & Vincent, 2019). This is particularly relevant in emergency care, 

where variability in patient arrivals, illness severity, and health resources needed 

for treatment can lead to system strain (Cildoz et al., 2019). The Kings Fund 

(Murray et al., 2018) reported a continuing, significant decline against the ED 4-

hour standard in Type 1 departments, which are attached to acute hospitals. In 

these, the standard has not been met since 2014, while 4-12 hour waits rose by 

just under 20% between December 2017 and January 2018. In comparison, the 

performance of Type 3 departments, that is Minor Injury Units (MIU), Walk-in 

Centres (WIC), and Urgent Care Centres (UCC), has remained stable at around 

99% since 2010.  

Meanwhile, public satisfaction with the NHS is falling: between 2014 and 2017, 

the level of dissatisfaction almost doubled, rising from 15% to 29%, and in 2018 

public satisfaction was at its lowest level for more than a decade (Robertson et 

al., 2019). Considered on a continuum, both quality and safety improvements are 

a priority where care is operating at this level. While improving reliability of service 

is one approach to safety, emergency care clinical activities are necessarily 

adaptive hour-to-hour, due to the variation in patient numbers and case mix 

presenting throughout the day and across the wider system. The aim for hospitals 

is to deliver care that is safe, even if not ideal, when working conditions are 

difficult such as at times of high workload or during times of major emergencies.  

From a quality improvement perspective, where quality and safety are on a 

continuum, there should be no trade-off to be made with efficiency and cost 

because prioritising quality and safety can reduce costs and enhance efficiency, 

either directly or indirectly (Graban, 2009; MacArthur et al., 2012), for example 

by lowering complications, or reducing hospital readmissions (Huerta et al., 

2008). For The Kings Fund, Jabbal and Lewis (2018) found some common 

factors across hospitals that show how cost and quality can be successfully 

balanced to provide value. This shift from a ‘quality’ focus to a ‘value’ focus 

reflects the necessary emphasis on cost, where ‘value’, as defined by Porter 
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(2010), involves delivering the highest quality health outcomes for patients at the 

lowest possible cost (Jabbal & Lewis, 2018). 

The next section focuses the research on short-term decision support, and its 

precursor, situation awareness, and proposes research questions and objectives 

to meet these.   

 Research focus  

When care is operating close to the boundaries of capacity as has been the case 

in the UK for some years now (British Medical Association, 2018; Department of 

Health, 2018; House of Commons, 2019), the risk of a critical event occurring is 

high. Anandaciva (2019) outlined a range of contributing factors at the start of 

2019/2020 winter, including high levels of ‘flu, the pension crisis, lack of funding, 

and preparations for a no-deal Brexit. In general, the NHS sees improvements in 

waiting time performance over summer, allowing it to be prepared for winter in 

terms of staffing and waiting lists. However by end of 2019 financial year, the 

NHS reported 100,000 staff vacancies (NHS Improvement, 2019), significantly 

impacting on system resilience.  

System resilience is defined as the ability to anticipate, to react and to mobilise 

resources for rebuilding and recovering after a degraded or critical state 

(Hollnagel, 2009, 2011a, Hollnagel et al., 2019). In emergency healthcare, this 

requires adaptive behaviour from staff to maintain system functioning, and the 

ability to make effective short-term decisions (Kadri et al., 2015). Situation 

awareness (SA) is an important constituent in decision-making processes, 

defined as an operator’s understanding of ‘what is going on’ while interacting with 

a complex, dynamic system (Endsley, 1995; 2016).  This can occur at the task-

level (individual or teams) and at the system-level, and a range of validated 

metrics have been used for measuring SA at both levels. In ED, the variability in 

patient arrival rate and severity can interfere with SA as demand exceeds the 

capacity of available resources (Levin et al., 2012). This subsequently impacts 

on system resilience, as the ability to anticipate, react and recover from crowding 

or other critical situations reduces. Appropriate information can support SA and 

subsequent decision-making toward action, to support the delivery of safe, quality 

care.  
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One approach to dealing with the variability in patient throughput in EDs was 

proposed by Espinoza et al. (2014), who explored the use of real-time simulation 

to improve daily operations in an ED by portraying the current state of the system 

and predicting ED performance. With the rise in digitalisation and Industry 4.0 

applications, real-time methods are increasingly used for online decision-support, 

in particular in manufacturing environments (Rodič, 2017). While data security 

challenges to this approach limit its application in healthcare, greater volume and 

availability of standardised operational datasets can support the investigation of 

real-time decision-support tools. However uptake in healthcare has been slow. 

Activity in ED needs considerable hour-by-hour adaptation because of the 

variation in patient presentations, the urgency of patient conditions, and the 

vulnerabilities of the healthcare system (Vincent & Amalberti, 2016). Real-time 

simulation holds promise as an approach for supporting decision-making in this 

situation.  It can allow visibility over the current system state for supporting short-

term decision making, where the simulation behaviour can be close to real 

behaviour. Once initialised with the current system state, the simulation is run 

over a short time period, enabling the results to be more accurate (Bahrani et al., 

2013; Oakley, Onggo & Worthington 2020).  Though there is a growing interest 

in real-time simulation, few published studies have used real-time data in 

healthcare simulation applications with the majority using historical data sourced 

from hospital databases, observation, and expert opinion (Almagooshi, 2015; 

Salleh et al., 2017). With increasing availability of healthcare operational data, 

opportunities exist to guide real-time or near-real-time decision-making (Weiner 

et al., 2016). Given the growth of digitalisation and the increasing availability of 

data made possible by the advancement of technologies related to the Internet 

of Things, sensors, and the use of personal devices, this is likely to be a rich area 

for research and applications in the future. As research in this area is seeing rapid 

advances in domains such as manufacturing and transport, understanding the 

applicability and challenges to such an approach in healthcare is essential.  For 

these reasons, the first research question (RQ) to be addressed by this thesis is:  

 

RQ 1: How can simulation approaches support short-term operational 

decision making in healthcare? 
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Using simulation as a short-term decision-support tool, where quality and safety 

remain a priority, is potentially challenging, particularly in care networks where it 

can be hard to measure and interpret the impact that changes to one part of the 

system can have on another. In accord with Gul and Guneri (2015), Palmer et al. 

(2018) argued for the need for more innovative approaches to collecting and 

analysing healthcare data. Palmer et al. (2018) reviewed simulation modelling of 

patient flow across settings and found that multiple services, patient mix and 

different health-states within these services are rarely considered, in particular 

where services are time-dependent, or where capacity, demand and timing of 

patient use varies.  Long and Meadow’s (2018) review of simulation studies in 

mental health found a rise in multi-method modelling, which recognised that 

different segments of health systems have different profiles, which need different 

modelling methods. Similarly, Mielczarek and Uziałko-Mydikowska (2012), Gul 

and Guneri (2015), and Salmon et al. (2018) each identified in their reviews of 

healthcare simulation studies a trend towards multi-method platforms and 

multimethod modelling. Hybrid models, where two or more methods are 

combined, are not new (e.g. Shanthikumar & Sargent, 1983) but have seen 

increasing interest over the last decade or so, particularly in healthcare. This is 

alongside a more general, rapidly-growing academic interest in hybrid 

approaches to simulation studies as a comparatively new research area (Eldabi 

et al., 2016; Mustafee et al., 2017; Brailsford et al., 2019). Representing a 

problem area adequately to inform change suggests the need for a mixed-

methods approach. These may better capture the complexity of healthcare 

problem-situations, and are therefore of interest in applied studies, as single 

methods may require significant assumptions and over-simplifications, or 

isolating single aspects of a real-world problem.  

The rationale for using hybrid methods has been described as combining the 

methodological strengths of individual modelling techniques (Alvanchi, Lee & 

AbouRizk, 2011; Mustafee et al., 2015a), or to better capture the breadth of a 

problem situation (Lynch et al., 2014; Mielczarek & Zabawa, 2016; Abohamad et 

al., 2017). Mustafee et al. (2015a) and Powell and Mustafee (2016) made a 

distinction between hybrid simulation (HS), where two or more simulation 

methods are combined, and hybrid modelling (HM), where simulation is 

combined with other distinct methods at specific stages of a simulation study. HM 
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may combine qualitative approaches such as Soft Systems Methodology (e.g. 

Kotiadis, Tako & Vasilakis, 2013), or quantitative approaches, for example 

predictive or descriptive analytics (e.g. Uriarte et al., 2017). These hybrid 

approaches extend simulation modelling methodology, arguably adding further 

value to the study in practice (Greasley & Edwards, 2019). This is of particular 

interest in real-world applications such as healthcare, where uncertainty and 

variability are key features (Mustafee et al., 2017).  

Trkman et al. (2010) and Chae et al. (2014) argued that data analysis lies at the 

heart of organisational decision-making, and descriptive and predictive 

techniques are used increasingly in healthcare to optimise health, operational 

and financial outcomes (e.g. Hersh, 2014). Analytics techniques offer support to 

enhance the application of simulation models, while simulation can greatly 

enhance the value delivered by analytics applications by informing approaches 

to healthcare delivery (Marshall et al., 2016). This can help to link policy, 

management or logistical problems at strategic, tactical or operational levels of 

decision making. For example, a straightforward but costly solution to healthcare 

crowding resulting from a rise in, or variability in demand is to increase capacity 

and/or resources. Simulation methods can model alternative scenarios by 

optimising resource allocation and utilisation more efficiently against expected 

changes in demand.  However to best achieve this, knowledge about the 

expected level of demand using forecasting methods can be inputted into the 

simulation model for planning (Mielczarek & Zabawa, 2016; Harper, Mustafee & 

Feeney, 2017). Given the demonstrated advantages of using mixed-methods 

approaches to better capture a problem situation, and the proposed benefits of 

using real-time simulation the second research question is: 

Positioning healthcare research within the common principles of quality 

improvement (QI) is arguably important for any study that aims to intervene in 

frontline healthcare. In practice, this means involving stakeholders including 

frontline staff and patients, and prioritising safety and quality alongside cost and 

efficiency considerations. Involving patients in healthcare OR research is not 

common, but aims to start with an understanding of what is important to patients, 

RQ2: How can an integrated hybrid approach using real time simulation and 

predictive analytics support short-term operational decision-making? 
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to ensure that modelling efforts focus on measures that patients view as important 

as well as improving an in-depth understanding of the problem situation (Pearson 

et al., 2013). Many new products and processes come from a technology push of 

a new application, regardless whether there is a demand for the application (Brem 

& Voigt, 2009). By involving end-users, who are part of the system under 

investigation, an understanding of the current requirements and perceived value 

for patients, as end-users, can be considered in the design and function of a 

decision-support tool using a ‘market pull’ approach (Horbach et al., 2012). 

It is generally accepted that involving stakeholders in simulation projects is 

fundament to success (e.g. Long & Meadows, 2018), however barriers in 

healthcare need to be considered. These include communication gaps between 

the stakeholders and researcher, poor management support and high clinician 

workload (Jahangirian et al., 2015). QI principles provide a starting point for 

healthcare service research. These principles are aligned with previous OR 

research which have investigated the challenges of conducting simulation 

research in the healthcare domain (Tako & Robinson, 2012; Brailsford et al., 

2013; Jahangirian et al., 2015; Klein & Young, 2015; Long et al., 2019). The 

position paper by Pearson et al. (2013) aligns with healthcare QI definitions and 

recommends that interventions focussed on better patient outcomes and better 

system performance require the engagement of all stakeholders, including 

patients, the intended users of the system. This provides a suitable context for 

positioning healthcare OR research, subtly shifting the more traditional emphasis 

of OR to one where quality and safety are priorities alongside operational 

benefits, and where the constructivist model of stakeholder engagement includes 

patients as end-users, enhancing the ability to bring about health service change 

for the benefit of both the health service and the patients served by it. Given this, 

the final research question is:  

 

 Research aims and objectives  

Research into real-time simulation in healthcare is still novel and untested, though 

advancements in model development, validation and applications are being seen 

RQ3: What are the implications and the added value to the system of using 

real-time data applications for both patient and NHS decision-support? 
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(Oakley et al., 2020). However its proposed benefits remain uncertain in practice. 

Firstly, it is necessary to understand what those proposed benefits are, by 

understanding the characteristics of healthcare, in particular emergency care, 

which may benefit from short-term decision-support, and by what mechanism. 

Situation awareness is dynamic by nature, it changes constantly as tasks, 

environment and sociotechnical interactions occur.  Viewing a system through a 

sociotechnical lens, with a focus on the needs of the users of the system, 

supports effective performance, for example by paying attention to what type of 

information is needed to support system goals (Jones, 2015). Analytic methods 

are one approach to decision-support, and how these might contribute to the use 

of real-time simulation in healthcare needs is of interest, as such methods have 

been proposed to increase the value of modelling and simulation studies (Molloy 

et al., 2019; Greasley & Edwards, 2019).  These groups of methods can be 

evaluated in the context of real-time data and real-time simulation, to determine 

their contribution to situation awareness and short-term decision support in 

healthcare.  

To test this approach, a conceptual framework to support its development is 

required. It is advantageous if this framework is generic, as it can be tested in 

practice and transferable learnings can support similar future work. Within a use-

case, its effectiveness against success criteria can be determined through 

evaluation, for example of staff who will be using the application. Evaluation is 

important, as the technical proficiency of the application is only one part of the 

overall perceived ‘usefulness’ of the approach in practice, and modelling and 

simulation (M&S) continues to experience challenges in healthcare in terms of 

evidence of real-world impact (e.g. Jahangirian, 2016). 

From a QI perspective, the overall value of such methods at the system level 

needs to be understood. By involving end-users, who are part of the system under 

investigation, an understanding of the current requirements and perceived value 

for patients, as end-users, can be considered in the design and function of a 

decision-support tool using a ‘technology pull’ approach. The implications, and 

the added value to the system, of using real-time data applications for patient 

decision-support should be synthesised with the views of staff to determine the 

potential value of this approach at the system level.  
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The specific research objectives which will be addressed to achieve the three 

research questions in this thesis are stated below (Table 1.1). The research 

questions have been restated as aims to focus their relationship to the research 

objectives. In this thesis, the term ‘simulation’ refers to computer simulation, the 

use of a computer to represent the dynamic responses of one system by the 

behaviour of another system modelled after it. 

Table 1-1 Research Questions, Aims and Objectives 

Research Questions Aim Objectives 

1. How can simulation 

approaches support short-

term operational decision-

making in healthcare? 

To determine the need for 

short-term decision-support 

in healthcare, and to 

examine how simulation, 

real-time simulation, and 

hybrid modelling approaches 

using analytics have been 

used for short-term 

operational decision-support 

in the healthcare context, in 

particular emergency care. 

1. To understand the need for 
short-term decision-support in 
healthcare, in particular 
emergency care. 
 

2. To explore how analytics 
methods can be used for short-
term decision-support.  
 

3. To evaluate simulation 
approaches used in healthcare 
for decision-support and to 
identify how simulation is used 
for short-term decision-support.  

 

4. To determine the criteria for 
evaluation of a hybrid simulation 
approach for short-term 
decision-support in healthcare. 
  

2. How can an integrated 

hybrid approach using 

real-time simulation and 

predictive analytics support 

short-term operational 

decision-making? 

To test and evaluate the 

potential of an integrated 

hybrid approach for short-

term decision-support in 

healthcare combining real-

time simulation with other 

analytics approaches. 

1. To propose a generic 
framework supporting an 
integrated hybrid approach for 
short-term decision-making in 
healthcare. 
 
2.  To apply the framework 
within the case study in a 
hospital ED. 
  
3. To evaluate the application of 
the framework. 
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3. What are the 

implications and the added 

value to the system of 

using real-time data 

applications for both 

patient and NHS decision-

support? 

To analyse the system level 

impact of the use of real-

time data for both patient 

and staff decision-support. 

 

1. To critically evaluate the 
value that real-time applications 
provide at the system level.  
 
2. To synthesise previous 
findings and to evaluate the 
framework in light of the 
application.  

 

 Audience and scope 

This research is expected to be of interest to OR researchers, both the simulation 

and analytics/data science communities, in particular those with an interest in 

applied healthcare research and real-time approaches to decision-support. While 

this is an expanding area, and significant research has attempted to understand 

the barriers to research in this area, there remains little understanding of what is 

needed and useful in practice to support short-term decision-making. 

The healthcare domain is an example of a complex system with identified 

challenges in executing and implementing simulation studies, however other 

such complex systems exist for which real-time simulation and hybrid modelling 

approaches can be applied. This research, and its transferable knowledge, will 

be of interest, for example to researchers working in Industry 4.0, in particular in 

sociotechnical systems.  

Human Factors researchers with an interest in SA and decision-support, and 

applied healthcare researchers with an interest in QI, or QI 

researchers/practitioners may find this work to be applicable. It may be of 

particular concern to those interested in how data applications may support SA 

and decision-making, and how a data analytics study may fit within a QI approach 

or support existing QI priorities.   

Additionally, healthcare staff and policy-makers with an interest in research-

based system and service improvement, and patients/the public with an interest 

in the challenges and potential for decision-support tools for supporting health 

service delivery toward better quality outcomes may find the following research 

applicable.  
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 Outline of the thesis 

Table 1.2 outlines the flow of the thesis, and the links between chapters and 

research questions. The literature review aims to address Research Question 1 

and its objectives, and to determine the gaps in understanding to be addressed, 

and the criteria for evaluation, of an approach to short-term decision-support in 

healthcare.  

Table 1-2 Outline of the thesis 

Chapter  Purpose Research Questions 

1 Introduction  

2 Literature Review RQ1, Obj. 1-4 

3 Methodology  

4 Framework RQ2, Obj. 1 

5 Case Study: Problem definition RQ2, Obj. 2 RQ3, Obj. 1 

6 Case Study: Hybrid model RQ2, Obj. 2 

7 Case Study: Evaluation RQ2, Obj. 3 RQ3, Obj. 1 

8 Evaluation of framework RQ3, Obj. 2 

9 Conclusion  

 

Research Question 2 is addressed by Chapters 3 (framework development), 5 

and 6 (applying the framework), and 7 (evaluating the application).  Chapter 5 

(patient evaluation) provides an understanding of the current requirements and 

perceived value for patients, as end-users, to be considered in the design and 

function of a decision-support tool using a ‘market pull’ approach. It additionally 

supports the problem definition.  Subsequently, Chapters 5 and 7 will inform the 

discussion and evaluation of this approach to short-term decision-support in 

healthcare, which addresses Research Question 3, in Chapters 7 and 8. Chapter 

8 revisits the framework, and Chapter 9 concludes the research, and outlines its 

contributions.   

Figure 1.1 is a graphical representation of the thesis, and the links between 

chapters to address research questions. As per Table 1.2, the research questions 

are indicated by their supporting chapters. The purpose of each chapter is 

clarified in terms of the overall structure of the thesis.  
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Figure 1-1 Graphical structure of the thesis including links between chapters 

The chapters are summarised below:  

Chapter 1: Introduction 

This chapter has provided the background to the need for short-term decision-

support in healthcare, in particular emergency care. It has outlined the challenges 

faced by emergency care, and how analytic decision-support, including real-time 

simulation, may contribute to supporting SA and short-term decision-making. The 

chapter outlines why a QI approach is important, with its focus on quality and 

safety as well as efficiency and productivity. Three research questions have been 

articulated, and the specific objectives needed to achieve the research questions 

are outlined. The structure of the thesis is presented.  

Chapter 2: Literature Review  

The literature review addresses the first research question. Research into real-

time simulation in healthcare is still novel and largely untested in practice. 

Therefore its proposed benefits remain uncertain. Firstly, it is necessary to 
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understand what those proposed benefits are, by understanding the 

characteristics of healthcare, in particular emergency care, which might benefit 

from short-term decision-support, and by what mechanism. Analytic methods are 

one approach to decision-support, and how these might contribute to the use of 

simulation in healthcare are explored, through hybrid approaches to simulation 

studies. The application and challenges to real-time simulation are outlined, as 

well as the criteria for evaluation of a short-term decision-support tool in 

healthcare. Finally, gaps in the literature are identified, and how this thesis will 

attempt to address these gaps are explicated.  

Chapter 3: Methodology 

This chapter outlines the research strategy, the research design, and the 

methods used to address the research questions. It discusses the research 

philosophy, and why it is important and relevant for OR real-world research, and 

outlines the association between the research strategy and each of the research 

questions and the methods. Research ethics are addressed. 

Chapter 4: Proposed framework 

This chapter develops and proposes a generic framework for the development 

and application of real-time hybrid modelling and simulation studies in 

sociotechnical systems such as healthcare. It addresses the first objective of the 

second research question:  to propose a conceptual framework supporting an 

integrated hybrid approach for short-term decision-making in healthcare. The 

framework is developed to be generic, with transferable knowledge to support 

similar future work. 

Chapter 5: Case study: Introduction and problem definition 

This chapter introduces the use-case to test the framework, and the problem 

definition stage. It outlines the development, application, analysis, and results of 

a patient questionnaire. The questionnaire provides an understanding of the 

current requirements and perceived value for patients, as end-users, to be 

considered in the design and function of a decision-support tool.  The results of 

the questionnaire will be subsequently integrated with the results of the evaluation 

and synthesised with the literature, to address Research Question 3 in Chapter 

7.  
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Chapter 6: Case study: hybrid model 

This chapter applies each of the components of the hybrid model: the descriptive, 

diagnostic, predictive and prescriptive components. The predictive component 

uses a SARIMA model to forecast the number of patients in the department, while 

the prescriptive component is a DES model of the emergency department for 

supporting recovery based on forecasted crowding.  

Chapter 7: Case Study: Evaluation 

Evaluation is the final component of the framework. The development, 

application, analysis, and results of the staff interviews are presented. Interviews 

are used to evaluate the hybrid model, how it might support SA and subsequent 

decision-making in practice, and how it might be improved. Research Question 3 

is addressed by synthesising the patient questionnaires and staff interviews with 

the literature to evaluate the system-level value of the application. 

Chapter 8: Evaluation of the framework 

Subsequent to the application which tests the framework in practice, the 

framework itself is revisited and modified in light of its application. 

Chapter 9: Conclusion 

This chapter provides a summary of the contribution of the research, its 

limitations, and directions for future research.  

 Chapter Summary 

This chapter has provided the background to the need for short-term decision-

support in healthcare, in particular emergency care. It has outlined the challenges 

faced by emergency care in today’s environment, and how analytic decision-

support, including real-time simulation, may contribute to supporting SA and 

subsequent short-term decision-making in these environments. The necessity for 

a QI approach to frontline healthcare research is argued. Three research 

questions have been articulated and justified, and the specific objectives needed 

to achieve the research questions are outlined. The structure of the thesis has 

been presented graphically, and in summary. The next chapter, the literature 

review, addresses the first research question.   
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 Literature Review 

 Introduction 

The aim of this chapter is to address the first research question and its three aims 

(Table 2.1), and to provide a basis for the subsequent empirical research. The 

research aims to explore the value that real-time simulation within a hybrid model 

(HM) can provide in a sociotechnical system for short-term decision-support. It is 

positioned in situation awareness (SA) theory, as adaptive behaviour from staff 

is required to maintain system functioning, which includes effective short-term 

decision-making.  

SA is considered to be an important constituent of decision-making processes, 

and the provision of new information can support this understanding of ‘what is 

going on’. In ED, the hour-to-hour change in patient presentations can interfere 

with SA, and subsequently impact on system resilience, that is, the ability to 

anticipate, react and recover from crowding or other critical situations. Real-time 

simulation has been proposed as a solution to supporting systems that are highly 

stochastic in the short-term. It allows visibility over the current system state and 

can be closer to real system behaviour as the simulation is running over a short 

time period. As technologies collecting data in real-time advance, unlocking the 

value in real-time analytics, including simulation, is of burgeoning interest. This is 

of particular concern in healthcare, which in the UK, and worldwide, is under 

significant pressure. In the healthcare domain, simulation methods for decision-

support have strived to gain a foothold in practice, yet is an approach which is 

considered to offer high value.  

Data analytics (DA), defined as the use of data, statistical and quantitative 

analysis, and fact-based management to drive decisions and actions (Davenport 

& Harris, 2007), are used increasingly in healthcare to optimise health, 

operational and financial outcomes (e.g. Hersh, 2014; Chen et al., 2020). 

Analytics techniques can also enhance the application of simulation models, 

while simulation can greatly augment the value delivered by analytics 

applications by informing approaches to healthcare delivery. This can help to link 

policy, management or logistical problems at strategic, tactical or operational 

levels of decision-making. However an understanding of the challenges, 

exploring potential unexpected outcomes in practice, and how to optimise an 
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intervention in terms of the value it might provide are important considerations. 

Positioning healthcare research within the common principles of quality 

improvement is arguably important for any study that aims to impact on frontline 

healthcare. In practice, this means involving stakeholders, including frontline staff 

and patients, and prioritising safety and quality alongside cost and efficiency. It 

also means considering the effects of a new application at the system-level, as 

non-linear outcomes can occur in complex sociotechnical systems. A 

conceptualisation of the relationships between constructs is illustrated in Figure 

2.1. Data, analytics, and simulation all contribute to SA, and together aim to 

support quality improvement in terms of efficient and effective care delivery, 

patient experience and outcomes, staff capability, and ultimately, potential 

financial savings.   

 

Figure 2-1 The relationship between real-time data, data analytics, SA and QI in healthcare decision 
support 

Within the broader OR community, much effort is made to gain a coherent 

understanding of the future direction of the discipline, specifically how it may 

maintain its unique position finding solutions for real-world problems, while 

continuing to evolve as a discipline. These challenges have been the subject of 
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research and debate both specific to healthcare (Royston, 2009, 2011; Monks, 

2015) and more widely (Royston 2013; Holsapple et al., 2014; Ranyard, Fildes 

and Hu, 2015; Mortenson, Doherty & Robinson, 2015). Within healthcare, the 

question centres on real-world benefit, and in particular the lack of evidence 

supporting the use of simulation in healthcare (Pitt et al., 2016). Other important 

issues are the co-design of OR interventions with stakeholders, including frontline 

staff (Young et al., 2009; Van Lent et al., 2012; Kotiadis & Tako, 2016); raising 

the awareness of OR and simulation modelling with stakeholders (Royston, 2009; 

Monks, 2015), and methodological issues including coping with complexity, 

behavioural considerations and extending methodologies (Gunal, 2012; Royston, 

2013; Klein & Young, 2015; Ranyard et al., 2015; Mortenson et al., 2015; Franco 

& Hämäläinen, 2016; Long et al., 2019).  

Several authors have also raised the importance of engaging patients and the 

public in healthcare OR studies (Pearson et al., 2013; Monks, 2015; Batalden et 

al., 2016) while others have drawn attention to patient-centred care, patient 

safety, access and inequality in healthcare (Royston, 2009; Pitt et al., 2016). 

Pearson et al. (2013) argued that this enhances model credibility and relevance 

for patients and staff, ensuring that modelling efforts are focussed on issues that 

patients find important. The theory of co-produced services explains that 

consumers and providers of services work together to co-create value, and 

Balaban et al. (2016) extended this to healthcare to analyse the relationship 

between patients and service providers in designing, improving and evaluating 

healthcare services from a quality improvement (QI) perspective.  Examples of 

patient involvement in OR studies are few and far between, but not unusual in 

the healthcare QI literature (e.g. Boivin et al., 2014 Coulter et al., 2014; Hardyman 

et al., 2015; Robert & Cornwall, 2015; Ocloo & Matthews, 2016). With a focus on 

implementation, improvement, and multi-stakeholder engagement, QI and OR 

can synergise in healthcare studies, and as the dominant framework for 

improvement in the NHS is a natural context for positioning OR studies. This 

expands the focus, rather than the scope of OR practice, as comparable tools are 

used in each discipline. Indeed simulation has been shown to be a useful tool in 

QI, adding value to the development of the organisation and helping staff face 

future challenges collaboratively (Rutberg et al., 2015; Hvitfeldt-Forsberge et al., 

2017; Guise et al., 2017).  
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The following section outlines the role and structure of this review, and how it will 

meet the objectives of the first research question, and provide a basis for the 

subsequent empirical work.  

 Structure of the review  

The integrative literature review is a form of research that reviews, critiques, and 

synthesizes representative literature on a topic in an integrated way such that 

new perspectives on the topic are generated (Torraco, 2005). This complements 

primary empirical research by narratively integrating the evidence to arrive at new 

insights (Esbach & van Knippenberg, 2020). An integrative literature review can 

be considered a form of research that can stand alone, as it results in novel 

outcomes, such as a new conceptual framework that defines the topic under 

review.  Alvesson and Sandberg (2011; 2020) emphasise the need to 

problematize integrative reviews as a way to challenge and reimagine current 

ways of thinking and to consider broader knowledge domains. They emphasise 

broad but selective reading rather than systematic searches, and questioning 

rather than identifying gaps. Problematizing reviews aim for insight and 

rethinking, rather than rigour, or pseudo-rigour along dominant lines of logic. 

This is the approach used to address the first research question. The value of the 

literature review is in synthesising aspects of two bodies of literature within a 

domain of application, with a view to establishing what the decision-support 

literature can learn from the decision-making literature to inform the development 

of OR tools for short-term decision-support which are useful in the real-world. 

Alongside the methodology chapter, it significantly informs the framework 

proposed in Chapter 4.  This serves to open up new conversations around the 

purpose and use of short-term decision-support tools.   

Table 2.1 re-states Research Question (RQ) 1, its aim, and its four objectives, 

which will be addressed in this chapter.  

Table 2-1 Research Question 1  

Research Question Aim Objectives 

1. How can 

simulation 

approaches support 

To understand the need for 

short-term decision-support 

in healthcare, and to 

1. To understand the need for 

short-term decision-support in 



40 
 
 

short-term 

operational decision-

making in 

healthcare? 

examine how simulation, 

real-time simulation, and 

hybrid modelling 

approaches using analytics 

have been used for short-

term operational decision-

support in the healthcare 

context, in particular 

emergency care. 

healthcare, in particular 

emergency care. 

2. To explore how analytics 

methods can be used for 

short-term decision-support.  

3. To evaluate simulation 

approaches used in healthcare 

for decision-support and to 

identify how simulation is used 

for short-term decision-

support.  

4. To determine the criteria for 

evaluation of a hybrid 

simulation approach for short-

term decision-support in 

healthcare. 

 

This review aims to address the three objectives of RQ 1. The structure of the 

review is illustrated in Figure 2.2. Objective 1: To understand the need for short-

term decision-support in healthcare, in particular emergency care is addressed 

through the pathway illustrated in Figure 2.2: Healthcare as a sociotechnical 

system (Section 2.3)  Organisational decision-making (Section 2.4)  Situation 

Awareness (Section 2.4.2). To explore the need for short-term decision-support 

in healthcare, in particular emergency healthcare, the role of SA in a 

sociotechnical system and how it contributes to decision-making will be 

examined. These topics will be positioned within healthcare, and more 

specifically within ED, which has particular challenges with regard to short-term 

decision-support. 

Objective 2: To explore how analytics methods can be used for short-term 

decision-support is addressed primarily through Section 2.5, Data analytics and 

simulation, and through the subsequent pathways illustrated in Figure 2.2. Data 

analytics as an approach to decision-support will be reviewed, and an evaluation 

of how these methods have been used alongside simulation in modelling and 
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simulation (M&S) studies is undertaken, with the aim of understanding how these 

methods can enhance a modelling approach to addressing a research problem. 

Objective 3: To evaluate simulation approaches used in healthcare for decision-

support and to identify how simulation is used for short-term decision-support is 

addressed through the pathway: Simulation in healthcare (Section 2.6)  Real-

time simulation (Section 2.6.4)  Hybrid Systems Modelling (Section 2.7). A 

review of simulation in healthcare, and the challenges and forward directions of 

modelling and simulation, including real-time simulation as used in healthcare 

and more widely in other domains, is undertaken. In this review, these pathways 

interact and converge to answer the first research question, and to understand 

the gaps in the literature to be addressed by this research. The review will 

conclude with a summary of the criteria for evaluation of a real-time hybrid 

modelling approach for short-term decision-support in healthcare. 

 

Figure 2-2 Structure of the literature review 

The concepts in Figure 2.2 have been introduced in Chapter 1. The subsequent 

sections will go in to more detail to define the concepts for healthcare, and 

indicate their relevance to the problem situation of short-term decision-support in 

healthcare, in particular emergency healthcare, and a proposed solution, an 

integrated hybrid model using real-time data, predictive analytics, and simulation.  



42 
 
 

 Healthcare as a sociotechnical system 

 Quality Improvement in healthcare 

The recent NHS funding deal had hoped to ease ongoing pressures, however it 

was arguably not enough to restore performance against waiting times standards 

(The Kings Fund, 2019). Additionally, there are suggestions that Clinical 

Commissioning Groups regionally will take significant financial hits as a result of 

the COVID-19 virus, despite the large allocation of funds available to support the 

NHS during and following the crisis (HSJ, 2020). As NHS healthcare services 

have become increasingly constrained financially, processes are more tightly 

coupled and system resilience has decreased (Ham, 2017). Quality and safety 

can be conceived on a continuum, and it is increasingly important that quality is 

a driver of both strategic healthcare service improvement activities and day-to-

day operational decision-making. Vincent & Amalberti (2016) describe almost all 

current safety initiatives as ‘optimising strategies’: that is, attempts to either 

improve the reliability of health processes, or initiatives to improve the wider 

system. They argue that in the real world, strategies to improve safety and quality 

should be aimed at managing risk in the often complex and adverse daily working 

conditions of healthcare. Where care is optimal in terms of adherence to 

standards, quality is achieved. However while standards of safety must be met, 

this definition of quality ignores a fundamental perceptual aspect to ‘quality’, 

which belongs to the recipient of the service: the patient (Coulter, 2015). The 

Health Foundation adopted the principles of quality from the Institute of Medicine 

for their definition: ‘making healthcare safe, effective, patient-centred, timely, 

efficient and equitable’ (The Health Foundation, 2013), shifting the emphasis 

toward perceived quality and value for patients. Batalden and Davidoff (2007) 

and Batalden et al. (2016) emphasised that quality improvements require the 

combined efforts of all stakeholders, including patients and their families, health 

professionals and researchers.  

Even prior to the current crisis, there is evidence that care in the NHS often fell 

below the standard expected (Amalberti & Vincent, 2020), and patient 

involvement has variously been proposed as a vehicle for improving quality and 

safety, accountability, healthcare delivery, health equity and maintaining 

sustainability (Hardyman et al., 2015). Ham, Berwick and Dixon (2016) suggested 

that the practice of QI requires an understanding of systems thinking; quantitative 

https://www.ifs.org.uk/publications/12994
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data to understand variation; a participatory approach; and a determined focus 

on the needs of the patient. The Health Foundation (2013) also underline the 

importance of data and measurement for improvement, understanding 

processes, improving reliability, and understanding demand, capacity and flow. 

These properties overlap considerably with the goals and objectives of many 

M&S studies in healthcare. In the Berwick report for the National Advisory Group 

on the Safety of Patients in England (Berwick, 2013), it is emphasised that while 

the pursuit of operational targets is important, it should not displace the primary 

goal of better care. Arguably any attempt at an intervention in complex healthcare 

systems should operate according to these principles. 

 A sociotechnical system approach in ED  

The term ‘sociotechnical systems’ was first used by Emery and Trist (1960) to 

describe systems that involve a complex interaction between people, technology 

and the environment in the work system. It has become popular to take a 

‘systems view’ of healthcare processes when focusing on safety and quality, 

however there are a number of factors specific to ED that need to be considered 

when attempting to do so.  Carayon (2016) outlined a range of human factors 

issues in ED which position it as a complex sociotechnical system.  These include 

the event-driven nature of the work, hence work space and resources are difficult 

to predict hour-to-hour. Patient type is highly variable, increasing the difficulty in 

identifying workload or services needed. The work in ED requires many individual 

tasks which are variable in number; involve a number of specialities and skill 

levels; and ED requires transitions or shift handovers of care. Finally, ED systems 

and processes are closely coupled with other system components; work tools are 

unstandardized requiring a combination of handwritten notes, digital data, status 

boards and human memory; and many ED workspaces are not designed for the 

work taking place there.  

Given this, it is important to use an approach to modelling sociotechnical systems 

that abstracts away from the specifics of particular methods and obtains systems-

level understanding, for example starting with insight into what matters in terms 

of patient experience, staff satisfaction, efficiency gains, or cost savings. In 

complex sociotechnical systems, non-linear outcomes can give unexpected 

effects, for example data and information overload can act as a distraction and 

reduce comprehension of a situation (Murphy et al., 2019). However appropriate 
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information is necessary to support task- and systems-level understanding. The 

implications are that designing decision-support tools means designing to support 

the ability to gain and maintain awareness of a situation in a dynamic 

environment. This can drive effective dynamic decision-making, while ensuring 

awareness of unexpected uses or effects to maximise the intended value as an 

integral part of ED activity, and to minimise the risks in practice.      

 ED activity 

EDs provide care for acutely ill or injured patients arriving at random time 

intervals, with unpredictable levels of urgency and/or complexity. Patients wait for 

assessment and treatment according to triaged level of urgency in distinct 

queues. Triage categories are usually 1-4/5, with 1 being life-threatening and 4/5 

being non-urgent.  EDs typically provide a service 24 hours, 7 days a week. 

Patterns of demand are characteristically seasonal over the day, week and year.  

Patterns of patient urgency or complexity are less demonstrable, although more 

complex patients present in the winter months (Thornton, 2017). From 2004, the 

UK NHS constitution mandated that 98% of patients attending ED should be 

seen, treated and either transferred, admitted or discharged within 4 hours. In 

2010 this target was relaxed to 95%, associated with declining performance. In 

recent years, performance against the 4-hour target has deteriorated in EDs 

across the country, with the national average as low as 69% in December 2019 

(NHS England, 2020); the number of total ED attendances is also increasing, up 

20% since 2009/10 (NHS Digital, 2019b). 

A key focus of improvement for ED managers is reducing wait times and 

increasing throughput to reduce crowding and improve ED performance (Paul et 

al., 2010; Gul & Guneri, 2015). Crowding and long wait times are a primary cause 

of patient dissatisfaction in ED (Jurishica, 2005; Soremekun et al., 2011; Abo-

Hamad & Arisha, 2013; Komashie et al., 2015). Crowding is also associated with 

poor clinical and operational outcomes, and perceived quality of service (Marmor 

et al., 2009).  

Many solutions to the problem of crowding focus on increasing resources and 

capacity, however in the public sector this is often impossible. The focus therefore 

shifts to optimising existing capacity and resources in ED. Another consideration 

is that being a service system, both customers and providers can respond to 
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changing work environments, and as performance targets curb the buffer to cope 

with changing demand, supply must adjust to meet demand. Under these 

circumstances, performance and behaviour of staff must adapt (Oliva & Sterman, 

2001; Chahal et al., 2013).  For example, Komashie et al. (2015) used Little’s 

Law to investigate the relationship between queueing time and patient 

satisfaction, and service time and staff satisfaction. They hypothesised that as 

operational targets to limit waiting time will necessarily reduce service times 

where demand remains unchanged, the resultant impact on staff resources will 

ultimately result in reduced staff satisfaction. The proposed link to patient safety 

is that dissatisfied or stressed staff are more likely to cut corners through ‘coping 

methods’ to shorten service times or to meet operational targets (Bevan & Hood, 

2006). Using Queuing Theory, Komashie et al. (2015) concluded that managing 

queues through targets is problematic, while synergising both staff and patient 

satisfaction is necessary for healthcare quality by keeping ideal service times 

close to actual service times for staff, and ideal wait times close to actual wait 

times for patients. However this requires transparency of actual waits, and also 

assumes that patient demand will remain stable.  

 Adaptive capacity in ED 

Alongside demand variability, with growing demand for emergency care, EDs 

must anticipate crowding, and be reactive and adaptive with their delivery to have 

the required resilience to continue to deliver services safely during busy times. 

ED’s are complex and can never be fully specified or controlled by rigid 

procedures and protocols, but require the ability to adapt to variability in the 

internal and external environment when needed (Dekker, Cilliers & Hofmeyr, 

2011; Amalberti & Vincent, 2020).  

Hollnagel (2009; 2011a,b) defined a system as resilient if it is able to adjust its 

functioning prior to, during, or following changes, disturbances, or opportunities, 

and thereby sustain required operations under both expected and unexpected 

conditions. Performance measures for resilience include rapidity of recovery, 

resource utilisation, performance stability and team situation awareness (Son et 

al., 2017). Back et al. (2017, p660) adapted the definition for healthcare as ‘the 

intrinsic ability of a healthcare system…to adjust its functioning prior to, during or 

following events (changes, disturbances and opportunities), and thereby sustain 

required operations under both expected and unexpected conditions.’  System 
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resilience sees safety as a process consisting of: knowledge about what to expect 

(anticipation); competence in knowing what to look for (attention); and knowing 

what to do and the resources to do it (rational response) (Hollnagel, 2009; 2011a). 

In ED, resilience has been measured using ED-RAG (Chuang et al., 2020) an 

adapted version of the Resilience Assessment Grid (RAG) questionnaire 

validated for use in other domains (Hollnagel, 2010; 2011b). This measures the 

potential for resilience, using features such as the ability to be both reactive and 

proactive, and the ability to learn. Kadri, Chaabane, Bekrar & Tahon (2015) 

applied the concept of system resilience in relation to emergency healthcare, 

describing it as the ability to anticipate, to react and to mobilise resources for 

rebuilding and recovering after a degraded or critical state. This can be due to 

epidemics or crises, but can also occur as a result of unpredictable fluctuations 

in demand. Expected fluctuations can be defined as seasonal variations monthly, 

daily and hourly which can reasonably be predicted. When care is operating close 

to the boundaries of capacity as has been the case in the UK for some years now, 

the risk of a critical event occurring is high. Anticipation is a key element of 

adaptive processes, by detecting as early as possible that a critical event is 

imminent. Proactive adjustment means that the system can change from a state 

of normal operation to a state of heightened readiness before the onset of an 

event. This involves monitoring changes in ED functioning and having sufficient 

time to implement corrective actions. In a state of readiness, resources are 

allocated to match the needs of the expected event (Hollnagel, 2011b). 

Kadri et al. (2015) evaluated the effect of different corrective actions on strain 

indicators (for example, wait time until first assessment; number of patients in 

department when new patient arrives; ratio of number of patients to number of 

physicians), while a follow-up paper (Kadri, Chaabane & Tahon, 2016) described 

a set of corrective actions, which include transferring and rescheduling care 

activities; re-defining or re-allocating tasks to staff, adapting or adding medical 

personnel; and adapting or reassigning treatment areas. However these 

reactions must occur in real-time, while the ED is functioning. For staff, this 

involves determining the state of the ED, assessing the impact of corrective 

actions and launching corrective actions, while continuing to treat patients. Kadri 

et al. (2016) modelled a range of corrective scenarios, however the capability to 

improve anticipation of degraded situations would allow corrective actions to be 
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initiated earlier, and recovery to be faster. In contrast, Ahalt et al. (2018) built an 

ED DES to evaluate three crowding scores (EDWIN, NEDOCS and READI), 

which are metrics used to quantify crowding to anticipate imminent crowding 

problems. The formulas variously capture aspects of patient severity; capacity in 

terms of number of doctors, ED trolleys and in-patient beds; wait times and 

arrivals; and service rate. While crowding scores can predict ‘impending 

crowdedness’, they cannot predict patient flow, making planning beyond the 

immediate short-term difficult. Managing patient demand at source is an 

alternative approach to coping with variable demand/capacity mismatch where 

capacity is fixed, operational targets are unyielding, and there are potential 

threats to patient safety as the adaptive response cannot compensate indefinitely 

or completely. 

 Demand and demand management in ED 

The Kings Fund (2010) identified a number of ways that emergency demand can 

be reduced through demand management, such as pro-actively managing those 

at greatest risk of admission through risk stratification; redesigning primary and 

community care including integrating health and social care; and giving 

ambulance services more clinical responsibility. While these are aimed at 

reducing emergency admissions, for those with minor conditions, efforts have 

been made to empower self-care and pharmacy advice; social marketing 

campaigns have been used to encourage more appropriate use of EDs; there 

has been a mandated increase in GP numbers and access; and hospitals have 

been funded to stream people away from ED to more appropriate facilities. 

However, the evidence supporting most of the above approaches remains limited 

(Lee et al., 2013; Care Quality Commission, 2018).  

Understanding factors which influence demand is important for managing 

demand. A significant amount of research has been undertaken to explore the 

characteristics of patients with low-urgency conditions who attend urgent or 

emergency care services.  A report commissioned by the BMA and NIHR (Mason 

et al., 2017) investigated reasons for non-urgent ED attendance longitudinally 

from 1997, 2006 and 2016. They found an increasing unwillingness or inability of 

patients to manage their own risk, and an increasing perception that health 

problems are serious, with a desire for rapid reassurance. Fitzgerald et al. (2015) 

also found that the main reason for attending ED is perceived severity of illness, 
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followed by lack of knowledge of alternatives, and that roughly a third of attendees 

are referred by another health professional. Mason et al. (2017) similarly found 

that an increasing number of patients are referred to ED from other healthcare 

providers, which they attributed to risk aversion.  They also found an increased 

awareness of other services but confusion or reluctance to use these services, 

perhaps due to lack of knowledge about which clinical problems can be treated 

where.   

A systematic review by Liscott (2016) found a high number of diverse and 

complex contributors to avoidable ED attendance in the UK. In common with the 

work of Mason et al. (2017) they found that perception of illness was a significant 

factor to avoidable ED attendance, related to lack of knowledge/education, and 

decision-making anxiety resulting in risk-averse decisions (Booker, Simmons & 

Purdy, 2014).  Interpersonal factors were found to be a significant influence, with 

carers and relatives influencing a reduced tolerance for risk both for ED 

attendance and for self-management. In a report for the DoH, Rowe et al. (2015) 

found that parents of children aged under five years are risk averse, and will 

attend ED to be cautious.  However their perceptions of what is available to them, 

and how appropriate these services are perceived to be is key to influencing their 

decision to attend ED. Banks (2010) reported that treatment-seeking behaviour 

is repetitive and reinforcing, such that while a large percentage of  patients with 

minor ailments will self-manage, past experience will influence attendance 

behaviour. In Liscott’s (2016) review, demographic factors showed mixed 

evidence, most likely interacting with other health and social variables, while 

socioeconomic evidence tends to point to social deprivation contributing to 

increased use of emergency services. Perceived lack of access to community 

services and GPs were a contributory factor, particularly out-of-hours. The Keogh 

Review for NHS England (Keogh, 2013) and Turner et al. (2013) suggested that 

supplier-induced demand may be a problem where access to multiple services is 

good.  Several studies suggested that perceived ease-of-access and 24-hour 

service in ED may be a contributor to inappropriate use, particularly where access 

is perceived to be poor in alternative centres (Patton & Thokore, 2012; Smith & 

McNally, 2014). However Agarwal et al. (2011) found that confusion over 

alternatives may be a main contributor to inappropriate use of services. 

Recognising that the public find the range of alternatives to be confusing – Minor 
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Injury Units, Walk-in Centres, Urgent Care Centres – NHS England (2020a) 

announced the introduction of standardised Urgent Treatment Centres (UTC) by 

the end of 2020 as an attempt to simplify the options so that ED is not the default 

choice, aiming to reduce ED demand at source by providing a single alternative.  

Thus, demand management can take two forms. Firstly, patients can be provided 

with knowledge that can support decisions about the most appropriate place to 

attend through education and social marketing, or based on the provision of new 

information such as current wait times (e.g. Mustafee et al. 2017b). However 

whether this information supports decision-making, and if so, in which patients, 

is unknown.  Secondly, demand management can take the form of redirecting 

appropriate patients to alternative services as queues become unmanageable. 

Xu and Chan (2016) found through analytical investigation that proactive patient 

diversion using demand predictions could outperform diversion based on real-

time information alone. This is an example of data-analytic decision-support, 

which extends traditional Business Intelligence or descriptive analytics to 

potentially offer further insights from the data using predictive analytics 

(Mustafee, Powell & Harper, 2018). The role of analytics in organisational 

decision-making will be explored in more detail in Section 2.5. The next section 

examines organisational decision-making, and the role of situation awareness 

(SA) - a constantly evolving understanding of the state of the environment - which 

drives decision-making and performance in complex systems. The theory of SA 

will inform the development of the implementation framework in Chapter 4.  

 Organisational Decision Making  

 Knowledge as value  

Decision-making refers to making choices among alternative courses of action, 

and individuals throughout organisations use the information available to them to 

make a wide range of decisions at different levels. Strategic decisions set the 

course of an organisation over the long-term, tactical decisions determine how 

things will get done in the medium-term, while operational decisions are made in 

the short-term to keep operations running day-by-day and hour-by-hour. In 

complex systems, operational decision-making can be complicated by 

uncertainty, yet many decisions are critical to the success of an organisation’s 

strategy.  
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The goal of simulation and other analytic applications is to provide decision-

support for enhancing organisational performance through the analysis of data 

(Davenport et al., 2007; Evans et al., 2012). A commonly cited linear model of 

data analytics describes the transformation of data into information, information 

into knowledge, and knowledge into value (e.g. Davenport, Harris, DeLong & 

Jacobson, 2001; Acito & Khatri, 2014; Kuiler, 2014; Sato & Huang, 2015; Wang 

& Hajli, 2017). It is commonly accepted that information has no value until it is 

assessed and interpreted alongside existing knowledge, either tacit or explicit 

(e.g. Rasmussen & Ulrich, 2015). Explicit knowledge can be specified into formal 

rules and procedures, while tacit (or implicit) knowledge is associated with 

experience and expertise (Loebbecke, van Fenema & Powell, 2016).  

Knowledge is variously defined as: the understanding gained from the analysis 

of information (Kuiler, 2014); the processing of information in the mind of an 

individual (Huber, 1991); and information combined with experience, context, 

interpretation, and reflection (Albert & Bradley, 1997). Alavi and Leidner’s (1999) 

definition of knowledge is more specific: ‘Knowledge is a justified personal belief 

that increases an individual’s capacity to take effective action’, however Connell 

et al. (2003) argued that such a personalised view of knowledge ignores the 

systemic context within which the knowledge is defined. A knowledge 

management approach, where knowledge is viewed as a systemic property of 

the organisational system to which it belongs rather than within the individual, 

supports a sociotechnical perspective. Here, the system can be viewed as a 

whole, with information held by people, artefacts, and their interactions (Stanton, 

Salmon & Walker, 2015).  Boisot and Canals (2004) saw data, information and 

knowledge as possessing specific types of utility: data utility in that it can carry 

information about the physical world; information utility in that it can modify an 

expectation or state of knowledge; and knowledge utility in that it allows an agent 

to act in an adaptive way upon and within the physical world. Once enough 

awareness of the situation has been gained, a match between past experience 

and knowledge about the current situation can be sought to determine the 

appropriate course of action (Salas et al., 2010).  

Correspondingly, Sharma et al (2014) argued that to capture the value that 

analytic activities can have on organisational performance, more attention needs 

to be paid to the organisational and behavioural aspects of decision-making. An 
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example of this is how simulation or other forms of data analysis can work 

together with human sensemaking – the creation of mental models - to improve 

the generation of knowledge (e.g. Jolaoso et al., 2015). Dreyfus (1981) examined 

the intuitive thought processes of management decision-making, and established 

inherent limitations on simulation modelling. He found that the most critical factor 

in successful decision-making is the extent of the decision-makers’ familiarity 

with, and situational understanding of, the problem situation. However fast, 

intuitive decision-making or slow, deliberative decision-making may take place in 

response to new insights, understanding or knowledge (Kahneman & Frederick, 

2005). It is generally agreed that expertise increases the use of automatic 

decision-making; however some researchers have argued that objective 

accuracy of expert decisions are low overall, with better decisions unrelated to 

length of experience (Ericsson, 2007; Moxley et al., 2012). This suggests that 

even for experts, new information may support fast or automatic decisions, 

particularly where decisions need to be made in the short-term.  In the study of 

Naturalistic Decision Making, defined as ‘the way people use their experience to 

make decisions in field settings’ (Zsambok & Klein, 2014) one influential position 

aligned with organisational decision-making is that of Beach (1997). He stated 

that values and beliefs, specific organisational and individual goals, and 

operational plans for reaching the goals, will guide and limit decision–making. 

This merges goal-orientated individual behaviour with the decisions and goals of 

other organisational stakeholders. Organisational decision-making is often 

challenged by shifting or competing goals and uncertain, dynamic environments. 

Other factors relevant to ED include ambiguity, a longitudinal context, incentives, 

repeated decisions and conflict (Gore et al., 2006). Naturalistic Decision Making 

is concerned with how people make decisions in complex, real world, uncertain 

contexts that can require real-time decisions in urgent situations with significant 

implications for errors. In decision-situations that have low immediate feedback, 

more information may be required to gain understanding. Analytics, including 

real-time data and visualisations, can have an important role in contributing to 

awareness of the current state of a situation by updating users’ immediate 

knowledge and experience to make fast decisions that can inform adaptive action 

(Riveiro, Flakman & Ziemke, 2008). This is achieved by enhancing situation 

awareness, a knowledge state which is considered to be essential for decision-
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making and performance (Endsley, 2016).  This will be explored further in the 

following subsections with a view to understanding how it might explain the need 

for short-term decision-support, contribute to system performance, and its role in 

evaluating the success of a simulation study for short-term decision support. 

 Situation Awareness in sociotechnical systems 

Situation awareness (SA) is a concept in cognitive psychology and human factors 

which describes the degree to which a decision-maker is aware of events and 

elements in their environment, both spatially and temporally, and the effect of 

actions on goals and objectives now and in the future. Endsley (2016) and 

Endsley and Garland (2000) described it succinctly as ‘knowing what is going on 

around you’, and more expansively as the ‘perception of the elements of the 

environment within a volume of time and space, the comprehension of their 

meaning, and the projection of their status in the near future’ (Endsley, 1995). It 

is usually most relevant in a highly dynamic environment (Chiappe et al., 2015). 

SA provides the primary basis for subsequent decision-making and Endsley 

(2000) stressed that it is a state of knowledge, not the processes used to achieve 

that knowledge. This is in contrast to the concept of sensemaking, which has 

been defined as ‘how people make sense out of their experience in the world’, 

and is sometimes considered synonymous with the process of creating a mental 

model (Weick, 1995; Brock et al., 2008; Weick, Sutcliffe & Obstfeld, 2016). Both 

sensemaking and mental models are forms of situational assessment, which is a 

necessary step toward SA. Klein, Moon and Hoffman (2006a) differentiated 

sensemaking from SA in that SA is about the state of knowledge which is 

achieved through data, inferences or predictions, while sensemaking is the 

process of achieving this knowledge.  

SA is an important constituent in decision-making processes (Endsley, 2000; 

Nguyen et al., 2018), and gaining understanding through interpretation is an 

essential activity for managers (Dreyfus, 1981). Individual SA is an operator’s 

understanding of ‘what is going on’ while interacting with a complex, dynamic 

system. It occurs at three levels: the perception of elements in the environment, 

comprehension of their meaning, and the projection of their status into the near 

future (Endsley, 1995).  These can be mapped onto the definition of system 

resilience discussed in Section 2.3.4, which sees safety as a process consisting 

of: knowledge about what to expect (anticipation); competence in knowing what 
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to look for (attention); and knowing what to do and the resources to do it (rational 

response) (Hollnagel, 2009; 2011a). Theories and models of SA have been 

studied in a wide range of domains and organisational levels (e.g. Stanton et al., 

2017), and are considered to be an important part of system resilience. 

Endsley’s (1995) influential theoretical model of SA based on its role in dynamic 

decision-making explored the relationship between SA and a variety of individual 

and environmental factors, including attention and available memory. 

Environmental limiting factors to SA include workload, stress, system complexity 

and environmental stressors, in particular, the effects of these factors on the 

ability to process information and make effective and timely decisions. Stress and 

anxiety reduce the capacity of available memory, such that individuals may be 

more likely to rely on external sources of information than internal memory 

storage. This impacts both on the decision itself, and the ability to adopt an 

effective decision-making strategy (Chiappe et al., 2012). Further, Endsley (1995) 

proposed that performance will be impeded where SA is incomplete or 

inaccurate. The competing demands of tasks for attention can exceed the 

operator’s limited resources (e.g. Riveiro et al., 2008; DeWinter, Happee, Martens 

& Stanton, 2014). However, some researchers have suggested that given the 

increasing complexity of sociotechnical systems, the study of individual 

information processing is no longer relevant (Salmon et al., 2010; Chiappe, 

Strybel & Vu, 2012; Stanton et al., 2015; Stanton, 2016). Hence in in the last few 

decades, the focus of research has shifted from the unit of the individual, to that 

of whole systems (Stanton et al., 2006; Stanton, Salmon & Walker, 2015; Stanton 

et al., 2017).  

Sociotechnical systems (STS) describe a combination of people and technical 

elements that interact in such a way as to support organisational activities and 

goals. The centre of STS are teams and team working, where multiple 

stakeholders with different goals are governed by organisational policies, rules, 

cultures, and regulatory policies. The technical elements are part of the STS and 

are considered important constraints and enablers of behaviour, while the system 

components interact with complex, non-linear and non-deterministic behaviours 

(Stanton et al., 2017). Distributed SA (DSA) views SA through a systems 

perspective, rather than a cognitive psychology lens, such that the whole system 

holds information, and humans within it can compensate and adapt for each other 
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to maintain safe operation. This expanded definition of DSA is thus ‘the shared 

understanding of a situation among team members at one point in time’ (Salas et 

al., 1995; Stanton et al., 2017). Stanton et al. (2015) argued that either humans 

or technology can own this information, however the right information must be 

activated and passed to the right agent at the right time. Viewing a system 

through a STS lens, with a focus on the needs of the users of the system, 

supports effective performance, for example by paying attention to what type of 

information is needed to support system goals (Jones, 2015). This is relevant 

when designing decision-support tools, as the impact on the wider system needs 

to be understood.  

 Understanding the relationship between SA, workload and performance 

Operators exert effort in a variety of ways. Physical effort is easy to conceptualise 

and measure, but mental effort is more conceptual, though both mediate between 

workload and performance (Hart & Staveland, 1988). Mental workload has been 

defined by Parasuraman et al. (2008, pp 145-146) as ‘the relationship between 

the function relating the mental resources demanded by a task and those 

resources available to be supplied by the human operator’, and by Hart and 

Staveland (1988, p2) as ‘a hypothetical construct that represents the costs 

incurred by a human operator to achieve a particular level of performance’. 

Workload imposed upon an operator results from the task objectives, duration 

and structure, as well as the available resources, and may be modified by a range 

of individual and environmental factors. While there are many parallels between 

workload and performance, as task load increases workload will increase but 

performance can remain stable as a result of a range of adaptive strategies to 

maintain performance under increasing task load (Parasuraman & Hancock, 

2001). However, at some point sustained high workload may prevent the operator 

from responding effectively to an unexpected increase in task load demand.   

Performance is the degree of success in meeting task requirements as a result 

of the adoption of different strategies or different levels of effort (Hart & Staveland, 

198). SA differs from performance in that it represents a continuous diagnosis of 

the system state, and is value-free, while performance results from a decision 

about which actions to take as a result of this diagnosis (Parasuramen et al., 

2008).  Many studies have demonstrated how the concepts of workload, SA and 

performance relate to each other at the individual level. In general, workload is 
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seen to have a negative effect on SA which is positively correlated with 

performance (e.g. Nählinder & Berggren, 2002; Svensson & Wilson, 2002; 

Nählinder, Berggren & Svensson, 2004; Kiani et al., 2015; Naderpour, Lu & 

Zhang, 2016). Additionally, workload has a negative effect on both teamwork and 

SA (Berggren, Prytz, Johansson & Nählinder, 2011). In other words, task 

demands increase mental workload, which has a negative effect on SA, and in 

turn a negative effect on performance. For system design, these distinctions are 

important, as designs which support or improve task performance are different to 

those which support SA.  As the cognitive nature of tasks asked of workers 

increases, and operational targets makes controlling task-load demand difficult, 

the understanding of SA in sociotechnical systems is becoming particularly 

important. An increasing interest in SA in healthcare reflects this, as an 

understanding that decision-making under cognitively difficult situations has a 

direct impact on patient and system safety. 

 Situation awareness in healthcare 

SA has been identified as an important non-technical skill in healthcare clinical 

practice, and is the focus of a large body of research (e.g. Schulz et al., 2013; 

Wright & Endsley, 2017). Being able to perceive and comprehend a patient or 

system state, and make projections about the expected future development is 

crucial for safety. Healthcare processes operate using teams, and where the 

context is time-pressured and high-risk, distributed SA becomes more important. 

For example in operating theatres, where all members of an operating team need 

to share understanding of the current state and respond appropriately, this is 

critical (Fioratou et al., 2010; Schulz et al., 2013; Gillespie et al., 2013). A major 

portion of the job of a healthcare provider involves developing SA and keeping it 

up to date in a rapidly changing environment. Within a healthcare team, 

successful performance requires that team members maintain individual SA as 

well as shared SA. Specifically, shared SA requires team members to have an 

understanding of the type of information needed by others, knowledge of the 

devices used to distribute SA  (e.g. visual dashboards), shared team processes 

to facilitate sharing of relevant information (e.g. communication, coordination, 

cooperation), and shared mechanisms such as a shared mental model.  

SA can contribute to system resilience by supporting anticipation and attention, 

and informing adaptive action. In healthcare, escalation policies, which specify 
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thresholds for increasing operational pressure, and responses to maintain patient 

flow, are the major codified organisational response for maintaining ED 

resilience. The effectiveness of ED escalation policies was investigated 

longitudinally by Back et al. (2017) using a mixed-method study. The aim of 

escalation policies are to increase capacity, reduce demand or increase 

efficiency through response predictability across staff, however the study found 

that in practice, escalation actions differed from those in policy. They found many 

examples of successful staff adaptive behaviour, such as pre-empting the need 

for escalation, using efficient practices to expedite patient flow, and flexing staff 

to areas in the department under pressure that were not specified in policy. 

Successful adaptive practice requires the ability to maintain awareness of the 

state of the wider system, and a delicate balance between continuing clinical work 

and interrupting workflow to perform planning activities (Back et al., 2017). It is 

critical to both staff morale/satisfaction (Kosnik, 2013; Johnston et al., 2016) and 

patient safety (Kosnik, 2013; Back et al., 2017).  

Levin et al. (2012) stated that although direct links have not been established, 

there is growing evidence of a relationship between ED crowding and patient 

safety. This occurs when the system decompensates, that is, exhausts its 

capacity to adapt. Staff manage pressures by making in situ adaptations and goal 

trade-offs toward safe, quality outcomes, but this requires awareness of the 

situation to respond in an appropriate and timely way. Levin et al. (2012) 

investigated factors which interfered with SA in an emergency department and 

found that the number of patients managed (i.e. high taskload) contributed most 

to a reduction in SA and its potential effects on patient safety (i.e. performance). 

After the response mechanism is exhausted, the controlled parameter suddenly 

collapses or decompensates (Woods & Branlat, 2011).  

Information technology (IT) has been implemented in health care environments, 

often as a replacement for paper-based or other manual tools for improving SA. 

One example of this is the replacement of large dry-erase boards, used in ED for 

tracking patient locations and clinical care, with real-time patient-tracking 

systems. The design of these systems has important implications for aspects of 

ED work, including changes to workload and SA of staff (Chahal et al., 2009; 

Pennathur et al., 2011; McGeorge et al., 2015). Such tools need to be 

implemented with care, as unanticipated effects can result from the type or 
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presentation of information, including technology-induced errors (Peute et al., 

2013; McGeorge et al., 2015). Similarly, IT systems that provide ambiguous 

information can actually reduce human decision quality and speed (Endsley, 

2016). As a result, research on health IT design and evaluation has provided 

insights into factors contributing to successful system design, safety-critical 

aspects, system user-friendliness and usability issues. The majority of these 

systems compose dashboards displaying data and visualisations, which may be 

in real-time or near real-time. Real-time applications in healthcare have been 

used in health monitoring systems using physiological sensors on patients 

(Simpao et al., 2014; Wan et al., 2013); clinical decision-support (Mane et al., 

2012), and dashboards for operational performance monitoring and compliance 

(Simpao et al., 2014; Weiner et al., 2016). It is increasingly necessary for 

healthcare organizations to improve performance by creating a data-driven 

decision-making culture, and to facilitate transparency and accountability.  

However healthcare IT applications focus on supporting evidence-based 

decision-making by healthcare service providers and managers (Spruit, Vroon & 

Batenburg, 2014; Simpao et al., 2014; Kao et al., 2016), while patient decisions, 

as end-users and an integral part of the system, tend not to be considered. 

 Data Analytics  

Healthcare presents challenges when designing relevant decision-support 

processes.  While Data Analytics (DA) is playing an important role in improving 

the delivery of healthcare services (de la Torre Diez et al., 2016), it is arguably 

not yet being fully exploited for enhanced effectiveness and efficiency of delivery 

(Wang & Hajli, 2017, 2019; Mehta et al., 2019). The most rapidly growing 

application of DA in healthcare is clinical decision-support, for example disease 

progression models, adverse drug events and risk prediction analytics 

(Raghupathi & Raghupathi, 2013; Tomar & Agarwal 2013; Jothi et al., 2015; 

Sukanya et al., 2017; Galetsi & Katsaliaki, 2019a, b; Mehta et al., 2019). For 

example, Mehta et al. (2019) analysed 2421 articles from 2013-2019, where 61% 

of papers focused on clinical applications, and 17% had an organisational focus. 

However the opportunities arising from data analytics for organisational benefits 

are considered to be far-reaching (Günther et al., 2017). 



58 
 
 

 Defining Analytics for healthcare 

Definitions of analytics vary, although while there are different perceptions about 

the nature and scope of analytics, there is a general agreement that it involves 

data-driven decision-making (Holsapple et al., 2014; Delen & Zolbanin, 2018). A 

commonly used definition is that given by Davenport and Harris (2007, p. 7): 

‘..the extensive use of data, statistical and quantitative analysis, explanatory and 

predictive models, and fact-based management to drive decisions and actions’.  

While this definition seems broad, it was explicitly positioned within the business 

domain, with the goal of enhancing profit, market share and customer loyalty 

(Davenport & Harris, 2007).  However DA can be used in any domain, for varying 

outcomes, while business analytics, indicating the domain of application, has 

been applied to organisational or operational outcomes such as improving patient 

flow and capacity-planning. These outcomes are often more relevant for 

healthcare than financial performance or customer retention, hence the above 

definition of DA, with its broad characterisation within the business domain, is 

adopted for this thesis.   

The rationale for using DA in business to support decision-making overlaps 

considerably with the rationale for using OR in business domains (Evans, 2012; 

Hersh, 2014; Ranyard et al., 2015).  For example, INFORMS define OR as ‘the 

application of scientific and mathematical methods to the study and analysis of 

problems involving complex systems’ and BA as ‘the scientific process of 

transforming data into insight for making better decisions’ (Robinson et al, 2010).  

However despite maintaining its position as a separate discipline, DA and its 

methods are no longer viewed as distinct for the OR community.  Likewise, data 

analysts are adopting methods and techniques more traditionally viewed as OR 

tools such as simulation, particularly in the analysis of complex systems (Haas et 

al., 2011, Marshall et al., 2016). Indeed, Galetsi and Katsaliaki (2019a) defined 

analytics for healthcare as combining Information Systems, OR and statistics. 

Similarly, Holsapple et al. (2014) took a more general perspective, offering a 

rationale for the application of DA as gaining value from “supporting knowledge 

acquisition, insight generation, problem finding, and problem solving to assist 

decision-making”, using a range of techniques in situations that may be either 

well-structured or complex and messy. This complexity increases where there is 
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rapid change, either internally or externally, and flexible solutions are required 

(Delen & Demirkan, 2013).  The current interest in DA and its wide range of 

applications reflects the complex situations that organisations such as healthcare 

find themselves in, however it is also driven by advances in technology which 

allows data to be generated and collected quickly and efficiently.  

The term Big Data describes large, heterogenous digital data that has been 

defined according to the 3V model - Volume, Velocity and Variety (Sagiroglu & 

Sinac, 2013; Katal, Wazid & Goudar, 2013; Larson & Chang, 2016; Marshall et 

al., 2016) with more recent additional descriptors Veracity and Value (Shao, Shin 

& Jain, 2014; Najafabadi & Villanustre, 2015; Sanjay & Alamma, 2016). 

Healthcare data exhibits all of these characteristics. Volume refers to the size of 

the datasets, which can enlarge rapidly; Velocity refers to the generation of data 

in real or near real-time, such that data collection and analysis must be performed 

at a much faster rate to maximise value from it; Variety deals with the various 

types of data, from structured to unstructured; Value refers to the trade-off 

between the costs associated with generating, collecting and analysing data, and 

the potential value of that data as a commodity or for providing competitive 

advantage; Veracity refers to data accuracy, and automated methods of checking 

for this (Sanjay & Alamma, 2016). Healthcare analytics publications have 

proliferated in the last five years (Galetsi & Katsaliaki, 2019a), as the value in the 

portability and interconnectivity of data is increasingly realised (Günther et al., 

2017). However as the volume of healthcare data continues to multiply globally, 

the benefits and value created by DA in healthcare remains relatively unexplored, 

opening up the opportunity to focus on tools and applications used for the 

analysis of healthcare data, along with the barriers to their extensive use. 

One difficulty is determining how to measure the outcome to define what value 

has been achieved. Mustafee et al. (2017b) suggested that this can sometimes 

be based on judgement rather than any statistical or scientific measurements, 

which may result in additional challenges that need to be managed. Additionally, 

the culture of health can challenge change based on data; senior management 

support and involvement are critical to success (Koster, Stewart & Kolker, 2016; 

Kao et al., 2016; Chen et al., 2020). How organisations facilitate the interests of 

different stakeholders, secure stakeholder interests at the work-practice level, 

and understand in which contexts different stakeholders succeed or fail to gain 
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value from data are topics which have remained unexplored in research (Günther 

et al., 2017).  Further, hybrid predictive and prescriptive approaches potentially 

bring their own challenges, in particular around validation of the models, real-

world implementation, and evaluating the effects of implementation in a clinical 

setting (Janke et al., 2016).  

Nonetheless, analytics can reduce subjectivity in decision-making (Sharma et al., 

2014), and benefits have been demonstrated in healthcare (de la Torre Diez et 

al., 2016; Salleh et al., 2017).  The most widely used functional categorisation for 

DA loosely groups techniques as descriptive (what happened?); diagnostic (why 

has it happened?); predictive (what is likely to happen?); and prescriptive (what 

should be done about it?) (e.g. Raghupathi & Raghupathi, 2013; Khalifa & Zabani, 

2016). These categorisations are generally considered to be hierarchical (e.g. 

Kiron et al., 2012), such that descriptive techniques present historical information 

in real-time, standard or ad hoc reports, queries and alerts to answer questions 

around what happened, where it happened and what actions may be needed.  

Diagnostic, predictive and prescriptive techniques support questions about why 

an event occurred, what will happen next and what is the best that can happen, 

potentially providing a higher level of insight and intelligence.  

 Positioning Analytics for OR 

While the functional categories of quantitative techniques described above are 

widely used, it is increasingly considered advantageous to include qualitative 

methods in the analytics toolbox, with a view to maximising the value that can be 

gained from an analytics approach. For example, from the perspective of Supply 

Chain Management (SCM), Waller and Fawcett (2013) defined analytics as ‘the 

application of quantitative and qualitative methods from a variety of disciplines in 

combination with SCM theory to solve relevant SCM problems and predict 

outcomes, taking into account data quality and availability issues’. Similarly, in 

Human Resources, Rasmussen and Ulrich (2015) contended that analytics is not 

about data per se, but about data for informed decision-making. This means 

defining the problem, having the right data – which could be qualitative or 

quantitative - asking the right questions, and interpreting the results and 

implications the right way. They further emphasised that to gain impact from data 

requires a focus on intervention and change. This is easier if the analytics 

approach ‘includes qualitative data, intuition, experience and — most of all — if it 
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works on co-creating a coherent story with key stakeholders’ (Rasumussen & 

Ulrich, 2015, p 239). Similarly, Holsapple et al. (2014) argued that analytics is far 

more than quantitative methods, as the real world is full of messy problems which 

have qualitative aspects.  

From an OR standpoint, Mortenson et al. (2015) conceptualised DA through a 

historical perspective, suggesting a research agenda incorporating DA methods 

such as unstructured approaches, real-time analytics and other methods, that is, 

engaging with the surrounding ecosystem such that the most relevant methods 

are used to solve any specific problem. Many OR methods have been developed 

to deal with these problems, for example as summarised by Mingers (2011). 

These are particularly useful where decision problems are unstructured, and 

often more than one method is required to fully capture a problem situation.   

Data quality and analytics capability are increasingly understood to provide 

organisational advantage, including in healthcare (Chae et al., 2014), and data-

driven decision-making is rapidly gaining traction in the healthcare domain 

(Batarseh & Latif, 2016; de la Torre Diez et al, 2016; Galetsi & Katsaliaki 

2019a,b,c).  It is therefore of interest to understand how DA approaches might 

enhance simulation studies for operational decision-support.  

 Modelling and Simulation in healthcare 

 Simulation Methods  

Modelling and simulation (M&S) describes the use of a simplified, typically 

dynamic representation of a real or proposed system, often accompanied by an 

animation to facilitate visualisation, communication and decision-making. The 

purpose of M&S is to provide insight and understanding into the physical 

processes of a system. Potential changes to the system can first be simulated to 

predict their impact on system performance (Fishwick, 1995), and the knowledge 

gained may be of great value toward suggesting improvements in the system 

under investigation (Banks et al., 2001). These systems analysis tools are usually 

developed in response to a specifically identified problem, and running the 

simulation provides information about the interactions of the system over time. 

This allows for exploration of the consequences of different decision scenarios 

through experimentation with the model using ‘what-if scenarios’, rather than 

experimenting with the real system, which may be costly or unsafe (Chahal, 
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Eldabi & Young, 2013). Simulation modelling is appropriate for finding solutions 

in complex systems such as healthcare, where there can be a large number of 

parameters, behaviour is non-linear such that cause-effect relationships can be 

difficult to establish, and variability is important.  It can capture complex system 

behaviours, and is considered a powerful and cost-effective set of methods for 

quality and performance improvement in healthcare, to understand how complex 

systems operate and meet operational targets, and how they can be improved 

(Katsaliaki & Mustafee, 2011; Gul & Guneri, 2015; Brailsford, Carter & Jacobson, 

2017). This makes it a suitable set of methods for planning, research, education 

and decision-support.  

The most commonly used modelling and simulation (M&S) methods in OR are 

Discrete-event simulation (DES), System Dynamics (SD), Agent-based 

simulation (ABS) and Monte-Carlo simulation (MCS) (Katsaliaki & Mustafee, 

2011). DES started in manufacturing, and has evolved toward much broader 

applications. It models queuing systems over time, by representing entities, which 

flow through a network of queues and servers, with resources shared by the 

servers. DES is particularly suitable for modelling healthcare systems, as it can 

account for stochasticity, while entities in the simulation can specify patients with 

varying characteristics. It is useful in highly stochastic settings where the visual 

interface may be important (Seila & Brailsford, 2009). In particular, any system 

that involves the flow of objects naturally lends itself to DES modelling. However 

other modelling approaches have been successfully applied in healthcare, which 

also features ‘dynamic complexity’, where SD is an ideal approach for this 

(Brailsford et al., 2017). The underlying principle of DES is that changes to the 

system over time are due to the variability within and adjacent to the system being 

modelled, while the principles of SD are that the structure of the system is 

responsible for its changes over time (Morecroft & Robinson, 2006).  SD is an 

analytical modelling method which combines qualitative and quantitative 

elements. In SD, the problem is defined dynamically, and the structure of the 

system is conceptualised as non-linear behaviour using stocks and flows, internal 

feedback loops and time delays. It is particularly useful for modelling strategic-

level problems, such as policy implications, and has been used for modelling 

emergency care systems (Lane, Monefield & Rosenhead, 2000; Lattimer et al., 

2004; Kang et al., 2014) and healthcare more widely (Brailsford, 2008; Lyons & 
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Duggan, 2015; Rashwan, Abo-Hamad & Arisha, 2015). While SD explicitly 

accounts for qualitative features of a system, ABS takes the agent perspective 

when viewing any system. Modelling the agent, its behaviours and interactions 

with other agents and the environment can produce a more accurate 

representation of the world (Macal, 2016). However challenges include 

calibration and validation, particularly due to the complexity of ABS models. ABS 

and DES have some features in common, in particular the ability to model 

complex, non-linear states, to deal with stochasticity and to model individual 

patients, with the key differences being that ABS can model interactions between 

entities, while DES can model queues (Gul & Guneri, 2015). Where crowding is 

the problem under investigation, DES is an appropriate choice of methodology.   

Simulation modelling, in particular DES has been used extensively in healthcare 

for decades (e.g. Jun et al, 1999; Fone et al., 2003) for a wide array of problems. 

These include designing policies and strategies, implementation and delivery of 

services and targets, monitoring and evaluation, resource allocation, cost-benefit 

analysis, patient flow and risk assessments (Brailsford, Harper, Patel & Pitt, 2009; 

Royston, 2009; Almagooshi, 2015). The body of research in simulation modelling 

in the healthcare domain is vast, and expanding rapidly. This is evidenced by the 

number of reviews of the use of simulation in healthcare, including those by 

Eldabi, Paul and Young (2007), Brailsford et al., (2009), Gunal and Pidd (2010), 

Mustafee et al. (2010),  Katsaliaki and Mustafee (2011), Aboueljinane et al. 

(2013), Bhattacharjee and Ray (2014), Almagooshi (2015), Mohiuddin et al. 

(2017), Salleh et al. (2017),  Palmer et al. (2018) and Salmon et al. (2018), 

amongst others.  Despite a rapid escalation in the successful application of these 

methods in healthcare, challenges continue to exist, which are explored in the 

following sections.  

 Challenges for healthcare simulation modelling 

Simulation, in particular DES, has been used extensively for decision-support in 

healthcare Operations Research (OR) for decades, establishing both successful 

and impressive progress, and a degree of frustration. An early review by England 

and Roberts (1978) examined several hundred healthcare simulation studies 

across a wide array of applications. They found that relatively few of these 

reported significant effects on the healthcare system being studied. Multiple 

reasons were posited for this, including models that failed to capture human 
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system behaviour adequately, and lack of incentive to implement change 

compared with engineering and production applications, where lowering cost and 

maintaining or improving quality is considered a fundamental goal (England & 

Roberts, 1978). In the forty years since this publication, increasing requirements 

in health to lower costs and improve safety, alongside computing and 

technological advancements and a rapid evolution of methods have seen a 

significant and steady rise in simulation studies, which has considerably changed 

the landscape for healthcare simulation applications. However, whilst the results 

of simulation studies are frequently encouraging, reviews continue to report low 

evidence of real-world impact (Brailsford et al., 2009, 2018; Katsaliaki & 

Mustafee, 2011; Jahangirian, 2016).  

Multiple reviews of healthcare simulation have been published in the last decade, 

including the umbrella review by Salleh et al. (2017) who found that of the 37 

healthcare simulation reviews they examined, 30 were published since 2010, 

reflecting the increasing use of the method in healthcare. Yet Royston (2009) and 

more recently Monks (2015) pointed out that OR as a whole does not seem very 

visible to healthcare managers or clinicians, with applications scattered despite 

the potential effectiveness of the methods for improving organisational 

performance.  The evidence for successful implementation in healthcare may be 

more readily available in the grey literature (Brailsford et al., 2009; Van Lent, 

VanBerkel & Van Harten, 2012), however it has also been elaborated that lack of 

implementation of the results of a simulation model do not necessarily equate to 

failure of the study (Ormerod, 2001; Crowe et al., 2017). 

Several authors have addressed the question of what constitutes success or 

failure in a simulation study (Gogi et al., 2016; Jahangirian et al., 2017), with 

temporal, perceptual and contextual factors all contributing to a notion of success.  

The healthcare domain is a particular focus of research for challenges, failures 

and successes in simulation studies. Harper and Pitt (2004), Brailsford (2005), 

Jahangirian et al. (2012), Tako and Robinson (2012), Brailsford et al. (2013) and 

Klein and Young (2015) have all investigated the research and implementation 

challenges of healthcare simulation studies.  Process is usually considered more 

important than content (Robinson, 2002), as OR is a collaborative discipline, and 

modellers engage with stakeholders in the system to define and develop solutions 

to problems (Monks, 2015). For example, five critical success factors proposed 
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by Jahangirian et al. (2017) for evaluating the success of a simulation study 

included communication with stakeholders, competence of the modeller, and 

responsiveness to the needs of stakeholders. Jahangirian et al. further developed 

these factors into a measurable set of KPIs that captures the relationship between 

the modeller, the problem-situation and the stakeholders as a measure of the 

success of the study. It has been argued that simulation studies help stakeholders 

to gain insights into problem-situations, and subsequently to develop effective 

solutions that are not necessarily generated by implementation of the model 

results (e.g. Connell, 2001; Ormerod, 2001; Monks & Meskarian, 2017; Kotiadis 

& Tako, 2018). Gogi et al. (2016) explored the role of DES models in generating 

insights with supporting empirical evidence. Likewise, Connell (2001) presented 

a four-quadrant evaluation of the contribution of the approach and the contribution 

of the outcome, together with ‘gaining insight’ and ‘managing change’. These lend 

support to the proposition that implementation is not necessarily the only measure 

of success, but that the process of conducting the study in collaboration with 

stakeholders can result in successful outcomes. However not all researchers 

agree. Royston (2013) strongly argued the case for OR as a whole to focus on 

implementation of results of OR studies through ‘design thinking’. While 

translating research into real-world results is a concern in all sciences, Royston 

asserts that for OR this is a particularly serious issue given that improvement is 

the goal of the discipline, hence all studies should be thinking about the realities 

of implementation. This requires a focus on synthesis, rather than analysis and a 

solution-focus rather than a problem-focus. Monks (2015) was in broad 

agreement, linking OR with implementation sciences, that is, the study of 

methods to increase the uptake of research findings in healthcare. Ultimately, it 

remains difficult to determine the value of OR interventions, in particular 

simulation, with few published studies evaluating the approach, the 

implementation, or impact. Salmon et al. (2018), in their review of ED M&S 

studies, highlighted a number of papers with a variety of methods that failed to 

follow through to evaluate the benefit of the study, concluding that an 

implementation or evaluation plan should form part of the overall study.  

Outside of the issue of real-world benefit, conducting simulation studies in 

healthcare presents challenges. A qualitative study by Brailsford et al. (2013) 

found that barriers to the uptake of simulation modelling in healthcare included 
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time and capacity issues, lack of senior management and expert support, and 

data and IT issues. For modellers, challenges include gaining buy-in and 

credibility, conflicting political objectives and data issues (Harper & Pitt, 2004). In 

order to build credibility, the relationship between the modeller, key staff and the 

problem situation is considered fundamental. Tako and Robinson (2015) 

surveyed expert modellers and found that simulation modelling in healthcare 

differs to other sectors due to its complexity, the messiness of its problems, 

difficulties with access, political influence, lack of client time and resistance to 

change. They suggested a range of mitigating strategies including developing 

innovative ways of managing projects to account for these barriers, and using 

qualitative methodologies. Eldabi, Paul and Young (2007) also recommended 

qualitative methods to facilitate participation, but suggested that there may be a 

communication gap, in that few modellers really understand healthcare and few 

clinicians or healthcare managers understand simulation. Nonetheless, while 

wide-scale adoption of the approach remains limited, there is a greater demand 

than ever for evidence-based operational change in healthcare (Brailsford et al, 

2017). 

 The future of healthcare simulation modelling   

The scale and scope of ED M&S is enormous, and a recent review of ED 

simulation by Salmon et al. (2018) found that the number of ED articles is 

increasing by approximately 25 papers per year. Due to the stochasticity and 

queue-based structure of healthcare, DES is the most commonly used simulation 

method in ED, and crowding is the most common problem investigated (Gul & 

Guneri, 2015; Mohiuddin et al., 2017).  From early reviews (Jun et al., 1999), it 

was found that many simulation models investigated individual units within multi-

facility hospitals but failed to capture the interaction of major services and the 

analysis of the system as a whole. Salmon et al. (2018) found that simulation 

studies that considered ED as part of a larger system used a greater variety of 

modelling approaches, including hybrid simulation. They contended that more 

effort is required to examine external influences such as downstream constraints, 

including available beds or domiciliary care. While this brings additional 

challenges associated with wider stakeholder engagement, clarity and 

communication of purpose, and project management, it will increase the 

relevance of the study for stakeholders, hence confidence in the solution.  
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Representing and predicting human behaviour is seen as a significant 

unanswered modelling challenge (Taylor et al., 2015), and a renewed interest in 

behavioural OR evidences this (e.g. Franco & Hämäläinen, 2015; 2016). 

Modelling human behaviour provides an ability to avoid abstracting away 

peoples’ differences and increase the accuracy of prediction, particularly where 

behaviour affects output variables to an extent that they require consideration 

(Greasley & Owen, 2018; Wang et al., 2020). Also with a behavioural focus, the 

human and social influences on the process of modelling are of renewed interest, 

in particular the role and impact of these aspects related to the use of M&S to 

support problem-solving and decision-making (Wezel & Winterfeldt, 2016). As 

this can be critical in determining outcomes of an M&S study, Brocklesby (2016), 

amongst others, have argued for reporting accounts of the modelling process that 

provide insights into conditions of success or failure of the study.  In social 

domains such as healthcare, with well-documented barriers to the successful 

implementation of M&S studies, this is a particularly interesting area for research 

given the fundamental concern of OR with human problem-solving and decision-

making in practice. It is widely accepted that effective stakeholder engagement 

influences the outcomes of a modelling study in a social organisation (Long & 

Meadows, 2018) however the healthcare domain in the UK continues to be both 

under pressure, and reactive in its decision-making, increasing the difficulty of 

participatory approaches.   

In a resource-limited environment, planning and effective decision-making 

continues be of critical importance. Data-driven approaches offer potential 

solutions. For example, process mining uncovers process knowledge from the 

analysis of event logs, reducing the time taken in the conceptual modelling stage 

of a DES study, and errors of bias (Abohamad et al. 2017).  Similarly, Abdelbari 

& Shafi (2017) demonstrated how causal loop diagrams for SD conceptual 

models can be effectively learned using a neural network methodology directly 

from system observations. Elbattah and Molloy (2016) used machine learning to 

reduce the uncertainty underlying DES, and realise a higher level of model 

realism. Given historical patient records, machine learning models made 

validated predictions on important outcomes related to patient discharge for every 

patient generated by the simulation model, specifically length of stay and 

destination.  With increasing awareness of the importance of data, advances in 
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computer hardware and software, as well as increasing research focus on the 

use of data to support improvement, efforts lend themselves to more innovative 

uses of simulation methods applied to real-world problems that support system 

insights from data.  These approaches are discussed in more detail in Section 

2.7.5. Greasley and Edwards (2019) recommended multi-disciplinary 

collaborations between OR and data scientists to share expertise, as each field 

brings complementary skills.  

As well as enhancing the scope of simulation using different methods, enhancing 

the modelling approach by integrating theories and knowledge from other 

disciplines can support study outcomes. For example, how to improve or maintain 

health is an important component of the social aspect in the sustainability triple 

bottom line model (Moon, 2017). Increasing demand for services combined with 

financial pressure is a challenge to sustainability in healthcare, which may have 

a spiralling negative effect on society and patient care, and Fakhimi et al. (2015) 

argued that simulation models should explicitly consider this dimension. Dode et 

al. (2016) proposed a methodology to apply Human Factors (HF) principles in 

DES to allow the application of HF early in an engineering design process, before 

operators are put at risk. This takes into account the mechanical and mental 

loading that people are subject to when performing a specific task, showing that 

it is possible to design production systems that are more productive and less 

hazardous for the system operator. They argued that models that fail to include 

human aspects may provide unreliable results in terms of productivity and quality 

estimates, where HF may be a ‘missing link’ in DES by accounting for aspects 

such as cumulative load, psychosocial factors, injury, task unfamiliarity, or 

learning (Perez et al., 2014). The complementary roles of DES and QI 

improvement methodology have been investigated. In healthcare, this has been 

applied in the SimLean methodology (Robinson et al., 2012) based on the 

proposition that the symbiosis of lean and DES approaches has unrealised 

potential. Also in healthcare, Komashie et al. (2015) modelled QI (patient and 

staff satisfaction) using queuing theory.  In a social system consisting of people 

on both the demand and supply sides, it is apparent that there is still work to be 

done in these areas. Finally, Monks (2015) recommended that OR and 

implementation science could be mutually beneficial disciplines in healthcare 

implementation problems. Proposed roles for OR are structuring implementation 
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problems, prospective evaluation of improvement interventions, and strategic 

reconfiguration, while challenges include reaching mutual understanding and the 

lack of evaluation and evidence supporting OR interventions.  Healthcare differs 

from other domains with its permeable boundaries between organisations, and 

multiple levels of funding and compliance demands, hence Long and Meadows 

(2018) recommended exploring models of stakeholder engagement and 

implementation designed specifically for this complex environment. Inter-

disciplinary research with implementation science might be one path toward 

supporting OR in both implementing the results of the work, and addressing 

healthcare problems that represent relevant real-world priorities. 

One relevant real-world problem in healthcare is its rapid operational change, and 

the need to constantly adjust behaviour and activities according to variable and 

rising demand. This is particularly the case in ED, where the pace and 

unpredictability adds a specific challenge for simulation modelling studies.  In the 

age of Industry 4.0, based mainly on the concept of Cyber-Physical Systems, that 

is, the integration of computing, communications and control (Aceto et al., 2020), 

there is an increasing challenge to positively impact the access, efficiency and 

quality of healthcare processes. Industry 4.0 is revolutionising the manufacturing 

sector (Bonci et al., 2016; Rodič, 2017), and in healthcare, the rapid technological 

evolution of Internet of Things (IoT), big data, and cloud computing is beginning 

to have a similar impact (Aceto et al., 2020). The presence of wireless and mobile 

technologies, medical software mobile apps, low-cost wireless sensors, wearable 

IoT, and the technologies designed to extract value from large volumes and a 

wide variety of data has the potential to influence healthcare at many levels. 

However as the world becomes more connected, with increasing dependence on 

machines and simulations to make decisions on our behalf, it is critical that the 

data from sensors, artefacts, and devices is trustworthy and secure. This raises 

concerns regarding privacy, security and trust (Aceto et al., 2020; Onggo et al., 

2020).   

In manufacturing, Gualtar (2018) proposed future research for DES to comply 

with Industry 4.0. Simulation has been mostly used for the development of 

standalone solutions with a limited scope and lifetime, however increasingly 

simulation development is shifting to integrate simulation models into decision-

support tools for recurrent use (Rodič, 2017). One challenge is automated data 
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exchange, in particular receiving data from sensors, machines or other data 

acquisition systems, and integrating it into the simulation model. Gualtar (2018) 

outlined a range of approaches, from the use of intermediary artefacts to direct 

integration of the simulation model with the data sources, enabling real-time 

reconfiguration and re-run of the simulation with updated data. A key constituent 

of Industry 4.0 is the ‘digital twin’, a real-time digital representation of a 

manufacturing facility (Rodič, 2017). These representations can be enhanced 

using DES to test scenarios in real-time. DES supports short-term interventions 

in the system by providing insight into complex systems, and the digital twin 

concept has resulted from significant advances both in data collection and M&S, 

resulting in the simulation being a core functionality supporting operational 

performance by direct integration of operational data (Weyer et al., 2016). It 

contains all information that is needed by various stakeholders, but this 

represents a fundamental challenge, requiring digital continuity, real-world 

synchronisation and multi-disciplinarity (Weyer et al., 2016). Additionally, speed 

can be an issue with continuous experimentation, especially for detailed models 

which require updating (Taylor et al., 2019). In the healthcare domain, specific 

challenges exist, as summarised by Jimenez et al. (2020). Cybersecurity of cloud 

computing presents risks including data breaches, challenges in data privacy and 

integrity; IoT challenges include low-speed processors, limited memory, 

compatibility, and security; software challenges include usability and reliability; 

certification and regulatory approval processes for medical devices is an ongoing 

challenge; and security and privacy of interoperable technologies, which could 

include attacks on data, the device, or the institution are all significant risks. For 

these reasons, digital twin research in healthcare will lag that of manufacturing, 

to ensure the status and assurance of system and patient data.  Nonetheless, 

there is increasing research interest in the advantages to real-time simulation for 

short-term decision-support, and a number of researchers have started to 

address the challenges. The next section defines real-time simulation, and 

reviews its use in healthcare.  

  Real-time simulation 

 Introduction  

Simulation-based methods are important tools for decision-support in domains 

such as traffic control, supply chain modelling, manufacturing, and healthcare. 
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While traditional simulation analysis using probability distributions from historic 

data can be used to generate and test scenarios, it can be time-consuming to 

keep it updated and validated for recurrent use. Additionally, using historical data 

means that the model can be inaccurate in the short-term (Bahrani et al., 2013). 

This is particularly a problem in dynamic systems where historical data becomes 

out-of-date (Tavakoli et al., 2008).  

Real-time simulation has been proposed as a solution to the above problems 

(Tavakoli et al., 2008; Turner, 2011; Bahrani et al., 2013) whereby a simulation 

model is integrated with an automated data acquisition system (Uhlemann et al., 

2017). The purpose of the real-time simulation is to serve as a means of 

projecting the development of a situation in an existing system over a short time 

period, supporting short-term operational decisions. It is particularly useful for 

dynamic, goal-directed decisions in systems that continuously make decisions in 

real-time (Dalal et al., 2003). The real-time simulation is initialised and driven by 

real-time or near real-time data. This data links the information system with the 

simulation model, to provide actual performance, and can add flexibility to the 

monitoring of operational systems (Altaf et al, 2016).  It requires both a validated 

simulation model of the physical system and real-time inputs. Subsequently, the 

model and its multiple runs must be completed in a short time-frame in order to 

be used in ensuing decision-making processes (Hanisch, 2005). 

 Defining real-time simulation 

The execution of real-time simulation has been in use in manufacturing systems 

for decades, with Annan and Banks (1992) describing one of the earliest unifying 

frameworks for connecting the real-world system and the control system, termed 

‘knowledge-based on-line simulation’. They defined 'on-line simulation' as a 

computerised system capable of performing both deterministic and stochastic 

simulations in real- or near real-time, for evaluating alternative control policies on 

a shop-floor. For dynamic scheduling decisions, Rogers and Gordon (1993) 

surveyed the literature on the use of simulation for supporting real-time decision-

making in manufacturing.  For these authors, ‘real-time simulation’ was defined 

as ‘fast enough to be useful’. In the following years, a number of studies 

investigated real-time simulation in the manufacturing domain (e.g. Drake & 

Smith, 1996; Ruiz-Torres & Nakatani, 1998; Lee & Fishwick, 1999; Son & Wysk, 

2001).  In 2002, the Grand Challenges for Modelling and Simulation (Fujimoto et 
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al., 2002) proposed the use of the term ‘symbiotic simulation’ to describe a 

simulation which can dynamically accept and respond to real-time data from the 

physical system to improve the accuracy of the model. This conceptualisation 

emphasised the mutual benefit between the simulation and the physical system, 

such that the execution of the simulation and the real-time interaction with the 

physical system is continuous. Aydt et al. (2008a) subsequently relaxed this 

definition, proposing that symbiotic simulation is “a close association between a 

simulation system and a physical system, which is beneficial to at least one of 

them”.  In a closed-loop symbiotic simulation system there is a control feedback 

from the simulation to the real system. In an open-loop symbiotic simulation 

system there is no such feedback. The term Dynamic Data-Driven Application 

Systems (DDDAS) describes a similar concept, and was used in support of 

emergency medical treatment decisions by Gaynor et al. (2005). However in the 

manufacturing domain, the term ‘symbiotic simulation’ continued to dominate 

(Low et al, 2007; Aydt et al, 2008b; 2009a,b; Fanchao et al., 2009). As computing 

technology has evolved, so have simulation tools. From 2010 onward, there has 

been an increase in the research area of real-time simulation and its various 

challenges. A 2010 review of ‘real-time’ simulation identified applications in power 

generation, automotives, transport, aerospace, and education (Bélanger et al., 

2010). Around the same time, the approach began to be proposed in healthcare 

(Tavakoli, Mousavi & Komashie, 2008; Marmor et al., 2009; Mousavi et al., 2011). 

Onggo (2019) and Onggo et al. (2020) defined real-time simulation as ‘as fast as 

clock time’, and prefer the term ‘symbiotic simulation system’. Although the above 

terms all continue to be in use, for this thesis the term ‘real-time simulation’ is 

used, to describe a validated simulation model which is triggered, and initialised 

using real-time or near real-time data from an ED operational system, for short-

term decision-support. This enables a wider conceptualisation and application of 

the data, including descriptive and predictive analytics, in combination with 

simulation.  

 Real-time Simulation in healthcare 

To date, few healthcare applications of real-time simulation have been published, 

with research into the application of real-time simulation lagging behind that of 

other industries. Tavakoli et al. (2008) proposed a generic framework supporting 

the application of real-time simulation adapted from manufacturing to healthcare, 
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using an existing ED model. As in manufacturing, they proposed that entities 

(patients) required Radio Frequency Identification (RFID) to track their journey. 

Mousavi, Komashie and Tavakoli (2011) developed the Simulation-Based Real-

time Performance Monitoring (SIMMON) framework proposed for continuous 

system QI monitoring and shorter lead times for response and improvement, by 

providing quality measures such as staff satisfaction. Again RFID technology was 

required, and like the framework proposed by Tavakoli et al. (2008), this novel 

approach for timely QI responses remained untested.  The use of RFID for ED 

simulation has yet to be realised, however Espinoza et al. (2014) noted that in 

manufacturing processes, resources are typically stationary, while entities move. 

Here, the use of RFID or other Workflow Management Systems allows easy 

monitoring of the state of resources and the system at any given time. However 

in ED, patients are often stationary while resources are moveable. One practical 

challenge of ED M&S is that of untangling actual patient pathways which loop 

back on themselves and cross department and system boundaries (Young et al., 

2004).  

An alternative to using RFID is to access data directly from data management 

systems, where appropriate data exists. This is significantly limited by the need 

to gain access to the data in real-time, and of ensuring its quality and availability. 

However Espinoza et al. (2014) compared a minimal real-time ED data set in a 

real-time simulation model with an ideal real-time data input scenario, and found 

no significant difference between the two, suggesting that for many decision-

making scenarios, a simple automated data system is useful for representing the 

system state realistically for decision-support. Also using operational data, a DES 

model for real-time estimation of the current operational state of ED, and a short-

term prediction of future states was investigated by Marmor et al. (2009). The 

researchers used real-time simulation to estimate the current operational state, 

and to create short-term predictions regarding future ED states, where the 

estimation and prediction is based on incomplete or even inaccurate data. Six 

patient-type arrivals were inputted into the model in real time, while discharges 

were adjusted according to historical data for each patient-type. Forecasting 

using long-term moving averages was done to predict hourly arrival rates, based 

on the last fifty of the same hour on the same weekday, while service time per 

patient type was estimated. Through a decision-support dashboard, decision-
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makers were able to plan resource allocation for the next several hours to handle 

resource scarcity. This was a comprehensive project that considered both the 

staff and the patient perspective, aiming to provide a real-time estimation of the 

current operational state, and a short-term prediction of future operational states 

for staff planning, yet remained at the pilot stage.   

A real-time simulation prototype using optimisation was proposed by Tan, Tan 

and Lau (2013) to adjust the number of doctors based on current and historical 

information about patient arrival, to enable the ED to better cope with demand 

surges. A similar approach was taken by Bahrani et al. (2013), who investigated 

the real-time impact on wait times of resource allocation scenarios. This prototype 

model requires manual initialisation at runtime, and manual setting of 

experimental scenarios, which include opening beds or adding staff. The 

prevalent scenario for addressing ED crowding is staff rescheduling (e.g. Badri 

and Hollingsworth, 1993; Beaulieu et al., 2000; Sinreich and Jabali, 2007). One 

criticism of this is that despite being formalised in ED escalation polices, tactics 

such as bringing in ward staff to assist or calling in additional doctors from home 

have been found to be either difficult in practice, or to significantly increase staff 

workload through patient handovers and inadequate skill levels (Back et al., 

2017). This emphasises the need to investigate appropriate scenarios for real-

world impact.  

Adra (2016) outlined how real-time simulation can be used for descriptive (real-

time visibility), predictive, and prescriptive purposes. For real-time forecasting of 

ED operating conditions, Hoot et al. (2009) developed and validated a DES 

model, whose purpose was for prediction of a range of operational indicators. An 

advantage to this model is that it has two outputs, one for discharges, and one 

for those waiting to be admitted, accounting for downstream delays in ED which 

contribute to crowding. Onggo (2019) proposed a framework for symbiotic 

simulation that could be used for control, prediction or prescription, in the context 

of Industry 4.0, emphasising real-time or near real-time SA by making use of 

cyber-physical systems and enabling technologies. Its potential application in 

urgent and emergency care was discussed in Onggo et al. (2018). Using a 

modular simulation model and a process analyser tool allowing design-of-

experiments, Augusto, Murgier and Viallon (2018) proposed a prescriptive 

framework for real-time simulation in ED planning. The design-of-experiments 
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features main decisions to take in order to reduce patient length-of-stay and 

service occupancy for the management of the service and the activation, if 

required, of exceptional measures in the event of crisis. This allows managers to 

choose the best decision from a wide range of scenarios to optimise operations.  

Due to the time-critical nature of ED, the majority of the above proposed and 

prototyped studies were situated in the ED domain. Oakley et al. (2020) used a 

real-time (symbiotic) proof-of-concept DES model for hospital bed management 

of elective and emergency patients beyond the ED. They focussed on validation 

and application, and demonstrated the applicability of such an approach to 

support bed planning, using a tranche of hospital operational data. While interest 

in real-time simulation in healthcare continues to rise as the feasibility of 

leveraging data increases, a number of proposed, conceptualised and prototyped 

models have demonstrated the applicability of the approach. However in practice, 

gaining access to healthcare operational data or sensor data in real-time appears 

to be a significant obstacle. Real-time simulation is one example of hybrid 

systems modelling. This is defined and discussed in the next section.  

 Hybrid systems modelling 

 Definition 

Mustafee and Powell (2018) differentiated between Hybrid Simulation (HS) which 

applies two or more simulation techniques at the implementation/model 

development stage of a simulation study, and Hybrid Modelling (HM), which 

combines simulation with methods and techniques from OR or other disciplines 

to any stage of a simulation study.  

Using Minger’s and Brocklesby’s definitions of paradigm, methodology, technique 

and tool, Mustafee and Powell (2018) identified four cases and proposed a 

unifying conceptual representation that categorises these types as Types A, B, C 

and D. (Figure 2.3).   

 Type A (Multi-Methodology Hybrid Simulation) combines continuous and 

discrete simulation methods, and there are numerous examples of studies 

that have combined SD-DES and SD-ABS.  
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 Type B (Multi-Technique Hybrid Simulation) combine discrete methods, 

e.g. DES-ABS or continuous methods e.g. Computational Fluid Dynamics 

Modelling (CFD) with SD.  

 Type C (Multi-Methodology, Multi-Technique Hybrid Simulation) is mix of 

both of the above, e.g. ABS-DES-SD.  

 Type D (Hybrid Systems Model) combines a simulation method with either 

a quantitative method such as optimisation or machine learning, or a 

qualitative method (Type D1: Multi-Paradigm Hybrid Systems Model).  

 

Models of Type D and Type D.1 specifically refer to HMs applied to both 

quantitative and qualitative OR. 

 

Figure 2-3 Unifying HS-HM Conceptual Representation using Classification of Hybrid Simulation (Types A-
D) with examples. Adapted from Mustafee & Powell, 2018 

 

A modelling and simulation (M&S) study consists of several stages, and a hybrid 

M&S study applies HM to one or more stages of an M&S study. Figure 2.4, taken 

from Powell & Mustafee, (2016), depicts four simulation methods that are 
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frequently used separately, or combined as hybrid simulation in OR. Examples of 

other techniques from OR or other disciplines that can be applied to other stages 

are depicted using the M&S stages Model Conceptualisation, Model Formalism, 

Input Data Analysis, Output Data Analysis and Simulation Experimentation. 

Examples of Type D1 HMs include Soft Systems Methodology and other Problem 

Structuring Methods which can be used in the problem formulation/conceptual 

modelling stage of an M&S study to enhance requirements capture. Similarly, 

Greasley & Edwards (2019) conducted a review of studies which have used big 

data analytics to enhance a DES study, mapping the studies to different stages 

of the M&S lifecycle. These are examples of Type D HMs (Mustafee & Powell, 

2018).  

 

Figure 2-4 Conceptual representation of a hybrid M&S study (… denotes other methods) Adapted from 
Powell and Mustafee (2016).  

The rationale for combining approaches has been described as synergising the 

methodological strengths of each method or to better capture the breadth of a 

problem situation (Sachdeva et al., 2007; Mustafee & Powell, 2018). Real-time 

simulation is one example of hybrid modelling, whereby a simulation model is 

combined with a data acquisition system to initialise the model. From their search 

criteria, Greasley and Edwards (2019) identified one example of a real-time 

simulation, which they categorised into the ‘model-building phase’. They note that 

real-time DES models pose particular challenges, with models needing to re-
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adjust at initialisation and consistently perform validation, analysis, and 

optimisation. Distributed simulation architectures may be needed to provide 

speed of execution (Taylor, 2019), and an architectural framework for the 

interaction between the physical and simulated system is needed (Onggo et al., 

2018). In Figure 2.4, a real-time data acquisition system is categorised as ‘input 

data analysis’, as the data is acquired, visualised, processed, and inputted into a 

validated simulation model.  

 Application and challenges for a HM Approach 

Established processes and conceptual frameworks supporting or providing 

guidance for HM approaches remain under-developed. Conceptual modelling is 

a critical stage of an M&S study, referring to the abstracting of a model from a 

real or proposed system, providing a specific set of steps that will guide the 

modeller on the translation of the conceptualisation into a formal model 

(Robinson, 2008). Zulkepli and Eldabi (2015) argued that the same is true for 

hybrid modelling, where the focus of previous attempts were at the software level. 

They presented a frameworks for HS that aimed at improving the conceptual 

modelling stage. This has relevance to HM, which can use a number of methods 

at any stage of an M&S study. For this reason, the conceptual modelling stage is 

critical, in particular the contribution and nature of communication between 

components of the hybridised model at the conceptual stage.  

Zulkepli & Eldabi (2015) proposed a 3-phase framework for developing hybrid 

models. The three phases of the framework are: the conceptual phase; the 

modelling phase; and the model communication phase. The conceptual phase 

develops conceptual modules that represent the problem such that each cannot 

be divided into smaller chunks, while together they represent the system.  The 

modelling phase is concerned with translating the conceptual model into a 

simulation model. The hybrid process between the two (or more) different 

techniques and software requires consideration. The final stage is concerned with 

the communication between the models. This involves identifying how variables 

from models communicate and change their impact on variables in other models. 

This framework can be aligned with Type D HMs, which share the same (or a 

complementary) philosophical paradigm, but can address different aspects of a 

problem situation. Modularising the conceptual model ensures the overall 

approach is not excessively complex, and keeps the purpose of the approach 
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central at each stage. These modules are linked using their outputs i.e. output 

from one module will serve as an input to the next module, and how these 

variables influence other variables in the model requires specification.  

Lynch et al. (2014) also focused on an explicit conceptual model component as 

a link between exploring the problem situation and building the model, in their HS 

framework. Within the conceptual phase is formulating the modelling question 

and determining whether a hybrid methodology is required based on the question. 

It has been argued that a sound rationale is required for hybridising approaches 

(Chahal et al., 2013). Howick and Ackerman (2011) found a number of rationales 

for mixing OR methods by analysing published case studies. These included 

dealing with complexity, supporting different stages of a project, combining the 

benefits or overcoming the weaknesses of specific methods, gaining credibility of 

the model, and considering the wider system. However they pointed out that there 

has been limited connections made between the rationale for taking a HM 

approach and the actual outcomes of the project.  

Challenges exist when combining methods, which need to be understood. The 

danger of abduction risk was underlined by Lorenz and Jost (2006), where 

assumptions are layered in hybrid approaches, leading to the acceptance of 

wrong conclusions.  The development of frameworks to support HS have 

highlighted that extending methods to incorporate the characteristics of other 

methods can lead to unnecessarily complex models with more assumptions and 

approximations (Chahal et al., 2013). A final challenge exists in validation and 

verification, which can be more complicated in hybrid approaches (Lynch et al., 

2014; Viana, 2014; Eldabi et al., 2016).  A generic verification framework may 

assist modellers in ensuring the challenges associated with competing model 

characteristics do not cause errors within their simulations (Lynch & Diallo, 2015).  

Lynch et al. (2014) provide some suggestions for validation of hybrid models, and 

an example in their use-case. Additionally, studies have investigated and 

strengthened aspects of validation of real-time simulations in healthcare (Hoot et 

al., 2009; Oakley et al., 2020). 

There is a need for integration frameworks for HMs, with a well-defined set of 

guidelines for the integration of analytics models (e.g. forecasting, simulation) 

with real-time or near real-time data. The challenges can be conceptual, for 
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example philosophical compatibility and parsimony; and technical, for example 

integration methodology, open access to software implementing different 

elements of the hybrid model (Onggo et al., 2018). This will support modellers to 

gain a better understanding of the complex system, allowing them to assess the 

problem from different dimensions and build a model that better meets the need 

of stakeholders (Zulkepli & Eldabi 2015; Mustafee et al., 2015a). The benefit of 

choosing any modelling approach is to enable the model to achieve its purpose 

more effectively, and Brailsford (in the position paper Mustafee et al., 2017a) 

argued that ultimately hybrid approaches will lead to more useful models that 

better represent the real-world problem asked of it, and provide better solutions.  

 Applicability to healthcare 

Given the complexity of the healthcare domain, and the continuing focus on the 

gap between academia and practice, it is not surprising that a large number of 

hybrid simulation studies in healthcare exist. These are driven by the need to 

enhance the scope of the study and capture multiple aspects of a real-world 

problem. The review of HS in all domains by Brailsford et al. (2019) found that 

healthcare was the main area of application, and the popularity of HS in this 

application area was suggested to be due to the intrinsic complexity of the 

problems, reuse and adaptation of models to expand the scope of the model, 

alongside research interests of the authors. The authors stated that healthcare 

problems have multiple aspects, and it is rarely possible to capture all of them in 

one single model using only one method. There is likely to be a similar motivation 

for HM applications, and a growing number of these exist. 

There are many examples of Type D HMs in healthcare. Royston (2013) argued 

that there is a mutual advantage in combining analytics and OR more explicitly 

together, including strengthening links to real-world concerns. Delen and 

Zolbanin (2018) agreed, stating that the use of analytics can provide more reliable 

information about the structure of relationships between variables, and generate 

more relevant research by using appropriate tools for a given problem. Analytics 

expands the range of tools available for OR applications (Ranyard, Fildes, & Hu, 

2015), with both sets of methods used to convert data into actionable insight for 

timely and accurate decision-support (Sharda et al., 2017). Greasley and 

Edwards (2019) differentiate analytics as data-driven - with a focus on data and 

outputs, but potentially little knowledge of underlying processes - and simulation 
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as model-driven, with considerable knowledge about underlying processes. In 

healthcare, many studies have exploited this synergy, outlined later in Sections 

2.7.5.  

Similarly, studies promoting the combined use of qualitative methods with 

quantitative OR methods in healthcare and other social systems have argued that 

reductionist approaches used in isolation may capture insufficient understanding 

of the nature and context of complex issues, and fail to secure buy-in from 

stakeholders (Sachdeva et al., 2007; Franco & Lord, 2011; Crowe et al., 2017).  

This discussion is extended in the next section.  

 Hybrid modelling approach qualitative methods 

The term ‘multi-methodology’ in Management Science has been used to describe 

the combined use of two or more methodologies within a single intervention (e.g. 

Mingers & Brocklesby, 1997; Mingers, 2000). This aligns with Type D1 HM in the 

classification scheme proposed by Mustafee & Powell (2018).   The justification 

for combining qualitative and quantitative methods in OR is to more effectively 

deal with the breadth and nuance of the real world (Mingers & Brocklesby, 1997; 

Franco & Lord, 2011). Quantitative OR methods are used not simply for analysis, 

but for decision-support, suggesting that a measure of study success is the 

degree to which the outcomes successfully support decision-making. However 

decision-makers must be able to trust the results of the analysis, and believe in 

the credibility of the model and the modeller, and a significant amount of research 

has demonstrated that the quality of stakeholder engagement influences this (e.g. 

Jahangirian et al., 2016; Crowe et al., 2017; Long & Meadows, 2018).  Most 

simulation studies in complex systems such as healthcare will require some 

degree of stakeholder engagement in order to understand the problem-situation 

and validate the resultant model. For example, Crowe et al. (2017) judged the 

effectiveness of their approach by the material impact it had on the process of 

drawing conclusions from the work, rather than implementation of results. This is 

complicated by the challenge of determining whether to attribute success or 

failure of an M&S study to the choice of methods, contextual factors such as 

personal attributes of the researcher, or dynamics of the team involved (Connell, 

2001; Henao & Franco, 2016).   
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Type D1 HMs in healthcare have included using SSM or cognitive mapping in the 

conceptual modelling phase to support stakeholder participation, encourage 

plurality of viewpoints, and support validity and credibility of the conceptual model 

(Powell & Mustafee, 2014; Kotiadis et al., 2014; Pessôa et al., 2015). Facilitated 

modelling supports the model building, scenario selection, and decision-making 

processes (Fokkinga et al., 2009; Franco & Montibeller, 2010; Kotiadis et al., 

2013; Tako & Kotiadis, 2015; Proudlove et al., 2017); and facilitation can also be 

used to successfully support the implementation stage (Kotiadis & Tako, 2018). 

While these, and similar, approaches bring significant advantages in enabling a 

focused and common understanding on real-life issues, drawbacks include 

additional time, preparation, and skills required (Tako & Kotiadis, 2015).  

 Hybrid modelling approach quantitative methods 

A growing interest in hybrid approaches has been explained by Jahangirian et al. 

(2010) as the common belief in the mutual impacts that different parts of systems 

have on each other. However it can also be used to gain new knowledge or 

insights, in particular with the current interest in data-driven knowledge. For 

example, analytics can be used with simulation to assist with conceptualisation 

of systems or problem formulation (Augusto et al., 2016; Elbattah & Molloy, 

2017); for analysing input data into simulation models (Glowacka, Henry & May, 

2009; Garg et al., 2009); at the experimentation stage (Elbattah & Molloy, 2016) 

and for analysing simulation output (Rabelo et al., 2014). The need for 

constructing reliable representations of real-world problems, and for fact-based 

decision-making in healthcare, makes this an area worthy of exploration and 

understanding. 

Data-driven methods are increasingly used to leverage evidence-based insights 

from hospital operational data. For example, as touched upon in Section 2.6.3, 

various efforts have been made to combine Process Mining with DES for re-

designing healthcare processes (e.g. Augusto et al., 2016; Rojas et al., 2016; 

Abohamad et al., 2017).  The main advantage to this combined approach is that 

Process Mining aids the development of the conceptual phase of a DES model 

in a semi-automatic way by analysing the event log and discovering a structured 

process flow, which can then be used to develop the model directly from the data 

(Zhou et al., 2014; Wagner et al., 2016).  A second advantage advanced by 

Abohamad et al. (2017) is a reduced need for domain experts in DES 
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development, although they will still be required to verify the model, as 

inaccuracies or errors in data could have been recorded. Where healthcare staff 

have limited availability, and may not have full sight of a process, Process Mining 

can support the development of unbiased simulation models (Abohamad et al., 

2017), and process flows with very low frequency can give useful insights for 

analysing exceptional behaviour (Turner et al., 2012; Abohamad et al., 2017).  

With a similar aim and again touched upon in Section 2.6.3, Abdelbari and Shafi 

(2017) were interested in exploring the extent to which machine learning (ML) 

can be used to infer conceptual models as part of the SD modelling process. A 

recurrent neural network was used to automatically learn causal loop diagram-

like structures directly from system data. The proposed data-driven approach 

aimed at complementing the development of a conceptual model by providing 

modellers with several probable model structures that can be accepted or 

considered for refinement. For input data analysis, several authors have 

demonstrated the potential for using machine learning or data mining algorithms 

for defining DES patient types or care pathways (e.g. Isken and Rajagopalan, 

2002; Codrington-Virtue et al., 2006; Ceglowski, Churilov & Wasserthiel, 2007; 

Glowacka et al., 2009; Elbattah & Molloy, 2016; 2017). For example, Glowacka 

et al. (2009) used association rule mining to generate decision rules for patient 

non-attenders. This method embeds a subset of rules as conditional and 

probability statements in the DES model. This means that the variables do not 

need to be traded off against each other and the rule-based model is easy to 

explain to stakeholders, an important consideration. Elbattah and Molloy (2016) 

described an approach that combined data-driven ML and DES. The ML models 

made predictions about the inpatient length of stay and discharge destination of 

the simulation-generated patients. On a population basis, the simulation model 

provided demand predictions for healthcare resources related to discharge 

destinations.  The significance and complexity of discharge planning has 

increased due to the rising challenge of population ageing, and this study found 

that the current distribution of nursing homes may not meet the needs of the 

ageing populations in some geographic areas of Ireland. 

At the experimental stage of an M&S study, Delen et al. (2011) used simulation 

in combination with data mining, optimisation and GIS-based analytics to model 

a blood supply chain with a high level of complexity that the authors argued could 
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not be handled by a single method alone. An implementation of this system is 

being actively used at different levels of a Defence supply chain. Uriarte et al. 

(2017) offered an approach to healthcare decision-making that combined DES, 

simulation-based multi-objective optimization, and data mining for the analysis of 

the results of the DES optimisation. They reported that hospital stakeholders 

agreed that the knowledge this approach offered is valuable, while the authors 

were clear that this combination of methods reduced the drawbacks of each 

technique when they are applied alone.  

Visual analytics presents large-scale data in a visual form, allowing insight into 

the data, and interaction with the data to confirm or disregard those conclusions 

(Feldkamp et al., 2015). Visual Analytics has the potential to provide a useful 

additional tool when interpreting simulation output data, for example Feldkamp et 

al. (2017) used visual analytics at the experimental stage based on a binary 

decision tree that maps the relationship between simulation input and output 

factors. This approach is particularly useful for big data applications by 

synthesising large amounts of data to reveal patterns otherwise not readily seen.  

For short-term decision-making, forecasting and other prediction methods have 

been used extensively in healthcare to support change based on predictions of a 

future state (e.g. Makridakis et al., 2018; Kraaijvanger et al., 2018; Zhou et al., 

2018; Kaushik et al., 2020). Time-series analysis can provide accurate forecasts 

of future ED attendance for allocation of resources, such as optimum staff 

scheduling by day and time (Morzuch & Allen, 2006), however few studies 

indicate how demand forecasts can be used for planning. Boyle et al. (2012; 

2016) acknowledged the need to capture real-world benefit from forecasting ED 

demand, such as identifying appropriate triggers for escalation responses. A 

logical extension of demand forecasting in ED is the use of DES to plan for 

recovery based on forecasts of overcrowding.  

Such an approach was used by Park et al. (2008), who used a linear regression 

forecasting model to predict average daily arrivals. A DES model, as a separate 

component, was used to establish efficient ED staff scheduling to decrease non-

value added patient wait-times and increase the quality of patient care. A similar 

approach was used by Lin and Chia (2017), who proposed a combined ARIMA 

forecasting approach with DES to forecast ED patient arrivals and subsequently 
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reschedule doctors. Forecasts were made daily, allowing time to reconfigure staff 

rotas. In practice, this may be difficult to implement, however the results found 

improvements in wait times. This approach indicates the potential value in 

forecasting a parameter such as patient arrivals, combined with simulation to 

determine how best to align the system with the forecasted demand. The 

combined approach supports forward planning over a short time period. For rapid 

decision-making, this could be enhanced by the use of real-time data to improve 

the accuracy of the simulation model in the short-term.  

Many examples exist of successful HM approaches which have used mixed 

methods to enhance the success of the simulation or the overall study in 

healthcare, however healthcare can also learn from other domains.  For example 

in manufacturing, Aydt et al. (2008b) were interested in response times in real-

time simulation, in particular where timing is critical in resolving a problem.  They 

proposed the use of ‘preventative what-if analysis’ using forecasts of a critical 

condition indicator in the real system, which, once detected, triggers a what-if 

analysis. This means the real system can be reconfigured before the critical 

condition occurs, compared with a reactive approach, which causes a more 

drastic performance drop. Augusto et al. (2018) proposed a similar approach in 

their real-time M&S framework for supporting emergency units in times of crisis, 

to predict precise arrivals using data history. Their framework consisted of a 

modular simulation model connected with a process analyser tool, allowing a 

design-of-experiments based on requirements of healthcare stakeholders. Their 

proposed model intends to be automated via the hospital information system, to 

take into account the number of patients in the system, the occupancy of 

resources, and the history, to predict future arrivals, and to require minimal 

manual interaction. 

From reviewing the literature, it seems that for a real-time HM to be useful for 

short-term decision-making, it must provide timely decision-support with limited 

interaction required by stakeholders, requiring a HM solution consisting of real-

time data, predictive analytics, and simulation. This approach aims to support SA 

and short-term decision-making toward both adaptive actions and formal 

escalation responses. This is illustrated in Figure 2.5.The chapter summary will 

summarise this review toward addressing RQ1, and outline the gaps in the 
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literature to be addressed by this research, and the criteria for determining the 

success of the proposed HM application.  

 

Figure 2-5  The relationship between real-time data, data analytics, SA and QI for healthcare short-term 
decision support 

 Chapter Summary  

The purpose of this chapter has been to address the first research question: 

RQ1:  How can simulation approaches support short-term operational decision 

making in healthcare? 

This has been achieved through determining the need for short-term decision 

support in healthcare, and examining how simulation and hybrid modelling 

approaches have been used for short-term operational decision-support in the 

healthcare context, and the opportunities these approaches offer. 

In doing so, it has addressed the following objectives:  

Objective 1: To understand the need for short-term decision support in 

healthcare, in particular emergency care. 

Given the current public health situation, NHS healthcare services are likely to 

become progressively more constrained, yet quality must remain a driver of 

healthcare service interventions. Quality considers both safety and perceived 
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value, and should underline all attempts to improve efficiency and productivity. 

Taking a systems view is important with emergency departments which operate 

as the ‘front door’ to the hospital. Workload can be unpredictable hour-to-hour, 

and crowding, where demand exceeds available capacity, has been an 

increasing problem. The effects of crowding are seen in both patient outcomes 

and staff morale (Morley et al., 2018), as well as in operational performance. A 

widely used conceptual framework of crowding is the input-throughput-output 

model (Asplin et al., 2003). Input relates to the demand for ED services and any 

condition that contributes to this; throughput relates to internal ED processes; and 

output factors are related to disposition of patients to discharge, admission, or 

transfer to another service.  The multifactorial nature of the problem does not 

suggest a single solution, and the focus is on optimising existing capacity and 

resources available to ED. However when care is operating close to the 

boundaries of capacity, the risk of a critical event occurring is high. To enhance 

system resilience, staff must be enabled to accurately determine the state of ED, 

assess the impact of corrective actions and launch action. Clearly, the ability to 

improve anticipation of a degraded situation would allow corrective actions, such 

as demand management, to be initiated earlier.  

Demand management can take two forms. Firstly, patients can be provided with 

additional information that can support decisions about the most appropriate 

place to attend; secondly, demand management can take the form of redirecting 

appropriate patients to alternative services as queues become unmanageable. 

Decisions regarding the redirection of patients are short-term decisions, and 

require situational assessment and situational awarenss (SA). However as 

workload and crowding increase, and staff stress-levels rise, SA reduces. 

Performance, which can be managed and adapted to a point, will ultimately 

decline (Nählinder et al., 2004). As operational targets make controlling task-load 

demand difficult, interventions which support SA and system resilience become 

increasingly important. With a focus on the needs of the users of the system, one 

approach to improving SA and supporting effective performance is paying 

attention to what type of information is needed when and by whom to support 

system goals. 

Objective 2: To explore how analytics methods can be used for short-term 

decision support.  
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Even for experienced staff, there is a need to enhance SA to support effective 

decision–making and system resilience. Data-driven approaches are increasingly 

gaining traction in healthcare for this purpose, as the value in data becomes 

increasingly realised, alongside its rapidly growing quantity, quality and 

availability. The most widely used functional categorisation for data analytics 

loosely groups techniques hierarchically as descriptive, diagnostic, predictive and 

prescriptive methods. Additionally, data analysts have shown a rising recognition 

of the value in using qualitative methods alongside data-driven approaches, for 

example for diagnosing a system problem, or evaluating the impact of an 

intervention.  

M&S is an example of a prescriptive method, which provides insight and 

understanding into the physical processes of a system, and the knowledge 

gained may be of great value toward suggesting improvements in the system 

under investigation. Hybrid modelling (HM) may further enhance its value, by 

better capturing a problem situation, or by aiming to combine the benefits or 

overcome the weaknesses of individual methods. M&S has been used 

extensively in healthcare, although evidence of its real-world benefit remains 

limited. Implementation is not the only value offered by M&S, and participatory 

and qualitative approaches may enhance an understanding of its value. 

Objective 3: To evaluate simulation approaches used in healthcare for decision-

support and to identify how simulation is used in other domains for short-term 

decision-support.    

The scale and scope of ED M&S is enormous, however the pace and 

unpredictability of ED adds a specific challenge for simulation modelling studies. 

The majority of ED models provide tactical or strategic decision-support, and are 

parameterised using historical data, meaning they can be inaccurate for short-

term simulation. Real-time simulation has been proposed as a solution to this 

problem in healthcare, whereby a simulation model is integrated with an 

automated data acquisition system to improve its accuracy in the short-term.  

Increasing interest in this area reflects the increasing availability, volume and 

velocity of data, however to date, published studies are conceptual or prototyped, 

with no study yet integrating real-time data in their model.  
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Real-time simulation is used to mitigate a critical situation once detected, 

however a HM using predictive analytics to forecast a future critical situation 

would allow health-care practitioners to proactively use real-time simulation to 

recover before the onset of the critical situation. In comparison, a reactive 

approach can cause a more drastic performance drop. This is an example of a 

HM which works to maximise the synergy between methods to support SA and 

short-term decision-making. The predictions provide information which allows 

anticipation of a degraded situation, while the simulation can support assessment 

of the impact of corrective actions, and the launching of action before the event 

has occurred, enhancing system resilience. 

The HM can be evaluated in the light of a set of assessment criteria.   

Objective 4: To determine the criteria for evaluation of a hybrid simulation 

approach for short-term decision-support in healthcare. 

The review of the literature has shown that there is a need for short-term decision-

support in emergency healthcare, and that a data-driven approach can support 

this, using a HM with three components: real-time data, predictive analytics, and 

a simulation model, triggered by forecasts to support system recovery. The 

review has also identified criteria for evaluating the HM, which is intended to be 

used recurrently. This requires an understanding of factors that contribute to its 

success or otherwise, including behavioural and organisational factors. 

Identifying these conditions supports future work in this area. From the literature 

review, the following criteria have been identified:  

 As the HM is intended for recurrent use as a decision-tool integrated into ED 

operations, it should start with a system-level understanding into what 

matters in terms of patient experience, staff satisfaction, efficiency gains, or 

cost savings. Taking a QI approach supports the relevance of the study. 

 The HM must support both task- and system-level understanding toward both 

adaptive short-term behaviours and escalation interventions, by supporting 

existing knowledge about what is happening, or is likely to happen. It is 

proposed that forecasts provide information which can support early adaptive 

behaviour to utilise spare capacity before queues build up.  Where an 

escalation response is required, simulation can test a range of scenarios 
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according to the current need and allow the system to respond and mitigate 

the forecasted crowding, for example using demand management.  

 As an integrated ED support tool, it is important that potential unexpected 

effects or uses are understood. Such tools need to be implemented with care, 

as unanticipated effects can result from the type or presentation of 

information, including technology-induced errors, or ambiguous information, 

which can actually reduce human decision quality and speed. A poorly 

designed tool can increase stress and workload, rather than reduce it.  

 The application aims to support system resilience, by providing usable 

knowledge that supports anticipation about what to expect and information 

about how to respond. SA requires the perception of environmental 

information, the comprehension of its meaning, and a projection about the 

future based on this knowledge. This information must be comprehended by 

staff without interrupting workflow, hence usability, automation and 

integration of components within HM is required.  

 Barriers to use of such an approach can exist at all levels of the organisation, 

and require understanding and managing. These include time and capacity, 

politics, resistance to change, and individual factors.  

This literature review has identified that an integrated real-time HM approach in 

emergency healthcare can support SA and subsequent short-term decision-

making. However in healthcare, this approach is in its infancy, and a range of 

barriers and challenges exist in practice.  

The following gaps and contributions of this thesis have been identified:  

 A framework for supporting the implementation of a short-term decision-

support HM in sociotechnical systems is currently lacking in the literature. 

Positioning the framework in sociotechnical theory can support an 

understanding of the interacting roles of both social and technical 

elements in a complex system.   

 An application of an integrated HM for short-term decision support has not 

been investigated in an applied setting, toward understanding its impact at 

the system level for both patients and staff. In healthcare, published 
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studies are conceptual or prototyped. To address this gap, a HM with three 

components: real-time data, predictive analytics, and a simulation model, 

triggered by the predictions, will be developed and evaluated, supported 

by the framework.  

 To understand the impact at the system level, the proposed benefits to 

both staff and patients needs to be understood.  Real-time and forecasted 

information may be useful for patients, supporting attendance decisions 

using a demand management approach. However it is unknown whether 

this information changes health-seeking behaviour. Supporting patient 

decision-making is rarely considered, yet patients are stakeholders in the 

system under investigation. System-level evaluation can provide 

evaluation criteria to support future work applying similar interventions in 

similar domains. 

The next chapter presents the philosophical assumptions and research 

methodology used to operationalise this research. 
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   Methodology 

 Introduction 

This chapter outlines the philosophical approach: critical realism; the research 

strategy: Design Science; the research design: mixed-methods research; and the 

methods used to address the research questions. The mixed-methods design is 

a partially mixed sequential equal status design (Section 3.2), whereby the 

methods are not fully integrated. The approach is sequential, for example 

methods for defining the problem will precede the development and execution of 

the integrated hybrid model, while the final evaluation follows.  In order to address 

the research questions, a range of methods are positioned within a Design 

Science research strategy (Section 3.4). The relationship between critical realism 

(Section 3.3) and Design Science research is outlined, and the steps involved in 

conducting design research are elucidated (Section 3.5). Research ethics are 

outlined in Section 3.7. 

 Research design: Mixed-methods 

In the last twenty years, mixed-methods research has become a highly applied 

and debated topic of conversation (Given, 2017; Ghiara, 2020). Through 

collecting a stronger and richer array of evidence than single methods alone, 

mixed-methods approaches are considered particularly suited to addressing 

complex practical problems by exploiting the synergy between qualitative 

stakeholder engagement and quantitative outcomes to inform intervention 

planning, implementation, evaluation, and monitoring (Ivankova & Wingo, 2018). 

Mixed-methods research is “the type of research in which a researcher or team 

of researchers combines elements of qualitative and quantitative research 

approaches (e.g. use of qualitative and quantitative viewpoints, data collection, 

analysis, inference techniques) for the broad purposes of breadth and depth of 

understanding and corroboration.” (Johnson, Onwuegbuzie & Turner, 2007, 

p123). The methods share the same research questions, collect complementary 

data, and conduct counterpart analysis (Yin, 2006). Intrinsic to this definition is 

the concept of triangulation, which is the convergence of findings through the use 

of multiple methods for validation, ensuring that explained variance is due to the 

underlying phenomena, rather than the individual method.  
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However the purpose of mixed-methods is not limited to triangulation, as data 

should be collected that will provide all of the information that is potentially 

relevant for the study (Johnson et al., 2007). Units of analysis may occur at more 

than one level (Yin, 2015): the system, the intermediate and the individual level, 

and multiple units of analysis may be involved at each level. In this thesis, the 

mixed-research methods are integrated within an overall Design Science 

research strategy (Section 3.4). Mixed-methods research has been identified as 

appropriate for Design Science research, which involves build-evaluate cycles, 

where evaluation, in particular, benefits from the strengths of a mixed-methods 

approach (Gregor & Jones, 2007; Ågerfalk, 2013). 

The confinement of multiple methods to a single study forces the methods being 

used into an integrated design (Leech & Onwuegbuzie, 2009; Yin, 2017). 

Creswell and Plano-Clark (2018) are amongst a number of authors who have 

outlined a range of mixed-methods research designs. For example, consideration 

of the sequence of data collection, the relative priority to each paradigm, and the 

stage of the project in which the paradigms are implemented can all inform a 

design (Ågarfalk, 2013). However many of these typologies are complicated, or 

too simplistic, such that the important criteria for mixed-methods researchers are 

not captured. To maximise the benefits of a mixed-methods approach, the 

research design must reflect the conceptual, philosophical, and procedural 

congruence between the research question, the research design and the 

methods employed to make integration possible and justifiable. For this reason, 

Leech and Onwuegbuzie (2009) proposed a three-dimensional typology of 

mixed-methods designs, incorporating the level of mixing (partially mixed versus 

fully mixed); the time orientation (concurrent versus sequential), and the 

emphasis of approach (equal status versus dominant status). When undertaking 

a mixed-methods study, qualitative and quantitative methods are used at different 

stages. These may be conducted either concurrently or sequentially. The major 

difference between partially mixed-methods and fully mixed-methods is that 

whereas fully mixed-methods involve the mixing of quantitative and qualitative 

techniques within one or more stages of the research process or across these 

stages, with partially mixed-methods, both the quantitative and qualitative 

elements are conducted either concurrently or sequentially in their entirety before 

being mixed at the data interpretation stage (Leech & Onwuegbuzie, 2009). 
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According to this typology, the design of methods in this thesis is a partially mixed 

sequential equal status design (illustrated as P3 in Figure 4.1). There is a 

sequential component as the hybrid model (HM) will be informed by a patient 

questionnaire, and evaluated by staff interviews. Additionally, the qualitative and 

quantitative data sets are all analysed separately, and synthesis takes place at 

the data interpretation phase.  This is necessary because the HM is quantitative, 

while defining the problem and evaluating the solution have qualitative 

components.  

 

Figure 3-1 Typology of mixed methods research (Leech & Onwuegbuzie, 2009) 
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The philosophical approach, critical realism, is discussed in the next section, and 

the subsequent sections outline the Design Science justification and 

methodology, and the methods employed for data collection. 

 Philosophical Approach 

 Introduction 

Discussions of theory in the subsequent sections are limited to the following 

definition, according to Abend (2008), who comprehensively defined multiple 

uses of the term in sociological literature. The main goal of a theory is to say 

something about empirical phenomena in the social world. This may shed new 

light on an empirical problem, help one understand some social process, or reveal 

what ‘really’ went on in a certain conjuncture. This is in contrast to a scientific 

theory, which has been tested and is widely accepted as valid, describes the 

causes of a particular natural phenomenon, and is used to explain and predict 

aspects of the phenomena.  

The relationship between data and theory is much debated by philosophers of 

research, however a fundamental requirement of research is specifying the 

relationship between empirical material and theory, such that empirical data is 

used to test the strengths and weaknesses of a theoretical proposition or a 

conceptual framework (Sovacool et al., 2018). This is then revised to form new 

knowledge (Hancke, 2009). These theories or frameworks can be classified 

according to their underlying philosophical positions. For example, Easterby-

Smith, Thorpe and Jackson (2015) outlined positivism and social constructionism 

as two opposing positions for conducting research. In their analysis, positivism 

holds an ontological assumption: that reality is external and objective; and an 

epistemological assumption: that knowledge becomes significant when based on 

observations of this reality. Theories in this paradigm are generally well suited to 

quantitative research methods such as experimental designs and analysis. Social 

constructionism, the opposing paradigm, developed as a reaction to positivism. 

It holds that reality is socially constructed and is given meaning by people. Social 

constructionism is an interpretive approach, which attempts to understand what 

people think and feel, why people have different experiences, and how these 

constructions and meanings drive action (Sovakool et al., 2018). Theories within 
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this paradigm are suited to qualitative research methods, such as interviews and 

focus groups.   

However few studies are pure examples, with many researchers choosing 

research designs and methods that blur the distinction between the two opposing 

approaches. While social constructionism is well supported by complementary 

qualitative methods, and positivism is associated with quantitative approaches, 

mixing methods can create philosophical difficulties when they represent very 

different ontologies (Easterby-Smith et al, 2015). However several philosophical 

positions provide coherent schools of thought, and partly reconcile these different 

perspectives to be consistent with both quantitative and qualitative research 

methods. These include Habermas’ Critical Theory (1970, in: Brunkhorst et al., 

2017), which views the motives and impacts of powerful groups and individuals 

on the behaviours and attitudes of the least powerful. This is relevant where 

knowledge may be determined by political processes. Giddens’ (1984) 

Structuration Theory determines that structure and agency are not pre-ordained, 

but that structures are created through the agency and actions of individuals, and 

structure then guides and restrains individual agency. A continual interaction 

occurs between social structures and social action. This is relevant in 

management research for understanding the relationships between employees 

and their organisation, or between information systems which exist to facilitate 

action, and the resultant actions. A further school of thought is Pragmatism, which 

originated from the 19th Century work of John Dewey (1916, in: Dewey, 1998), in 

particular. Pragmatism claims that there are no pre-determined theories or 

frameworks shaping knowledge, but that meanings come from the lived 

experiences of individuals. This offers a synthesis between features often 

considered irreconcilable, such as positivism/anti-positivism. Finally, in the late 

1970s Bhaskar’s Critical Realism (Bhaskar, 2013; 2014), initiated a post-positivist 

perspective. He argued for a structuralist position, in that we can only understand 

the social world if we identify the structures at work that generate events, and a 

realist ontology, in common with the work of Habermas. This is in contrast to 

interpretative approaches, which can be less clear about the nature of reality, 

being relativistic in their ontological position. The implications of this for M&S 

research is that while the researcher is required to be sufficiently 
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“epistemologically reflexive” and vigilant about investigations, models need to be 

answerable to empirical investigations.  

 Research philosophy in OR 

In the field of OR, a positivist philosophy dominates (Holm et al., 2012), however 

the use of quantitative data need not imply the acceptance of a positivist 

epistemology. Mingers (2001) argued that quantitative data can - and should - be 

interpreted in the light of relevant social meanings. In social domains such as 

healthcare, isolating one part of the healthcare system from the rest can severely 

compromise the usefulness of the model in practice by shifting the problems 

elsewhere (Jahangirian et al., 2012). White (2009) argued that hybrid studies are 

a better approach for disorderly, complex processes. These approaches have 

been described as action research, reinforcing their contribution to practice as 

well as to theory (Howick & Ackerman, 2011).  Similarly, Mingers (1997) asserted 

that to make the most effective contribution within rich social organisations, it is 

appropriate to combine methodologies and even paradigms. This has important 

implications for how knowledge is viewed. Combining paradigms presents 

challenges, and while Mingers & Rosenhead (2004) found through a survey that 

most researchers judged multi-methodological approaches to be more effective 

than single, they also found that relatively few combined hard and soft 

approaches.  Howick and Ackerman (2011) reported in their review that the 

majority of papers avoided the multi-paradigm debate, which they conjectured 

may be to reduce effort, having decided that mixing methods is difficult enough 

without trying to reconcile potential incommensurabilty.  Mingers and Brocklesby 

(1997) maintained that because of the uncertainties associated with any single 

paradigm, there is a need for conscious pluralism in OR research practice.  ‘Hard’ 

methods assume that there is agreement on the nature of the problem-situation, 

while ‘soft’ methods assume that there are divergences of opinion.  In addition, 

accounting for power and sociopolitical aspects is often necessary, and 

Brocklesby & Cummings (1996) argued that all of these perspectives can be 

complementary.  While the issue of paradigm incommensurablity is still debated, 

the response within OR, where addressed, has tended to unite around Habermas’ 

social theory (Jackson, 1985; Brocklesby & Cummings, 1996), or Bhaskar’s 

critical realism (Mingers & Brocklesby, 1997; Mingers, 2015; Syed & Mingers, 

2018).  Both of these paradigms support a constructivist view of knowledge 
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production with a realist ontology. These approaches make multi-methodology 

possible and sustainable, and allow for combining methods without having to 

constantly adjust the epistemological position, which can cause ‘stress and 

anxiety’ to the researcher (Kotiadis and Mingers, 2006).  

 Critical Realism 

It is widely acknowledged that the most challenging current problems in 

management research are centred on people, rather than technical issues, hence 

Alvesson and Willmott (1996; 2012) stressed that the theory and practice of 

management requires a critical perspective to confront contemporary 

organisational challenges and problems. These approaches promote epistemic 

reflexivity to establish the necessary conditions for differentiating and establishing 

constructions of reality, and showing the possibility of alternative accounts. 

Epistemic reflexivity indicates reflection on the social conditions under which 

knowledge comes into being and gains credence (Bourdieu, 1990). Being 

epistemically reflexive requires seeking out new modes of engagement with 

research subjects that support the co-creation of knowledge, for example using 

participatory or qualitative approaches (Bryman & Bell, 2007). The critical 

approaches upheld by Giddens, Habermas and Bhaskar are in substantial 

agreement in many respects, for example each defends the possibility of 

objectively valid scientific knowledge, rejecting radical relativism, but also 

positivism, which is seen as depicting individuals as passive subjects of 

deterministic social systems (Pleasants, 2002).  In other words, each embraces 

both epistemological relativism and ontological realism, and the latter 

necessitates the former. Similarly, M&S studies in social systems require a 

consensus of viewpoints toward understanding the structures, rules, processes, 

mechanisms etc. of social organisations. Any account of this ontology can be 

considered epistemologically contingent and fallible, as models are 

approximations of a real system relying on simplifications and abstractions, which 

is subjective because there can be neither a perfect nor accurate representation 

of a system (Padilla et al., 2013).    

While Alvesson and Willmott (1996) emphasised that critical thinking does not 

exclude technical problem-solving approaches, they proposed Habermas’ social 

theory as a relevant approach to understanding and reflecting critically upon the 

dynamics of organisations and management practice. Habermas attempted to 
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draw attention to the socio-cultural factors that influence experience, in particular 

communication. This approach makes much of the asymmetrical relations of 

power that inhibits the open formation and expression of views, and thus is well-

suited to the application of soft OR/problem-structuring methods where it is 

prudent to be reflective upon the unequal intellectual and political positions of 

involved stakeholders. However social theory has been criticized for being too 

relative, despite ostensibly having a realist ontology, making it difficult to 

determine the implications of the research (Morrow & Brown, 1994; Pleasants, 

2002). This is of particular relevance where, as in the case of this research, the 

implications are of a pragmatic and applied nature. 

Gorski (2013) and Archer et al. (2013) advocated critical realism as a position 

that can supply a general schema for thinking about social behaviour. While there 

is not one unitary framework or set of beliefs that unite critical realism, Bhaskar’s 

position described analyzing the world into discrete structures such as ‘person’ 

or ‘network’ and examining how interactions between these structures change 

their properties, the relationships, or lead to the emergence of new structures. As 

reality is complex, temporal and changing, these can be examined temporally, 

spatially or culturally, to determine how the actions of agents within the system 

have the power to change the system. The relevance of this is clear, as critical 

realism holds that structure both precedes and is an outcome of human agency. 

For this thesis, structural conditions, for example data visualisations and other 

information sources, aim to influence SA and human action, but may have 

unexpected side effects in practice. Additionally, while the interactions of patients 

and staff with real-time data applications can potentially change the behaviour of 

the system, it is clear that these changes may be difficult to determine statistically 

as many other factors are involved in these relationships. Ontology is central to 

critical realism, emphasising that many of the features of the world are not 

empirically verifiable or quantifiable, and may resist scrutiny. This approach 

allows combining methods, approaching causation critically, and using partial 

facts and events which account for the complexity and heterogeneity of the social 

world (Archer, 2016). As ‘causal powers’ or ‘causal mechanisms’ are dependent 

upon the nature of structures, it is contingent whether they are exercised at any 

particular time or place, for example, responses to forecasts of crowding will 

depend upon the context in which they operate: other conditions which constrain 
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interventions, motivations to act, alternative knowledge sources or habit, 

perceived costs/benefits, for example.  

Few OR researchers have directly addressed the philosophy of OR research in 

recent years, Mingers being a notable exception (2000; 2015; Syed & Mingers, 

2018), although the relevance and importance of the epistemology of M&S is 

acknowledged (e.g. Tolk et al., 2013), Mingers (2000) argued that critical realism 

fits well with OR as an applied discipline, demonstrating examples of its fit with 

system dynamics as a modelling method, Soft-systems Methodology as an 

interpretivist method, and statistical modelling as an empirical method. For 

example, critical realism often rejects the possibility of prediction about social 

matters, as causality is held to have multiple causal mechanisms (Næss, 2015). 

However with application to time-series modelling, Mingers demonstrated the 

importance of contextual factors beyond the model itself when making 

interpretations of model outputs. While he noted that this is typical of practical, 

applied OR studies which do not become ‘trapped in the purely empirical domain 

of the data itself’, it is an example of the value of positioning OR research within 

a critical approach. Critical realism overtly combines explanatory theory with 

empiricism and confronts the radical anti-realism position of 

interpretivist/constructivist research philosophies, which allows research outputs 

to inform theory and real-world action. Additionally, within a Design Science 

approach critical realism enables a beneficial interaction between academics, 

domain experts, and end-users to support co-production across diverse 

stakeholder groups (Hodgkinson & Starkey, 2011).  

  Research Strategy: Design Science 

 Introduction to Design Science 

Design Science research forms an appropriate research strategy for this thesis, 

which is interested in the practical relevance of real-time hybrid M&S to inform 

improvement in healthcare policy and practice, and to increase M&S research 

utilisation and relevance in healthcare.  

Design Science studies progressive refinements of an intervention in its target 

settings, with the aim of developing practical knowledge. This works toward a 

more effective solution, with improved articulation of principles that underpin its 

impact, and aims to be applicable more widely (Van den Akker et al., 2006). While 
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innovative M&S solutions to emerging problems continue to be published, the 

modeller’s decisions in resulting designs are often implicit, yet more explicit 

learning can advance subsequent design efforts (Van den Akker et al., 2006; 

Richey & Klein, 2014). This is of particular importance in a tool such as real-time 

simulation, which is intended as a recurrent decision aid assimilated into routine 

practice, compared with single-use M&S applications.  

 Justification for Design Science 

Yin (1994) defined evaluation as a particular type of research used to assess and 

explain the results of action projects or programs operated in a real-life setting 

(Yin, 1994; 2017). Case study research is a research strategy that supports 

mixed-methods approaches, and can be used as an evaluation tool. Case study 

research describes a research strategy which investigates human activity in the 

real world, where context is important such that precise boundaries are difficult 

to define between the context and the activity under investigation (Gerring, 2006). 

This allows the research to ‘close-in’ on a real-life situation (Flyvbjerg, 2004). Yin 

(2014) states that case study research is the preferred form of research where 

the main research questions are ‘how’ or ‘why’ questions; where the research has 

little or no control over behavioural events; and where the focus of the study is 

contemporary, i.e. here and now, rather than historical. Case studies are most 

commonly exploratory, and may generate hypotheses (Yin, 2017), however the 

case study method can serve evaluation needs directly by assessing outcomes 

and testing hypotheses (Yin, 1994). Although rigorous methodologies have been 

developed for implementing case study research (Stake, 1995; Eisenhardt & 

Graebner, 2007; Yin, 2014), the approach does not directly support the 

development of an artefact within its methodology, nor a focus on incrementally 

effective applicable problem solutions. This leaves problem generation and 

artefact/model development unspecified. 

Similarly, Implementation Science provides a robust methodology which supports 

applied research to develop the critical evidence base informing the adoption of 

interventions by health systems (Allotey et al., 2008). Interventions have 

previously undergone sufficient scientific evaluation to be considered effective, 

while the implementation science methodology focuses on the design and 

evaluation of a set of activities to facilitate successful uptake of this evidence-

based health intervention (Handley et al., 2016). This is an applied health 
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science, focusing on the evaluation of the implementation of an artefact, but 

assumes an existing evidence base for the detailed intervention in its specific 

setting.  

In contrast, Design Science explicitly integrates design as a major component of 

research. In line with the definitions provided by Collins, Joseph & Bielaczyc 

(2004), Nieveen and Folmer (2013) and Plomp & Nieveen (2013), the definition 

of Design Science used in this thesis is the systematic analysis, design and 

evaluation of interventions with the dual aim of generating research-based 

solutions for complex problems in practice, and advancing our knowledge about 

the characteristics of these interventions and the processes of designing and 

developing them.  This supports applied research which also provides a set of 

design principles (Nieveen & Folmer, 2013):  

 The purpose/function of the intervention 

 The key characteristics of the intervention  

 Guidelines for designing the intervention  

 Its implementation conditions 

 Theoretical and empirical arguments for the characteristics and procedural 

guidelines 

These principles provide evidence for the potential impact of the intervention in 

its given domain, and how it might work in practice, in this case contributing to 

the knowledge base about the value of real-time hybrid modelling in healthcare 

for short-term decision support. In contrast, research strategies such as case 

studies or ethnography attempt to characterise events and relationships in real-

life contexts, but there is no attempt to change practice (Yin, 2014). Meanwhile, 

experimental designs can analyse the effects of interventions, however 

controlling these research designs can distort real-life learning (Veal, 2006). In 

Design Science, the intervention is based on knowledge from the literature, such 

that evaluation of the approach in its applied setting contributes to expanding the 

knowledge base (Collins et al., 2004; Van den Akker et al., 2006). For future 

researchers, this provides information needed for applying similar interventions 

in similar domains. For policy makers, these principles assist in making research-

based decisions for supporting complex problems in similar domains. 
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 Philosophical underpinnings of Design Science 

Donald Schön (1983), a philosopher of design, technological innovation and 

applied research, argued that practical, real-world problems rarely present 

themselves neatly enough for scientific generalisations to apply: the rigour vs 

relevance debate.  In his argument, he considered that technical studies are often 

inapplicable to the ‘swamps’ of real-life practice. While Schön’s work was founded 

on the work of Dewey (Waks, 2001), his epistemology of practice is centred on 

the practice of ‘reflection-in-action’ which is fundamental to critical realism. The 

focus is the critical evaluation of theories on the basis of empirical data.  For 

Archer (2003; Archer et al., 2013), the focus on structure, context and causal 

mechanisms in critical realism is valuable in complex social systems, as it 

acknowledges that decisions and actions are contingent and uncertain, but that 

consensus toward an output is required in order to learn and progress in the real 

world. For M&S, it is acknowledging that stakeholders in applied research, a 

practical, problem-solving activity, are people. In work situations, people contend 

with varying workloads, abilities, stressors and distractors, and are rarely rational 

decision-makers who require simply a correct technical solution.  How an 

intervention may or may not function in practice is of explicit interest, for example 

how people respond to specific features of the intervention. Design Science is not 

used to test theories, but to build interventions that are based on theories, and to 

test the effectiveness of the intervention in practice (Van den Akker et al., 2006). 

Faced with many ambiguities and unknowns, these results may be preliminary. 

However by incorporating diverse stakeholders, especially groups with conflicting 

agendas, the problem space, scope, and potential of new design solutions can 

be expanded (Hodgkinson & Starkey, 2011; 2012). The aim is to work toward 

improved designs by testing a use-case, where the findings can be generalised 

to similar cases. Carlsson (2006) argued that where design science is positioned 

in critical realism, the intention is to produce more detailed answers to the 

question of why and how an intervention works, for whom, and in what 

circumstances. Critical realism can be used to strengthen the theoretical 

foundations of a Design Science approach, by balancing the issues of structure 

and agency without over-prioritizing either (Hodgkinson & Starkey, 2012). This 

means attending to how and why an intervention has the potential to cause the 

desired change, which in this thesis will be investigated using a single use-case. 
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 Generalising from a use-case  

Many scholars have argued that it is not possible to generalise from a single case, 

and that case studies are only appropriate for the exploratory phase of an 

investigation. However these claims have been robustly countered, as all new 

knowledge enters into the collective process of knowledge accumulation (e.g. 

Flyvberg, 2006).   

Case studies are a rigorous, in-depth methodology (Yin, 2014) which investigates 

one or more units of human activity in context, allowing a close-up investigation 

of a real-life situation, using a range of methods to triangulate findings.  Use-

cases differ from case studies by helping to understand how technology and 

related solutions can be applied to solve real-world problems. Technical 

descriptions can be too abstract to explain how the technology is useful in 

practice, and use-cases are considered a good basis for testing.  Use-cases 

allow a description of the sequences of events that, taken together, lead to a 

system doing something useful (Bittner, 2002). By focusing on how an 

intervention is used in practice, the approach is significantly narrower than a case 

study, in which precise boundaries are difficult to define, and the focus is on 

understanding reality (Yin, 2014). Use-cases ensure the intervention is used in 

practice as intended.  

Questions arise as to how this knowledge can be created in a cumulative way 

that can be generalised beyond individual solutions to individual problems. The 

problem arises from the requirement to create designs that are relevant to 

practice but at the same time contribute to the knowledge base. Offermann, Blom 

and Bub (2011) suggest that generalisability or transferability of findings occurs 

where settings are similar, especially when research involves social dimensions, 

and insights might be transferred from one to the other. They outline three types 

of design according to a range of scope. Short-range designs are aimed at a 

specific setting; mid-range designs are aimed at a specific type of setting; and 

long-range design are general insights about a type of design approach. This 

thesis focuses on mid-range design, by creating and validating (through 

evaluation) the utility of a short-range design, with the aim of increasing its 

generalisability. The mid-range design proposes that the application of the 

intervention within a certain scope of situations will yield a certain utility. This 

mode comes closest to cumulative knowledge creation, and the notion of 
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“generalisation” in quantitative science (Offermann et al., 2011).  To increase the 

robustness of the intervention, the more situations a design has been shown to 

work, the more likely it is considered to work for similar new problems. This 

presents a limitation of this formative research, as the intervention is tested in 

one use-case.  

However this thesis proposes the development of a hybrid framework which is 

generic and testable in multiple, similar settings. Similarly, Zhang et al., (2013) 

proposed a generic Design Science framework to improve the integration of 

sustainable development between strategic, tactical and operational levels. Their 

framework aims to rank local and global environmental tools, supporting each 

activity, and stakeholder collaboration, along the design process. The framework 

proposed in this research supports the development of real-time HMs for short-

term decision-making in sociotechnical systems.  

 Design Science Research Methodology 

While the previous section characterised the focus of use-cases as narrower than 

that of a case study design, Collins et al. (2004) outlined a comprehensive 

methodological approach to Design Science research which employs use-cases. 

Design Science involves the building and evaluation of artefacts designed to meet 

identified business needs (Hevner et al., 2004). The methodology described by 

Collins et al. (2004) covered in-depth evaluation and analysis, and an iterative 

approach to implementing design research, requiring teams of cross-disciplinary 

researchers. While these features characterise Design Science in a large-scale 

application, several authors have provided definitions of stages and stakeholders 

involved in Design Science research. For example, a review by Ostrowski, Helfert 

& Hossain (2011) found that most researchers included some component in the 

initial stages of research to define a research problem, and common agreement 

on the outcome: an artefact or model.  A process in the middle entails 

construction of the artefact, and this step requires relevant literature, existing 

theories/knowledge, and collaboration with partners. Additionally, Hevner et al. 

(2004) emphasised that such an approach requires rigorous evaluation of the 

utility, quality and efficacy of the proposed solution.  

Peffers et al. (2007) synthesised the design, engineering, and Information 

Systems (IS) literature, and produced the following Design Science process 
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model with six ‘Activities’: (i) Identify problem and motivation; (ii) Define objective 

of a solution; (iii) Design and Development; (iv) Demonstration; (v) Evaluation; 

(vi) Communication.  ‘Activities’ are defined as the tools, methods, and/or actions 

taken by researchers to gain sufficient knowledge in order to 

create/produce/develop an artefact (Ostrowski et al., 2011).  The process 

outlined by Peffers et al. (2007) forms a complete methodology for structuring 

and conducting Design Science research (Figure 3.2). While there is a process 

sequence, the research may start at a number of stages, depending upon the 

research objectives, and the process may be iterative.  

A Design Science research methodology specified by Blessing and Chakrabarti 

(2009) can be mapped to these stages, and is detailed in the next chapter. In 

their comprehensive methodology, individual research projects may focus on one 

or two stages only, although iterations between stages will take place. For 

example, Salehi & McMahon (2009) focussed on the first stage of the framework 

outlined by Blessing (1994), and Blessing and Chakrabarti (2009) to explain the 

relevant criteria and results of the Descriptive Stage (Phase 1) in detail, while 

Zhang et al. (2013) developed a framework for stakeholder engagement which 

spans the duration of the Design Science process, but focuses only on how to 

support collaboration in tool integration across organisations. 

 

Figure 3-2 Design Science Research Methodology (reproduced from Peffers et al., 2007) 

According to Blessing and Chakrabarti (2009), Design Science research must 

address the following issues:  
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 What are the criteria for evaluating the intervention? This involves identifying 

the key criterion at which the intervention is aimed, and aligns with the first 

and second stages of the methodology outlined by Peffers et al. (2007) (Figure 

3.2), which defines the specific research problem and justifies the value of the 

solution [Activity (i)] and then infers the objectives of a solution from the 

problem definition and knowledge of what is possible and feasible [Activity (ii)]. 

 How is an intervention created? This involves identifying the influences on 

evaluation criteria, how these influences interact, and how they can be 

measured i.e. how to improve the design process. This aligns with Activity (iii) 

in Peffers et al. (2007) which creates the artefact, defined as “any designed 

object in which a research contribution is embedded in the design”, and 

involves determining its functionality, its architecture, and developing the 

actual artefact based on knowledge of theory and other information sources.  

 How do we improve the chances of developing a plausible intervention? This 

involves understanding how the knowledge gained from the design process 

can be used to develop guidelines, methods and tools, and how this design 

support can be evaluated. Evaluation is needed to determine whether the 

application can contribute to a plausible intervention as determined by the 

criteria. Peffers et al. (2007) (Figure 3.2) encompass this principle in Activities 

(iv), (v) and (vi), which involve demonstration of the use of the artefact toward 

solving the problem, and evaluation of how well the artefact supports a 

solution to the problem, through an appropriate method. Finally, Activity (vi) 

involves communication of the problem and its importance, the artefact and 

its utility, novelty, rigor of design, and effectiveness of its approach, to 

appropriate audiences in practice and academia. In academia, this might 

support progressing the design process, applying it to another research 

domain, or using it to solve a different problem. 

These principles support a rigorous process for designing artefacts to solve 

observed problems, to make research contributions, to evaluate the designs and 

to communicate the results to appropriate audiences (Hevner et al., 2004; Peffers 

et al., 2007).  A research methodology provides practice rules to implement these 

principles (Peffers et al., 2007), and in Design Science these include the 

development of an artefact, which may be a construct, model or method (Hevner 

et al., 2004). This should be a process that draws from existing theories and 
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knowledge to develop a solution to a defined problem. The stages in the research 

methodologies outlined by Peffers et al. (2007) and Blessing and Chakrabarti 

(2009) will be examined in more detail in the next chapter toward the development 

of a framework to support the application of real-time hybrid modelling studies for 

short-term decision-support, which enables the use of a range of methods.  

 Methods 

The term ‘method’ refers to a systematic procedure for carrying out an activity, 

specifically (i) How knowledge should be acquired; (ii) The form in which 

knowledge should be stated; and (iii) How the truth or falsity of knowledge should 

be evaluated (Polgar & Thomas, 1991). In this research, the mixed-methods 

approach is part of a Design Science research methodology (McKenney & 

Reeves, 2018), with each of the three research questions directing the analysis 

sequentially. The research will involve the development of a HM framework which 

will be tested in a single case, in the emergency department at NHS Trust in the 

South-West of England, and its surrounding urgent care network. The rationale 

for the need for short-term decision support in ED has been explained in Chapters 

1 and 2, making ED a suitable case for this study. The methods and use-case 

are outlined in detail in Chapter 5. 

To meet the objectives of the research questions, the methods chosen in this 

research to execute the framework are indicated in Table 3.1.  

Table 3-1 Research questions, aims and objectives and methods 

Research 
Questions 

Aim Objectives Method 

1. How can 
simulation 
approaches 
support short-
term operational 
decision-making 
in healthcare? 

To determine the need 
for short-term decision-
support in healthcare, 
and to examine how 
simulation, real-time 
simulation, and hybrid 
modelling approaches 
have been used for 
short-term operational 
decision-support in the 
healthcare context, in 
particular emergency 
care. 

1. To explore the need for 
short-term decision-support 
in healthcare, in particular 
emergency care 
  

1. Literature 
Review 
(Chapter 2) 

2. To explore how analytics 
methods can be used for 
short-term decision-
support. 
  

2. Literature 
Review 
(Chapter 2) 

3. To critically evaluate 
simulation approaches 
used in healthcare for 
decision-support and to 
identify how simulation is 
used for short-term 
decision-support 

3. Literature 
Review 
(Chapter 2) 
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4. To determine criteria for 
evaluation of a hybrid 
simulation approach for 
short-term decision-support 
in healthcare. 

4. Literature 
Review 
(Chapter 2) 

2. How can an 
integrated hybrid 
approach using 
real-time 
simulation and 
data analytics 
support short-
term operational 
decision-making? 

To test and evaluate 
the potential of an 
integrated hybrid 
approach for short-
term decision-support 
in healthcare 
combining real-time 
simulation with other 
analytics approaches. 

1. To propose a generic 
framework supporting an 
integrated hybrid approach 
for short-term decision-
making in healthcare 
  
 

1. Literature 
Review and 
Design Science 
methodology 
(Chapters 2, 3 
and 4)  
 

2.  To apply the framework 
within a case study in a 
hospital ED 
  
  
  
  
  
  

2.Direct 
observation, 
patient 
questionnaires, 
secondary data 
analysis, time-
series 
forecasting, 
real-time 
simulation (Cha
pters 5 and 6) 
 
 

3. To evaluate the 
application of the 
framework. 
 

3. Semi-
structured staff 
interviews 
(Chapter 7) 
  
  

3. What are the 
implications and 
the added value 
to the system of 
using real-time 
data applications 
for both patient 
and NHS 
decision-support? 

To analyse the system 
level impact of the use 
of real-time data by 
both patients and staff 
decision support. 
 

1. To critically evaluate the 
value that real-time 
applications provide at the 
system level.  

1. Patient 
questionnaires 
and 
Semi-structured 
staff interviews 
(Chapters 5 and 
7) 
 

 2. To synthesise previous 
findings and evaluate the 
framework in light of the 
application. 
 

 2. Synthesis of 
findings 
(Chapters 7 and 
8) 

  

RQ1 has been addressed in the previous chapter. The next chapter develops the 

framework and the final objectives of RQ2 are addressed in the subsequent 

chapters. 

 Research Ethics 

Specific ethical considerations arise when conducting design research in 

healthcare, in particular where human subjects are involved. In this research, this 

has been addressed in the following ways: 
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(i) The project was reviewed by the University of Exeter Business School Ethics 

Committee and given a favourable opinion (Appendix 1). 

(ii) Hospital honorary contracts were obtained allowing staff-level access to 

departments, meetings and staff at the NHS Trust involved. A further honorary 

contract was required from a second large NHS Trust in the South-West of 

England to conduct patient questionnaires. 

(iii) Honorary contracts allowed access to anonymised and pseudonymised 

secondary operational data. 

(iv) All secondary hospital data used in this research is either fully anonymous 

(no identifiers), or has undergone pseudonymisation, which means that any 

identifying data has been replaced by one or more artificial identifiers. 

(v) Patient questionnaires required ED department level approval. Signed, 

informed consent forms were gained from all patient participants.   

(vi) Staff interviews required signed, informed consent prior to scheduling 

interviews.  

(vii) Inclusion and exclusion criteria explicitly considered the potential risks to 

participants prior to selection, the avoidance of harm, and privacy and 

confidentiality. 

(viii) All data used in this study is treated as confidential, and is stored in locked 

storage, and/or a password and full-volume encrypted computer. 

 Chapter Summary 

This chapter has outlined the research strategy: Design Science research; the 

research design: mixed-methods research; and the research philosophy, critical 

realism, and why it is important and relevant for OR real-world research, in 

particular for implementing a  real-time decision-support tool in a healthcare 

setting. It has drawn attention to the synergy between critical realism and design 

research, and outlined the steps involved in conducting design research. 

Research ethical concerns have been addressed.  The next chapter reports the 

development of the proposed framework for implementation of the hybrid model. 

Its development is based on the literature review in Chapter 2, and the Design 

Science methodology which has been examined in this chapter.   
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 A generic framework supporting an integrated 

hybrid model for real-time decision making in healthcare  

 Introduction 

This chapter proposes a framework for the development and application of real-

time hybrid modelling (HM) studies in healthcare. The conclusion reached at the 

end of Chapter 2 is the recognition that a real-time decision-support system which 

combines real-time data, predictions, and simulation, has the potential to support 

short-term ED decision-making, however such an approach has to date not been 

evaluated in an applied setting. Chapter 3 identified Design Science as an 

appropriate methodology for investigating this. Additionally, a HM framework 

which supports the implementation of such an approach is currently lacking in the 

literature.  Such a framework is motivated by the long-term focus on lack of 

evidence of real-world implementation and evaluation of simulation model results 

in the healthcare domain (Long et al., 2019), and the increasing need and 

opportunity to use real-time data to support quick and effective decision-making 

(Bumblauskas et al., 2017). Concepts derived from the Human Factors literature 

take account of sociotechnical system precursors of decision-making, including 

individual and team-level situation awareness (SA), and Quality Improvement 

(QI) theory is suggested as a means to bring together, in a generic framework, 

the concepts from data analytics, simulation and sociotechnical theory toward 

supporting short-term decision-making.  

The development of the framework is done in two ways. The first development is 

through an examination of the stages of a Design Science methodology (Blessing 

and Charkrabari, 2009). The second is derived from insights from the literature 

review in Chapter 2, examining decision-making in dynamic, sociotechnical 

systems; data analytics and simulation for decision-support; and real-time 

simulation as a HM.   

The framework is developed to be generic, as it is tested in practice, with 

transferable knowledge aimed at supporting similar future work in similar 

domains. It explicitly addresses the first objective of the second research 

question, which will be tested in subsequent chapters. RQ2 asks how an 

integrated hybrid approach using real-time simulation and data analytics (DA) can 
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support short-term decision-making in healthcare, and its first objective proposes 

the development of the framework outlined in this chapter.  The next section 

considers existing hybrid frameworks. 

 Existing hybrid frameworks  

A conceptual framework should summarise the key factors and concepts of a 

subject matter, identify relationships between them and form definitions (Miles, 

Huberman, & Saldana, 2014). For multi-method approaches, Mingers (2001) 

argued that theoretical frameworks which can provide step-by-step guidelines will 

assist modellers in the development of hybrid models. Frameworks supporting 

hybrid simulation (HS) approaches have become popular, in particular SD and 

DES, due to the specific challenges and advantages of combining these different 

simulation approaches, namely the differing philosophies between the two 

modelling approaches, differing levels of decision-support, and the challenge of 

data exchange between continuous and discrete state changes. Some aspects 

of these are relevant to HM approaches. 

 Helal et al. (2007) introduced a methodology to integrate and synchronise HS 

based on a modular concept, where the modelled system is decomposed into 

several smaller modules, however their framework does not include conceptual 

modelling and addressed mainly technical integration. Similarly, the HS 

framework advanced by Alvanchi et al. (2011) was focused on technical 

interoperability.  Motivated by the lack of a generic conceptual modelling 

framework, Chahal & Eldabi (2008) and Chalal, Eldabi & Young (2013) developed 

a HS framework for healthcare which focussed on the conceptual stage for 

SD/DES model hybridisation.  The key elements of their framework are relevant 

for HM: problem identification, the mapping points between the models, and the 

mode of interaction, that is, how the models exchange information. Zulkepli and 

Eldabi (2015) argued that clearer guidelines on decomposition of the main 

objective into sub-objectives was required to understand the nature of 

communication between the hybridised models at the conceptual stage. They 

proposed a 3-phase framework that adds selection and communication elements 

as part of a series of guiding steps for developing the hybrid models. The three 

phases of their framework are the conceptual phase; the modelling phase; and 

the model communication phase, and it uses a modularisation approach similar 
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to that of Helal et al. (2007). The authors argued that the conceptual modelling 

phase is the most important, as it supports modellers to think about some 

important issues before starting the hybridisation process. This includes 

addressing questions such as how both models could be linked using different 

packages, how to change the information, and how such information will affect 

the final result from both models. Each of these are relevant to HM. 

Morgan, Howick & Belton (2017) took a broader stance, providing an overarching 

framework that examines the literature for ‘all forms of mixing methods’ (Howick 

& Ackerman, 2011). They used mixed-method designs to develop a conceptual 

framework for mixing OR methods. Although they applied it to HS using ABS, SD 

and DES, the principles are more broadly applicable. The features are: (i) The 

system modelling view, that is, whether a single view or multiple view is required; 

(ii) Method dominance – where information needs to be exchanged between 

methods, the direction of interaction, and the form of interaction, for example hard 

or soft methods; (iii) The mixed-method design including the number of methods, 

the number of points of information, the frequency and triggering of interaction, 

the separable roles of the methods, and the result of the mix in terms of the 

number of models and the modelling environments; and (iv) the technical 

justification of the mix.  They analysed a range of mixed-methods designs from 

the literature (isolationism, parallel, sequential, enrichment, interaction, 

integration), and how they aligned with their identified features. The purpose of 

this mapping was to enable modellers to identify the design aligned with their 

perception of the problem and system. From their mapping, the features of the 

sequential design best captures the conceptualisation needed to support a HM 

approach using real-time data, prediction and simulation for short-term decision-

support. Here, methods operate within their own paradigm, and one method 

follows the other, however they may be coded to support interaction. This is 

illustrated in Table 4.1, with the sequential design shown in the columns and the 

features which characterise the design indicated in the rows. The red text in Table 

4.1 is an extension of the framework proposed by Morgan et al. (2017), who 

indicate that sequential designs do not require a trigger. Arguably, in the case of 

a recurrent use tool using real-time data, the use of a trigger maintains the 

sequential nature of the design. Moreover, their paper emphasises that 

sequential designs have a single interaction over a given time window. However, 
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it is argued here that a sequential design used recurrently with an automated 

trigger may cycle through the sequence multiple times in a given time window. 

The number of methods, frequency of interaction, number of points of interaction, 

and type/frequency of triggers will be determined by the specific application. 

While this may share features in common with an interaction design, Morgan et 

al. (2017) note that interaction designs can interact in both directions; however 

where the interaction is one direction only, then the design is sequential, with 

interactive elements (the frequency of interaction and the type of interaction). 

How these elements will interact in the framework will be investigated in 

subsequent sections.  

Table 4-1 Mixed methods approaches and categorisations, adapted from Morgan et al. (2017) 

 

The toolkit developed by Morgan et al. (2017) supports the modeller to consider 

the input(s), the process and the output(s) of the project which all contribute to 

the selection of a mixed-method approach for hybrid simulation (HS). However 

HS studies can be distinguished from HM studies, which use simulation in 

conjunction with a range of other OR and cross-disciplinary methods. In the 

context of HM, the application of simulation with OR and cross-disciplinary 
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methods is relevant not only in the model development/implementation stage of 

an M&S study (as is commonly the case with HS), but can be applied to other 

stages in the lifecycle, for example, conceptual modelling, input and output data 

analysis, model verification and validation, model formalisation, scenario 

development and experimentation, engaging with the stakeholders in the 

implementation of the results of a simulation study, and model documentation 

(Mustafee & Powell, 2018).  

As problem definition is a key component of M&S study lifecycles (Robinson, 

2004) and of the frameworks discussed above, it is appropriate to start the 

framework with a stage that aims to develop an understanding of the problem 

situation and determining the model objectives, with a view to using a real-time 

HM approach. As the purpose of the HM is short-term decision-support, an 

integral element of the approach will be to support SA to facilitate subsequent 

decision-making. Models of SA will be investigated in more detail in Section 1.4. 

However a closer look at Design Science methodology and how it might support 

the development of a real-time decision-support tool will be undertaken in the 

next section.  

 Stages of a Design Science research methodology 

A set of conceptual principles defining what is meant by Design Science research 

were outlined in the previous chapter. These principles support a rigorous 

process for designing artefacts to solve observed problems, to make research 

Key implications for a real-time Hybrid Modelling framework 

A conceptual framework should summarise the key factors and concepts required by 

the HM, and identify relationships between them. This can be guided by a mixed-

method research design which provides an overarching framework to inform the 

appropriate methodology. From the toolkit provided by Morgan et al. (2017), a 

sequential design with interactive elements provides a basis to consider the input(s), 

the process and the output(s) of the project. The interactive elements are necessary 

for a tool which is designed to be embedded into an organisational system. However 

it is important to distinguish HS studies from HM studies. HM studies use simulation 

in conjunction with a range of other OR and cross-disciplinary methods, at any stage 

of the M&S lifecycle, while HS combines methods at the model development/ coding 

stage. In HM, the simulation model forms a single component of the framework. 
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contributions, to evaluate the designs and to communicate the results to 

appropriate audiences (Hevner et al., 2004; Peffers et al., 2007).  A research 

methodology provides practice rules to implement these principles (Peffers et al., 

2007), and in Design Science these include the development of an artefact, 

defined as “any designed object in which a research contribution is embedded in 

the design” (Peffers et al., 2007), which may be a construct, model or method 

(Hevner et al., 2004).  This separates it from other research strategies, such as 

case study research and implementation science, which can effectively evaluate 

an intervention, but assume the pre-existence of an artefact. This should be a 

process that draws from existing theories and knowledge to develop a solution to 

a defined problem. The research methodology outlined by Peffers et al. (2007) is 

illustrated in Figure 4.1. These stages will be considered alongside the 

methodology advanced by Blessing and Chakrabarti (2009) in the subsequent 

sections with application to this study. 

 

Figure 4-1 Design Science Research Methodology (reproduced from Peffers et al., 2007) 

The research methodology developed by Blessing & Chakrabarti (2009) is 

illustrated in Figure 4.2.  
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Figure 4-2 Design Research Methodology Framework, reproduced from Blessing and Chakrabarti (2009) 

Similar to the methodology of Peffers et al. (2007) in Figure 4.1, the process in 

Figure 4.2 is not considered to be sequential, but iterative, and some stages may 

run in parallel. Additionally, entry may be at different points in the process 

depending upon the study aims, and a study may focus on one or two stages 

only. The purpose of the methodology is to achieve more rigour in Design 

Science, which the authors argue will improve the transfer of results into practice. 

The individual components of the methodology will now be discussed [(a) to (d)]: 

 (a) Criteria Definition 

A project should start with a clarification of the research by reviewing the 

literature, to determine the aim, focus and scope of the research project, and how 

the findings can be used to improve design (Blessing & Chakrabarti, 2009). As 

Design Science research aims ultimately at improving a situation, it is essential 

to determine criteria for evaluation. This involves Identifying the key criteria at 

which the intervention is aimed, and aligns with the first activity of the 

methodology outlined by Peffers et al. (2007), which defines the specific research 

problem and justifies the value of the solution. It is then possible to determine the 

factors that have a negative or positive influence on a plausible solution. The 

main tasks of these criteria are (i) the identification of the goals and purpose of 

the research; (ii) to focus the Descriptive Stage I on finding the factors that 

contribute to success; and (iii) to enable evaluation of the developed artefact in 

Descriptive Stage II. Criteria can be quantitative and qualitative. Quantitative 

criteria are essential, for example assuring data quality, and model validation. 
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However qualitative data is also important, as a technically ‘correct’ model may 

still fail to inform or be integrated into practice.  Here, factors such as usability, 

confidence in the data and model, and perceived usefulness of the overall 

approach are important.  

While the overall criterion for evaluation of a recurrent-use short-term decision-

support tool is implementation through assimilation of the application in its real-

world environment, this may not be possible, for example, where an initial design 

is proposed. Implementation assumes that the stakeholders have sufficient 

confidence in the application to successfully support short-term decision-making, 

and resultant action to improve system functioning. Many factors will influence 

confidence, and in the time-frame and limitations of the research, this may not be 

possible. 

The criteria for evaluation are therefore factors that influence implementation, and 

are derived from the literature review (Chapter 2). These factors are:  

(i) The usefulness, safety, efficacy, and cost-effectiveness of the application 

(Sections 2.3.1; 2.5.2; 2.6.1; 2.7.2). 

(ii) Perceptions of the usability and functionality of the model (Sections 2.4.2; 

2.6.3) 

(iii) Confidence in the real-time data, the predictions and the simulation to provide 

short-term decision support, including its reliability and accuracy (Section 2.6.3) 

(iv) The degree to which the model is considered to impact on SA in practice 

(Section 2.4.2)  

(v) The degree to which the model fits into staff workflow (Section 2.4.2)  

(vi) The capacity and technology-readiness of the organisation to innovate, the 

wider sociocultural context and how to sustain the application following 

assimilation (Sections 2.3.2; 2.4.2; 2.5.1) 

(b) Descriptive Phase I 

Having identified the criteria for success, an understanding of the various factors 

that influence, directly or indirectly, the above criteria is required. This focuses 

the modelling process and its evaluation on factors which contribute to success, 

and aligns with the second activity of the methodology outlined by Peffers et al. 

(2007), which infers the objectives of a solution from the problem definition, and 

knowledge of what is possible and feasible. These are derived from the literature 
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as theoretical propositions (Carlsson, 2006), from site visits, direct observation 

(McKenney & Reeves, 2018), workshops (Blessing & Chakrabarti, 2009), and 

other methods such as interviews or questionnaires (Salehi & McMahon, 2009). 

User involvement takes place in the first and second phases [(a) and (b)], using 

methods appropriate for eliciting the required information to develop and evaluate 

the artefact.   

Influencing factors are considered to be inter-related, creating a network of 

causes and effects connecting influencing factors with evaluation criteria. The 

literature review in Chapter 2 identified the following factors (Section 2.8):  

 As the HM is intended for recurrent use as a decision-tool integrated into ED 

operations, it should start with a system-level understanding into what 

matters in terms of patient experience, staff satisfaction, efficiency gains, or 

cost savings. Taking a QI approach enhances the relevance of the study 

(Section 2.3.1). 

 The HM must support both task- and system-level understanding towards 

both adaptive short-term behaviours and escalation interventions, by 

augmenting existing knowledge about what is happening, or is likely to 

happen. Predictions can provide information which can support early 

adaptive behaviour to utilise spare capacity before queues build up.  Where 

an escalation response is required, simulation can test a range of scenarios 

according to the current need and allow the system to respond and mitigate 

the forecasted crowding, for example using demand management (Sections 

2.3.4 and 2.3.5).  

 As an integrated support tool, it is important that potential unexpected effects 

or uses are understood. Such tools need to be developed with care, as 

unanticipated effects can result from the type or presentation of information, 

including technology-induced errors, or ambiguous information, which can 

actually reduce human decision quality and speed. A poorly designed tool 

can increase stress and workload, rather than reduce it (Section 2.4.2).  

 The application aims to enhance system resilience, by providing usable 

knowledge that supports anticipation about what to expect and information 

regarding what to do about it. SA requires the perception of environmental 

information, the comprehension of its meaning, and a projection about the 
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future based on this knowledge. This information must be comprehended by 

staff without interrupting workflow, hence usability, automation and 

integration of components within the HM is required (Section 2.4.2).  

 Barriers to use of such an approach can exist at all levels of the organisation, 

and require understanding and managing. These include time and capacity, 

politics, resistance to change, and individual factors (Section 2.6.2).  

Further data or information about the specific problem situation can be gained 

using appropriate methods for data collection, organisation, and analysis.  

 (c) Prescriptive Phase   

The outcome of the descriptive study is used to develop the model toward the 

desired situation, and a conceptual framework can support this process. The 

prescriptive phase (Blessing & Chakrabarti, 2009) aligns with the third activity, 

‘Design and Development’ in the methodology proposed by Peffers et al. (2007).  

This includes determining the functionality and architecture, as well as building 

the actual artefact, which may be a construct, model or method (Hevner et al., 

2004). In order to assess the artefact, it needs to be developed, usually through 

prototyping (McKenney & Reeves, 2018). A single study may focus on one or 

more parts of this process, or one or more iterations (Blessing & Chakrabarti, 

2009).  

For building the model, a number of assumptions will be required, which must be 

made explicit so that the reasoning process can be traced (Robinson, 2006; 

2013). The experience of the modeller contributes toward the resultant model 

(Keys, 2006), and must be considered at all stages. The validation of data, and 

each part of the model is performed during the model build process (Balci, 1989).  

(d) Descriptive Phase II 

The second descriptive phase is a formal evaluation, undertaken to determine 

whether the model has the expected effect on influencing factors identified in 

Descriptive Stage I, and whether these factors contribute to success.  Evaluation 

provides feedback for further development. The success or otherwise of a 

modelling study may require sufficient descriptive narrative of the research 

process to enable conclusions to be made regarding the conditions under which 

the model was successful. Unexpected side effects may also occur. A reflective 
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understanding of its limitations and how it is being used can ultimately increase 

the level of trust and confidence toward successful implementation. The fourth 

and fifth activities in the methodology described by Peffers et al. (2007) can be 

mapped to Descriptive Stage II. The fourth activity is ‘Demonstration’, where the 

artefact is demonstrated toward solving one or more instances of a problem. The 

authors suggest that this may be performed in situ, or may be through 

experimentation, simulation, case study, proof-of-concept etc. The fifth activity in 

their methodology is ‘Evaluation’, which Peffers et al. (2007) define as observing 

and measuring how well the artefact supports a solution to the problem, using 

quantitative and/or qualitative analysis as appropriate. At the end of this activity 

the researchers can decide whether to iterate back to the previous activity to try 

to improve the effectiveness of the artefact or to continue on to communication 

and leave further improvement to subsequent projects. 

The purpose of Descriptive Stage II is to evaluate the functionality of the model 

from the user perspective (Blessing & Chakrabarti, 2009): is it useful in context? 

Does it address the need it was built to address? Are there any unexpected 

effects? Finally, it also assesses the criteria for evaluation, in this instance, what 

are its effects on SA? Is there confidence in each aspect of the model? Failures 

of evaluation (e.g. due to time or organisational constraints) can be reasoned, 

and can contribute to suggestions for improvement of the approach toward future 

applications (Blessing & Chakrabarti, 2009). As a proposed solution to a 

perceived need, based on a set of assumptions linking the solution to expected 

benefits, many factors may influence success or failure. For example politics, 

preferences, beliefs, motivations will all impact. As the HM intervention proposes 

to be assimilated into routine operational practice, use resources, and requires a 

certain technical infrastructure, these should be addressed in the evaluation.   

The stages outlined above, advanced by Blessing and Chakrabarti (2007) and 

aligning with the work of Peffers et al. (2007), will inform the stages of the 

framework to support a HM application.  A study using HM requires a conceptual 

framework to consider the constituent stages of a conventional M&S study and 

to explore complementary techniques (Mustafee & Powell, 2018). However, as 

the HM is developed for use as a recurrent decision-support tool, integrated into 

workflow, elements of the study process assume a different significance 

compared with single-use simulation models. While problem definition is an 
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important stage in the process of all M&S studies, Design Science emphasises 

the importance of evaluation to support iterations, improvements and similar 

future work, to ensure that the modelling process starts with the assumption that 

the model will be useful in practice. For this reason, the problem definition stage 

must also consider the criteria and influencing factors for evaluation, for example, 

it should start with a system-level understanding of what matters in practice, to 

reduce the risk of unintended consequences in a complex system. The design of 

the model needs to be considered, such that it is not just useful, but useable in 

practice. It should support situation awareness (SA), which is an important 

component of short-term decision-making, and it should consider barriers to 

implementation of such an approach early in the design process. SA is common 

to all short-term decision processes, and will be examined in the next section to 

determine its conceptual role in a HM study framework.  

 Defining the problem and the objectives  

The motivation for an M&S study is a real-world problem in an existing or 

proposed system (Robinson, 2004). For M&S studies in complex social systems, 

problem formulation requires a participative process (Jahangirian et al., 2015).  A 

participative approach does not necessarily involve formal qualitative methods or 

problem-structuring methods, although these methods can support the elicitation 

of system requirements (Powell & Mustafee, 2016). Participative practice is an 

approach to research which incorporates local knowledge into research and 

planning, and collaborative activities in an iterative, flexible design (Cornwall & 

Jewkes, 1995). Balci and Nance (1985) and Balci (2012) outlined procedures for 

problem formulation, verification of the problem and a set of indicators for 

Key implications for a real-time Hybrid Modelling framework 

From the perspective of Design Science, the real-time hybrid model aims at 

improving a situation by being embedded into organisational workflow. A specific 

research problem must be determined, and the potential value of the solution justified 

by establishing criteria for evaluation. This requires problem definition, model 

development, and evaluation stages, which should be cohesive, and should consider 

more than the accuracy of the model. Evaluation should include the contribution of 

the decision-support tool to supporting SA and consideration of barriers and 

unintended consequences in practice.   
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measuring errors of problem formulation. These emphasise both the importance 

of adequately formulating a problem, and of appropriate stakeholder 

engagement, and good methods for capturing outputs from this engagement. In 

Design Science studies, this stage has been supported by the literature as 

theoretical propositions (Carlsson, 2006), from site visits, direct observation 

(McKenney & Reeves, 2018), workshops (Blessing & Chakrabarti, 2009), and 

other methods such as interviews or questionnaires (Salehi & McMahon, 2009). 

In healthcare, studies argue for the necessity of involving patients and the public 

in quality improvement interventions (Ocloo & Matthews, 2016). The most 

appropriate methods for defining the problem and conceptualising the objectives 

of the modelling process depends on the particular situation, however some 

general principles from the literature can support a generic conceptual framework 

for real-time HM approaches. SA is integral to short-term decision-making, but 

can be enhanced or impeded by the provision of new information. For example, 

within a decision-support system, poorly presented information can increase 

stress and workload. For this reason, SA provides an overarching 

conceptualisation of the problem definition.  The following sections explore 

models of SA, as introduced in Chapter 2 (Section 2.4.2) and how they might 

inform a framework for short-term decision-support, as a precursor to short-term 

decision-making.  

 Existing literature 

 Individual situation awareness  

Endsley (1995) maintained that performance will be impeded where SA is 

incomplete or inaccurate, hence the purpose of a real-time decision-support tool 

is to project the development of a situation in an existing physical system over a 

short time period for short-term decision-support, thereby contributing to 

enhancing SA. SA is most relevant in a highly dynamic environment (Chiappe et 

al., 2012; 2015) and is a state of knowledge that provides the primary basis for 

subsequent decision-making (Endsley & Garland, 2000). As discussed in 

Chapter 2, it occurs at three levels: the perception of elements in the environment, 

comprehension of their meaning, and the projection of their status into the near 

future (Endsley, 1995; 2016).    
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An ‘agent-in-the-world’ model of knowledge creation (Boisot and Canals, 2004) 

describes how an individual receives stimuli from the physical world, perceives 

the stimuli as data (Level 1 of Endsley (1995), i.e. perception of elements in the 

current situation), conceptualises it in the context of their own expectations (Level 

2 of Endsley (1995) i.e. comprehension of current situation), and alongside their 

own stored mental model and values, computes this as knowledge and acts upon 

it. This shares commonalities with Naturalistic Decision Making (Klein, 2008) 

where feedback loops seek additional information from the environment where 

the situation is unfamiliar or unexpected. Naturalistic Decision Making is defined 

as ‘the way people use their experience to make decisions in field settings’ 

(Zsambok & Klein, 2014), and is concerned with how people make decisions in 

complex, real world, uncertain contexts that can require real-time decisions in 

urgent situations.  Real-time, data-driven information seeks to reinforce 

environmental cues to support faster, and more accurate, decision-making.  

Figure 4.3 is adapted from Endsley’s (1995) three-level model of SA.  

 

Figure 4-3 Three-level model of situation awareness in dynamic decision making, adapted from Endsley 
(1995). 

In this model, knowledge creation (in the form of SA) involves perception of 

elements in the environment (Level 1), comprehension of their meaning (Level 

2), and the projection of their status into the near future (Level 3). This final stage 
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involves a decision-maker projecting how the situation will evolve in a future state, 

prior to taking a decision and acting upon it. The results of the action inform SA 

in a feedback loop, however the feedback may not be immediate. Real-time data 

can support this feedback loop by providing immediate information that is not 

readily visible in other ways, contributing to awareness of the current state of a 

situation by updating users’ immediate knowledge and experience to make fast 

decisions that can inform adaptive action. This is conceptualised in Figure 4.4, 

adapted from Figure 4.3. 

 

Figure 4-4 Three-level model of situation awareness in dynamic decision making, adapted from Endsley 
(1995), including a conceptualisation of how real-time data can support situation awareness and 
performance. 

In Endsley’s model, as explained in Chapter 2 (Section 1.4.2.1), a range of 

individual and environmental factors influence SA, decision-making and action, 

and subsequent performance. Environmental factors are relevant for the design 

element of the HM, as unanticipated effects can result from the type or 

presentation of information, for example, technology-induced errors (Peute et al., 

2013; McGeorge et al., 2015). Similarly, IT systems that provide ambiguous 

information or with poor usability can actually reduce human decision quality and 

speed (Endsley, 2016). These have implications for evaluation, which is a 

necessary component of the framework, as concluded in Section 1.2. 
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The relevance of individual factors for a real-time decision-support tool depends 

on the problem situation. In social systems, with many uncertainties, the HM aims 

to reduce uncertainty rather than to provide definitive solutions: “People are active 

participants in determining which elements of the environment will become a part 

of their (Level 1) SA by directing their attention based on goals and objectives 

and on the basis of long-term and working memory” (Endsley, 1995, p .41). This 

protects the autonomy of workers to make informed decisions for which they are 

accountable, based on multiple sources of information, including their own 

experience, knowledge and instinct (Reddy et al., 2020).  

However decisions are often made at the team level, where successful 

performance requires that team members maintain individual SA as well as 

shared SA. Specifically, shared SA requires team members to have an 

understanding of the type of information needed by others, knowledge of the 

devices used to distribute SA (e.g. dashboards), shared team processes to 

facilitate sharing of relevant information, and shared mechanisms such as a 

shared mental model. According to Stanton et al. (2006), each team member 

plays a role in the development and maintenance of other agents’ SA. An agent 

with limited or degraded SA can enhance or update his/her SA through interaction 

with another agent, which may be human or non-human (e.g. documents, 

displays, etc.) (Stanton et al., 2006; Salmon et al., 2008). 

 Team and distributed situation awareness 

Team SA comprises a team’s collective awareness of a situation. Team members 

must possess SA related to their individual roles and goals within the team (some 

of which may be common or ‘shared’ with other team members), whilst also 

holding SA related to other team members, including an awareness of other team 

members’ activities, roles and responsibilities, and also to the team overall, 

including goals and performance.  

SA-related data and knowledge are distributed around the team through team 

processes such as communication, coordination and collaboration and serves to 

inform and modify team member SA, which is also informed and modified by the 

overall team’s SA. This is represented in Figure 4.5, reproduced from Salmon et 

al. (2008), to illustrate how in a sociotechnical system, where members’ workload 

has both individual task work (task-level) and teamwork (system-level) elements, 
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SA is required at both levels. Information which contributes to both individual SA 

and shared mental models at the system level is therefore required to support 

system processes. This provides an overarching conceptualisation toward 

approaching and defining the problem. In Figure 4.5, a tripartite composition of 

team SA is apparent: individual team member SA (some of which may be 

common or ‘shared’ with other team members); SA of other team members; and 

SA of the overall team. Each of these forms of SA is impacted by team processes. 

In this model, the ‘data’ represents information coming in from the environment, 

which may be observations, technology, documentation etc.  

 

Figure 4-5 Model of team situation awareness, reproduced from Salmon et al. (2008) 

While it is apparent that people can have both individual and shared SA, and that 

this can be influenced by both environmental information (‘data’) and team 

processes such as verbal and non-verbal communication, Salmon et al. (2008) 

conceptualised Distributed SA (DSA) as a network of humans and artefacts (e.g. 

technology) at the system level, where links exist at the artefact-artefact, human-

human, and artefact-human levels. The human-human links represent team SA. 

DSA approaches therefore view team SA not as a shared understanding of the 

situation, but rather as an entity that is separate from team members’ cognitive 

processes, and a characteristic of the system itself (Artman and Garbis 1998). 

Here, the SA of a team is distributed not only throughout the agents comprising 

the team, but also in the artefacts that they use in order to accomplish their goals 

(Stanton et al., 2006). In this conceptualisation, the information held by one agent 
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modifies, and is modified by, other agents’ information, creating an interacting 

network between people and artefacts. As decisions and actions (as per Figure 

4.4) are taken based on SA which modify the environment, these changes will be 

reflected in real-time data applications as they occur, updating both task-level 

and system-level SA. This is conceptualised in Figure 4.6 (adapted from Figure 

4.5), where real-time data informs SA at the task and system-level, and 

subsequently reflects changes in the system as a result of decisive action. A 

dotted line is used to indicate that these changes occur indirectly, through human 

decision-making and action.  

 

Figure 4-6 Model of distributed situation awareness, adapted from Salmon et al. (2008) conceptualising the 
contribution of relevant real-time data to support SA 

Models of SA show how up-to-date environmental knowledge augments 

decision-making which informs action. Where real-time data, and applications 

which use real-time data, are a component of the environmental information, a 

feedback loop from actions can update environmental knowledge and SA for 

ongoing decision-support. 

 This closes the loop between environmental informationSA decision-making 

 action by updating environmental information and SA as a result of any actions 

which make changes in the system. This information must align both individual 

(task awareness) and team (system awareness) knowledge. This forms the basis 

of an architecture for a framework using real-time data for short-term decision 

support by clarifying a generic element of the problem to be addressed (deficient 
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SA at task- and system-levels) and modelling objectives (enhancing SA for short-

term decision-support in dynamic social systems).  

While real-time data provides information, the value of the information it provides 

can potentially be enhanced by the use of analytics methods, such as prediction 

and simulation, which will be examined in Section 4.5. Existing real-time 

simulation frameworks will now be examined, and how they can be mapped to 

models of SA.   

 Existing real-time simulation frameworks  

One important component of the real-time HM is real-time simulation. This 

describes a simulation which can dynamically accept and respond to real-time 

data from the physical system to improve the accuracy of the model. However 

real-time simulation can also be mutually beneficial, in that the simulation system 

not only experiments with scenarios to change the physical system, it also 

accepts and responds to data from the physical system (Fujimoto et al., 2002). 

The physical system benefits from augmented decisions, and the simulation 

system benefits from the updated data.  

Figure 4.7 illustrates the structure of a symbiotic simulation system, reproduced 

from Fujimoto et al. (2002). Via a data acquisition system, real-time or near real-

time data is taken from the physical system. A control or decision-support function 

conducts "what if" experiments to investigate alternative scenarios. From an 

analysis of the output results, the physical system is optimised so that its 

Key implications for a real-time Hybrid Modelling framework 

In a sociotechnical system, members’ workload has both individual task work (task-

level) and teamwork (system-level) elements.  SA is required at both levels for 

decisions which influence system functioning. This provides an overarching 

conceptualisation toward approaching and defining the problem. Real-time analytics 

can support SA by accurately reflecting the current state of the system for all team-

members and augmenting decision-making for individuals and teams. However SA 

models emphasise that many individual and system factors, as well as team-

processes, influence decision-making, so the autonomy to act remains with the 

decision-maker. Should action take place, changes in system behaviour as a result 

of action are reflected in the real time data, closing the loop between information, SA, 

decision and action.  
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performance is improved. In this representation of ‘symbiotic simulation’, which 

emphasises a mutually beneficial, continuous process, the results are also fed 

back to the control function for automatic validation and subsequent decision-

making. The term symbiotic simulation reflects the close relationship between a 

simulation system and a physical system. 

 

Figure 4-7 Real-time (symbiotic) simulation architecture, reproduced from Fujimoto et al. (2002) 

The extended definition provided by Aydt et al. (2008a) differentiated between 

closed-loop, as per Fujiomoto et al. (2002) - where the decision is proposed to an 

external decision-maker, or directly implemented by means of actuators - and 

open-loop simulation systems, where no feedback is created to the physical 

system. Open-loop methods are concerned with decision-making, while closed-

loop real-time simulations are used for forecasting, model validation, and 

anomaly detection (Aydt et al., 2009a).  

In the closed-loop systems, either an actuator directly controls the system, or a 

decision-maker can control the physical system, rather than implementing the 

decision directly. In this case, control of the system is indirect as the decision 

belongs to the individual. Any changes in the physical system will be reflected in 

the real-time data, via the human-in-the-loop between the physical system and 

the simulation system. This is illustrated in Figure 4.8, reproduced from Aydt et 

al. (2008a). While this accurately reflects the conceptualisation of the real-time 

simulation as used here, in this research the term ‘real-time’ simulation is used, 

in preference to ‘symbiotic simulation’ to reflect the fact that other uses of the 
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real-time data are proposed in this framework to support its intended purpose. 

The mapping between information, SA, decision and action conceptualised in 

models of SA can be seen with Figure 4.8, however the SA, decision and action 

components are all subsumed into ‘External Decision-Maker”, while the grey box 

in Figure 4.8 opens up the ‘environmental information’ components to illustrate 

the broad stages of a simulation. 

 

Figure 4-8 Human-in-the-loop closed-loop symbiotic simulation, reproduced from Aydt et al. (2008) 

Other frameworks have been proposed in the literature. Tavakoli et al. (2008) 

proposed a framework that focussed on the data integration and processing 

layers, and their components, however they also conceptualised a ‘data matching 

mechanism’ which matched physical data generation with the simulation 

processes in an open-loop design. Similarly, Song et al. (2008) developed an 

open-loop framework for real-time simulation for heavy construction operations 

which conceptualised how real-time and historical data combined with process 

knowledge can update both the structure and input data of a simulation model. 

The open-loop framework proposed by Mousavi et al. (2011) illustrated how their 

model can reduce the time gap between measurement and improvement in the 

NHS, while Oakley et al. (2020) presented a symbiotic simulation as an early-

warning system for hospital bed planning. Both used open-loop 

conceptualisations, however Hammad et al. (2012) conceptualised a two-way 
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relationship between information sources, real-time simulation and site 

operations components for construction. The healthcare model proposed by 

Bahrani et al. (2013) also presented a closed-loop design explicitly incorporating 

decision-making using a human-in-the-loop, as the decision-maker is required to 

quickly and accurately evaluate alternatives and implement a decision to maintain 

the system in a healthy state. In their conceptualisation, the real-time monitoring 

engine enables process changes to be observed. All real-time simulations share 

enhancing SA as part of their common purpose. The human-in-the-loop 

architecture can be readily mapped with SA models to emphasise the purpose of 

the real-time simulation in supporting SA at both task- and system-levels to 

augment subsequent decision-making and action. This is illustrated in Figure 4.9, 

adapted from the model by Aydt et al. (2008a) in Figure 4.8. 

 

Figure 4-9 Human-in-the-loop closed-loop symbiotic simulation, mapped with SA (system-level and task-
level), adapted from Aydt et al. (2008) 

Any simulation method may be appropriate depending upon the problem. DES 

has been commonly used in real-time simulation as per the above discussion; 

ABS is also used (e.g.Low et al., 2005; Seekhao et al., 2016; Rivas & Cahmoso, 

2017; Rasheed et al., 2019), and SD has been proposed (Zhang et al., 2017).  

This section has provided an examination of real-time simulation frameworks, 

concluding that the human-in-the-loop design for supporting short-term decision-

making augments SA at system and individual levels.  This can be mapped to 
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models of SA examined in Sections 4.4.1. As discussed in Chapter 2 in Sections 

2.5 and 2.7, a range of analytics techniques can add further value to data for 

decision-support, in addition to simulation. These are now examined in the 

following sections.  

  The use of Data Analytics in Hybrid Modelling 

As defined in Chapter 2, Data Analytics (DA) is the use of data, statistical and 

quantitative analysis, and fact-based management to drive decisions and actions. 

DA methods have been applied with simulation to support different stages of an 

M&S project, to combine the benefits from specific methods, to overcome the 

weaknesses of specific methods, or to consider the wider system in a modelling 

problem (Marshall et al., 2016; Greasley & Edwards, 2019). Marshall et al. (2016) 

argued that simulation and other DA methods offer distinct but complementary 

value in healthcare. 

Hospitals are increasingly able to accumulate large amounts of operational data 

due to advances in data collection, storage and use of standards (Chen, Lin & 

Wu, 2020). While hospital data is not ‘big data’, much of it is generated at high 

velocity and in a variety of formats, including multiple hospital input databases, 

mobile devices, Internet of Things sensors, and patient sensors. It therefore 

exhibits the characteristics of ‘big data’ in that it is growing exponentially in 

volume, velocity, variety and veracity (Galetsi & Katsaliaki, 2019 b,c). However, 

while the veracity of the data is improving in terms of its accuracy (e.g. Mbizvo et 

al., 2020), much of it is inputted by clinical staff who are prioritising patient care, 

Key implications for a real-time Hybrid Modelling framework 

The human-in-the-loop conceptualisation of real-time simulation implicitly illustrates 

how real-time simulation models enhance SA at both system and individual levels to 

augment decision-making. Real-time simulation can support all levels of individual 

SA: perception of the current situation, comprehension of the current situation, and 

projection of the future state. In common with models of SA, actions as a result of 

these decisions will change the behaviour of the physical system. These changes 

will be reflected back into the real-time data for ongoing visualisation and analysis.  

This human-in-the-loop cycle forms the outline of the framework, to emphasise both 

the relationship between the simulation model and the physical system, and that 

human decision-making can be enhanced by a real-time decision-support tool. 
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and may suffer from inaccuracies. A further significant challenge to data analytics 

in healthcare is the need to standardise and secure the process of extracting 

healthcare datasets (Galetsi et al., 2019). Nonetheless, the potential value in 

using data to support decisions is undisputed. The challenge has shifted from 

collecting and storing sufficient data, to using the data to add value to the 

healthcare organisation. 

Figure 4.10 illustrates a widely used conceptualisation of DA categories, 

functions and examples (Shao, Shin & Jain, 2014; Khalifa & Zabani, 2016). This 

hindsight-insight-foresight hierarchical framework is adapted from Davenport and 

Harris (2007) who emphasised that the degree of intelligence rises as the 

methods progress from access and reporting, to predictive and prescriptive 

analytics. Descriptive analytics involve observing historical data, diagnostic 

methods involve exploratory analysis, predictive analytics involve prediction of 

future observations, while prescriptive analytics enable the best course of action 

to be determined, under certain circumstances, supporting the ability to influence 

the system towards its goal performance.  

 

Figure 4-10 A functional categorisation of data analytics, adapted from Shao, Shin & Jain (2014) 

These are explained in more detail in the following subsections. 
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 Descriptive analytics 

Descriptive analytics analyses and presents data using techniques such as 

descriptive or summary statistics, real-time reporting, graphs, charts and 

dashboards, that is, traditional business intelligence and visualisation techniques 

(Chen & Storey, 2012; Saxena & Srinivasan, 2013; Delen & Zolbanin, 2018). Data 

is collected, maintained, and processed to allow decision-makers to quickly 

assess performance against Key Performance Indicators (KPIs) by comparing 

current performance against targets for business objectives (Peral et al., 2017). 

Descriptive analytics converts raw data into meaningful information, and 

information into insights for decision-support (Evelson, 2010). It is also used to 

prepare the data for further analysis (Delen & Zolbanin, 2018). While Haas et al. 

(2011) asserted that historical data alone, no matter how it is presented, remains 

simply a record of history which provides limited insights or solutions, Mustafee 

et al. (2018) argued that the combined use of historical and real-time data can 

alleviate some of these criticisms. Historical analytics give organisations insights 

into past events, but real-time descriptive analytics allow information to be used 

as the situation is unfolding, changing the operational environment in the present. 

Despite the plethora of data available, gaining access to real-time data in 

healthcare can be challenging. In the UK, NHS Information Governance is 

complex, with a legal framework which includes the NHS Act 2006, the Health 

and Social Care Act 2012, the Data Protection Act, and the Human Rights Act, 

and a raft of NHS standards and guidelines for information security. Due to the 

enormous complexity of Information Governance and patient confidentiality 

codes of practice, specific arrangements for NHS research ethics, and internal 

policies protecting patient-level information access (Department of Health, 2007), 

few NHS staff members will be fully confident in the detail of their hospital’s 

Governance Framework. While the secondary use of data is recognised as 

essential for improving the quality of health services (NHS England, 2019), it can 

be challenging making a case for accessing NHS data, especially for the 

continuous feeds required for a real-time application.  Additionally, the data must 

be validated by NHS staff for the purpose for which it is required, which will mean 

agreeing an information exchange standard for sending data from the hospital IT 

management system, and the data-exchange format. The quality and accuracy 

of the data will also need to be considered.  
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For this reason, if a real-time data research application is planned in the NHS, it 

is recommended that the starting point is to determine what data is available, or 

could be made available, and how often it is required. Secondly, consideration 

should be given to whether the data will be used internally only, or if it needs to 

be made available external to the organisation.  A third consideration is 

maximising the value that can be gained from the real-time data that is made 

available. Finally, historical data and other data sources may also be required to 

meet the study objectives.   

 Diagnostic analytics 

Diagnostic analytics is considered to take descriptive data a step further to 

understand why an event or performance happened. It uses exploratory data 

analysis including correlations, data mining, root cause analysis, and drill-down 

and drill-through processes, focusing on processes and causes. This may include 

understanding the impact of input factors and operational policies on 

performance measures (Shao et al., 2014). Diagnostic analytics is considered to 

require domain knowledge, and uses existing data, or may need additional data 

to be collected (Khalifa & Zabani, 2016; Delen & Zolbanin, 2018; El Morr & Ali-

Hassan, 2019).  

Diagnostic analytics may be useful as part of a HM study using real-time data, 

depending upon the objectives.  However one key use of diagnostic analytics in 

this framework is determining the conditions for triggering interactions between 

methods, that is, how the methods interact when the components of the HM are 

run. This was introduced in Section 1.2. Events in one method are implicitly 

triggered by threshold levels in another, therefore there is a variable time gap 

between the different methods in the integrated model, where events are 

triggered by the state of the system.  

Aydt et al. (2008b) highlighted a wider application, where triggers do not 

necessarily occur in line with changes in the physical system. He categorised 

triggers as reactive, preventative, or proactive. According to these definitions, a 

reactive trigger can be observed in the physical system, and are events that 

require immediate action. A preventative trigger is observed in forecasts, and 

therefore is limited to conditions that can be forecasted. Finally, a proactive trigger 
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occurs at fixed, regular intervals for continuous improvement, and does not rely 

on the notion of a triggering condition.   

In Chapter 2 (Section 2.7.5) attention was drawn to the potential advantages of 

using simulation to plan for recovery based on forecasts of a critical event. For 

staff rostering, this combined approach was used by Park et al. (2008) and Lin 

and Chia (2017), while Augusto et al. (2018) proposed to implement preventative 

triggers in their M&S framework for supporting emergency units in times of crisis. 

The addition of a preventative trigger using predictive analytics, where possible, 

can add significant advantage to the HM by augmenting decisions that allow the 

system to recover before the critical situation has actually occurred. 

 Predictive Analytics 

Predictive Analytics, in its most general sense, refers to any method which can 

predict future observations, including machine learning, data mining, forecasting, 

and mathematical approaches such as time-series approaches (Delen & 

Demirkan, 2013; Waller & Fawcett, 2013; Shao et al., 2014).  These can also 

include cross-sectional data leading to a categorical prediction through 

classification, judgemental approaches (Fildes et al., 2008), and simulation (Shao 

et al., 2014; Adra, 2016). More recently, predictive analytics often takes the form 

of data-driven machine learning methods for making predictions by specifying the 

values of new observations based on the structure of the relationship between 

inputs and outputs (Abbott, 2014; Mortenson et al., 2015; Delen & Zolbanin, 

2018) and is often considered to be a subset of, or synonymous with, ‘big data’ 

applications (e.g., Koh & Tan 2005; Janke et al., 2016; Vidgen et al., 2017).  

Taking the broader perspective, predictive analytics describes a set of methods 

which have been used extensively in healthcare to predict events based on prior 

foreknowledge from historical data and other sources of information (Soyiri & 

Reidpath, 2013).  The purpose of predictive analytics in this framework is to 

predict a critical event, such that subsequent decisions are ‘preventative’ rather 

than ‘reactive’. A range of methods could be used as appropriate to the available 

data.  

Using reactive real-time simulation, the purpose of the simulation is to find a 

solution that recovers and mitigates the effects of the detected critical situation. 

This is possible because the simulation runs much faster than real-time. In this 
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case, the simulation and its multiple runs must be completed in a short time-frame 

in order to be useful for subsequent decision-making. Aydt et al. (2008b) 

contrasted this approach with a preventative trigger, termed ‘preventative what-if 

analysis’, where a critical condition is predicted, triggering the simulation. In this 

case, the purpose of the simulation is to prevent the critical situation from arising 

in the first place. This is illustrated in Figure 4.11, reproduced from Aydt et al. 

(2008b). In this figure it can be seen that recovery to a normal operational state 

will be faster the earlier the critical condition can be detected.  

The accuracy of the forecasts with regard to both false negatives and false 

positives is an important consideration.  For example, in a safety-critical 

application, failing to detect a critical situation may be a greater error than over-

detecting and compensating unnecessarily.  In healthcare situations, this may 

often be the case, and both types of error may need to be handled. A further 

consideration is that not all critical events can be predicted, for example a major 

incident or event such as large traffic or rail incident. 

 

Figure 4-11 The timing of detection of a critical condition, and its relationship with recovery. Reproduced 
from Aydt et al. (2008b)   

Figure 4.11 illustrates where triggers might occur based on forecasts to prevent 

a critical situation from escalating. This enables the real-time simulation to run, 

potentially providing solutions to recover from the forecasted or escalating 
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situation. The next section discusses prescriptive analytics in a general sense, 

tying back to Section 4.4.2, which examined frameworks for real-time simulation.  

 Prescriptive analytics 

Prescriptive analytics informs decision-making by suggesting a solution path, for 

example, simulation can anticipate the consequences of unforeseen interactions 

and prescribe interventions on the basis of tested scenarios (Marshall et al., 

2015), while optimisation is a prescriptive method as it suggests the ‘best 

available’ values for a given function (Hoad et al., 2015). Haas et al. (2011) 

argued that prescriptive models and what-if analysis should be on an equal 

footing with other analytics methods to make sense of real-world complexity and 

support real-world decision-making. In practice, prescriptive analytics can 

continually and automatically process new data to improve recommendations and 

provide better decision actions (Delen & Zolbanin, 2018). A key challenge is to 

facilitate integration of datasets, along with simulation, analytical, statistical, and 

optimisation models, and Haas et al. (2011) suggested that research is needed 

to understand whether these integrated tools are feasible, practical, flexible, cost-

effective, and usable.  

Figure 4.12 illustrates how analytics approaches are proposed to interact in the 

real-time hybrid modelling framework for short-term decision-support, adapted 

from Figure 4.10.  

 

Figure 4-12 Proposed use of the functional categories of data analytics in framework (Adapted from Shao, 
Shin & Jain, 2014) 
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 Integration of analytics methods 

As described in the previous section, the proposed approach can be used in a 

HM, whereby the problem situation is addressed using multiple methods, 

supporting synergies between the methods. While the research design is 

sequential, as each element follows the next sequentially, the HM is designed to 

be a recurrent use decision-support tool, during busy periods, so minimal manual 

interaction is important. This information must be comprehended by staff without 

interrupting workflow, hence automation and integration of components within the 

HM is required.  As discussed in Section 4.2, the number of methods, the 

frequency of interaction, the number of points of interaction, and type/frequency 

of triggers will be determined by the specific application.  

The right infrastructure is important, and the integration component represents a 

process within which the individual methods interact to form a single, complete 

model. Figure 4.13 conceptualises the integration of the HM. The real-time data 

is accessed and pre-processed as required. This will occur at predefined 

intervals, proactively triggering the preventative component. For a preventative 

trigger, a set of values are sent to the predictive component which returns a 

forecasted value.  Should a reactive or proactive simulation trigger be required, 

the predictive component is not executed.  Given a predefined threshold, the real-

time simulation is triggered, and returns decision support. Resultant action will be 

reflected in the real-time data. This forms the HM component of the framework, 

maximising the value that can be gained from the real-time data for short-term 

decision-support.   

Key implications for a real-time Hybrid Modelling framework 

A range of descriptive, diagnostic and predictive methods can be used to support 

real-time simulation in a HM. The real-time data will need to be accessed, validated 

and processed. The conditions for triggering interactions between methods must be 

determined. Where a critical situation can be forecasted, a predictive component can 

be used to trigger the simulation, aiming to prevent the onset of a critical situation. 

Finally, the simulation model can support decisions toward either preventing the 

critical situation or mitigating its effects. These components form the backbone of a 

real-time HM framework, supporting a range of applicable methods. 
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In Figure 4.13, the cycle identified in Section 4.4 can be mapped by following the 

arrows. The real-time data is integrated with a prediction model (an optional 

component) and a simulation model. Either the real-time data or the predicted 

data can trigger the simulation. The simulation provides information which can 

support a decision. Actions as a result of the decision change the physical system 

behaviour and are therefore reflected back in the real-time data. In Figure 4.13, 

the dashed line between the real-time data and the integration component reflects 

the predefined intervals for updating the data. The arrow between the decision of 

a manager (or other stakeholder) and the real-time data is dotted, as the ‘human-

in-the-loop’ retains the autonomy to take a different decision. 

 

Figure 4-13 A conceptualisation of integration of components  

As discussed in Section 4.3, evaluation of the HM is necessary to provide 

feedback for improvements and iterations. Evaluation can take many forms, and 

Venable et al. (2016) highlighted the possibility of reducing risk by evaluating 

early, before undergoing the cost and effort of building an artefact. This may be 

integrated into the problem definition phase as a ‘formative evaluation’, defined 

as “the systematic assessment of the worth or merit of some object” (Nieveen & 

Folmer, 2013). This identifies both its inherent, intrinsic value, and its contextually 

determined value. This is discussed in the next section.  
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 Evaluation of the model in context 

In healthcare, real-time simulation is a relatively new approach, although a 

number of studies have progressed the methodology (Tavakoli et al., 2011; 

Espinoza et al., 2013; Tan et al., 2013; Oakley et al., 2020).  The majority of 

studies are proof-of-concept or prototyped applications, hence none of these 

applications have been implemented in the real-world. This means that to date, it 

is difficult to determine whether such an approach would be considered useful or 

applicable in the healthcare domain, and the circumstances under which it would 

be useful.  

An evaluation should be undertaken to determine whether the model has the 

expected effect on decision-support suggested from the literature and existing 

studies, to provide feedback for further development, and to explore any 

unexpected side effects. Within a Design Science methodology, the criteria for 

evaluation are an important component of the problem definition phase. The 

success or otherwise of a modelling study may require sufficient analysis of the 

research process to enable conclusions to be made regarding the conditions 

under which the model was successful. A reflective understanding of its 

limitations and how it is being used can ultimately increase the level of trust and 

confidence toward successful implementation. Peffers et al. (2007) suggested 

that within Design Science, the model (artefact) should be demonstrated in situ, 

or through experimentation, simulation, case study, proof-of-concept etc., to 

observe and measure how well it supports a solution to the problem. There are 

clear advantages to evaluating the model in use by real users solving real 

problems where possible. This may require quantitative or qualitative analysis as 

appropriate. Following evaluation, researchers can decide whether to iterate back 

to the previous activity to try to improve the effectiveness of the artefact or to 

leave further improvement to subsequent projects. 

Key implications for a real-time Hybrid Modelling framework 

For real-world recurrent use, all sequential components of the HM should be 

integrated and automated in a way that supports comprehension by staff without 

interrupting workflow. This creates a single HM, with a number of elements, and with 

a single purpose.  
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Issues such as reliability, accuracy, validation and verification of the model should 

be integrated into the development of each stage of the HM build. The purpose 

of this evaluation stage is to evaluate the functionality of the model from the user 

perspective, however it should also address elements such as the usability of the 

model, any barriers to its implementation, its contribution to supporting SA, and 

consideration of unintended consequences in practice. As the HM intervention 

proposes to be assimilated into routine operational practice, use resources, and 

requires a certain technical infrastructure, these should be addressed in the 

evaluation. 

A framework for Design Science research evaluation was proposed by Venable 

et al. (2016) which considers why, when, how, and what to evaluate, across the 

dimensions of formative/summative, and artificial/naturalistic. The formative 

perspective captures the possibility of reducing risk by evaluating early. This 

offers the possibility of incorporating early evaluation in the problem definition 

phase, alongside identifying criteria for final evaluation. In Venable et al. (2016), 

the summative perspective offers the possibility of evaluating the artefact in 

reality, not just in theory. Naturalistic evaluation methods evaluate the artefact in 

use by real users solving real problems, while artificial evaluation methods offer 

the possibility of controlling potential confounding variables more carefully. The 

criteria identified should guide the appropriate choice of strategy. The decision to 

implement the results of an M&S study, or in this case to embed the tool into 

operations functions for recurrent use, belongs to the organisational 

stakeholders. A variety of factors affect the outcome of such a decision, many 

outside of the control of the modeller. However for future work, it is important to 

understand which of these can be controlled, as IT interventions are unlikely to 

be adopted by healthcare professionals until they are ‘fit for purpose’, and 

stakeholders have confidence in the intervention (Ross et al., 2016; Liberati et 

al., 2017). As iterations progress, continuous, systematic evaluations are likely to 

be needed, however the focus of evaluation will change as the intervention 

becomes closer to an ideal solution, and the risk of implementation failure lowers.  
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 Integrated Hybrid Analytics Framework (IHAF) 

Through an examination of Design Science methodology, consideration of existing 

HS frameworks, and a review of the literature focusing the purpose of the study, 

a generic integrated hybrid analytics model (IHAF) is illustrated (Figure 4.14).  

 

Figure 4-14 Integrated Hybrid Analytics Framework (IHAF)  

The first stage, as supported by multiple M&S guidelines, is problem definition 

(Balci & Nance, 1985; Shannon, 1998; Robinson, 2004; Law, 2009; Martin et al., 

2018). Positioned in Quality Improvement, problem definition requires 

participative practice, defining stakeholder groups, and consideration of methods 

such as site visits, direct observation, workshops, interviews or questionnaires. 

Key implications for a real-time Hybrid Modelling framework 

Many factors influence the potential implementation of a real-time decision-support 

tool in practice. The chosen methodology supports iterative evaluation to determine 

factors which contribute to the usefulness of the approach in its applied setting, for 

improving the design or for informing future work. These factors go beyond the 

technical proficiency of the approach, to consider, for example, usability of the model, 

any barriers to its implementation, its contribution to supporting SA, and consideration 

of unintended consequences in practice. 
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From the perspective of Design Science, the real-time decision-support tool aims 

at improving a situation. This means determining a specific research problem, but 

also justifying the value of the solution by determining criteria for evaluation, 

which should consider more than the accuracy of the model. It should start with 

a system-level understanding of what matters in practice, to reduce the risk of 

unintended consequences in a complex system.  

Through the literature review in Chapter 2, and in Section 4.4, the purpose of the 

model - short-term decision support in sociotechnical systems - has emphasised 

the role of SA as a precursor to decision-making, which focuses the purpose of 

the HM. As team-work is a defining feature of sociotechnical systems, SA is 

required at both the task-level and system-level. Additionally, the information 

SAdecisionaction process is closed by a feedback loop, where system 

changes implemented as a result of decisive action informs ongoing SA via 

environmental cues and other information sources. 

It is proposed that real-time information can help to close this feedback loop by 

updating immediate feedback.  Models of SA at the team and individual levels 

conceptually map with human-in-the-loop models of real-time simulation, 

whereby the simulation model is initialised using real-time data, scenarios are 

investigated, and decisions are suggested to an external decision-maker. This 

updates system-level and task-level awareness to augment decision-making, 

however the autonomy of the decision-maker is retained. For this reason, control 

of the system is indirect. In the framework, this is represented as a dotted line 

between simulation processes and decision-making. Changes to system 

behaviour as a result of action are reflected in the real-time data, subsequently 

updating the simulation model at its next initialisation. 

Data analytics methods require consideration for adding further value to a model 

for supporting short-term decision-making. The literature review concluded that a 

HM approach which combines real-time data, predictions, and simulation has the 

potential to support short-term ED decision-making. Descriptive analytics using 

real-time data offers value by allowing information to be used as a situation is 

unfolding. However it also presents significant challenges, including accessing 

the data in real-time, and consideration should be given to maximising the value 

that can be gained from any real-time data that is made available. Furthermore, 



146 
 
 

consideration should be given to whether the data will be used internally, or if it 

needs to be made available external to the organisation.  Historical data and other 

data sources may also be required to meet the study objectives.   

Diagnostic analytics may also be important, and as outlined in Section 4.5.2, a 

key use of diagnostic analytics in this framework is determining the conditions for 

triggering interactions between methods. This may require additional operational 

or external data, which may need to be collected. Integration of methods are 

required. Events in one method are implicitly triggered by threshold levels in 

another, therefore there is a variable time gap between the different methods in 

the integrated model, where events are triggered by the state of the system. The 

right infrastructure is important, and the integration component represents a 

process within which the individual methods interact to form a single, complete 

model. Where the trigger is preventative, that is, triggered by forecasts, the 

forecasted threshold is used to trigger the real-time simulation model. In this case, 

the purpose of the simulation is to prevent the critical situation from arising in the 

first place. The combined use of descriptive, diagnostic, predictive and 

prescriptive analytics supports system-level SA and task-level SA for augmented 

decision-support which informs action, and completes the loop. Changes in the 

system as a result of decisive action are reflected in the real-time data, which 

updates both SA and the HM.  

As the HM is intended for recurrent use, evaluation is necessary to provide 

feedback for improvements and iterations. Evaluation can take many forms, 

including evaluating before undergoing the cost and effort of building the model. 

However it is valuable to demonstrate and evaluate any iteration of the model in 

context toward determining the ‘usefulness’ of a real-time decision-support tool, 

using quantitative or qualitative analysis as appropriate. The purpose of the 

evaluation stage of IHAF is to evaluate the functionality of the model from the 

user perspective, however it should also address elements such as the usability 

of the HM, unexpected effects, and barriers to its implementation, which may be 

at different organisational levels, and between different stakeholder groups. 

Following evaluation, researchers can decide whether to iterate back to a 

previous activity to try to improve the effectiveness of the artefact or to leave 

further improvement to subsequent research. Each of these stages and activities 
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has enabled the development of IHAF for supporting short-term decision-making 

in sociotechnical systems.  

The next section indicates how this chapter contributes to addressing the 

research questions (RQ) in this thesis, and how it will be used in the subsequent 

chapters.  

 IHAF framework application to address research questions 

This chapter has developed and proposed a HM framework, the Integrated Hybrid 

Analytics Framework – IHAF - for supporting the development of a HM for short-

term decision-making in sociotechnical systems. This addresses the first 

objective of RQ2.  

To test this framework, phases (b) (Descriptive phase I), (c) (Prescriptive phase), 

and (d) (Descriptive phase II) outlined in Sections 4.3 will address the second 

and third objectives of the second research question (Table 4.2), by applying 

IHAF in a use-case, and evaluating the application.  

Table 4-2 Research question 2, and its aim and objectives 

Research Question Aim Objectives 

2. How can an integrated 

hybrid approach using real-

time simulation and data 

analytics support short-term 

operational decision-

making? 

To test and evaluate the 

potential of an integrated 

hybrid approach for short-term 

decision-support in healthcare 

combining real-time simulation 

with analytics approaches. 

4. To propose a generic 
framework supporting an 
integrated hybrid approach for 
short-term decision-making in 
healthcare. 
 
5.  To apply the framework 
within a case study in a 
hospital ED. 
  
6. To evaluate the application 
of the framework. 
 

 

Stage (d) (Descriptive phase II) intends to evaluate the potential system-level 

benefits of using real-time data applications for both patients and staff. This is 

important because: 

 In the context of a sociotechnical system, patients as well as staff are 

considered to be integral components of the urgent-care system, and 

decisions of both sets of stakeholders will impact on system behaviour.  
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 In the context of quality improvement, healthcare service interventions 

should be designed to support the needs of end-users, the patients and 

their families, as well as those of service providers. 

For this reason, a formative evaluation as well as a summative evaluation will 

be undertaken (Venable et al., 2016). The formative evaluation will inform both 

the model development (as part of the problem definition stage) and the 

summative evaluation, forming the evaluation stage. Additionally, both will be 

address RQ3:   

Table 4-3 Research question 3, and its aim and objectives 

Research Question Aim Objectives 

3. What are the 

implications and the 

added value to the 

system of using real-

time data applications 

for both patient and 

NHS decision-

support? 

To analyse the system level 

impact of the use of real-time 

data by both patient and staff 

decision support 

 

3. To critically evaluate the 
perceptions that patients and 
NHS staff have regarding the 
value that real-time 
applications provide at the 
system level. 
 
4. To synthesise previous 
findings and to evaluate the 
framework in light of the 
application. 
 

 

Figure 4.15 illustrates the mapping of the stages of the Design Science research 

methodology and IHAF, with each of the three RQs. 

 

Figure 4-15 Alignment of Design Science, the proposed framework, and the methods   
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Phases (a) and (b) align with RQ1, and are addressed in the literature review in 

Chapter 2. Alongside the literature review, site visits, direct observations, and a 

formative evaluation will inform the development of the interview schedule for the 

summative evaluation, which forms part of IHAF.   

Stage (c) is addressed with application of the IHAF framework (proposed in 

Chapter 4 and implemented in Chapters 5, 6 and 7), which includes the 

summative evaluation component, staff interviews (Chapter 7). Stage (d) takes 

this evaluation further, synthesising it with the formative evaluation, and the 

literature, to address RQ3 (Chapter 7).  

 Chapter Summary 

This chapter advanced a generic HM framework, IHAF, for the development and 

execution of real-time HMs for short-term decision-support in sociotechnical 

systems, motivated by a healthcare application. This is accomplished through an 

examination of Design Science methodology, consideration of existing hybrid 

frameworks, and a review of the literature focusing the purpose of the study. This 

explicitly addresses the first objective of the Research Question 2, to propose a 

framework supporting an integrated hybrid approach for short-term decision-

making in healthcare. The framework is developed to be generic, with 

transferable knowledge which aims to support similar future work in similar 

domains. 

The model progresses through a sequence of stages. The problem definition 

stage is partly addressed with reference to the literature on situation awareness 

(SA) at individual and team levels. As the framework is positioned within the 

principles of QI, the problem definition stage is considered to require participative 

practice. SA and real-time simulation provide an overarching conceptualisation.  

Models of SA and closed-loop real-time simulation, though arising from different 

disciplines, conceptually align in their component parts. In SA models, SA is 

informed by environmental cues, with subsequent decision-making supporting 

action. This can change system behaviour, and via a feedback loop can inform 

ongoing SA. However feedback may be delayed. In human-in-the-loop real-time 

simulation models, real-time data initialises a simulation model, providing 

decision-support. Subsequent action changes the system, reflected in real-time 

data, providing faster and more accurate feedback than system observations. 
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The use of analytics to add value to real-time data forms the backbone of the 

framework. A HM decision-support tool which combines real-time data, 

predictions, and simulation has the potential to effectively support short-term 

decision-making. Hence, an architecture integrating descriptive, diagnostic, 

predictive and prescriptive methods has been proposed. The diagnostic 

component determines the conditions for triggering interactions between 

methods. The trigger may be reactive, or predictive, depending whether a 

predictive component is required, where the purpose of the simulation is 

prevention.  

As the HM is intended for recurrent use, evaluation is necessary to provide 

knowledge toward improvements and iterations. This is an essential component 

of a Design Science methodology, and is necessary in real-world applications as 

a variety of factors affect a decision to implement a recurrent-use model, many 

outside of the control of the modeller.  

The next chapter describes the application of IHAF, describing the use-case, and 

starting with the problem definition stage.    
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 Application of the Integrated Hybrid Analytics 

Framework in the use case NHS Trust 

A. Define Problem 

 Introduction 

This, and the subsequent two chapters, apply and test the Integrated Hybrid 

Analytics Framework (IHAF) proposed in the previous chapter in a use-case. This 

framework was developed and proposed in Chapter 4 as a real-time Hybrid 

Modelling (HM) framework for short-term decision-support in healthcare, with a 

particular focus on Emergency Departments (ED) (Figure 5.1; Define Problem 

component highlighted). This chapter introduces the use-case and the methods 

used to test the framework, and details the problem definition phase. The 

following two chapters (Chapter 6 and Chapter 7) apply the HM stages, and the 

evaluation stage respectively. Together, these three chapters address Research 

Question 2, to test and evaluate the potential of an integrated HM for short-term 

decision-support in healthcare combining real-time simulation with data analytics.  

The HM is tested in a single case at a NHS Trust in the South-West of England, 

and its surrounding urgent care network. The rationale for the need for short-term 

Figure 5-1 Integrated Hybrid Analytics Framework (IHAF) with problem definition stage highlighted 
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decision support in ED has been explained in Chapters 1 and 2, making ED a 

suitable case for this study.  

The aim of IHAF is to support the development and application of a HM which 

projects the progression of a situation over a short time period for short-term 

decision-support in an applied setting. Real-time predictions forecast the onset of 

a critical situation, and real-time simulation provides knowledge about 

recommended escalation actions to recover from the situation, supporting task- 

and system-level situation awareness (SA). Providing information derived from 

real-time or near real-time data seeks to reinforce environmental cues to support 

faster, and more accurate, decision-making. SA is influenced by both system-

wide factors, such as workload and quality/availability of information, and by 

individual factors, such as experience.  Salmon et al. (2008) illustrated how in a 

sociotechnical system, members’ workload has both individual task work (task-

level) and teamwork (system-level) elements.  Information which contributes to 

both individual SA and to shared mental models at the system level is therefore 

required to support system processes. This provides an overarching 

conceptualisation toward approaching and defining the problem.  

The use-case and real-time data will be described in Section 5.2. Following this, 

an overview of methods used to address the Research Questions, mapped to the 

Design Science methodology and IHAF, is clarified in Section 5.3. Section 5.4 

addresses the first stage of IHAF, problem definition, which is achieved through 

direct observation and patient questionnaires. The rest of this chapter then 

presents the development, implementation and analysis of the patient 

questionnaire which contributes to the problem definition, and provides a 

formative evaluation (Nieveen & Folmer, 2013; Venable et al., 2016). This will be 

subsequently synthesised with the final evaluation in Chapter 7. The next section 

justifies the choice of the use-case.  

 The use-case: An NHS ED in the South-West of England 

For this study, the use-case is a ‘typical case’ (Ridder, 2017), meaning it is 

representative of a broader set of cases.  This is justified at two levels:  

(i) ED as a case of healthcare: In contrast to many areas of healthcare, EDs 

function within a rapidly changing operational state requiring constant short-term 
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decision-making. While other areas of healthcare may benefit from short-term 

operational decision support - such as GP services, or ward discharge planning 

- emergency services exemplify the requirement, as arrivals are unplanned and 

largely unpredictable in the short-term. Further, in common with many areas of 

healthcare, EDs are struggling operationally, and are well-placed to potentially 

benefit from additional information to support operational activities.  

(ii) The use-case as a case of ED: The ED involved as a use-case operates with 

low physical visibility due to the fragmented layout, thus may benefit from 

additional information about crowding. It is located in a geographical area where 

staff and patients have access to a subset of real-time operational data through 

NHSquicker (Mustafee et al., 2017b) which is able to provide the real-time data 

for this study. Further, it is part of an urgent care network (UCN) consisting of one 

ED and three minor injury units (MIU), which are all spaced roughly equidistant 

geographically from ED. The NHS Trust involved has a prior history of innovation 

(Thistlethwaite, 2011) and thus has been open to improvement; nonetheless, a 

prolonged period of austerity inevitably inhibits innovation, as capacity is 

constrained, morale is reduced and funds are limited (Kelly & Young, 2017). 

 NHSquicker: the use-case real-time data 

As discussed in Chapter 3, gaining access to healthcare data can present 

significant challenges for conducting applied studies in the healthcare domain, in 

particular where data is required in the form of live feeds. For this reason real-

time data needs to be considered early in the study alongside problem definition 

if the application is to proceed.  

For this study, data has been made available by NHSquicker (Mustafee et al., 

2017b). NHSquicker (https://www.nhsquicker.co.uk/) was developed by the 

Health and Care IMPACT (Information, Modelling, Prediction and Evaluation to 

inform ACTion) Network (https://www.health-impact-network.info/) as a digital 

platform with the aim of shaping demand across urgent care networks. The 

IMPACT network, a collaboration between University of Exeter Business School 

and NHS organisations in the south-west of England, aims to facilitate 

collaborative working between universities and health and care organisations, 

and one of its stated missions is to create a thriving academic community for PhD 

students undertaking research in health and care. As a member of the IMPACT 

https://www.nhsquicker.co.uk/
https://www.health-impact-network.info/
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network, this research has benefitted from collaborating on projects such as 

NHSquicker, for example by gaining access to the data, and has also contributed 

to NHSquicker development, for example supporting elements of its evaluation. 

One component of the NHSquicker platform is a mobile phone application which 

provides real-time wait-time data for patients across the southwest of England, 

with the aim of supporting attendance decisions for low-acuity patients. The NHS 

Trust use-case is one hospital which contributes real-time data to NHSquicker 

from its ED and three MIUs. These four facilities form an UCN. The data is 

available both historically and in near real-time, with three variables: (i) The total 

number of patients in each department (ii) The number of patients waiting to be 

assessed by a clinician (iii) The maximum wait time to be assessed by a clinician.  

NHSquicker data has been validated by a number of NHS Trusts for its purpose 

(supporting attendance decisions for low-acuity patients), with jointly agreed data 

exchange standards. It provides data for most treatment centres in the UCN 

which can be utilised for decision support. This provided an opportunity to 

leverage NHSquicker data for real-time hybrid modelling. 

Currently, patients and staff have access to real-time wait-time data via 

NHSquicker. It is proposed that both patients and staff will have access to real-

time predictions, and that staff will have access to the real-time simulation. 

However at the time of conducting this research, no patients (as participants) 

were familiar with or had used NHSquicker for supporting attendance decisions. 

 Research focus 

Inappropriate ED attendance for problems that are better suited to MIU, walk-in 

centres (WIC), general practice (GP), pharmacy or self-treatment can contribute 

to crowding. The resultant demand-capacity mismatch has wide-ranging impacts, 

associated with poor patient outcomes, longer hospital stays, poor patient 

experience, and a reduced staff morale (Bond et al., 2007; Morris et al., 2012; 

Sun et al., 2013; Boyle & Higginson, 2018; Morley et al., 2018; Higginson & Boyle, 

2018; Abir et al., 2019). The definition and proportion of ‘inappropriate’ or ‘non-

urgent’ attendance varies widely in the literature, for example a systematic review 

undertaken by Durand et al. (2011) found considerable variability in the 

proportions of visits deemed non-urgent, from 4.8% to 90%, with an overall 

median of 32%. The causes are multifactorial, with input, throughput and output 
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factors all contributing, such that addressing the problem is a complex endeavour. 

Kluth et al. (2014) classified approaches to complex decision-making, with one 

approach categorised as ‘focusing on individual factors’. This involves dividing 

the main complex problem into single smaller problems. We cannot expect to 

understand complex systems completely, and selecting system boundaries and 

scope are of vital importance in defining the problem area, and in the design of 

decision-support approaches (Daellenbach et al. 2012).  

The focus of the study is low-acuity patients visiting ED. Low-acuity presentations 

were defined by Dinh et al. (2016) as those who self-presented (were not 

transported by ambulance), were assigned a triage category of 4 or 5 (low-

urgency or non-urgent) and were discharged to their usual residence from ED.  

In this study, the first two criteria are used, as no information is available about 

the discharge destination of patients. 

 Methods overview 

In Chapter 3, Table 3.1 illustrated how methods are used in this research to 

address the individual research questions and objectives. In the previous chapter, 

Figure 4.15 illustrated the alignment of the Research Questions (RQ), the Design 

Science methodology, and IHAF. This is updated in Figure 5.2 illustrating the 

alignment of the RQs, the phases of the Design Science methodology described 

in Chapters 3 and 4, the IHAF framework developed in Chapter 4, and the 

individual methods used to test the framework in the use-case.  

Phases (a) and (b) address RQ1. Phase (a) has been defined using the literature, 

as discussed in Chapters 2 and 4, and determine the aim, focus and scope of the 

research project, which has informed the development of the framework. Phase 

(b) focuses the modelling process and its evaluation of factors which contribute 

to a plausible design, and are derived from the literature as theoretical 

propositions (Carlsson, 2006), and from other information sources, in this case 

site visits, direct observation (McKenney & Reeves, 2018), and questionnaires 

(Salehi & McMahon, 2009), as described in subsequent sections of this chapter. 

While the primary aim of this phase in the Design Science methodology is to 

determine the criteria for evaluation of the model, it is also used within IHAF to 

define the problem, and forms its first stage.   
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The prescriptive stage (c) involves building the model. This addresses RQ2 and 

applies IHAF. In the use-case, the real-time data comes from NHSquicker, the 

integrated real-time predictions use time-series forecasting, and the real-time 

simulation is a discrete-event simulation model (Chapter 6). Finally, the 

evaluation stage (d) uses staff interviews, and is the final component of IHAF 

(Chapter 7).  

 

Figure 5-2 Relationship between research questions, DS methodology, IHAF, and methods in use-case 

For RQ3, the staff interviews and patient questionnaires are synthesised with the 

literature to analyse the system level impact of the use of real-time data for short-

term decision-support, and to evaluate the potential value and barriers to 

implementation of the HM. The following sections of this chapter focus on the 

problem definition phase of the IHAF application in its use-case.  

 IHAF: Problem definition stage 

 Site visits and direct observations 

Defining the problem requires a triangulation of approaches, in this case the 

literature review, site visits and observational data. While the available real-time 

data does not define the problem, it is worth considering early, as access or 

restrictions may place limits on the application.  Reviews of the literature have 

already been undertaken in Chapters 2 and 4 toward defining the problem using 

an overarching approach (to develop the framework) and with a more focused 

approach (for application to ED). Having selected a use-case, the specific 

problem to be addressed, and the objectives of the HM approach need to be 
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clarified. A real-time HM starts with the assumption that it will be useful in practice. 

For this case study, field notes and observations contributed to understanding the 

problem, and the desire for solutions. Observation is a method of data collection 

which looks at people and places in their natural settings. Participant observation 

provides direct experiential and observational access to the social reality of 

people, involving not just observation but also listening. Observation is less 

disruptive and more unobtrusive than interviewing (Holloway & Wheeler, 1996).  

Observations may be of four types: (i) The ‘complete participant’ takes an insider 

role and uses covert observation; (ii) The ‘participant as observer’ requires 

access permission and explains their observer roles to participants, but may also 

have a contributory role to play; (iii) The ‘observers as participant’ are only 

marginally involved in the situation, with no role to play in the setting apart from 

gathering data; (iv) The complete observer takes no part in the setting, and is a 

‘fly on the wall’. Whichever approach is used, observation generally progresses 

from unfocussed and unstructured, to more focussed observations of specific 

actions and events (Creswell & Creswell, 2017). 

Field issues in any type of field research can present challenges. When using 

qualitative methods, this can include maintaining a balance between objectivity 

and sensitivity, a process of reflectivity that requires openness, a willingness to 

listen and ‘give voice’, and representing multiple views as accurately as possible. 

Some of these issues are discussed at length by Corbin and Strauss (2014).  

For this case study at an NHS ED, two types of participant observation were used: 

(i) ‘Observer as participant’: for ED observation of processes, behaviours, 

data collection for developing the simulation model (Chapter 6) 

(ii)  ‘Participant as observer’: Workshops and events specifically aimed at 

understanding how real-time data is useful to patients and the NHS, as 

part of the co-development of NHSquicker (Appendix 2).  

The contribution of the observational data (ii) to defining the problem is as follows: 

1. 3rd IMPACT network event 21 June 2016, University of Exeter Business 

School. Thirty-nine NHS management, IT, clinical and communications staff, 

patient representatives and academics attended the one-day event. The purpose 
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was to focus aspects of the design of NHSquicker toward its subsequent 

development. 

 There was general concern by managers and clinicians that more information 

is needed about how people with low-acuity conditions use ED and that this 

required engaging with patients about what mattered to them, for example, 

do they have misconceptions that ED can offer ‘better’ care? What do 

patients base attendance decisions on?  Why do MIU attenders choose MIU? 

 Academics and communications staff agreed that understanding how 

patients use services requires engaging with patients to find out what ‘value’ 

means to them. 

 Clinicians were keen that assumptions were not made about who ‘needed’ 

to be seen in ED, and that providing information does not necessarily mean 

facilitating a decision, which may be multifactorial. Managers and 

communications staff emphasised that decisions about where to attend 

should involve patients.  

 There was agreement that providing patient access to a subset of real-time 

data would: support joint working between providers across the urgent care 

network; empower, educate, and inform patients; improve resource utilisation 

across the network by spreading demand; reduce anxiety in patients; reduce 

waits for patients. 

 Several participants mentioned that the NHS is often fearful of change or 

action, with various examples of concern, for example patients might make 

suboptimal decisions. An unintended consequence may be empty EDs, and 

MIUs underperforming against the 4-hour target. 

 

2. 4th IMPACT network event Qualitative Systems Dynamics workshops (Powell 

& Bradford, 2000) 18 July 2018 and 27/28 June 2019 (NHS Hospital). These 

involved a manager, a clinician, several lay attenders, two academics (one an 

experienced facilitator). The purpose was to gather intelligence to confirm 

assumptions relating to demand and supply side factors contributing to crowding 

and the effects of real-time data. This was a data-gathering exercise for academic 

research.  
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 Patient anxiety was a central theme; real-time data was perceived to reduce 

patient anxiety by providing additional information and increasing confidence, 

dependent upon the actual and perceived accuracy of the real-time data. 

 Previous experience of a service is perceived to influence risk aversion and 

anxiety, either positively or negatively. 

 ED wait times are counterbalanced by more effective demand-capacity 

management across the urgent care network, including redirecting patients 

from ED to MIU. 

 Patient anxiety and perceived urgency influence inappropriate attendance to 

ED. 

 As inappropriate attendances increase, more patients will be redirected from 

ED to MIU. This occurs when ED is overcrowded.  

All field notes are documented in Appendix 2. 

The problem statement in the context of the use-case application is therefore that 

a proportion of low-acuity (non-urgent) patients who could safely be seen 

elsewhere in the Urgent Care Network (UCN) are attending ED, contributing to 

crowding. The focus of the use-case is investigating how real-time data analytic 

approaches might support short-term decision making toward the safe 

distribution of low-acuity patients across the UCN.  

From the literature review and the observations, it was determined that more 

information was needed about what was important to patients when using 

services in the UCN, how they made attendance decisions, and how they might 

make use of real-time data to support health-seeking behaviour in the wider 

system. This was done using patient questionnaires. The overall process is 

outlined in the following subsection. Following this, the remainder of this chapter 

details the development, data collection, analysis and results of the patient 

questionnaires.  

 Patient Questionnaires 

To support the problem definition stage of IHAF, it was determined necessary to 

understand how the end-users of the health system, the patients, use the real-

time data currently available to them. It also determined the perceived usefulness 

of predicted data for both themselves, and for the NHS. This stage has a dual 

purpose:  
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 It supports a technology- or market-pull approach. By involving end-users, 

who are part of the system under investigation, an understanding of the 

current requirements and perceived value for patients, as end-users, can be 

considered in the design and function of a decision-support tool. This also 

supports the evaluation stage of IHAF by informing the interview schedule. 

 It explores the implications and the added value to the system of using real-

time data applications for patient decision-support, for later synthesis with the 

staff interviews (Chapter 7). 

A significant body of research has uncovered a range of factors influencing the 

attendance of low-acuity patients to ED. The focus for this formative evaluation 

was therefore which of those factors could be influenced by real-time knowledge 

of wait-times, and the characteristics of patients who considered wait-time 

predictions to be useful for attendance decisions. It was determined that for this 

stage of the evaluation, responses needed to be representative and aggregated. 

This required a larger sample size than exploratory approaches such as semi-

structured interviews or focus groups could provide. An on-site user 

questionnaire was chosen, as it has no interviewer effects, and is quicker and 

more convenient than conducting structured interviews. However due to the 

length of the questionnaire, a facilitated approach was required to alleviate some 

of the disadvantages of a self-complete questionnaire. For example, it was 

possible for patients to ask for clarification if required, it reduces the risk of 

missing data, and it increases the response rate (Bryman & Bell, 2007). 

Additionally, several open questions provided additional information.  

 Questionnaire development 

Based on a purposeful review of the literature (Section 5.6) and direct 

observations (Section 5.4.1), the questionnaire was developed in three parts. The 

first section contained demographic data, the second section captured reasons 

for attendance, and the third section captured the perceptions of usefulness of 

the real-time data for attendance decision-making both now and in the future. The 

questionnaire consists of a series of brief, standardised response questions using 

a mixture of response-types, including open-ended questions. Multiple response 

questions were chosen for the main data collection rather than forced choice ‘yes-

no’ questions. While the implicit assumption is that checked items correspond to 

‘yes’ and unchecked items correspond to ‘no’, higher endorsement rates are 
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observed for ‘yes-no’ questions, which were considered could confound results 

hypothesising a relationship between ‘reasons for attending ED’ and the outcome 

measures (Meyners & Castura, 2014; Callegaro et al., 2015).  In order to capture 

the classifications derived from the literature (Section 5.6), a range of related 

‘check-all’ questions were used. This is necessary because in multiple response 

items, interpretation of the unchecked box could be ‘no’, a missed entry, 

uncertainty, or not wanting to answer the question (Callegaro et al., 2015). A final 

section contained open questions about the perceived usefulness of real-time DA 

to patients and the NHS. 

 Questionnaire setting and selection of participants 

The study was conducted across two NHS Trusts in Devon, with approximately 

150,000 ED visits each year across the two sites. The purpose of using multi-

sites in this stage was to increase the generalisation of the results. Participants 

aimed to be a representative sample of low-acuity patients seeking urgent health 

care.  Low acuity was defined by the triage nurses’ assignment of Triage 

Category 4 or 5, and that patients walked-in, that is, were not transported by 

ambulance. No assumptions were made as to whether the visit was ‘appropriate’ 

based on this categorisation. All questionnaires for participants under 16 years 

were completed by a parent or carer.  Questionnaires were administered under 

NHS honorary contracts, with university ethical approval and signed consent from 

all participants, parents or carers prior to participation. Questionnaires and 

consent forms were given in paper format, and were facilitated by a researcher 

who remained with the participant.   

 Questionnaire design and validation 

The questionnaire was validated for face validity by NHS staff and piloted on 50 

patients (Figure 5.3). Piloting ensured that no vague, complex or ambiguous 

questions, double-barrelled questions, technical jargon or formatting errors were 

included (Choi & Pak, 2005).  This was a cross-sectional facilitated questionnaire-

based study on patients from a defined catchment area. A convenience sample 

of low-acuity patients were recruited whilst waiting for care in ED, MIU and WIC 

waiting areas. Inclusion criteria were patients seeking urgent care classified as 

Triage Category 4 or 5, with either the ability to consent or accompanied by an 

adult who could consent on their behalf.  Patients who declined to participate 

were excluded.  The sample was recruited across four shifts in proportion with 
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historical arrival patterns. The sample was cross-checked with attendance data 

to ensure it was representative for age, gender and time of day. Questionnaires 

were facilitated to ensure a high return: 152 questionnaires were returned, a 

response rate of 94%.  

 

Figure 5-3 Questionnaire development process 

 Questionnaire analysis 

Descriptive statistics were used to examine the demographic characteristics and 

survey results of the sample. Statistical analysis was performed using chi-square 

for categorical data for comparison of proportions, and Mann-Whitney U test for 

interval data for comparison of means. Statistical significance was set at p<0.05 

and all analyses were performed using SPSS 24.0. Open questions were coded 

and analysed thematically using NVivo Pro 12 against the closed question 

responses.  

The questionnaire development and results are presented in the following 

sections. The results provide an understanding of the current requirements and 

perceived value of real-time data and predictions for patients, as end-users, and 

can be considered in the design and function of the HM, and support the final 

evaluation of the model.  

 Patient Questionnaire Development: Closed questions 

 Introduction 

The focus of the study is low-acuity patients visiting the ED, defined in section 

5.4.2.2. This is a problem that can be viewed both from the patient (demand) side 

and the NHS (supply) side.  

As outlined in Chapter 4, defining the problem can require a triangulation of 

approaches. Through field notes and observations, it was found that clinicians, 

managers and other NHS staff expressed concern that there is little 

understanding of why people with low-acuity conditions use ED and on what they 

base their attendance decisions. Staff considered that real-time data analytic 

(DA) applications might be useful to patients by reducing anxiety, and changing 

attendance decisions, and that the effects of this would benefit both patients and 
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the wider system. However patient views were unknown, therefore the 

questionnaires aimed to determine the characteristics of patients attending ED, 

and the expected value to patients in using real-time DA applications. At the 

system level, the DA applications are expected to support ED crowding in two 

ways:  

(i) At the user-end by providing patients with new information that can 

support attendance decisions (closed questions, Section 5.8).   

(ii) At the provider-end through decision-support, for example about 

redirecting appropriate patients to alternative services before queues 

become unmanageable (open questions, Section 5.9).  Patients were 

asked how the NHS might benefit from this information in planning and 

delivery of services.  

 Focus of questionnaire 

To support urgent and emergency care attendance decisions, it is important to 

understand why low-acuity patients attend ED, and their perceptions regarding 

the value of real-time DA for supporting attendance choices.  The definition and 

proportion of ‘inappropriate’ or ‘non-urgent’ attendance varies widely in the 

literature, for example Weinick et al. (2010) estimated between 14 and 27% non-

urgent attendance; Mason et al. (2017) found 23% of adults and 31% of children 

were non-urgent attendees; meanwhile Hsia & Niedzwiecki (2017), using a 

conservative definition, found 3.3% avoidable ED attendances.  A systematic 

review undertaken by Durand et al (2011) found 51 different methods to 

categorise visits to ED into non-urgent and urgent cases.  Many focussed on the 

main complaint, the duration of the complaint, vital signs and the need for 

diagnostic tests or treatments performed in ED. The most common categorisation 

focussed on the delay until seeking treatment. The authors also found 

considerable variability in the proportions of visits deemed non-urgent in the 

literature, from 4.8% to 90%, with an overall median of 32% (Durand et al, 2011). 

A House of Commons Library briefing paper (Baker, 2017) reported that almost 

38% of ED attendances resulted in guidance or advice, and a further 11% 

resulted in no treatment - totalling almost half of recorded attendees.  NHS Digital 

(2019a) defines unnecessary attendance as the "First attendance with some 

recorded treatments or investigations all of which may have been reasonably 

provided by a GP, followed by discharge home or to GP care”, with a national 
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average of 10.8%; however this doesn’t account for those patients who may have 

more been appropriately seen at a MIU or other facilities.  

This low level of agreement highlights the lack of reliability of these categorisation 

methods, and reflects the complexity of the issue. For example the classification 

of ‘inappropriate’ is done in retrospect, and many of these patients have been 

referred to ED by an alternative healthcare provider based on described 

symptoms, without examination or investigation. Moreover, the majority of 

patients who self-refer to ED consider their attendance appropriate, based on 

their own assessment of their condition, and knowledge about existing resources. 

In any case, not all low-acuity patients are ‘inappropriate’.  

A significant amount of research has explored the decision factors that contribute 

to patients with low-acuity medical problems using the ED rather than an 

alternative care facility appropriate for treating minor conditions.  Many studies 

have suggested that patient self-triage and decision-making regarding ED 

attendance is reasonable and appropriate based on the information available with 

which to make a decision (e.g. Nelson, 2011; Land & Meredith, 2013; Breen & 

McCann; 2013; Chapman & Turnbull, 2016; Cheek et al., 2016; Krebs et al., 

2017; Weber, Hirst & Marsh, 2017). How real-time DA, as additional information, 

can affect attendance decisions is unknown, and this is the focus of the first part 

of the questionnaire, which will subsequently inform the evaluation of the HM.  

The next section proposes the use of a conceptual model for supporting analysis 

of the questionnaire data, Andersen’s Behavioural Model, which is used to both 

explain and predict healthcare utilisation, and health-related outcomes such as 

patient satisfaction, through a set of determinants of health-seeking behaviour. 

Following this, a set of known factors which drive ED attendance decisions in 

patients with low-urgency conditions is derived from the literature (Section 5.6).    

 Conceptual framework for analysis: Andersen’s Behavioural Model 

of Health Service Use  

Healthcare utilisation is the point in health systems where the needs of patients 

and the service provided by the system meet.  Utilisation is strongly dependent 

upon both the structure of the system and need-related factors (Babitsch et al., 

2012).  The Behavioural Model of Health (Andersen, 1995) describes three 

categories of individual and contextual determinants of health-seeking behaviour: 
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(i) predisposing characteristics such as demographic and social factors, 

psychological factors including health beliefs and individual resilience and trust 

in/familiarity with the medical organisation; (ii) enabling resources such as 

family/social influences, availability of medical resources, access to care, social 

support, and convenience of services including organisational factors; and (iii) the 

perceived need to the individual, such as evaluated health status, self-reported 

health, psychological distress and anxiety (Andersen, 1995; Babitsch et al., 

2012).  

Andersen’s model provides an appropriate conceptual basis for understanding 

ED utilisation because it considers both human attitudes, such as beliefs about 

the healthcare system, and health-seeking behaviour. It demonstrates the 

complex interaction between factors which enable or impede utilisation of a health 

service, an individual’s predisposition to use a service, and their need for care.  

The model was originally developed by Andersen (1968) and has been expanded 

through numerous iterations. Andersen (1995) extended the model past the use 

of services to end at health outcomes, and included feedback loops to illustrate 

that health outcomes may affect aspects such as health beliefs and behaviour. 

The sixth revision (Andersen, Rice & Kominski, 2011) expanded further to include 

quality of life as an outcome and emphasises contextual as well as individual 

determinants of access to medical care (Figure 5.4). Dimensions of utilisation are 

defined according to components of the framework. Contextual characteristics 

are the circumstances and environment of health care access, including health 

organization and provider-related factors as well as community and family 

characteristics, while individual characteristics belong to individuals.  

The arrows leading from the contextual characteristics indicate how they can 

influence health behaviours and outcomes in multiple ways. They can work 

through individual characteristics, for example low distribution of MIUs may lead 

to increased use of ED by low-income persons who don’t own a car, while 

contextual characteristics can also influence health behaviours and outcomes 

directly, for example poor GP accessibility and continuity can result in increased 

use of ED, independent of individual characteristics (van den Berg et al., 2016). 
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Figure 5-4 The Behavioural Model of Health, reproduced from Andersen (2013) 

The model suggests that major components of contextual and individual 

characteristics determine utilisation. These are:  

(i)   Contextual predisposing characteristics, which are existing conditions 

that predispose people to use or not use services: demographic factors, (e.g. age, 

gender, marital status); social factors (e.g. educational level, ethnic and racial 

composition, measures of spatial segregation, employment level) and beliefs 

(e.g. community or organisational values, cultural norms, political viewpoints 

regarding how health services should be organized, financed, and made 

accessible to the population). 

   

(ii) Contextual enabling conditions that facilitate or impede use of services, 

including public policies at all levels from local to national, financing 

characteristics including socioeconomic levels, the method of compensating 

providers; organisational factors include the number and distribution of services, 

staffing, structure in the community, resources, opening hours, and facilities 

(Andersen, 2008). 

 

(iii)  Contextual need or conditions that lay-people or health care providers 

recognize as requiring medical treatment (Andersen, 1995; Andersen, Davidson 

& Baumeister, 2014), quality of housing, rate of disease and injury. Population 

health indices are more general indicators of community health such as mortality 

and morbidity rates. 
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Individual characteristics which determine utilisation include: 

 

(i) Individual predisposing characteristics, such as age, gender, and genetic 

factors can determine individual need for care. Social factors determine the status 

of a person in the community and their ability to cope with presenting problems, 

including education, occupation, and ethnicity. Social networks, such as 

presence of family and friends can facilitate or impede utilisation. Health beliefs 

are attitudes, values, and knowledge people have about health and health 

services that can influence their perception of need for health services (Andersen, 

1968; Bradley et al., 2002). 

 

(ii) Individual enabling characteristics enable access, for instance income is 

relevant even where healthcare is nationalised, for example the cost of parking 

or public transport, or taking time off work. Social support, for example emotional 

or practical help can be an enabler. Organisation of health services describes, for 

instance, whether the patient is registered with a GP (Blackwell et al., 2009). It 

also includes means of transportation, reported travel time, and waiting time for 

care (Andersen et al., 2014). 

 

(iii) Individual need characteristics: Perceived need is how people view their 

own general health, perceptions of the severity of their presenting complaint, and 

how they respond to symptoms of illness, pain and anxiety (Afilalo et al., 2004; 

Hoot & Aronsky, 2008). Evaluated need represents professional judgment and 

objective measurement about a patient’s physical status and need for medical 

care, which can also have a social component (Andersen, 1995; Blackwell et al., 

2010; Andersen et al., 2014). Quality of life has been recently added to the model 

to reflect an increased focus on patient-centred care.  

 

Health behaviours are personal behaviours that influence health status, such as 

diet or exercise. The process of medical care is the behaviour of providers 

interacting with patients. Personal health behaviours interact with use of health 

services to influence health outcomes. The patient’s perceived health status is 
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influenced by health behaviour, personal health services use, and individual 

characteristics, as well as the contextual environment (Hoot & Aronsky, 2008).  

Evaluated health status is dependent on the judgment of the professional. 

Consumer satisfaction is how individuals perceive the health care they receive, 

and can be judged by patient ratings of travel time, waiting time, communication 

with providers, and technical care received. Central to the model is feedback, 

depicted by the arrows from outcomes to health behaviours, individual 

characteristics, and contextual characteristics. Feedback allows insights about 

how access might be improved. Feedback can occur at the national level, or at 

the regional or Trust level, resulting in contextual changes in the organisation and 

processes of care for patients (Babitsch et al., 2012, Andersen et al., 2014).  

The model emphasises the dynamic and iterative nature of health service use, 

such that the outcome of using a service in turn affects subsequent health 

behaviour (Andersen, 1995). By using the framework's relationships it is possible 

to determine the directionality of the effect following a change in an individual's 

characteristics or environment. For example, if one experiences an increase in 

need as a result of a minor injury, Andersen’s model predicts this will lead to an 

increased use of services, where all else remains equal. It is a useful way of 

conceptualising a range of interacting factors known to contribute to health 

seeking behaviour.  

An important concept within the model is the concept of mutability. This is a 

determination of the degree to which each factor can be altered, and therefore 

can potentially influence behavioural change. Policies are implied first by 

determining what variables explain utilisation, and this is achieved using a 

structured literature review (Section 5.6). To be useful for promoting or controlling 

access, a variable must also be considered mutable, or point to policy changes 

that might bring about behavioural change. If a factor has a high degree of 

mutability (i.e. can be easily changed) a policy would be justified in using its 

resources to address this intervention, rather than a factor with low mutability. For 

example social structure is judged as being of low mutability, as ethnicity is not 

changeable, and altering educational or occupational structures is not a viable 

short-term policy to influence utilisation. Health beliefs are judged as having 

medium mutability since they can be altered and can affect behavioural change. 

Characteristics that fall under demographics are difficult to change, however 



169 
 
 

many enabling resources are assigned a high degree of mutability as individual, 

community, or national policy can take steps to alter the level of enabling 

resources for an individual. For example, the UK government has made sustained 

attempts to clarify the difference between ‘emergency’ and ‘urgent’ care to ensure 

patients seek ‘the right care, in the right place, whenever they need it.’ With the 

aim of reducing pressure on ED, NHS111 provides access to urgent care advice, 

while the roll-out of urgent care centres for convenient, local treatment of urgent 

conditions aims to improve access (NHS England, 2020a). At the local level, 

Trusts communicate availability and appropriateness of services, facilities within 

those services, and opening hours. At the individual level, patients can educate 

themselves about services in order to make urgent-care attendance decisions. 

Adequate communication by Trusts and other services to collate this information 

makes this a straightforward task for individuals, and should reduce uncertainty 

about where best to attend for treatment, directly influencing perceived need.   

Andersen (1995) explained that ‘need’ encompasses not just actual (evaluated) 

need, but also perceived need for care, which may be increased or decreased 

through health education, incentives to use particular services, and other factors 

such as anxiety. The degree to which real-time DA impacts on the perceived need 

for care in ED is the purpose of the questionnaire, and will ultimately inform RQ3, 

the evaluation of the system level impact of the use of real-time DA for both 

patient and staff decision-support. This is an exploratory questionnaire, as no 

participants actually used real-time information to inform their attendance 

decisions, hence how ‘perceived need’ translates into health behaviours and 

outcomes needs to be addressed through future work.  The next section reviews 

the health-related literature to understand reasons for low-acuity ED attendance. 

These will inform the development of the set of closed questions, and subsequent 

analysis according to Andersen’s conceptual model.  

 Literature Review: closed questions 

A literature review was undertaken to collate a set of known factors which drive 

ED attendance decisions in patients with low-acuity conditions. CINAHL 

(Cumulative Index to Nursing and Allied Health Literature) is an index of English-

language and selected other-language journal articles about nursing, allied 

health, biomedicine and healthcare. Preliminary searches for papers aiming to 
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categorise reasons for low-acuity (non-urgent) patients attending ED indicated 

that they were mainly published in medical (particularly emergency care) or 

medical policy journals. MEDLINE, a comprehensive database, focuses on 

biomedical literature and returned thousands of clinical and biomedical papers. 

In Web of Science, which includes MEDLINE, the same search criteria limited to 

‘Health Policy Services’ found relatively few relevant papers. CINAHL was 

chosen as a small database which indexes a high number of medical journals, 

and returned a large proportion of relevant papers. Other databases are likely to 

return further relevant papers, however it was judged that the selection retrieved 

had provided sufficient information to inform the questionnaire.   

 The search was undertaken in the following way (Table 5.1):  

Table 5-1 Search strategy for questionnaire development 

Database(s) CINAHL (EBSCOhost) 

Content Search Abstract 

Search criteria (“Emergency department” OR  “emergency room” OR  

“accident and emergency” OR  “accident & emergency” OR  

a&e OR  “a & e”)  

AND (non-urgent OR "low acuity" OR inappropriate) 

Limit(s) Full text results, Academic Journals, 2008-2018 (full years), 

English language 

Results 730 

Filtered by title/abstract 31 

 

The search returned 730 papers. They were filtered by title, then abstract, for 

papers that specifically sought to understand and explore factors, reasons and 

characteristics associated with ED attendance by patients with low-acuity 

conditions. Papers were included where a subset of characteristics were 

examined, for example reasons for using ED rather than primary care services 

(Nelson, 2011; Shaw et al., 2013), or where participants have specific inclusion 

criteria, such as age (Rowe et al., 2015).  

A full range of factors were sought, so papers were not restricted to the UK, 

although the search period was limited to the last decade. The reason for this is 

that in the UK, changes in the structure of health services have occurred over 

time, for example GP-led WICs were introduced between 2007-2010 in the UK to 
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lower the barriers to accessing primary care, and a 48-hour target for GP 

appointments was introduced in 2008 (Monitor, 2014).  

The majority of studies used patients as participants to determine decision 

factors, however a small number of papers whose respondents were staff were 

also included (e.g. Breen & McCann, 2013; Chapman & Turnbull, 2016).  Most 

papers were published in medical journals (e.g. American Journal of Emergency 

Medicine, BMJ, Internal and Emergency Medicine, International Emergency 

Nursing), health policy journals (e.g. Health Policy, International Journal for 

Quality in Health Care),  while two were commissioned reports (Rowe et al. 2015; 

Mason et al. 2017). The majority of the studies used cross-sectional 

questionnaires, while eight used qualitative methods (e.g. Backman et al., 2008; 

Shaw et al., 2013; Chapman & Turnbull, 2016; Beache & Guell, 2016) and one 

was a longitudinal design (Mason et al., 2017).   

During analysis of the papers starting from the most current, saturation of new 

decision factors occurred early in the process. This means that starting from 2018 

and working backwards by date of publication, all decision factors were identified 

by 2015. This supported the assumption that the resultant decision factors 

identified from the search constituted a complete or near-complete set. Figure 5.2 

illustrates the results of this process. Decision-making reasons were identified 

(columns) by reading each of the papers, and a red dot is placed against each 

factor where identified (lines).  

Totals are included in the table to provide an indication of the frequency of each 

of the factors, however it is important to note that the use of one database only 

(CINAHL), and the wide inclusion criteria mean that these totals are indicative 

only. Data about decision-factors are gathered using a variety of methods within 

the studies, and at times are subject to interpretation, for example the interviews 

by Backman et al. (2008) found that anxiety, feeling ‘disturbed about symptoms’, 

and a history of hospitalisation are the main factors discriminating between 

patients seeking healthcare at an ED and those attending a primary care centre. 

In Figure 5.2, these findings are classified as ‘anxiety’, ‘my condition is urgent’, 

and ‘I may need to go to hospital’.  

The questionnaire (closed-questions) aimed to understand patients’ reasons for 

attending ED, and to identify whether real-time DA presents a possible solution 
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to the challenges associated with uneven demand. The specific objectives of this 

part of the questionnaire were to understand patient awareness of, access to, 

and use of urgent care services locally, how referral and advice impacted on 

patient decision-making, and levels of patient satisfaction with using urgent care 

services. By categorising the mutability of these decision-making reasons, it is 

possible to determine which of these are potentially mutable to real-time DA, and 

may subsequently result in behavioural change.  

The individual questions are first categorised by similarity according to how they 

were used in the literature. This is done in three ways:  

(i) The validated questionnaires developed by Coleman et al. (2001), 

Penson et al. (2012) and Mason et al. (2017) informed the questions, 

categorisations, and mutability allocations. These authors grouped 

their questions by similarity and categorised them according to the 

‘strength of attendance reason’ to describe the degree to which 

categories of attendance reasons might be amenable to change.  

(ii)  The objective is to explore how real-time DA might influence individual 

characteristics, according to Andersen’s concept of mutability of 

determinants of health seeking behaviour. Descriptions of the 

characteristics (Andersen, 1995; Andersen et al., 2014) were 

examined to determine where each of the categories of questions 

could be mapped to Andersen’s model, and his descriptions of 

mutability, with a view to drawing some general conclusions about the 

potential impact of the real-time DA for patients. These validated the 

categorisations from (i).  

(iii) The categories were further validated in this context in consultation 

with two NHS clinicians (one surgical consultant, one senior ED nurse) 

and one NHS manager (quality improvement) to support content 

validity, i.e. whether the factors adequately measure the categories 

(Tsang et al., 2017).  

To summarise the above process: A search was undertaken in the CINAHL 

database for papers investigating low-acuity ED attendance. From each paper, a 

list of factors influencing attendance was identified from the empirical findings. 

These factors were then grouped by similarity, and allocated a mutability ranking, 
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as per the work of Coleman et al. (2001), Penson et al. (2012) and Mason et al. 

(2017). These were validated in consultation with NHS staff. Figure 5.2 tabulates 

the papers, the individual decision-factors, and the categories of decision-factors 

identified via the above process. The following sections describers the categories 

and mutability in more detail, which subsequently inform the questionnaire 

development.  

Table 5-2 Reasons for ED attendance by patients with low-acuity conditions, and categorisations 
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The categories are described in the next section, alongside the individual 

decision-factors that contribute to each, and the allocated mutability. Each of 

these can be mapped to Andersen’s conceptual model as ‘Individual 

Characteristics’. Contextual characteristics are considered to be fixed. In 

Andersen’s model, a combination of contextual and individual characteristics 

result in health-seeking behaviour and health outcomes. 

 Variable classification description 

1. Ease of access: Medium mutability 

Several studies found that convenience, transportation barriers and location of 

urgent care facilities contributed to attendance decisions in 35-63% of patients 

(Penson et al., 2012; Shaw et al., 2013; Land & Meredith, 2013; Alaysin & 

Douglas, 2014; Cheek et al., 2016; Idil et al., 2018; Andrews & Kass, 2018). 

Nelson (2011) found that most of their participants - low-acuity patients visiting 

ED - lived within a 15-mile radius. Non-urgent patients are reported to attend for 

convenience of location, despite being aware that their condition is not urgent or 

serious, and could wait (Chapman & Turnbull 2016; Mason et al., 2017).  In 

Andersen’s model (2013), this is considered to be an Individual Enabling 

Resource (Organisation), as convenience, proximity, and travel options enable 

access and utilisation. It’s clear that proximity and convenience is a factor in 

decision-making, and is rated as ‘medium’ strength by Mason et al. (2017), 

Penson et al. (2012) and Coleman et al. (2001) suggesting it may be amenable 

to change. 

2. Uncertainty about alternative facilities: High mutability 

While most people are aware of the location of EDs and its 24 hour access, many 

are unsure of opening hours, location and facilities of alternative services 

(Penson et al., 2012; Atenstaedt & Evans, 2015; Rowe et al., 2015).  Even 

patients who do not consider their condition to be serious will attend ED if they 

do not know where else to go, although these are relatively low rates of 5-20% 

(Penson et al., 2012; Land & Meredith, 2013; Unwin et al., 2016; Mason et al., 

2017).  Correspondingly Chapman and Turnbull (2016) reported that there is also 

a lack of awareness among healthcare professionals about which conditions are 

most appropriate for which services, where services are located, the facilities they 
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provide, and the times they are available.  Nonetheless, educating patients about 

alternative services is considered to be a priority by staff (Worthington et al., 

2005; Brim, 2008 Breen & McCann, 2013; Chapman & Turnbull, 2016). In 

Andersen’s model (1995), this is considered to be an Individual Enabling 

Resource (Organisation), as knowledge of alternatives enables access and 

utilisation. These are considered to be weak attendance reasons, highly mutable 

to change (Coleman et al., 2001; Penson et al., 2012; Mason et al., 2017).  

3. Wait times: Medium mutability 

A proportion of people believe that they will be seen more quickly at ED than 

other services (Penson et al., 2012; Land & Meredith, 2013). In some cases, 

patients prefer the convenience of a same day ‘quick-fix’, even if they believe it 

involves a wait, than to wait a few days for a GP appointment (Tsai et al., 2010; 

Nelson, 2011; Penson et al., 2012; Agarwal et al., 2012; Alyasin & Douglas, 2014; 

Chapman & Turnbull, 2016; Mason et al., 2017; Andrews & Kass, 2018). 

Convenience of one-stop facilities, the belief by patients that they’ll be seen more 

quickly in ED, and not wanting to wait for a GP appointment are all classified as 

‘medium’ strength reasons (Coleman et al., 2001; Penson et al., 2012).  As 

patients currently have no knowledge of actual wait-times, in Andersen’s model, 

wait times can be classified as an Individual Predisposing Characteristic (Beliefs), 

representing a patient’s attitudes or knowledge about health services. The 

provision of actual wait times will change this to an Individual Enabling Resource 

(Organisation), as knowledge of wait times enables a more informed choice.  

4. Past experience: Low mutability 

Treatment-seeking behaviour is repetitive and reinforcing, such that past 

experience will influence attendance behaviour (Liscott, 2016). Many studies 

focus on previous satisfaction with the efficient delivery of care, availability of 

tests such as X-ray, and perceived expertise and specialty care available in ED 

(Land & Meredith, 2013; Unwin et al., 2016). Agarwal et al. (2012) found that 

patients or carers who were anxious about presenting conditions sought 

reassurance by turning to services with which they were familiar. Cheek et al. 

(2016) found that 16% of low-acuity patients attended ED out of habit or 

convention. Past experience is a Predisposing Characteristic (Beliefs), 

representing knowledge, attitudes or values people have about health services 
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that can influence their perception or need for care (Andersen et al., 2014). 

Previous experience is rated as a ‘strong’ attendance reason by Mason et al. 

(2017), Penson et al. (2012), and Colemen et al.(2001), suggesting it is resistant 

to change. 

5. Anxiety: Medium mutability 

Anxiety is a characteristic of patients in ED which can lead to the belief that their 

condition is more serious and/or urgent that it is in reality (Shaw et al., 2013; Land 

& Meredith, 2013). Higher levels of anxiety, and stronger beliefs that conditions 

are more serious or urgent than that attributed by a triage nurse are found in non-

urgent ED patients compared to GP patients (Lega & Mengoni, 2008; Backman 

et al., 2008; Agarwal et al., 2012). Anxiety appears to strongly influence decision-

making (Pearson et al., 2018). Mason et al. (2017) found that people, particularly 

those of younger generations, have become more demanding of the healthcare 

system, and that social media and the internet can exacerbate anxiety with self-

diagnoses. Anxiety is associated with a need for rapid reassurance, with 30-50% 

of low-acuity patients indicating that they needed to see a doctor as soon as 

possible (Penson et al., 2012; Land & Meredith, 2013; Idil et al., 2018), an issue 

which is on the rise (Mason et al., 2017). Most patients report being in the most 

appropriate place, but this is often due to misperceptions that they would be 

seeing a clinician who is more qualified than their GPs (McGuigan & Watson, 

2010; Atenstaedt & Evans, 2015). In Andersen’s model, anxiety can be viewed 

as multi-faceted. Individual Predisposing Characteristics (Social) include 

normative health beliefs associated with, for example, education, occupation and 

ethnicity, and (Beliefs) are attitudes, values and knowledge that can lead to 

perception of need for health services. Both of these predisposing characteristics 

can affect anxiety, and influence the perceived need for services, that is, how 

patients respond to symptoms of illness, pain and anxiety (Andersen et al., 2014). 

This factor is considered to be of medium mutability (Coleman et al., 2001; 

Penson et al., 2012).   

6. Perceived severity: Low mutability 

Shaw et al. (2013) found that low-acuity patients with pain or perceived need for 

investigations, even where aware of alternative providers, will choose to attend 

ED.  Penson et al. (2012) estimated that two-thirds of low-acuity patients could 
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have been managed outside the ED, despite strong beliefs that they were in the 

most appropriate place for treatment. They concluded that there is a low overall 

likelihood of behaviour change in patients for whom attendance reasons include 

wanting to see a specialist, the perception that their condition is an emergency, 

a concern that they may need to go to hospital, or having been referred or 

recommended to attend by a health care professional.  People seek help from 

the place that has the facilities they perceive they need (Land & Meredith, 

2013).The frustration of wait times is offset by the benefits of perceived staff 

expertise (Atenstaedt & Evans, 2015), access to X-rays or other tests (Lega & 

Mengoni, 2008; McGuigan & Watson, 2010; Penson et al., 2012; Cheek et al., 

2016; Unwin et al., 2016), or other facilities (Land & Meredith, 2013; Unwin et al., 

2016; Andrews & Kass, 2018). Parents of under 5’s are more likely to be confident 

in ED as they perceive it to be more consistent, specialist, up-to-date and 

thorough than other services (Rowe et al., 2015). Perceived severity is an 

Individual Need Characteristics (Perceived) which represents how people view 

their own general health, perceptions of the severity of their presenting complaint, 

and how they respond to symptoms (Andersen et al., 2014). Mason et al. (2017), 

Penson et al. (2012) and Coleman et al. (2001) consider these to be ‘strong’ 

attendance reasons, therefore of low mutability.  

7. Advised to attend by Health Care Professional: Low mutability 

A common theme in the literature is the issue of alternative services referring 

non-urgent patients to ED due to risk averse behaviour (Mason et al., 2017) or 

lack of capacity within their own service (Chapman & Turnbull, 2016). Patients 

who have been referred to ED by a healthcare professional (HCP) are very likely 

to consider themselves to be in the most appropriate place (Penson et al., 2012), 

making this category of low mutability. Referred patients range from 30 to 52% in 

the literature, and are increasing over time, particularly from GPs who are under-

capacity (Penson et al., 2012; Unwin et al., 2016; Mason et al., 2017; Krebs et al. 

2017). In the UK, this is a growing problem, frequently presented as a ‘crisis’ 

(Marchand et al., 2017). This aligns with Individual Need Characteristic 

(Evaluated) in Andersen’s model. Although there may be a range of reasons 

patients are referred to an alternative service, including social reasons, patients 

are likely to view this as representing professional judgment and an objective 

measurement about their physical status and need for medical care (Andersen, 
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1995). It therefore may have a perceptual element. Mason et al. (2017), Penson 

et al. (2012) and Coleman et al. (2001) consider these to be ‘strong’ attendance 

reasons, therefore of low mutability. 

8. Advised to attend by family/friend: Medium mutability 

Interpersonal factors are a driver of attendance decisions, with carers and 

relatives influencing a reduced tolerance for risk both for ED attendance and for 

self-management (Liscott, 2016). Social networks seem to sanction risk averse 

behaviour (McGuigan & Watson, 2010), with roughly 15% of patients attending 

ED when advised to attend by friends or family (Nelson, 2011; Penson et al., 

2012), while McGuigan and Watson (2010) found that the second most common 

reason for non-urgent attendance at ED was ‘advised to attend by someone else’. 

Parents of young children are considered risk averse and will attend ED to be 

cautious (Rowe et al., 2015; Chapman & Taylor, 2016). Atenstaedt and Evans 

(2015) found that parental anxiety increased if they have to wait to see a doctor, 

even until later in the day. In Andersen’s model, this is considered to be an 

Individual Predisposing Characteristic (Social), as social networks such as the 

presence of family and friends can facilitate or impede utilisation (Andersen et al., 

2014).  Penson et al. (2012) and Coleman et al. (2001) classified this reason as 

‘medium’ strength. 

 Results: closed questions 

Based on the literature review, the questionnaire was developed in three parts: 

(i) The first section contained demographic data; (ii) The second section captured 

reasons for attendance, as described in the previous section. By categorising the 

mutability of these decision-making reasons, and investigating which are 

influenced by real-time data, it is possible to determine which may subsequently 

result in behavioural change; (iii) The third section, open questions are in Section 

5.9.  The consent form and full questionnaire are in Appendix 2a. Samples of the 

raw data and analysis are in Appendix 2b.  

 Study setting 

The study was conducted in two EDs and two MIUs across two NHS Trusts. Two 

researchers collected the data over a six-week period. Participants aimed to be 

a representative sample of low-acuity patients seeking urgent health care.  All 
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questionnaires for participants under 16 years were completed by a parent or 

carer.  No participants had previously been exposed to NHSquicker, although it 

had launched to the public in December 2017, and questionnaires were 

completed in August 2018.  This was partly due to low early adoption and partly 

due to the relatively small sample size, which was collected over approximately 

30 hours, one hour per visit, with approximately 5 questionnaires per hour 

completed. 

 Results  

 Summary statistics 

This section presents the results of the closed questions in the questionnaire. 

Questionnaires were facilitated on-site by a researcher. A total of 152 completed 

questionnaires were analysed. One hundred and sixty-two patients were 

approached, and seven declined to participate; a further three questionnaires 

were incomplete as patients were called for treatment. The most common 

reasons for refusal were for eye or hand injuries. 55% were completed by the 

patient and 45% by a respondent answering on behalf of the patient.  53% of the 

sample were female and 47% were male. In accord with the findings in the 

literature, 90% of the sample checked ‘this is the most appropriate place for me 

today’ (e.g. McGuigan & Watson, 2010; Beache & Guell, 2015; Sancton et al., 

2018), evenly distributed over those who would and would not have found the 

real-time DA useful for their current visit. Very few patients indicated that they 

were motivated by parking concerns, transport options available to them, the 

weather, 24-hour access, not being registered with a GP, or information obtained 

over the internet about available services or their condition.  

The following is a summary of the perceived usefulness of the real-time 

information: 

Perceived usefulness of the real-time information Yes No Unsure 

It would have been useful for me today 38% 31% 31% 

It will be useful for me in the future 68% 24% 8% 

I will recommend it to a friend 76% 22% 2% 

 

There is a strong age relationship between those who would or would not find the 

data useful. For example: 
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 In those aged over 50 years, only 17% would have found the data useful 

today, though 48% thought it might be useful in the future and 71% would 

recommend it to a friend.  

 For those aged over 70 years, no patients would have used it today, 

though 39% thought they may in the future.   

 In the 18-35 year age groups, 56% would have found it useful today, and 

87% in the future. 

 Statistical analysis 

The sample was classified into those who would, and would not, have found the 

real-time descriptive information useful for supporting their attendance decision 

today. The ‘unsure’ category was removed to ensure two definitive 

categorisations. The purpose is to determine the decision variable characteristics 

of those for whom the provision of real-time descriptive information forms a factor 

in their decision-making, and therefore which characteristics are potentially 

mutable to real-time DA.  The null hypotheses (H0) is that there are no differences 

between the groups. The alternative hypotheses (H1) is that different factors 

influence attendance decisions for low-acuity patients between those who do, 

and do not, find real-time information useful (for todays’ visit).  

Chi square statistical analysis is used for testing relationships between 

categorical variables. Plots and tables below show the observed frequencies, 

observed percentage of overall sample, and the p-value.  Assumptions for a chi-

squared independence test are: (i) Independent observations: each case is a 

unique person so this assumption has been met; (ii) All expected frequencies 

must be >5: where small numbers are involved, these relationships were 

excluded from the analysis (marked as n/a).  

The Mann-Whitney U test is used to compare the differences between the two 

independent groups where the dependent variable (DV) is ordinal, i.e. those 

measured using a Likert scale. It is a non-parametric test that can be used in 

place of an unpaired t-test. It is used to test the null hypothesis that two samples 

come from the same population (i.e. have the same median) or, alternatively, 

whether observations in one sample tend to be larger than observations in the 

other. The assumptions for Mann-Whitney U test are: (i) The DV should be ordinal 

or continuous. For Likert-scale questions, this assumption is met; (ii) The 
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independent variable (IV) should consist of two categorical, independent groups: 

those who believe the real-time descriptive data would or would not have 

supported their decision-making for today’s visit, meeting this assumption; (iii) 

Independent observations: each case is a unique person so this assumption has 

been met; (iv) The variables do not need to be normally distributed, but the shape 

of the distributions of the two groups must be determined. In this case, most of 

the distributions are not identical, but have a ‘similar’ shape, and the Mann-

Whitney U test is used to compare the medians of the independent variable of 

the two groups. In those variables that do not meet the assumption, the output 

uses mean ranks only.  

As patients were given the options ‘yes’, ‘no’ and ‘unsure’ for a number of 

questions, where ‘unsure’ is included in the analysis, the independent-samples 

Kruskal-Wallis test is used. This is a non-parametric test with the same 

assumptions as Mann-Whitney: samples are random and mutually independent, 

the DV measurement scale is ordinal and IV is categorical.  These assumptions 

are all met. The analysis is presented below. The test used for analysis is 

indicated for each. All analyses are 2-tailed, as no assumptions are made about 

the direction of difference between groups. 

The difference between age groups is significant, using Mann-Whitney U mean 

ranks, with younger people significantly more likely to consider the real-time data 

useful (Figure 5.5). 

 

Figure 5-5 Mann-Whitney U mean ranks for age group (DV) and perceived usefulness of real-time data (IV) 

No significant difference was found using Mann-Whitney U tests between usual 

health for those who would, and would not, find real-time descriptive data useful, 

however there is a general trend toward better general health for those who would 

find it useful. This may reflect the relatively younger ages (Figure 5.6). 
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Figure 5-6 Mann-Whitney U test for usual health (DV) and perceived usefulness of real-time data (IV) 

No significant difference was found using Mann-Whitney U tests between 

urgency and seriousness for each group, however there is a general trend toward 

lower perceived urgency and lower perceived seriousness in those who 

considered that real-time descriptive information would have been useful today 

(Figure 5.7).  

 

Figure 5-7 Mann-Whitney U tests for perceived urgency, seriousness, and certainty (DVs) and perceived 
usefulness of real-time data (IV) 

There is a significant difference between those who find real-time data useful, 

and not useful, and the certainty of patients that they are in the most appropriate 

place for today’s attendance. This suggests that where there is uncertainty about 

where best to attend, the additional information provided by the real-time data 

may be useful for supporting attendance decisions (Figure 5.7). The null 

hypotheses is that there is no difference between certainty ratings between the 

two groups. 

Using chi-square analyses, there was no significant difference in the sample 

between those who are aware of each alternative facility (Figure 5.8). The 

majority of patients claimed to be aware of alternative facilities, apart from urgent 

care centres (UCC), which in the South-West of England are an emerging 
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service. Note that questions that are ‘tick all that apply’ are treated as 

independent analyses. 

However there is a significant difference in perceptions of the appropriateness of 

alternative facilities, in particular UCCs, WICs (p<0.01) and GPs, with more 

patients who would have found real-time descriptive information useful for their 

current visit considering these services appropriate today (Figure 5.9). The null 

hypotheses is no significant difference between the two groups.  

 

Figure 5-8 Chi square analyses for awareness of alternative facilities 

 

Figure 5-9 Chi square analyses for perceived appropriateness of alternative facilities 

Each of the questionnaire items are individually analysed categorically using chi 

square analyses prior to grouping into the mutability categories derived in 

Sections 5.6 and 5.7. (Figures 5.10 and Table 5.3). The internal consistency was 

checked by ensuring the direction of responses within the categories (Tsang et 

al., 2017). As with Figures 5.8 and 5.9, Chi square tests are carried out on 

the actual numbers of occurrences, not on percentages, proportions, means of 

observations, or other derived statistics. However the accompanying plots 

illustrate the percentages. 

Interestingly, there is no difference in the findings between those who were 

referred in to the facility and those who were not, and whether they would or 

would not have found the real-time descriptive data useful for today’s decision. 

However those who were ‘advised to attend’ are statistically significantly different 

for each group, and these may represent patients who could not get a same-day 
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appointment and were advised to go elsewhere if they considered their condition 

to be urgent. In other words, the patient made the attendance decision, rather 

than a healthcare professional.  

Many of these patients may not have been aware of alternative facilities, and this 

is reflected in the statistically significant difference between those who were ‘not 

sure where else they could have gone today’ who considered the real-time data 

useful and those who did not.  

Table 5-3 Questionnaire items grouped by validated classification criteria, with individual chi square analyses 

 

For those who chose the ‘closest service’, there is also a statistically significant 

difference, suggesting that some patients may be prepared to travel further to be 
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seen more quickly. Similarly, there is a significant difference between those who 

chose their current facility because they thought they’d ‘be seen more quickly’, 

suggesting that being seen promptly is a priority and that this can be supported 

by knowledge of wait times. However very few of the participants indicated that 

wait times were a priority in their decision-making processes. This may be an 

artefact of self-report bias, or it may be that other factors took priority in making 

the decision.  This is further reflected in the anxiety measure ‘I need to see a 

doctor as soon as possible’, which is significant at p<0.02 in a group of non-urgent 

patients for those who would, compared with those who would not, have found 

the real-time information useful today. Those for whom it would have been useful 

today are also statistically more likely to find it useful in the future and to 

recommend real-time descriptive information to a friend.  

 

Figure 5-10 Attendance factors by perceived usefulness of real-time descriptive data (refer to abbreviations 
in Table 5.3 for full descriptions) 

 Categorisation of variables 

 Validity and reliability 

The questionnaire was developed according to the categories identified in the 

literature (Sections 5.6 and 5.7). Items in the questionnaire aim to be 

representative of these categories. The face validity, how well the questionnaire 

measures what it intends to measure, and the content validity, how well the 

questionnaire items cover all aspects of these constructs, was validated by two 

NHS clinicians and one NHS manager.  

Construct validity is the extent to which the survey measures a construct that is 

not directly observable, such as attitudes or beliefs. To increase the construct 

validity of the questionnaire, on several occasions the same question was asked 
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twice but reworded slightly. Additionally, groups of questions relate to aspects of 

the underlying theoretical construct as used in the literature. Construct validity is 

often evaluated using confirmatory factor analysis. It shows how the correlations 

between the questionnaire items can explain the underlying latent construct. A 

weakness of this questionnaire is that many of the questions are categorical, 

which means that correlations between variables cannot be measured. This 

additionally means that the internal consistency can’t be measured – the extent 

to which the questions for each construct measure the same construct.  However 

the direction of responses within each theoretical construct was analysed to 

support internal consistency.   

 Results of categorisations  

The results of the categorised factors is presented in Figure 5.11. 

The categories Ease of Access, Anxiety, Perceived Seriousness and Advised to 

Attend by a Health Care Professional were all statistically significantly different 

between those who would (n = 58), and those who would not (n = 47), have found 

the real-time descriptive information useful for supporting their attendance 

decision today.  

Ease of access is considered to have medium mutability, mostly due to the fact 

that health services can be relocated to improve access. However in this case, it 

seems that a significant proportion of patients who prioritise convenience to the 

facility may be prepared to travel to be seen more quickly, and that knowledge of 

wait times may support this decision.  Similarly, a significant proportion of those 

motivated by anxiety and the need for reassurance would consider the real-time 

descriptive information useful today. This may be because more information 

reduces anxiety. Alternatively it may be that anxiety can be reduced by being 

seen more quickly at a different facility. 

Those who consider their condition to be serious are significantly less likely to 

consider the real-time data useful for supporting this attendance decision. This 

category is considered to have low mutability. Similarly, those who have been 

advised to attend by a health care professional are significantly less likely to 

consider the real-time descriptive information useful today.  Being advised to 

attend is likely to increase perceptions of severity, reinforcing the belief that the 

condition is serious. 
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While uncertainty about alternatives was not statistically significant in this sample, 

there is a strong suggestion that those who would have found the real-time 

descriptive information useful today are more likely to be uncertain about 

alternative facilities. Interestingly, those who prioritise wait times were only 

slightly more likely to consider the real-time descriptive information useful or not 

useful in this sample. Equal numbers of patients who were advised by friends and 

family; or were motivated to attend by past experience considered the real-time 

data useful or not useful today. Previous experience was considered to have low 

mutability but this would indicate that approximately half of patients have the 

potential to change given new information.   

 

Figure 5-11 Chi squared analysis of categorical themes according to perceived usefulness of real-time 
information 

 Summary of findings: closed questions 

The closed questions characterised low-acuity patients who are more likely to 

consider real-time descriptive information useful for supporting attendance 

decisions. Those patients in ED who consider real-time data useful for their own 

attendance decisions tend to be younger, in better health, less certain whether 

ED is the most appropriate place to be, have not been referred from another 

service, prioritise convenience of access, are less certain about what alternative 
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facilities are available, don’t like waiting, and have a tendency to be more anxious 

and in need of reassurance.   

In contrast, those who don’t consider real-time information to be useful are more 

likely to be older, in poorer health, more sure that ED is the best place for them, 

more likely to consider their condition to be serious, are unconcerned by waits 

and are less likely to be anxious. Dinh et al. (2017) analysed over 10.7 million ED 

presentations, and classified 45% of these as low-acuity presentations, defined 

as those who self-presented (were not transported by ambulance), were 

assigned a triage category of 4 or 5 (semi-urgent or non-urgent) and discharged 

back to usual residence from ED. They found that one of the strongest predictors 

of low-acuity presentations was being aged less than 40 years, suggesting that 

the real-time information is targeting the most appropriate age groups. 

Additionally, from the literature review in Section 5.6, and the observational data 

in Section 5.3.1, it seems that anxiety is a characteristic of low-acuity attenders 

(Lega & Mengoni, 2008; Backman et al., 2008; Agarwal et al., 2012), which 

appears to strongly influence decision-making (Pearson et al., 2018) and is 

considered to be of medium mutability (Coleman et al., 2001; Penson et al., 2012; 

Mason et al., 2017). If knowledge of real-time wait-times can influence the 

perceived need for services, it may be achieving this by reducing anxiety. This 

can therefore influence more than health-seeking behaviours, potentially 

affecting outcomes such as consumer (patient) satisfaction. Feedback loops back 

into earlier model components (Andersen et al. 2014) indicate that this can have 

a positive reinforcing effect on contextual and individual characteristics, and 

ongoing health-seeking behaviour.  

Prioritisation of convenience and ease of access are characteristics of low-acuity 

ED attenders for whom the real-time information is considered valuable.  Non-

urgent patients are reported to attend for convenience of location, despite being 

aware that their condition is not urgent or serious, and could wait (Chapman & 

Turnbull, 2016; Mason et al., 2017).  Convenience, proximity, and travel options 

enable access and utilisation (Andersen et al., 2014) and have medium mutability 

(Coleman et al., 2001; Penson et al., 2012; Mason et al., 2017). It may be that 

knowledge of wait-times at nearby locations increases perceived convenience, 

as travelling further for an overall lower wait-time is preferable to visiting the 

nearest facility to wait for a longer period for treatment.  
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Those attendees who are older, in poorer health, consider their condition to be 

more serious, and have been advised to attend by a HCP are less likely to be 

mutable in their decision-making, but also, intuitively, perhaps more likely to be 

appropriate attendances. Both perceived severity and having been advised to 

attend by a HCP are individual ‘need’ characteristic (Andersen et al., 2014) with 

low mutability (Coleman et al., 2001; Penson et al., 2012; Mason et al., 2017). 

Afilalo et al. (2003) described these as ‘inevitable non-urgent visits’. Real time DA 

is significantly unlikely to influence these attendance decisions. 

Finally, patients who value wait-times are neither more nor less likely to be 

influenced by real time DA for their attendance decisions. The belief by patients 

that they’ll be seen more quickly in ED, and not wanting to wait for a GP 

appointment are all classified as ‘medium’ strength reasons (Coleman et al., 

2001; Penson et al., 2012).  As patients (as participants) had no knowledge of 

actual wait-times, in Andersen’s model wait-times can be classified as a 

predisposing characteristic representing a patient’s beliefs, attitudes or 

knowledge about health services wait-times. The provision of actual wait-times 

will change this to an Individual Enabling Resource (Organisation), as knowledge 

of wait-times then enables a more informed choice. It’s possible however that 

other characteristics of health-seeking behaviour may represent stronger reasons 

in some patients. For example a patient who believes their condition to be 

serious, or who has been advised to attend by a HCP may also value being seen 

more quickly, however the perceived severity will lead to ED attendance rather 

than attending an alternative facility for treating minor conditions. 

The set of open questions provide more insight into these decision processes.   

 Questionnaire development: open questions 

To understand how patients perceive the value in the real-time data, open 

questions gave patients the opportunity to consider how the real-time data would 

be useful today, or in the future, how they could see wait-times and predicted 

wait-times to be useful for themselves, and how they perceived the NHS could 

use this information for planning and delivery of services. This provides insight 

into the pressures that patients, as end-users, observe the NHS to be under, and 

what they perceive to be potential solutions. As it is a relatively new intervention 

for patients to have access to real-time hospital operational data, the value of this 
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information for patients is currently unknown, and as end-users, it is valuable to 

involve patients early in a potential intervention. The following three questions 

were asked: 

a) Why might it be useful for you or your friends/family to know about current 

waiting times at A&E and other urgent care services near to you? 

b) How useful would it be to you or your friends/family if you could have 

predicted waiting times for the next few hours? 

c) NHSquicker is meant for those seeking urgent care. However, can you 

think how the NHS could make use of this information in Devon & 

Cornwall?  

Of 152 completed questionnaires, 128 respondents provided open data. While 

the previous sections have gathered data which will inform the evaluation of the 

application of the framework, this section supports the problem definition stage, 

as it is necessary to understand how the end-users of the system, the patients, 

perceive the usefulness and expected value of the real-time data.  

The open data was manually coded thematically into 6 main nodes (overarching 

themes), with 9 child nodes (sub-themes, within themes), for analysis. This is 

done by reading and coding by similarity of theme, for example ‘Good to know for 

collection’ and ‘Helpful to know when preparing entertainment or to bring 

food/drink for children’ are both coded in the child node “For planning, e.g. 

childcare, parking”.  Larger data sets can support multiple thematic hierarchies 

for analysis, however each child node layer contains a reduced number of data 

points. The nodes are tabulated in Table 5.4.  

Table 5-4 Node/child node hierarchical analysis using NVivo 

Node Child node 

Balance demand/capacity across UCN Demand/capacity shaping 

 Help plan staffing/resources 

Other potential uses of real-time data  

Information other than wait times e.g. other available 

options 

 

Save time and travel  

Waiting time knowledge is useful For “when to go” decisions 

 For “where to go” decisions 

 To manage expectations 
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 For planning, e.g. childcare, 

parking 

 Whether it is appropriate to attend 

 Reduce anxiety 

 Predicted wait times are useful 

Would not have changed mind today 

 

 

 Summary of open data 

Wait-times were considered useful overall, with 262 references to the value of 

knowing wait-times to support attendance decisions. These were sub-

categorised into how patients perceived the usefulness of the wait-times, with the 

majority of respondents suggesting it would be useful for making decisions about 

where best to attend (80) with fewer references to when to attend, either a 

different time of day or day of week. 

Predicted wait-times were considered useful, with 99 references, and a further 47 

references to using descriptive and predictive wait time information for planning, 

for example childcare, transport, parking or work. There were multiple references 

to the value of additional information about available facilities or opening hours, 

especially for those who are out-of-area. Twenty-nine patients indicated that the 

real-time information would not have changed their attendance decision. The 

reasons given were mixed, for example the perceived seriousness of their 

condition, the facilities available at ED, and retaining the choice to attend the 

nearest service. Finally, with regard to prescriptive data, there were a number of 

references to the need for the NHS to balance demand and capacity, and to 

consideration of staffing and resources to balance demand. This indicates that 

patients can see the value at the system level of spreading demand across the 

UCN. 

 Patient characteristics 

NVivo enables the coded themes to be split by attributes, that is, by the closed 

questions. This supports closer investigation of both open and closed questions. 

Data is coded into non-mutually independent categories. For example, “…plan 

your visit accordingly, maybe decide if your visit is entirely necessary, prepare 

yourself for a wait and make plans...” can be simultaneously coded as ‘planning’, 

‘manage expectations’ and ‘consider whether appropriate to attend’.  
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Coding queries and crosstab queries were conducted using NVivo to drill further 

into the data.  For clarity, coded nodes (open data) will be double underlined, and 

attributes (closed data) will be dot-dash underlined in the following subsections. 

An example of crosstab results is in Appendix 2; further results are available upon 

request. The following subsections investigate the categories identified in Section 

5.7 from the literature, and in Section 5.83 in the closed questions, to gain more 

insight in light of the open question data.  

  Ease of access 

A statistically significant relationship was found between ‘ease of access’ 

measures and the usefulness of real-time information for decision-support 

(Section 5.83). It is therefore possible that a significant proportion of patients who 

prioritise convenient access to the facility may be prepared to travel to be seen 

more quickly, and that knowledge of wait-times may enable this decision.  

In the coded nodes ‘where to go’ and ‘to consider whether this service is the most 

appropriate’, 32 participants (49 references) with the ‘ease of access’ attribute 

indicated the usefulness of the real-time data, with a number indicating that they 

would have made a different choice today, e.g. “Maybe would have gone to a 

different hospital with shorter waiting times” and “Very useful. I wouldn't have 

come”. Nonetheless, 16 patients would not have changed their mind. For 

example: “Not useful, I would rather waste time than fuel”.   

Patients who value ease of access, and are not anxious, are more likely to 

consider when to go, i.e., coming at a different time or different day, but less likely 

to consider where to go, i.e. going to a different place, than those are 

simultaneously anxious. This suggests that anxiety is a higher priority in 

attendance decisions.  

Patients with past experience of the facility who value ease of access are more 

likely to use the real-time data to manage expectations and to reduce anxiety. 

Patients who are unsure of alternatives and value ease of access are more likely 

to consider the real-time information useful to consider when to go, but not where 

to go, again suggesting that ‘ease of access’ is a strong attendance reason. Even 

where the urgency is considered low, and patients feel that they can wait, a 

proportion would rather attend the most convenient facility than find about 

alternative services.  
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Ease of access is considered to have medium mutability, and the findings reflect 

this. Patients who simultaneously are referred by a HCP, consider their condition 

to be serious or have personal knowledge of ED are less likely to consider the 

real-time information useful for changing attendance behaviour, but see the value 

in reducing anxiety and managing expectations. On the other hand, those who 

are uncertain of alternatives will consider when to go, and those who are anxious 

will consider where to go, relaxing the strength of the ‘ease of access’ reason. 

 Anxiety   

A statistically significant relationship was found between ‘anxiety’ measures and 

considering the real-time information useful for decision-support. Of those 

categorised as ‘anxious’, there were 147 references to the usefulness of the real-

time information.  

To determine whether anxious patients are likely to use the real-time data to 

travel to be seen more quickly, or if having more information reduces anxiety 

without changing behaviour, ‘anxiety’ measures were used against the codes that 

supported the use of real-time data for reasons other than behaviour change: 

‘planning’ and ‘to manage expectations’. Forty references to using the real-time 

information for these purposes were made by 28 participants who had ‘anxiety’ 

attributes.  The majority (12) were concerned about arrangement transport/lifts; 

while the remaining were concerned about parking, managing their own 

expectations, childcare, work and other commitments.  

In contrast, 61 references of 36 patients with ‘anxiety’ attributes indicated that the 

real-time information would support decisions about where to go, when to go, or 

whether to go. Of these, 51 references were categorised as ‘where to go’. In other 

words, this group of patients were concerned with being seen now, not at another 

time, and are prepared to travel to be seen more quickly.  

Those who are neither anxious, nor value ease of access, are more likely to be 

interested in information other than wait-times, and less likely to use real-time 

information for planning childcare or parking. Those who are anxious and value 

ease of access are more likely to use the real-time data to reduce anxiety, 

manage expectations and decide where to go. Similarly, those who are anxious 

and not aware of alternatives are more likely to use the data to decide where to 
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go, and less likely to consider that they ‘would not have changed their attendance 

decision’.   

Anxiety is considered to have medium mutability. It seems that anxious patients 

are happy to travel to be seen, but would not delay their treatment to be seen at 

another time.  However patients who are both anxious and have been referred 

by a HCP or value ease of access are more likely to use the real-time data to 

manage their expectations, and less likely to consider it useful for where to go 

and when to go decisions.  

 Uncertainty about alternative facilities 

The relationship between uncertainty regarding available services, and 

usefulness of real-time information did not reach statistical significance (p=0.075) 

but given a larger dataset, it is possible it might have done. 16 references to the 

node ‘information other than wait-times’ referred to the usefulness of the 

additional information and not knowing about other options. Those who 

simultaneously prioritised ease of access or who are anxious are less likely to 

consider this additional information useful but more likely to consider when to go, 

suggesting that ease of access is a stronger attendance reason than not knowing 

about other options. It’s possible that ‘not knowing’ may sometimes mean ‘not 

interested in finding out’.  

There were 38 references to ‘when to go’, indicating that the information can 

support decisions to go at a different time, for example “Very useful, I would have 

waited (come at another time)!!” 28 patients indicated that the real-time 

information provides information about ‘where to go’, a surprisingly small number. 

Patients who are simultaneously anxious are less likely to consider when to go 

than those who are not anxious, while patients who prioritise ease of access are 

more likely to consider when to go. Patients who are anxious but not uncertain of 

alternatives are less likely to consider where to go than those are uncertain of 

alternatives.   

While this attribute is considered to have high mutability, it’s possible that many 

patients expressing uncertainty about where to attend are in fact prioritising ease 

of access. 
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 Severity 

There is a statistically significant relationship between the perceived severity of 

the condition, and the usefulness of real-time information. The more severe the 

condition is perceived to be, the less the real-time data is likely to impact on 

attendance decisions. This category is considered to have low mutability, and of 

the 34 references in the ‘would not have changed mind’ node, 32 of those were 

in the severity group. Patients with perceived severity who are not referred by a 

HCP are much more likely to consider the value in the data for making where to 

go and when to go decisions than those are referred. Patients who are serious 

and referred are more likely to use the real-time information for managing 

expectations. Patients who are serious, regardless of whether they prioritise ease 

of access, are more likely to use the real-time information for planning, and to 

manage expectations, and less likely to use it to help to decide where to go.  

Patients who consider their condition to be serious are more likely to consider 

that the real-time information could be useful in the future if they do not prioritise 

ease of access. Patients who consider their condition to be serious are less likely 

to change their attendance behaviour, but still consider the information to be 

valuable for planning, managing expectations and reducing anxiety. 

 Referred by HCP 

Patients are significantly less likely to consider the real-time information useful 

for supporting attendance decisions where they have been referred to the service 

by a HCP. Of the 34 references in the ‘would not have changed my mind’ node, 

20 of these were in the ‘referred by HCP’ group.  

There is significant overlap between the categories ‘referred by HCP’ and 

‘perceived severity’, suggesting that patients who have been referred may be 

more likely to consider their condition to be serious. Patients who are referred, 

whether or not they consider their condition to be serious, are more likely to reflect 

the value of considering whether it is appropriate to attend. This may be because 

they consider their own attendance to be appropriate, and are concerned that 

others should reflect on the same. Patients who are both serious and referred are 

more likely to consider the information useful for managing expectations. 

However patients who are not referred, whether or not they consider their 
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condition serious, are more likely to consider that the real-time data supports 

where to go decisions. 

This attribute is considered to have low mutability, and the findings support this. 

However patients who have been referred are open to seeing the value in the 

data for ‘where to go’ decisions. 

 Other categories 

The categories ‘wait-times’, ‘advised to attend by friends/family’, and ‘past 

experience’ were statistically similar between the groups who considered that the 

real-time information would be useful, or would not be useful for today’s visit. This 

supports the null hypotheses, that value in the real-time information for today’s 

decision is independent of these factors.  

Those who have a previous positive experience of the service are more likely to 

consider the real-time information useful for reducing anxiety, managing 

expectations, planning, and considering when best to attend. They appear less 

likely to consider where to attend, and are less likely to see the value in 

information other than wait times, in particular where they value not waiting. 

However a proportion are happy to attend the same facility at a different time. 

Similarly, those who have were advised to attend by family or friends are more 

likely to consider the real-time information useful for planning, reducing anxiety, 

managing expectations, and considering where to go. They are more likely to be 

confident that they would not have changed their mind today, than those whose 

family/friends were not involved in the attendance decision.  

Those who prioritise wait times are likely to have attended ED to avoid waiting to 

see their GP. They are more likely to consider that their attendance decision 

would remain unchanged, less likely to consider when to go, but open to the 

possibility of considering where to go, particularly where friends or family are not 

involved in the decision.  

 Certainty about today’s decision 

There is a significant difference between those who find real-time data useful, 

and not useful, and the certainty of patients that they are in the most appropriate 

place for today’s attendance (p<0.05). This suggests that where there is 

uncertainty about where best to attend, the additional information provided by the 
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real-time data is considered to be useful for supporting attendance decisions.  

The open data was used to investigate the value that the real-time information is 

providing to patients who are certain, or not certain, that they have accessed the 

most appropriate service.  

As might be expected, those who value information other than wait times are 

more likely to be uncertain, suggesting that they would value knowing where else 

they could have gone for this attendance decision.  

Those who would use the real-time information to reduce anxiety and to manage 

expectations are more likely to be certain of their decision, and less likely to 

consider that they would have changed their mind.  Again this is to be expected.  

Those who consider the value in ‘when to attend’ decisions are more likely to be 

certain. This suggests that while they are confident they are in the right place, 

some patients could have waited to attend at a different time.  

Those who value ‘where to attend’ decisions are spread evenly across all levels 

of certainty. This suggests that while today’s decision might not change, the value 

in making ‘where to go’ decisions is still seen as important.  

 Patient characteristics: conclusion 

A summary of the analysis is depicted in Figure 5.14. 

Observational data found a general concern by managers and clinicians that 

more information is needed about how people with low-acuity conditions use ED. 

They agreed that this required engaging with patients about what mattered to 

them to find out what patients base attendance decisions on. Clinicians were 

keen that assumptions were not made about who ‘needed’ to be seen in ED, and 

that providing information does not necessarily mean facilitating a decision, which 

may be multifactorial. 

The questionnaire set out to do this, and to investigate whether real-time 

information can support these attendance decisions, and in which patients. Staff 

felt that the provision of new information would reduce anxiety, but there was 

some concern that it may lead patients to make suboptimal decisions, as ‘low-

acuity’ doesn’t necessarily equate to ‘inappropriate’, and for a proportion of these 

patients, ED is the most appropriate service.  This knowledge contributes to an 
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understanding of the added value to the system of using real-time data 

applications for patient decision-support.   

 

Figure 5-12 Summary of open and closed questions analysis 

The closed questions characterised low-acuity patients who are more likely to 

consider real-time descriptive information useful for supporting attendance 

decisions. Those patients in ED who consider real-time data useful for their own 

attendance decisions tend to be younger, in better health, less certain whether 

ED is the most appropriate place to be, have not been referred from another 

service, prioritise convenience of access, are less certain about what alternative 

facilities are available, don’t like waiting, and have a tendency to be more anxious. 

Open questions sought to explore how real time DA is considered to add value 

for patients. 

The attribute ‘ease of access’ is considered to have medium mutability, and the 

findings reflect this. Patients who simultaneously are referred by a HCP, consider 
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their condition to be serious or have personal knowledge of ED are less likely to 

consider the real-time information useful for changing attendance behaviour, but 

more useful for managing expectations or reducing anxiety.  However those who 

simultaneously are uncertain of alternatives will consider when to go, and those 

who are anxious will consider where to go.  

Anxiety is considered to have medium mutability. It seems that anxious patients 

are happy to travel to attend a different service, but would not delay their 

treatment to be seen at another time.  However patients who are both anxious 

and have been referred by a HCP, or value ease of access, are more likely to use 

the real-time data to manage their expectations, and less likely to consider it 

useful for where to go and when to go decisions.  

The attribute ‘uncertainty about alternative facilities’ did not quite reach statistical 

significant between those who would, or would not, consider the real-time 

information useful for today’s attendance decision. While it is considered to have 

high mutability, it’s possible that many patients expressing uncertainty about 

where to attend are in fact prioritising ease of access. Those who simultaneously 

prioritised ease of access or who are anxious are less likely to consider this 

additional information useful but more likely to consider when to go, suggesting 

that ease of access is a stronger attendance reason than not knowing about other 

options. 

Patients with the attributes ‘perceived severity’ and ‘referred by HCP’ are less 

likely to change their attendance behaviour, but still consider the information to 

be valuable for other uses. Patients who are both serious and referred are more 

likely to consider the information useful for managing expectations. These 

categories are considered to have low mutability, and the data supports this.  

Overall, a large proportion of patients considered that real-time information is 

valuable for supporting attendance decisions, and the open data categorised the 

responses into a number of factors. These are summarised in a word cloud in 

Figure 5.15 for visualisation.   
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Figure 5-13 Word cloud summarising open data terms 

Twenty-nine out of 128 patients indicated that they would not have changed their 

attendance decision. However while those who are certain they are in the right 

place are less likely to consider the real-time information useful for today’s 

decision, they are as likely as those who are uncertain to consider that the 

information is valuable for ‘where to attend’ decisions. As the decision about 

where to attend is left with the patient, it is valuable to understand how and why 

patients take the decisions they do, and how additional information may support 

these. These findings suggest that patients are retaining the ability to make 

appropriate attendance decisions, and are able to use the real-time information 

for a variety of purposes, both to support decisions about where to attend, but 

also to add value to their attendance in a number of other ways. 

 Value in predicted wait times 

The majority of respondents perceived value in having access to predicted wait 

times, with 99 references, of which ten indicated that they wouldn’t find it useful, 

for example, “Not relevant - if it’s an emergency I have to attend anyway. I don't 

attend A&E for non-emergencies”.  Others referenced difficulties with transport, 

or their proximity to a service, for example, “Exeter A&E is still the closest”. The 

word ‘useful’ was used 59 times for this question. The majority of respondents 

who provided a reason for this value were coded as planning, e.g. for childcare, 

parking, travel or work. For example, “Would have checked wait times today. 

Would have made easier child care arrangements”.  However a number of 

patients were interested in ‘when to go’ and ‘where to go’ decisions, for example 
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“Very useful, I would have waited (come at another time)!!” and “So you can make 

an informed decision about where to go”. Other individual enabling characteristics 

can attendance decisions, for example: “Limited use to us as no car/personal 

transport to reach other areas.” Those who arrived using public transport or ‘other’ 

(e.g. walk, taxi) still saw the value however, indicating “Would have helped 

arrange transport”, and “It would be useful to help decide who would be best 

placed to take the patient and wait with them”, so it seems the additional 

predictive information can potentially be used to assist with planning alternate 

transport means.  

Those who valued ease of access and were unsure of alternatives are less likely 

to find the predicted wait times useful. Patients who are anxious, and have also 

been referred, are more likely to find the predictions useful than those who have 

not been referred. From the previous analysis, it is likely that this group of patients 

are more interested in using the data for planning and managing expectations, 

than for attendance decisions. Patients who consider their condition to be serious 

are more likely to find the predictions useful, in particular if they have been 

referred, and in particular if they value ease of access. This is likely to reflect the 

value that the majority of patients have placed in this data for planning. Patients 

who consider their condition to be serious are equally likely to find the predictions 

useful, whether or not they prioritise waiting, and whether or not they are anxious.  

It seems that patients perceive value in the predictions, but the questionnaire data 

indicates that the value it offers patients will be toward improving their experience, 

rather than changing their attendance behaviour. However some patients 

indicated that they would use predictions to consider attending a different service, 

“Would be good to know how long we'd roughly have to wait and whether 

anywhere nearby would be able to see us sooner,” and “If not a direct emergency 

it would enable you to make a decision about when to go, hopefully having a 

knock-on effect on waiting times etc.” This indicates that patients see the value 

for themselves in making both ‘where to go’ and ‘when to go’ decisions, but that 

they also see the potential advantages to the system, as the ‘knock-on effect’ to 

waiting times is an indirect advantage to both other patients, and to system 

performance.  
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 Value to the NHS 

Patients were asked to consider how they saw the value of real-time DA using 

wait time data for the NHS, by answering the question, “NHSquicker is meant for 

those seeking urgent care. However can you think how the NHS could make use 

of this information in Devon & Cornwall?” 

There were thirty-two references to balancing demand and capacity, and thirteen 

to consideration of staffing and resources to balance demand. For example, 

“Doctors could better direct and refer patients to share the workload across the 

county. Predictions can help to work out where resources need to be sent and at 

what times”, and “For all of these, GPs etc. could use this info to inform patients 

of where to go if a visit to A&E is needed. This could result in a more even spread 

of patients across hospitals etc. rather than the larger ones having the greater 

percentage.”  

This indicates that patients can see the value at the system level of spreading 

demand across the urgent care network. Patients indicated both that the NHS 

could use the information to spread demand by redirecting patients, for example 

“Divert urgent/less urgent people to other health services” and “diverting patients 

to quieter services”; and that by supporting patients to change attendance 

decisions, the NHS might benefit, for example “Help myself, help the system” and 

“Help patients to select the most appropriate place and time for both themselves 

and for the NHS.” Additionally, patients saw value for other patients and the 

system by changing health-seeking behaviour, for example “hopefully will deter 

those with minor injuries attending A&E!!” Using the information to redirect or 

optimise staffing and other resources was considered to be a good use of the 

descriptive and predictive information, for example “Service planning i.e. staffing 

at peak times” and “could help facilities prioritise staffing levels”. Patients also 

saw value for the NHS in having information about the performance of other 

services nearby, for example, “By creating greater flexibility and also for giving 

further information to other services”.  

There were 19 references to additional uses of real-time information, including 

expanding to include GP wait times, NHS111 using the wait-time information, and 

expanding the availability of the information outside of its current geographical 

coverage. This was an open question, without reference to ED crowding, however 
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it seems that patients could very clearly see the potential value for the NHS in 

using the data to support decisions about crowding.  

 Limitations 

This questionnaire study has several limitations. Firstly, while a full set of decision 

variables aimed to be collated from the literature, the use of a single database 

(CINAHL) may have restricted the search. CINAHL is limited to medical and allied 

health journals. The variables may have been strengthened by using a second 

researcher to validate identified variables, however efforts were made to validate 

categorisations using NHS staff.  

As eight theoretical constructs - categories of ED attendance reasons - were 

identified in the literature, the questionnaire was long. To ensure a high response 

rate, researcher facilitation was required to explain and demonstrate the real-time 

information, introduce the questionnaire, gain consent and remain nearby to 

collect completed questionnaires. The risks in using this approach include 

introducing self-report bias, where patients seek social desirability or social 

approval (Donaldson & Grant-Vallone, 2002). For example following recent 

media emphasis on ED pressures, patients may reinforce their own beliefs that 

they are in the most appropriate place for their condition rather than admit to 

contributing to unnecessary ED demand. Few people indicated that wait-times 

were a motivation for attendance. This may be discomfort at the suggestion that 

they were not prepared to wait a few days for a GP appointment, or it may be a 

genuine belief that their condition is too urgent to wait. Additionally, it might seem 

more socially desirable to be uncertain of other services nearby, than to admit 

that ED is not the most appropriate place today. The extent of these uncertainties 

remains unknown. 

 An additional risk of long questionnaires is no-saying and yes-saying: some 

respondents answer yes or no to all questions (Choi & Pak, 2005). Multiple 

response questions in particular may have suffered from no-saying, as ticking the 

box is likely to indicate a definite yes. Finally, open-ended questions were left 

until the end of the questionnaire, where response fatigue may have limited the 

richness of the data collected (Choi & Pak, 2005). For example, a large number 

of responses asking about the perceived usefulness of predictive wait-time data 

were along the lines of ‘yes, very useful’.     
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Multiple response questions were chosen for the main data collection rather than 

forced choice ‘yes-no’ questions. While the implicit assumption is that checked 

items correspond to ‘yes’ and unchecked items correspond to ‘no’, higher 

endorsement rates are observed for ‘yes-no’ questions, which might overstate 

the response, by forcing respondents to choose among limited options (Meyners 

& Castura, 2014; Callegaro et al, 2015).  However with multiple response items, 

interpretation of the unchecked box could be ‘no’, a ‘maybe yes’, a missed entry, 

uncertainty, or not wanting to answer the question (Choi & Pak, 2005; Callegaro 

et al, 2015). While this makes answering the questionnaire faster for patients, a 

limitation to this style of question is that it is an insensitive measure. There may 

be insufficient discriminating power to differentiate the respondents, compared, 

for example, with a Likert scale. 

Due to the intensive nature of data collection, it wasn’t possible to collect a larger 

sample in the limitations of this research. However a larger sample would have 

increased the statistical power and supported stronger interpretations between 

the open and closed codes, as some of the cross-matrices contained small 

numbers. For this reason, the comparative open/closed analysis is interpreted as 

indicative, and percentages were not included in the results. An example of an 

NVivo cross-tab analysis is included in Appendix 2b. 

Finally, the questionnaire design makes construct validity and internal reliability 

difficult to assess. This means that conclusions drawn from the questionnaire 

have limitations. However triangulating the results with the literature, staff direct 

observations, and in Chapter 7 with staff interviews, aims to increase the validity 

of the findings.  

 Chapter Summary  

This chapter has addressed the problem definition phase of the second aim of 

RQ2, to apply IHAF within a case study in a hospital ED (Table 5.4).   

Table 5-5 Research Question 2 

Research Question Aim Objectives 

2. How can an integrated 

hybrid approach using real-

time simulation and data 

analytics support short-term 

To test and evaluate the 

potential of an integrated 

hybrid approach for short-term 

decision-support in healthcare 

1. To propose a generic 
framework supporting an 
integrated hybrid approach for 
short-term decision making in 
healthcare 
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operational decision-

making? 

combining real-time simulation 

with analytics approaches. 

2.  To apply the framework 
within the case study in a 
hospital ED 
  
3. To evaluate the framework 
in this context 

 

 

 

A study using HM requires a conceptual framework to consider the constituent 

stages of a conventional M&S study and to explore complementary techniques 

(Mustafee & Powell, 2018). IHAF provides such a conceptual framework to 

support the HM for its intended purpose. It includes an evaluation component to 

both determine the value of this approach in its applied setting, and to provide 

knowledge for future iterations. To support evaluation, the problem definition 

phase seeks to determine criteria and influencing factors for evaluating the HM. 

At this stage, a formative evaluation may be considered necessary (Venable et 

al., 2017), determined by considering the specific purpose of the HM, all 

stakeholder groups, and possible evaluation methods. For this case study, direct 

observations and patient questionnaires were used as a formative evaluation. 

This chapter presented the development, implementation and analysis of the 

patient questionnaires which, as an evaluation, contributes to the problem 

definition, and will be subsequently synthesised with the final evaluation in 

Chapter 7. 

The results show that real-time DA have the potential to contribute to reducing 

ED crowding by influencing both patient health-seeking behaviour (through 

availability of real-time and predicted wait-time data), and staff decision-support 

(through the HM).  

For patients, with consideration of Andersen’s conceptual model (Andersen et al., 

2013), it is clear that there is the potential for the real-time DA to impact on 

Individual Characteristics, in particular by providing enabling information and by 

reducing anxiety. Contextual characteristics are considered to be fixed, that is, 

not influenced by the real time DA. In the model, a combination of contextual and 

individual characteristics result in health-seeking behaviour and health outcomes. 

By providing relevant information, including real-time and predicted waiting times, 

about alternative facilities (Individual Enabling Resource: Organisation), and 
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reducing anxiety (Individual Predisposing Characteristics: Social and Beliefs), the 

‘perceived need’ for health services can be influenced. The model suggests that 

this results in health-seeking behaviour, and the questionnaire data has indicated 

that a subset of patients are likely to use the real time DA to make ‘where to 

attend’ and ‘when to attend’ decisions.  

Those who are more likely to consider ‘where to go’ are patients who are anxious, 

prioritise wait-times and ease of access, and who are uncertain of alternative 

facilities. Those who are more likely to consider ‘when to go’ are patients who are 

not anxious, who are certain they are in the most appropriate place, and who 

value ease of access. Patients who consider their condition to be serious, or who 

are referred by a HCP are more likely to use the real-time DA to support planning 

their visit, managing their expectations, and reducing their anxiety. This suggests 

that for this group of patients, the real time DA is bypassing the ‘Health Behaviour’ 

Component of Andersen’s model and influencing ‘Outcomes’ directly, in particular 

patient satisfaction.  

While in the closed questions, patients who value wait-times indicated that they 

are neither more nor less likely to be influenced by real-time DA for their 

attendance decisions, the open questions provided more context. As patients (as 

participants) had no knowledge of actual wait-times, in Andersen’s model wait-

times can be classified as a Predisposing Characteristic representing a patient’s 

beliefs, attitudes or knowledge about health services wait-times. The provision of 

actual wait-times may change this to an Individual Enabling Resource 

(Organisation), as knowledge of wait-times then enables a more informed choice. 

Changing a belief to an enabler is important if the health behaviour being enabled 

is the ideal behaviour for both the patient and the NHS. The questionnaire data 

has indicated that those who are more likely to require ED treatment are less 

likely to be influenced by the real-time DA, indicating that this is expected to be 

the case.  

As Andersen’s model is for individual health-seeking behaviour, system-level 

outcomes are not predicted or explained (Andersen et al., 2014). However 

information from patients about the potential benefits to the system indicate that 

they support levelling demand across the system, both through their own (and 

others) attendance behaviour, and through the NHS using the information to 
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manage demand and resources. In this case, the real-time DA has the potential 

to influence the component Contextual Enabling Resource (Organisation). These 

are conditions that facilitate or impedes use of services, such as the number and 

distribution of services, staffing, structure in the community, resources, opening 

hours, and facilities. While not directly influencing any of these factors, where 

demand is managed across an urgent care network by both patient behaviour 

and staff processes, a reduction in crowding, and subsequently in wait-times in 

ED, acts as a contextual enabling condition for those individuals whose 

attendances are appropriate and necessary.  

 Implications for IHAF  

Within IHAF, the questionnaire study presented in this chapter has two purposes. 

The first is to assist with defining the problem, within the principles of QI. This 

requires considering all stakeholder groups, including patient experience and 

outcomes, as well as cost savings and operational efficiency. Involving patients 

as end-users, who are part of the system under investigation, enables an 

understanding of the current requirements and perceived value for patients to be 

considered in the design and function of decision-support interventions.  This was 

addressed by asking patients how they perceive that the NHS, as well as 

themselves, might benefit from a real-time DA application across the urgent care 

network. Patients were able to see the need to balance supply and demand 

across the network. They indicated that patient decision-making can contribute 

to shaping demand which benefits both patients and the NHS, and also that the 

NHS might use the information to manage demand, for example by appropriately 

diverting patients to alternative facilities and by managing resources. This has 

contributed to understanding the problem, and the desire for solutions.  

Secondly, the questionnaire explored the implications and the added value to the 

system of using real-time data applications for patient decision-support, for later 

synthesis with the formative evaluation using staff interviews (Chapter 7). 

Observational data found that managers and clinicians agree that it is necessary 

to understand more about how people with low-acuity conditions use ED. 

Clinicians were keen that assumptions were not made about who ‘needed’ to be 

seen in ED, and that attendance decisions are not coerced by the new real-time 

information. However patient anxiety and perceived urgency were also believed 
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to influence inappropriate attendance to ED. One finding is that subsets of 

patients, in particular those who perceive their condition to be serious, and those 

who were advised to attend ED, recognise value in other uses of the real-time 

information. This includes planning toward attendances, managing their own and 

others’ expectations, and reducing anxiety.  This knowledge may assuage the 

fears of clinicians who are concerned that real-time information might support 

sub-optimal attendance decisions, as it seems that patients may use the 

information to improve their own experience of attendance, without changing their 

attendance decision. Many studies have suggested that patient self-triage and 

decision-making regarding ED attendance is reasonable and appropriate based 

on the information available with which to make a decision (e.g. Nelson, 2011; 

Breen & McCann; 2013; Chapman & Turnbull, 2016; Cheek et al., 2016; Krebs 

et al., 2017; Weber, Hirst & Marsh, 2017). The questionnaire has indicated that 

real time DA, as additional information, can appropriately support these 

decisions. This addresses early potential risks in implementing IHAF. 

The questionnaire results suggest that patients see crowding as a problem which 

both impacts patients, and to which patient behaviour is also a contributing factor.  

They see value both for themselves and the NHS in using predictive DA for 

supporting decisions to reduce crowding. For patients, predictive DA are more 

likely to enable ‘when to go’ than ‘where to go’ decisions. Patients also indirectly 

have indicated that prescriptive DA can support crowding by augmenting staff 

decisions which help to manage demand.  This informs the next stages of IHAF. 

This will involve examining and processing the real-time data currently available 

to patients to support decisions regarding crowding in ED by implementing 

predictive and prescriptive analytics. The next chapter develops the integrated 

HM supported by the IHAF framework.  
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 Application of IHAF – use-case NHS Trust ED  

B. Hybrid Model 

 Introduction 

This chapter applies and tests the hybrid modelling (HM) component of the 

Integrated Hybrid Analytics Framework (IHAF, refer to Chapter 4), illustrated in 

Figure 6.1 with the HM components highlighted. IHAF is proposed as a 

conceptual framework to support the development of a real-time decision-support 

tool in healthcare. Chapter 5 introduced the case study and the real-time data 

which is made available from NHSquicker. It outlined the problem definition stage, 

which has a dual-purpose in the framework: to define the problem, and to identify 

criteria for evaluation. While problem definition is an important stage in the 

process of all modelling and simulation (M&S) studies, Design Science 

emphasises the importance of evaluation to support iterations, improvements and 

similar future work, to ensure that the modelling process starts with the 

assumption that the model will be useful in practice. For this reason, the problem 

definition stage must also consider the criteria and influencing factors for 

evaluation. For example, it should start with a system-level understanding of what 

matters in practice, to reduce the risk of unintended consequences in a complex 

system. The design of the model and its output needs to be considered, such that 

it is not just useable, but useful in practice. It should support situation awareness 

(SA), which is an important component of short-term decision-making, and it 

should consider barriers to implementation of such an approach early in the 

design process.  

Chapter 5 concluded that real-time data analytics (DA) has the potential to 

contribute to reducing ED crowding by influencing both patient health-seeking 

behaviour (through availability of real-time and predicted wait-time data), and 

staff decision-support (through the HM). Information from patients about the 

potential benefits to the system indicate that patients and the public support 

levelling demand across the urgent care system. This can take place through 

their own (and others) attendance behaviour, and by providing information to the 

NHS to manage their demand and resources. Knowledge gained from patients 

about health-seeking behaviour may be able to assuage the fears of clinicians 
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who expressed concern that real-time information might encourage patients to 

make sub-optimal attendance decisions.  

 

Figure 6-1Integrated Hybrid Analytics Framework (IHAF) with HM components highlighted 

Combined with Chapter 5, the HM in this chapter addresses the second objective 

of the second research question, to apply the framework within the case study at 

an NHS ED. The stages of the HM will be described and applied.  The sections 

following address each of the highlighted components of IHAF in Figure 6.1.  

Section 6.2 describes the architecture of the hybrid model. Section 6.3 outlines 

the Describe component of IHAF, the real-time data and it’s pre-processing. 

Section 6.4 describes the Diagnose component of IHAF, and looks at measuring 

crowding, given the existing data, and defining the simulation trigger. Section 6.5 

describes the Predict component, outlining the development of the forecasting 

methodology, SARIMA time-series forecasting. Section 6.6 describes the 

integration of the components and Section 6.7 is the Prescribe component of 

IHAF, the simulation model, and a set of defined scenarios for decision-support. 

The next section conceptualises the architecture of the hybrid model application. 

 Conceptualisation of the hybrid model 

Figure 6.2 illustrates conceptually the HM component, encompassing an urgent 

care network with at least one ED and one MIU to support knowledge about 
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capacity in alternative facilities, and access to real-time data feeds and historical 

data. These are comparable to those provided by NHSquicker and ED 

operational data, for creating forecasts and populating the simulation model. The 

architecture consists of: 

(a) The implemented near real-time data component (NHSquicker), with historical 

data for developing forecasting models. This approach has been applied in 

healthcare for forecasting ED crowding in real-time up to 8 hours ahead (Hoot et 

al., 2009), while Barnes et al. (2015) showed how real-time predictions of 

inpatient length-of-stay might be used for discharge prioritisation.  

(b) Historical operational data from the urgent care network to populate the 

simulation model, and data inputs that are not available in real-time, such as 

patient acuity. Model constraints can be imposed using this data (Adra, 2016).  

(c) Data pre-processing for moving window analyses as new data is received. 

For example, Boriboonsomsin et al. (2012) integrated historical and real-time 

traffic information from multiple sources to reduce the environmental impact of 

road travel.  

(d) Time-series forecasts creating predictions up to four hours into the near-

future. This short window allows the forecasts to retain maximal accuracy, while 

providing adequate time to trigger the execution of intervention scenarios through 

the real-time DES model. Xu and Chan (2016) found using an analytical approach 

that even noisy predictions of ED arrival counts can successfully be used to 

improve ED performance through patient re-direction. Lin and Chia (2017) used 

ARIMA forecasts of patient arrivals as inputs into a DES model to optimize staff 

rosters, which improved patient waiting times in the simulation results.  

(e) A simulation trigger, given a specific decision rule. Most applications of real-

time simulation use a reactive approach for triggering scenario what-if analysis, 

however Aydt et al. (2008b) described triggering based on forecasts. Bae et al. 

(2004) showed how the automatic execution of processes using Event-Condition-

Action rules can be automatically triggered by an active database without user 

intervention.  

(f) A set of predefined scenarios, including diverting low-acuity patients to 

alternative facilities. This approach was found to be successful using analytical 
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methods (Xu & Chan 2016). However other scenarios, for example derived from 

ED escalation policies, can also be explored. For example, with the aim of 

reducing ED overcrowding, Nahhas et al. (2017) used simulation to explore a 

range of scenarios, such as flexible treatment rooms, flexible staff activities and 

flexible shifts.  

(g) The DES model to test scenarios, which is initialised using both real-time and 

historical data (e.g. Espinoza et al., 2014; Oakley et al., 2020). 

(h) Information provided to decision-makers to support short-term planning for 

reducing overcrowding.  

 

Figure 6-2 Conceptual framework of the HM component 

 Descriptive analytics: Real-time data 

The Descriptive component of IHAF describes the real-time and historical data 

required by the application, its presentation and pre-processing, as described in 

Chapter 4 (Section 4.5.1).  Chapter 5 outlined the real-time data made available 

for this application by NHSquicker (Mustafee et al., 2018). The use-case is one 

hospital which contributes real-time data to NHSquicker from its ED and its three 

MIUs: Newton Abbott MIU, Totnes MIU and Dawlish MIU. These four facilities 

form an urgent care network (UCN). The public have access to near real-time 

NHSquicker data (updated between 5-15 minutes) for supporting attendance 

decisions. The data has been made available historically with three variables: (i) 

The total number of patients in each department (‘Total Patients’); (ii) The number 

of patients waiting to be assessed by a clinician (‘Patients Waiting’) (iii) The 
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maximum wait time to be assessed by a clinician (‘Maximum Wait’). The data 

from each facility in the UCN is pushed to a URL, where it is downloaded every 

30 minutes, to be made available for analysis. Data is available from 03/01/2018. 

Examining NHSquicker data, data blackouts, either at the hospital level (an error 

in the hospital computer sending the data) or by the client computer downloading 

the data, require data pre-processing to deal with missing data. For historical 

data, this was interpolated using the average of the previous four equivalent times 

of day and day of week (Figures 6.3 – Total Number; Figure 6.4 – Patients 

Waiting; Figure 6.5 – Maximum Wait. Available data is blue; interpolated data 

outages are orange).  

Maximum Wait data contains significant data quality outliers of up to 1222 

minutes. These were concluded to be data errors from the hospital sending the 

data, and an upper limit of 400 minutes was fixed. Rarely would a wait of this 

duration occur; in one year the data indicated that it happened 10 times. This was 

validated in consultation with one senior NHS manager, who indicated that waits 

longer than 60 minutes were a cause for concern in practice.  

However, from the data, it is clear that that waits longer than 60 minutes are very 

common (Figure 6.5), and the actual upper limit is difficult to determine. This is 

because performance reporting isn’t required for this measure, meaning data 

quality issues are not a priority. Nonetheless, the number of 12-hour waits 

doubled in 2019 compared with 2018 at the national level, a clear sign of EDs 

under pressure (House of Commons, 2020).  

A further possible explanation is that 2-3% of patients (nationally) leave before 

treatment commences without informing staff, hence their departure is not 

recorded in data systems at the time of leaving (NHSDigital, 2019a).  As these 

patients are never actually seen by a clinician, their recorded wait-time may run 

to many hours. 
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Figure 6-3 Time series plots for 56 days of data for Total Patients with missing data filled. Blue = available 
data. Orange = data outages interpolated using moving averages 

 

 

Figure 6-4 Time series plots for 56 days of data for Patients Waiting with missing data filled. Blue = 
available data. Orange = data outages interpolated using moving averages 

 

 

Figure 6-5 Time series plots for 56 days of data for Maximum Wait Time with missing data filled. Blue = 
available data. Orange = data outages interpolated using moving averages 
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For later exploratory analysis, historical NHSquicker data was partitioned into day 

of week, week in year, week in month, day of week in month, day in year, and 

day in month. To determine a trigger for the simulation model, historical hospital 

ED arrivals data (described in Section 6.4 and Appendix 3) was aggregated into 

30-minute batches and mapped with NHSquicker data. Lags (a fixed amount of 

passing time) were created of 1, 2 and 4 hours for half-hourly arrivals and Total 

Patients data. The next section forms the ‘Diagnose’ component of the IHAF 

framework, and explores the data to determine how to forecast crowding, and 

trigger thresholds for the simulation. 

 Diagnostic analytics: What to forecast, and when to trigger 

Diagnostic methods are exploratory, and focus on processes and causes, using 

methods such as correlation, cluster analysis, and root cause analysis.  A key 

use of diagnostic analytics in this framework is determining the conditions for 

triggering the real-time simulation. In this application of the framework based on 

a use-case, a preventative trigger is used (Chapter 4, Section 4.5.3), such that 

the purpose of the HM is to prevent the critical situation from arising in the first 

place. A preventative trigger is observed in forecasts, and therefore is limited to 

conditions that can be forecasted (Aydt, 2008b), however a proactive trigger (at 

regular intervals) or a reactive trigger (in real-time) are alternative methods.  

Crowding measures usually take into account triage categories and resources 

such as beds and staff (Hoot et al., 2007). Using NHSquicker data, a proxy 

measure of crowding is required. Diagnostic analytics are used in the following 

subsections to explore this and determine an appropriate trigger for the simulation 

model using the available real-time data. Like predictive and prescriptive 

analytics, diagnostic analytics requires domain knowledge, and may require 

additional external information.  

In addition to NHSquicker data, three pseudonymised historical hospital datasets 

were made available by the use-case hospital (summarised in Appendix 3 Table 

A3.1, and in Figure 6.6): 
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Figure 6-6 ED datasets available for IHAF implementation 

(i) ED Performance Data:- Daily ED attendance, daily compliance with the 4 

hour target, patient overall stays under 2 hours, under 4 hours, and over 4 

hours, daily admissions, bed delays, trolley delays, and GP referrals, from 

01/04/16 to 19/09/18;  

(ii) ED Attendance Data:- Attendances dates and times, age, gender, triage 

category, disposal, diagnosis from 01/04/16 to 29/10/18; 

(iii) ED Dataset:- (01/08/15 – 31/07/16) Fields include triage category, visit 

duration, place of discharge/admission, reason for departure, reasons for 

departure delay, arrival by ambulance/walk-in, and details of treatments and 

investigations and was used to support the simulation model development 

and validation.  

The next section (6.4.1) examines the ED Performance data for insights, and 

Section 6.4.2 examines NHSquicker data and ED attendance data to determine 

an appropriate trigger. Appendix 3 contains additional material, and is indicated 

where appropriate.  
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 ED performance data  

As part of the Diagnostic component of IHAF, the first hospital dataset was 

examined initially to explore the relationships between patient numbers and wait 

times.  For each day, a 4-hour compliance (%), total attendances, number who 

waited <2 hours, <4 hours, and >4hours is provided. Numbers in ED “length of 

stay” (LoS) categories were converted to proportions, and a 2-4 hour LoS was 

calculated. Relationships in the datasets were examined using correlations.   

As the daily proportion of those with LoS less than 2 hours, and those with LoS 

2-4 hours increases, the compliance with the 4-hour target increases. A 

correlation measures the extent to which two variables are related. This is done 

by calculating the standardised covariance, using Pearson’s coefficient (r), which 

requires only that the data are interval for it to be an accurate measure of the 

linear relationship between two variables. Without assuming causality, a linear 

relationship is observed between performance against the 4-hour target and the 

proportion waiting less than 2 hours (r = 0.46), and the proportion of patients 

waiting between 2-4 hours (r = 0.7). In other words, performance against the 

target decreases, as the proportion of LoS less than 4 hours decreases. This is 

to be expected, as the remainder wait for greater than 4 hours. 

Looking at actual counts of patient length of stay data (Figure 6.7), the same 

pattern can be seen; again the proportion waiting 2-4 hours has a stronger 

relationship with performance against the 4 hour target. Figure 6.7 is a scatterplot 

of patients who have waited less than four hours, against compliance with the 

four hour target. Patients who have waited less than four hours are subdivided 

into busy days and quiet days, and again into those who waited less than 2 hours 

and those who waited 2-4 hours.  

An average of 205 patients were attending the department daily during the time 

period covered by the data.  Filtering the data into above average (>204 patients) 

and below average (<205 patients) attendance finds that the counts of those 

attending between 2-4 hours on busy days (above average attendance) is most 

strongly correlated with performance against the 4 hour target (r = 0.73). The 

implications of this are that the busier the department gets, the more impact this 

group of patients have on the performance target. This confirms that the number 
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of patients in the department directly impacts on waiting times.  This is further 

investigated using ED attendance and NHSquicker data.  

 

Figure 6-7 Counts of patients waiting less than 2 hours, and between 2-4 hours, and compliance against the 
4 hour target 

  NHSquicker data and ED attendance data  

Figure 6.8 shows a visual correlation between NHSquicker data Total Patients 

and Patients Waiting (03/01/18 – 17/01/18). The plot shows 14 days of 48 data 

points per day, plotted every 30 minutes.  

A seasonal pattern exists when a time-series is influenced by calendar-related 

factors, for example, the month, day of the week, or hour of the day (Hyndman, 

2011). Seasonality is always of a fixed and known period. The seasonal (24 hour) 

variance in Total Patients is daily (range = 3-63 patients), and has a larger 

magnitude than Patients Waiting (range = 0-27 patients).  

As Patients Waiting contains smaller discrete numbers (mean = 4) compared with 

Total Patients (mean = 28), there is a less clear seasonal pattern in the Patients 

Waiting time-series as a change of one patient represents a relatively much larger 

shift. The implications of this are that time-series forecast models from Total 

Patients data are likely to be more accurate than a model using Patients Waiting 

data.  
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Figure 6-8 Time series of Total Patients and Patients Waiting over 14 days (30 minute observations) 

Although a daily seasonal pattern is exhibited, Maximum Wait Time, as a maximal 

measure, is highly volatile, with frequent extreme drops as individual patients are 

assessed for treatment. While some correlation is visualised with the Total 

Patients series over the same time period (Figure 6.9, note dual axis), a lag is 

present such that wait times appear to peak a short time after total patient 

numbers.  

 

Figure 6-9 Time series of Total Patients and Maximum Wait Time over 14 days (30 minute observations) 

In Figure 6.9, the blue rectangle illustrates this. Total Patients is peaking at 

approximately observation 115 with 36 patients, while wait times remain below 

50 minutes. However by observation 130, the wait time has increased to 360 

minutes.  
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Half-hourly arrivals (historical ED arrivals data, batched into 30 minute arrivals), 

(03/01/18 – 17/01/18), mapped with NHSquicker data (Figure 6.10, note dual 

axis) have a similar regular daily seasonality but are volatile in the short-term, 

and Total Patients peak sometime after arrivals. The rectangle in Figure 6.10 

illustrates this, for example arrivals peak at observation 142, with Total Patients 

peaking at observation 150. Although NHSquicker does not have access to 

arrivals data, the relationship between these two variables is of interest, as patient 

arrivals directly lead to crowding. 

 

Figure 6-10 Time series of Total Patients and ED arrivals (30 minute observations) over 14 days 

In summary, the time-series data show that patient arrivals peak before the Total 

Patients in the department, which in turn peaks before the Maximum Wait time. 

The number of Patients Waiting is correlated with Total Patients. 

The relationships are further explored.  Pearson’s correlation coefficient r for Total 

Patients and Patients waiting is r=0.67. The effect size of r varies from 1 to -1, 

and 0.67 is considered a large effect size, with a strong positive correlation 

(Cohen, 1992).The coefficient of determination, R2, is a measure of the amount 

of variability in one variable that is explained by the other, and is obtained by 

squaring the correlation co-efficient r. A simple linear regression model (using 

open-source software, R 3.6.1) investigates the relationship between Patients 

Waiting and Total Patients. A linear regression model is in the form:   

𝑌𝑖 = 𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑑𝑒𝑙 𝑝𝑙𝑢𝑠 𝑛𝑜𝑖𝑠𝑒 = (𝛽0 + 𝛽1𝑥𝑖) + 𝜖𝑖 

The error term (𝜖𝑖) represents variables not considered in this simple model.  

Regression models assume that: a) the errors are normally distributed and, on 

average, zero; b) the errors all have the same variance (they are homoscedastic), 
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and c) the errors are unrelated to each other (they are independent across 

observations).  While the third assumption can be relaxed slightly (Stewart, 2016), 

the first two assumptions are checked using a histogram and Q-Q plot (a 

graphical technique for determining if two data sets come from populations with 

a common distribution) of the residuals. The scatterplot is seen in Figure 6.11 

and the output from R is in Appendix 3 (Figure A3-1): 

 

Figure 6-11 Scatterplot and line of best fit of Total Patients and Patients Waiting 

From the output, Patients Waiting = 0.208*Total Patients + -1.836, and this is 

significant to p<0.01.  The R2 is 0.4554. This provides confidence that information 

about the total number of patients in the department is an indicator of the number 

of patents waiting to be seen by a clinician.  However the model violates the 

assumptions of a regression model (see Appendix 3), so while it indicates a 

relationship between the two sets of data, it doesn’t allow predictions to be made. 

The residuals are checked (Appendix 3, Figure A3.2) and are not normally 

distributed, with a systematic departure from normality in the maximum quartile 

of the Q-Q plot.   

This effect can be explained by the busyness in the department.  As the total 

number of patients in the department rises and the demand-capacity mismatch 

increases, a build-up of low-acuity patients in the waiting area can occur if 

patients of higher urgency are present, as they will be treated with priority. The 

unpredictable nature of urgency levels in the department shifts the variance away 

from homoscedasticity as the total patients increase.  Nonetheless, there remains 
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a clear relationship. The relationships are broken down at different thresholds of 

Total Patients in Table 6.1. 

Table 6-1 Correlations between Total Patients and Patients Waiting at different partitions of Total Patients 

Total 

Patients 

Correlation 

coefficient r 

R2 (sig) Range of residuals 

<31 0.5 0.245 (p<0.01) -3.9870 - 8.3077 

>30 0.5 0.251 (p<0.01) -7.9685 - 18.9082 

<36 0.54 0.296 (p<0.01) -4.9552 - 14.3869 

>35 0.45 0.205 (p<0.01) -8.1104 - 18.8772 

<41 0.58 0.344 (p<0.01) -5.9408 - 14.3021 

>40 0.34 0.111 (p<0.01) -8.1094 - 18.7893 

<46 0.63 0.392 (p<0.01) -6.9814 - 19.8265 

>45 0.24 0.0556 (p<0.01) -8.3649 - 11.3900 

Correlations are measured at different partitions of Total Patients. By examining 

the table, and both the main scatterplot (Figure 6.11) and the scatterplot of the 

residuals (Appendix 3, Figure A3.3), increasing variance begins at around 40 

Total Patients.  However these may be due to the effects of having a natural ‘floor’ 

on the data, such that the larger the dataset (at <46 Total Patients), the more 

likely it will detect the correlation in the dataset as a whole, while there is clearly 

increasing variance as the Total Patients increase.  

While the range of the residuals of the linear regression model is -0.496 – 14.39 

at <36 Total Patients, there is one obvious outlier; without this the range would 

be similar to <31 patients. This is the same at <41 patients. However by <46 Total 

Patients, several more outliers have crept into the residuals at the higher numbers 

of Total Patients (plotted in Appendix 3, Figures A3.4 and A3.5). This indicates 

that an appropriate trigger is between 40 and 45 predicted Total Number of 

Patients in the Department. Histograms and Q-Q plots of the residuals again 

confirm heteroscedacity and non-normality. However the increasing variance 
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visualised between 40-45 Total Patients on average suggests that problems with 

crowding start around here.  

Total Patients from 3/1/18 - 2/2/18 are mapped against daily 4-hour compliance 

data to look for insights that might confirm this (Figure 6.12). While this is a crude 

measure, it is possible to visualise that on days where Total Patients stayed 

below 40, compliance tends to be high, but on days where Total Patients 

exceeded 40 at any point, compliance appears to drop, often significantly, 

illustrated in the red rectangles.  

 

Figure 6-12 Total Patients (every 30 min) and Daily Compliance with the 4-hour target (24 hourly) 

Table 6.2 shows correlation coefficients (r) between each of Maximum Wait, Total 

Number, and Patients Waiting, and half hourly Arrivals. These are calculated with 

1, 2, 3, and 4 hour arrival lags. The correlation between Total Number and 

Arrivals at 1, 2 and 3 hour lags are similar (r = 0.55-0.57) while Patients Waiting 

is most closely related to the arrivals 1 hour ago (r = 0.55).  

In Appendix 3, Figure A3.6 shows a scatterplot of Total Number of patients with 

arrivals 1, 2 and 3 hours ago, for visualisation. This corresponds with the data in 

Table 6.2 (columns 1 and 3), showing a correlation between the Total Patients 

and arrivals at 1-3 hours previously (shown in bold).  

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0

10

20

30

40

50

1
9

2
1

8
3

2
7

4
3

6
5

4
5

6
5

4
7

6
3

8
7

2
9

8
2

0
9

1
1

1
0

0
2

1
0

9
3

1
1

8
4

1
2

7
5

1
3

6
6

1
4

5
7

1
5

4
8

1
6

3
9

1
7

3
0

1
8

2
1

1
9

1
2

2
0

0
3

2
0

9
4

2
1

8
5

2
2

7
6

2
3

6
7

2
4

5
8

2
5

4
9

2
6

4
0

2
7

3
1

%

P
at

ie
n

t 
C

o
u

n
t

Total Patients_Daily Compliance 

Total Patients Compliance



224 
 
 

Table 6-2 Correlations between Maximum Wait, Total Number, and Patients Waiting, with lagged half 
hourly Arrivals at 0-4 hour lags. 

Patient arrivals (all triage 

categories) 

Maximum Waits (r)  Total Number (r) Patients Waiting 

(r) 

Arrivals  -0.14  0.39 0.42 

Arrivals 1 hour previously -0.06 0.55 0.55  

Arrivals 2 hours previously 0.03 0.57  0.47 

Arrivals 3 hours previously 0.11 0.55 0.41 

Arrivals 4 hours previously 0.16 0.49 0.32 

 

Table 6.3 shows correlation coefficients (r) between Maximum Wait and half 

hourly Arrivals, with lags of 1-4 hours. The correlation between Maximum Wait, 

and Total Patients at 1, 2 and 3 hour lags are similar (r = 0.35) while Patients 

Waiting is most closely related to the current arrivals (r = 0.67), as seen 

previously. In Appendix 3, Figure A3.7 is a scatterplot of Maximum Wait time and 

Total Number of patients in the department 2, 3 and 4 hours ago for visualisation, 

corresponding with columns 1 and 2 in Table 6.3 (shown in bold). 

Table 6-3 Correlations between Maximum Wait, Patients Waiting, and lagged Total Patients at 0-4 hour 
lags 

Total number of patients in department 

Maximum Wait (r) 

Patients Waiting (r)   

Total  0.22 0.67  

Total 1 hour previously 0.31 0.53 

Total 2 hours previously 0.35 0.40 

Total 3 hours previously 0.35 0.32 

Total 4 hours previously 0.35 0.16 

 

Patient Arrivals influence the Total Patients in the department with a one-to-three 

hour lag. In turn, Total Patients influence the Maximum Wait time with a two-to-

four hour lag. The number of Patients Waiting is correlated with Total Patients. 

Total Patients data appears to be the most useful data for acting as a proxy for 

crowding and will therefore be used for the predictive component in this 

implementation of IHAF (Section 6.5). The predictions will be used to trigger the 

simulation (Section 6.7). Considering the average of Total Patients, crowding 

appears to occur around 40 Total Patients in the department. However this will 

vary throughout the day, as resources also vary. For this reason, the next section 
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will investigate how the simulation trigger can be time-varying across a 24-hour 

period.  

 Time-dependent trigger 

A trigger defines an action or set of actions that are executed when an event 

occurs. The previous section identified a simulation trigger at an average of 40 

total patients in the department. However this is likely to vary across a 24-hour 

period, as resources vary. This is investigated initially by calculating the mean 

and the standard deviation (StD, +/- 1, 1.5, 2) for each Total Patient dataset per 

hour of day [5500 observations (115 days)]. These are shown in Table 6.4. 

Table 6-4 Standard Deviations (StD) of Total Patients per hour 

Hour 00.00 01:00  02:00 03:00 04:00 05:00 06:00 07:00 

1StD 38 35 32 29 27 25 24 24 

1.5StD 41 39 36 33 30 29 28 27 

2StD 45 43 40 37 34 32 32 31 

Hour 08:00 09:00 10:00 11:00 12.00 13:00  14:00 15:00 

1StD 25 28 32 35 38 40 42 43 

1.5StD 28 31 35 39 42 44 46 47 

2StD 32 35 38 42 46 48 50 51 

Hour 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 

1StD 42 42 43 44 44 44 43 41 

1.5StD 46 45 47 48 48 48 47 45 

2StD 50 49 51 52 52 52 51 49 

 

To illustrate, Total Patients are plotted as a continuous line graph to assist 

visualisation (Figure 6.13) on a subset of data from 00:00 to 00:59 over a 115 day 

period, and as a scatterplot (Figure 6.14) against Patients Waiting. As with the 

full dataset (all hours), the scatterplot exhibits increasing variance around the 

mean as Total Patients increase.  

Implications for IHAF implementation 

Using NHSquicker data, Total Patients appears to be the most useful data for 

acting as a proxy for crowding and will therefore be used to make predictions 

(Section 6.5), and as a predictive trigger to initiate the simulation (Section 6.7).  
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Figure 6-13 115 days of 00:00 to 00:59 with mean and SD, 1.5*SD, 2*SD 

 

Figure 6-14 Scatterplot of Patients Waiting and Total Patient 00:00 to 00:59, with SD, 1.5*SD, 2*SD for Total 
Patients 

These plots are replicated in Appendix 3 for 12:00 to 12:59 (Figures A3.8 and 

A3.9).  In both cases, it’s possible to see that the variance starts to increase at 1-

1.5 standard deviations from the mean.   

The time period 00:00 to 00:59 is plotted in Figure 6.15 against the daily 

compliance data to look for further insights. This is replicated for the time period 

12:00 to 12:59 in Appendix 3 (Figure A3.10). Even taking these one hour 

snapshots (plotted as a single line to assist visualisation, note dual axis) a 

relationship between Total Patients and daily 4-hour compliance is clear.  
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Figure 6-15 Total Patients (00:00 to 00:59) and Daily Compliance with the 4-hour target (24 hourly) 

Based on the visual information in these plots, a time-dependent trigger of 1.5 

StD is chosen. This is an average trigger of 39 across a 24-hour period, which is 

realistic, and is represented in Table 6.5. 

Table 6-5 Hourly trigger at 1.5 standard deviations 

Hour 00.00 01:00  02:00 03:00 04:00 05:00 06:00 07:00 

1.5StD 41 39 36 33 30 29 28 27 

Hour 08:00 09:00 10:00 11:00 12.00 13:00  14:00 15:00 

1.5StD 28 31 35 39 42 44 46 47 

Hour 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 

1.5StD 46 45 47 48 48 48 47 45 

 

Based on the analysis in this section, Total Patients data is chosen for forecasting 

as a proxy for crowding, and a 24-hour time dependent trigger is proposed. This 

forms the Diagnose component of IHAF. The next section (Section 6.5) 

implements the forecasting methodology, and forms the Predict component of 

this application of the IHAF framework. 

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0

10

20

30

40

50

60

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

%
 D

ai
ly

 C
o

m
p

lia
n

ce

To
ta

l P
at

ie
n

ts

Observations 

Total Patients 00:00 : 00:59  with daily compliance

Total Patients mean+sd mean+1.5sd

mean+2sd Daily4HrCompliance 95%Compliance



228 
 
 

  Predictive analytics: Time-series forecasting of Total Patients 

In the IHAF framework the purpose of the predictive component is to predict the 

onset of a critical event, such that subsequent decisions are ‘preventative’ rather 

than ‘reactive’. The previous diagnostic stage has identified that Patient Arrivals 

influence the Total Patients in the department for one to three hours afterward, 

and in turn, Total Patients influence the Maximum Wait time for the next two to 

four hours. This means that arrivals still have the potential to affect crowding up 

to seven hours later, and that accurate forecasts of Total Patients, and 

appropriate action on the basis of these forecasts, can reduce wait times for up 

to four hours ahead (Figure 6.16). For these reasons, Total Patients data is used 

for the forecasting model.   

 

Figure 6-16 Conceptualisation of impact on KPIs of Total Patients forecasts 

In this thesis, the terms ‘forecasting’ and ‘prediction’ are used interchangeably. 

There is an extensive body of work predicting demand for emergency services, 

and Appendix 3, Section 3.1.3 contains a short review. Time-series methods are 

part of a suite of predictive analytic methods which have shown considerable 

success in predicting emergency demand, in particular variations of auto-

regressive moving averages (ARMA) as developed by Box and Jenkins (1976).  

Implications for IHAF implementation 

Using NHSquicker data, Total Patients is the most useful data for acting as a proxy 

for crowding and will therefore be used to make predictions (Section 6.5). These will 

form the predictive trigger to initiate the simulation (Section 6.7). In this 

implementation, the predictive trigger is time-dependent over a 24-hour period, as 

available resources vary throughout the day.  
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SARIMA (seasonal autoregressive integrated moving averages), a generalisation 

of ARMA models, is an approach for modelling univariate time series data that 

contains a seasonal component.  For this case study, SARIMA modelling has 

been chosen for creating short-term forecasts 2 and 4 hours ahead, as the ED 

data has a strong daily seasonality. Due to the availability of forecasting libraries, 

Python 3.7 is used for the forecast modelling. The following sections outline the 

development of the forecasting model for the Predict component of this 

application of IHAF. 

 Characteristics of time-series 

Total Patients data is a univariate time series, that is, a sequence of 

measurements of the same variable collected over time, at regular 30 minute 

intervals. Figure 6.17 indicates that there is no consistent trend over the time 

span plotted (115 days), and no obvious outliers. The variance appears constant 

over this time span.  As observed previously, there is a daily seasonality in the 

data-series. As the data is plotted every 30 minutes, the seasonality is every 48 

data points. These features will be investigated in more detail in subsequent 

sections. Appendix 3 (Section A3.1.3) provides some additional information, 

including decomposition of the data into its components (trend, seasonal 

component, residuals, Figure A3-11).  

 

Figure 6-17 Total Patients (every 30 minutes) for 115 days from 3/01/2018 

 Autoregression 

Autocorrelation is a feature of most time series, as the observations close 

together tend to be correlated, or serially dependent. Section A3.1.3 in Appendix 

3 provides additional details about autocorrelation, and autoregressive models. 
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In the Total Patients data, a quick visual check is performed to look for 

autocorrelation in the data set by plotting t with t-1 (a lagged value of 1). This has 

an r value of 0.96, indicating a very high linear relationship (Figure 6.18). 

 

Figure 6-18 Scatterplot of Total Patients and Total Patients -1 

One of the simplest ARIMA models is AR(1), or naïve forecast, which uses a 

linear model to predict the value at the present time using the value at the 

previous time. This is an autoregressive model of order 1, where the order 

indicates how many previous lags are used to predict the current time. This can 

provide a baseline performance as a point of comparison, to give an indication of 

how well other models will perform on the forecasting problem.   

The naïve forecast (AR(1)) reflects the autocorrelation, with a RMSE (root mean 

squared error) of 3.204 (Figure 6.19).  

 Figure 6-19 AR(1) model on Total Patients dataset for one step ahead using 30 minute observations. 
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RMSE is one measure of evaluating the accuracy of forecasts. This, and other 

measures of accuracy, are discussed in more detail in Appendix 3 (Section 

A3.1.3.2). Due to the high granularity of the data, rolling 30 minute forecasts look 

fairly accurate (Figure 6.19). However it is clear that forecasts using this method 

with observations more widely spaced would not perform so well.  

A scatterplot could be repeated to look at other lags, for example a visualisation 

of the time-series shows a strong daily seasonality, hence a lag of 48 (24 hours) 

could be investigated for the same time one day ago. Alternatively, an 

autocorrelation plot (ACF) will show the correlation coefficients for each lag 

variable (see Appendix 3, Section A3.1.3.1).  

It is apparent that there is significant positive and negative autocorrelation as the 

Total Patients vary throughout the day. The ACF plot (Figure 6.20) provides 96 

lags (2 days). The correlations do not appear to diminish over time, suggesting 

that there is no trend. They remain highly significant with a clear daily seasonality, 

with peaks and troughs at 12 hours and 24 hours, as expected. A Partical ACF 

(PACF) (Figure 6.21) also shows seasonality, and the two plots suggest a 

combined AR and MA process.  

 

Figure 6-20 ACF for Total Patients to lag = 96 
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Figure 6-21 PACF for Total Patients to lag = 96 

 ARIMA 

Given the above characteristics of Total Patients data, ARIMA modelling is 

investigated for the predictive component of IHAF. ARIMA is a generalisation of 

the simpler ARMA method, which adds integration (I), the use of differencing of 

raw observations (i.e. subtracting an observation from an observation at a 

previous time step) to make the time-series stationary, in particular to remove a 

trend or seasonality. Stationarity is discussed in more detail in Appendix 3, 

Section A3.1.3.1, and ARIMA models are discussed in more detail in Section 

A3.1.3.3. For an ACF to make sense, the series must be ‘weakly stationary’.  This 

means that the mean is the same for all of t, the variance is the same for all of t, 

and the covariance (and correlation) between xt and xt-1 is the same for all t, hence 

the statistical properties of a process generating a time-series do not change over 

time.  

The first step in fitting an ARIMA model is to determine the order of the 

differencing needed to make the time series stationary, without over-differencing, 

which can introduce negative autocorrelation and increase the standard deviation 

(Nau, 2019). For non-seasonal data, first-order differencing may be sufficient. For 

seasonal data, a seasonal difference is recommended (Hyndman & 

Athanasopoulos, 2015), while a first order difference may also be required. A 

seasonal difference is the difference between an observation and the previous 

observation from the same season. For Total Patients data, this requires 

subtracting each observation from the same time in the previous cycle (48) to 

create a new time series. This is necessary, otherwise the model assumes that 
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the seasonal pattern will fade over time (Nau, 2019). The data is seasonally 

differenced: value(t) = obs(t) - obs(t - 48) (Figure 6.22). 

A statistical test can determine whether the differenced series is stationary. If not, 

a first order difference may also be necessary. Figure 6.22 illustrates a sample 

(1000 observations) of the Total Patients series. Seasonal differencing reduces 

the StD from 10.91 to 9.33, and sets the mean to zero. A first order difference 

applied to the seasonally differenced data further reduces the StD to 3.91.  

 

Figure 6-22 Sample of Total Patients, with seasonal, and seasonal with first order differencing 

However over-differencing can be problematic. The Augmented Dickey Fuller 

Test (ADF) is a unit root test for stationarity in a time-series. This is done in 

statsmodels using adfuller, for analysis of a univariate process in the presence of 

serial correlation (Statsmodels, 2019b), on the seasonally differenced data, to 

determine the need for first order differencing. A time-series has stationarity if a 

shift in time doesn’t cause a change in the shape of the distribution; unit roots are 

one cause for non-stationarity. The test statistic using the seasonally differenced 

data has a value of -12.02. The more negative this statistic, the more likely the 

null hypothesis can be rejected (i.e. the dataset is stationary). As part of the 

output, running an ADF returns a look-up table to help determine the ADF 

statistic. The ADF results (Appendix 3, Figure A3-12) show that the test statistic 

value -12.0237 is smaller than the critical value at 1% of -3.432. This suggests 

that the null hypothesis can be rejected with a significance level of p<0.01, and 
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that the time-series is stationary or does not have time-dependent structure. 

Using the converted dataset means that no further differencing is required, and 

the p parameter can be set to 0.  

Using the newly created stationary data set, the AR (p) and MA (q) parameters 

now need to be selected. This ACF and PACF plots can give some indications, 

and in this case there is still daily seasonality present in the data (Appendix 3, 

Figure A3-13).  This indicates that it may be worth considering a better model of 

seasonality, such as modelling it directly, rather than attempting to remove it from 

the model using seasonal differencing. Appendix 3 (Section A3.1.3.3) describes 

further exploration of the ARIMA model parameters, while the next section 

outlines the SARIMA model chosen for the Predict component implemented in 

IHAF. 

 SARIMA 

In Appendix 3 (Section A3.1.3.3) ARIMA(1,0,2) performed well on the data with 

a RMSE of 3.812 on an unseen test data using one-step forecasts, however it is 

a method which doesn’t support a seasonal component.  ARIMA expects data 

that is non-seasonal, or has had the seasonal component removed; in this case 

through seasonal differencing. However the ACF and PACF show that there is 

still some seasonal autocorrelation in the data which could be used to improve 

the forecasts.  

The Seasonal Autoregressive Moving Average (SARIMA) model is an approach 

for modelling univariate time-series data that contains a seasonal component.  It 

contains additional seasonal terms which are similar to those in the ARIMA (p,d,q) 

model, but involve backshifts of the seasonal period. It is specified as SARIMA 

(p,d,q)(P,D,Q)s, where s is the seasonality (in this case, 48) and (P,D,Q) are the 

parameters influenced by the seasonal component. P uses the seasonally offset 

observation in the model, D is the order of seasonal difference, and Q is the order 

of moving averages or errors in the model, as the seasonal lag differencing 

introduces a moving average term. 

Domain expertise can be used to configure the parameters (Brownlee, 2018), or 

a grid search can also be used to search a suite of configurations to discover the 

best model. SARIMA can potentially have a very large number of parameter 

configurations, so it was considered appropriate to test a wide range of models 
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to choose the best fitting model.  A grid search can reveal non-intuitive model 

configurations with lower model forecasts it can have a very large number of 

possible configurations.   

SARIMA parameters were selected for the combination with the best 

performance by searching a set of combinations of (p,d,q)(P,D,Q)s. The seasonal 

component was set to 0 or 48, and the other parameters to 0, 1, or 2. This made 

over 1400 possible combinations. Joblib was used to speed up the process 

through parallel processing, however it was still a lengthy process. The model 

parameters were selected by minimising Akaike’s Information Criterion (AIC).  

AIC is an estimator of out-of-sample prediction error and the relative quality of 

statistical models for a given set of data. In estimating the amount of information 

lost by a model once fitted, AIC trades off between the goodness-of-fit of the 

model and its simplicity. This means that AIC deals with both the risk of over-

fitting and the risk of under-fitting (Zajic, 2019). 

The selected model is SARIMA(1,1,2)(1,0,1)[48]. The RMSE is 2.771 using one-

step ahead forecasting (Figure 6.23). The trend term is selected as ‘nc’, which is 

‘no constant’ and indicates no trend (Statsmodels, 2019a). Figure 6.23 plots a 

21-day rolling (cross-validation) forecast on an 80:20 test set, and for 

visualisation, Figure 6.24 plots a two-day rolling forecast on two days of the test 

set with a sample training set of Total Patients data (6 days).  Better performance 

was achieved using a first order differencing (d = 1), as suggested by the plotted 

transformations of Total Patients in Figure 6.22, where the StD reduced markedly 

using a first order differencing on the seasonally differenced time-series.  

 

Figure 6-23 SARIMA (1,1,2)(1,0,1)[48] with one-step ahead forecasts.   
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Figure 6-24 SARIMA (1,1,2)(1,0,1)[48] with one-step ahead forecasts.  ---- Predicted values ---- Expected 

values 

A prediction interval (PI) provides an interval within which the predicted value is 

expected to lie with a specified probability. Assuming that the forecast errors are 

normally distributed, a 95% PI for a one-step ahead forecast is: y±1.96σ where y 

is the forecasted value, and σ is the SE of the forecast distribution. For an 80% 

PI, the multiplier is 1.28. When forecasting one step ahead, the SE of the 

forecast distribution is almost the same as the StD of the residuals (Hyndman 

& Athanasopoulos, 2015). A common feature of PIs is that they increase as the 

forecast horizon increases. The further ahead the forecast horizon, the more 

uncertainty is associated with the forecast, and thus the wider the PIs. For a 

sample of data, the 80% and 95% PIs are plotted below for 48 one-step 

forecasts (Figure 6.25), alongside the actual observations.  

 

Figure 6-25 One step-ahead (rolling) forecasts for 48 data points with 80% and 95% PIs 
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This is done by calculating the StD of the residuals, and using the above formula 

to calculate and plot the PIs. The model is trained on a sample of the historical 

data. The regression co-efficients learned by the model are extracted and used 

to make predictions in a rolling manner across the test dataset. As each time step 

in the test dataset is executed, the prediction is made using the co-efficients and 

stored. The actual observation for the time step are then made available and 

stored to be used as a lag variable for future predictions. This is the cross-

validation method. A summary of the model fit is presented in Appendix 3 (Figure 

A3-19).   

The residuals are examined in Appendix 3 (Figure A3-20) to confirm the fit of the 

model. They approximate a normal distribution, which is a useful confirmation of 

the PIs, and there is no significant autocorrelation, suggesting the chosen model 

is a good fit for the seasonally differenced Total Patients data.  

 Resampling for 2 and 4 hour forecasts 

SARIMA is used in the previous subsection to select a model using one-step 

ahead 30-minute rolling forecasts, however 2-4 hour predictions provide a better 

possibility of reacting to reduce crowding (Section 6.4). To illustrate using 80% 

prediction intervals (PI), predictions four hours ahead are reproduced in Table 

6.6.  

Table 6-6 Multi-step forecasting using 30 minute seasonally differenced Total Patients Data with SARIMA 
(1,1,2)(1,0,1)[48] up to 4 hours ahead with 80% upper and lower PIs 

Forecasts Prediction SE 80% UL PI 80% LL PI 

30 min 27 2.739089 

 

30.739939 23.727872 

1 hour 28 

 

3.766248 

 

32.758610 

 

23.117015 

 

1.5 hours 29 

 

4.464295 

 

34.652110 

 

23.223514 

 

2 hours 28 

 

4.987426 

 

34.321718 

 

21.553906 

  

2.5 hours 36 

 

5.397586 

 

42.846722 

 

29.028902 

 

3 hours 29 

 

5.727762 

 

36.269347 

 

21.606277 

 

3.5 hours 28 

 

5.998221 

 

35.615535 

 

20.260089 

 

4 hours 30 

 

6.222542 

 

37.902665 

 

21.972959 

 



238 
 
 

 

The granularity of the data means that multi-step forecasts 2-4 hours ahead 

underperform. Using 30 minute data, forecast standard error (SE) increased from 

2.74 up to 6.22. The PIs are calculated by using the following formulas:  

80% UL PI = prediction + (1.28 * SE) 

80% LL PI = prediction – (1.28 * SE) 

An alternative approach is to resample the data to reduce the granularity, and 

provide one-step ahead forecasts. This is done as multistep forecasting places a 

significant burden on existing data by assuming the accuracy of each forecast 

(Figure 6.26).  

 

Figure 6-26 Resampling Total Patients: top left: half hourly. Bottom left: hourly. Top right: 2 hourly Bottom 
right: 4 hourly 

Resampling converts a dataset time-interval into a new time-interval. The 30 

minute data is down-sampled to hourly, 2-hourly, and 4-hourly by calculating the 

average Total Patients over these time periods. An advantage to this approach 

is that less data is needed for training the model each time it is called, while the 

seasonal periods are retained. Naïve forecasts are repeated as a baseline on 
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each resampled dataset.  As can be expected, as the granularity of the data 

reduces, the naïve forecasts lose accuracy. These are plotted in Appendix 3, 

Figures A3-21 – A3-24. The naïve forecasts on 4-hour resampled data RMSE = 

9.480. 

The resampled data is seasonally differenced and fitted with 

SARIMA(1,1,2)(1,0,1)[s] for comparison with the baselines. To illustrate, these 

are visualised in Appendix 3, Figures A3-25 – A3-27. Each outperforms the 

baseline, though depending upon the selection and size of the training/test sets, 

slightly different RMSEs are returned, as will be seen in the next section. Due to 

the length of time required to train the model and cross-validate it, subsets of data 

were used in this phase. Note the seasonal period must be adjusted for each 

dataset. These are plotted in Figure 6-27 (a-c) with 80% and 95% PIs.  

 The 2-hourly and 4-hourly resampled data is examined in more detail to 

determine the goodness of fit of SARIMA(1,1,2)(1,0,1)[s] for 1, 2 and 4 hour 

datasets.  
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Figure 6-27 (a-c) SARIMA(1,1,2)(1,0,1)[s] on seasonally differenced Total Patients (a) 1, (b) 2, and (c) 4 
hour resampled data with 80% and 95% prediction intervals.  

Examination of the residuals and ACFs using the 2-hour resampled data shows 

that the residuals are approximately normally distributed with a small peak of 

remaining autocorrelation at 1, which may be relevant. The diagnostic results of 

the residuals on the 2-hourly resampled data are in Appendix 3 (Figure A3-28). 

This allows forecasts to be updated every 30 minutes, for 2 hours and 4 hours 

ahead.  

PIs can be estimated using standard error (SE), which can be returned as 

summary statistics with the forecast() function in statsmodels.  The model is fitted 

and evaluated (Appendix 3, Section 3.1.5). Cross-validation of predictions 

against the test set shows that the model does under-estimate many of the peaks 

and troughs, leaving some room for improvement. However for a 4-hour (multi-

step) forecast, the RMSE = 3.852, which is much improved by training on the full 

dataset compared with the subsets of data investigated earlier. 

Multi-step forecasts on the resampled data up to 4 hours are presented below in 

table 6.7. As with Table 6.6, the PIs increase with multi-step forecasts. However 

for one-step ahead forecasts on the 2-hour and 4-hour resampled data, the SEs 

appear to be acceptable.  As the 4-hour multi-step predictions using 2-hourly 

data have an SE that is fairly close to the 4-hour resampled one-step prediction, 

2- and 4-hour forecasts from the 2-hourly re-sampled data are chosen for 

making forecasts.   
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Table 6-7 Multi-step forecasting using seasonally differenced Total Patients Data with SARIMA 
(1,1,2)(1,0,1)[s] on resampled data with 80% upper and lower PIs 

Resampling Forecasts Prediction SE 80% UL PI 80% LL PI 

1 hour 1 hour 31 

 

3.553757 

 

35.62 

 

26.52 

 

2 hour 31 

 

5.028984 

 

37.35 

 

24.48 

 

4 hour 30 

 

6.404020 

 

37.60 

 

21.20 

 

2 hours 2 hour 29 

 

4.512923  23.73 

 

35.30 

 

4 hour 

 

32 6.095951 

 

24.18 

 

39.80 

 

4 hours 4 hour 32 5.391947 

 

38.90 25.10 

 

 Forecasting 

The forecasts are now created for the Predict component of IHAF. Having 

selected the model and the model parameters that best fits the relationships in 

the historical Total Patients data, the salient information captured by the model 

must be saved so that it does not need to relearn the regression coefficients each 

time a prediction is needed. The Statsmodels module in Python has built-in 

functions to save and load models by calling save() and load() on the fitted 

SARIMAX Results object (Statsmodels, 2019a). The model is trained on all 

available data and saved. The training data is also saved, for knowledge of the 

number of observations seen, which is required by the predict() function of the 

Results object. The model used is SARIMA (1,1,2)(1,1,1)[12] using the seasonal 

differencing component built into SARIMA and a seasonal period of 12, with the 

2-hour dataset. 

 Two hourly data 

The full dataset has 17196 observations. The resampled 2-hourly dataset 

contains 4299 observations, but retains the same number of seasonal periods. 

The coefficients are printed in Figure 6.28. 

 

Figure 6-28 SARIMA (1,1,2)(1,1,1)[12] parameters (p,d,q,P,D,Q) 

The model is fitted to be used later for making predictions (Appendix 3, Figure 

A3-29). The entire training sets of 30-minutes and 2-hourly resampled data are 

saved as numpy arrays. The load() function will be used to load these later 
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(Figure A3.30). The coefficients are cross checked to ensure they have saved 

and load correctly.  

The predictions can now be made using ARResults.predict. This requires a start 

and end for making in-sample or out-of-sample predictions (Statsmodels, 2019). 

Unfortunately ARResults doesn’t support PIs, so these are estimated using the 

SE returned from the get_forecast function earlier (Appendix 3, Figure A3-29). 

The SE were stable across the test sample, which would be expected on a 

stationary dataset. 80% intervals are chosen as realistic.  

Now the forecast model needs to be kept updated, once the next real observation 

is made available by NHSquicker. This requires updating the data set used as 

inputs to make the subsequent prediction. The following steps are required 

(Appendix 3, Section A3.1.5, provides additional detail): 

 The new observation is recorded. In Appendix 3 (Figure A3-31), the 

unrealistic figure 120 is manually inputted. 

 The 30-minute dataset and 2-hour dataset are loaded. The 30-minute 

dataset is indexed with the original date-time index so that an additional 

row can be added. 

 The new observation is inputted. For the integrated model, the new 

observation can be added in real-time and the index retained.  

 To control the size of the 30-minute dataset, it is saved with the first value 

removed as a new value has now been added to the end. 

 The new 30-minute dataset is saved. 

 The new 30-minute dataset is resampled 2-hourly and saved as the new 

2-hour dataset.  

The code can now be re-run every time a new observation is sent from 

NHSquicker, every 30-minutes to update the 2-hour and 4-hour forecasts. This is 

conceptualised in Figure 6.29. 
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Figure 6-29 Conceptualisation of data processing and forecasts on Total Patients data 

The integration of the real-time forecasts in IHAF is discussed in the next section. 

 Integration Component: forecasts 

It is considered to be an important element of the HM using IHAF, that the data, 

the predictive model, and the simulation model are integrated for usability in terms 

of its effectiveness and efficiency (Karsh, 2004; Middleton et al., 2013). As the 

HM is designed to be a recurrent-use decision-support tool during busy periods, 

minimal manual interaction is important. This is required, regardless of the 

methods used in the implementation, hence synergies between the methods 

require early consideration. As discussed in Chapter 4 (Sections 4.2 and 4.6), the 

number of methods, the frequency of interaction, the number of points of 

interaction, and type/frequency of triggers will be determined by the specific 

application.  

Implications for IHAF implementation 

Using NHSquicker data, Total Patients data is used as a proxy for crowding. 

Forecasts using SARIMA time-series forecasting are generated 2 and 4 hours 

ahead, on 2-hour resampled data.  These are updated every 30 minutes as a new 

observation arrives. This forms the Predict component of IHAF. The predictions are 

used as a predictive trigger to initiate the simulation, which will be used to support 

system recovery and task- and system-level awareness (Section 6.7).  
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In this case, the forecasting model must receive the updated data, process it, 

make predictions, and if it reaches the threshold value, trigger the simulation. This 

procedure is illustrated in Figure 6.30. Following the arrows: (1) Using Java 

programming, the real-time data from NHSquicker is downloaded, parsed, and 

saved at set intervals (Mustafee et al., 2016); (2) The Java component sends the 

relevant values to the forecasting model (Section 6.5); (3) The forecasts are sent 

back to determine if the thresholds reach the hourly trigger (Section 6.4.3); (4) If 

the hourly trigger is reached, the simulation model is triggered, and NHSquicker 

values are injected into the simulation at initialisation; (5) Short-term scenarios 

provide decision-support; (6) Where action is taken based on the decision, this 

will be reflected in the real-time data. Information updates system-level and task-

level awareness to augment decision-making, however the autonomy of the 

decision-maker is retained. For this reason, control of the system is indirect, 

represented as a dashed line in Figure 6.30. 

 

Figure 6-30 Integration of the hybrid model 

As per Section 6.5.5, the date-time index is updated in the 30-minute dataset in 

the Python forecast model code, while the new observation is inserted directly 

into the forecast code as a variable (Figures A3-32 and A3-33). This is done using 

Java, which can call the Python forecast model and insert arguments directly. 

This creates a new row in the 30-minute dataset. This new dataset is then used 
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to update the 2-hour dataset for making forecasts (see Figure 6-29). More detail 

is provided in Appendix 3, Section A3.1.5. 

The elements for this are in place to integrate the model for future work. A 

similar procedure is required for returning the forecasts to Java, to trigger the 

simulation, which is discussed in the next section.  

 Prescriptive Analytics: Discrete-Event Simulation 

The final stage of the HM development in the IHAF framework is the Prescriptive 

stage, the real-time simulation. In this implementation of IHAF, DES is used due 

to the stochasticity and queue-based structure of emergency care, however other 

methods can be used, as discussed in Chapter 4.  The purpose of the DES in 

this case is to provide solutions toward preventing crowding, given a forecast of 

Total Patients exceeding the thresholds defined in Section 6.4.3. This 

demonstrates how short-term demand forecasts can be used for planning for 

recovery. The use of forecasts enables more recovery time, by preventing the 

critical situation from occurring in the first place. In the HM, the predictive and 

prescriptive components work in synergy, combining the benefits of each method 

(conceptualised in Figure 6.31). 

 

Figure 6-31 Synergy of the real-time data, forecasts and simulation (descriptive, predictive, prescriptive)  

As discussed in Chapter 2, DES is the most commonly used simulation method 

in ED, while crowding is the most common problem investigated (Gul & Guneri, 

2015; Paul et al., 2010).  The pace and unpredictability of ED adds a specific 

challenge for M&S studies (Jurishca, 2005), hence real-time simulation has been 

proposed for short-term decision-support in ED where circumstances change 



246 
 
 

hour-to-hour (Tavakoli et al., 2008; Bahrani et al., 2013). Improved access and 

quality of healthcare operational data makes automated data capturing systems 

for real-time simulation increasingly feasible in hospitals. The next sections 

outline the development of the DES for IHAF. 

  Stages of a simulation study 

A clear, stepwise method is recommended for approaching a modelling and 

simulation (M&S) study, ensuring that all main activities are addressed 

throughout the study lifecycle using a methodical approach. This can assist the 

researcher in formulating the problem, understanding the system, investigating 

appropriate methods for addressing the problem, building the simulation model, 

designing experiments, and presenting the results (Robinson, 2004). It also 

assists with verification and validation activities throughout the lifecycle (Balci, 

1989).  A number of DES M&S frameworks have been proposed (e.g. Shannon, 

1998; Robinson, 2004; Law, 2009; Balci, 2012) with a view to supporting the 

conduct of simulation studies.  Most frameworks start with problem formulation, 

as the problem communicated from a decision-maker or stakeholder to a 

researcher or analyst is rarely clear and well-defined (Balci & Nance, 1985).  

The second stage is that of investigating solution techniques. Once the problem 

is understood, the technique/s with the highest cost-benefit ratio should be 

selected (Balci, 1989). The boundaries of the model must be determined, a 

conceptual model of the problem formulated, and input data identified and 

prepared. The IHAF framework provides a high-level starting point for these 

issues. The final stages include programming the model, verifying and validating 

the model, and experimentation and analysis, followed by communication of the 

results, or in this case, evaluation of the model in its real-world setting (Chapter 

7). The model is developed using AnyLogic 8.5.2 Personal Learning Edition 

(PLE). AnyLogic is developed in Java, and the download and parser scripts for 

the NHSquicker model are written in Java (Mustafee et al. 2017b), aiming to 

support integration of the HM components. 

The stepwise method used in this thesis is that outlined by Martin, Depaire and 

Caris (2018) for conducting M&S studies based on a critical synthesis of existing 

frameworks from the literature (Figure 6.32).  The starting point is problem 

formulation, aligning with the problem definition stage of IHAF. Additionally, 
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continuous assessment is a central feedback mechanism in the method, 

including all evaluative actions that can cause the simulation project to iterate 

back. The steps are discussed below. However as this method was developed to 

encompass the full lifecycle of an M&S study, some of the stages have been 

previously addressed, in particular, aspects of steps 1-3.   

 

Figure 6-32 Method for conducting an M&S study, from Martin, Depaire and Caris (2018)   

STEPS 1 & 2: Problem formulation and Project initialisation 

The modeller should understand the problem and its context and have basic 

insights into the process containing the problem situation. As the simulation 

model is a component of a HM, the problem formulation stage has been 

previously addressed in Chapter 5.  

The problem formulation step clarifies and specifies the problem. The goals of 

the study are specified, alongside any sub-objectives, and the questions to be 

answered. In the case of an autonomous simulation, which questions the model 

will answer are clarified. The method is chosen, and model boundaries are 

selected. To support flexibility, Kelton et al., (2015) suggests that model 

boundaries should not be rigid. Preliminary input parameters and the level of 

model detail can be considered, aiming for the simplest model possible to 

address the problem.  

In this application, relevant aspects of model scope include: 

 Entities (patients) enter the system according to hourly arrival distributions, 

and are assigned a triage category.  
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 The model initialises at the current date-time, less a warm-up period, as 

its runtime is 2-4 hours, and arrival distributions vary according to time of 

day and day of week. 

 A proportion of patients leave the system without being treated. This is 

considered a safety risk.  

 Staff treat patients based on priority. 

 Based on ED data, patients may have one, two or three treatments, and 

may have internal (within the department) or external (outside the 

department) investigations performed. 

 Once treatment is completed, patients leave the department (are 

discharged) or are admitted. There may be delays for admission (e.g. no 

bed available) or discharge (e.g. transport delays). 

 A proportion of patients die in the department. 

Outputs are:  

 Length-of-stay (LoS) in ED 

 Total patients in the department  

 Number of patients in the waiting room by triage category 

 Time spent in waiting room 

 Patients who leave without being seen (LWBS) by triage category 

While NHSquicker provides limited information for updating a simulation model, 

it contains real-time information about the entire urgent care network (UCN), 

which can be helpful for decision support. As discussed in Chapter 2, demand 

management (managing demand at source) is one approach to managing 

crowding. Currently, in ED this involves closing ED to minors (Triage categories 

4 and 5) when crowding occurs and reaches ‘OPEL 4’, i.e. the highest level of 

operational pressure. This is a measure of operational pressure across the whole 

hospital, and considers ED wait times and numbers, as well as available bed 

capacity and expected discharges. Low-acuity patients are asked to attend the 

nearest MIU at this point.  

The geography of the use-case area means that all three MIUs are roughly 

equidistant from the ED (Figure 6.33).  
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Figure 6-33 Geography of the use-case area:  MIU      ED  

The road to MIU(1) is the most direct route, therefore patients are generally 

advised to attend here.  However, if MIU(1) is also at capacity, this risks creating 

a demand-capacity mismatch.  For this reason, it is advantageous to be able to 

consider the capacity across the UCN when managing demand. Given the real-

time information available from NHSquicker, and the focus of this study on 

patients with low-acuity conditions and crowding, the following scenarios are 

proposed for initial investigation:  

• Baseline – proportion of patients who LWBS (leave without being seen) per 

triage category, calibrated to 2018 data. 

• Scenario 1 – Redirect all Category 4 and 5 patients when the number of patients 

in the department reaches hourly trigger (reactive trigger). 

• Scenario 2 – Redirect a proportion of Category 3, 4 and 5 patients to MIU when 

the number of patients in department is forecasted to reach the hourly trigger 

in 2-4 hours’ time (preventative trigger). 

• Scenario 3 – Redirect a proportion of Category 3, 4 and 5 patients to MIU when 

the number of patients in the department is forecasted to reach the hourly 
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trigger in 2-4 hours’ time (preventative trigger), and given sufficient MIU 

capacity. 

STEP 3 Data collection and analysis; and STEP 4 conceptual modelling 

Steps 3 and 4 can occur interactively, to avoid the conceptual model becoming 

too complex for the data available to support it (Onggo & Hill, 2014). In DES, this 

often starts with a basic process flowchart, which is helpful to guide data 

collection. Figure 6.34 shows a flowchart of the ED basic processes mapped with 

the real-time data. Patients may enter either via ambulance or they may walk in. 

Patients brought by ambulance will go straight to treatment, and will be allocated 

a triage (severity) category using the following severity category descriptors, 

taken from the ED dataset: 

 1: Immediate 

 2: Very urgent -  within 10 minutes 

 3: Urgent - within 1 hour 

 4: Standard - within 2 hours 

 5: Non-urgent – within 4 hours 

Patients who walk-in will register with a receptionist. At this point patients will 

enter the waiting room, to wait for triage (ideally within 15 minutes), where a triage 

category will be allocated.  Alternatively, a patient may be sent directly to the 

treatment area. From the waiting area, a patient may wait for triage, may go 

straight through to the treatment area, or may choose to leave the department 

without waiting for treatment. Patients who leave without being seen (LWBS) 

represent a quality and safety concern, and thus LWBS rates are used as an ED 

performance metric (RCEM, 2019). LWBS is associated with perceptions of 

excessive waiting times and poorer patient experience.  

Following triage, a patient may be discharged, sent back to the waiting area, or 

sent for immediate treatment. At this point, patients could also be potentially sent 

to a MIU if a significant delay until treatment is predicted, and the patient’s 

condition is non-urgent.  Treatments will occur in different areas of the department 

(minors – generally categories 4 and 5; majors – generally categories 2 and 3; 

and resus – category 1). Although the ED datasets provided give some indication 

of where in the department treatment took place, patients may move, for example 
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back to the waiting area, into a clinical decision-support area, or into another 

treatment area. From the data, triage category is a more stable characteristic for 

determining individual behaviour in the model, as it is fixed. Patients may have 

zero, one, or more treatments, and zero, one or more investigations, which may 

take place at the bedside (internal investigations, e.g. blood test) or outside of the 

ED (external investigations, e.g. Xray).  Patients may be admitted or discharged; 

a small number of patients will die in the department. Prior to admission or 

discharge, a patient may be ‘admitted’ to a Clinical Decision Unit (CDU) to await 

a decision. At this point, the clock stops in terms of four-hour monitoring.  Figure 

6.34 maps the NHSquicker real-time data to a conceptual flowchart. As the data 

has been validated for a different purpose, patient decision-making, it is not the 

‘ideal’ data for supporting real-time simulation, however it can be used to initialise 

parts of the simulation model.   

 

Figure 6-34 The use-case Emergency Department mapped with NHSquicker real-time data 

To convert the flowchart into a computer model, both structural data and data to 

model input parameters are needed. Validation data is also required (Robinson, 

2004). Data collection sources can include interviews and observations of the 

process, alongside data from information systems (Martin et al., 2018). The 

historical and real-time datasets used for building and validating the model are 
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described in Sections 6.3 and 6.4, and Appendix 3. Additionally, site visits and 

observations were needed to model the processes.  

Arrivals at the ED vary by hour-of-day and day-of-week, so an arrival schedule 

was constructed for each (Appendix 3, Section A3.2.1, Table A3.2). This means 

that when the simulation is initialised at the current date-time, patient arrivals will 

continue to be generated using an appropriate distribution as the model runs, 

which is in minutes. The arrival rate was calculated using 2018 data by dividing 

the average hourly arrival by 60. Inter-arrival times were calculated, however 

AnyLogic supports the use of arrival rates, and applies a Poisson distribution for 

each calculated arrival rate, which is seen in the ED dataset (Figure 6.35, 

example of distribution of arrivals from 1200:1300, Monday).  This enables 

entities to enter the simulation model using a distribution for each hour-of-day 

and day-of-week. 

 

Figure 6-35 Example of distribution of arrivals in one hour (12pm) on one weekday (Monday) 2016-2018 

Triage categories were defined at the start of Step 3. A triage category distribution 

was calculated. This was found to be relatively stable per year of available data 

from 2016-2018 (Appendix 3, Figure A3-34), and per hour-of-day (Figure 6.36). 

A small number of un-coded (null) observations were found to be evenly spread 

across triage categories. Figure 6.36 shows that the daily arrival patterns per 

triage category follows the overall arrival pattern. This enables entities to be 

allocated a triage category upon arrival into the system according to a probability 

distribution, regardless of time-of-day or day-of-week. The probability distribution 

is in table 6.8. 
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Figure 6-36 Hourly arrivals per triage category, ED Attendance data, 2016 - 2018 

Table 6-8 Triage category probability distribution 

Category 1 Category 2 Category 3 Category 4 Category 5 

0.007 0.037 0.484 0.406 0.066 

 

Although the ED dataset contains duration of stay data per triage category, these 

distributions are wide and flat, and vary little between triage categories, as they 

do not differentiate between time spent in treatment, and time spent waiting for 

treatment. For behavioural reasons (i.e. working to targets), ED lengths-of-stay 

all peak sharply at the four-hour mark, distorting the distribution (e.g. Gruber et 

al., 2018). For illustration, the use-case ED Category 5 LoS are plotted in 

Appendix 3, Figure A3-35. 

A better approach is to determine the proportion of patients who had no 

treatment, one treatment, two treatments, and three treatments, for each triage 

category, as captured in the ED dataset. This includes all treatment options, 

including resuscitation, drug administration by all methods, splints, plaster, 

dressings, and minor operations. These are calculated in Appendix 3, Section 

A3.2.1, Tables A3.3; A3.4. Table A3.5 is used as conditional probabilities in the 

simulation model. A staff nurse provided estimates of treatment durations for first, 

and subsequent treatments per triage categories, in triangular distributions. 

These are in Table A3-6 in Appendix 3. It is a well-recognised problem that ED 

data is frequently incomplete, such that service times distributions are 

unobtainable (e.g. Kuo et al. 2016), and the wide variability in ED activities can 
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make this a significant challenge for simulation modelling. In this case, while the 

ED dataset includes timestamps, it contains considerable missing data and 

errors. However, the use of estimates presents a weakness. 

From the ED data it is possible to determine the proportion of patients who 

required internal and external investigations. Again, discussions with a staff nurse 

divided the investigations into those that could be done at the bedside (e.g. blood 

tests, urine tests, physical examination) and those that required leaving the 

department, potentially freeing up the trolley and staff (e.g. Xray, ultrasound scan, 

MRI, CT scan, bone scan). For simplicity, these were combined into zero, and 

one or more investigations, displayed in Table A3.7 (Appendix 3), and are used 

as conditional probabilities. Table A3.8 shows estimated distribution of service 

times for investigations, and the resource requirements by a staff nurse.  

Table A3-9 (Appendix 3) displays patient discharges as a proportion of all 

discharges, by triage category. These are divided into those who are admitted, 

those who died in the department, those who were discharged to any destination, 

and those who left without treatment or refused treatment (Leave without being 

seen [LWBS]). Patients who die in the department, and who LWBS are included 

in the simulation model. Additionally, those who ‘could have gone to MIU’ are 

estimated by adding those who were coded as any of the following: ‘Discharge – 

follow up treatment by GP’, ‘Discharge – no follow-up’, ‘Left department before 

being treated/Did not wait’, and left department having refused treatment/self-

discharged’.  This was for later use in developing simulation scenarios.  

Patients who walk-in are triaged, usually by a triage nurse (nurse practitioner) but 

occasionally by a consultant, when ‘minors’ are busy and ‘majors’ are quiet. 

Estimated triage durations are in Appendix 3, Table A3-10. These are used in the 

simulation for triaging walk-in patients. The proportion of patients who arrive by 

ambulance/helicopter and those who walk-in to the department is displayed 

below in Table 6.9. Those who arrive by ambulance or air-ambulance will by-pass 

triage, whereas those who walk-in will enter the waiting area and wait for triage.  

Table 6-9 Probability distribution for walk-in and ambulance arrivals 

Arrival mode Probability 

Ambulance/Air ambulance 0.36 

Walk-in 0.64 



255 
 
 

 

The average number of patients per hour who leave without being seen (LWBS) 

was calculated from the ED data. It was found that these correlate highly with the 

average Maximum Wait time calculated from the NHSquicker data at r = 0.947. 

This is plotted in Figure 6.37 as averages per hour-of-day (note dual axis), and 

as a scatterplot in Figure 6.38.  

This is useful, as Maximum Wait peaks 2-4 hours after Total Patients, as found 

in Section 6.4, where a correlation was found between Total Patients and 

Maximum Wait times in 4-hours. This would suggest that there is also a 

relationship between Total Patients and LWBS. 

 

Figure 6-37 Average maximum wait and LWBS per hour of day 

 

Figure 6-38 Scatterplot of Maximum Waits (NHSquicker) and LWBS (ED historical data) 
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Plotting average hourly LWBS with a 4-hour lead with average hourly Total 

Patients is therefore similarly correlated, r = 0.833, as expected (Figure 6.39).  

This suggests that a reduction in Total Patients should proportionally reduce the 

number of patients who leave before treatment. In the simulation model at this 

time, ‘wait-time tolerance’, a user-input, is calibrated against the current 

percentage of patients who LWBS per triage category. However the real-time 

Maximum Wait time can be used to predict the number of patients who LWBS. 

This is future work, currently not implemented in the model, presenting a further, 

potentially valuable, use for the real-time data.  

 

Figure 6-39 Total Patients mapped to LWBS in 4 hours’ time 

LWBS is examined per triage category, however NHSquicker data is not currently 

available by triage category. Figure 6.40 compares triage category distribution 

with LWBS distribution by triage category.  

Proportionately more patients in Categories 4 and 5 LWBS. This is implemented 

in the model as a behavioural component. A wait-time tolerance is set per triage 

category to calibrate LWBS according to Figure A3.9 in Appendix 3, rather than 

a proportion per triage category.  This can remain static, or can be manually 

inputted, but is a crude measure; using real-time data to calculate LWBS is hoped 

to be a better approach. 
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Figure 6-40 Probability distribution of LWBS and triage category 

Finally, a field in the ED data provides information about delays for discharge or 

admission. These include bed delays, theatre delays, waiting to see a specialist, 

and waiting for transport. As NHSquicker currently does not provide real-time 

information about admission or discharge, these delays are calculated from the 

ED data by proportion of triage category as a mean percentage increase by 

comparing the mean LoS in ED of those given a ‘delay reason’ with the mean 

LoS for those without a delay.  

This table can be found in Appendix 3, Table A3.11. This is important because 

downstream (hospital) delays will increase the ED LoS, and numbers in the 

department. The percentage increase, and the percentage of patients affected 

(per triage category) are used in the model in a ‘delay’ to replicate downstream 

delays for the appropriate proportion of patients. At the time of data collection, 

there were 8 chairs in the Clinical Decision Unit (CDU) that can accommodate a 

portion of these patients, however the remainder will contribute to crowding in the 

department.  

The last stage of data collection required access to staff rotas, which proved 

difficult to access. With the help of a staff nurse, these were estimated, however 

there was a lot of uncertainty due to staff shortages (NHS, 2018). Further 

discussion with staff indicated that these changed week-by-week, and were 
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unpredictable due to staff shortages, illness and last-minute changes. Rotas were 

estimated for consultants, junior doctors, nurse practitioners, and nurses across 

three shifts. Static figures were given for trolleys in triage (2); minors (14); majors 

(7); resus (3); and CDU (8).  

Table 6.10 summaries the data which is available for use in the DES. With time, 

more real-time data is anticipated to be made available, for example real-time 

patient arrivals to initialise the model, admissions and discharges, and triage 

categories of arrivals. The next subsection (Step 5) outlines the development of 

the simulation model. 

Table 6-10 Summary of data available for DES at initialisation and execution 

 
Model element 

Data 

Model initialisation Model execution 

Entity arrivals schedule Historical (distributions can 

be refreshed with real-time 

data) 

Historical (distributions can 

be refreshed with real-time 

data) 

Triage category Historical data Historical data 

Resource availability Historical or manual 

(distributions can be 

updated at initialisation) 

Historical or manual 

(distributions can be 

updated at initialisation) 

Number of services Historical data Historical data 

Service processing time Historical (distributions can 

be refreshed with real-time 

data) 

Historical (distributions can 

be refreshed with real-time 

data) 

Entity behaviour (LWBS) Real-time data  

Queues Real-time data 

Global variable values Real-time data 

Decision-rules Real-time data 

 

STEP 5 Computer modelling 

This stage involves converting the conceptual model to an executable model 

(Robinson, 2004), using a programming language or a commercial package, in 

an iterative and stepwise approach. AnyLogic 8.5.2 PLE is used to build the 

model. This provides a visual interface and a flexible method, however the PLE 

has limitations to its functionality for implementing real-time simulation. In 
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particular, it is not possible to call AnyLogic from a third-party application without 

exporting the model or uploading it to the cloud to send/receive data using an 

open API. This is discussed in more detail in Section 6.8. 

There are two ways to ensure a simulation model collects data without being 

biased by an inappropriate starting state. The first is to set a warm-up period, the 

second is to set initial conditions. Generally, initial conditions are used to save 

time without the need for a warm-up period. However real-time simulations 

require at least some initial conditions to be set, using the real-time parameters. 

In this case, mixed initial conditions and a warm-up period are required 

(Robinson, 2004). The initial condition specifies the real-time starting condition 

for the model, while the warm-up period is required to initialise the rest of the 

model.  The warm-up period is built into the simulation such that it initialises with 

the current date-time less the warm-up period, which can be changed if required 

without affecting the start time. The simulation is non-terminating, as ED is open 

24 hours, 7 days. However its use here is for short-term decision-support, so it is 

intended for very short runs of 2-4 hours. This is important for the real-time data 

initialisation, as the effect of the real-time data will degrade quickly as the model 

runs. The model is transient, meaning that the distribution is constantly changing, 

as patient arrivals change throughout the day. 

Figure 6-41 illustrates a flowchart of the DES model. Previously, Figure 6-34 

mapped the real-time data to a higher-level process map. A screenshot of the 

DES is in in Appendix 3 (Section 3.3). Additionally, a detailed description of the 

DES is provided, as the model is used for demonstration in the Evaluation 

component of IHAF. The remainder of this section provides this information in 

summary format. 
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Figure 6-41 Flowchart of ED processes for DES. Rx= Treatment; Ix = Investigation.  

As outlined in the Data Collection stage (Step 3), patients enter the model 

according to an historical hourly rate schedule, and are allocated a single 

parameter, a triage category, according to a historical distribution. Data collection 

starts at the current date-time (less the warm-up period). This allows the model 

to start collecting data using the appropriate arrivals distribution for the hour-of-

day and day-of-week, and the appropriate resource schedule for all staff. As 

explained in the previous section, this is important because the simulation is 

intended to run for a very short time (2-4 hours).The capacity for each staff type 

is defined using estimated schedules of three shifts/day as provided by a staff 

nurse, and described in the previous section. Trolleys are static resources, with 

fixed numbers.  

Upon entry, a conditional block allows patients to either enter the system or be 

sent to another hospital (not illustrated in flowchart). For the baseline model, this 

is switched off; for scenarios it is accessed at runtime using a user-control button 

and sliders.  
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At this point, patients are defined as ‘walk-in’ or ‘arrive by ambulance’; those who 

arrive by ambulance or air ambulance bypass triage and go straight to treatment. 

Those who walk-in are triaged. This is acceptable as ambulance delays aren’t 

captured in this model due to the focus on low-acuity patients, however these are 

an important part of system performance and capturing real-time ambulance 

handovers/delays would support a more flexible model for future work.  Patients 

who walk-in are triaged.  

Following triage, patients wait for treatment and investigations. These waits will 

form the real-time component ‘Patients Waiting’, which can be updated at 

initialisation. These are prioritised according to triage category, and defined 

according to the probability tables derived from historical data (Appendix 3, 

Tables A3-5 and A3-7) which defines the number of treatments and investigations 

per triage category. In consultation with staff, the treatment distributions, and the 

resource requirements tables were developed and are in Appendix 3 (Tables A3-

6 and A3-8). External investigations (e.g. Xray, ultrasound scan or other scans) 

are assumed to use no resources, hence the external waiting time is built into the 

delay time distributions. This means that lower categories with lower prioritisation 

have longer service times. The updating of real-time values in ‘Total Patients’ can 

be distributed in treatment and investigations by triage category, and 

treatment/investigation probability. For example, five additional patients in the 

department are most likely to be categories 3 or 4, and most likely to be attending 

their first treatment, or first investigation.  

To capture the behavioural component ‘Leave without being seen (LWBS)’, 

patients can be in either a ‘waiting’ state or a ‘not waiting’ state. The transitions 

between these states occur when patients are waiting for a trolley (for initial 

treatment) and for triage categories 4 and 5, who may return to the waiting room 

between treatments and investigations.  As patients undergoing treatment may 

be waiting for staff resources, they can also enter a ‘waiting state’ at this point. A 

wait-time tolerance per triage category is set. If it is less than the time already 

spent waiting, the patient leaves. Currently wait-time tolerance is set using user-

control slider bars, calibrated with Table A3-9.  However future work will 

investigate setting the LWBS function as a linear relationship with the real-time 

Maximum Wait Time, or Total Patients, as described in the previous section. Note 

in the flowchart in Figure 6-41, delays between treatments and investigations are 
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not captured, however the simulation model calculates these queues to create 

cumulative waits, which can be updated with real-time Maximum Wait.  At 

initialisation, the NHSquicker values can update the model using a Java timer 

and download program, which is implemented as a Class in AnyLogic. This is 

discussed further in Section 6.8. Additionally, the real-time status of the MIUs can 

be implemented as decision-rules, within Scenario 3.  

A discharge/admission delay is built into the model. In the ED dataset, these are 

coded, for example, as waiting for transport, waiting for a specialist, waiting for a 

bed. The proportion of patients who are delayed are according to Table A3-11 in 

Appendix 3. It is anticipated that this data could be made available in real-time in 

the future for model initialisation. If a CDU chair is available, Categories 4 and 5 

will take one, otherwise all patients retain their trolleys. Finally, patients exit the 

system.  

STEP 6: Verification and validation 

Verification involves checking for errors to ensure the model is operating as 

intended, while validation determines the correspondence of the model’s 

behaviour with reality (Sargent, 2013). Most M&S frameworks position verification 

and validation (V&V) throughout the lifecycle of the modelling process (Balci, 

1990; Rabe et al., 2008; Robinson, 2004). The model was checked after each 

change to ensure it was behaving as expected. Although intended for short-term 

use of 2-4 hours, validation was done using 7-day outputs (a ‘long run’). 

The following outputs are plotted after a single run of 7 days, with a 3-day warm-

up time. The warm-up time was chosen through visual inspection of time-series 

outputs (Robinson, 2004), which reached a steady state before 3 days using 

multiple replications. Final calibration was done after 150 replications of 7-day 

long runs. The number of replications was chosen using a simple graphical 

approach (Robinson, 2004), but with further model refinements, confidence 

intervals can better determine the accuracy of a mean average of a value being 

estimated, and the required number of replications. 

Figure 6.42 plots the hourly arrivals for one week, to confirm that hourly arrivals 

are sampling accurately. Single runs using different random number seeds were 
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undertaken to unsure that the hourly arrivals are not deterministic, that is, that the 

arrivals schedule is sampling from an hourly Poisson distribution.  

 

Figure 6-42 Daily patient arrivals (one week, minutes).  

Figure 6.43 is reproduced from Section 6.3, and plots a subset of the series Total 

Patients and Patients Waiting (14 days = 678 observations each).  

 

Figure 6-43 14-day plot of sample of Total Patients and Patients Waiting Data 

This is helpful for visual validation of the simulation output with real-time data in 

the following plots.  

Figure 6.44 maps simulated Total Patients (a single run of 7 days, initialised with 

a simulated ‘real-time’ data point) with average hourly Total Patients from real-

time NHSquicker data.  This ‘long run’ can be equated to 7 short (24-hour) 

replications for initial validation (Robinson, 2004), and appears to be sufficiently 

accurate.  
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Figure 6-44 Average hourly Total Patients (2018) and simulated Total Patients 

Figure 6.45 maps simulated Patients Waiting (a single run of 7 days, initialised 

with a simulated ‘real-time’ data point) with average hourly Patients Waiting from 

NHSquicker data. Again, this appears sufficiently accurate.  

 

Figure 6-45 Average hourly Patients Waiting and simulated number of patients waiting for treatment 

The simulation outputs Patients Waiting by triage category, and this is shown in 

Figure 6.46; the totals compare satisfactorily with NHSquicker data. No patients 

of Categories 1 waited for treatment, which is as expected, and very few for 

Category 2. Note that data is not displayed for the first 3 days (the warm-up 

period), however the warm-up period is retained in the plot as a visual reminder. 
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Figure 6-46 Patients waiting by triage category. y-axis = number of patients waiting, x-axis = simulation 
date/time 

Table 6-11 summaries this information by minimum, maximum, average and 

standard deviation for both Total Patients and Patients Waiting over a 7-day 

period and demonstrates a sufficiently good fit for Total Patients, with some 

under-prediction of Patients Waiting.  

Table 6-11 Summary statistics for NHSquicker and simulation output data for Total Patients and Patients 
Waiting (7 days) 

Replications = 

7 days 

Total Patients 

NHSquicker 

Simulated Total 

Patients 

Patients Waiting 

NHSquicker 

Simulated 

Patients Waiting 

Minimum 3 3 0 0 

Maximum 63 49 27 27 

Average 28 21 4 3 

Std Dev. 10.53 9.98 3.07 4.93 

 

As simulation output is stochastic, i.e. it contains random events, MonteCarlo 

simulation was set up with 150 replications to confirm validation. 2D histograms 

were used to display the waiting room size (Patients Waiting) for each triage 

category, and the total number of people in the system (Total Patients). In this 

plot, each of 150 replications (different random seeds) are overlaid. Figure 6.47 

shows the simulated Total Patients, with a 3-day warm-up period (no data 

collected) and a 7-day run period, and again demonstrates a good fit with the 

NHSquicker data (Figure 6.44).  
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Figure 6-47 Simulated Total Patients, 150 replications of 7 days 

The simulated Patients Waiting data has been plotted per triage category. Figure 

6.48 illustrates with Category 4 waits in a 2D histogram, over 7 days. 

 

Figure 6-48 Category 4 simulated Patients Waiting, 150 replications of 7 days  

This provides additional validation for model behaviour, as few Category 1 and 2 

patients would be expected to wait, compared with categories 3, 4 and 5, as 

above.  After 150 replications, a maximum of one Category 1 patient waits at any 

time, and a maximum of two Category 2 patients. This is to be expected, as all 

patients enter the ‘queue’ object before seizing a trolley and commencing 
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treatment.  Up to ten patients in Categories 3 and 4 are waiting at any one time, 

and up to 3 patients in Category 5, reflecting the relatively fewer numbers of these 

patients. The aggregated numbers align with summary statistics of NHSquicker.   

To examine duration of wait times, a scatterplot for the minimum, average and 

maximum simulated wait times was produced (Figure 6.49), which plots the 

summary statistics from every simulation run. 

  

Figure 6-49 150 replications minimum, mean and average ED Wait Time for first assessment for each 
replication 

This can be compared with Figure 6.50, which plots the wait times for first 

treatment of a sample of patients from the ED dataset. Wait times, while captured 

in the ED dataset as date-time stamps at key points, had significant missing data 

and errors (e.g. triage occurring after first treatment), hence the reduced subset 

plotted in Figure 6.50. It is worth noting however that NHSquicker Maximum Wait 

times are significantly higher than seen here, although as discussed in Section 

6.3, recorded waits of up to 1222 minutes were concluded to be data errors. A 

sample of NHSquicker Maximum Wait time is plotted in Figure 6.51. Both can be 

compared with the simulated maximum wait times in Figure 6.49, and show 

sufficient accuracy. 
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Figure 6-51 NHSquicker Maximum Wait time for first assessment 

To examine length of stay (LoS), a scatterplot for the minimum, average and 

maximum simulated LoS was produced (Figure 6.52), plotting the summary 

statistics from every simulation run. This can be compared with Figure 6.53, the 

LoS of a sample of patients from the ED dataset. Here, the maximum recorded 

LoS is 800 minutes in the subset of 4000 patients plotted. While it is possible that 

patients might stay in ED for 13 hours or more, it is also possible that these are 

data errors, where a patient is entered into the system but not removed at the 

end of their stay. In the full dataset (70,000 patients) stays of up to 1683 minutes 

(28 hours) were recorded.   
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Figure 6-52 150 replications minimum, mean and average ED LoS for each replication.  

 

Figure 6-53  2015-2016 Use-case ED Length of Stay 

Again, Figures 6.52 and 6.53 provide sufficient accuracy for LoS, apart from some 

uncertainty about the maximum waits. Table 6.12 summarises this information.  

Table 6-12 Summary statistics Wait time for first treatment and total LoS 

Replications = 

150 

Wait time (ED)  Simulated Wait 

Time 

LoS (ED) Simulated LoS 

Minimum 0 0 0 0 

Maximum 214 192 800 679 

Average 23 24.3 194 141 
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The maximum 800 minutes LoS seen in the use-case data also increases the 

average LoS, however the simulated LoS in Figure 6.86 under-predicts by about 

25%. This may be sufficiently accurate given the high possibility of errors in the 

ED use-case dataset, but is likely due to the estimated service times.    

Patients who left the department without being seen (LWBS) were also plotted 

as histograms by triage category. As described in Step 5, patients who LWBS are 

given a maximum wait-limit using an interactive ‘slider’ for each triage category. 

The default slider settings are in Table 6.13 and were used for calibration. The 

average daily number of patients who LWBS are from 2018 ED use-case data. 

Simulated averages over 150 replications are in Table 6.13 and plotted in a 

combined histogram per triage category in Figure 6.54. Future work will 

investigate using real-time Maximum Wait times to predict LWBS. 

Table 6-13 Patients who LWBS given a maximum wait limit calibrated to proportions found in ED data 

 Category 

1 

Category 

2 

Category 

3 

Category 

4 

Category 

5 

Max. Wait limit minutes 

(calibrated) 

131 193 150 145 100 

Average LWBS per day (2018 

ED data) 

0.007 0.04 2.0 4.12 3.1 

Average LWBS per day 

(simulation 150 replications) 

0.07 0.03 7.14 5.12 5.04 

.  

 

Figure 6-54 Patients who LWBS by triage category.  
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As abstractions of reality, simulation models cannot be described as absolutely 

accurate, however a valid model provides accurate outputs given a set of criteria. 

In this case, the model under-predicts the overall LoS by about 25%, possibly 

due to uncertainty of service distributions (Appendix 3, Table A3-6).  The model 

may correctly predict crowding, or correctly predict no crowding, or it may 

represent errors which can lead to significantly reduced performance. These two 

types of errors are referred to as type I and type II error, respectively. In case of 

a type I error, the LoS will be over-estimated, and counter measures will be 

recommended to prevent the critical condition from occurring. In a type II error, 

the LoS will be under-estimated, leading to wrong assumptions. Depending on 

the application context, one type of error may be more serious than the other. For 

example, in some applications unnecessary interventions against a critical 

condition which does not occur might be considered better than failing to detect 

a critical condition which has considerable impact on performance of the physical 

system. In other applications, a critical condition may refer to sub-optimal 

performance which may interrupt a process flow. Therefore, the severity of each 

error type is context-dependent, and an appropriate error handling strategy 

should be chosen for each type of application.  A subsequent model will be 

required to be better calibrated, for example using observation of processes and 

validating service distributions with a range of staff to lower the risk of type II error 

which is likely to reduce confidence in the model.  

STEP 7 Model experimentation 

Experimentation involves specifying scenarios and examining the output. The 

scenarios specified in Step 1 are indicative, but are not fixed solutions for 

crowding. Input, throughput and output factors can contribute to crowding. This 

implementation looks only at demand management (input factors), however a 

more flexible solution would be able to address throughput factors (e.g. adjusting 

staff rotas or improving other resource availability, or removing unnecessary 

process steps) and output factors (reducing delays, for example increasing bed 

base, changes to discharge protocols). The input scenarios tested are: 

• Baseline – proportion of patients who LWBS (leave without being seen) per 

triage category, calibrated to 2018 data. 
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• Scenario 1 – Redirect all Category 4 and 5 patients when the number of patients 

in the department reaches hourly trigger (current scenario: reactive trigger). 

Simulation is initialised using simulated real-time data.  

• Scenario 2 – Redirect a proportion of Category 3, 4 and 5 patients to MIU when 

the number of patients in the department is forecasted to reach the hourly 

trigger (in 2-4 hours’ time, i.e. predictive trigger). Simulation is initialised using 

simulated real-time data. 

• Scenario 3 – Redirect a proportion of Category 3, 4 and 5 patients to MIU when 

the number of patients in the department is forecasted to reach the hourly 

trigger (in 2-4 hours’ time, i.e. predictive trigger), and given sufficient capacity 

in MIU. Simulation is initialised using simulated real-time data. 

The baseline scenario has been described and validated in Step 6. The reactive 

(current scenario) and predictive triggers are conceptualised in Figure 6.55 

 

Figure 6-55 Conceptual mapping of reactive and predictive triggers for recovery from ED crowding 

With an average of 205 patients per day presenting at the use-case ED, and given 

the triage category distribution specified in Step 3, the average numbers of 

patients per day per category are in Table 6.14. 

Table 6-14 Average number of daily presentations per triage category 

Category 1 Category 2 Category 3 Category 4 Category 5 

1 8 99 83 14 
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Scenario 1 

Scenario 1 is the current scenario, which is an ED escalation action which occurs 

when the operational state reaches maximum pressure (OPEL 4); this action is 

specified in the ED escalation policy. Upon reaching a given threshold of 

crowding, category 4 and 5 patients are redirected until the crowding situation 

has resolved.  For scenario validation, this is assumed to be a 4-hour period.   

The results show the average over 150 replications, and suggests that this is a 

successful strategy (Table 6-15). However 16 patients are redirected over a 4-

hour period, to reduce the Total Patients to a maximum of 25, and the mean 

length of stay to 45 minutes. A proportion of Category 4 and 5 patients are likely 

to be best placed for treatment at ED, so while this strategy aims to control risk 

for the hospital overall, for some patients this may be potentially sub-optimal.  

Table 6-15 KPIs for Scenario 1 

 

The simulated wait time for the initial treatment is plotted in Figure 6.56 to provide 

an example. This shows the minimum, mean and average wait time for each of 

150 replications. The minimum in both (a) the baseline; and (b) Scenario 1, is 

zero in each case, as some patients LWBS, or die in the department. The average 

wait (red dots) has dropped from approximately 20 minutes to approximately 10 

minutes; and the maximum waits are lowered. As seen in the validation section 

(Step 6), the baseline scenario is performing accurately compared with 

NHSquicker data (Maximum Wait) and ED use-case data (wait times from triage 

to first examination), hence this scenario clearly improves waits. However the 

purpose of using a predictive trigger is to redirect fewer patients (Figure 6.55) as 

redirections occur prior to the onset of crowding. This is investigated in Scenario 

2.  
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Scenario 2 

Scenario 2 redirects 15% of Category 3, 30% of Category 4 and 50% of Category 

5, given a forecast of Total Patients which reaches the hourly trigger in 4 hours’ 

time. These figures are cautious estimates calculated in Step 3, and tabulated in 

Appendix 3, Table A3.9. This calculated the proportion of patients who ‘could 

have gone to MIU’ estimated by adding those who were coded as any of the 

following: ‘Discharge – follow up treatment by GP’, ‘Discharge – no follow-up’, 

‘Left department before being treated/Did not wait’, and left department having 

refused treatment/self-discharged’.   

This policy redirects fewer patients, allows time to triage, such that the most 

appropriate patients are redirected, and using this proactive policy, aims to 

recover before the onset of crowding has actually occurred. Total Patients in the 

department is lowered to well below the 24 hour triggers identified in Section 6.4.3 

(Table 6.16). 

Table 6-16 KPIs for Scenario 2 

 Figure 6-56 Summary statistics for 150 replications wait times for first assessment (a) baseline (b) 
Scenario 1 
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Lengths-of-stay reduce below baseline, and the wait for initial treatment has 

reduced markedly compared with Scenario 1. These are plotted in Figure 6.57 

below. Again, the baseline for the waits for initial treatment as seen previously 

compares accurately with NHSquicker (Maximum Wait) and ED use-case data 

(wait for first treatment after triage), and Scenario 2 has reduced the mean to 5 

minutes, and the (mean) maximum to 100 minutes. The variation for the 

maximum wait has increased markedly across 150 replications, but overall, very 

few people are waiting over 150 minutes, the baseline (mean) maximum wait 

across 150 replications.  Additionally, only 8 people have been redirected in a 4-

hour period – half as many as in the previous Scenario. 

Note that these are average validations over the same time period (across 150 

replications). Vastly different results would be expected during any 4-hour period 

in any given time-of-day or day-of-week. Additionally, the real-time initialisation is 

simulated (to average for time-of-day), and vastly different initialisation states can 

expect to change the results.    

  

Scenario 3 

Figure 6-57 The change in patient wait times for a first assessment at (a) baseline, and (b) Scenario 2. 
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Scenario 2 demonstrates significant reductions in the number of patients in the 

department, the length-of-stay, and the initial wait for treatment. However this 

scenario relies on redirecting low-acuity patients to the nearest MIU (Newton 

Abbott), which may already be at capacity.   

Scenario 2 provides a predictive trigger, rather than a reactive trigger, where 

crowding has already occurred. Given 2-4 hours’ notice, and given the real-time 

information provided by NHSquicker about the operational state across the UCN, 

the most appropriate MIU can be selected per patient, and the appropriate 

number of patients can be safely redirected.  While MIU(1) (the current scenario) 

may be at capacity, it is still possible that the other two (equidistant) MIUs contain 

adequate capacity to accept patients over the ensuing 4 hours. Nonetheless, 

Scenario 2 results indicate that improvements can be seen with modest 

redirections over a short-time period.   

It is anticipated that this may mean that fewer patients are able to be redirected 

(although feasibly more may be possible, as historical NHSquicker data indicates 

that MIUs frequently function below capacity). This means that Scenario 3 will 

perform at least as well as Scenario 2, at times better. This is future work, when 

the HM components are fully integrated, as discussed in the following section. In 

this scenario, the forecasts are generated, the simulation triggered and initialised 

with real-time data, and a decision-rule agreed for each of the MIUs to determine 

their real-time capacity.  This takes a system-level view of the redirection 

scenario, allowing time to ensure the redirection policy is implemented safely. It 

involves patients both in the choice to wait or go elsewhere where they can be 

seen more quickly, and in the choice of facility. It also considers the available 

capacity in the MIUs so that patients aren’t being redirected to a facility that is 

already at or near capacity.  

Implications for IHAF implementation 

A fully validated baseline DES model has been developed using historical data, and 

validated against real-time and historical data. Three scenarios have been 

investigated using proxy real-time initialisation (average for time-of-day and day-of-

week) and executed using historical distributions. The next section outlines the current 

status and limitations of the integration of real-time data, the predictive trigger, and the 

real-time DES into a HM.  
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 Integration component: simulation 

As discussed in Section 6.6, the simulation model needs to be integrated with 

other components of the hybrid model for a seamless decision-support tool. The 

model is built using AnyLogic 8.5.2 PLE which has some limitations. The model 

can’t be exported as a standalone application, nor can it be uploaded into 

AnyLogic Cloud to send/receive data from third-party applications.  This is 

required for a Java application to call the AnyLogic model and pass it the real-

time data parameters, execute the model, and receive the experiment results 

back to the Java application.  

Setting the initial conditions requires some or all of the real-time data to be 

injected into the model.  

 Total Patients can be distributed between each of the 

treatment/investigation sub-models by triage distribution and probability of 

treatment 

 Patients Waiting can be injected into the wait to seize a trolley for first 

treatment by triage distribution  

 Maximum Wait time, (and the maximum wait times in the historical ED 

dataset) contain inaccuracies, with patient waits of up to 28 hours 

recorded, and known errors with removing some patients from the system. 

However the average of maximum waits has a close linear relationship 

with LWBS as seen in Section 6.6, and these can be used to more 

accurately determine a wait time tolerance per triage category and time of 

day using a linear model.  LWBS is an important indicator of ED safety and 

performance. 

A ‘workaround’ method for integrating the HM components uses a download loop 

which is initialised on model start-up.  The download loop acquires the real-time 

data from an NHSquicker URL every 30 minutes using a data download 

scheduler. These are written in Java and implemented in AnyLogic as classes, 

as groupings of data and methods. The data is parsed for the ED and all MIUs in 

the urgent care network into an excel file with worksheets for each facility. Finally, 

the model is initialised using the download loop, executed, and data from the file 

can then be injected into the model or read off the database.  
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All of the constituent parts are in place to integrate the model components into a 

single, automated hybrid model which updates every 30 minutes, creates 

forecasts and triggers the simulation when predicted thresholds are reached. This 

will be the subject of future work, which will be further informed by the subsequent 

evaluation in the next chapter. Future work also hopes to access additional real-

time data which can strengthen the HM for short-term decision-making in ED. 

This forms the first iteration of the HM component of this IHAF implementation, 

which can now be effectively demonstrated and evaluated in context.  

 Chapter Summary 

This chapter has developed a hybrid model (HM) within the IHAF framework to 

address the second objective of the second research question, to apply the 

framework within a case study at an NHS Trust ED. It has done this by 

incrementing through the stages of the HM component of IHAF which are the 

descriptive component (identifying the data requirements and availability), the 

diagnostic component (identifying a trigger for the simulation model), the 

predictive component (developing a forecast model for a forecasted trigger) and 

the prescriptive component (a validated simulation model, using mixed real-time 

initial conditions and a warm-up period). All constituent parts are in place to 

integrate the real-time data, the forecasts and the simulation model into an 

automated HM. This is subject to future work, which will be further informed by 

the subsequent evaluation presented in the next chapter, to support the next 

iteration. 

  



279 
 
 

 Use-case evaluation of the application of IHAF  

 Introduction 

Chapter 6 developed a hybrid model (HM) consisting of real-time predictions, a 

predictive trigger, and a real-time simulation model for supporting short-term 

decision-making at an NHS use-case ED, focusing on low-acuity patients and ED 

crowding. Chapter 6 concluded with all of the constituent parts, included a 

validated prediction model (SARIMA time-series forecasting) and a validated 

DES model with a set of example scenarios for balancing demand and capacity 

across the urgent care network by redirecting low-acuity patients. These 

scenarios have been tested in the HM components of the Integrated Hybrid 

Analytics Framework (IHAF), and the final component, evaluation is undertaken 

in this chapter. IHAF is illustrated in Figure 7.1, with the evaluation component 

highlighted. 

 

Figure 7-1 Integrated Hybrid Analytics Framework (IHAF) 

This chapter addresses the second and third aims of Research Question 2, to 

evaluate the HM application in its context, and to evaluate the framework, IHAF, 

proposed in Chapter 4, as a conceptual framework for supporting the application 

of short-term decision-support tools in sociotechnical systems.  It also addresses 

Research Question 3, to analyse the system-level impact of real-time data 
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applications by both patients and staff to determine the implications and added 

value to the system.  

The chapter is structured as follows: Section 7.2 implements the evaluation 

component of IHAF through staff interviews; Section 7.3 synthesises the 

interview findings with the patient questionnaires (Chapter 5) and the extant 

literature to draw conclusions about the use of real-time decision-support tools in 

healthcare and how these might be generalised to other sociotechnical systems.  

The following section outlines the justification for using semi-structured 

interviews, the development of the interview guide, and the results of the analysis 

of the interview data.  

 Evaluation component of IHAF: Staff interviews 

While there is increasing interest in the use of real-time decision-support tools in 

healthcare, including real-time simulation, there is still a gap in understanding 

what actually does work in practice. To realise the potential of such tools using 

IHAF (Chapter 4), it is considered to be beneficial to evaluate iterations of 

implementations to inform future applications. ‘Adoption’ can be seen as a 

process rather than a discrete event, that comprises both ‘formal’ organisational 

decisions and a series of ‘informal’ decisions by individual users and teams, 

which intends to ultimately lead to the assimilation of the application into routine 

practice (Robert et al., 2010). The evaluation component aims to uncover aspects 

of these decision processes, as the value of such an application can only be 

realised through successive stages of implementation and utilisation.  

A similar approach is common in the field of Information Systems (IS). However, 

models such as the Technology Acceptance Model (TAM) (Davis, 1993; Dixon, 

1999) and the Unified Theory of Acceptance and Use of Technology (UTAUT) 

(Venkatesh et al., 2003) focus on individual perceptions of usefulness and 

usability, but fail to account for organisational and clinical environments which 

have been shown to influence implementation (Greenhalgh et al., 2017), or to 

account for a diverse set of users and tasks in healthcare (Ash et al., 2003; Callen 

et al., 2008). A number of researchers have promoted the use of qualitative 

research methods to evaluate health IS and explore uptake (e.g. Ash et al. 2003, 

2005; Callen et al., 2008). These in-depth analyses of how clinicians and 

managers use and adapt clinical IS into their existing work practices reflects the 
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complexity of implementing new digital interventions in healthcare. Studies have 

revealed the need to cover multiple issues in developing these applications, and 

highlight the inter-relationships between technology, people, and organisational 

issues. To address challenges, Shachak et al. (2019) recommend a range of 

strategies such as defining and achieving ‘value-added use’, evaluating 

implementation in context, and establishing common-ground amongst end-users.  

This perspective moves beyond the narrow scope of adoption or acceptance 

according to individual beliefs and opinions, toward increased attention to the role 

of human and organisational factors in a sociotechnical system. 

Kukafka et al. (2003) proposed a multiple-factor approach based on prominent 

models of behaviour change, which determines that tools must not be simply 

functional, but must be compatible with the user population and aim to satisfy 

most user needs. Researchers have discussed the link between the 

implementation of new technology in health, and organisational change (e.g. 

Pfannstiel & Rasche, 2017). Much of this work incorporates information on why 

people resist change, and strategies for overcoming this resistance, for example 

matching technology to the correct level within the organisation, and 

understanding how digital innovations diffuse through healthcare. For example, 

Callen et al. (2008) used interviews and participant observation to propose an 

evaluation model which accounted for organisational, clinical unit, and individual 

contexts. At the organisation level, cultural- and analytics-maturity influence 

attitudes and support. At the clinical unit level, the needs and work practices, 

previous experience with IT, and support from management are factors, while at 

the individual level, knowledge, skills and experience are relevant. This approach 

takes a sociotechnical perspective, acknowledging the complexity and diversity 

of clinical and organisational environments at multiple organisational levels.  

However the specific value proposition of the application, at both the supply-side 

and the demand-side, requires attention throughout the process (Greenhalgh et 

al., 2017; Shachak et al., 2019), and efforts should also be directed at increasing 

the usability and flexibility of the intervention, adaptation to the needs of different 

users, and workflows (Liberati et al., 2017), its interoperability with existing 

systems, and effects on existing workflows and workloads (Ross et al., 2016). 

Informed by these studies, the approach taken for evaluation of the HM in this 

thesis addresses sociotechnical factors through the use of staff interviews. It 
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addresses the generic criteria identified through the literature (Chapters 2 and 4), 

and specific use-case criteria identified through observation and patient 

questionnaires (Section 7.2.2). Section 7.2.3 outlines the data collection, Section 

7.2.4 presents the analysis and results of the evaluation, and a summary is 

provided in Section 7.2.5. The next section briefly looks at measures of situation 

awareness (SA), to relate the chosen evaluation method with a measure of SA. 

 Measuring SA within evaluation  

The evaluation centres on the potential for the IHAF method to support staff short-

term decision-making by the development of a model to enhance SA. For this 

reason, some measure or determination of the effect of the HM on SA is required 

in the evaluation. SA has been measured using a variety of tools, including 

Situation Awareness and Global Assessment Tool (SAGAT) (Endsley, 1995) and 

Situation Present Assessment Method (SPAM) (Durso et al., 2004). These tools 

involve presenting probe questions to participants to measure accuracy and 

reaction time during a simulated work process. A well-known tool is NASA-TLX 

(Hart & Staveland, 1988), which is a validated measurement questionnaire 

commonly used for individual SA, capturing task-based perceptions of workload 

demand and performance. The above methods are used within field experiments 

where a level of control is required over the research design. Other methods of 

data collection for individual SA include recording conversations and 

communications during work activities (Rafferty, Stanton & Walker, 2013; 

Stanton, Salmon & Walker, 2015). These concurrent-style techniques bring risks 

associated with disruption to real-world operations. 

In contrast to individual SA, distributed SA (DSA) is often measured in real 

problem settings (Fioratou et al., 2010). DSA views SA through a systems 

perspective, rather than a cognitive psychology lens, such that the whole system 

holds information, whether human, teams or technology. A DSA method 

described by Stanton et al. (2006) is the Critical Decision Method (CDM), which 

uses retrospective cognitive probes in semi-structured interviews to elicit 

information about how experts make decisions in sociotechnical systems (Klein 

et al., 2008). It sits within the Naturalistic Decision-Making paradigm (see Chapter 

2, Section 2.4.1), and provides very efficient data collection compared with other 

methods such as grounded theory (Harenčárová, 2017). Naturalistic Decision-

Making describes dynamic decision processes occurring in the field, which are 
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often time-constrained and based on uncertain information, and where decisions 

have high stakes (Klein, 2008). In these situations, SA is an important part of 

decision-making, but situational information is often not presented optimally. 

CDM aims to uncover how and what information can be provided or optimised, 

rather than deliberating between alternative courses of action. However CDM 

isn’t a suitable method for evaluating an artefact or information system unless it 

is already integrated and in use.   

Jeffcott and Mackenzie (2008) described different methodologies used to capture 

team performance in healthcare, including surveys, direct observation, and video-

based analyses performance. Gillespie et al. (2013) measured DSA using 

interviews and field notes, exploring the type of information staff perceived was 

needed to support decision making. A similar analysis was used by Casimiro et 

al. (2015) for analysing the factors that facilitate teamwork and effectively engage 

patients and families. Unlike the concurrent methods described in the previous 

paragraph these retrospective approaches don’t disrupt workflow in an ED during 

critical times, and are therefore appropriate for evaluation in this application. The 

staff interviews will be informed by the CDM by focussing on a critical situation, 

when examining factors related to the criteria for evaluation. The next section is 

a reminder of the criteria for evaluation, identified in Chapter 4 (Section 4.3) as 

part of the ‘criteria definition’ stage of the chosen methodology.  

 Criteria for evaluation of case study application of IHAF  

As discussed in Chapter 4, the methodology advanced by Blessing and 

Chakrabarti (2009) iterates through a series of stages. The first stage, Criteria 

Definition, identified the criteria for evaluating an artefact.  Generic criteria for 

evaluation of a real-time decision support tool were categorised in Chapters 2 

(literature review) and 4 (Phase (a) Criteria Definition).  

The second stage, Descriptive Stage I, required identifying the influences on 

success, how these influences interact, and how they can be measured to 

improve the design process. Influencing factors are considered to be inter-

related, creating a network of causes and effects connecting influencing factors 

with evaluation criteria. Those from the literature were identified, and these are 

listed in Chapter 4, Section 4.3 under ‘Descriptive Stage 1’. Additionally, specific 

criteria applicable to the use-case application were identified from the 
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observational data (introduced in Chapter 5, and in Appendix 2) and the patient 

questionnaires (Chapter 5).  

The criteria and influencing factors can be summarised as a series of themes to 

inform the development of the interview schedule, which forms Descriptive Study 

II in the Design Science Methodology, and the final stage of IHAF. The evaluation 

determines the degree to which the application has the expected effect on 

influencing factors, and whether these factors contribute to success, providing 

feedback for further development, and to enable conclusions to be made 

regarding the conditions under which the model was or was not successful. A 

reflective understanding of its limitations and how it is being used can ultimately 

increase the level of trust and confidence toward successful implementation. In 

this application, demonstration of the HM forms part of the evaluation phase, as 

described in Chapters 3 and 4. At the end of this activity the researchers can 

decide whether to iterate back to the previous activity to try to improve the 

effectiveness of the artefact or to continue on to communication and leave further 

improvement to subsequent projects. 

The following criteria have been summarised, which informs the interview guide: 

Table 7-1 Criteria for evaluation of application of IHAF 

Broad 

criterion 

Specific criteria  Example Reason 

1. Usefulness 

of the 

information 

provided by 

the HM. 

 Patient Experience 

 Staff satisfaction 

 System efficiency 

Joint demand-

capacity 

planning across 

the urgent care 

network. 

To take a system-level 

understanding of what 

matters in practice. A QI 

perspective can enhance the 

relevance of the study. 

2. Confidence 

in all aspects 

of the HM for 

decision-

support (data, 

trigger, 

predictions, 

DES). 

 Task-level (adaptive 

behaviour)  

 System-level 

(escalation responses) 

How real-time 

data and other 

decision-support 

tools are 

currently used by 

the ED to 

support task- 

and system-level 

actions. 

To understand how the HM 

can support existing 

knowledge about what is 

happening, or is likely to 

happen. 
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3. Potential 

unintended 

effects.  

 How the information is 

presented 

 Effects on workload 

 Fit with workflow 

 Usability and 

functionality 

 Effects on patient 

attendance decisions 

A poorly 

designed tool 

can increase 

stress and 

workload, rather 

than reduce it. 

As an integrated, recurrent-

use support tool, it is 

important that potential 

unexpected effects or uses 

are understood. 

4. Supports 

all three 

levels of SA. 

 Perception 

 Comprehension 

 Projection 

Automation and 

integration of 

components 

supports SA 

without 

interrupting 

workflow. 

SA requires the perception 

of environmental 

information, the 

comprehension of its 

meaning, and a projection 

about the future based on 

this knowledge. This 

information should be 

comprehended by staff 

without interrupting 

workflow. 

5. Barriers to 

use at all 

levels of the 

organisation. 

 Time 

 Capacity 

 Politics 

 Resistance to change 

 Individual factors 

 Technology readiness 

 Sociotechnical context 

 Model maintenance 

Barriers to the 

development of 

the tool will be 

encountered, but 

barriers to 

sustaining it also 

should be 

considered.  

Potential barriers should be 

identified early and require 

understanding and 

managing toward 

implementation of the HM.  

 Data collection 

For this thesis, semi-structured interviews were chosen, as this is an exploratory 

evaluation, and opening up the questions for detailed responses is a priority. 

Focus groups were not used, as a consensus wasn’t sought. It is important to 

gain a genuine understanding of the worldviews of participants, a combination of 

NHS clinical, managerial and information technology (IT) staff. This is a 

convenience sample, due to the need to work with NHS staff availability. While a 

range of staff viewpoints were sought, these are not considered to be 

representative (Liberati et al. 2017). Participants included end-users of the HM 

(healthcare staff) as well as the other staff that play an important role in shaping 



286 
 
 

the structural and political underpinning of the HM adoption, such as IT staff and 

members of the hospital executive team. Including these staff members in the 

sample aimed to allow the exploration of clinicians’ willingness and ability to use 

a new technology, as well as the impact of a broader initiative to support 

operational decisions using data analytics, making short-term decisions less 

discretional.  

An initial sample of 12-15 participants was sought, aiming for approximately equal 

numbers of clinical, IT and senior management. However, consistent with the 

principle of “theoretical saturation” (Rowlands, Waddell & McKenna, 2016), the 

final number of participants was to be decided in the course of data collection, 

based on preliminary analysis of a sub-sample of interviews. Interviews took 

place in February and March 2020, hence were interrupted by the spread of 

COVID-19 in Devon. Six interviews were completed. A further six were cancelled 

or unable to be scheduled. Due to uncertainty surrounding COVID-19, clearly 

shifting priorities, and that the healthcare sector would undoubtedly be highly 

impacted for an unknown time period, it was decided to work with the data 

collected. Table 7.2 summarises this information.  

Table 7-2 Interview participants: numbers completed and cancelled 

Participant Number 

completed 

Time of interview 

(minutes) 

Number 

planned 

Doctors 2 59m     93m  4 

Nurses and nurse 

practitioners 

0    2 

Executive Management  3 24m         58m 34m 4 

IT staff 1 67m   2 

TOTAL  6 5 hours, 35 minutes 12 

 

While CDM is used for decision-analysis, providing rich data on demanding 

incidents, it is not a method used for evaluation. However in this case the 

interviews are informed by the CDM method to focus the interviews on specific 

crowding incidents when ED is likely to be at its most demanding. This is when 

the effectiveness of analytic support is likely to be at its most critical (Wong & 

Blandford, 2002).  
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The interview schedule, which guides the direction of the interview; its 

development, informed by the literature review, observations, and the patient 

questionnaires; and the analysis are presented in the following sections. The 

interview guide is in Appendix 4. It starts with focusing on a critical situation and 

decisions made during this situation, and centres on:   

(a)   Participants views and experiences with existing real-time decision support 

technologies in ED and their contribution to task and system-level decisions;  

(b)    Specific beliefs and experiences for staff with the currently available real-

time data through NHSquicker;  

(c)    Confidence in, and perceptions of the value and usability of the components 

of the HM, including potential unexpected effects and barriers to use;  

(d)     Beliefs and experiences of the value to patients of the real-time data 

component, and its effects at the system level;  

(e)     Perceptions regarding the potential of real-time decision-support tools to 

provide information which can add value to supporting short-term decision-

making and SA during critical periods in ED. 

  

All interviews were started with the broad statement ‘Think about the last time ED 

was under pressure, and you felt that there were potential risks to patient safety’, 

followed by a series of questions, for example, ‘What information is available at 

the time of the decision? This allows participants to produce accounts of incidents 

which can then be discussed in the context of existing real-time decision-aids, the 

demonstrated HM, and future iterations of the HM. Props were brought to the 

interviews for explanation and demonstration of the different elements of the HM 

for evaluation. These are included in Appendix 4, and include: plots and figures 

to demonstrate the hourly trigger (Chapter 6, Section 6.4.3); plots and sample 

output of the forecasts (Section 6.5); screenshots of the simulation model and 

example scenarios; outputs of the simulation scenarios (Section 6.7.1).  

The interview guide was used flexibly and adapted to the different professional 

roles. For example, while clinicians were prompted to reflect on their first-hand 

experiences of using real-time tools (e.g. the ED Dashboard, NHSquicker), 

hospital managers were asked to discuss organisational strategies with respect 

to the tools. Managers and IT staff were also encouraged to reflect on potential 

ways to tackle resistance to real-time decision-support tools, as well as their own 
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responses to the same critical situation. Audio-recorded interviews were 30-90 

minutes (Table 7.2), and conducted on the hospital site. Signed, informed 

consent was obtained by all participants (Appendix 4). Recordings were 

subsequently transcribed for analysis.  

 Analysis and Results 

Interview transcripts were analysed using NVivo 12.0. Thematic analysis was 

structured using the a priori criteria defined in Section 7.2.1 (Table 7.2) as 

themes, and the main sub-themes were obtained from the data, as outlined in 

Tables 7.3 – 7.7 and discussed in this section. Where new themes were identified 

from the data, they are included in the tables and discussion. Excerpts from the 

transcripts are categorised according to themes and subthemes and narratives 

are used to summarise and conceptualise the process. The output from NVivo is 

summarised in the hierarchy chart in Figure 7.2. 

 

Figure 7-2 Tree hierarchy chart to identify prominent themes. Child nodes are nested in parent nodes 

The results are presented below.  

Criteria 1: This criteria considers the usefulness of the information provided by 

the HM: for patient experience, staff satisfaction, and efficiency/cost savings 

across the system.  From the interviews, the usefulness of the model focused 

more on the benefits for staff, than for patients or the system as a whole. Table 

7.3 provides a summary of themes and subthemes for Criteria 1. 
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Table 7-3 Criteria 1 themes and subthemes 

1. Usefulness of the HM  

1.1 Patients 1.1.1      Patient experience 

1.1.2      Patient education 

1.2 Staff 1.2.1      Support adaptive behaviour 

1.2.2      Support escalation actions 

1.3 Efficiency/cost/system 1.3.1      Urgent care network 

 

For patients, there were two foci: patient experience, and patient education. 

Patient experience (1.1.1) was interested in the effect on patient experience of 

interventions, such as the simulation scenarios investigated, for example:  

 

 

Although safety concerns were not raised, this was an example of an attempt to 

maintain a focus on the experience of the users of the system.  A second example 

focused on patient health-seeking behaviour, and the use of healthcare 

operational data for supporting attendance decisions, which was seen to improve 

the patient experience. Patient education (1.1.2) centred on behaviour, and the 

need to educate the public about alternative facilities to ED. 

One purpose of the HM is to support adaptive behaviours (1.2.1) in ED, and staff 

were interested in investigating how adaptive behaviour might change given 

forecasts of crowding, rather than working reactively.  While staff are required to 

adapt to keep pace with changing workloads and most participants recognise 

this, it was also recognised that human nature plays a role in how effectively this 

behaviour occurs, for example:  

 

 

 

 

 

“So if you’re in the system, does it feel better here [Scenario 1] than here [Baseline]? 

Is that what you’re saying?” 

“They [consultants] don’t do that. They won’t. I think the nurses probably do that a lot, 

they move their band 5s and 6s around, and they respond to what they see going on. 

I don’t know what information they use, probably only what they see.”  

“That’s something we struggle with. Persuading staff to ramp up is always a problem.”  

“The ED clinicians will talk about how great they are in a crisis, which they are, but 

when we are in OPEL 2 or 3 [Operational Pressure Escalation Level, 1=low; 4=high], 

they should be staying on it, but they don’t, they relax, and then of course it goes off.”   
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Generally the value of the HM for supporting escalation actions (1.2.2) was 

clearer, although low-acuity patients were of low concern, despite early 

conversations with staff about the effects of low-acuity patients on crowding. Re-

directing minors patients is only one of a set of actions, many of which involve 

mobilising resources from other parts of the hospital, however this solution can 

be problematic, for example: 

 

 

Here, the overwhelming emphasis was on supporting patient flow through the 

whole hospital system, where ED was seen as only one part of it. Discussions 

with ED were linked to OPEL status, which moves from 1 (lowest) to 4 (highest) 

and involves a range of measures keeping the status updated in real-time. 

However pressure has been high for some time, and there is a perception that 

being in OPEL 4 has lost its impact.  Staff emphasised that long-term budget cuts 

were part of the problem, for example:  

 

 

 

 

This is a further issue with escalation actions, i.e. who drives them, and how they 

are communicated. Currently, escalation requirements are communicated via the 

intranet, which is accessible via desktop computers, inconvenient for many staff, 

for example:   

 

 

 

At the system level (1.3.1), while participants indicated that there was interest in 

what was happening across the urgent care network, this was generally with a 

view to supporting their own internal performance, rather than optimising the 

performance of the entire network.  

  “We’d be told ‘we need extra staff in ED’ … we’ll cancel the training… send 2-3 

people up, and they would come back and say ‘I literally haven’t done anything…I 

haven’t been made use of’.” 

 “There’s a question about have we taken too many beds out of the system because 

there just isn’t enough room to put people… you can’t get them out of ED…”  

“I get emails. It’s OPEL whatever…Everyone ignores it…Because they all know what 

the problem is. They know that this current problem is the making of the managers 

who decided to close the beds”.   

“The whole organisation has access to the OPEL status, but it requires somebody 

being on a computer in a fixed place. The majority of people at any one time will be 

looking at clinical data, so why would they go and look on the intranet…people don’t 

take much notice of it.” 
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Criteria 2: Task level (adaptive behaviour) and system-level (escalation 

response) confidence that there is sufficient reliability and accuracy in all aspects 

of the model (data, trigger, predictions, DES). How other decision-support tools 

are currently used for decision support. The main themes are summarised in 

Table 7.4. 

Table 7-4 Criteria 2 themes and subthemes 

2. Confidence in model 

2.1 Real time data (NHSquicker) 2.1.1 Uncertainty of terms 

2.1.2 Driving patient behaviour 

2.1.3 Informing staff 

2.2 Trigger 2.2.1 Total patients as a proxy for crowding 

2.2.2 Hourly trigger  

2.3 Forecasts 2.3.1 For ED 

2.3.2 For the hospital 

2.3.3 For patients 

2.4 Simulation 2.4.1 Staff flexing 

2.4.2 Staff rotas 

2.4.3 Staff shortages 

2.4.4 Scenarios 

 

There is some concern, despite extensive engagement activities, that some of 

the terms used within the public-facing app were uncertain (2.1.1), for example 

 

 

This is clearly an important part of trust, and the decision to act based on the 

information in NHSquicker. Nonetheless, the real-time information is considered 

useful. The purpose of NHSquicker is to support patient behaviour (2.1.2), and 

all participants were confident that it has been a contributing factor in managing 

demand, with more patients attending MIUs and moving away from ED, for 

example: 

“[NHSquicker] needs clarity, there’s nothing to indicate exactly what it is or isn’t… we 

need to put more clarity around the definitions and what these numbers mean”.   
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Finally, all interviewed staff have used the real-time data themselves (2.1.3), as 

a shortcut to understanding performance in ED, and how it is comparing locally. 

The convenience of access to the data via a mobile phone app is cited, for 

example when off-duty or away from their desks. These indicate confidence in 

the real-time data for supporting decision-making and action, both for patients 

and for staff.  

The trigger contained two important elements (Chapter 6, Section 6.4): the use 

of the Total Crowding data as a proxy for ED crowding (2.2.1), and the 24-hourly 

time-dependent trigger (2.2.2).  Both were considered to be valid and useful, 

however contextual, which is important within a sociotechnical system. For 

example: 

 

 

 

 

 

 

This validates the hourly trigger (which averages 39 patients across a 24-hour 

period, see Section 6.4.3 in Chapter 6), as their own trigger (Total Patients = 40) 

feeds into the escalation (OPEL) tool reactively.   

The forecasts were discussed in terms of their usefulness in ED, and with regard 

to their current ED tools (2.3.1), which forecast daily arrivals and admissions: 

 

 

 

“It has had an impact, has it had a huge impact… I think there are other factors that 

determine choice… We have seen… a significant shift toward the treatment centre in 

NA … and NHSquicker is part of it, it’s not the only reason.” 

“I think the thing around number of patients in the department… that’s a measure of 

crowding in ED. That’s not necessarily around the level of activity, the flowing, in that 

hour, it’s more likely to be lack of processing of patients building up into that hour… 

why couldn’t we process those patients, was it outflows, was it inflows, was it just that 

we didn’t have enough doctors on. So those things are really useful.”  

“We know the thresholds around that, the trigger. At 40 patients it will instigate an 

escalation, but the problem with 40 is it creates crowding in the department and slows 

all our processes substantially.”   

“At the moment we have a forecast tool, how many will appear in ED and how many 

will be admitted, but it’s not sensitive enough to really trigger a different response…it 

tells you the same thing the day before and the day before etc. - you are less likely 

to react to it.” 
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Interest in the 2-hourly Total Patients forecasts with prediction intervals was high, 

and the information was seen to add insight and value.  At the hospital level 

(2.3.2), the predictions were considered to add potential value for patient flow, for 

example:  

 

 

 

The forecasts were seen as potentially contributing to adaptive planning, in 

particular flexing the workforce in ED.  However, for patients (2.3.3) the 

predictions were seen to be problematic by managers, for example: 

 

 

The IT participant noted the importance of this information being accurate, as 

patient satisfaction will reduce if their expectations are not met.   

A significant focus by all participants when demonstrating and explaining the DES 

model was staffing. The difficulty encountered when developing the DES in 

accessing staff rotas were confirmed. Short-staffing is an issue, planning rotas is 

a priority action, and how to appropriately flex staff for short-term adaptive change 

was repeatedly raised.  The challenges of staff flexing (2.4.1) was a significant 

theme, for example:   

 

 

 

 

Staff rotas (2.4.2) were raised, with a similar theme:  

 

 

 

“..That would be very useful because all we are doing is forecasting what is physically 

arriving at the door and working from there, we aren’t looking upstream… it would be 

particularly helpful for people in the control room... matching the potential for beds”. 

“…We want it so people make the decision to go the right place for them, because 

the wait will be less. One of the risks around [predicted wait-times for patients] is… 

‘I’ll wait and go later when it gets quieter’.” 

“it’s really important - there’s a point with overcrowding, where we need to put a 

second HCA in to triage the patients, so that to me is a critical point that you need to 

then be starting to get ahead, not to wait until its overheating but to get ahead of it.” 

“Just getting one more doctor is not going to help if they’re useless. It’s not going to 

make any difference.” 

“The rotas are quite moveable. But anyway, that would be a simplistic way of doing 

it, a very linear way of doing it. You could get two very good, quick nurses, but we’ve 

all worked with people who are not very good, and we know how awful it is...”  
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The difficulty of keeping rotas consistent due to staff shortages (2.4.3), is a 

problem. These issues were raised in particular when demonstrating the DES 

scenarios (2.4.4), where staffing/supply side issues were consistently of greater 

interest than demand management, for example where to put senior doctors at 

different times of the day, and optimising skill-mix throughout the day:   

The focus returned repeatedly to patient flow through the hospital system, and 

the impact of downstream blockages and staff shortages on ED crowding, while 

the effects on the urgent care network were of limited interest. Some concerns 

about who would use the HM were raised: 

This highlighted a broader issue, around where the model would sit and who 

would use and maintain it. Scenarios were considered useful: 

Specifically, regarding scenario three, which was based on the availability of 

crowding data about MIUs in the urgent care network, staff were asked whether 

it was important to consider MIU crowding before redirecting patients there. 

Responses were brief: 

 

 “The biggest problem for us is our demand side is actually less variable than our 

supply side. So if our supply side were more uniform, the small variations in demand 

that you get because of whatever is going on externally would be fine…If we could 

keep our supply more stable and consistent then we probably wouldn’t have the 

problem”. 

 

 “But it would be – who would use it? Perhaps planning. You could use it in real-time, 

but my question is would they? I think they’d use the forecasts and then plan, what 

do we think is coming in, the types, then what would they do to move the resources.” 

 

“I think what’s great about this, I can see the art of the possible. So if I were the 

COO, I would be thinking if I can move some of my demand around, in to different 

places, into different pools, which we sort of inherently know, but now I can 

physically see the impact.” 

“Yeah, my sense is that that is often forgotten” 

“Yeah, I think there is a disconnect there” 

  

 

 “When we had that recent meltdown, somebody went back and looked at the 

consultant rotas, and over half of the ED consultants were off that day…So that level 

[in the simulation] would be really good, to use the complexity of the tool…  you would 

then get people to use it.” 
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Criteria 3: This focused on potential unintended effects for staff/ED, including 

how the information is presented, effects on workload, fit with workflow, model 

usability and functionality. Unintended effects at the system-level also need to be 

considered, including effects on patient attendance decisions, and potential 

effects of predictive data on attendance decisions. The main themes are 

summarised in Table 7.5. 

Table 7-5 Criteria 3 themes and subthemes 

3. Unintended effects 

3.1 For staff 3.1.1 Model complexity 

3.1.2 Output information 

3.2 For patients 3.2.1 Decision support 

3.3 For the system 3.3.1 Providing patients with predicted wait times 

3.3.2 Information/alert overload 

3.3.3 Non-linear effects 

 

The complexity of the model (3.1.1) was an important theme, as confidence in 

the outputs of a model is associated with understanding and trusting the model 

(Harper, Mustafee & Yearworth, 2020). This was definitely considered to be an 

important factor. For example while demonstrating the DES: 

 

 

 

This was also discussed in relation to the difficulties of modelling sociotechnical 

systems, including uncertainty around weather, unpredictable events, and human 

factors in decision-making. There was also interest in how the model could be 

improved, for example bringing in weather data. The presentation and usability 

of information (3.1.2) is similarly relevant, and related to the accuracy of the 

outputs and prediction intervals, which again was seen as contingent and not 

absolute, such that planning for a number of scenarios could take place based 

on a range of forecasts.  Interestingly, effects on patient safety and other 

unexpected outcomes were largely not brought up, despite prompting. As 

“Visually, how you could present that. It looks complicated, it is complicated. It would 

be, if you were trying to get people to use it in real-time, that would be a struggle.”  

“They have to trust it. Trust is the most important thing because we all know we can 

do anything with data.”   
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NHSquicker has now been available to the public for over two years, and no 

adverse incidents have been reported, all participants seemed assured that 

providing patients with a subset of hospital operational data is a satisfactory 

approach to supporting their health-seeking behaviours (3.2.1), and that if the 

department is crowded, the public should know about it.  However participants 

were not in agreement with providing patients with predicted wait times (3.3.1), 

believing it to be more likely to support ‘when to go’ decisions, rather than ‘where 

to go’ decisions. While ‘when to go’ supports the shaping of demand across the 

urgent care system, participants were keen that those who could attend an MIU, 

did so, rather than shift the ED queues around, for example:  

Information or ‘alert’ overload (3.3.2) was a significant theme. Linking with the 

usefulness of the HM for supporting escalation activities given OPEL status, and 

the forecasted daily arrivals (3-year moving averages) which changed little day-

by-day, staff were seen to have stopped responding, such that alerts had lost 

their value. This is also linked with an issue of tension between managers and 

frontline workers, for example: 

Several participants raised the possibility of non-linear effects, such that 

outcomes may be unexpected. For example, several provided an example of a 

non-intuitive outcome of providing additional ambulances over winter, which has 

unintentionally created an increased surge of arrivals earlier in the day.  

Criteria 4: This criteria asks to what extent the HM might support all three levels 

of SA: perception, comprehension and projection. This is considered alongside 

existing decision-support tools. These are summarised in Table 7.6. 

“For staff absolutely. For patients, I think the real-time is what is useful, because 

they make a decision in the now. And actually they might decide to come later 

rather than go to an MIU now, or I’ll go earlier, and unintentionally join the queue,”  

“..if anyone is in a position where they can look at a map of information like that and 

think, well I’ll tell you what, I’ll pick my time to come because it’s quieter then, for 

me that means that it’s not an emergency.”   

“It doesn’t work if I’m honest. Because we spend all our time in OPEL 4, and you 

can walk along and you can see clinicians sitting in offices while we’re on OPEL 4. 

I’ve been in OPEL 4 with 5-6 clinicians and they haven’t moved, not moving.” 
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Table 7-6 Criteria 4 themes and subthemes 

4. Situation Awareness 

4.1 Existing tools used to support SA 4.1.1 OPEL status 

4.1.2 ED dashboard 

4.1.3 Forecasts 

4.1.4 Crowding tool 

 

Participants were not asked specifically about SA, but how existing tools were 

used to support SA, or gaps in SA support were identified from the interview data. 

The main tool discussed was the OPEL status (4.1.1), which is an organisation-

wide tool with a comprehensive set of triggers (including social care and 

community care) which can impact on patient flow, and progresses through a 

series of stages. While this provides perception, comprehension and projection 

information, a wide range of behavioural factors come into play that can impact 

on action. As previously discussed, it has become increasingly ignored when 

pressure has been high for prolonged periods (‘alert overload’). The tool contains 

a mixture of quantitative data and ‘guess work’, and in general there was 

consensus that data could be better utilised for escalation. 

The ED real-time dashboard (4.1.2) is used both in ED and in the control room, 

to show patient numbers and acuity in ED, and in which areas, and how long 

patients have been in the department. Similar themes arose here as in the 

previous discussions. However one of the biggest issues about this tool, which 

provides useful real-time information to support perception and comprehension, 

and from which experienced staff could make projections given the day and time 

of day, is its availability, for example:  

While some didn’t identify this as a problem, it clearly impacts on workflow.  

Forecasts (4.1.3) are available of daily ED arrivals, admissions and discharges 

which are moving averages of the same day for the last three years. While 

“[We] haven’t got tools that are available on the go… you have to always go to a 

board and look at something. Whether it’s the… ambulances coming in, anything, 

you’ve got to go to a board and look.” 

“That might be ok for the bed manager. But the clinicians will be sitting looking at their 

stack of people, so again, they go to a board, to look at it. It’s not handy.” 
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accepted as unreliable, they are considered to provide information of value. A 

theme raised in general about data for decision-support is interpreting it in light 

of its context. For example:  

A ‘crowding tool’ was introduced into ED at some point, which took a crude 

average of a range of measures. Anecdotally, the output was difficult to interpret 

and the tool fell into disuse. Some participants weren’t aware of it at all.  This is 

an example of a tool which provided ambiguous information, which likely had a 

negative effect on SA, and ultimately was discarded. 

Criteria 5: This looks at potential barriers to use at all levels of the organisation, 

e.g. time, capacity, politics, resistance to change, individual factors, technology-

readiness, sociotechnical context, maintaining the  model. Each of these factors 

proved to be of interest, in particular political barriers and individual factors. Time 

and capacity issues were only raised from the perspective of maintaining the 

model. From the data, an eighth factor was identified, which was system-driven 

behaviour. These are behaviours that are considered to emerge from structural 

components of the system. These are summarised in Table 7.7. 

Table 7-7 Criteria 5 themes and subthemes  

5. Barriers to use 

5.1 Individual factors 5.1.1 Staff quality 

5.1.2 Individual behaviour 

5.2 Internal politics 5.2.1 Clinical-management tension 

5.3 Resistance to change 5.3.1 Tradition 

5.3.2 Data access 

5.3.3 Innovative data solutions 

5.4 Sociotechnical context 5.4.1 Information access 

“..The data only gives part of the picture, you do need to have that extra layer on top, 

the qualitative layer.”  

“Lots of things impact on activity, so there’s only so much that data can tell you… we 

had Storm Dennis, we knew it would hugely impact on people’s behaviour, we know 

with the rugby, if there’s an FA cup match…it would be fantastic if somebody someday 

could write us a model that could do that, but right now that’s down to our experience 

and our knowledge of how those days generally pan out.” 
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5.4.2 Data input quality 

5.5 Technology readiness 5.5.1 Data-driven decision-making 

5.6 System-driven behaviour 5.6.1 ‘Gaming’ 

5.7 Maintaining the model 5.7.1 Innovation sustainability 

  

The ‘quality’ of staff (5.1.1) has been previously discussed, in relation both to 

those on the shift, and extra staff brought in to assist during escalation.  However 

individual human factors (5.1.2) are also relevant, for example staff will reportedly 

slow their pace if they feel they are working harder than other staff members. One 

way to address this was discussed in terms of decision-analysis, for example:  

 

 

 

 

Clinician-manager tension (5.2.1) is the most significant internal political factor, 

and was observed by all participants. For example, from the clinical perspective:  

 

 

 

From the management perspective: 

Overcoming this is seen as a negotiation between individuals, with experience 

and a clinical background considered to help.   

“Will people act on what they find out? … they need to do something, and they need 

to do it earlier than they are currently doing it. But you need to work out – what are 

those things that the more experienced people are currently doing? Why are some 

doctors, some nurses, really good at what they’re doing to move people through the 

system, what is that they do? There’s a huge amount of work to do around that.” 

 

“Who is going to make the change? …the most irritating thing is when you have 

someone who turns up with clipboards, telling us how busy it is, we know its busy, 

and then telling us to work harder.”  

“The CEO came along one day and said… ‘What can I do to help?’… ‘the best thing 

you can do is to resign, and we can use the money to employ some more nurses’.” 

 

 

 
“We allow clinicians to be so wonderful and righteous… we can’t go on like this, 

because as much as we are really modern, we are still hugely traditional, 

hierarchical.”  

“Clinicians are just like ‘I’m not doing that’.” 

“So I just think, because there is so much data quality problems around NHS data, 

that’s always an issue with clinicians. If it says what they want it to say, fantastic, but 

if it doesn’t, they don’t trust it.” 
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Resistance to change was not a significant theme, presumably because NHS 

Trusts have been in flux for some time. Some issues covered the theme of 

manager-clinician tension and traditional behaviours (5.3.1), often described as 

‘how it has always been done’. Access to data (5.3.2) was seen as a significant 

barrier, with governance rules seen to stifle new ideas. This could present barriers 

to future work. Innovation (5.3.3) was similarly seen to be difficult, for example 

integrating NHS data with external data sources, or having new analytic tools 

accepted, which is likely to be a barrier to implementation of the HM. 

The sociotechnical context is an important theme. Much of this has been 

previously discussed, for example how current information is presented and 

accessed (5.4.1) for supporting short-term decision-support. Data quality (5.4.2) 

is also important, and has been previously discussed. While data used in the 

model wasn’t seen to have quality issues, as reporting on it is mandatory, data in 

other parts of the hospital is problematic, for example patient discharge data is 

manually entered, and often not a priority for clinical staff. This is important to 

consider for expanding the HM, which currently has a ‘delay’ to leave ED (Chapter 

6), but is not specific to bed capacity.  

Technology readiness (5.5.1) was a significant theme. In general, participants 

expressed high interest in new approaches to data-driven decision-making. 

Responses indicated that there is still progress to be made, which is seen as 

taking a risk, however all participants saw the value in the HM, for example: 

System-driven behaviour (5.6.1) was a constant theme in the interview data. This 

was discussed in general terms, and is behaviour which is seen to arise as a 

result of interaction with structural elements of the organisation (Mullins, 2007).  

‘Structures’ are defined as the order and systems put in place by managers to 

“Where we’re saying ‘we recognise we’ve got a problem, we need to shift our 

resources’, we need to understand the consequences. Because we are always 

moving things before we understand the consequence of it… this is absolutely why 

we should be using simulation.” 

“This [the HM] is going in the right direction. I’m very aware that we aren’t as data or 

information driven as we could be. Having data is one thing, having data which 

informs decision-making is something else.” 
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direct the efforts of the organisation into goal-seeking activities. Target-driven 

behaviour is well-recognised, and can affect data quality, for example, in ED 

patients can be removed from the data-system despite still being in the 

department to meet the 4-hour target. This means they are still contributing to 

crowding, but will not be reported in the data, if they are ready for discharge but 

delayed. The problem of entering ward discharge data into the system was also 

reported as system-driven behaviour. The data helps the bed managers to 

manage beds, but creates additional work for the nurses, both in entering the 

data and by adding workload when the bed is immediately filled. This is relevant 

for future work, which hopes to include real-time bed capacity as a significant 

contributing factor to ED crowding.  An additional issue with transparency about 

available beds is ‘gaming’ in ED. Capturing and predicting these behavioural 

elements is difficult, and again is relevant for future implementations of IHAF, as 

well as affecting historic data, for example:  

Maintaining the HM (5.7.1) was considered by one participant only, who raised 

some interesting propositions which present significant practical barriers to 

implementation. For short-term decision-support, the HM is built for recurrent-use 

and needs to be embedded in the organisation. Even once a model is validated 

and integrated into the system, it still needs to be kept updated, structurally and 

in terms of the data:  

 

 

 

“I think the 4-hour target forces that [admission to a hospital ward]. It’s harder work 

to send people home, and it takes more time, and you’ve got to get it done in four 

hours. If you have a whole stack of people here waiting, you’ve got to work hard to 

get them out… then we breach [the target], so we get punished, so we admit.” 

(Doctor) 

“Well if we could, what they [ED] would love to know is what the bed position is. But 

you also have human behaviour that happens in ED. If ED know there are beds, they 

will use beds. So there is a really strange way that doctors work”. (Manager) 

 

 “So for me, we should have somebody permanently… I don’t think it’s a one-off, you 

need someone who knows how to drive it [the HM], but then it’s also a case of, ok if 

we make that change, and it does make an improvement, awesome, so we now have 

a new baseline, so what else can we do.” 

 



302 
 
 

This requires understanding the system, which is as important as understanding 

the model.  It was proposed that the information is fed to operations managers to 

make decisions, but it can be seen that communicating and enacting its output 

may not always be straightforward.  

Outcome 6: Potential improvements: From the interview data, a number of 

potential improvements for the HM have been identified, some of which have 

been mentioned in the above sections. These are outlined in Table 7.8. These 

can be used to inform future iterations of this work, which requires a collaborative, 

co-creative approach with the health service involved in order to progress toward 

potential implementation.  

Table 7-8 Criteria 6 themes and subthemes 

6. Potential improvements 

6.1 System level 6.1.1 Flexibility 

6.1.2 Urgent Care Network 

6.2 Human factors 6.2.1 Decision analysis 

6.3 Staffing 6.3.1 Planning 

6.3.2 Flexing 

6.4 Access 6.4.1 Flexibility of access to information 

6.5 Testing components 6.51 Unexpected effects 

 

A significant finding is that a model of ED alone, without specific consideration of 

downstream processes is of limited value, as flexibility (6.1.1) is an important 

aspect of usability. In this application, while crowding could be the result of 

unexpectedly high demand, it is clear that considering input and throughput, 

without specific consideration of output, is a limitation. While the HM simulation 

has a ‘delay’ component which represents bed delays (extending the length of 

stay for a specified proportion of patients, Chapter 6, Section 6.7.1), delays 

waiting for specialist reviews, transport delays, or delays for results, the bed 

delays are the most significant system-level problem and need to be 

incorporated. For example: 

 “It might be the demand. We might need… to tell the GPs not to send anyone in, or 

to send them somewhere else, just tell them.”   
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This has wider implications for IHAF applications. As a recurrent-use tool, it needs 

to be flexible with a range of possible scenarios. It is also important to consider 

the boundaries of the model within these scenarios, so that the functionality of 

the model is not too restricted, and is able to adjust and evolve as problems shift.  

The boundaries should consider both upstream and downstream elements (for 

example, with this application, as illustrated in the above quotes), but they may 

also need to consider wider implications.  From this application it is apparent that 

while the hospital sees itself as a single unit, it doesn’t necessarily consider the 

needs or capacity-constraints of the wider urgent care network (6.1.2), yet they 

are aware that this wider network impacts on both themselves, and are impacted 

by themselves. Nonetheless, there is an awareness that the system as a whole 

could be used more efficiently, and there is still work to be done taking a higher 

level view of the urgent care network, for example:  

 

 

Human factors were a major theme, and in a sociotechnical system where the 

decision-makers are people, and the activities are performed on people, it is clear 

this area might benefit from further investigation toward ongoing iterations of the 

HM for short-term decision-support. This can, for example, investigate aspects of 

the usability of an embedded HM, including usability testing; or evaluation of the 

tool in situ to determine whether it is used as intended.  Another example is how 

experienced staff make decisions under time pressure and uncertainty (6.2.1), 

and what can be learned from this. This type of research may be a prelude to 

new applications of IHAF as part of the problem-structuring stage, and may be 

important for considering the HM output, how it is presented and communicated, 

and maximising the value that can be delivered for decision-support. This type of 

analysis is common for clinical decision-making, but significantly less common 

for operational decision-making. For example: 

“[The real-time data is] creating value from a wider point of view. So it would be value 

for patients but it will also be value for the system because it’s about allocating people 

into a more efficient place to be.”  

 

 

“[If the HM could tell us] of all the things that could be going wrong, what could make 

it better…if the problem is exit block, to focus on that, and not on sending people to 

the wards to discharge patients if there’s nowhere to put them…” 
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Staffing, as previously discussed, was a significant finding, with regard to 

planning rotas (6.3.1) and flexing staff (6.3.2). The relevance of this is related to 

the flexibility of the model to address new questions, and potentially to make 

planning decisions as well as short-term decision-support.  

Many staff mentioned the current issues with accessing necessary data or 

information (6.4.1) to maintain an updated awareness of the current system state. 

Examples have been previously given. 

A further theme, was raised but not explored, and this is the need to test individual 

components in situ (6.5.1).  The potential for non-linear and unexpected effects 

was previously mentioned, and prior to the introduction of NHSquicker, there was 

significant concern about the potential effects of patients having access to 

subsets of hospital operational data. This has now been tested, and it appears to 

be having the desired effect on patient behaviour, with no undesirable 

consequences reported. However one unexpected benefit has been for staff, for 

example:  

 Summary of analysis 

Despite the cancelled interviews and small sample size, there was significant 

consensus of findings across participants, which supported analysis and 

conclusions, and can be used to inform future work.  

By focusing the interviews from the start on a ‘critical incident’, the data 

converged on the issue of OPEL status and escalation, where ED is one part of 

the hospital system, and maintaining patient flow through the system is the goal. 

Although escalation actions implicitly consider patient safety, even participants 

who have no direct involvement with patients spoke of negative patient 

“Why are some [clinical staff]…really good at what they’re doing to move people 

through the system, what is it they do… let’s talk about why you’re doing that… ‘what 

were you thinking when you made that movement’.  And they’ll tell you why, and then 

you can have a discussion about it.” 

 

 

 “[NHSquicker is] something that isn’t aimed at clinicians, but actually they’re using 

it, because they can on the go, and they can see what’s happening with their 

system... it doesn’t require them to have a formal phone call to see if the system is 

overheating…”   
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experiences during crowding situations. The need to avoid crowding is seen as a 

hospital-system problem, requiring a range of hospital-level solutions, where 

demand management is only one of many possible interventions. The focus on 

staffing suggested that this is considered to be a particular priority currently, and 

the HM needs to be flexible enough to account for a wide range of potential 

scenarios, some of which are downstream of ED. The input-throughput-output 

model (Asplin et al. 2003) is one way of conceptualising the range of factors which 

can contribute to ED crowding. While all participants were positive about the 

potential value of the HM, improvements are needed. For example, the model 

needs to be more flexible. Currently, the model is constrained by the real-time 

data available, however accounting for real-time acuity in the department can be 

an important future aim, alongside arrivals, admissions, and bed capacity. One 

consideration is the data quality issues highlighted on the wards at the use-case 

hospital, which are subject to internal politics and conflicting priorities.  

Human factors were a significant theme from the interviews. A repeated issue 

was that of reactive behaviour, both in terms of adaptive, task-level behaviours 

and system-level escalation behaviours. Environmental information supports 

both perception and comprehension of current conditions. It appears that the 

simple forecasting methods in current use provide adequate environmental 

information to support a mental projection of the system state into the near future. 

Nonetheless, proactive adaptive behaviours in the ED were reported to be 

unsatisfactory, for a range of individual and group-related factors. The tension 

between managers, who drive goal-directed behaviour and maintain 

performance, and clinical staff, who provide care, is well-recognised worldwide 

(e.g. Ranawat et al., 2009), and has been a pressing consideration in the NHS 

for some time.  Managers and doctors are distinct groups of people, who share 

some common goals, but also often have different ways of working, different 

incentives, diverging objectives, and different tribal loyalties. In the UK, these 

tensions have been becoming starker in the face of ongoing financial constraints 

and complex organisational challenges (Davies, 2015). Unprompted, this issue 

was raised by all participants in the interviews, and clearly is a significant 

challenge, causing frustration and suspicion between these two key groups. 

While the simulation can potentially provide specific, best-case solutions, internal 

politics might result in a failure of action. This could even extend to a failure of 
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acceptance of the HM in the first place, as autonomy of decision-making could 

be seen to be undermined. This is one reason for testing in situ the components 

of the model separately, as was done with NHSquicker, prior to integration.  

A key focus of all participants is how to maximise the value of available resources 

in planning rotas, for short-term escalation actions, and for flexing staff and skill-

mix, so the model needs to be validated for this purpose. Nonetheless, significant 

barriers exist when considering its future implementation. Firstly, its mode of 

implementation, as the majority of participants indicated that a mobile device 

would significantly increase the usability of the outputs, in particular for the 

forecasts, which provide decision-support even without the DES component. 

Secondly, the question over who would ‘own’ the HM, as resistance is possible if 

the implementation is seen to be a management initiative. Thirdly, and 

significantly, early consideration would need to be given to who would manage 

and maintain the model, and it was suggested by one participant that this would 

require a dedicated internal staff member. These barriers are over and above the 

usual barriers of engaging with staff collaboratively to validate each aspect of the 

model in practice, develop scenarios, and communicate results. However, there 

was found to be an openness to using enhanced data applications for supporting 

decision-making, and maximising the value that can be obtained from the hospital 

operational data to improve service provision. The use of real-time data, 

forecasts, and even simulation are not new in healthcare, and were recognised 

by all participants as valuable. However as a researcher, developing and finally 

implementing and embedding a real-time decision-support tool that is useful, 

usable and tested in practice, is a substantial challenge.  

The next section integrates the analysis of the interviews in light of the patient 

questionnaire from Chapter 5, to address Research Question 3. This asks how 

real-time data can add value at the level of the urgent care system, and considers 

what IHAF can learn from this application.   

 System-level value and challenges for real-time data applications 

The aim of Research Question 3 is to analyse the system level impact of the use 

of the real-time decision-support tool, both for patients and staff, and to 

synthesise this with the existing literature. The value proposition of the HM on the 
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supply-side (staff) and demand-side (patients) is addressed, its efficacy and 

safety, and evidence of benefit to patients and to the system as a whole.   

Involving patients in healthcare OR research is not common, but aims to start 

with an understanding of what is important to patients, to ensure that modelling 

efforts focus on measures that patients view as important as well as improving 

an in-depth understanding of the problem situation (Pearson et al., 2013). A 

summary of the data used in this thesis is illustrated in Figure 7.3.  The ‘users’ 

are patients and the public, and have access to real-time data (descriptive 

analytics) and proposed access to wait-time forecasts (predictive analytics), both 

with the aim of supporting demand management. This has been evaluated 

formatively using patient questionnaires (Chapter 5). From the NHS side, it is 

proposed that staff will have access to the forecasts and the simulation model, 

the prescriptive component. This was evaluated using semi-structured interviews 

(Section 7.2).  

 

Figure 7-3 System-level data used for analysis 

By involving end-users, who are part of the system under investigation, an 

understanding of the current requirements and perceived value for patients can 

be considered, as well as ensuring that potential unintended consequences of 

interventions are considered early.  This wider view should also consider other 

services within an NHS healthcare network. When all services are under strain, 

the effects of actions on other services (e.g. GPs, MIUs) is often not considered. 

Five system-level themes have been identified from the formative 

(questionnaires) and summative (interviews) evaluations. These are: (i) Building 
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resilience across the urgent care network; (ii) Managing manager-clinician 

tension toward HM implementation; (iii) Patient health-seeking behaviour and its 

impact on demand; (iv) Situation awareness and decision-making; and (v) Model 

sustainability over time. The next sections will consider these in more detail, and 

indicate what IHAF has learned from this use-case application. 

 The urgent care network 

A particular challenge for acute hospital-based care is maintaining patient flow 

through the system. The ED open-door policy within the NHS system, which is 

free at the point of delivery, enables access for those who might otherwise have 

considered self-treatment or chosen alternative facilities. When hospitals are 

working near to full capacity, high attendance rates reduce patient flow and lead 

to ED crowding, as admission or discharge is unable to keep pace with new 

arrivals. The resultant queuing puts pressure on staff and resources, and impacts 

negatively on patient experience and safety. Current policies of closing ED to low-

acuity patients as an escalation action when the hospital system is under 

pressure takes little account of the amount of pressure the MIUs are under, as 

patients are reactively redirected there. The interviews, which were focused on 

periods where ED is under pressure, found little evidence of accounting for 

pressure in other services. In fact the opposite was found to be indicatively true, 

as GPs are alerted by the hospital to refrain from sending patients in, and MIUs 

are expected to adapt to the sudden influx of low-acuity patients. When decisions 

are made in real-time to reduce operational pressure in a hospital, policies of 

demand management will necessarily be implemented that will inevitably have 

negative consequences on other parts of the wider system.   

Patients were able to see two main sources of value in real-time analytics – firstly 

for optimising resources including staff. Planning rotas and flexing staff was also 

a major focus by interview participants. Unprompted, a large number of patients 

indicated that a second use for real-time analytics using NHSquicker data is to 

balance demand and capacity across the system. Patients indicated that EDs, 

GPs, pharmacies and MIUs might effectively direct patients to quieter services 

and share information between services.  They saw the value in both staff utilising 

system-level information to shape demand, and in supporting the public to make 

more appropriate attendance decisions. The patient participants identified the 

need to take a system-wide view. They consider re-direction decisions to be 
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acceptable if there is a clear advantage in it for both themselves, and for the care 

providers. However being moved from one queue to another queue, at the 

directive of the governing organisation is unlikely to be a satisfactory outcome for 

patients.  Yet from the interviews, there is little evidence that a whole system 

approach is currently being utilised to tackle short-term demand management in 

urgent and emergency care. The Royal College of Emergency Medicine (2015) 

has urged urgent care systems to work together to improve efficiency and deliver 

more equitable and appropriate care. From the interviews NHSquicker is currently 

providing the most convenient and immediate source of information about the 

state of the urgent care system in real-time. The HM developed in Chapter 6 

extends the value of this information by using predictions to provide a short-term 

window to safely enact patient redirections, while accounting for the current state 

of the MIUs in the system. Staff have previously specified an interest in working 

at this wider system-level. Working together at a regional level helps build system 

resilience, defined as the ability to anticipate, to react and to mobilise resources 

for rebuilding and recovering after a degraded or critical state (Hollnagel, 2009, 

2011b). This involves spreading the risk across an entire urgent and emergency 

care system (Higginson & Boyle, 2018). While more work needs to be done, 

effective crowding management requires a whole system view to address the 

balance of workload across all sectors of the urgent care network. It also requires 

collaborative leadership, as discussed in Section 7.3.3.  

Key implications for IHAF 

As IHAF supports the development of a HM which is for recurrent use, scenario 

flexibility is important as priorities shift with time. It can be difficult to articulate future 

decision requirements, however this maximises the value and utility of the HM and 

its real-time data, and its sustainability as a decision-aid. One element of simulation 

model flexibility is its boundaries, and while the current DES can be improved in terms 

of capturing admission delays, it does look more widely at the urgent care network. 

One of the goals of IHAF is to support system resilience, and an important part of this 

is spreading risk.  As part of the problem definition phase, the boundaries of the model 

and the wider implications of scenario interventions should be considered from the 

perspective of resilience.    
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  Patient decision-making 

IHAF explicitly suggests considering all relevant stakeholder groups in the 

problem definition stage (Chapter 4, Section 4.4). A complex interaction of 

physical, psychological, social, and demographic factors influence a patient's 

choice in healthcare utilisation. The literature review in Chapter 5 categorised 

these factors, and the questionnaires investigated how real-time knowledge of 

wait-times might influence attendance decisions. While the majority of patients 

overall considered themselves to be in the most appropriate place, significantly 

more patients who would have found the real-time data useful indicated that 

alternative facilities such as MIU or GP could have been appropriate for their visit.  

There is a general consensus that people are using ED services inappropriately, 

however there is a significant amount of debate about how to define 

‘inappropriate’ and the proportion of inappropriate attenders. 

The boundaries between urgent care provision, including general practice, MIUs, 

urgent treatment centres, walk-in centres, ED, pharmacies and other service 

providers are confusing and unclear, with health-seeking behaviours informed by 

a number of factors, as identified in Chapter 5. Nonetheless, the questionnaire 

found that 79% of patients reported that they were ‘certain’ or ‘very certain’ that 

they were in the most appropriate place for their care. Pope et al. (2019) also 

found a ‘moral positioning’ where the health-seeking behaviours of others are 

judged, while patients’ own are viewed as legitimate. Attempts are underway to 

clarify the confusion over fragmented healthcare service provision for urgent and 

emergency care to support the public in making attendance decisions 

(NHSEngland, 2019), however Pope et al. (2019) argued that patients are not 

deliberately making ‘wrong’ attendance choices but that their choices are socially 

constructed and informed by past experience and beliefs. Other research findings 

agree (e.g. McGuigan & Watson, 2010; Beache & Guell, 2015; Sancton et al., 

2018). Within the wider urgent care network, it may be relevant to take the focus 

away from whether decisions are ‘appropriate’ or not. The need for urgent and 

emergency care is contingent and subject to multiple definitions (Durand et al. 

2011), and can be determined by service providers, by users, or both. Quan et al. 

(2013) found that professional assessment of urgency was based around 

timeframe and contextual subjectivity, such as whether the patient or their family 

were distressed, rather than clinical features alone. They also reported that 
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definitions of urgency varied between physicians and nurses, with nurses more 

likely to take in the wider context of the patient experience. 

Despite patient certainty about ED as their attendance choice, it seems the real-

time wait-time information can form a contributory factor toward ED attendance 

decisions.  When framed according to Andersen’s Behavioural Model of Health 

Service Use (Andersen et al. 2014), it is clear that there is the potential for the 

real-time data analytics to impact on individual health-seeking characteristics, in 

two distinct ways. Firstly, estimates of wait-times can be classified as a 

predisposing characteristic representing a patient’s beliefs, attitudes or 

knowledge about health services wait-times. The provision of actual wait-times 

will potentially change this to an individual enabling resource, as knowledge of 

wait-times then enables a more informed choice. Changing a belief to an enabler 

is important if the health behaviour being enabled can be considered best for both 

the patient and the NHS. This supports the urgent care network by assisting the 

most appropriate distribution of patients. However, an additional, unexpected 

benefit of the real-time data analytics for patients who have been referred or who 

consider their condition to be serious is using it for planning, managing 

expectations and reducing anxiety, hence for this group of patients, the real-time 

information is bypassing the ‘Health Behaviour’ Component of Andersen’s model 

and influencing ‘Outcomes’ directly, in particular patient satisfaction.   

Additionally, information from patients about the potential benefits to the system 

indicate that they support levelling demand across the system, both through their 

own (and others) attendance behaviour, and through the NHS using the 

information to manage demand and resources. In this case, the real-time 

analytics has the potential to influence contextual enabling resources. These are 

conditions that facilitate or impede use of services, such as the number and 

distribution of services, staffing, and structure in the community, resources, 

opening hours, and facilities. While not directly influencing any of these factors, 

where demand is managed across an urgent care network by both patient 

behaviour and NHS processes, a reduction in crowding, and subsequently wait 

times in ED, acts as a contextual enabling condition for those individuals whose 

attendances are appropriate and necessary. However managing NHS processes 

relies on staff behaviours, as discussed in the following section. 
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  Manager-clinician tension 

As previously acknowledged, crowding can have wide-reaching impacts, and is 

associated with poor clinical and operational outcomes, and perceived quality of 

service. While the potential negative effects on patients were discussed in the 

interviews, including recent anecdotal examples, the ongoing issue of tension 

between managers and clinicians was raised repeatedly by all participants, and 

frustration on both sides was evident. This issue particularly arose in discussions 

about initiating both adaptive behaviours and escalation actions based on current 

tools, and it is evident that it stems from differing priorities and beliefs.  Persistent 

tensions between cost, quality, and access are irreconcilable, and the decisions 

and trade-offs that attempt to resolve these issues are central to all NHS Trusts 

(Davies, 2015). From the interviews, it seems probable that staff who could act 

sooner to prevent a crowding situation escalating, sometimes choose not to do 

so, potentially compromising the care of patients. This is a problem felt across 

the urgent care network. For example, nurses in MIUs working autonomously 

sometimes have to manage acutely unwell patients, who self-present due to ED 

being under pressure (Bowen, 2019). Additionally, while GP services are not 

addressed in this work, indications from the interviews are that workload from 

GPs is considered to be a source of demand which needs to be attenuated. Yet 

they are a significant element of the urgent care network, and the impact of a 

chronic decline in the GP workforce is being felt in ED (NHS England 2020a). The 

interface between primary and secondary care clinical activity recognises the 

same behaviour of ‘resisting’ work as that recognised between managers and 

clinicians, leading to loss of goodwill and a sense that professional responsibilities 

are not being fulfilled (Sampson et al., 2016). In hospitals, the use of clinical 

managers is an established approach to increasing engagement of clinicians; 

Key implications for IHAF 

The analysis of patient health-seeking behaviour and real-time descriptive data 

emphasises the need both to evaluate components separately, and to specifically 

look for unexpected outcomes, which can be negative or positive. This is an important 

element of the ‘evaluation’ component, and the questionnaire research has 

emphasised that outcomes can be different to those intended in complex 

sociotechnical systems. 
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unfortunately due to COVID-19 a planned interview with a Clinical Director was 

cancelled on the day, which may have provided additional insight into the 

complexity of the situation in this specific context. Nonetheless, empirical 

evidence continues to show frustrations and tension between doctors and 

managers and a lack of optimism that relationships will improve in the future 

(Powell & Davies, 2016). It is generally accepted that although there have been 

some shifts in the power balance between doctors and managers, overall doctors 

continue to be a powerful group who retain considerable autonomy, which they 

seek to uphold, despite management initiatives. The comprehensive longitudinal 

study by Powell and Davies (2016) found three forms of subtle resistance by 

doctors: eroding aspects of the managerial system (e.g. by not using guidelines 

or protocols); co-opting managerial tools into professional work and adapting 

them in ways that maintain clinical autonomy; and critiquing managerial initiatives 

(e.g. by arguing that available data are flawed). For this case study, it is evident 

that these behaviours could potentially impact on HM adoption at multiple levels: 

(i) testing the HM components in practice; (ii) implementing the HM into existing 

workflow; (iii) responding to the outputs of the model, both at the task-level 

(adaptive behaviour) and at the system-level (escalation actions).  

While gaining a contextual understanding of management culture in the NHS is 

beyond the scope of most OR studies, addressing this specific challenge is likely 

to be key to the acceptance or otherwise of a decision-support tool, even in the 

early stages of testing in situ. Stakeholder theory has been applied within the field 

of OR for understanding how to best identify and manage those stakeholders who 

are important for ensuring outcomes. For example, Ackermann and Eden (2011) 

found that the challenge of managing stakeholders becomes clearer when their 

interests are separated from their power to influence outcomes. Additionally, 

while formal relationships are well-understood, stakeholders’ informal networks 

are invariably more complex, such that some stakeholders are more or less 

powerful than initially anticipated.  Problem-structuring research has had at its 

forefront an interest in supporting decision-makers who are engaged with 

complex problems. One of the most significant of these types of problems is 

collaborative working.  This requires participatory processes, resulting in an 

increased qualitative understanding of the problem, and lowering the risk of 

misrepresenting the goals and values of stakeholders. 
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Functional barriers across many different groups of professions, each with 

different knowledge, skills and perspectives, can be a barrier to adoption and 

integration of a new technology (Greenhalgh et al., 2005). From the interviews it 

is clear that there are individual as well as group processes to consider, as senior 

clinicians are key decision-makers, and alongside the political nature of the 

processes of adopting a new technology, this individualistic factor requires 

provision. In order to realise the potential benefits to patient care of technological 

innovations it is important to see ‘adoption’ as a process rather than as a discrete 

event, which comprises both ‘formal’ organisational decisions and a series of 

‘informal’ decisions by individual users and teams, which ultimately leads to the 

integration, or not, of the technology into routine practice (Robert et al., 2010).  

While a participatory approach is more likely to support acceptance and 

implementation, de Gooyert et al. (2017) reported a lack of attention toward 

implementation and results in OR studies. However the effects of crowding are 

seen in both patient outcomes and staff morale (Morley et al. 2018). Post-COVID, 

renewed financial constraints and complex organisational challenges will 

potentially increase pressure and reduce staff morale in NHS hospitals, the 

tension between clinicians and managers is likely to intensify (Davies, 2015). The 

implications of this are that as crowding becomes an increasing issue, the 

commitment of clinical staff to action management solutions may reduce, putting 

patients at potential risk of harm. Early in this study, observational data found that 

clinicians demonstrated concern about the safety of individual patient decision-

making and non-optimal attendances, while managers focused on understanding 

patient behaviours and the factors that drive decision-making. Evidence shows 

that doctors are more likely to consider the fairness of interventions related to 

individual patients while managers are more likely to consider populations of 

patients (Fitzgerald et al., 2006; Powell & Davies, 2016). For example, regarding 

the quality and safety of health care (Degeling et al., 2006; Klaber et al., 2012), 

managers are more likely to favour changes that move services towards a more 

systematised approach, that increase team-working and that balance clinical 

autonomy with greater transparency and accountability. Engagement with real-

time decision-support is a priority, as it provides an overview of the system state, 

enhancing SA, and the ability to enact both adaptive behaviours and escalation 

actions. However in this application, without the support of both clinical and 
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management staff, it is likely to fail early.  The next section considers the role of 

real-time tools in enhancing SA and subsequent decision-making. 

 Situation awareness 

Positioning IHAF in Situation Awareness (SA) theory (Chapter 4) deliberately 

focuses attention on what information is needed where, and when, to support a 

continuous understanding of the current system state in a complex, dynamic 

system (Endsley & Garland, 2000). A key feature of the framework is the purpose 

of real-time decision-support tools in enhancing SA, an important constituent in 

decision-making processes (Chapter 4, Section 4.4.1). The choice to act on the 

information belongs to the decision-maker, and formed part of the discussion in 

Section 7.3.2, and later in Section 7.3.5.  

For this reason, the design and use of the HM required specific consideration with 

regard to its contribution to SA. From the interview data, the output of the 

predictions provides acceptable information, however the complexity of the 

simulation model was challenging for some participants. The use of AnyLogic 

presents a further barrier, as it may not be usable on an NHS machine, and 

doesn’t support integration. It is likely to be necessary to code the model using 

open source software, which also supports research collaboration, and model 

review. Staff who will not be interacting with the model itself (five participants) 

reported that they were satisfied with outputs that provide indicators for action, in 

particular clinicians articulated a lack of interest in the workings of the model.  

Additionally, aspects of the usability were highlighted, including the convenience 

of having the data outputs available ‘on the go’ in a mobile device, which were 

considered more useful than shared workstations or displays. These are 

Key implications for IHAF 

The challenges of collaborative working in an M&S study are heightened in a real-

time study, when engaging in test-develop cycles toward implementation and 

recurrent use. Stakeholder groups may need to be managed throughout 

development, and a further consideration is how different groups respond to the 

outputs. Additionally, engaging staff in the implementation of a real-time decision-

support tool can strengthen the link between the process of using data analytical 

methods for decision-support, and outcomes. This supports transfer of learning and 

makes it easier to demonstrate the relevance of the OR methods in specific domains. 
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examples of individual and environmental factors which influence SA, decision-

making and action, and subsequent performance. Environmental factors are 

relevant for the design element of the HM, as unanticipated effects can result 

from the type or presentation of information, for example, technology-induced 

errors (McGeorge et al., 2015). Similarly, IT systems that provide ambiguous 

information or with poor usability can actually reduce human decision quality and 

speed (Endsley, 2016). 

One interesting issue which was raised in the interviews was decision analysis, 

the study of how experienced doctors and nurses actually make decisions that 

move people through the system (rather than how they ought to make decisions 

in approximation to a rational standard). One way of investigating this is the study 

of Naturalistic Decision-Making. Naturalistic Decision-Making is concerned with 

how people, particularly experts, make decisions in complex, real-world, 

uncertain contexts that can require real-time decisions in urgent situations with 

significant implications for errors (Zsambok & Klein, 2014). Beach (1997), in the 

context of organisational decision-making, stated that values and beliefs, specific 

organisational and individual goals, and operational plans for reaching the goals, 

will guide and limit decision–making. This merges goal-orientated individual 

behaviour with the decisions and goals of other organisational stakeholders. The 

fit with the problem of management-clinician tension is clear. Organisational 

decision-making is often challenged by shifting or competing goals and uncertain, 

dynamic environments. Other factors relevant to ED include ambiguity or 

incompleteness of information, a longitudinal context, incentives, repeated 

decisions and conflict (Gore et al., 2006). It has become increasingly accepted 

that in order to build information systems that can support complex decision-

making it will be necessary to more fully understand human decision-making 

processes (Zsambok & Klein, 2014).  

In clinical settings, studies have gained an understanding of how clinicians make 

decisions in dynamic environments amidst interruptions, distractions, and 

uncertainty (Falzer, 2018), however little work has investigated how staff make 

dynamic operational decisions under the same circumstances. Using the Critical 

Decision Method (CDM) as a form of retrospective interview of decision-making 

processes during a critical event is one method of approaching this. In the 

evaluation phase of this application, the interviews were focused on a critical 
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event, as used in the CDM, however decision processes, key points, and the 

main information sources were not explored in this context. Investigating SA to 

improve operational decision-making and decision-support applications in 

healthcare is an area that is likely to benefit from significant further work as part 

of the process of development of real-time decision-support tools. The final 

section looks at ownership, maintenance and sustainability of the HM once 

embedded in operational processes. This is important to consider early. 

  Model ownership, sustainability and long-term evaluation 

Interview data in the use-case highlighted the importance of considering early 

how to embed the HM into a complex sociotechnical system, and who would 

maintain and interact with the model. However, significant work is needed to build 

a shared vision, identify and engage the right staff, and monitor the impact, which 

is difficult to capture in the long-term. Stewart and Williams (2005) emphasised 

that this work is often underestimated, and can be hidden and extensive. The co-

evolution of the technology presents challenges, for example having the right staff 

to support adaptation and flexibility of the model over time, in a rapidly changing 

policy context, with technological evolution and organisational responses to these 

factors. Data from the interviews and questionnaires has shown that adopting 

and embedding new technologies into a dynamic sociotechnical system requires 

understanding and navigating its multiple interacting facets, and these cannot be 

overlooked or ignored. Greenhalgh and Abimbola (2019) summarised strategies 

for accepting complexity when engaged in healthcare technology programmes. 

These include strengthening programme leadership; maintaining a clear, co-

developed vision; identifying and talking about uncertainty; supporting adaptivity 

and flexibility; and accepting that unintended consequences will occur.  

Key implications for IHAF 

SA is an explicit element of IHAF, focusing the purpose of the real-time HM. The 

application in an NHS ED evaluated SA in general terms, which may be appropriate 

for this early stage of development, however consideration should be given to 

examining SA in the problem definition phase (for example using Naturalistic 

Decision-Making analysis), and the use of a specific measurement of SA may be 

valuable in the evaluation stage.  
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Poor uptake of technology is often explained in terms of barriers and facilitators, 

however Greenhalgh et al. (2017) reasoned that individual factors do not make 

or break the implementation of technology in healthcare, but the dynamic 

interaction between them. This includes all of the factors discussed above in 

Sections 7.3.1 – 7.3.4. The more complex the domain of implementation, the less 

likely the innovation will be adopted. Greenhalgh et al. (2017) developed and 

applied a framework for predicting and evaluating the success of technology-

supported health and social care interventions. Causes of non-adoption include 

a failure to acknowledge the complexity of issues, i.e. that issues are 

unpredictable, emergent and dynamic; insufficient prototyping, testing, and 

awareness of human factors issues; low technology maturity; and lack of 

consideration to sustainability of the technology. IHAF supports the consideration 

of all of these factors. Its value lies in the insights gained through iterative build-

evaluate activities. This enhances understanding of the problem situation and the 

interactions of its subcomponents. The flexibility to change and evolve the model 

until it is useful and effective toward addressing the problem can simultaneously 

adapt and align with organisation capacity and readiness to innovate. In 

healthcare, as in other sociotechnical systems, it is important to develop an 

approach to modelling and analysis that abstracts away from the specifics of 

particular algorithms and obtains systems-level understanding. For example, the 

problem of ‘alert overload’ was raised in the interviews. Future iterations at the 

use-case hospital will need to consider to how to manage this complex human-

technology issue as an example of data analytics components that interact with 

each other and with people (de Weck et al., 2011). A further issue raised in the 

interviews is that of trusting the outputs of the HM to act on them, and as the 

approach develops it should provide insight into how improvements in accuracy 

translate into gains that matter in terms of reduced costs, lives saved, time 

conserved, effort reduced, and quality of care increased (Wagstaff, 2012).  

Although data analytics is increasingly a key part of sociotechnical systems, the 

academic literature does not typically focus on the system-level impact of data 

analytics. Consequently typical measures of performance that are optimised and 

reported do not always align with domain experts’ assessment of performance 

(Wagstaff, 2012; Rudin and Wagstaff, 2014). In the use-case, these included 

patients and staff. When data analytics are used in real-world applications, 
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success is often not due to small differences in performance between models or 

algorithms, but by how well the solution fits the unique aspects of the domain and 

its evaluation measures, and these issues should be considered early and often. 

 Chapter Summary 

This chapter addressed the third aim of the second research question, to 

demonstrate and evaluate the HM application in its context (Section 7.2). It also 

addressed the third research question, to analyse the system-level impact of real-

time data applications by both patients and staff to determine the implications, 

barriers, and added value to the system (Section 7.3).  Table 7.9 reiterates 

Research Questions 2 and 3, with the areas addressed in this chapter in bold.  

Table 7-9 Research Questions 2 and 3 

2. How can an integrated 

hybrid approach using real-

time simulation and 

predictive analytics support 

short-term operational 

decision-making? 

To test and evaluate the 

potential of an integrated 

hybrid approach for short-term 

decision-support in healthcare 

combining real-time simulation 

with other analytics 

approaches. 

1. To propose a generic 
framework supporting an 
integrated hybrid approach for 
short-term decision-making in 
healthcare. 
 
2.  To apply the framework 
within the case study in a 
hospital ED. 
  
3. To evaluate the 
application of the 
framework.  
 

3. What are the implications 

and the added value to the 

system of using real-time 

data applications for both 

patients and for NHS 

decision-support? 

To analyse the system level 

impact of the use of real-time 

data for both patient and staff 

decision-support. 

 

1. To critically evaluate the 
perceptions that patients 
and NHS staff have 
regarding the value that real-
time applications provide at 
the system level.  
 
2. To synthesise previous 
findings and evaluate the 
framework in light of the 
application. 
 

 

The value proposition of the HM developed in Chapter 6 for the use-case is at 

the system level, aiming to improve efficiency, deliver more equitable and 

appropriate care, and support system resilience. The technology, its usability, 

aesthetics, dependability and accuracy, and the extent to which the information 

generated is accepted, trusted and considered sufficient for decision-support are 

all relevant. The information may empower and inform, but it may also be 

misinterpreted and cause unintended or indirect effects.  
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The real-time components have been evaluated through patient questionnaires 

and staff interviews, and indicate that descriptive analytics appropriately supports 

patient attendance behaviour, however predictive information may facilitate 

‘when to go’ decisions, rather than ‘where to go’. Patients support demand 

management actions at the urgent care network level, however from the staff 

interviews, staff are consistently more focused on improving patient flow through 

their own system, and their interest in the wider system is mostly its impact on 

their own demand. While it is clear that a simulation model of ED must incorporate 

downstream hospital processes, the wider network is also an important 

consideration when managing patient demand.  

Additionally, despite the focus on hospital system activity, hospital–level 

challenges exist. Stakeholder engagement and management is essential for most 

M&S studies in a sociotechnical system, but specific challenges were identified 

from staff interviews. The conflicting goals and behaviours of managers and 

doctors are likely to be a significant challenge, as the predictive and prescriptive 

components will require both clinical and management support. There is often no 

single adoption decision, and inter-professional relationships, power and politics 

are important. Additionally, while the output might support SA, whether it changes 

behaviour is uncertain, for example it might be seen to reduce clinicians’ 

professional autonomy in support of higher-level management decisions. Future 

research might use stakeholder theory for managing this situation toward the 

integration of a real-time decision-support tool into practice. Additionally, there is 

a need for decision-analytic research which works to understand how 

experienced or skilled staff make operational decisions that support patient flow. 

This can be used to inform real-time adaptive behaviours, escalation decisions, 

and the information or tools needed to support these behaviours. Finally, a further 

hurdle is sustaining the tool in practice with consideration of the political, policy, 

regulatory and legal contexts, the sociocultural environment, and how the 

organisation adapts to these rapidly changing contexts, alongside technology 

evolution over time. From the interviews, it is clear that these factors, alongside 

the short-term ownership of the model, how it is used, maintained and updated 

day-to-day, require early consideration and are not insignificant concerns.  

The next chapter revisits the framework – IHAF - developed in Chapter 4, and 

applied in a use-case in an NHS Trust ED in Chapters 5, 6 and 7, for revision.   
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 Revisiting the IHAF framework 

 Evaluation of the Integrated Hybrid Analytics Framework (IHAF) 

Chapter 4 proposed a generic framework for the development and testing of a 

hybrid model (HM) for real-time decision-support in sociotechnical systems. The 

previous chapter completed the application of the Integrated Hybrid Analytics 

Framework (IHAF) in a case study at an Emergency Department (ED), through 

its evaluation component. This chapter will revisit IHAF in light of its application 

in Chapters 5, 6 and 7. IHAF was motivated by the increasing need and 

opportunities to use real-time data to support quick and effective decision-making 

(Bumblauskas et al., 2017). Concepts derived from the Human Factors literature 

take account of sociotechnical system precursors of decision-making, including 

individual and team-level situation awareness (SA), and Quality Improvement 

(QI) theory was suggested as a means to bring together, in a generic framework, 

the concepts from data analytics, simulation and sociotechnical theory toward 

supporting short-term decision-making. The framework proposed in Chapter 4 is 

in Figure 8.1. 

 

Figure 8-1 Integrated Hybrid Analytics Framework (IHAF) 
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The development of the framework was done in two ways. The first development 

was through an examination of the stages of a Design Science methodology 

(Blessing and Charkrabarti, 2009). The second was derived from insights from 

the literature review in Chapter 2, examining decision-making in dynamic, 

sociotechnical systems; data analytics and simulation for decision-support; and 

real-time simulation as a HM.  The framework was developed to be generic, and 

tested in practice, with transferable knowledge aimed at supporting similar future 

work. The framework was evaluated with a use-case at an NHS ED using real-

time data made available from NHSquicker. The following sections will evaluate 

each component of IHAF as structured in Chapter 4, starting with the use of the 

Design Science methodology.  

 Revisiting the Design Science methodology 

Design Science is used extensively in computer science and Information 

Systems research, but rarely in OR. O’Keefe (2014) argued that Design Science 

is one way of achieving design-oriented OR, taking OR values and approaches 

back toward early OR practice. This means that OR concerns itself with the larger 

system—its context, its data and where it is placed within (and beyond) the 

organisation. Basing the IHAF framework in Design Science methodology 

arguably makes the research more relevant in its applied setting, while providing 

methodological rigour.  A key feature of Design Science is the evaluation 

component, which leads to further design, demonstration, and evaluation. While 

a formative evaluation may be incorporated in the problem definition phase, the 

final evaluation informs future work. This means there is a close relationship 

between problem definition and evaluation.  

The evaluation phase has another important distinction: it is not based on the 

value of the underlying method or algorithm, but upon the utility or usefulness of 

the artefact in practice (Hevner et al., 2004). A technically more ‘correct’ model 

may not have improved utility if it is not demonstrable in terms of gains that matter 

to stakeholders. OR as Design Science supports work that crosses functional 

boundaries, and O’Keefe (2014) argued that hybrid models are likely to be 

required, and that system integration should be the aim. This means that model 

development is a collaborative design problem, and its usefulness and usability 

are considered from the beginning. As discussed in Chapter 3, Design Science 

supports mixing methods and provides clarity about the added benefits to be 
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gained from this approach (Gregor & Jones, 2007; Ågerfalk, 2013), which include 

enabling different stages of the project, dealing with complexity, allowing iteration 

and flexibility, and considering the wider system. Combining the development of 

a contextual quantitative tool, and a qualitative case study of users’ interaction in 

the applied setting provides insight beyond the methods used in isolation 

(Ågerfalk, 2017). The model requires a staged, evolutionary implementation, 

which may not be necessary for single-use models, but for embedded real-time 

decision-support tools, the potential value is clear. This approach operates at the 

intersection of knowledge about physical artefacts, and human behaviour. For 

example, Design Science addresses the limitations and issues that arise during 

data collection, modelling processes and users’ concerns (Blessing & 

Chakrabarti, 2009). Additionally, the methodology supports a critical approach 

(Hodgkinson & Starkey, 2012), such that the study process and application of the 

HM is contingent and situated (Zachariadis et al., 2013). It contributes to 

knowledge in a cumulative way, by supporting rigor in design research and 

extends its external validity through generalisability of results to other contexts 

that exhibit similar characteristics (Offermann et al., 2011).   

One important criteria for Design Science is that it requires a careful definition of 

the artefact, and IHAF provides this. It is applicable to a particular set of problems 

where real-time decision-making is required in a sociotechnical context. One 

limitation is that ‘implementation’ is not an explicit component, where 

development, testing, evaluating and communicating results forms the process 

steps of the study, and the limits of the researcher role. The process of 

implementation may be a separate activity, which could be supported, for 

example, by Implementation Science, researchers-in-residence, or an internal 

team within the organisation. However Hodgkinson & Starkey (2011) offer a 

caution to remain sensitive to the danger of distortion by practitioners and policy-

makers in the search for evidence-based management in the implementation 

stages. Nonetheless, Design Science provides a suitable foundational 

methodology for the IHAF framework. It can operate at the interfaces of 

academia-practice, and rigour-relevance, and support a design approach toward 

the development of a recurrent-use decision-support tool in a sociotechnical 

system such as healthcare.  Each of the stages are discussed in turn in the next 
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section, including changes made to the framework in light of its application. The 

changes are summarised in Table 8.1.  

Table 8-1Summary of changes to IHAF in light of application 

IHAF 
component 
revisited 
 

Summary of review of component 

 

Change made 
 

Design 

Science 

methodology 

The build-evaluate cycles of Design Science 

research supports evaluation in context, which 

includes examination of social and technical 

components (Chapters 3, Section 3.4 and Chapter 

4, Section 4.3).  

None 

Problem 

definition 

Stakeholder management assumes greater 

importance when developing a model for recurrent-

use (Chapter 7, Section 7.3.3). Stakeholder groups 

are relevant throughout model build and evaluation.  

Problem definition 

phase is expanded to 

be called ‘Define 

problem and identify 

stakeholders’ 

The wider implications of scenario interventions 

should be considered from the perspective of 

system resilience (Chapter 7, Section 7.3.1).    

None 

A formative evaluation is optional but Chapter 5 and 

Chapter 7 (Section 7.3.2) demonstrated the value of 

this phase. 

‘Formative evaluation’ 

is added to the 

problem definition 

phase as optional. 

Hybrid 

Modelling 

stages 

For an embedded solution, stakeholder 

engagement and the potential need for qualitative 

evaluation methods emphasises the need for 

participatory approaches.  

The data collection 

box in IHAF within the 

‘Describe’ component 

has ‘workshops’ and 

‘PSMs (Problem 

Structuring Methods) 

added as example 

methodologies.  

Consider scenario flexibility to maximise the value 

and utility of the HM, its real-time data, and its 

sustainability as a decision-aid (Chapter 7, Section 

7.3.1; Chapter 6, Section 6.7). 

None 

Triggers may be reactive, proactive or predictive, 

and simulation may form the predictive phase with 

no prescriptive phase (Chapter 6, Section 6.7).  

None 

Decision-makers retain autonomy and may choose 

not to act. Any actions taken as a result of the 

The arrow between 

prediction/forecasting 
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decision may or may not have been informed by 

components of the HM. 

to SA and decision-

making is converted to 

a dashed arrow. 

Evaluation Consider investigating SA as a component of 

formative and/or summative evaluation (Chapter 7, 

Section 7.3.4).  

The ‘evaluation’ stage 

remains as the last 

stage of the 

framework, but is 

extended to subsume 

all previous stages to 

indicate that evaluation 

activities occur 

throughout the 

development cycle.  

Evaluation of each component in situ can identify 

both expected and unexpected outcomes. They 

may be positive or negative (Chapter 5, and Section 

7.3.2). 

Consider early issues regarding model ownership, 

maintenance, and sustainability (Chapter 7, Section 

7.3.5). 

Evaluation of the model should include 

demonstration (Chapter 7, Section 7.2.4)  

Evaluation component 

is changed to 

‘Demonstrate and 

Evaluate’ 

 

 Revisiting the problem definition stage 

IHAF provides a conceptual model for the HM which defines its purpose, namely 

its contribution to task-level and system-level situation awareness (SA). Design 

Science suggests that researchers address relevant problems in contexts that 

require a designed system to provide a ‘solution’ (O’Keefe, 2014), in this case, 

enhancing SA for short-term decisions. This problem must exist in the natural 

environment, although part of it might be extracted, for example to build the 

model. The problem is repeating or regularly occurring, rather than one-off, and 

thus requires an embedded, recurrent-use solution. Within IHAF, the problem 

definition stage contains each of these requirements, as well as the criteria for 

evaluation, and the possibility of a formative evaluation, and has acknowledged 

applicable prior theory as criteria for evaluation.  A reflective understanding of the 

model’s limitations and how it is being used can ultimately increase the level of 

trust and confidence toward successful implementation. The formative evaluation 

can form a component of the problem definition stage (Venable et al., 2016). It 

enables the possibility of reducing risk by evaluating early, before building the 

model, while the summative evaluation forms the final component of the 

methodology. This has been added to the problem definition stage of IHAF 

(Figure 8.2, Table 8.1). 
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While identifying and engaging stakeholders is implicit to this stage, the 

evaluation component in Chapter 7 identified stakeholder discord that is likely to 

present a significant barrier to future testing and development iterations of the 

HM, and is likely to require explicit consideration in any similar application in a 

sociotechnical system. For this reason, the problem definition phase has been 

modified to explicitly incorporate ‘Identify Stakeholders’ (Figure 8.2, Table 8.1). 

This requires identifying all stakeholder groups at whom the value proposition is 

aimed, on both the supply-side and the demand-side, actions needed to foster 

key stakeholder support, and what actions might be needed to work toward 

implementation and sustainability. The use of problem structuring methods or 

other participatory processes can be considered. Stakeholders, users and the 

potential to implement change can all present as constraints to the design 

process.  

 Revisiting the hybrid model stages 

Identifying the necessary data is a key early part of an M&S study, and forms part 

of the problem definition stage, hence the close proximity of these stages in IHAF. 

When creating a solution for supporting short-term decision-making, the quality 

and availability of data can present a further potential constraint, particularly 

where real-time data is required, and where data is considered to be of a sensitive 

nature, such as in healthcare. Significant stakeholder engagement and co-

creation processes were required for the data to be made available to 

NHSquicker, as indicated in the descriptive stage in Chapter 4. To emphasise 

this, the data collection box in IHAF within the ‘Describe’ component has 

‘workshops’ and ‘PSMs’ (Problem Structuring Methods) added as example 

methodologies to emphasise the need for participatory methods (Figure 8.2). 

Furthermore, additional data requirements may be needed to monitor for 

unanticipated, particularly negative, effects. These may be at different levels of 

the system, for example demand management within the hospital was shown to 

impact demand in other parts of the urgent care system.  

The data needed to make an accurate diagnosis of the system state will also 

require consideration, and may present a compromise. Nonetheless, IHAF is 

intended to be used iteratively, and significant learning can come from early 

cycles. This might include the use of near real-time data which is updating daily 

or weekly, or manual data updates for example staff absence or shifting rotas. 
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The constraints presented by data quality and availability (Espinoza et al., 2014) 

can point toward future improvements.   

The predictive element has been presented as optional, where a predictive trigger 

is required and where the trigger can be forecasted. Alternatives are reactive 

triggers (the simulation triggers when the critical threshold is reached in real-time) 

and proactive triggers (the simulation is triggered at regular intervals) (Table 8.2). 

Table 8-2 Examples of triggers in previous research, which can be implemented in IHAF 

Type of Trigger Description Reference 

No trigger 

 

The predictive component informs 

action. Simulation may be used for 

prediction rather than prescription. 

Hoot et al. (2008) 

 

Reactive Trigger  The simulation triggers when a 

critical threshold is reached in real-

time. 

Marmor et al. (2009) 

Augusto et al. (2018) 

Proactive Trigger The simulation is triggered at regular 

intervals. 

Bahrani et al. (2013)  

Oakley et al. (2020) 

Predictive 

Trigger  

The simulation triggers when the 

critical threshold is forecasted. 

Aydt et al. (2009b) 

Harper & Mustafee (2019)  

 

Different approaches can be used, including time-series forecasting and machine 

learning. However a limitation to these approaches is that while a critical situation 

can be forecasted, the underlying causes which may suggest action, are not 

necessarily apparent (Menke et al., 2014). Simulation can also be used for 

prediction, and the evaluation found significant interest in the use of better 

forecasts for supporting adaptive behaviours. Simulation can provide additional 

information, for example, Hoot et al. (2008) used DES to model an ED to forecast 

near-future operating conditions, outputting a range of input, throughput and 

output measures. This allowed it to distinguish between causes of crowding, 

which can point to both adaptive behaviours and escalation actions. Depending 

upon the problem under investigation, the output may stop here, for example 

Oakley et al. (2020) developed a real-time simulation model for predicting bed 

capacity as an early warning system. IHAF can support a flexible use for 
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simulation, including a prescriptive component, as used in the case study in 

Chapter 6. Where process changes are not a priority, but predictions can support 

decision-making, the purpose of the simulation may be prediction. In contrast, 

where optimal or near-optimal solutions need to be generated, simulation may be 

combined with optimisation to identify the best solution in real-time as a 

prescriptive method (Onggo et al. 2018). Therefore the prescriptive stage, like the 

predictive stage, is an optional component. Within IHAF, the arrow between 

prediction/forecasting to SA and decision-making is converted to a dashed arrow. 

This is because decision-makers retain autonomy and may choose not to act. 

Any actions taken as a result of the decision may or may not have been informed 

by components of the HM (Figure 8.2, Table 8.1)  

 Revisiting the evaluation phase 

To evaluate, any appropriate method or range of methods can be used on any 

iteration of the HM. In line with the methodology outlined by Peffers et al. (2007) 

demonstration has been made explicit in IHAF, to enable users to more clearly 

understand the potential value of the HM in the final evaluation stage.  

A fundamental component of IHAF is that criteria for evaluation and influencing 

factors are identified early (at the problem definition stage) from the literature, 

and from the other sources such as workshops or questionnaires, and Section 

8.1.2 has shown that it is valuable to identify stakeholders for building the model, 

but also for testing and determining how it is used in practice. The evaluation 

aims to determine whether the model has the expected effect on decision-support 

suggested from the literature and from existing studies. However, testing the 

framework has found that evaluation is continuous between these two stages, for 

example collecting and validating data, simulation building, verification and 

validation activities, and stakeholder engagement. Some engagement will be 

informal, although appropriate methods are needed to capture the outputs from 

this engagement. For this reason, in the framework, the evaluation stage is 

extended to subsume all of the IHAF stages, culminating in the final evaluation 

stage. This also means that further iterations or new applications of the 

framework start, by definition, with evaluation.  Furthermore, as iterations 

progress, consideration of long-term evaluation, and of generic applications for 

use in similar settings will become a focus early in the process. The revised 
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framework is in Figure 8.2, with the revisions highlighted in orange, and can be 

compared with Figure 8.1.  

 

Figure 8-2 IHAF following evaluation and modification 

 The transferability of IHAF 

IHAF was developed as a generic framework for supporting the development of 

real-time decision-support tools, motivated by ED as a fast-paced, dynamic, 

sociotechnical system, but with a clear ambition of its use in other application 

domains. Design Science was found to provide a useful and applicable 

methodology with which to base the framework. Within this methodology, mixed-

analytic approaches have been demonstrated toward enhancing SA, a precursor 

to decision-making and action in sociotechnical systems, which focuses attention 

on providing the right information at the right time to support a continuous 

understanding of the system state. This emphasises the role of choice and 

organisational design in the interaction between people and technology, in any 

domain.  

A core value of the sociotechnical system approach is that, given the right 

choices, social and technical systems can be synchronised such that productivity, 

worker satisfaction and safety can be optimised in parallel (Clegg, 2000; 
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Waterson et al., 2015). While simulation modelling in sociotechnical systems is 

commonplace, the challenges and barriers to integrating a real-time decision-

support tool represent different issues which are widely applicable. This means 

that the application of IHAF is relevant to other sociotechnical systems. Issues of 

socio-organisational context, organisational culture and behaviour, the external 

environment, interaction with tools and technologies, and evaluating, maintaining 

and sustaining an intervention are fundamental challenges associated with new 

technologies in complex systems (Carayon et al., 2015).  To increase the 

robustness of the intervention, the more situations a design has been shown to 

work, the more likely it is considered to work for similar new problems. This 

presents a limitation of this formative research, as the intervention is tested in 

one use-case. 

Nonetheless, IHAF supports a focus on emerging or latent risks, and on 

progressive, iterative development that builds on a cumulative knowledge base 

toward real-time analytics tools that are useful and usable in practice.  

Additionally, the framework is flexible, supporting multiple data sources and 

methods, and conceptually extendable, such that, for example, the prescriptive 

component may extend to optimisation, design-of-experiments or machine 

learning to identify the best solution based on predefined objective functions 

(Onggo, 2019).  As complexity increases, for example through multiple sensor 

feeds, or dynamic changes in the physical system, new issues may arise, 

however the iterative approach, which attends simultaneously to development 

and implementation, can support these challenges.  

 Examples of other applications of IHAF 

The application of IHAF is not domain-specific. For example, in the transport 

sector, sustainable mobility is more than a question of technology. Cities are 

complex systems, where mobility is only one element, hence the challenges and 

barriers to new models of mobility must be examined in the context of these 

sociotechnical interactions. The concept of multiple passenger ride-sharing 

allows passenger to choose their pickup and drop-off time and locations, and 

allows multiple passengers to share the route (Ma et al., 2015; Linares et al., 

2016).  The fleet of vehicles and passenger requests can be tracked in real-time 

(descriptive stage), and using a reactive trigger (diagnostic stage), simulation 

(prescriptive stage) can determine the best route for both the passengers’ wait-
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time tolerance, arrival destination, and arrival time flexibility. Evaluation of this 

approach in the early phases would examine the technological reliability and 

validity of the dynamic route calculations. Passenger satisfaction with the concept 

of transitioning from vehicle ownership to vehicle ‘usage’ and the inherent loss of 

flexibility associated with this is also an important part of evaluation and 

sustainability of the approach.   

A second example is in the field of water management (e.g. Wu et al., 2011). The 

system of water distribution is required to ensure a safe, reliable and efficient 

delivery of water supply to consumers. However with ageing infrastructure and 

expanding populations, proactive management is required to maintain system 

resilience by providing detailed analysis of the system condition in real-time. 

Real-time monitoring systems (descriptive stage) update the data acquisition 

database, and a short-horizon forecasting model (predictive stage) with a 

predictive trigger (diagnostic stage) triggers the simulation (prescriptive stage), 

providing results including decisions, alarms and parameter settings to perform 

preventative maintenance before an event occurs. These faster response times 

are economically efficient, as well as improving customer experience.  An 

alternative approach is to use a proactive trigger, running the simulation at a 

predetermined frequency, and using the simulation to predict events to support 

operators to find remedial actions. This means that network failures can be 

detected at an early stage such that operators can react quickly to minimise 

damaging effects. A range of evaluation measures can capture the impact of the 

application. 

A final example of a potential application of IHAF is in police routing (Dunnett et 

al., 2019) ensuring the most efficient resources are allocated in the case of 

incident response. In this application, the descriptive stage consists of incident 

reports, response unit availability and demand coverage (reactive trigger, 

diagnostic stage); the predictive stage forecasts traffic conditions; and the 

prescriptive stage can indicate the best unit response to the incident. These 

examples emphasise the flexibility and utility of IHAF. 

 Chapter Summary 

As a result of applying IHAF, some modifications were made to the framework. 

This included extending the evaluation across the development stages, 
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recognising that evaluation is a process. A reflective understanding of the model’s 

limitations during development can ultimately increase the level of confidence 

toward successful implementation. A discrete demonstration and evaluation 

stage is retained at the end of the process, to determine whether the model has 

the expected effect on decision-support.  This also means that further iterations 

or new applications of the framework start, by definition, with evaluation. 

Cumulative knowledge creation that can be generalised beyond individual 

solutions to individual problems can occur where settings are similar, in particular 

where research involves social dimensions, and insights might be transferred 

from one to the other. The lessons learned from the application of IHAF can be 

extended to other sociotechnical systems, aiming for alignment of social and 

technical systems in decision-support.  Additionally, the framework itself is high-

level, flexible and extendable. IHAF supports a focus on managing risks by 

attending simultaneously to development and implementation, and on 

progressive, iterative development that builds on a cumulative knowledge base 

toward the implementation of real-time decision-support tools that are useful and 

usable in practice.   

The final concluding chapter summarises the main contributions, limitations and 

areas for future work.  
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 Conclusion 

This chapter presents a summary of the thesis and its contributions. This 

research has taken a critical realist perspective, which highlights diverse forms 

and types of knowledge of practical value (Mingers, 2008; Archer, 2013; Syed & 

Mingers, 2018). This approach seeks to narrow the research-practice gap, by 

enabling recognition of problems of relevance to organisations, including ethical 

dimensions, toward solutions that are useful in their application domain. The 

research identified the potential value of a real-time hybrid model (HM) for short-

term decision-support with a particular focus on healthcare. It proposed a generic 

conceptual framework – IHAF - for real-time HMs used to support short-term 

decision-making in sociotechnical systems.  The framework was tested in 

practice using a use-case in an emergency department (ED) in the UK, and 

evaluated at the system level using patient questionnaires and staff interviews.  

When an intervention is tested in a sociotechnical system, it can be difficult to 

characterise how the system will act, measured with relevant real-world criteria. 

The findings indicate that there is a need for short-term decision-support in 

healthcare, but that developing M&S decision-support tools that aim to be 

embedded into the system brings particular challenges. These can benefit from 

an approach that integrates evaluation as development and implementation co-

progress through iterative study cycles. Acknowledging the complexity of 

sociotechnical systems, and that people are at the centre of these systems, 

supports a focus on quality and safety, as well as efficiency and performance. 

The remainder of this chapter will address the findings, limitations, and 

opportunities for improvement and future work. The contribution of the research 

is addressed in Section 9.1. Section 9.2 presents a summary of the research. The 

research limitations are explained in Section 9.3. Finally, Section 9.4 discusses 

future directions of research in the area of real-time hybrid modelling in 

sociotechnical systems.  

 Research Findings  

The increasing opportunity to use real-time data to support quick and effective 

decision-making, and the need for short-term decision support in ED motivated 

this work.  The contributions to knowledge of this research are specified below. 
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RQ1: The need and opportunity for short-term decision-support in healthcare  

A review of the literature identified the need for short-term decision-support in 

healthcare, particularly in ED, and the value in the use of real-time simulation and 

analytics for healthcare decision-support. It also found that viewing healthcare as 

a sociotechnical system enables both social and technical elements of the system 

to be taken into account when developing a recurrent-use HM for decision-

support. The purpose is to support the progression of the HM toward sustained 

implementation in practice.   

M&S studies are used widely to gain insights into existing or proposed systems 

of interest, with hybrid simulation and HM used to better represent the system of 

interest.  Powell and Mustafee (2016) made a distinction between hybrid 

simulation (HS), where two or more simulation methods are combined, and HM 

where simulation is combined with other distinct methods at specific stages of a 

simulation study. The majority of these studies are single-use models, while real-

time simulation – in its infancy in healthcare – can provide short-term decision-

support in a recurrent-use tool. However the articulation between real-time 

decision-support tools and a sociotechnical approach to their development and 

implementation was found to be lacking. This means attending to both social and 

technical elements, as people in the system will interact with the tool and make 

decisions based on its output.  The primary finding from RQ1 is that there is a 

need for a generic conceptual framework that supports the development of a real-

time HM in sociotechnical systems such as ED. Considering decision-making as 

a consequence of situation awareness (SA) focuses the HM on what information 

is needed where, when, how, and by whom, and centres the problem definition 

and evaluation on aspects of the model that can enhance or impede SA in 

practice.  

RQ2: A conceptual HM framework for supporting short-term decision-making in 

sociotechnical systems 

The literature review found that a real-time decision-support system which 

combines real-time data, predictions, and simulation has the potential to support 

short-term ED decision-making.  Having identified the need for a generic 

conceptual framework for short-term decision-support in sociotechnical systems 

(RQ1), the main finding of RQ2 was establishing the sub-components of the 
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framework through a review of the literature and the chosen methodology. There 

are currently a lack of studies which have adopted this approach for this purpose. 

The Integrated Hybrid Analytics Framework (IHAF) is the main contribution of this 

thesis.  While the framework is intended for developing HMs for short-term 

decision-support in sociotechnical systems, engaging with Design Science 

methodology has identified that the first stage of the framework, the Problem 

Definition phase, should also determine a set of criteria for later evaluation of the 

HM. A proposed set of generic criteria were identified from a review of the 

literature to support the development and evaluation of the HM in sociotechnical 

systems. An ideal model should demonstrate the fundamental application of 

these criteria if it is to be useful in the real-world, while additional criteria 

applicable to individual cases forms part of the problem definition stage of IHAF.   

RQ3: The system-level implications of a real-time HM 

Having applied the IHAF framework, and evaluated the application according to 

the generic criteria identified (RQ2), RQ3 analysed the system-level impact of the 

case study. While from a systems perspective it is important to consider the 

impact a HM will have as a result of stakeholder decision-making, for a recurrent-

use tool the short- and long-term impacts require closer consideration. 

Consequently, five system-level outcomes were identified from the formative 

(questionnaires) and summative (interviews) evaluations, which can be 

generalised to customers or users in other sociotechnical systems. These are: (i) 

Building resilience; (ii) Managing stakeholders; (iii) Unintended consequences; 

(iv) Situation awareness and decision-making; and (v) Model embedding and 

sustainability.  These findings can act as evaluation criteria for future real-time 

simulation or real-time HM studies in sociotechnical systems, in particular in 

healthcare, building on the criteria identified in RQ2. Building resilience refers to 

the need to consider the wider system when planning scenarios which support 

system recovery from critical events. The wider context and its contribution to 

system resilience need to be considered if the HM is to be useful in the long-term.  

Managing stakeholders refers to the need to view sociotechnical systems as 

political entities, as this context can impact the implementation process and 

sustainability of the solution. Unintended consequences, both positive and 

negative should be investigated in all relevant stakeholder groups, particularly in 

systems where safety is a relevant outcome, and where evidence of safety is a 
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requirement. Whilst a key feature of the IHAF framework is to make explicit the 

purpose of a real-time HM for enhancing SA, it was found that to build information 

systems that can support complex decisions it may be necessary to more fully 

understand human decision-making processes and how these decisions can be 

supported in practice. Decision-analysis and methods for measuring SA may 

usefully be integrated into the Problem Definition and Evaluation stages. This can 

subsequently support the HM development stages of the IHAF application. These 

findings strengthen future applications of IHAF by identifying challenges that 

modellers may face when developing a viable real-time HM toward 

implementation and sustainability in a sociotechnical system, and ensuring that 

the Evaluation stage adequately addresses these challenges. 

 

 Summary of the thesis 

The research questions (RQs), aims and objectives, and methods employed to 

realise the RQs and objectives during this thesis are outlined in Table 9.1, and 

summarised in the following subsections. The implications for practice are 

emphasised.  

Table 9-1 Research questions, aims and objectives, and methods 

Research 
Questions 

Aim Objectives Method 

1. How can 
simulation 
approaches 
support short-
term operational 
decision-making 
in healthcare? 

To determine the need for 
short-term decision-
support in healthcare, and 
to examine how simulation, 
real-time simulation, and 
hybrid modelling 
approaches have been 
used for short-term 
operational decision-
support in the healthcare 
context, in particular 
emergency care. 

1. To explore the need 
for short-term decision-
support in healthcare, in 
particular emergency 
care. 
  

1. Literature 
Review 
(Chapter 2) 

2. To explore how 
analytics methods can be 
used for short-term 
decision-support. 
 
  

2. Literature 
Review 
(Chapter 2) 

3. To critically evaluate 
simulation approaches 
used in healthcare for 
decision-support and to 
identify how simulation is 
used for short-term 
decision-support. 
 

3. Literature 
Review 
(Chapter 2) 
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4. To determine criteria 
for evaluation of a hybrid 
simulation approach for 
short-term decision-
support in healthcare. 
 

4. Literature 
Review 
(Chapter 2) 

2. How can an 
integrated hybrid 
approach using 
real-time 
simulation and 
data analytics 
support short-
term operational 
decision-making? 

To test and evaluate the 
potential of an integrated 
hybrid approach for short-
term decision-support in 
healthcare combining real-
time simulation with other 
analytics approaches. 

1. To propose a generic 
framework supporting an 
integrated hybrid 
approach for short-term 
decision-making in 
healthcare. 
  

1. Literature 
Review and 
Design 
Science 
approach  
(Chapters 2, 3 
and 4)  

2.  To apply the 
framework within the 
case study in a hospital 
ED. 
  
  
  
  
  
  

2. Direct 
observation, 
patient 
questionnaires, 
secondary 
data analysis, 
time-series 
forecasting, 
real-time 
simulation    
(Chapters 5 
and 6) 
 

3. To evaluate the 
application in this 
context. 
 

3. Semi-
structured staff 
interviews 
(Chapter 7) 
  
  

3. What are the 
implications and 
the added value 
to the system of 
using real-time 
data applications 
for both patient 
and NHS 
decision-support? 

To analyse the system 
level impact of the use of 
real-time data by both 
patients and staff. 
 

1. To critically evaluate 
the value that real-time 
applications provide at 
the system level.  

1. Patient 
questionnaires 
and 
semi-
structured staff 
interviews 
(Chapters 5 
and 7) 
 

2. To synthesise previous 
findings and evaluate the 
framework in light of the 
application. 
 

2.Synthesis of 
findings 
(Chapters 7 
and 8) 

 

 The need and opportunity for short-term decision-support in 

healthcare 

Over forty years ago, Bostom and Heinen (1977) argued that OR needed to be 

reframed within a sociotechnical systems design approach. A sociotechnical 

system contains both social and technical elements. The technical elements are 

concerned with the processes, tasks and technology needed to transform inputs 

to outputs. The social system is concerned with peoples’ attitudes, skills, values, 
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the individual and group relationships, the authority structures and reward 

systems. Outputs of the system occur as a result of the interactions between 

these, and Bostom and Heinen (1977) argued that any OR design intervention 

with a view to improving system functioning must contend with both system 

elements. Healthcare is an example of a sociotechnical system, but very few 

healthcare M&S studies frame their work with an equal focus on technical 

elements and the people in the system, both staff and patients.  

As NHS healthcare services are likely to become progressively more constrained 

financially, and the medium- to long-term impact of COVID-19 remains unknown, 

system resilience is likely to be impacted.  Data Analytics plays an important role 

in improving the delivery of healthcare services (de la Torre Diez et al., 2016), but 

despite the volume, velocity and variety of data being produced, it is arguably not 

yet being fully exploited for enhanced effectiveness and efficiency of delivery 

(Wang et al., 2017, 2019; Mehta et al., 2019).  To gain impact from data requires 

a focus on intervention and change (Rasmussen & Ulrich, 2015). Healthcare 

analytics publications have proliferated in the last five years as the value in data 

is increasingly realised (Günther et al., 2017; Galetsi & Katsaliaki, 2019a), and 

data-driven decision-making is gaining traction in healthcare. The technology 

needed to design and create real-time simulation models to support system 

recovery is not new. Nearly thirty years ago, Annan and Banks (1992) described 

the architecture of a supervisory control system via online simulation in a shop 

floor, focusing on interfacing sensory information and operator knowledge with 

real-time knowledge bases and simulation. In healthcare, ED has been the focus 

of multiple studies using real-time simulation (e.g. Tavakoli et al., 2008; Marmor 

et al., 2009; Espinoza et al., 2014; Augusto et al., 2018), while Oakley et al. (2020) 

expanded the area of reach to the management of inpatient beds.  

These studies focused on specific technical challenges associated with real-time 

simulation such as model performance in the absence of adequate data, and 

validation of real-time models. However, as the volume of healthcare data 

continues to multiply, the benefits and value created by real-time DA in healthcare 

still remains relatively unexplored. For example, despite increasing interest in the 

use of real-time decision-support tools in healthcare, including real-time 

simulation, there was found to be a gap in understanding what works in practice. 

RQ1 focused on the opportunities and barriers to the development and use of a 
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real-time HM application to support SA and enhance system resilience, by taking 

a sociotechnical perspective. Additionally, positioning the application in a QI 

approach ensures that all relevant stakeholders are considered, and that quality 

and safety are as important as efficiency and productivity, which has clear 

implications for M&S practice. 

 A framework for supporting the development of a real-time hybrid 

model for short-term decision-support in healthcare  

In response to the first research question, Research Question 2 proposed and 

tested IHAF, a generic conceptual framework for the development and 

application of a HM for short-term decision-support in sociotechnical systems, 

which starts from the assumption that the HM will be useful in practice. IHAF was 

tested in a use-case which combined real-time data, forecasts, a predictive trigger 

and discrete-even simulation in a HM, with a view to supporting decision-making 

aimed at the reduction of ED crowding. A clear advantage to having a predictive 

stage in the HM is that it addresses all levels of SA: perception of elements in the 

environment; comprehension of their meaning; and projection of the future state. 

Anticipation is a key element of SA and adaptive action, by detecting as early as 

possible that a critical event is imminent, however a reactive or proactive trigger 

can mitigate the effects of an event.   

As a result of the application and evaluation, IHAF was modified, in particular 

subsuming all stages into evaluation, to reflect the fact that this is a process, and 

not an event. However the final stage remains an evaluation stage, which 

includes demonstration of the model, its components, or outputs, and its 

contribution to short-term decision-support. The conceptual framework is high-

level, flexible and extendable, supporting multiple methods and interactions. 

IHAF implicitly points to a relevant, user-centred design, aligning both social and 

technical factors, and to considering the unintended consequences of the 

approach in a continuous way. It enables a focus on managing risks by attending 

simultaneously to development and implementation, and on progressive, iterative 

development that builds on a cumulative knowledge base toward the 

implementation of real-time decision-support tools that are useful and usable in 

practice.  This is the primary contribution of the thesis.  
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 The system-level implications of a real-time hybrid model in 

sociotechnical systems 

The case study found that implementing a real-time decision-support tool in 

healthcare is inherently challenging. Positioning the framework in Quality 

Improvement (QI) takes a multi-dimensional approach to interventions in 

healthcare, concerned with efficiency, equity, effectiveness, safety, and taking a 

patient-centred approach (IoM, 2001). QI therefore synergises with a 

sociotechnical approach by addressing both social and technical factors. The 

increasing complexity of healthcare plays a significant role in its vulnerabilities 

and risk of error, and where the objectives of people or subsystems within the 

system are not aligned, inefficiencies and other quality problems can arise 

(Carayon et al., 2011).  The case study found multiple examples of these issues, 

which are characteristic of complex adaptive sociotechnical systems.  

The specific contribution of the framework is at the level of ‘nascent design 

theory’, described by Gregor & Hevner (2013) as “knowledge as operational 

principles or architecture”. In addition to a knowledge contribution (IHAF), Gregor 

and Hevner (2013) argued that Design Science should also make a clear 

contribution to the real-world application environment from which the research 

problem or opportunity is drawn. Based on this principle, the following 

summarises the implications for practice arising from the empirical findings. 

Synthesis of the literature, the formative evaluation (patient questionnaires) and 

the final evaluation (staff interviews) found five significant themes:    

(i) Building resilience across wider networks 

 The real-time HM aims to support decisions made in real-time to reduce 

operational pressure in a hospital, however these may have negative 

consequences on other parts of the wider system. For example, in healthcare 

one principle of good patient flow is to make sure that there is sufficient capacity 

in all parts of the system. From the evaluation, all stakeholder groups identified 

the need to take a system-wide view, yet there is little evidence that a whole 

system approach is currently being utilised to tackle short-term demand 

management in urgent and emergency care. Working together at a regional level 

helps build system resilience, and the HM extends the value of the available real-

time data by accounting for the current state of the MIUs in the system to enhance 
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system resilience by spreading the risk across an entire urgent and emergency 

care system (Higginson & Boyle, 2018). Different sociotechnical networks will 

manage their service delivery differently, and interactions between and across 

systems do not necessarily have to be resolved. However, if long-term 

sustainability and transferability (spread) are to be achieved beyond a successful 

demonstration project, then the wider context and its contribution to system 

resilience need to be considered.  

(ii) Managing stakeholder tension  

 The evaluation found that tension between managers and clinicians is an 

organisational issue which can present as a significant barrier to progression of 

the HM.  The extent of the issue will depend heavily on the sociocultural context, 

but is a recognised phenomenon worldwide in healthcare (Powell & Davies, 

2016). Organisational politics describes the systematic use of power and 

influence by employees to resolve conflicts and meet personal or organisational 

goals (Drory & Vigoda-Gadot, 2010, Kapoutsis et al., 2016). In any sociotechnical 

system, the impact of organisational politics and trust across hierarchies can 

present a challenge (Lampaki & Papadakis, 2018). Viewing sociotechnical 

systems as political entities, where actors have different needs and aspirations, 

accepts that context can impact the implementation process. Professional 

resistance to technology may be due to lack of knowledge or skills, or may occur 

when the roles and practices assumed by the technology threaten values and 

norms. One solution to these issues may lie in the use of problem-structuring 

methods or facilitated modelling. Long et al. (2019) found empirically that internal 

politics, stakeholder commitment and involvement, and stakeholder-researcher 

communication, were key to implementation of simulation results in healthcare, 

and that flexibility and reflection on opportunities and barriers were necessary 

throughout the study lifecycle. Issues of internal politics affect all sociotechnical 

systems (Lampaki & Papadakis, 2018), and IHAF supports continuous appraisal 

of these issues and their interactions throughout the study process.  

(iii) Unintended consequences  

In the use-case application, two main stakeholder groups were identified: patients 

(users) and staff (beneficiaries).  From the observational data, clinicians 

expressed concern that real-time wait-time information might support patients to 
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make sub-optimal attendance decisions.  However the evaluation found that a 

subset of higher-risk patients are more likely to use the information to improve 

their own experience of attendance, without changing their attendance decision. 

This is an example of a positive unintended consequence of providing additional 

information for patients to make attendance choices. A further example of a 

positive unintended consequence is staff using the real-time information as a 

quick and convenient check whilst on-the-go. This is an unintended consequence 

of the information being made available via a mobile phone application, while 

most current information for supporting operational decisions requires access to 

a computer. The evaluation also identified a possible negative consequence. 

Both evaluation stages with staff and patients found that predicted wait-times are 

more likely to support attending at a different time of day, than attending a 

different facility. The impact of this is on the NHS, as patients are better spread 

across the system than utilising quieter times of day where staff resources are 

reduced. These findings emphasise the importance of examining the 

consequences of a HM and its components, both intended and unintended, on 

all relevant stakeholder groups. This is relevant for any sociotechnical system, as 

unintended consequences can present unpredictably. Where there are risks to 

safety, this issue is essential. 

(iv) Situation awareness and decision-making 

A key feature of the IHAF framework is in making explicit the purpose of real-time 

hybrid decision-support tools for enhancing SA, an important constituent in 

decision-making processes. This focuses attention on what information is needed 

to support a continuous understanding of the current system state in a complex, 

dynamic system. This is relevant, for example, when considering the design of 

the tool, the information outputted, and how the information will be accessed. For 

example, a black box approach (Varshney, 2016) may improve interpretability 

and reduce cognitive load.  

 

One way of determining what information is needed is through decision analysis. 

From the evaluation, it was found that there are differences in how staff make 

operational decisions, yet there is a gap in the literature toward understanding 

how staff make dynamic operational decisions amidst interruptions, distractions, 

and uncertainty. In order to build information systems that can support complex 
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decision making it may be necessary to more fully understand human decision-

making processes and how these decisions can be supported in practice 

(Zsambok & Klein, 2014; Catchpole & Alfred, 2018).  This is an area that is likely 

to benefit from significant further work, in particular in sociotechnical systems 

where there are high-risk consequences to operational decisions such as the 

police, healthcare or emergency services. Within IHAF, decision-analysis may be 

useful in the formative evaluation stage, and specific measures of SA, such as 

the Critical Decision Method (CDM) can be used in the final evaluation stage.  

 
(v) Model adoption and sustainability over time  

The final finding is the issue of HM adoption, sustainability and long-term 

evaluation. The problem of low implementation of the results of simulation models 

in healthcare has been under discussion for decades and the challenges of 

engagement with stakeholders is often considered to be a primary reason. For 

recurrent-use tools, this issue is likely to be amplified. Further, adoption decisions 

can be influenced by lack of evidence of the benefit of the HM, but it is a challenge 

to predict the use, impact, and amount of investment needed to adopt, maintain, 

and sustain the tool.  The evaluation stage of the application suggested that the 

HM could best be adopted and maintained internally by a dedicated modeller, 

however without firm evidence of its benefit, this is likely to be insurmountable.  

Using IHAF to support HM development, the process of development toward 

implementation against a dynamically evolving context is done incrementally. 

Accepting complexity is likely to be key to the adoption and embedding of new 

OR technologies into healthcare practice. Long et al. (2019) examined factors 

related to implementation of simulation in healthcare and found there is no way 

to successfully pre-empt or plan for changes in the implementation context.  This 

is relevant for any sociotechnical system, and reflective consideration of the 

interaction of different local implementation factors is therefore required to allow 

researchers to intentionally and effectively respond to these challenges, 

remaining mindful of emergent opportunities, outcomes and threats throughout 

the study process.  
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 Limitations 

There are several limitations of this research.  These are summarised below, 

discussed as limitations of the IHAF framework, limitations of its application in the 

case study, and an overarching limitation: 

 Limitations of the framework: 

(i) The IHAF framework was tested on one use-case only, which limits its 

transferability to similar healthcare situations. However due to the PhD 

timeline, it was only possible to test it in one ED. Using a ‘typical case’ 

(Chapter 5, Section 5.2) allows generalisations to be made from case to 

similar case, in particular when triangulated with multiple data sources and 

with existing literature. Stake (1995) called this naturalistic generalisation. 

(ii) The transferability to other sociotechnical systems is untested. 

Nonetheless, for the research design, one case was considered sufficient 

to answer the research questions. Testing the framework in other domains 

is planned as future work. 

(iii) Design Science has become a well-accepted research methodology in 

computer science (CS) and information systems (IS) (Peffers et al., 2018), 

although the methodology has faced significant criticism over the decades, 

in particular in IS where much of the criticism is focused on lack of attention 

to the knowledge contribution of the approach (Gregor & Hevner, 2013). 

This research explicitly states that IHAF is the major contribution to 

knowledge, as a real-time HM framework for short-term decision-support in 

sociotechnical systems. The approach is new, interesting, and makes a 

genuine contribution to knowledge (Gregor & Hevner, 2013). However these 

authors also state that Design Science should make a contribution to praxis, 

that is, a clear contribution to the real-world application environment from 

which the research problem or opportunity is drawn.  

 

 Limitations of the application:  

(i) The questionnaires used for the formative evaluation were a relatively small 

sample size but provided indicative outcomes of how the real-time and 

predictive time data may be used by patients to support attendance 

decisions. However further evaluation may be needed to determine how the 
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real-time information is actually being used in practice (Formative 

Evaluation/Problem Definition Stage, Chapter 5).  

(ii) Currently NHSquicker data is only available in the South-West of England.  

This means that further applications of the same HM in other sites can only 

be tested in this region (Descriptive Stage, Chapter 5).  

(iii) The forecasting methods were tested in one ED only, and may perform 

differently using different datasets.  Additionally, time-series forecasting was 

applied in this research however other methods such as neural networks or 

ensemble methods may perform better but have not been investigated. The 

advantages to these approaches are that they can account for other factors 

that may influence forecasts, such as incorporating ambulance arrivals data, 

the weather, or special events (Predictive Stage, Chapter 6).  

(iv) While designed to be generic, the DES model was developed for a single 

ED and hasn’t been tested in other EDs. It is reliant on the ED reporting 

data across hospitals being presented in the same format. While EDs in the 

UK collect data for performance reporting, information used to build the 

model (such as distribution of treatments and investigations per triage 

category) may not be standard in databases from other EDs (Prescriptive 

Stage, Chapter 6).  

(v) The use of open-source software requires consideration, in particular due 

to the limitations of the Personal Learning Edition (PLE) of AnyLogic. A tool 

developed using open-source software can be more easily shared, 

scrutinised, tested, and adapted in different environments. AnyLogic PLE 

8.5.2 was used for the development of the DES model. It does not support 

exporting a model as a standalone application, nor can it be uploaded into 

AnyLogic Cloud to send/receive data from third-party applications.  This is 

required for a Java application to call the AnyLogic model and pass it the 

real-time data parameters, execute the model, and receive the experiment 

results back to the Java application (Integration, Chapter 6).  

(vi) The staff interviews used for the evaluation stage provided a useful 

summary of factors which matter to staff, however due to COVID-19, the 

number of interviews completed were limited. It is anticipated that these can 

be completed at a later date, and knowledge gained from the preliminary 

analysis in this research can be used to adapt the interview schedules to 
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inform the next stage of evaluation, and increase the validity of the findings 

more generally. Nonetheless, there was significant consensus across 

interviews, supporting analysis (Evaluation, Chapter 7). Baker & Edwards 

(2012) emphasised that more interviews is not necessarily better, and for 

this application the aim was to gain the information needed to move toward 

the next phase of development.  

(vii) The research application was researcher-led, and motivated partly by 

maximising the potential value that can be gained by accessible real-time 

healthcare operational data, as well as the identified need for short-term 

decision-support in ED.  For this reason, there were barriers and challenges 

to accessing and maintaining the interest of relevant stakeholders. It was 

observed that throughout the duration of the work, interest-levels, priorities 

and key staff were in constant flux, which acted to limit the progression of 

the work at times. 

 Limitations to findings 

(i) The general findings discussed in Section 9.2.3 which address RQ3 are 

derived from the data (observational data and questionnaire data, Chapter 

5; and interview data, Chapter 7). They are also synthesised with the 

literature. However it is acknowledged that these are not definitive, and do 

not necessarily form a complete set. Nonetheless, one of the principles of 

Design Science is the reuse of extant contributions and the accumulation 

and evolution of design knowledge (Vom Brocke et al., 2020). This is seen 

in the Design Science methodology (Peffers et al. 2007) in Chapter 3. The 

implications of this are that the general findings in RQ3, which are 

contributions of this research, can act as antecedents or evaluation criteria 

for future real-time simulation or real-time HM studies in sociotechnical 

systems, in particular in healthcare. For this study, the evaluation criteria 

were identified in Chapter 4 as generic criteria from the literature.  

 Future Work 

 Future work on IHAF 

The IHAF framework aims to contribute to the accumulation of knowledge through 

empirical studies, which can be generalised beyond individual solutions to 

individual problems. IHAF is specific in terms of its purpose (short-term decision-

support using a real-time HM) but is general in its application (sociotechnical 
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systems in need of short-term decision-support) such that it is able to create 

designs that are relevant to practice whilst at the same time contributing to the 

knowledge base. Offermann, Blom and Bub (2011) suggested that 

generalisability or transferability of findings occurs where settings are similar, 

especially when research involves social dimensions, and insights might be 

transferred from one to the other for similar new problems. A wide range of 

methods can be employed within IHAF, and application of the framework to other 

domains will enhance its utility and applicability. The development in simulation 

has shifted from purely analytical and optimisation-focused models to those 

which integrate simulation into decision-support tools for recurrent use. This shifts 

the focus from models operated by simulation experts, to tools connected to data 

sources and controlled or modified using user-friendly front-ends or other 

applications (Rodiĉ, 2017). While implementing this new simulation modelling 

paradigm can present challenges for researchers and organisations, particularly 

in sociotechnical systems with strict data governance, hierarchical social and 

organisational structures, and a historical resistance to change, Burger et al. 

(2019) positioned this paradigm shift as a challenge to the further relevance of 

OR as a discipline, and characterised the solution as ‘Smart OR’. This 

emphasises the interaction and tension between humans and technology, and 

the tension between technical efficiency and social desirability of self-regulating 

systems. IHAF is able to reconcile these tensions by attending to collaborative 

practice, the interaction of technological and social issues, and relevant 

contextual information. It is expected that future research in both the healthcare 

and non-healthcare sociotechnical domains will use this framework for supporting 

the development of real-time HMs.  

With a focus on implementation of simulation, Long et al. (2019) showed that the 

interaction of sociotechnical factors change over time. The process of 

development is explicated in IHAF, and opening up these issues to scrutiny can 

support further knowledge about barriers and opportunities for future work. As the 

researcher’s understanding of the problem situation, contextual factors and the 

stakeholders deepens, the modeller may become aware of indicators signalling 

that appropriate shifts in the process need to be managed to maintain credibility 

throughout the study lifecycle. Of particular interest would be the exploration of 

the roles of key individuals within the research and stakeholder teams, and their 
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interactions with the HM. The relative relationships and influences across the 

project process could be explored from the perspective of trust toward 

implementation (Harper et al., 2020). Future work could also focus on individual, 

team and distributed SA in complex, collaborative environments, and how the 

application of IHAF can support these processes. The importance of cross-

disciplinary research in the application of OR data-driven methods in 

sociotechnical systems has been emphasised (Burger et al., 2019) and the 

Human Factors and OR disciplines can offer much to each other in this regard 

(e.g. Holman et al., 2020). For example, SA within complex collaborative systems 

should be viewed in its entirety, as tasks are rarely performed entirely 

independently of others, especially in complex situations and when critical 

decision-making is required (Falzer, 2018). With the increasing importance of 

data- and technology-driven applications, these issues are likely to become 

increasingly prominent. 

Finally, IHAF contributes to discussions about the application of hybrid modelling, 

as distinct from hybrid simulation.  To maximize the value that M&S can contribute 

toward real-world innovation, methodologies which combine methods and 

theories are often required. In Chapter 2, it was recognised that hybrid M&S 

studies combine simulation with hard or soft methods and techniques (Mustafee 

& Powell, 2018), not only in the model development/implementation stage of a 

M&S study, but to other stages in the lifecycle, for example, conceptual modelling, 

input and output data analysis, model verification and validation, scenario 

development and experimentation, and engaging with stakeholders in the 

implementation of the results. IHAF supports all of these applications, and future 

research using IHAF can contribute to the evidence for the value of HM in 

practice. However it also supports future work which investigates cross-

disciplinary M&S studies, combining simulation with methods from other 

disciplines. By accessing interdisciplinary knowledge, as with the example given 

in the previous paragraph, cross-disciplinary HM offers unique opportunities to 

address challenges by leveraging the diverse body of knowledge, and individual 

expertise and skill-sets towards common end goals. Through innovative use of 

HM in practice, cross-disciplinary HM also advances M&S practice. 
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 Future work on the use-case  

IHAF proposes a methodology which can be applied to any stage of the 

development of a HM toward implementation. While this work is exploratory in 

real-time hybrid modelling, it has also provided a solid foundation for the next 

stage of the HM application in the use-case. Information gained from the 

questionnaires, application of the HM, and interviews have provided next 

directions. There is also scope for further analysis of the questionnaire data which 

may be of interest for those who study low-acuity health-seeking behaviour. 

Additionally, the questionnaire is exploratory, as no participants actually used 

real-time information to inform their attendance decisions, hence how ‘perceived 

need’ for a service translates into health behaviours and outcomes needs to be 

addressed through future work. 

Future iterations of the HM would benefit from additional real-time data, including 

arrival, discharges, admissions and triage category, which can support the 

progression of the model from a ‘static’ real time model which uses a fixed set-up 

with real-time data, providing a snapshot of reality, to a dynamic real-time model 

which can adapt the structure and logic of the model as well as the data (Rodiĉ, 

2017; Kritzinger et al., 2018; Onggo et al., 2020). The prediction stage could be 

improved by investigating other methods, for example accounting for other 

environmental information such as the weather, sporting or calendar events, 

ambulance data, and bed capacity. While some degree of error is expected, 

short-term planning may be better assisted with more reliable models.  NHS 

England (2020b) recommend a range of advanced forecasting techniques 

including ARIMA/SARIMA as used in the test case. Prophet, developed by 

Facebook, uses Bayesian forecasting. It can account for multiple seasonalities, 

special events and bank holidays, can allow for missing values and outliers, and 

changes in historical trends.  NHS England (2020b) also recommend artificial 

neural networks to model complex non-linear relationships between inputs and 

outputs. Each of these are worth investigating, as the value from short-term 

forecasting remains relatively unexplored for making both escalation decisions 

and for adaptive behaviours to improve patient flow, though simple (daily) 

forecasts are currently heavily relied upon for task and system-level decisions in 

the use-case Trust.   
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The DES can benefit from improvements, such as validating it for a range of 

scenarios and future decisions. Additionally, its interface may need attention. 

Using an approach similar to that proposed by Varshney (2016), which uses black 

box abstraction of data analytics in sociotechnical systems, can potentially 

reduce data and information overload, which impacts on SA and attention. 

Ultimately, translating the DES into open-source software such as R or Python 

will support its integration, adoption, testing, sustainability and spread.  It will also 

support integration of the components, which are currently hampered by 

limitations in AnyLogic PLE. This is an early consideration for future work.  

 Future work on real-time simulation for short-term decision-making in 

healthcare and other sociotechnical systems 

With the proliferation and availability of data, and better methods for capturing 

and storing data, the opportunities for real-time simulation and HM are continuing 

to increase. In healthcare, with demographic change, socioeconomic shifts, and 

an unsustainable increase in global healthcare spending, the need has been 

demonstrated. Internet of Things, sensors and wearables, the Cloud, 5G mobile 

communication, digitalisation of health records, smart mobile devices, and 

systems integration, are existing technologies needed for simulation to realise the 

vision of Industry 4.0 in healthcare, as in manufacturing with ‘smart factories’ and 

more widely.  Significant challenges remain, not least storing and protecting 

sensitive data, and accessing data in real-time, or near real-time.  The protection 

of the critical functionality of healthcare infrastructure and the privacy of personal 

data is of principal importance, compared with the manufacturing domain, where 

economic or structural losses cannot be compared to the massive liability of 

healthcare breaches (Thuemmler & Bai, 2017).  Nonetheless, healthcare 4.0, a 

recently-emerged, collective term for data-driven digital health technologies, is 

expanding rapidly (Thuemmler & Bai, 2017; Jayaraman et al., 2019). Blockchain 

technology can provide security and transparency for simulation (Kumar et al., 

2020); challenges to validation of real-time simulation are being addressed, and 

adjusting the structure or logic of the simulation model, and optimisation and 

model fidelity are being investigated (Onggo & Karatas, 2016; Oakley et al., 

2020). All offer important directions for future work. Yet, despite the rapid 

evolution of technology and technical capability, and our increasingly reliance on 

it, the interaction between technology, stakeholders and the environment 
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alongside social uncertainty and complexity, results in a continuous shift in the 

application of methods for generating new knowledge and new 

conceptualisations of the technical applications of M&S (White et al., 2016). In 

practice, advanced methods, increased availability and quality of data, and new 

challenges do not necessarily require more complex solutions. As an applied 

discipline focusing on real-world problems, OR distinguishes itself as a discipline 

in which people work with technology to gain insight and understanding. Viewing 

a HM study from a sociotechnical perspective opens up opportunities for 

knowledge production, a deeper reflection and integration of organisational 

needs and a clearer focus on the interface between science and practice. This 

requires a shift from expert practice towards a shared learning culture, where 

methods, role understandings, competences, interpersonal relationships and 

contextual factors are all directly relevant to the outcomes of the study. 

This thesis argues that a systems approach is necessary for the development of 

real-time decision-support tools which identifies system elements, their 

interactions, their impacts on quality of care, and the adaptive role of people in 

the system.  While innovating and improving the use of real-time M&S, there is a 

need in parallel to manage risk to ensure that the safety or satisfaction of users 

is not compromised.  The IHAF framework provides a suitable conceptual 

framework for supporting these studies, alongside criteria to identify, understand, 

and address the interacting challenges to achieving adoption, embedding, scale-

up and sustainability of HMs for short-term decision-support. Although developed 

for use in healthcare with a focus on ED, these factors are consistent across most 

sociotechnical systems. Both the framework and the application offer the 

possibility of being applied to other parts of the healthcare system, such as 

general practice or the ambulance service, or to other sociotechnical systems 

such as the police, transport, or social care sectors.  Wider impacts, consideration 

of multiple stakeholders in the wider system, internal politics, how people make 

decisions and how they can best be supported, and how to support the adoption, 

implementation, and sustainability of the intervention are sociotechnical issues. 

Any M&S design intervention with a view to improving system functioning must 

contend with both system elements. 
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Appendix 2a: Patient Questionnaire 

CONSENT FOR SURVEY RESEARCH 

 

SURVEY ON NHSquicker AND URGENT HEALTH CARE TREATMENT 
 

NHSquicker is a free app available for both Google and Apple.  It aims to assist you to make a 
decision about the best place to attend for urgent medical care. It contains information about the 
nearest healthcare facilities, including GPs, dentists and pharmacies, with real-time wait-time data 
for the nearest Emergency Department and Minor Injury Units. It also includes travel times.     

Many factors will influence your decision about where to go for treatment. We are also interested 
in evaluating the effect of providing you with wait-time information on your decisions about where 
to attend for treatment. We greatly appreciate your decision to help us with this study which 
supports the delivery of urgent healthcare.  

This survey is entirely anonymous and all of your answers will be treated confidentially. We will 
use this survey to learn more about the impact of NHSquicker on waiting times. You need not 
have used NHSquicker in order to participate. 

 

For further information please contact: 

Alison Harper 

ah596@exeter.ac.uk 

+44(0) 7922 109 779 

 
Consent 
 

I have been fully informed about the aims and purposes of the project. 
I understand that: 
 

There is no compulsion for me to participate in this survey and, if I do choose to participate, I 
may withdraw at any stage; 

Refusal to participate will have no impact on my medical treatment; 

I have the right to refuse permission for the publication of any information about me; 

Any information which I give will be used solely for the purposes of this project, which may 
include publications or academic conference or seminar presentations; 

If applicable, the information, which I give may be shared between any of the other 
researcher(s) participating in this project in an anonymised form; 

All information I give will be treated as confidential; 

The researcher(s) will make every effort to preserve my anonymity. 
 
 
 
............................……………..……..   
 ............................……………..……..  
(Signature of participant)      (Date) 
 
 
…………………………………………………   
(Printed name of participant)  

mailto:ah596@exeter.ac.uk
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Appendix 2b: Field Notes (observational data) 

A2.1 3rd IMPACT network event 21 June 2016, UEBS 

A2.1.1 Introduction 

This collaborative workshop was delivered by the IMPACT Network, a 

collaboration between the UEBS and NHS Trusts in the south-west of England, 

with a focus on urgent and emergency care.  The purpose of the workshop was 

toward the co-production of the NHSquicker project between UEBS and NHS 

Trusts in Devon and Cornwall.  

Participants were subdivided into the following categories: 

(i) NHS Manager (n=11): (Mx) 

(ii) NHS IT and information staff (n=15): (IT) 

(iii) NHS communications/marketing (n=4) (Comms) 

(iv) NHS/SWAS clinical staff (n=4) (Clin) 

(v) Patient representatives (n=3) (Pt) 

(vi) UEBS academic staff (n=9) (Acad) 

(vii) Other eg developers (n=2) (R15) 

Handwritten notes were taken throughout the day by myself. These were 

categorised thematically and summarised by participant group. The majority of 

sessions were also video and/or audio-recorded, however a subset of audio data 

showed that the handwritten notes were sufficiently comprehensive. All 

participants signed consent forms for data recording throughout the day. The 

notes are summarised below. Points of relevance to this thesis are highlighted in 

yellow. Raw data for all analysis is available upon request.  

A2.1.2 Thematic Summary of field notes 

Issues identified from workshops () = category of stakeholder 
 

 Use of MIU: 
-MIU use looks like increasing in ED and MIU but ?cause as multivariate (IT, Mx) 
-Care interpreting – are increased numbers coming from ED or other parts of 
urgent care system? Eg MIU closures, GP capacity (Mx) 
-Clarity of MIU offering re appropriate attendance (Clinician, Mx, Mx) 
-Xray opening times not necessarily easy to find (IT) 
-Risk of inappropriate attendance if focus on low waits only eg in labour (Mx, 
clinician) 
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 Use of ED: 
-Knowledge needed about how people (non-urgent) use ED (Mx, Mx, Mx) 
-Won’t reuse app if ‘sent’ to wrong place (Clin) 
-Misconceptions re better care in ED (Mx) 
-What basing decision on? Closest, fastest, or perceived care? Order is critical 
(Mx, Mx, Clin) 
-Clarity of purpose re how choice is made (Clinical) 
-‘Hospital at home’ use – if need urgent care, may need it more urgently (patient) 
-Engage with patients – what matters?: 

Whether to go, when to go, where to go (Mx, Mx) 
50% Cat 4; average age 36 years (Mx, Mx) 

 Are they ‘repeat offenders?’ (Mx) If so, why and what do they want? (Mx) 
 Engage with MIU users directly – redirected from ED? (Clinician) 
 Patient focus groups, different categories, what is value (academic, 
comms) 

Students; parents; holidaymakers; sports; schools; GP/pharmacists; staff 
groups; migrants; seasonal workers; homeless; care homes/N Homes; 
mental health; frail/elderly; carers 

 30% don’t need to be there – who determines? ?assumptions (clinical)  
 Disproportionate presentations from radius of ED geographically (Mx) 
 Support rare/occasional/frequent users (Mx) 
 Smartphone/website access: 

Lower use of smartphones in older age groups (but may be higher ED 
users) (patient, academic) 

 App overload (patient, IT, Mx) 
 Large number of website hits (IT) 
 What is motivation to download/USP of app (Mx) 
 Concerns by users about personal data collection (IT) 

Connectivity concerns eg Dartmoor (IT); Need to enable (IT) 
-Decision support based on presenting condition/clinical advice: 
Concern re risk (Mx, IT, Mx, clinical) and re replication of other apps (Mx, Mx) 
Support for benefits eg selfhelp video (Mx, clinician, patient, Mx, Mx, IT, Mx, Mx) 
-Health and care self-care videos – clinical sign off (Hugh Kelly) 
-Decision support with pharmacy, WICs, Dentists, GP, 111 advice: 
-Necessary eg dos and above (IT, Mx, pt, Mx, Mx, academics) 
-Who to attend eg mental health support – pt needs signposting (clinician) 
-Link into other apps eg HandyApp, UofE app, to create a ‘network’ (Mx, Mx, 
academic) 
-Simple/light for emergency use; balance simple and informative (acad, Mx, Mx, 
Mx) 
-Simple visually on small screen (Mx, R15) 
-Difference between ‘providing information’ and ‘facilitating a decision’: 
Right choice, right reason (clinician, Mx, Mx) 
Engage with senior clinical staff re risk, wording (Mx, IT/Mx, Mx)  
Clear that decision remains with patient – just adding info (Mx, Mx, comms) 
Ensure patient-centric, not provider centric eg acronyms, purpose, lay 
terminology (academic, Mx) 
-Data/information: 

Incorporating historical data to increase accuracy (IT, IT, Mx, Mx) 
 If behaviour changes, historical data may become inaccurate (IT) 
 Data feed accuracy concerns (IT, IT) 
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 Capturing correct waiting time measure (IT) 
 Unable to capture other factors eg staff down, other ‘human interaction’ 
(IT) 
 Capturing minors only – not reflecting activity in rest of dept (Mx) 
 Incorporate ‘Stress status’ in ED as per website (IT) 

Senior Mx support: Retain historical info if needed by senior Mx (IT) 
Google translate (IT) 
Why not Exmouth, Tiverton? (patient) 

 Autocall 111, 999 – including when out of range/data allowance? (Mx, Pt) 
 
Table A2b-1 counts the number of references by participant type. These should 
be interpreted with care, as the workshop was a group activity, and so repetition 
was not expected however it provides an overview of important topics.  
 
Table A2b 1 Summary of count of findings by theme, and by participant 

 Patient rep Manager Clinician Comms IT 

Use of MIU  5 1  1 

Use of ED 1 6 3   

What matter to patients  10 2 1 4 

Decision support 1 26 2 1  

Data/information 2 5   10 

 

A2.1.3 Breakout session 

A one-hour breakout session was held with the participants in groups of 4-6, using 

post-it notes and flipcharts. The following structure was followed: 

A) Consider on your own re NHSquicker:  
i) What enthuses you? 
ii) What concerns do you have? 
iii) What improvements can you suggest? 

B) In groups, discuss and record your ideas on a flipchart 
iv) Comments about the design and navigation 
v) Comments about the logo 
vi) Ideas for future content 

C) Tech session (IT and developers only – not included in summary report) 

A2.1.3.1 Breakout session categories 

The data from the flipcharts and post-it notes are categorised below: 

(i) What enthuses you? 

Joint working between providers – integration 
Live, location-based data 
Empowering and informing patients of choices 
Appropriate ED patients will receive better service 
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Patients – feel more empowered, self-treating, time-saving, faster treatments, 
reduced inconvenience 
ED reduction in volume 
Better resource utilisation 
Making useful information available when/where/how people want it  
Empowering for patients 
Enabling patients to make own choices 
Educates service users  
Provides local up-to-date info 
Open data 
Simple to use 
Continues the ‘health economy’ work across the patch  
Joint working 
Easy/simple to use and clear to understand, uses minimal storage 
One app for all 
Immense potential 
Reduce pressure on EDs 
Redirect to MIUs 
Reduce anxiety 
Urgent capacity vs number of patients 
Patient focussed, really useful for patients 
Choose right, wait less 
As a patient – helps direct me to the closest place 
Concept of one system across the NHS 
Helps meet 4 hour performance target 
 
(ii) What concerns you? 

Risk of suboptimal outcome – clinical risk 
Care with working – patient making decision about attendance 
Responsibility and liability – make it right 
Broad audience – health pyramid/health vs tech ability/access vs utility 
Triage to get to right location? British Red Cross triage category? 
Students as target audience – how to travel? 
What value does app give over ‘googling’ 
Light touch signposting 
Omitting pharmacy and WIC misses important alternatives 
‘Emergency care’ – not everything is an emergency – 
perceptions/knowledge/emotion 
Not all public know what MIU/ED mean 
Do we know enough about end-user behaviour to drive design? 
Danger of not all options covered by app 
Danger of all facilities not completely aligned with regards to 
metrics/frequency/log 
Too much info, overcomplicating navigation with features 
We don’t know who/how/when/why – ASK 
How do we overcome fear of change/exposure in NHS? 
A very long list of hospitals to scroll through 
Short films for self-treatment , clear instructions – good idea but concerned re risk 
around diagnosis 
How to enforce people to keep the app on their phone 
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Governance/risk 
Abbreviations used – people don’t understand, eg ED 
Lack of patient/user feedback or involvement 
Unregulated websites/advice 
What is the hook in for using the app? 
Concern about NHS overcoming fear  
Too much information 
Making sure it runs smoothly and doesn’t cause confusion 
Different levels of service/ opening times 
 
(iii) What improvements do you suggest? 

Definitions re ED/MIU/UCC/WIC not all consistent 
Include pharmacies near you 
Use lay terminology – influencing public behaviour/choice 
Should there be some science about behavioural/cultural change to help inform? 
Student feedback 
111/999 well known – so should this be a number if aiming for national rollout? 
Short, snappy name 
Evaluate – feedback forms, wait times, return visits, patient experience, patient 
stories, 4 hour target data, distribution of patients, trust awards for reaching 
targets, testimonies 
Links to other apps 
Capacity/ability to be seen rather than patient numbers (which need to be seen 
in context) 
Show how stressed the unit is 
Open data – reflect: time to absorb and be clear about purpose and 
communications 
Potential link with other apps, websites 
Diagnostic capacity 
 
 (iv) Design and Navigation 

Auto-call 
Concise and simple design 
Patient/user choice re where to go (self-assess urgency) 
As many sites/facilities as possible listed 
Predictions – in one hour 
Track location and radius pre-set – 2 routes? 
Simple and light design 
Keep purpose clear: reduce ED/MIU demand and redistribute load 
Open app - ?Decision prompt – do I need to attend now? Continue button OR 
 Straight to list of providers aided by location – nearest and shortest wait 
time 
Include self-help within the app – either replicate or make available links to 
111/ChooseWell/NHSchoices/H&C videos 
Under ‘more information ‘ – definition about what an MIU can do/see 
Some MIUs close early due to operational pressure – app may be misleading if 
not updated 
If focus is on waiting times – is this patient centred? Patients will still have to wait.  



365 
 
 

Unintended consequence of empty EDs and MIUs underperforming against 4 
hour target 
Replicate 999 format/choices – What are my choices, what is near me? 
Geography – some areas may still be 50 miles away, eg North Cornwall, so 
consider distance radius 
Signpost to all services – pharmacy, GP, self-help 
Include 111 
Link to pharmacy, dentist, GP, MIC, UCC, ED 
Tab between nearest and shortest waiting time on app 
Waiting times – Do you need to attend an ED or MIU as initial question? 
Initial question – do you think your condition is life-threatening? Call 999/111/ED.  
Have you had an accident? Do you have a known medical condition? 
Balance between simple/easy and more info eg clinical support 
Be clear about app boundary – keep it simple 
Something now better than perfect never – NHS fear of action 
111 call button 
Likert scale feedback within app 
Include pharmacy/GP/MIU/ED/WIC – filter to expand to show additional 
services? 
Feedback within app 
Simple design with nudge 
Proxy for experience – wait/stress 
Need more – pharmacies, GPs, 111 etc 
Pharmacies/GPs – info on services possible? 
Link to 111 
First click viewed as life-threatening 
 

A2.2 Qualitative System Dynamics Workshops 18 July 2018, 27/28 June 

2019.  

NHSquicker QSD Workshops 18th July 2018 Notes Summary 

Participants (n=5)  

The aim was to capture the decision variables of users of the real-time data, from 

the perspective of staff (the collective preconceptions of the group members as 

to the components of decision). The workshop was led by an experienced QSD 

facilitator. The result was a causal loop diagram which conceptualised the 

decision mechanisms of a user. 

Patient anxiety emerged as central in this workshop. The outcomes identified the 

following mechanisms: 

 Anxiety increases the perceived need for treatment, the perceived severity 

of the condition, and in turn further increases anxiety levels. 

 Confidence in the attendance choice reduces anxiety. Confidence in 

waiting time prediction increases knowledge about attendance choice. 

 Access to information reduces risk aversion and reduces anxiety.  
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A subsequent QSD workshop investigated the effects of patient attendance 

decisions on the NHS. Here, the effect of reducing anxiety was seen to reduce 

the fraction of inappropriate attendances and improve the patient quality 

experience. This triangulates with the patient questionnaire findings.  

A2.3 Questionnaire raw data 

Questionnaire data was coded in Excel for analysis.  A snapshot is included 

below in Figure A2b-1 of a subsection of the data.  

 

Figure A2b-1 Snapshot of subsection of patient questionnaire data 

Similarly, the open data was recorded in Excel by respondent ID and question 

number (Figure A2b-2). Responses were colour-coded for initial analysis. 

Subsequently, both sets of data were analysed in NVivo 12. 
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Figure A2b-2 Snapshot of subsection of open data from patient questionnaires 

A2.4 NVivo 12 cross-tabs 

NVivo has the capability of cross-tabulating open and closed data sets. These 

were exported to Excel. A large number of cross-tabs were generated. A 

sample is shown below in Table 2b-2.  

Table A2b-2 Sample cross-tab open-coded data with two closed variables: Anxiety and Uncertainty re 
alternatives (%) 

 

Closed data

Open Data NewUnsureAlternatives = 1 (62) NewUnsureAlternatives = 2 (27) NewUnsureAlternatives = 1 (16) NewUnsureAlternatives = 2 (47)

1 : Balance demand and capacity 14.52 33.33 25.00 12.77

2 : Staffing 6.45 11.11 12.50 8.51

3 : Information other than wait times 14.52 29.63 31.25 19.15

4 : Other uses of RT data 19.35 7.41 6.25 8.51

5 : Save time and travel 9.68 0.00 6.25 6.38

6 : Wait time knowledge is useful 72.58 70.37 81.25 59.57

7 : Consider if appropriate to go 4.84 14.81 6.25 10.64

8 : Planning 25.81 33.33 12.50 21.28

9 : Predicted wait times are useful 27.42 25.93 25.00 27.66

10 : Reduce anxiety 6.45 7.41 6.25 0.00

11 : To manage expectations 9.68 7.41 12.50 4.26

12 : When to go 9.68 3.70 18.75 12.77

13 : Where to go 33.87 51.85 43.75 31.91

14 : Would not have changed mind 16.13 7.41 37.50 23.40

Useful in future 32.26 29.63 31.25 23.40

15 : Total (unique) 51 22 14 34

anxiety=1                                                                                                          % anxiety = 2                                                                                                         %
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A2.5 SPSS analysis 

SPSS was used to analyse the closed data. An example of the output is below in 

Tables A2b-3/4 and Figure A2b-3. The output shows a simple 2*2 cross-tab for 

results of those who were referred to ED and those who needed reassurance 

regarding the severity of their condition. For this output, n=135, as the remainder 

of questionnaire participants were in a MIU or WIC. The results of chi-square 

analysis shows that there is a significance (2-sided) of p<0.25. This means that 

there is a significant difference between those who are referred, and those who 

are not, and the anxiety measure of needing reassurance, for those attending 

ED. Figure A2b-3 depicts the results in a bar chart. Those who are referred are 

less likely to be seeking reassurance as they have already been given that 

reassurance by being referred to ED.  

Table A2b-3/4 SPSS sample output 
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Figure A2b-3 Bar Chart for cross-tab Severity and need for reassurance 
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Appendix 3: Hybrid Model 

A3.1 Hybrid model components of IHAF 

A3.1.1 ED Data 

A3.1.1.1 Available ED datasets 

Table A3.1 ED datasets from the use-case and NHSquicker 

Data set Dates Fields  Descriptions 

NHSquicker 

(30 minutes) 

3/01/2018 – 

3/01/2019 

Total Patients in ED 

Patients Waiting for first treatment 

Maximum Wait time in ED 

Fields are available 

in near real-time for 

ED and MIUs. 

AE Performance 

report 

(Daily) 

 

1/04/16 - 

19/09/18 

day_of_week  

arrival_date  

total_attenders  

attends_2_hrs_or_less  

attends_4_hrs_or_less 

attends_over_4_hrs 

bed_delays 

gp_refs 

ae_admit 

ip_admissions 

discharges 

daily_4hr_compliance 

cummulative_4hr_compliance 

trolley_wait_between_4_to_12_hou

rs 

trolley_wait_over_12_hours 

first_assess_within_15_mins 

Daily reporting data 

of total daily 

attendance, wait 

duration category, 

number of patients 

with delayed 

admission, and 4 

hour compliance 

against the target. 

Trolley wait 

category (waiting 

for admission) and 

time to triage 

(within 15 minutes) 

are also reported.  

ED arrivals 

(per patient) 

1/04/16 - 

29/10/18 

attendance_number 
patient_age 
sex 
postcode 
site_description 
arrival_date_time 
Weekday 
triage_category_description 
attendance_disposal_description 
diagnosis_01_description 

Patient arrivals by 

date and time, age, 

gender, site, triage 

category, discharge 

type, diagnostic 

category 

ED dataset 

(per patient) 

1/08/15 – 

31/07/16 

Site 

department_type 

attendance_reason 

arrival_date at reception 

Site (in urgent care 

network), arrival 

date and time, 

diagnosis, 
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arrival_time at reception 

examination_date_time to see a 

doctor 

first_ews_date_time 

triage_date_time 

triage_category_description 

initial_assessment_date_time 

date_time_seen_by_clinician 

ae_time_seen_for_treatment 

visit_time_in_minutes (total time) 

visit_duration  

decision_date_time 

discharge_date_clockstops 

discharge_time 

left_department_date 

left_department_time 

attendance_category_description 

care_group_description 

attendance_disposal_description 

source_of_referral_description 

discharge_destination_description 

reason_for_delay_discharge_descri

ption 

diagnosis_01_description 

diagnosis_02_description 

diagnosis_03_description 

ae_investigation_1_description 

ae_investigation_2_description 

ae_investigation_3_description 

ae_treatment_1_description 

ae_treatment_2_description 

ae_treatment_3_description 

admission_date_time 

admitting_specialty 

admitting_specialty_description 

admission_source_description 

locations 

examination date-

time, triage date-

time, triage 

category, treatment 

duration, total 

length of stay, 

number and type of 

treatments, number 

and type of 

investigations, 

discharge date-

time, left 

department date-

time, discharge 

type (e.g. 

admission, home, 

leave without 

treatment, died), 

reasons for delays 

in discharge or 

admission (e.g. 

waiting for bed, 

waiting for 

specialist review).  
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A3.1.1.2 NHSquicker data and ED attendance data (expanded from Section 

6.4.2) 

 

Figure A3.1 Linear model output of Patients Waiting and Total Patients 

 

Figure A3.2 Residuals of Linear model Patients Waiting and Total Patients 

Figures A3.1 and A3.2 are the results of a linear model of Total Patients and 

Patients waiting. The structure of the scatterplot of Total Patients and Patients 

Waiting indicates departures from the standard regression assumptions, with a 

‘floor’ effect at zero (no less than zero patients can be waiting) lowering the mean 

of the residuals to zero, despite having a long positive tale. A residual plot that 

has a “fan shape” indicates a heterogeneous variance (non-constant variance). 

The residuals tend to fan out as error variance increases (Figure A3.3). 

 

Figure A3.3 Plots of the residuals for normality and homoscedasticity 
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In the main scatterplot (Figure 6.11 in Chapter 6), a number of outliers can be 

seen in the top-right quartile, where the number of patients waiting to be seen 

has significantly departed from the line of best fit.  This is confirmed in the 

scatterplot of the residuals against the predictor (Total Patients), where the 

variance in the residuals increases as the number of patients in the department 

increases (Figure 6.11). This effect can be explained by the busyness in the 

department.  As the total number of patients in the department rises and the 

demand-capacity mismatch increases, a build-up of low acuity patients in the 

waiting area can occur if patients of higher urgency are present. 

The following plots are scatterplots of Patients Waiting and Total Patients (and 

the residuals) with a view to examining where the variance begins to increase 

(Section 6.4.2), suggesting an appropriate trigger is between 40 and 45 Total 

Patients. 

Figure A3.4 Scatterplots of 0-45 and 46-65 Total Patients, and the residuals 

 

Figure A3.5 Scatterplots of 0-40 and 41-65 Total Patients, and the residuals 
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Figure A3.6 shows a scatterplot of Total Number of patients with arrivals 1, 2 

and 3 hours ago, for visualisation. 

 

Figure A3.6 Scatterplot of lagged arrivals at 1 hour, 2 hours, and 3 previously with half hourly attendance 

Figure A3.7 is a scatterplot of Maximum Wait time and Total Number of patients 

in the department 2, 3 and 4 hours ago for visualisation. 

 

Figure A3.7 Scatterplot of lagged Total Patients with Maximum Wait time 

A3.1.2 Diagnostic component: Time dependent Trigger 

Section 6.4.3 creates a time-varying simulation trigger over a 24-hour period. To 

illustrate, Total Patients are plotted as a continuous line graph to assist 
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visualisation (Figure A3.8) on a subset of data from 12:00 to 12:59 over a 115 

day period, and as a scatterplot (Figure A3.9) against Patients Waiting. 

 

Figure A3.8 115 days of 12:00 to 12:59 with mean and SD, 1.5*SD, 2*SD 

 

Figure A3.9 Scatterplot of Patients Waiting and Total Patients, with SD, 1.5*SD, 2*SD for Total Patients 

 

Figure A3.10 plots the daily compliance (4-hour target) data with Total Patients 

data for 12:00:12:59 to examine at which point compliance tends to decrease. 

As with the plots in Chapter 6, Section 6.4.3, the compliance drops at one 

standard deviation.  

0

10

20

30

40

50

60
1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

2
0

4

2
1

1

2
1

8

2
2

5

P
at

ie
n

t 
C

o
u

n
t

Observations

Total Patients 12:00 : 12:59

Total Patients Mean Mean+sd Mean-sd

Mean+1.5sd Mean-1.5sd mean+2sd Mean-2sd

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60

P
at

ie
n

ts
 W

ai
ti

n
g

Total Patients

Patients Waiting_Total Patients 12:00 : 12:59



376 
 
 

 

Figure A3.10 Total Patients (12:00 to 12:59) and Daily Compliance with the 4-hour target (24 hourly) 

A3.1.3 Predictive analytics 

 There is an extensive body of work predicting demand for emergency services, 

using quantitative methods including linear regression (Jones et al., 2008; 

Ekstrom et al., 2015); machine learning (Khatri 2018; Yousefi et al., 2019); and 

time-series forecasting (Calegari et al., 2016; Choudhury, 2019). There has been 

significant interest in the use of climate factors for predicting ED demand, such 

as temperature and air quality, though these have shown mixed results, with 

Calegari et al. (2016) and Carvalho-Silva et al. (2018) demonstrating little to no 

additional predictive value. The field of machine learning is advancing rapidly, 

with an increase in publications applying these methods for healthcare 

forecasting. However, complex machine learning methods may not be a good 

approach where interpretability and clinician buy-in are priorities (Graham et al. 

2018). For predicting emergency admissions, Wong et al. (2018) addressed the 

complexity of the approach as an implementation barrier in clinical practice. 

Additionally, these methods can require very large quantities of data, and data 

quality, collection and management requires substantial resources and 

commitment by healthcare stakeholders (Janke et al., 2016).  

Time-series methods are part of a suite of predictive analytic methods which have 

shown considerable success in predicting emergency demand, in particular 

variations of auto-regressive moving averages (ARMA) as developed by Box and 

Jenkins (1976). These contain an autoregressive (AR) term (p), and a moving 
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averages (MA) term (q). Where a single variable is observed at each time, the 

dataset is a univariate time series; where two or more variables are observed at 

each time, the dataset is known as a multivariate time series.  Brownlee (2018) 

conceptualised ARMA problems as supervised learning problems, by using 

previous time steps (lags) as input variables and using the next time step as the 

output variable. The order of the variables is preserved, where the size of the lag 

is the number of previous time steps. ARMA models combine autoregressive and 

moving averages elements, but require fewer parameters than either used alone. 

The AR component uses the dependent (autocorrelated) relationship between an 

observation and a specified number of lagged observations, while the MA 

component uses the dependency between an observation and residual errors 

from a moving average model applied to lagged observations. 

In ED forecasting, Aboagye-Sarfo et al. (2015) showed that ARMA and VARMA 

(vector autoregressive moving average) methods outperformed Winter’s 

forecasting method, a widely-used univariate method for predicting seasonal 

data. Calegari et al. (2016) found that SARIMA (Seasonal Autoregressive 

Integrated Moving Average) provided better predictions of ED arrivals compared 

with more traditional seasonal approaches, and Choudhury (2019) found that 

SARIMA outperformed neural networks, and advanced seasonal models for 

predicting ED arrivals. SARIMA is an approach for modelling univariate time 

series data that contains a seasonal component.  It contains additional seasonal 

terms which are similar to those in the ARIMA (p,d,q) model, where d is the 

degree of differencing. Differencing in statistics is a transformation applied to 

time-series data in order to make it stationary. A stationary time series' properties 

do not depend on the time at which the series is observed. The seasonal model 

is specified as SARIMA (p,d,q)(P,D,Q)s, where s is the seasonality and (P,D,Q) 

are the parameters influenced by the seasonal component. P uses the seasonally 

offset observation in the model, D is the order of seasonal difference, and Q is 

the order of moving averages or errors in the model.  For this case study, SARIMA 

modelling has been chosen for creating short-term forecasts 2 and 4 hours 

ahead, as the ED data has a strong daily seasonality. Due to the availability of 

forecasting libraries, Python 3.7 is used for the forecast modelling. 
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A3.1.3.1 Time-series features 

An observed time series can be seen as a realisation of a stochastic process 

(Chatfield & Xing, 2019) and is usually a sequence of real values (x₁… xₑ) taken 

at successive equally spaced points in time, from time t=1 to time t=e. A time 

series can be plotted to obtain simple descriptive measures of the main properties 

of the series (Figure 6.17), and to visualise patterns, unusual observations and 

changes over time. These features include trends (a decrease or increase in the 

mean over time), seasonality (a regular repeating pattern related to the calendar), 

cyclic variations which are not regular, changes in the variance over time, and 

abrupt level changes. Additionally, the plots can identify outliers and missing 

values (Section 6.3.2). The data is not necessarily independent nor identically 

distributed, and the order of observations is important, because there is a 

dependency and changing the order could change the meaning of the data.  

Given a time series, it is often useful to predict future values of the time series by 

utilising past longitudinal information to predict near future outcomes. It is 

therefore an appropriate method where there is numerical information available 

about the past, and it is reasonable to assume that some aspects of past patterns 

or sequences will continue into the future. Stationarity is discussed in Chapter 6, 

Section 6.5.2, however to introduce the concept, a stationary time series exhibits 

no trend, no systematic change in variance, and no seasonal variations. This 

means that the properties of one section of the data are similar to those of any 

other section. It does not mean that the series does not change over time, just 

that the way it changes does not itself change over time (Chatfield & Xing, 2019). 

Stationarity is a common assumption for many methods used in time-series 

analysis.  Most time series data will violate this principle, however the term is 

often used to indicate that a stationary model can be fitted to a time-series by 

transforming a non-stationary time series into a stationary one, for example by 

removing the trend and/or seasonal variation, to model the variation in the 

residuals (Hyndman & Athanasopoulos, 2015). The first step in fitting an ARIMA 

model is to determine the order of the differencing needed to make the time series 

stationary. For some specific time point r, the observation xᵣ₋ᵢ (i periods back) is 

called the i-th lag of xᵣ. A time series Y is generated by back-shifting another time 

series X by i time steps. A time series can be differenced until it becomes 
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stationary, but the ACF and standard deviation (StD) should be inspected after 

each to determine whether further differencing in justified.  

Where the variance is not constant over time, nonlinear transformation(s) such 

as logging and/or deflating and/or raising-to-some-power can convert the time 

series to a form where its local random variations are consistent (Nau, 2019).  

Total Patients data is decomposed in Figure A3.11 to examine the seasonality 

and other components (Observed, Trend, Seasonal, Residual). This confirms that 

there is no long-term trend and the data has a clear daily seasonality.  

 

Figure A3-11 Total Patients decomposition 

Autocorrelation is a feature of most time series, as the observations close 

together tend to be correlated, or serially dependent. Just as a correlation 

measures the strength of a relationship between two independent variables, 

autocorrelation measures the strength of the relationship between lagged values 

of a time series. It uses Pearson’s correlation coefficient, returning a value 

between 1 and -1, where a value of 0 indicates no correlation. In most time series 

data, the data are correlated, which means that methods are required which deal 

with the inherently correlated structure, as apparently irregular variation may be 

explained in terms of probability models such as AR or MA.   

The AR component of ARIMA models use the dependent (autocorrelated) 

relationship between an observation and a specified number of lagged 
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observations, while the MA component uses the dependency between an 

observation and residual errors from a moving average model applied to lagged 

observations. Each is specified explicitly as a parameter as an integer value in 

the specification ARIMA (p,d,q).  The stronger the correlation between the output 

variable and a lagged variable, the more weight the AR model will apply to that 

variable in the model. If there is little or no correlation between an output variable 

and its lag variables, the time-series problem may not be predictable (Brownlee, 

2018). 

One of the simplest ARIMA models is AR(1), or naïve forecast, which uses a 

linear model to predict the value at the present time using the value at the 

previous time. This is an autoregressive model of order 1, where the order 

indicates how many previous lags are used to predict the current time. This can 

provide a baseline performance as a point of comparison, to give an indication of 

how well other models will perform on the forecasting problem. The naïve forecast 

(AR(1)) reflects the autocorrelation, with a RMSE of 3.204 (Chapter 6, Figure 

6.20). The data is split into training (0.83) and test sets (0.17), the model is run 

by predicting the output value as the same as the input value, and the RMSE is 

calculated. Measures of accuracy are discussed in the next section.  

An autocorrelation plot will show the correlation coefficients for each lag variable, 

giving a good indication of which lag variables will be good candidates for use in 

a predictive model, and how the relationship between the lag values changes 

over time. Autocorrelation Functions (ACF) and Partial Autocorrelation Functions 

(PACF) can help to choose the parameters of the ARMA or ARIMA model. The 

ACF is a plot of the autocorrelation of a time series. A PACF summarises the 

correlation between observations in a time series with the relationships of 

intervening observations removed.  

An ACF plot provides the lag number along the x-axis and the correlation 

coefficient value between -1 and +1 on the y-axis. The plot also includes 95% 

and 99% confidence interval for the correlation values. Correlation values above 

these lines are more significant than those below the line, providing a threshold 

for selecting more relevant lag values.  A PACF summarises the correlations for 

an observation with lag values that are not accounted for by prior lagged 

observations. A time series with no autocorrelation is known as ‘white noise’, 
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where the ACF should be close to 0, with some random variation (Hyndman & 

Athanasopoulos, 2015).  

The model has an AR component if the ACF trails off after a lag and has a hard 

cut-off in the PACF after a lag. This lag is taken as the value for p. The model has 

a moving average component if the PACF trails off after a lag and has a hard cut-

off in the ACF after the lag. This lag value is taken as the value for q. The model 

is a mix of AR and MA if both the ACF and PACF trail off (Brockwell & Davis, 

2016). 

The ‘residuals’ in a time-series are what is left after a model is fitted. Using time 

series analysis, the features in the data can be used to make forecasts, while 

‘noise’ is the variability in the observations which cannot be explained by the 

model. It is usually equal to the difference between the observations and 

corresponding fitted values (Hyndman and Athanasopoulos, 2015). Ideally, the 

forecasting model will result in residuals which are uncorrelated, as correlations 

between residuals indicates that there is information left in the residuals which 

can be used for computing forecasts. Residuals should have a mean of zero, 

otherwise the forecasts are biased, and should have a constant variance and be 

normally distributed to make prediction intervals easier to calculate. 

A3.1.3.2 Evaluating forecast accuracy 

The accuracy of forecasts can only be determined by considering how well a 

model performs on new data that was not used for fitting the model. For this 

reason, as previously with the naïve forecasts, the set of data should be 

partitioned into a training set and a test set. The training set is used to estimate 

parameters of the forecasting method, and the test set is used to evaluate its 

accuracy.  Hyndman and Athanasopoulos (2015) recommend an 80/20 split, 

although this value depends upon the size of the dataset and how far ahead 

forecasts need to be made, such that the test set is at least as large as the 

maximum required forecast horizon. As this study is interested in short term 

forecasts, small test sets of less than 20% are often used. 

A model which fits the data well will not necessarily provide accurate forecasts. 

Over-fitting a model to data means having too many parameters such that it fits 

the training set well, but is then unable to forecast accurately. For example, Nau 
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(2019) advises using models where at least one of p and q is no larger than 1 to 

avoid overfitting.  

A forecast “error” is the difference between an observed value and its forecast, 

hence, unlike a residual, they are calculated on the test set. Errors can be 

measured using scale-dependent or percentage measures. The two most 

common scale-dependent measures are: 

 Mean Absolute Error (MAE): mean(|et|) 

This is calculated as the average of the absolute forecast error values, and is 

useful when comparing forecast methods applied to a single time series, or 

several time series with the same units, as the units of the error are the same 

as the units of prediction. Minimising the MAE will result in forecasts of the 

median. 

 Root mean squared error (RMSE): √mean(e2
t) 

The Mean Squared Error (MSE) is calculated as the average of the squared 

forecast error values. This both forces errors to be positive, and puts more 

weigh on the large errors. MSE scores are the squared units of predictions, 

and taking the square root of the MSE transforms them back into the original 

unit of the predictions. This is known as the Root Mean Squared Error 

(RMSE). A RMSE of zero indicates no error. Minimising the RMSE will result 

in forecasts of the mean. 

Percentage errors are unit-free, and are useful for comparing performance 

between datasets.   

 pt = 100et/yt  

Mean Absolute Percentage Error (MAPE): mean(|pt|) 

If yt = 0, then for any t in the time period of interest, the MAPE will be infinite 

and will have extreme values where yt is close to zero  

As the intention in this study is to compare models using the same dataset, scale-

dependent errors are used, and RMSE is chosen, RMSE values are always 

slightly higher than MAE values, which becomes more pronounced as the 

prediction errors increase. This is a benefit of using RMSE over MAE as RMSE 

penalises larger errors (Brownlee, 2015). For this study, cross-validation is used, 
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where there are a series of test sets, each consisting of a single observation. 

One-step forecasts, or rolling forecasts, involve taking the regression coefficients 

learned by the model from the training data, and using it to make predictions in a 

rolling manner across the test dataset. As each step in the test set is executed, 

the prediction is made using the coefficients, and stored. Hyndman and 

Athanasopoulos (2015) recommend that a good way to choose the best 

forecasting model is to find the model with the smallest RMSE computed using 

time-series cross-validation. However it is important to note that RMSE does 

not generalise across multiple samples when doing cross-validation (Dinov, 

2018).  

A3.1.3.3 ARIMA 

ARIMA is a generalisation of the simpler ARMA method, which adds integration 

(I), the use of differencing of raw observations (i.e. subtracting an observation 

from an observation at a previous time step) to make the time-series stationary, 

in particular to remove a trend or seasonality. For an ACF to make sense, the 

series must be ‘weakly stationary’, that is, the ACF for any particular lag is the 

same, regardless of where it is along the time series.  The means that the mean 

is the same for all of t, the variance is the same for all of t, and the covariance 

(and correlation) between xt and xt-1 is the same for all t. Most series are not 

stationary. A continual upward trend, for example, is a violation of the requirement 

that the mean is the same for all t. Distinct seasonal patterns also violate that 

requirement, and are exhibited in the Total Patients dataset.  

Each ARIMA parameter is specified explicitly as an integer value in the 

specification ARIMA (p,d,q). Its analysis assumes that the time series data is 

stationary, so it needs to be made stationary by differencing the series (the d 

parameter) and then testing statistically that the result is stationary. The 

parameters are defined as: 

AR (p) – The autoregressive component, lag order, or number of lag observations  

I (d) – Trend difference order (integration). Over-differencing can result in 

additional complexity and the addition of extra serial correlation. 

MA (q) – The size of the moving average window, or order of the moving average. 

This moving average process is an autoregression of the time series of residual 
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errors from prior predictions. In other words it corrects future forecasts based on 

errors made on recent forecasts. 

Stationarity means that the statistical properties of a process generating a time 

series do not change over time. It does not mean that the series does not change 

over time, just that the way it changes does not itself change over time (Chatfield 

& Xing, 2019). Stationarity is a common assumption for many methods used in 

time-series analysis.   

The first step in fitting an ARIMA model is to determine the order of the 

differencing needed to make the time series stationary, however over-

differencing can introduce negative autocorrelation and increase the standard 

deviation (Nau, 2019).   For some specific time point r, the observation xᵣ₋ᵢ 

(i periods back) is called the i-th lag of xᵣ. A time series Y is generated by back-

shifting another time series X by i time steps. A time series can be differenced 

until it becomes stationary, but the ACF and SD should be inspected after each 

to determine whether further differencing in justified. For non-seasonal data, first-

order differencing may be sufficient. For seasonal data, a seasonal difference is 

recommended (Hyndman & Athanasopoulos, 2015), while a first order difference 

may also be required. A seasonal difference is the difference between an 

observation and the previous observation from the same season. For Total 

Patients data, this requires subtracting each observation from the same time in 

the previous cycle (48) to create a new time series. This is necessary, otherwise 

the model assumes that the seasonal pattern will fade over time (Nau, 2019). 

The Augmented Dickey Fuller Test (ADF) is a unit root test for stationarity in a 

time-series. This is done in statsmodels using adfuller, for analysis of a univariate 

process in the presence of serial correlation (Statsmodels, 2019b), on the 

seasonally differenced data, to determine the need for first order differencing 

(Figure A3-12).  

https://www.statisticshowto.datasciencecentral.com/unit-root/
https://www.statisticshowto.datasciencecentral.com/stationarity/
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Figure A3-12 ADF statistic on seasonally differenced Total Patients Time Series  

Figure A3-12 shows the ACF and PACF plots of the seasonal differenced data. 

There is still daily seasonality present in the data (Appendix 3, Figure A3-13).  

This indicates that it may be worth considering a better model of seasonality, such 

as modelling it directly, rather than attempting to remove it from the model using 

seasonal differencing. However the parameters of an ARIMA model are explored. 

 
Figure A3-13  ACF and PACF of seasonal differenced Total Patients data (lag = 96) 

The first significant ACF lag can indicate the order of the MA (q) parameter, and 

this is 1. The first significant PACF lag can indicate the order of the AR (p) 
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parameter, which is also 1.  An ARIMA (1,0,1) is therefore a starting point on the 

seasonally differenced data. Using an 80:20 train-test split, ARIMA (1,0,1) is 

implemented on a sample of the seasonally differenced data as a 7-day rolling 

forecast (Figure A3-14).  

 

Figure A3-14 ARIMA (1,0,1) on seasonally-differenced Total Patients 

This provides a good starting point however the one-step rolling RMSE are still 

higher than the naïve model.  To confirm this analysis, a grid search of a suite of 

ARIMA parameters was conducted to check that there is not an ARIMA model 

that can outperform ARIMA (1,0,1) in test performance (using the seasonal 

stationary data). This is done by searching p, d, q values for the combination with 

the best performance by searching all combinations of p(0-3), d(0-2) and q(0-3), 

making 18 possible combinations (Figure A3-15).  Higher parameters could be 

investigated, for example within seasonal patterns, however parsimonious 

models are usually considered best (Nau, 2019) and the seasonal differencing 

confirmed that the data was stationary.  
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Figure A3-15 Results of grid search of p(0-3), d(0-2) and q(0-3) for ARIMA (p,d,q) 

Using the grid search, the best ARIMA model is ARIMA (1,0,2) with a RMSE of 

3.876 and MSE of 15.02 (Figure A3-14). This marginally outperforms the ARIMA 

(1,0,1) tested above.  Models with higher numbers of parameters failed to 

converge and were not returned. The ARIMA(1,0,2) one-step ahead forecasts for 

999 observations is plotted below (Figure A3-16). The model performs fairly well, 

predicting an expectation of error of 3.812 total patients.  

The next step is to check residual errors. These should ideally be normally 

distributed with a mean of zero. This can be done using summary statistics and 

plots to investigate the residual errors from the ARIMA (1,0,2) model (Figure A3-

17). This returns descriptive statistics of the residual errors. The mean and 

median are very close to 0 and the range is very slightly shifted to the right but 

they approximate normal, meaning there should be no bias in the forecasts. The 

first graph is a frequency histogram of the residual errors between the test set 

and the model forecasts, and the second is a probability density distribution. 
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Figure A3-16 ARIMA (1,0,2) on seasonally differenced data 

 

Figure A3-17 Summary statistics and plots of the residuals on ARIMA(1,0,2) on seasonally differenced 
data 
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The time series of the residual errors is checked for autocorrelation. If present, it 

would suggest that a model has more opportunity to capture the temporal 

structure in the data. The results (Figure A3-18) suggest that there is still 

autocorrelation present in the data, particularly at the seasonal (48 observations) 

points, with significant spikes at 48, and again in the PACF at 96 and 144. The 

seasonal ARIMA model incorporates both non-seasonal and seasonal 

factors and was therefore chosen for the Predict component of IHAF (Chapter 6, 

Section 6.5.3).  

 

Figure A3-18 ACF and PACF of residuals of ARIMA (1,0.2) 

A3.1.3.4 SARIMA 

A summary of SARIMA (1,1,2)(1,0,1)[48] model fit is in Figure A3-19.  

The Ljung-Box statistic (Q) is 35.28. The Ljung-Box test is a diagnostic tool used 

to test the lack of fit of a time series model. The test is applied to the residuals of 

a time series after fitting an ARMA model to the data. The test 

examines h autocorrelations of the residuals. If the autocorrelations are very 

small, it can be concluded that the model does not exhibit significant lack of fit, in 

other words, the Q-statistic needs to be non-significant, which it is. Hyndman 
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(2014) recommends using h=min(2s,T/5) where s is the period of seasonality and 

T is the length of the time series.  In this case, the minimum is 2*s, so 96 lags 

were used to analyse Q, which is non-significant in most lags, using the ‘ljungox’ 

method in Statsmodels. The Jarque-bera test is a test for normality, requiring the 

‘jarquebera’ method. This is significant to p<0.05. The Goldfeld-Quandt test is a 

statistical test for heteroscedasticity, requiring the method ‘breakvar’.  The null 

hypotheses is homoscedacity, and in this case this is rejected, suggesting that 

variance is actually increasing over time in this sample.  

 

 

Figure A3-19 SARIMA(1,1,2)(1,0,1)[48] model fit 

The residuals are examined below to confirm the fit of the model (Figure A3-20). 

They approximate a normal distribution, which is a useful confirmation of the PIs, 

and there is no significant autocorrelation in the ACF, suggesting the chosen 

model is a good fit for the seasonally differenced Total Patients data.  
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Figure A3-20 Summary statistics and summary plots of the residuals of SARIMA(1,1,2)(1,0,1)[48] 

A3.1.4 Resampling the data 

The data is resampled to reduce the granularity, and provide one-step ahead 

forecasts. Feature engineering is used to resample the data, as multistep 

forecasting places a significant burden on existing data by assuming the accuracy 

of each step ahead. This is done by calculating the average Total Patients in the 

resampled time period.  

Naïve forecasts are repeated as a baseline on each resampled dataset.  As can 

be expected, as the granularity of the data reduces, the naïve forecasts lose 

accuracy. These are plotted in Figures A3-21 to A3-24. 

    
Figure A3-21 Baseline Naïve forecasts with RMSE on Total Patients data                                                 

---- predicted values ---- expected values 
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Figure A3-22 Baseline Naïve forecasts with RMSE on 1-hour resampled Total Patients data                                                

---- predicted values ---- expected values 

 

Figure A3-23 Baseline Naïve forecasts with RMSE on 2-hour resampled Total Patients data                                               

---- predicted values ---- expected values 

Figure A3-24 Baseline Naïve forecasts with RMSE on 4-hour resampled Total Patients data                                               

---- predicted values ---- expected values 

 

One-step SARIMA forecasts are performed on each resampled dataset.  These 

are plotted in Figures A3-25 to A3-27. Each outperforms the naïve forecasts. 
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Figure A3-25 SARIMA forecasts with RMSE on 1-hour resampled Total Patients data                             

---- predicted values ---- expected values 

 

Figure A3-26 SARIMA forecasts with RMSE on 2-hour resampled Total Patients data                             

---- predicted values ---- expected values 

 

 

Figure A3-27 SARIMA forecasts with RMSE on 4-hour resampled Total Patients data                             

---- predicted values ---- expected values 

Figure A3-28 illustrates the diagnostic results of the residuals on the 2-hourly 

resampled data. This allows forecasts to be updated every 30 minutes, for 2 

hours and 4 hours ahead. Examination of the residuals and ACFs shows that the 
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residuals are approximately normally distributed with a small peak of remaining 

autocorrelation at 1, which may be relevant. Model summary results show that 

the Jarque-Bera test for normality of the residuals is significant at p<0.001; the 

Goldfeld-Quandt test for heteroscedasticity of residuals is not significant. The null 

hypotheses is homoscedacity, and across the full dataset, this is supported with 

p=0.9684, indicating the variance is stationary.  The Ljung-Box test for serial 

correlation however has some non-significant p-values in early lags, indicating 

that some serial correlation remains. This can be visualised in the ACF of the 

residuals at 12 and 24 hours, reported as non-significant. 

 

Figure A3-28 Summary statistics and plots of the residuals on SARIMA(1,1,2)(1,0,1)[12] on 2 hourly 
resampled seasonally differenced Total Patients data 

A3.1.5 Forecasting (expanded from Chapter 6, Section 6.5.5). 

The model is fitted to be used later for making predictions. Using get_forecast 

allows prediction intervals and multi-step forecasting (Figure A3-29).  
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Figure A3-29 Multi-step forecasts with prediction intervals 

 

However it also required the model to be retrained each time it is needed. Having 

trained the model on all available data, instead, the model and its parameters is 

saved so that it does not need to relearn the regression coefficients each time a 

prediction is needed (Figure A3-30). The Statsmodels module in Python has built-

in functions to save and load models by calling save() and load() on the fitted 

SARIMAX Results object (Statsmodels, 2019). The predictions can now be made 

using ARResults.predict. 
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Figure A3-30 Using save() and load() to make 2 and 4 hour forecasts with prediction intervals 

Now the forecast model needs to be kept updated, once the next real 

observation is made available by NHSquicker. This requires updating the data 

set used as inputs to make the subsequent prediction (Figure A3-31). 

The following steps are required: 

 The new observation is recorded. In Figure A3-31, the unrealistic figure 

120 is manually inputted. 

 The 30 minute dataset and 2 hour dataset are loaded and converted from 

numpy arrays to dataframe objects. This is a two-dimensional data 

structure that allows Pandas to manipulate the data.  The 30 minute 

dataset is indexed with the original date-time index so that an additional 

row can be added. 
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 In Figure A3-31, the new observation is inputted using pd.to_datetime. 

However for the integrated model, the new observation can be added in 

real-time using pd.Timestamp.now().  The index is retained using 

ignore_index=False. 

 To control the size of the dataset, it is saved with the first value removed 

as a new value has now been added to the end. 

 Save() is used to resave the 30 minute dataset. 

 It is now resampled 2 hourly and saved as the 2 hour dataset. The last five 

observations of each is printed to ensure each has saved correctly.  

 

 

Figure A3-31 The datasets are updated with the new observation 

It was mentioned that pd.Timestamp.now() can be used to update the date-time 

index in the 30 minute data in the Python forecast model code, while the new 

observation needs to be inserted directly into the forecast code as a variable. This 

creates a new row in the 30 minute dataset. This new dataset is then used to 

update the 2 hour dataset for making forecasts.  
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Using java.io.InputStreamReader; the code in Figure A3-32 is able to call 

on the python forecast model “SARIMA2_4.py” and insert arguments.  

 

Figure A3-32 Java code to insert new observation into python forecast model 

This means the new observations in the Python forecast model (Figure A3-30) 

can be replaced with the code snippet in Figure A3-33.  

  

Figure A3-33 Python code to receive new observation from Java 

A similar procedure is required for returning the forecasts to be sent to the 

simulation engine. 

A3.2 Prescribe component of IHAF 

A3.2.1 Historical data 

This subsection provides additional material for Chapter 6, Section 6.7, 

specifically Step 3: Data collection and analysis. 

Arrivals at the ED vary by hour of day and day of week, so an arrival schedule 

was constructed for each (Table A3.2). This enables entities in the simulation 

model to arrive per hour of day and day of week.  
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Table A3.2 Table 0-1 Hourly arrival rate schedule for each day of week 

 

The distribution of triage categories were found to be relatively stable per year of 

available data (Figure A3-34), 2016 – 2018. This enables entities to be allocated 

a triage category upon arrival into the system according to a probability 

distribution. In Chapter 6 (Section 6.7) it can be seen that the daily arrival patterns 

per triage category follows the overall arrival pattern.  
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Figure A3-34 Triage category probability distribution calculated using three years of data (2016-2019) 

Length of stay in ED are wide and flat, vary little between triage categories, and 

do not differentiate between time spent in treatment and time waiting for 

treatment.  For behavioural reasons (i.e. working to targets), ED lengths of stay 

all peak sharply at the four hour mark, distorting the distribution. For illustration, 

Category 5 lengths of stay are plotted in Figure A3-35 from the ED use-case.  

 

Figure A3-35  Distribution of length of stay of Category 5 patients 

A better approach is to determine the proportion of patients who had no 

treatment, one treatment, two treatments, and three treatments, for each triage 

category, as captured in the ED dataset. This includes all treatment options, 

including resuscitation, drug administration by all methods, splints, plaster, 

dressings, and minor operations. From the data, the percentage of patients by 

triage category requiring each number of treatments is tabulated in Table A3.3. 

In table A3.4, the percentage of patients who required 1,2 or 3 treatments, 2 or 3 

treatments, or only 3 treatments is calculated. From here, the probability of having 

zero treatments, one treatment only, two treatments only, and three treatments 

only is calculated (Table A3.5). Note all calculations are rounded to integers.  

Table A3.3 Percentage of patients per triage category who had 0,1,2,or 3 treatments 

Triage 

category 

Zero treatment 

(%) 

One treatment 

(%) 

Two treatments 

(%) 

Three treatments 

(%) 

1 50 17 10 23 

2 42 20 12 25 

3 48 25 12 15 

4 48 21 14 17 

5 49 17 15 19 
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Table A3.4 Proportion of patients per triage category who had 1,2,or 3, 2 or 3, or 3 treatments 

Triage category 1,2,3 treatments (%) 2,3 treatments (%) 3 treatments (%) 

1 50 33 23 

2 58 38 25 

3 52 27 15 

4 52 31 17 

5 51 34 19 

 

Table A3.5 is calculated by determining the proportion, for example, of those in 

Category 1 who had 2 or 3 treatments = 33/50 = 0.65. Of those, 23/33 had 3 

treatments = 0.69. These are used as conditional probabilities in the simulation 

model.  

Table A3-5 Conditional probabilities for numbers of treatments per triage categories 

Category Had 1,2,3 treatments Had no treatment 

1 0.50 0.50 

2 0.58 0.42 

3 0.52 0.48 

4 0.52 0.48 

5 0.51 0.49 

Category Had 2,3 treatments Had no treatment 

1 0.65 0.35 

2 0.65 0.35 

3 0.52 0.48 

4 0.59 0.41 

5 0.66 0.34 

Category Had,3 treatments Had no treatment 

1 0.69 0.31 

2 0.68 0.32 

3 0.56 0.44 

4 0.56 0.44 

5 0.55 0.45 

 

A staff nurse provided estimates of treatment durations for first and subsequent 

treatments per triage categories, in triangular distributions, and resources 

required. These are displayed in Table A3-6.  
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Table A3.6 Estimated treatment durations for first, second and third treatments per triage categories 

Category First treatment Resources 

1 Triangular (20, 50, 

100) 

1 consultant, 1 junior doctor, 1 nurse 

2 Triangular (20, 40, 70) 1 nurse, 1 junior doc OR 1 consultant, 1 nurse  

3 Triangular (20, 40, 60) 1 nurse, 1 junior doc OR 1 consultant, 1 nurse  

4 Triangular (20, 40, 60) 1 junior doc OR 1 nurse OR 1 consultant 

5 Triangular (20, 40, 60) 1 junior doc OR 1 nurse practitioner  

Category Subsequent 

treatments 

Resources 

1 Triangular (15, 20, 60) 1 junior doc OR 1 consultant OR 1 nurse 

2 Triangular (10, 15, 20) 1 junior doc OR 1 consultant OR 1 nurse 

3 Triangular (10, 15, 20) 1 junior doc OR 1 nurse 

4 Triangular (10, 15, 20) 1 junior doc OR 1 nurse practitioner OR 1 

nurse 

5 Triangular (10, 15, 20) 1 junior doc OR 1 nurse practitioner OR 1 

nurse 

 

From the ED data, the proportion of patient who required zero investigations, and 

one or more investigations were calculated (Table A3.7) and are used as 

conditional probabilities in the simulation.  Table A3.8 shows the estimated 

distribution of service times for internal and external investigations, and the 

resource requirements.  

Table A3.7 Percentages of patients requiring internal and external investigations per triage category 

Category Zero internal 

investigation 

(%) 

Internal 

investigation 

(%) 

Zero external 

investigation 

(%) 

External 

investigation 

(%) 

1 22 78 30 70 

2 19 81 33 67 

3 33 67 53 47 

4 50 50 57 43 

5 86 14 61 39 
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Table A3.8 Estimated investigation durations and resources per triage category 

Category Internal investigation Resources 

1 Triangular (10,15,45) Consultant and junior doc OR consultant 

and nurse OR junior doc and nurse 

2 Triangular (10,15,45) Junior doc OR nurse 

3 Triangular (10,15,45) Junior doc OR nurse 

4 Triangular (10,15,45) Junior doc OR nurse OR nurse practitioner 

5 Triangular (10,15,45) Junior doc OR nurse OR nurse practitioner 

Category External investigation Resources 

1 Triangular (45,60,75)   

2 Triangular (35,60,75)  

3 Triangular (25,45,60)  

4 Triangular (45,120,190)  

5 Triangular (45,90,240)  

 

Table A3.9 displays patient discharges as a proportion of all discharges, by triage 

category. These are divided into those who are admitted, those who died in the 

department, those who were discharged to any destination, and those who left 

without treatment or refused treatment. Additionally, those who ‘could have gone 

to MIU’ are estimated by adding those who were coded as any of the following: 

‘Discharge – follow up treatment by GP’, ‘Discharge – no follow-up’, ‘Left 

department before being treated/Did not wait’, and left department having refused 

treatment/self-discharged’.  This was for later use in developing scenarios.  

Table A3.9 ‘Disposal’ destination percentage for patients by triage category 

‘Disposal’ Category 1 

(%) 

Category 2 

(%) 

Category 3 

(%) 

Category 4 

(%) 

Category 5 

(%) 

Admit 74 78 53 31 7 

Discharge 11 21 45 65 84 

Died 14 1 0.1 0 0 

LWBS 0.5 0.5 2 5 8 

Could have 

gone to MIU 

3 8 23 35 51 
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Patients who ‘walk-in’ are triaged, usually be a triage nurse (nurse practitioner) 

but occasionally by a consultant, when ‘minors’ are busy and ‘majors’ are quiet. 

Estimated triage durations are in Table A3.10. 

Table A3.10 Estimated triage service time and resources 

Triage service time Resources 

Triangular (8,9,15) Nurse practitioner OR consultant 

 

As NHSquicker currently does not provide real-time information about admission 

or discharge, these delays are calculated by proportion of triage category as a 

mean percentage increase (Table A3.11) directly from the ED data, by comparing 

the mean length of stay (LoS) in ED of those given a ‘delay reason’ with the mean 

LoS for those without a delay. This is important because downstream delays (e.g. 

lack of appropriate bed, theatre delay) will increase the ED length of stay, and 

numbers in the department. The percentage increase, and the percentage of 

patients affected (per triage category) are used in the model in a ‘delay’ to 

replicate downstream delays for the appropriate proportion of patients.  

Table A3.11  Recorded delays for discharge or admission (LoS = Length of Stay) 

Category % Delayed Mean LoS delayed 

(mins) 

Mean LoS no delay 

(mins) 

% increase 

1 29 340 137 148 

2 32 348 161 116 

3 28 340 159 113 

4 21 325 151 116 

5 7 318 121 162 
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A3.3 Discrete-Event Simulation 

 

Figure A3-36 DES model (landscape)  
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Figure A3-36 provides a screenshot of the DES model. The following sections 

detail the model in detail, in three parts: (i) Model initialisation, warm-up and 

triage with accompanying screenshot; (ii) Patient agents and treatment blocks 

with accompanying screenshot; (iii) Discharge/admission delays, exit system, 

with accompanying screenshots.  

A3.3.1 Model initialisation, warm-up and triage 

The first section of the simulation is illustrated in Figure A3-37. The components 

are now described in detail, labelled as (a) – (i) in this subsection.  

 

Figure A3-37  Model section 1: Patient arrivals and triage 

 

(a) Patients enter the model according to the rate schedule defined in Table 

A3.2 and are allocated a triage category according to the distribution in Figure 

A3-34. Prior to simulation run, a user-control ‘control button’ and ‘slider’ enable 

the user to input ‘start model at current time’ and ‘number of days used for warm-

up’. The selected warm-up period (default = 3 days; Chapter 6, Section 6.7.1) is 

added to the current date-time so that data collection starts at the current date-

time. 
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 This is executed using the following code: 

// start model with actual current time? 
if (cb_StartAtSystemTime.isSelected() == true) { 
 Date currentSystemDate = new Date(); // automatically gets system date 
 // adjust for warmup period (start that much earlier) 
 LocalDateTime currentDate = LocalDateTime.now(); 
 LocalDateTime startDate = 
currentDate.minusDays((long)slider_warmup_Duration_days.getValue()); 
 Date startDateToUse = 
Date.from(startDate.atZone(ZoneId.systemDefault()).toInstant()); 
 getEngine().setStartDate(startDateToUse); 
} 
else { 
 // do nothing, using setup from "Model time" section above 
} 

 

As explained in the previous section, this is important because the simulation is 

intended to run for a very short time (2-4 hours), so the above code allows the 

model to start at the appropriate time of day and day of week in the arrival 

schedule, and to have the appropriate staff resources available for the particular 

time of day. 

(b) Upon entry, a conditional ‘select output’ block allows patients to enter the 

system or be sent to another hospital. For the baseline model, this is switched 

off; for scenarios it is accessed at runtime using a control button and sliders. 

These are described in the experimentation section.  

(c) The small ‘plain transfer’ block is used to define an action to be executed 

when an agent passes through this point in the model. Here, the patient is simply 

added to a ‘collection’ to keep track of the number of patients in the system at 

any one time. A corresponding ‘plain transfer’ block removes patients 

immediately prior to the exit block.  

A parameter ‘warm-up duration days’ is linked to an interactive user-slider 

‘number of days used for warm-up’ for defining the duration of warm-up. This 

parameter is used in a state chart to move between ‘warm-up’ state and ‘running’ 

state using timeout (Figure A3-38). The run time can be set in the ‘running’ state, 

and for calibration and validation this is set to 7 days, with a 3 day warm-up. After 

7 days, timeout stops the model, and .finish is used to retain the results. All plots 

use only the ‘running’ data.  
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Figure A3-0-1 Setting the warm-up and running time. 

(d) A ‘select output’ conditional block is placed after the ‘plain transfer’ block. 

If the simulation is in ‘running’ state, the patient enters a ‘Time measure start’ 

block to start measuring entry time of patients. If ‘false’, the patient is labelled ‘in 

warm-up’, and deviates around the ‘time measure start’ block. At the end of the 

model prior to removal from the simulation, a corresponding conditional block 

directs patients to ‘time measure end’ if patients are not labelled ‘in warm-up’, or 

bypasses the time measure if patients are ‘in warm-up’. This provides a relatively 

straightforward way of creating a warm-up period, and excluding it from model 

results, as AnyLogic does not have an easy method for setting a warm-up period. 

(e) At this point, patients are defined as ‘walk-in’ or ‘arrive by ambulance’ (as 

per Table 6.19). This simplification is set as a probability in an output block, where 

those who arrive by ambulance or air ambulance bypass triage and go straight to 

treatment. Those who walk-in are triaged. This is acceptable as ambulance 

delays aren’t captured in this model due to the focus on low-acuity patients, 

however these are an important part of system performance and capturing 

ambulance handovers/delays would support a more flexible model for future 

work.   

(f) The triage block is a ‘service block’ which seizes resources, delays the 

agent, and at the end of the delay, releases the resources. It contains a queue 

component, which initiates the start of the ‘waiting room’, which will be described 

shortly when the patient agent is described. The seized resources and the delay 

time (service time) are as defined in Table 6.18 in the previous section (Step 3). 

As triage can be performed by a nurse practitioner as a high priority, or by a 

consultant as a low priority, a set of priority variables allocate prioritisation in a 
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simplified hierarchy, where triage priority falls between Categories 3 and 4. This 

means that consultants will always prioritise treatment for patients in categories 

1, 2 or 3 over triage, while nurse practitioners will always prioritise triage over 

treatment of patients in categories 4 or 5. Following triage, patients enter a 5-

point conditional output block toward treatment.  

(g) Resources are defined in resource pools. Trolleys are static resources, 

with fixed numbers as described in Section 6.7. Staff resources are defined within 

an Option List, which allows each staff type to share the parameter ‘Staff_Type’ 

to define them as consultants, junior doctors, nurse practitioners or nurses. This 

is a simplification, as in practice there are other staff types (e.g. Matron, Senior 

Matron, healthcare assistants are all nurses; first year in practice, second year in 

practice, registrar are all junior doctors). The capacity for each staff type is 

defined using estimated schedules of three shifts/day.  

(h) Patients have a single parameter (triage category) which is allocated on 

entry as defined in Table 6.18 in the previous section. For treatments, patients 

are directed down one of five pathways, according to allocated triage category. 

From here, the number of required treatments, treatment distribution times, and 

resources required are as defined in Tables 6.13 and 6.14 in the previous section. 

The five treatment pathways are retained for visualisation and demonstration.  

(i) Five ‘output blocks’ immediately after allocation to a triage category 

pathway are the probability of dying in the department per triage category, and 

are set using sliders at model initialisation, with defaults as per Table 6.17.  The 

assumption is that if a patient dies, it will occur before treatment starts. 

A3.3.2 Patient agents and treatment blocks 

Following allocation to a treatment pathway, investigations and treatments take 

place, according to triage category. This is illustrated in Figure A3-39 and 

discussed in more detail below, labelled (a) – (e) in this subsection. . 

(a) Patients who enter the system seize a trolley which they hold for the 

duration of their treatment. The ‘seize block’ embeds a queue object where the 

agent waits for the resource, as treatment cannot begin until a trolley is available. 

Time spent in this queue is added to the ‘waiting room’, and time waiting for initial 

treatment starts here. Category 1 seizes a resus trolley, Categories 2 and 3 seize 

a majors trolley, and Categories 4 and 5 seize a minors trolley. Once the resource 
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is seized, agents leave the block immediately, and the resource is retained until 

it is released, before the patient leaves the department.    

 

Figure A3-39 Model section 2: Treatment and investigation blocks 

The ‘waiting room’ is defined as a state chart within the Patient agent (Figure A3-

39) for the behavioural component ‘Leave without being seen (LWBS)’.  Patients 

can be in either a ‘waiting’ state or a ‘not waiting’ state. The transitions between 

these states occur on a message trigger which occurs in the queue object of the 

seize trolley block. On entry to this object for each triage category, the waiting 

state is initiated. Once the trolley is seized (and the patient leaves the block), the 

waiting state is ended, and the patient re-enters the ‘not waiting’ state via a 

message trigger. While ‘waiting’, the variable ‘v_TimerWaitForInitialTreatment’ 

starts, to measure the wait time for initial treatment by category. Additionally, a 

function in Main counts the number of patients in the waiting room, and patients 

are added to ‘collections’, by triage category. Once the trolley is seized, patients 

exit the waiting room.  

As patients undergoing treatment may be waiting for staff resources, they may 

also enter a ‘waiting state’ at this point. This is logged within the ‘waiting’ state 

using the variables ‘TotalTimeWaited_mins’ and ‘TimeStartedWait’. An internal 

transition within the ‘waiting’ state triggers LWBS with a timeout. This is done 

using the function ‘getPatientWaitLimit’. If this function (per triage category) is 

less than the time already spent waiting, the patient leaves. Currently the function 

‘getPatientWaitLimit’ is set using parameters called within Main sliders, with 
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defaults as per Table A3-40. However future work will investigate setting the 

LWBS function as a linear relationship with the real-time Maximum Wait Time, or 

Total Patients, as described in Chapter 6, Section 6.7.1. 

 

Figure A3-40 Patient agent state chart  

(b) The blue ‘treatment’ boxes are individual sub-models which contain a 

range of parameters (Figure A3-41). The ‘icon’ is the blue square, which is the 

entry and exit to the sub-model. Patients leave the icon toward the output block, 

which calls the parameter p_Probability, to determine whether treatment occurs 

in this block. These are set according to the probabilities calculated in Table A3-

5. If false, patients return directly to the icon and will progress to the next sub-

model. If true, patients enter the ‘waiting’ state in the queue block within the ‘seize 

staff’ block. While waiting, if this is the patient’s initial treatment (set in ‘seize staff’ 

using the patient variable v_HadFirstTreatmentAlready, set to == True), the initial 

treatment duration is logged using the function seen in Figure A3-40 if 

v_HadFirstTreatmentAlready == False.  Staff are seized (p_ResourceSets), and 

treatment undertaken (p_Duration_min) according to Table A3-6. At the end of 

each treatment, staff resources are released and patients re-enter the ‘icon’ which 

returns them back to the Main model to progress to the next treatment sub-model.  
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Figure A3-0-2 Treatment sub-models, with parameters 

An example (first treatment for category 1 patient) is shown in Figure A3-42 to 

illustrate the parameters, and treatment prioritisation, set within each treatment 

block. Note that the parameter p_IsInWaitingRoom allows patients to return to 

the waiting room when waiting for treatment. This is set for Categories 4 and 5 

only, and is called in the ‘seize staff’ block within the treatment sub-model.  

(c) External investigations (e.g. Xray, ultrasound scan or other scans) use a 

simple ‘delay’ block given a probability as per Table A3-7 defined in the previous 

section. It is assumed that no resources are required and that the external waiting 

time is built into the delay time distributions, hence categories with lower 

prioritisation have longer delays. 

(d)  Internal investigations use the same treatment block sub-model as 

treatments, with the probability of needing one or more investigations as per 

Table A3-7, investigation times and resources required as per Table A3-8, and 

priority set by treatment category.  

(e) Following all treatments and investigations, staff are released.  
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Figure A3-2 Setting the parameters for each treatment block in Main 

A3.3.3 Discharge/admission delays, exit system 

Figure A3-43 illustrates the final part of the model, discussed below as (a) – (e).  

(a) Staff have been released however there may be delays before discharge 

or admission. These are coded in the ED dataset, for example: waiting for 

transport, waiting for a specialist, waiting for a bed. The proportion of patients 

who are delayed are set as per Table A3-11 using a function 

f_PatientNeedsDelay, as probabilities in an output block.  

(b) Categories 4 and 5 release their trolleys and enter the CDU, seizing a CDU 

chair. Categories 1, 2 and 3 retain their trolleys. All enter a delay block using a 

probability distribution derived from Table A3-11. Where CDU is full, Categories 

4 and 5 patients wait in their trolleys.  

(c) Two ‘exit arrows’ after the delay take patients who are deceased (assumed 

to occur prior to any treatment taking place) and patients who LWBS.  Patients 

who LWBS are added to the variables 

v_NumPatientsLeaveBeforeDischarge_Cat for plotting.  

(d) Following this, patients who are not in the ‘warmup’ state enter the 

TimeMeasureEnd for plotting the lengths of stay in the department.  

(e) Finally, all resources (trolleys) are released, patients are removed from the 

patient collection, which is an array of the number of patients in the system, and 

patients exit the system.  
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Figure A3-43 Patients release resources, may be delayed, and exit the system 

A3.3.4 Validation: simulated Patients Waiting by Triage category 

NHSquicker data provides Patients Waiting data overall, but not segmented by 

triage category. The simulation divides this output by triage category and provides 

2-D histograms over-laying 150 replications. The total is a good fit with 

NHSquicker data, and the following graphs illustrate the findings per triage 

category, which align with expected values (A3-44 – A38).  

 

Figure A3-44 Category 1 number of patients waiting  Figure A3-45 Category 2 number of patients waiting 

y-axis = patient numbers, x-axis = days  y-axis = patient numbers, x-axis = days  
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Figure A3-46 Category 3 number of patients waiting Figure A3-47 Category 4 number of patients waiting 

y-axis = patient numbers, x-axis = days  y-axis = patient numbers, x-axis = days  

 

 

Figure A3-48 Category 5 number of patients waiting 

y-axis = patient numbers, x-axis = days  
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Appendix 4 

 

Participant Information Sheet 

Title of Project: A Real-time Hybrid Systems Modelling Approach for 
Emergency Healthcare Short-Term Decision-support 

Researcher name: Alison Harper 

Purpose of the research:   

In the NHS, data is being produced at an increasing rate and volume. Subject to 
the legal framework governing the use of healthcare data, “secondary uses” of 
data are essential for supporting a safe, efficient, and equitable health service. It 
is increasingly advantageous for healthcare organizations to improve 
performance by creating a data-driven decision-making culture. 

While the NHS typically relies on historical reporting, or using data feeds in ‘real 
time’ to support rapid decision-making by enabling staff to know and react to 
‘what is happening’. This can improve efficiency and agility for decision-making 
and has repeatedly been shown to deliver value in healthcare, through process 
efficiency, reduced costs and improved patient care. With increasing availability 
of healthcare operational data, opportunities exist to develop advanced 
applications for real-time operational decision-support. However little is known 
about how useful these tools are likely to be in practice. 

Why have I been approached? 

For patient decision-making, applications such as NHSquicker 
(www.nhsquicker.co.uk), developed by the University of Exeter Business School 
and [redacted], provide real-time wait-time data to patients to support 
attendance decisions for shaping demand across the urgent care network. 

This project has leveraged the value in this available real-time data to 
investigate the further support of short-term decisions toward controlling ED 
crowding using advanced analytics. It has two components: 

  

 Forecasting of patient numbers in ED (2-4 hours ahead): Early warning of 
crowding may support the mobilisation of resources to prevent crowding 
before it occurs.  

 Simulation of ED:  A computer model of ED mimics the behaviour of the 
department. It is possible to experiment with the model, rather than the real 
system to determine the best escalation action to take to prevent 
overcrowding, identifying bottlenecks at the input, throughput or output 
stage. 

In order to evaluate this work, and inform further research in this area, three 
different staff types are being invited for interview: NHS clinicians, NHS 

http://www.nhsquicker.co.uk/
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managers, and NHS IT staff.  We are interested in obtaining the following 
information toward future work in short-term decision support applications in 
ED: 

 How you or your department manage an escalating situation 

 How you use existing real-time tools for decision support 

 How you believe real-time data can support patient attendance decisions 

 What kind of decision support might help, and what it might look like 

 Your understanding of how forecasting and simulation might support 
decisions.  

What would taking part involve?  

Semi-structured interviews will last approximately 45 minutes to one hour. You 
will be asked to sign a consent form prior to commencement. You will only be 
identified as one of the ‘staff types’ outlined above, and all data will be 
anonymised.  

What are the possible benefits of taking part?  

Data-driven decision tools are showing increasing advantage for organisational 
decision support, but little is known about how these can be used in healthcare. 
This study will inform further research understanding the risks and benefits of 
such tools, and testing implementations in practice toward the development of 
more generic tools that can be more widely applied in the NHS. 

What are the possible disadvantages and risks of taking part?  

We don’t anticipate that there are any risks associated with your participation. 

What will happen if I don't want to carry on with the study? 

At any point during the interview you may request to stop the interview without 
giving a reason and, if requested, you may withdraw from the research at any 
time and ask that your data be destroyed.  

How will my information be kept confidential? 

The University of Exeter processes personal data for the purposes of carrying 
out research in the public interest. The University will endeavour to be 
transparent about its processing of your personal data and this information 
sheet should provide a clear explanation of this. If you do have any queries 
about the University’s processing of your personal data that cannot be resolved 
by the research team, further information may be obtained from the University’s 
Data Protection Officer by emailing dataprotection@exeter.ac.uk or 
at www.exeter.ac.uk/dataprotection 

Interviews will be recorded and transcribed for analysis. The transcriptions are 
stored on an encrypted laptop, and will be held for twelve months. All data will 
be anonymised, identified only as one of the three staff types described above. 
Access to the interview transcript will be limited to the research investigator and 
academic colleagues as part of the research process. The actual recording will 
be destroyed. 

mailto:dataprotection@exeter.ac.uk
http://www.exeter.ac.uk/dataprotection/
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What will happen to the results of this study? 

The results may be disseminated in academic publications and/or conference 
papers. Any summary interview content, or direct quotations from the interview, 
that are made available through academic publication or other academic outlets 
will be anonymised so that you cannot be identified, and care will be taken to 
ensure that other information in the interview that could identify you is not 
revealed. 

Who is organising and funding this study? 

This research is funded by the Economic and Social Science Research Council 
(ESRC) via the SWDTP.  

Who has reviewed this study? 

This project has been reviewed by the University of Exeter Business School 
Research Ethics Committee (Reference Number eUEBS000905), and the 
researcher holds an honorary contract at [redacted] until September 2020.  

Further information and contact details: 

Alison Harper  

Centre for Simulation, Analytics and Modelling, University of Exeter Business 
School, Stocker Road, Exeter, EX4 4PY 

Email: ah596@exeter.ac.uk 

Tel: 07922 109 779 

If you are not happy with any aspect of the project and wish to complain, please 
contact: 

Professor Navonil Mustafee,  

Email: n.mustafee@exeter.ac.uk 

 

Gail Seymour, Research Ethics and Governance Manager 

g.m.seymour@exeter.ac.uk, 01392 726621  

 

Thank you for your interest in this project 

  

mailto:ah596@exeter.ac.uk
mailto:n.mustafee@exeter.ac.uk
mailto:g.m.seymour@exeter.ac.uk
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CONSENT FORM 

Title of Project:  

A Real-time Hybrid Systems Modelling Approach for Emergency Healthcare Short-
Term Decision-support 

 

Name of Researcher: Alison Harper     Please initial box  

 

1. I confirm that I have read the information sheet dated 08/03/2020 (V2) 

 For the above project. I have had the opportunity to consider the 

 information, ask questions and have had these answered satisfactorily. 

 

2. I understand that my participation is voluntary and that I am free to  

withdraw at any time without giving any reason and without my legal 

rights being affected. 

 

3. I understand that relevant sections of the data collected during the  

study, may be looked at by members of the research team, where it 

 is relevant to my taking part in this research. I give permission for these  

individuals to have access to my records.  

 

4. I understand that taking part involves anonymised interview transcripts 

to be used for the purposes of analysis, which will be held securely for  

a period of up to on year. These may be published in an academic publication 

 

5. I agree to take part in the above project. 

 

            

Name of Participant  Date    Signature 

 

            

Name of researcher  Date    Signature 
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Interview Guide 

THINK ABOUT THE LAST TIME ED WAS UNDER SIGNIFICANT PRESSURE 
and you felt that there were potential risks to patient safety:  

(Clinician – first-hand; Manager/IT – org. strategies) 

1. Your behaviour to manage an escalating situation: 

- Describe the nature of the situation 

- What did the organisation do, how did it respond? 

- How does it know when to make a decision? (triggers) 

- What are the goals at the various decision points? 

- Are there any situations in which the decision would have turned out 
differently? 

- What information is available at the time of the decision? 

- At any stage, were you uncertain about either the reliability or the 
relevance of the information that you had available to help with your 
decision? 

- What was the most important piece of information that you used to help 
with the decision? 

- Was there any stage during the decision-making process in which you 
found it difficult to process and integrate the information available? 

- At any stage, were you uncertain about the appropriateness of the 
decision? 

- Were there any other alternatives available to you other than the 
decision you made? 

- What other escalation decisions were taken by others? 

- How does your behaviour change if you think it might get busier later 
on? 

 

2. Existing tools and policies: 

a. Technology 

i. Forecasting  

ii. Real-time data – eg Overcrowding tool, Symphony, 
Ambulance 

iii. Simulation/OR model – eg Excel spreadsheet 

b. Policies 

i. What escalation policies currently implemented based on 
this? 
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ii. Larger policy-based decisions, smaller hour-to-hour 
changes in behaviour? 

 

- Overcrowding tool – how is it currently used? 

- How do you currently use it? 

- What other decision-support is available to you? 

 

3. NHSquicker  

- Do you, or other staff you are aware of, use it? 

- How do you use it? 

- Does it help staff decision making?  

- Reliable and accurate? 

- Supports the wider system? 

- Unintended consequences for staff?  

- Any indirect consequences, positive or negative, ST or LT? 

- How could it be made more useful for staff?  

- Which staff use it? Which staff should be using it? What stops people 
using it? 

 

4. Evaluate IHAF  

a. Diagnostic measure 

- Does Total Number in the department represent overcrowding to staff? 
Is it useful or meaningful to you? 

- What would be better? 

b. Predictive measure –  

- How might you use short-term forecasts of Total Patients?  

- What escalations could be used in 2-4 hours? What isn’t possible in that 
time? 

- What forecasts would be most useful? 

- What would you do with them? 

- Does something need to change to enable this?  

- Which staff would use it? Which staff should be using it? 

- What would make it not useful? 

- Any risks or unexpected or indirect consequences? ST or LT? 
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- Any barriers to use? 

c. Prescriptive measure: 

- Who might use this tool? 

- Would you use it? Do you want it? 

- What escalation actions are possible – input, throughput, output? 

- What actions would you take? 

- What are the barriers? How could these be tackled? 

- What might its impact be? Negative or positive? ST/LT? 

- Could it be useful more widely, beyond ED, or beyond the hospital? Are 
there possible contextual differences? 

- How might it help patients? 

- How might it help the wider system? 

 

5. Ideal decision support tool 

- What would it consist of? What data? Where would it sit? How would it 
be used? Who would use it? What would it tell you? 

- How best to access it, eg in dashboard, app, website, other? 

- How could this knowledge be used? What escalation activities? How far 
ahead would be useful? 

- What are the barriers? Technical, organisational, other. How can they 
be tackled? 

- Who wouldn’t want it? Why?  

- What would influence your trust in the tool? 

 

6. Patient decision-making: NHSquicker, patient:  

- Are you aware of any patients who have used this information? 

- How do you feel about patients having access to additional information 
to support attendance decisions?  How do others feel? 

- Forecasts? Other more useful info for attendance decisions? 

- Do you believe it changes patient attendance behaviour? 

- Do you believe it has benefits at the system level?  

- Any unintended or indirect consequences? ST or LT? 

- How could it be made more useful for patients? Immediate and LT 
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- Given questionnaire information, how do you feel about patients having 
access to additional information to support attendance decisions? 
Unexpected consequences? Barriers to use?  

 

 General  SA Real-
time 
Data 

Existing 
Forecasts 

Simulation 
/Excel  

IHAF Triggers  

Managing ED at 
peak periods 
(NHS) 

X X    => => 

Existing Tools   X X X X => => 

Existing Policies X    X => X 

NHSquicker and 
Forecasts 

 X X X   X 

Ideal real-time 
tool 

 X    X => 

 (NHSquicker) - 
Patients 

X  X   X => 
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Interview props for demonstration and evaluation 

Trigger: Total Patients 
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Hour 00.0

0 

01:0

0  

02:0

0 

03:0

0 

04:0

0 

05:0

0 

06:0

0 

07:0

0 

08:0

0 

09:0

0 

10:0

0 

11:0

0 

1.5 

sd 

41 39 36 33 30 29 28 27 28 31 35 39 

Hour 12.0

0 

13:0

0  
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Forecasts: Total Patients 
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 Forecast PI (80%) 

1 hour forecast 40 36 - 44 

2 hour forecast 42 37 - 47 

4 hour forecast 44 38 - 50 

 

 

 

 

 

Simulation: Real time 
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• Baseline – proportion of patients LWBS (leave without being seen) per 

triage category, calibrated to 2018 data 

• Scenario 1 – Redirect all Cat 4 and 5 patients when number of patients in 

department reaches hourly trigger 

• Scenario 2 – Redirect a proportion of Cat 4 and 5 patients to MIU when 

number of patients in department forecasted to reach hourly trigger in 2-4 

hours’ time 
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• Scenario 3 – Redirect a proportion of Cat 4 and 5 patients to MIU when 

number of patients in department forecasted to reach hourly trigger in 2-4 

hours’ time, and given sufficient capacity in MIU 
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