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Abstract

Complex numerical models and simulators are essential for representing real life

physical systems so that we can make predictions and get a better understanding of

the systems themselves. For certain models, the outputs can behave very differently

for some input parameters as compared with others, and hence, we end up with

distinct bounded regions in the input space. The aim of this thesis is to develop

methods for uncertainty quantification for such models.

Emulators act as ‘black box’ functions to statistically represent the relationships

between complex simulator inputs and outputs. It is important not to assume

continuity across the output space as there may be discontinuities between the

distinct regions. Therefore, it is not possible to use one single Gaussian process

emulator (GP) for the entire model. Further, model outputs can take any form and

can be either qualitative or quantitative. For example, there may be computer code

for a complex model that fails to run for certain input values. In such an example,

the output data would correspond to separate binary outcomes of either ‘runs’ or‘fails

to run’.

Classification methods can be used to split the input space into separate regions

according to their associated outputs. Existing classification methods include logistic

regression, which models the probability of being classified into one of two regions.

However, to make classification predictions we often draw from an independent

Bernoulli distribution (0 represents one region and 1 represents the other), meaning

that a distance relationship is lost from the independent draws, and so can result in

many misclassifications.

The first section of this thesis presents a new method for classification, where

the model outputs are given distinct classifying labels, which are modelled using a



iv

latent Gaussian process. The latent variable is estimated using MCMC sampling, a

unique likelihood and distinct prior specifications. The classifier is then verified by

calculating a misclassification rate across the input space. By modelling the labels

using a latent GP, the major problems associated with logistic regression are avoided.

The novel method is applied to a range of examples, including a motivating example

which models the hormones associated with the reproductive system in mammals.

The two labelled outputs are high and low rates of reproduction.

The remainder of this thesis looks into developing a correlated Bernoulli process

to solve the independent drawing problems found when using logistic regression. If

simulating chains or fields of 0’s and 1’s, it is hard to control the ‘stickiness’ of like

symbols. Presented here is a novel approach for a correlated Bernoulli process to

create chains of 0’s and 1’s, for which like symbols cluster together. The structure

is used from de Bruijn Graphs - a directed graph, where given a set of symbols, V,

and a ‘word’ length, m, the nodes of the graph consist of all possible sequences of

V of length m. De Bruijn Graphs are a generalisation of Markov chains, where the

‘word’ length controls the number of states that each individual state is dependent

on. This increases correlation over a wider area. A de Bruijn process is defined along

with run length properties and inference. Ways of expanding this process to higher

dimensions are also presented.



Acknowledgements

I would first like to give a massive thank you to Peter Challenor for all of his help,

support and guidance. Thank you for always having confidence in me, even if I had

none! I would also like to thank Danny Williamson and Henry Wynn for all of their

help and inspiration.

I would next like to thank Gareth, my parents, family (and most importantly

Luna) for keeping me going, and supporting me in every way possible (especially with

plenty of hugs!). Also thank you to James, Victoria, Evan, Wenzhe and everyone in

601 for always listening if I needed to talk things through or have a rant!

Finally, I would like to thank EPSRC for their studentship funding and allowing

me to eat for the past 4 years.

"Working hard is important. But there is something that matters even more:

Believing in yourself." J.K. Rowling (Harry Potter)





Table of contents

List of figures xi

List of tables xix

Notation xxi

1 Introduction 1

2 Latent Gaussian Processes for Labelled Outputs 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Latent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 An Illustrative Example in 1 Dimension . . . . . . . . . . . . 24

2.2.3 Alternative Methodology . . . . . . . . . . . . . . . . . . . . . 24

2.3 Misclassification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Prior Choice Methodology . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Examples in Higher Dimensions . . . . . . . . . . . . . . . . . . . . . 39

2.6 Comparison with Existing Methods . . . . . . . . . . . . . . . . . . . 40

2.6.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.2 Voronoi Tessellation . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.3 Classification Using Contours . . . . . . . . . . . . . . . . . . 43

2.6.4 Classification Using History Matching . . . . . . . . . . . . . . 45

2.7 The Design Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.8 Another Example in 2 Dimensions . . . . . . . . . . . . . . . . . . . . 51

2.8.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



viii Table of contents

2.9 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 De Bruijn Graphs 61

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 De Bruijn Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.1 Further Markov Properties . . . . . . . . . . . . . . . . . . . . 69

3.2.2 Non-Stationary Markov Chains and Further Connections . . . 72

3.3 Towards a Correlated Bernoulli Process . . . . . . . . . . . . . . . . . 76

3.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.2 Markov Properties . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3.3 De Bruijn Graphs as Trees . . . . . . . . . . . . . . . . . . . . 90

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 De Bruijn Process Properties and Inference 95

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Run Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.1 Run Length Distribution . . . . . . . . . . . . . . . . . . . . . 96

4.2.2 Expected Run Length . . . . . . . . . . . . . . . . . . . . . . 101

4.2.3 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2.4 Generating Functions . . . . . . . . . . . . . . . . . . . . . . . 112

4.2.5 Non-Stationary de Bruijn processes . . . . . . . . . . . . . . . 126

4.2.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5 De Bruijn Processes in Two Dimensions (and Higher) 147

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2 Towards a 2-d De Bruijn Process . . . . . . . . . . . . . . . . . . . . 148

5.2.1 Method 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.2.2 Method 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160



Table of contents ix

5.2.3 3 Dimensions and Higher . . . . . . . . . . . . . . . . . . . . . 170

5.2.4 Run Length and Future Work . . . . . . . . . . . . . . . . . . 173

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6 Towards Non-directional De Bruijn Graph Structures 179

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.2 1-d Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.2.1 Simulation and Examples . . . . . . . . . . . . . . . . . . . . 184

6.2.2 Run Length Distribution . . . . . . . . . . . . . . . . . . . . . 189

6.2.3 Expected Run Length . . . . . . . . . . . . . . . . . . . . . . 197

6.2.4 Variance of Run Length . . . . . . . . . . . . . . . . . . . . . 199

6.2.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.2.6 Generating Functions . . . . . . . . . . . . . . . . . . . . . . . 202

6.2.7 Marginal Likelihood . . . . . . . . . . . . . . . . . . . . . . . 206

6.2.8 Conditional Word Likelihood . . . . . . . . . . . . . . . . . . 208

6.2.9 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

6.3 2-d Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7 Conclusions and Future Work 221

References 231

Appendix A Proofs for Chapter 4 Theorems 241

A.1 Theorem 4.2 (Run Length Distribution, m ≥ 3) . . . . . . . . . . . . 241

A.2 Expected Run Length for m = 2 Obtained from Moment Generating

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

A.3 Theorem 4.18 (Marginal Likelihood, m ≥ 1) . . . . . . . . . . . . . . 247

A.4 Theorem 4.20 (Transition Likelihood, m ≥ 1) . . . . . . . . . . . . . . 248

A.5 Theorem 4.21 (Estimation of De Bruijn Word length by Bayes’ factors,

m ≥ 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249



x Table of contents

Appendix B Proofs for Chapter 6 Theorems 251

B.1 Theorem 6.2 (Run Length Distribution, m ≥ 2) . . . . . . . . . . . . 251

B.2 Theorem 6.4 (Expected Run Length, m ≥ 2) . . . . . . . . . . . . . . 255

B.3 Theorem 6.6 (Squared Expectation of Run Length, m ≥ 2) . . . . . . 257

B.4 Theorem 6.8 (Run Length Probability Generating Function, m ≥ 2) . 259

B.5 Theorem 6.10 (Run Length Moment Generating Function, m ≥ 3) . . 262

B.6 Expected Run Length for m = 1 Obtained from Moment Generating

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

B.7 Theorem 6.12 (Marginal Likelihood, m ≥ 1) . . . . . . . . . . . . . . 266

B.8 Theorem 6.14 (Conditional Word Likelihood, m ≥ 1) . . . . . . . . . 267

B.9 Theorem 6.15 (Posterior Distribution for de Bruijn Conditional Word

Probabilities, m ≥ 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 269



List of figures

1.1 Example of a model with two output regions. Region 1 (x ∈ [0, 15])

follows a sign curve, whilst Region 2 (x ∈ (15, 25]) follows an exponential

curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Examples of emulating a step function with a Gaussian process. The

true function, f(x), is given in red, where the input range is x ∈ [0, 20].

There are six initial points at varying distances from the discontinuity

boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Example of logistic regression. The top plot (red) shows the true

function, f(x) ∈ {0, 1}. Applying a logistic regression, the predicted

probability of f(x) = 1 for all values of x ∈ [0, 1] is given in the middle

plot (black). The bottom plot (blue) shows draws from Bernoulli trials

with the given probability to give classification predictions for each

value of x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 1 dimensional example with 2 output regions. The posterior mean

of the latent Gaussian process (solid blue) is shown along with the

prior mean (dashed blue), true boundary (dashed red) and boundary

estimate (solid red). Both have 95% credible intervals included

(black/grey dashed lines). Initial data points are shown in orange with

size corresponding to misclassification. . . . . . . . . . . . . . . . . . 25

2.2 Example from Figure 2.1 using EM algorithm. Posterior mean for the

latent Gaussian process (blue) along with uncertainty bounds (dashed)

and boundary estimate (red). . . . . . . . . . . . . . . . . . . . . . . 28



xii List of figures

2.3 Example from Figure 2.1 using ABC algorithm. Posterior mean for

the latent Gaussian process (blue) shown along with the boundary

estimate (red) and 95% credible intervals for both (dashed). Initial

data points are shown in orange. . . . . . . . . . . . . . . . . . . . . . 31

2.4 Plot to show an example of a draw from the latent Gaussian process in

Figure 2.1 when one point is left out in a leave-one out cross validation.

The point, x = 15, is left out and a GP (blue) is fitted to the remaining

points shown in orange. This is then used to predict the point left out

(green). This plot shows a rare case when the point left out is given

the wrong sign and classification. . . . . . . . . . . . . . . . . . . . . 33

2.5 Gaussian process fitted to the misclassification rate in Figure 2.1. The

expected mean is shown in blue, with original training point (orange)

and uncertainty (dashed). A square root transformation is applied to

ensure a negative misclassification does not occur. . . . . . . . . . . . 34

2.6 Same example as of Figure 2.1 but with some prior changes. The left

plot is where the data are not transformed and the prior mean (blue

dashed) crosses close to the origin (0,0). The right plot shows the

effect of choosing a constant prior mean function. . . . . . . . . . . . 35

2.7 1-d example where region 1 is split either side of region 2. The

initial points are shown (orange) along with the expected latent

Gaussian process (blue), estimated borders between regions (red)

and uncertainty for both (dashed). Misclassification rates are shown

by the size of the initial data points. The left plot shows the example

with a constant prior mean and the right plot shows the example with

a quadratic prior mean function. These are shown by the blue dashed

lines in both plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Two different draws of Λ for the 2 dimensional example where the

two region are split by an x1 = 3 plane (red). The dark blue region

corresponds to being classified into R1, whilst light blue corresponds

to being classified into R2. . . . . . . . . . . . . . . . . . . . . . . . . 40



List of figures xiii

2.9 2 dimensional example where the two region are split by an x1 = 3

plane (red). The dark blue region corresponds to a high probability of

be classified into R1, whilst light blue corresponds to high probability

of being classified into R2. A misclassification rate is also shown based

on point size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.10 Two examples of applying the method from Section 2.2.1 to 3 dimensional

problems. The orange and purple points show the initial points from

regions 1 and 2 and the dark blue and light blue show the classification

estimates for the input space for regions 1 and 2 respectively. . . . . . 42

2.11 2 dimensional example from Section 2.5 modelled using logistic regression.

Top row: Bernoulli samples of region classifcations using logistic

regression. Bottom left: average of 1000 Bernoulli samples. Bottom

right: underlying probability function of being classified into R1 or R2. 43

2.12 2 dimensional example from Section 2.5 where classifications have

been made using Voronoi tessellations. . . . . . . . . . . . . . . . . . 44

2.13 2 dimensional example with two regions. R1 lies within the two circles

and R2 is the remaining input space. The contours show the function,

f , for various values of x1 and x2. . . . . . . . . . . . . . . . . . . . . 51

2.14 Estimated regions for the 2-d example shown in Figure 2.13. Initial

data points are displayed (orange - Region 1 and purple - Region

2), with the actual region boundaries shown in red. Uncertainty on

the estimate is included where light blue areas correspond to high

probability of being classified into R1 and dark blue areas correspond

to high probability of being classified into R2. A misclassification rate

is also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.15 Two different draws from the 2 dimensional example with two regions.

R1 lies within the two circles and R2 is the remaining input space. The

dark blue and light blue regions correspond to areas being classified

into R1 and R2 respectively. . . . . . . . . . . . . . . . . . . . . . . . 54



xiv List of figures

2.16 Plots to show design implemented to the example in Figure 2.14. Left:

Original estimate for the classification of the input space with extra

points added. Points are labelled to the order they would be added in

the design. Right: New estimate for the classification with the extra

20 input points included. Light blue shows high probability of being

classified into region 1 and dark blue show high probability of being

classified into region 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.17 2 dimensional example looking at the effects of hormone release on

mammal reproduction, where the system has two regions of high and

low rates of hormone release. Initial points are displayed (orange - R1

and purple - R2), with predicted region classification and uncertainty.

Dark blue areas correspond to high probability of being classified

into R1 and light blue areas correspond to high probability of being

classified into R2. A misclassification rate is also shown. . . . . . . . . 58

2.18 Two different draws from the 2 dimensional application with two

regions. Initial inputs are shown in yellow and purple with the dark

blue and light blue regions corresponding to areas being classified into

R1 and R2 respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1 Example of a graph with nodes representing the variables, {N1, N2, N3,

N4, N5}. Edges drawn between nodes represent the dependencies

between variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Example of a length two de Bruijn graph with the letters A and B . . 66

3.3 Examples of length 2 and 3 de Bruijn graphs with two letters: 0 and 1. 79

3.4 Four samples from de Bruijn processes with letters 0 and 1 to show the

effects of changing the transition probabilities. From top to bottom,

the transition probabilities, {p01
00, p

11
01, p

01
10, p

11
11}, are: {0.5, 0.5, 0.5, 0.5} ,

{0.25, 0.75, 0.25, 0.75} , {0.1, 0.9, 0.1, 0.9} and {0.05, 0.95, 0.05, 0.95}. . 83



List of figures xv

3.5 Corresponding histograms showing the distributions of run lengths

of 1’s from the de Bruijn process examples in Figure 3.4. The run

lengths are shown to increase as the de Bruijn processes become more

sticky to 1’s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.6 Three samples from de Bruijn processes with letters 0 and 1 to show

the differences between an anti-sticky de Bruijn, independent Bernoulli

de Bruijn and sticky de Bruijn processes. From top to bottom, the

transition probabilities, {p01
00, p

11
01, p

01
10, p

11
11}, are: {0.9, 0.1, 0.9, 0.1} ,

{0.5, 0.5, 0.5, 0.5} and {0.1, 0.9, 0.1, 0.9}. . . . . . . . . . . . . . . . . 86

3.7 Two samples from de Bruijn processes with letters 0 and 1 to show the

differences between symmetric and non-symmetric de Bruijn processes.

From top to bottom, the marginal probabilities are: π({0}) = π({1}) =

0.5 and π({0}) = 0.2, π({1}) = 0.8, and the transition probabilities,

{p01
00, p

11
01, p

01
10, p

11
11}, are: {0.1, 0.8, 0.2, 0.9} and {0.775, 0.8, 0.8, 0.9}. . . 86

3.8 Four samples from de Bruijn processes with letters 0 and 1 to show

the effects of changing the the word length, m. From top to bottom,

the word lengths are m = 1, m = 2, m = 3 and m = 4. Transition

probabilities are kept fairly equivalent for all examples to show the

effects of the word lengths alone. . . . . . . . . . . . . . . . . . . . . 87

3.9 Four samples from de Bruijn processes with letters 0 and 1 to show

how certain chains with larger word lengths can be equivalent to chains

with shorter word lengths. From top to bottom, the word lengths are

m = 1, m = 2, m = 3 and m = 4. Transition probabilities are set at

0.1 for adding a different letter (e.g. p101
110) and 0.9 for adding the same

letter (e.g. p111
011). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.10 De Bruijn graph with letters 0 and 1 expressed as a section of a tree

starting from the root word, 00. . . . . . . . . . . . . . . . . . . . . . 91

4.1 Sample from a lengthm = 3 de Bruijn process with letters 0 and 1. The

transition probabilities are: {p001
000, p

011
001, p

101
010, p

111
011, p

001
100, p

011
101, p

101
110, p

111
111} =

{0.10, 0.80, 0.30, 0.85, 0.15, 0.70, 0.20, 0.90}. . . . . . . . . . . . . . . . 139



xvi List of figures

4.2 Histogram of estimated word lengths from the example in Figure 4.1. 141

4.3 Sample from a lengthm = 2 de Bruijn process with letters 0 and 1. The

transition probabilities are: {p01
00, p

11
01, p

01
10, p

11
11} = {0.775, 0.7, 0.825, 0.9}. 142

4.4 Histogram of estimated word lengths from the example in Figure 4.3. 143

4.5 Sample from a lengthm = 4 de Bruijn process with letters 0 and 1. The

transition probabilities are: {p0001
0000, p

0011
0001, p

0101
0010, p

0111
0011, p

1001
0100, p

1011
0101, p

1101
0110,

p1111
0111, p

0001
1000, p

0011
1001, p

0101
1010, p

0111
1011, p

1001
1100, p

1011
1101, p

1101
1110, p

1111
1111} = {0.1, 0.9, 0.1, 0.9,

0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9}. . . . . . . . . . . . . 144

4.6 Histogram of estimated word lengths from the example in Figure 4.5. 145

5.1 2-d de Bruijn Graph example with word length m = 2 to show the

three weighted de Bruijn graphs that the green symbol is dependent

on. The blue points represent 0’s and the orange points represent 1’s. 156

5.2 Plots showing 2-d simulations of 0’s and 1’s generated from a Bernoulli

distribution (top) and a word length 3 de Bruijn process (bottom).

The transition probabilities for the bottom plot are such that the

points are sticky to both 0’s and 1’s. . . . . . . . . . . . . . . . . . . 158

5.3 2-d simulation of 0’s and 1’s from a word length 3 de Bruijn graph

that is sticky to both 0’s and 1’s. The output is shown in the top

plot where light blue areas represent a 0 and dark blue areas represent

a 1. The middle plot shows the probability of a one, where dark

blue indicates high probability. The bottom plot shows the range in

probabilities from each direction that are averaged for each letter. . . 159

5.4 2-d de Bruijn Graph example where the green point is the current

point to be simulated. The blue points represent 0’s and the orange

points represent 1’s. The forms of the words for word sizes m = 1,

m = 2 and m = 3 that the green point is dependent on are outlined

in red, pink and yellow respectively. . . . . . . . . . . . . . . . . . . . 161



List of figures xvii

5.5 2-d de Bruijn process simulation example where the point represented

by ∗ is the current point to be simulated. The forms of the words for

word sizes m = 1 and m = 2 that ∗ is dependent on are outlined in

red and blue respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.6 2-d simulations of 0’s and 1’s from one word de Bruijn processes (top)

and two word de Bruijn processes (bottom). The right plots have no

correlation structure included (Bernoulli trials), whilst the left plots

are shown to have high levels of stickiness for both 0’s and 1’s. . . . . 165

5.7 2-d simulations of 0’s and 1’s from a 2-word de Bruijn processes. The

top two plots are shown to have high stickiness towards 0’s and 1’s,

whilst the bottom left plot is generated from random Bernoulli trials.

The bottom right plot shows an anti-sticky de Bruijn process. . . . . 166

5.8 2-d simulation of size 80 × 80 consisting of 0’s and 1’s from a 2-d de

Bruijn processes with word length m = 1 and transition probabilities:

{p1
00, p

1
01, p

1
10, p

1
11} = {0.1, 0.5, 0.5, 0.9}. . . . . . . . . . . . . . . . . . . 167

5.9 2-d simulation of size 80 × 80 consisting of 0’s and 1’s from a 2-d de

Bruijn processes with word length m = 2. The transition probabilities

for this example are given in Table 5.3. . . . . . . . . . . . . . . . . . 169

5.10 Plot to show the form of de Bruijn words in 3 dimensions. The words

that the black point is dependent on are shown in green (m = 1), blue

(m = 2) and orange (m = 3). . . . . . . . . . . . . . . . . . . . . . . . 172

6.1 1-d non-directional de Bruijn example to show the form of specific

words. Blue points correspond to 0’s and orange points correspond

to 1’s. The green point is the point of interest for looking at which

words it is dependent on. The forms of the word for m=1, m=2 and

m=3 are outlined in red, purple and yellow respectively. . . . . . . . . 181

6.2 Three samples from length m = 1 non-directional de Bruijn processes

with letters 0 (light blue) and 1 (dark blue). From top to bottom the

conditional word probabilities, {p1
0:0, p

1
0:1, p

1
1:0, p

1
1:1}, are: {0.5, 0.5, 0.5, 0.5},

{0.1, 0.1, 0.9, 0.9} and {0.1, 0.9, 0.1, 0.9}. . . . . . . . . . . . . . . . . 186



xviii List of figures

6.3 Four samples from length m = 1 non-directional de Bruijn processes

with letters 0 (light blue) and 1 (dark blue) to show simulation

using Gibbs sampling. From top to bottom the conditional word

probabilities, {p1
0:0, p

1
0:1, p

1
1:0, p

1
1:1}, are: {0.5, 0.5, 0.5, 0.5}, {0.1, 0.1, 0.9, 0.9},

{0.1, 0.9, 0.1, 0.9} and {0.775, 0.023, 0.994, 0.9}. . . . . . . . . . . . . . 188

6.4 Two examples of 2-d non-directional de Bruijn word families, where

the green point is the point of interest to be simulated. Grey points

represent either 0’s or 1’s. The forms of the words for word sizes m = 1,

m = 2, m = 3, m = 4 and m = 5 that the green point is dependent

on are outlined in red, pink, yellow, blue and green respectively. The

words in the left plot are formed from letters which are m points away

from the green point moving vertically and horizontally. . . . . . . . . 216

6.5 Example of a 2-d non-directional de Bruijn word family generated

using Euclidean distance, where the green point is the point of interest

to be simulated. Grey points are either 0’s or 1’s. The forms of the

words for word sizes m = 1, m = 2, m = 3, m = 4, m = 5, m = 6 and

m = 7 that the green point is dependent on are outlined in red, pink,

yellow, blue, green, purple and orange respectively. . . . . . . . . . . 217



List of tables

4.1 Table to show the probabilities of getting run lengths of n = 1, ..., 10

for six different de Bruijn processes of word length m = 2. The

corresponding transition probabilities ({p01
00, p

11
01, p

01
10, p

11
11}) for these

four processes are as follows, DBP 1: {0.5, 0.5, 0.5, 0.5}, DBP 2:

{0.25, 0.75, 0.25, 0.75} , DBP 3: {0.1, 0.9, 0.1, 0.9}, DBP 4: {0.05, 0.95,

0.05, 0.95}, DBP 5: {0.9, 0.1, 0.9, 0.1}, DBP 6: {0.775, 0.8, 0.8, 0.9}. . 128

4.2 Table to show the probabilities of getting run lengths of n = 1, ..., 4

for three equivalent de Bruijn processes of word lengths m = 2, m = 3

and m = 4. The transition probabilities are as follows: DBP 3:

{p01
00, p

11
01, p

01
10, p

11
11} = {0.1, 0.9, 0.1, 0.9}, DBP 7: {p001

000, p
011
001, p

101
010, p

111
011,

p001
100, p

011
101, p

101
110, p

111
111} = {0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9}, DBP 8: {p0001

0000,

p0011
0001, p

0101
0010, p

0111
0011, p

1001
0100, p

1011
0101, p

1101
0110, p

1111
0111, p

0001
1000, p

0011
1001, p

0101
1010, p

0111
1011, p

1001
1100, p

1011
1101,

p1101
1110, p

1111
1111} = {0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1,

0.9, 0.1, 0.9} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.3 Table to show the analytical expectation (A. Exp), simulated expectation

(S. Exp), two standard deviations of the simulated expectation (Var(S.

E.)), analytical variance (A. Exp), simulated variance (S. Var) and two

standard deviations of the simulated variance (Var(S. V.)) of the run

length distribution given a sequence of length 200 for eight different

de Bruijn processes. These are the same de Bruijn processes from

Tables 4.1 and 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.4 Table giving the log of Bayes’ factors for 7 models with word lengths,

m = 2, ..., 8 for the sequence shown in Figure 4.1. . . . . . . . . . . . 140



xx List of tables

4.5 Table giving the log Bayes’ factors for 7 models with word lengths,

m = 1, ..., 7 for the sequence shown in Figure 4.3. . . . . . . . . . . . 142

4.6 Table giving the log Bayes’ factors for 7 models with word lengths,

m = 1, ..., 7 for the sequence shown in Figure 4.5. . . . . . . . . . . . 144

5.1 Table to show estimates of the transition probabilities from the

example in Figure 5.8. The true values, {p1
00, p

1
01, p

1
10, p

1
11} = {0.1, 0.5, 0.5, 0.9},

are shown on the y-margin. Estimates are given for data grid sizes

30 × 30, 80 × 80 and 150 × 150. . . . . . . . . . . . . . . . . . . . . . 168

5.2 Table giving the log Bayes’ factors for 4 models with 2-d word lengths,

m = 1, 2, 3, 4 for the given data in Figure 5.9. These are equivalent to

the 1-d word length, m = 2, 5, 9, 14. . . . . . . . . . . . . . . . . . . . 169

5.3 Tables to show estimates of the transition probabilities from the

example in Figure 5.9. In each table, p1
i shows the transition probability

(using the decimal representation of the binary word), p gives the

true transition probability and p̂ gives the estimate for the transition

probability. The far left table gives the estimates for all 32 parameters,

whilst the other two tables give estimates for parameters where

constraints have been made (16 and 10 parameters respectively). . . . 171

6.1 Table to show the probabilities of getting run lengths of n = 1, ..., 10 for

four different non-directional de Bruijn processes of word length m = 1.

The corresponding conditional word probabilities ({p1
0:0, p

1
0:1, p

1
1:0, p

1
1:1})

for these four processes are as follows, DBP 1: {0.5, 0.5, 0.5, 0.5}, DBP

2: {0.1, 0.1, 0.9, 0.9} , DBP 3: {0.1, 0.9, 0.1, 0.9}, DBP 4: {0.775, 0.023,

0.994, 0.9}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201



Notation

2i In Chapters 4,5,6 the numerical representation of binary sequences

are used. ∑m
i=1 ki 2i−1, where ki ∈ {0, 1} is each letter in the binary

sequence.

∥.∥ Norm as a function of Euclidean distance.

< . > Inner product function in space.

∗/∗′ Unknown letter or sequence of 0’s and 1’s.

B Bayes’ factor ratio.

η(.) Latent Gaussian process for the labelling function, Λ.

D Input space for inputs, x.

δ Correlation length parameter.

f(.) True output function that maps the input x ∈ D to the outputs of a

model f(x).

G Generating function unless stated otherwise.

i : j Non-directional de Bruijn word of size m, where : represents a missing

letter.

i_j Sequences i and j found either end of a run of 1’s (or 0’s).

li Classifying label where i ∈ {1, 2}.

L(θ;x) Likelihood function.

λ Eigenvalues of a matrix unless stated otherwise.

Λ(.) Labelling function that maps x ∈ D to the labels {l1, l2}.

m Chapter 2: Mean function of the Gaussian process, η.

Chapters 3,4,5,6: de Bruijn word length or size unless stated otherwise.

µ4 Kurtosis, the fourth central moment.



xxii Notation

n Chapter 2: Dimension of input space.

Chapters 3,4,5,6: de Bruijn run length of 1’s (or 0’s).

ni Number of words, i, in a given de Bruijn sequence.

pj
i 1-d directional transition probability from the word i to the word j.

p1
i 2-d directional probability of obtaining a 1 given the word i.

p1
i:j 1-d non-directional probability of obtaining a 1 given the word i : j.

π({i}) Marginal probability of obtaining the letter i.

π(i) Marginal probability of obtaining the word i.

π(i_j) Marginal probability of obtaining the sequences i and j either side

of a run of 1’s (or 0’s).

ψ Threshold boundary between two regions.

Ri Regions for classification where i ∈ {1, 2}.

s Number of symbols or letters.

S Sequence of 0’s and 1’s unless stated otherwise.

t Time step.

T Transition matrix of transition probabilities for a Markov chain.

θ Unknown parameters.

v Chapter 2: Covariance function (or kernel) of the Gaussian process, η.

Chapters 3,4,5,6: v ∈ V - Nodes of a graph or set of symbols/letters.

w De Bruijn word (or part of word).

x Inputs to a model.



Chapter 1

Introduction

It is common to use complex numerical models to represent real life physical systems.

Examples include climate science, ecology, economics, biology and astrophysics

(Andrianakis et al., 2015; Chang et al., 2014; Vernon et al., 2010). By using

numerical models or simulators, we can make predictions and generally gain a

better understanding of these complex systems (Sacks et al., 1989). A numerical

model is often coded as a computer model which takes in a set of parameters, x,

and returns an output, f(x). The output can take a variety of forms including a

time series, spatial field or just a single value. The inputs can also take a variety of

forms and are typically used to control specific components of the physical processes

being modelled. For example, in climate science, we may have a computer model

for predicting the temperature of the ocean. The output would simply be the

temperature of the water, whilst the inputs could range from spatial location to air

temperature and pressure.

Uncertainty quantification refers to a group of methods used to analyse complex

numerical models (Craig et al., 2001; Currin et al., 1991; Haylock and O’Hagan, 1996;

Kennedy and O’Hagan, 2001). When attempting to describe a real-life system in

terms of a computer model, large amounts of uncertainty and error can be introduced,

and it is important that we recognise these when analysing the system, or when

making inferences. Initially, the computer model is often based on data collected

from observations of the system, which itself can produce errors. This can be down

to both human and equipment error.
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The majority of computer models act as a simplification to the real system when

it is either not feasible to model all fine details, or when the simplified version is

easier to interpret by the user. It is not always possible to consider every small

contribution to an output of the system, however it is important to recognise when

these differences between the computer model and the real-life system are likely to

occur. Uncertainty is also often introduced in the unknown parameters of the model.

Ideally, these parameters will fit exactly with the known data, but this is not always

possible due to simplifications and approximations (Hourdin et al., 2017).

The main motivation for this thesis focuses on uncertainty quantification for

numerical models where there are two or more output solution regions separated

by distinct boundaries. For example, in the form of a tipping point or bifurcation.

These differing regions occur when certain parameters in the input space cause the

output to the model to behave in an entirely different way to another set of input

parameters. Hence, we see the formation of regions in the input space where the

outputs for all associated inputs in that region behave in a similar way. Any inputs

in a different region will, however, have a distinctly different type of output. An

example of this type of model with two output regions is given in Figure 1.1. The

inputs to this model are x ∈ [0, 25], which are split up into two regions according

to their associated outputs, f(x). Inputs in the range x ∈ [0, 15], labelled Region 1,

have outputs that follow a sine curve, whilst inputs in the range x ∈ (15, 25], labelled

Region 2, have outputs that follow an exponential curve.

As shown in Figure 1.1, these types of models can induce discontinuities between

the regions in the output space, which can create step functions. Hence, it is

important that we do not to assume any continuity between the separate solutions.

One example of this type of system is in climate science: the Stommel model has

a different solution for when the overturning circulation in the ocean is turned off

or on (Wunsch, 2005). This thesis focuses on systems where there are exactly two

output solutions, with the expectation that the methods developed will extend to

systems with more output regions in future work.
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Fig. 1.1 Example of a model with two output regions. Region 1 (x ∈ [0, 15]) follows
a sign curve, whilst Region 2 (x ∈ (15, 25]) follows an exponential curve.

Often the relationships between the inputs and outputs of a simulator or model

can be represented by a smooth, continuous function which can be modelled as

a Gaussian process emulator (GP) (Kennedy and O’Hagan, 2001; Rasmussen and

Williams, 2006; Sacks et al., 1989; Santner et al., 2003). Emulators act as a ‘black

box’ model to represent statistically the relationships between the simulator inputs

and outputs, providing a deeper understanding of the complex interactions involved

in the physical systems, and an approximation of any uncertainty. GPs are a non-

parametric approach to regression, such that they find a distribution over the possible

functions, f(x), that are consistent with the observed data. A Gaussian process can

be seen as a generalisation of a Gaussian distribution over an infinite vector space,

and so are fully defined by a mean function, m(x), and a covariance function, v(x,x′)

(Kennedy and O’Hagan, 2001). If a function is distributed as a Gaussian process,

then, to work in finite dimensions, only a finite number of samples is required. All

marginal, joint and conditional distributions are Normal (Rasmussen and Williams,

2006).

A disadvantage of Gaussian processes is that they assume continuity across the

output space (Kennedy and O’Hagan, 2001). Thus, when there are two output regions
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which behave very differently to each other, we are highly likely to experience a

discontinuity across the border of these regions, and so continuity cannot be assumed.

An example of this is shown in Figure 1.2 which shows a one-dimensional problem

with a discontinuity in the output space. The true function, f(x), is given in red,

where the input range is x ∈ [0, 20], with f(x) = −1 when x ≤ 9 and f(x) = 1 when

x > 9. Six initial points (orange) are assumed to be known, and a Gaussian process

is used to model the function, f(x). The posterior expectation for the GP is shown

in blue, along with uncertainty estimates (dotted). For each of the three plots in

Figure 1.2, the two middle points are moved such that their distances away from the

discontinuity decreases. We can see that when these two points are furthest away

from the discontinuity (top plot), the estimate of the boundary between regions is

very poor, but the estimates of f(x) away from the boundary are good. As these

middle points move closer to the discontinuity, the boundary estimate is improved,

but we end up with large fluctuations in the outer areas where the Gaussian process is

having to compensate for the abrupt change in scale. Therefore, I can conclude that

it is infeasible to model a system with two output solutions with a single Gaussian

process.

One approach to this problem in the GP literature is to use non-stationary

Gaussian processes. A non-stationary Gaussian process has a covariance structure

that varies throughout the input space, where there may be areas of higher variability.

This is applicable to models with two output solutions, as the two solutions are

assumed to have different output trends, and hence distinct underlying covariance

structures. Examples of these include changes to the covariance function (Schmidt

and O’Hagan, 2003; Volodina and Williamson, 2020), composite Gaussian processes

(Ba and Joseph, 2012) and treed Gaussian processes (Gramacy and Lee, 2009). Treed

Gaussian processes partition up the input space to fit different models independently

in each region while preserving continuity. Specifically, they divide the input space up

by making binary splits on the value based on a single variable so that the boundaries

between regions are parallel to coordinate axes. This is an iterative process, such

that new partitions are subpartitions of existing partitions. The main problem with
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Fig. 1.2 Examples of emulating a step function with a Gaussian process. The true
function, f(x), is given in red, where the input range is x ∈ [0, 20]. There are six
initial points at varying distances from the discontinuity boundary.

treed Gaussian processes is that partitions are made on straight lines parallel to

coordinate axes. This is similar to region partitioning using Voronoi tessellation

(Gallier, 2008; Pope et al., 2018) introduced by (Kim et al., 2005), where input

space is also partitioned similarly with disadvantages due to straight line partitions.

Both of these methods result in a loss of model flexibility, and potential errors when

boundaries between output regions are not linear. For the majority of these methods,

a quantitative output is required, which restricts the types of models and data that

can be used.

To ensure that any method developed here is applicable to a wide range of

examples, it is decided that the model outputs can take any form and be either

qualitative or quantitative. Possible outputs could be {high, low}, {red, green} or

just {0, 1} for the two separate regions. For example, we may have computer code

for a complex model that fails to run for certain input values (Edwards et al., 2011).
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In such an example, the data would correspond to separate binary outcomes of ‘runs’

and ‘fails to run’.

For these types of data, there is no valid quantitative form for the function,

and so there is a need for a method that does not model the entire system using

one Gaussian process. An alternative to modelling the system as a whole is to use

a method of classification (Rasmussen and Williams, 2006). Classification can be

used to split the input space into the separate regions according to their associated

outputs. For the computer example above, inputs with the output label ‘runs’ would

be classified as one region (Region 1), and inputs with the output label ‘fails to

run’ would be classified into another region (Region 2). It is sensible to separate

the regions as it would be inappropriate to model the system in one region using

information gathered from a separate region, where the relationships between inputs

and outputs are different. If the numerical model example is such that it has a

valid quantitative output, then we may be able to model the regions with separate

Gaussian processes once the classification has been completed.

A widely used method for classification is logistic regression (Hilbe, 2009; Kleinbaum

and Klein, 1994). Logistic regression is used to model binary variables by modelling

the probability of a certain event happening. The binary output variable can take one

of two values, 0 or 1, but the inputs to the model can be either continuous or discrete.

Improvements have been made by Diggle et al. (1998) to address the concept of

using a logit transformation to map the domain of a Gaussian process, S(x), on to

the unit interval. The main aim of their paper is to address the assumption of the

data being Gaussian distributed, and instead concentrate on situations where the

stochastic variation in the data is known to be non-Gaussian. This is an improvement

to logistic regression, as the structure of a GP can be incorporated to state levels of

uncertainty and spatial variation.

A spatial example is outlined in Diggle et al. (1998) concerning the risk of

campylobacter infections, as compared to other infections, in an area of north

England. Their data is treated as binomially distributed, relating to whether the

infection is either present or not, and is conditional on postcode location and
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associated risk. A GP, S, is used as a basis of an empirical model used to model the

spatial variation through the probability of infections . To use the GP framework,

logit transformations are used to map the domain of S to the unit interval. For

calculating inference and prediction, the expected number of campylobacter cases Yi

given the GP, S, varies spatially only through S, and is estimated through MCMC

methods. This generates uncertainty in both the systematic and stochastic parts of

the model. The data Yi follow a classical generalised linear model (an example of

generalised linear mixed models). The role of the GP here is to explain the residual

spatial variation after accounting for all known explanatory variables.

In applying this to the proposed problem, I can consider modelling the separate

output regions as Bernoulli trials, where a success translates to being located in one

of the specified region or not. Using the logit transformation, we can then model the

probability of being classified into one of the two regions.

A similar method is outlined in Chang et al. (2016), where they consider ice

sheet models and binary data (0/1 values). The spatial input space is a specified

location grid, where the corresponding outputs are binary values which correspond

to 1 for when ice is present in a grid cell, and 0 for when no ice is present. The

authors’ aim is to model the probability of the presence of ice whilst also providing a

novel calibration method for computer models whose output is in the form of binary

spatial data. Their approach uses a logit transformation in a generalised linear model

framework with a latent Gaussian process. By assuming the elements in the model

output are conditionally independent given the natural parameters, the likelihood

function can be found.

One of the main problems with the methods of Diggle et al. (1998) and Chang

et al. (2016), and logistic regression in general, is that the elements in the model

output are conditionally independent. For an illustrative example, consider a simple

logistic regression that takes inputs x with corresponding binary outputs, f(x) = 0

or f(x) = 1, where we model the probability p, P (f(x) = 1|x). When predicting,

it is common to either let f(x) = 0 when p < 0.5 and f(x) = 1 when p ≥ 0.5,

or to take an independent Bernoulli draw from p to give estimates of f(x) = 0 or
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f(x) = 1. An example of this is shown in Figure 1.3. The top plot (red) shows the

true function, f(x), where f(x) = 0 for x < 0.5 and f(x) = 1 for x ≥ 0.5. Through

application of a logistic regression, the predicted probability of f(x) = 1 for all values

of x ∈ [0, 1] is calculated, and shown in the middle plot (black). We can then take

independent Bernoulli draws from the predicted probability to give classification

predictions for each value of x, given in the bottom plot (blue). Although the model

predicts well for lower and higher values of x, there is an area around the boundary

where this is not the case. When the probability of f(x) = 1 is close to 0.5, we

become increasingly uncertain of the predicted classification and it is easy for the

model to give misclassifications. This is shown by the ’spiky’ area in the centre of

the plot, which is unlike that of the true function we are looking for.

Fig. 1.3 Example of logistic regression. The top plot (red) shows the true function,
f(x) ∈ {0, 1}. Applying a logistic regression, the predicted probability of f(x) = 1
for all values of x ∈ [0, 1] is given in the middle plot (black). The bottom plot (blue)
shows draws from Bernoulli trials with the given probability to give classification
predictions for each value of x.
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The ‘spiky’ region produced in this plot is due to the lack of distance related

correlation in the classification. The logistic regression produces a posterior distribution

for the probability of the output taking the value 1, which includes distance

information. However, when we sample from the distribution, or use it to make

predictions, we draw from an independent Bernoulli distribution. Drawing marginally

in this way, instead of from a joint distribution means that any correlation between

inputs is lost, causing far more misclassifications to happen. Such drawing is also

inconsistent with the correlated logistic regression.

Take a simple example, similar to that in Chang et al. (2016), concerned with

classifying areas of ice sheet and ocean. We assume just one spatial input along a line,

where we know whether there is any ice sheet present at any of four initial points.

The first two points are known to definitely be ice (Region 1) and the following

two points are known to be ocean (Region 2). Logically, there should be a much

higher chance of finding ice sheet close to where existing points are already known

to be ice (Region 1), rather than ocean (Region 2). If we drew points independently

close to these known points, then there is still a chance that we may result in a

misclassification; it is thus important to include some correlation proportional to

distance in our joint sampling.

Suppose we restrict this example with the advanced knowledge that there is only

one boundary between ice and ocean in our input space. The change in label can

happen anywhere between the two central points, and we assume a hard boundary

(i.e. in any realisation any point is either ice or ocean). The input space between

each pair of points in the same regions, however, must be classified with the same

label as the surrounding points. As we get closer to this boundary, the probability

of being classified into the first region becomes close to 50% as we are uncertain of

where the exact boundary lies. Hence, the draws from the Bernoulli distribution

become equally likely to fall on a 0 or a 1, and so there will be a section (close to

the boundary) where the classification may appear random (as seen in Figure 1.3).

Our draws are then unrealistic, because we know a hard boundary exists.
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Other examples of classification are discussed by Rasmussen and Williams (2006)

and Nickisch and Rasmussen (2008). In their works, input data points, xi, are

associated with separate class regions with corresponding class labels yi ∈ {−1, 1}.

The true system function becomes latent in the model, and is transformed using a

sigmoid function, so that the probability of being in one of the classes, P (y = +1|x),

can be modelled. The class labels are assumed to be independently distributed

Bernoulli random variables. A posterior distribution over the latent values is found,

and the predictive class membership probability is obtained to classify new data points.

The main disadvantage with the method outlined by Nickisch and Rasmussen (2008) is

that part of the posterior distribution is not analytically tractable. This is because the

observation likelihood is no longer Gaussian. The remainder of their paper describes

different techniques to numerically approximate the posterior distribution for the

predictive class membership. These include Laplace Approximation, Expectation

Propagation and minimising the Kullback-Leibler divergence. This is also shown by

Chan and Dong (2011).

Whilst classical classification exists for sorting data into specified regions, the

methods are similar to the methods used by Diggle et al. (1998) and Chang et al.

(2016), neglecting any information regarding distance in the input space. This spatial

relationship between neighbouring points is valuable and should be incorporated into

our classification.

The aim of Chapter 2 is to develop a new method of uncertainty quantification

(UQ) classification for computer models that have two distinct labelled regions, and

where an output function is not necessarily quantitative across the whole input space.

The main aim for this method will be to include a distance correlation between

inputs whilst making classification predictions. A latent GP approach with region

labelling will be outlined in Chapter 2, along with model validation in the form of a

misclassification rate. Examples will be presented for both 1-d and 2-d problems,

with details of how we may tackle higher dimensions. Comparisons with existing

methods will be discussed, as well as insights into how we may solve the design

problem for this type of model. The method will be tested on an application that
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models reproduction rates in mammals. Conclusions and future work will be given

in Chapter 7.

An alternative to developing an entirely new classification method is to look into

multivariate correlated Bernoulli distributions. The main disadvantage with the

methods proposed by Diggle et al. (1998) and Chang et al. (2016) is the drawing

from an independent Bernoulli distribution. If we were to use these methods for

the proposed problem, we would model the probability of being classified into one

of two regions, and then draw from this to obtain 0/1 classifications. Drawing a 0

would represent one region, and drawing a 1 would represent the other. As we saw

in Figure 1.3, when the probability of being classified into one region approaches

0.5, this can result in many misclassifications because we are ignoring the distance

correlation by drawing independently. To solve this problem, I will consider drawing

jointly across the whole input space using a multivariate Bernoulli process.

Teugels (1990) introduces both multivariate Bernoulli and Binomial distributions.

A sequence of Bernoulli random variables, {X1, X2, ..., Xn}, is considered where,

P{Xi = 0} = qi and P{Xi = 1} = pi for 0 < pi = 1 − qi < 1 are the marginal

probabilities of obtaining either a 0 or a 1. The author focuses on finding a

representation for the multivariate Bernoulli distribution,

pk1,k2,...,kn = P{X1 = k1, X2 = k2, ..., Xn = kn} ,

assuming that ki ∈ {0, 1}.

The multivariate Bernoulli distribution therefore gives the joint probability of

each possible set of zeros and ones (successes and failures) for a given number of

individual Bernoulli trials. For example, if n = 2, then multivariate Bernoulli would

be set out as follows:
p00 =P{X1 = 0, X2 = 0} ,

p10 =P{X1 = 1, X2 = 0} ,

p01 =P{X1 = 0, X2 = 1} ,

p11 =P{X1 = 1, X2 = 1} ,
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where, p00+p10+p01+p11 = 1 . This distribution can be expressed by three parameters,

E[X1] = P (X1 = 1), E[X2] = P (X2 = 1), and E [(X1 − E[X1]) (X2 − E[X2])] which

are the central moments of the distribution.

The author continues to consider all cases, expanding to sequences of 0’s and

1’s of length n. For a sequence of length n, a probability is stated for each possible

combination of 0’s and 1’s, which makes up the distribution. Therefore, the method

requires 2n probabilities to be calculated which are dependent on 2n − 1 parameters

(either ordinary or central moments). These parameters consist of E[Xi] = P (Xi =

1), for each variable, Xi and E [(X1 − E[X1]) (X2 − E[X2])] , ..., E[(X1 − E[X1]) ....

(Xn − E[Xn])] for every possible combination of variables, X1, ..., Xn.

Although the work by Teugels (1990) successfully defines a multivariate Bernoulli

distribution for our classification problem, there are vital improvements to be made.

The main problem is the large number of parameters required for even fairly short

sequences of 0’s and 1’s. This would produce large combinatorial problems for

sequences even as short as n = 10. Hence, it is vital that I either find a way of

reducing the number of parameters or develop an alternative method that is less

computationally challenging. It may also be difficult to expand this method to higher

dimensions, where it is highly likely that the number of parameters will become far

too large to cope with.

Secondly, it would be ideal if we could control the amount of correlation that is

spread across the 0’s and 1’s. The aim of this work would be to develop a correlated

Bernoulli process so that we could produce sequences of 0’s and 1’s where correlation

is a function of distance. This is similar to the correlation function in Gaussian

processes. Enforcing this would mean that points that are closer together are more

likely to have the same symbol (0 or 1) and so groups of 0’s and 1’s would be more

likely to appear.

Therefore, Chapters 3, 4, 5 and 6 focus on developing a correlated Bernoulli

process. I focus on developing a new method, only taking inspiration from the work

by Teugels (1990), using the structures from a concept known as de Bruijn graphs,

which are described in Chapter 3. Chapter 3 is also where I will show how we can
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use de Bruijn graphs to develop a correlated Bernoulli process, which I will define as

a de Bruijn process. Examples are given and further work including properties and

inference are detailed in Chapter 4. Chapter 5 attempts to expand the de Bruijn

process to two and higher dimensions, whilst Chapter 6 moves towards developing a

non-directional de Bruijn process. Conclusions and future work are given in Chapter

7.





Chapter 2

Latent Gaussian Processes for

Labelled Outputs

2.1 Introduction

In Chapter 1, I demonstrated the need for a classification method for complex

numerical models with two distinct labelled output solutions. The disadvantages of

current methods, such as logistic regression (Chang et al., 2016; Diggle et al., 1998),

make it clear that we need to take account of the correlation distance in the input

space.

To impose a distance measure on the inputs when classifying, I insist that the

input space is a vector space (Strang, 2006). A useful tool which satisfies this

constraint is a Gaussian process emulator (O’Hagan, 2006). Gaussian processes

enable us to state some levels of uncertainty to any estimates or predictions, which

is crucial when working with complex simulators. It is also the case that certain

applications do not have quantitative simulator or model function outputs. For

example, we may have outputs {fail, not fail}, {red, green} or just {0, 1} for our two

separate labelled regions. Therefore, I aim to ensure that the method I will develop

here can also cope with these types of problems.

In this Chapter, I develop a new method that encapsulates the ideas of both

general classification and uncertainty quantification, which is applicable to a wide

range of applications, and includes distance correlation between model inputs. I
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will include ideas from Nickisch and Rasmussen (2008) and Chang et al. (2016) to

model the regions using class labels in latent space with a Gaussian process, and use

Metropolis Hastings and Gibbs sampling Bayesian methods (Brooks et al., 2012) for

model estimation. Due to the unique set up of the problem, the likelihood and prior

specifications for the Gaussian process are important, and are therefore discussed in

detail. As a method of model verification, I perform a leave-one-out cross validation

(Rasmussen and Williams, 2006) to calculate a misclassification rate for the input

space. A possible method for the design problem based on both trying to improve

the classification estimation and providing a space filling design is discussed.

A motivational example has been supplied by Voliotis et al. (2018), the subject

of which is the reproductive system in mammals. Their model has two dimensions,

consisting of a set of coupled ordinary differential equations describing the quantities

of certain hormones linked to the causes of high and low rates of reproduction. Thus,

this system has two distinct labelled output solutions (high and low rates). Being

able to model the system, and locate the areas of input space associated with low

and high rates of reproduction means that not only can we aid predictions on the

reproduction rate, but we can also have a better understanding of the specific input

parameters that are associated with high rates of reproduction.

In Section 2.2 I give an outline of my method, including a brief overview of

Gaussian processes, a simple 1 dimensional example and alternative methods. In

Section 2.3, I then discuss my approach to model validation. In Section 2.4, I explain

some of the prior choices that are vital to the proposed method. Section 2.5 expands

the method to a 2 dimensional example, followed by some comparisons with existing

methods in Section 2.6. I then make an attempt at the design problem in Section

2.7, and apply it to a more complicated example in Section 2.8. The motivational

example is outlined in Section 2.9. Finally in Section 2.10, I finish with a discussion

and overview.



2.2 Methodology 17

2.2 Methodology

2.2.1 Latent Model

Let X be a normed vector space with norm ∥.∥ (Strang, 2006). Further, let x =

x1, . . . ,xn ∈ D ∈ X be inputs to a model in p dimensions that lie within X . The

input space, D, is partitioned into 2 regions, R1 and R2, such that R1 ∪R2 = D and

R1 ∩R2 = ∅.

The function, f(.), that maps the inputs, x ∈ D, to the outputs of the model,

f(x), may lie in real (or complex) space, but may also be qualitative (e.g. fail/not

fail) or simply take values f(x) ∈ {0, 1}. To ensure generalisability of the method, I

define the function, Λ(.), which assigns a class labelling to each of the input data

points, x1, . . . ,xn as follows:

Λ : D 7−→ {l1, l2}; Λ(x) = l1 ∀ x ∈ R1,

Λ(x) = l2 ∀ x ∈ R2.

(2.1)

To see the applications of this, consider the example of a computer model that

only runs to completion for certain inputs, x. The simulator output is labelled,

f(x) ∈ {fail, not fail}. The inputs that lead to a failed run will lie in R1 and be given

label l1 (fail). Then, all inputs that run to completion will lie in R2 and be given

label l2 (not fail). By modelling Λ(.), instead of the output function, f(.), we are now

living in latent space, where the latent variable is a quantity that is not observed

directly, but rather inferred from the region observations. For each input point, x,

there is a class label, Λ(x) and a separate function output, f(x). By modelling Λ(x),

the classification can be modelled regardless of the form of the output values, f(x).

Λ(x) is modelled using a latent Gaussian process (GP), η(x), so that:

Λ(x)|η(x) =


l1 ∀ x ∈ D : η(x) < 0

l2 ∀ x ∈ D : η(x) ≥ 0,
(2.2)

and η(x) ∼ GP (m(x), v(x,x′)). Note that f(x) does not enter the model.
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A Gaussian process (Haylock and O’Hagan, 1996; O’Hagan, 2006; Sacks et al.,

1989; Santner et al., 2003) is a generalisation to infinite dimensions of the normal

distribution that defines a distribution over functions (Kennedy and O’Hagan, 2001).

Any finite collection of random variables from a Gaussian process has a multivariate

Normal distribution. GPs are fully defined by their mean function, m(.), and

covariance function (or kernel), v(., .), (Rasmussen and Williams, 2006) where:

m : D 7−→ R; m(x) = E[η(x)],

v : D ×D 7−→ R; v(x,x′) = Cov[η(x), η(x′)].

The mean function allows us to input any prior beliefs about the form of η. Here

I will only consider Gaussian processes with linear prior mean functions, specified in

the form: E[η(x)|β] = h(x)T β, where h(x) is a vector of basis functions of x, and

β is a vector comprising of unknown coefficients. The choice of basis function is

generally based on expert information about the simulator, or on the behaviours

of the actual system. It is assumed that the latent Gaussian process is stationary

such that Cov[η(x), η(x′)] is a function of distance, ∥x − x′∥, where ∥x∥ = ⟨x,x′⟩,

with ⟨x,x′⟩, is an inner product in space. The covariance function is written as

σ2c(x,x′), where σ2 is the process variance and c is a known correlation function

of ∥x − x′∥. A common choice of correlation function is the squared exponential;

c(xi,xj) = exp
{
−∥x−x′∥2

δ

}
, where δ is the correlation length parameter controlling

the smoothness of the process (how much it can be perturbed as the inputs are

varied). The covariance function ensures that the classification is dependent on the

distance between the inputs, x. Other common choices of covariance function include

powered exponential and Matern (Paciorek and Schervish, 2006; Rasmussen and

Williams, 2006).
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To update the prior Gaussian process with data Λ(x) = Λ(x1), ...,Λ(xn), we

require the likelihood, P (Λ(x)|η(x)), where:

P (Λ(x)|η(x)) = P (η(x1) < 0, η(x2) < 0, . . . , η(xj) < 0, η(xj+1) > 0, . . . , η(xn) > 0)

=
∫ 0

−∞
· · ·

∫ 0

−∞

∫ ∞

0
· · ·

∫ ∞

0
ϕ(η(x1), η(x2), . . . , η(xj), η(xj+1), . . . ,

η(xn)) dx1dx2 . . . dxn.

Without loss of generality, the first j points are labelled l1, and the remaining

points are labelled l2. The main difference between the likelihood of an ordinary

Gaussian process and the latent one here is the use of a joint cumulative distribution

function instead of the probability density. It is also crucial to note that the likelihood

used here is a joint distribution (rather than a product of marginals) as the data

are not independent. By choosing the likelihood as so, we put no constraints on

the specific values of the generated Gaussian process, just their signs. The form of

this likelihood is analogous to the Gaussian process fitting seen in Gosling (2005)

and in Gosling et al. (2007). I sample from the posterior, P (η(x)|Λ(x),β, σ2, δ),

using an MCMC algorithm, which is discussed below. Note that by sampling from a

joint distribution, we are are able to classify whole sets of points in the input space

simultaneously, as well as individual points.

In order to classify a set of new points, x∗ = x∗
1, .., x

∗
m, we require joint samples

from the posterior predictive distribution:

P (η(x∗)|Λ(x)) =
∫ ∫

P (η(x∗)|η(x), θ)P (η(x)|θ,Λ(x))P (θ|Λ(x)) dη(x)dθ,

where, θ = (β, σ2, δ).

We can obtain a set of samples from P (θ|Λ(x)) using Metropolis Hastings MCMC

(Brooks et al., 2012; Chib and Greenberg, 1995; Gelman et al., 2013). Markov

chain Monte Carlo (MCMC) methods refer to a collection of algorithms that are

designed to approximate random samples from probability distributions that would

cause problems if we were to try sampling directly. The general Metropolis Hastings



20 Latent Gaussian Processes for Labelled Outputs

algorithm works by iteratively constructing a Markov chain such that its stationary

distribution, p, is the distribution of interest. As such, the distribution of the next

sample is dependent only on the current sample value. A likelihood function is used

which must be proportional to the distribution we want to sample from. As the

chain of samples gets larger, the distribution of the values becomes increasingly

close to estimating the desired distribution exactly. At each time t, the next

state of the Markov chain, θt+1, is found by sampling a candidate value, θ∗, from

a proposal distribution q(.|θt). The candidate is then accepted with probability

a(θ∗|θ) = min(1, A), where:

A = p(θ∗)q(θ|θ∗)
p(θ)q(θ∗|θ) .

If the candidate is accepted, then the chain moves to the new state, θt+1 = θ∗. If the

candidate is rejected, then the chain still advances to the next step, but its value is

exactly the value of the previous state, θt+1 = θt. This process iterates a set number

of times until the stationary distribution of the Markov chain is exactly the unknown

distribution, p.

Given a sample from P (η(x)|θ,Λ(x)), we can then easily sample from:

η(x∗)|η(x), θ ∼ MVN (m∗(x∗), v∗(x∗,x∗)) ,

m∗(x∗) = m(x∗) + v(x∗,x)v(x,x)−1 (η(x) −m(x)) ,

c∗(x∗,x∗) = c(x∗,x∗) − c(x∗,x)c(x,x)−1c(x,x∗).

Sampling from P (η(x)|θ,Λ(x)) is not so straight forward. We could perform a

rejection sample, similar to that seen in the ABC (Approximate Bayesian Computation)

literature (Turner and Van Zandt, 2012; Wilkinson, 2008), but such methods are

extremely inefficient for even modest ensemble size n. Rejection sampling requires us

to sample many latent Gaussian processes from a multivariate Normal distribution,

where the sign of every η(xi) must agree with the respective model labels, Λ(xi),

simultaneously. If only one point does not agree with the corresponding label, then

we still must reject the whole sample, making this method very inefficient. Therefore,

we must include an ABC step (ABC-MCMC) in estimating the GP. The likelihood

down-weights the chance for a wrong draw to occur, but there will still be cases
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where the GP draws do not match with the negative/positive labelling. An ABC

step at the end checks these draws, and removes any that shouldn’t be there.

My solution is to use a Gibbs sampler (Brooks et al., 2012; Gilks et al., 1996),

making use of the full conditional distributions by going through each variable in turn

to sample from its conditional distribution, whilst the remaining variables are fixed

at their current values. This is possible as all variables have a Normal distribution.

Algorithm 1 outlines the Gibbs sampler used to generate posterior samples from

P (η(x)|θ,Λ(x)). Using a Gibbs sampler ensures that the correlation between points

remains the same, and computational time is saved by about a third as compared to

the full ABC-MCMC.

Algorithm 1 Gibbs Sampling

1: Start with initial values η(0)
1 , ..., η(0)

n sampled from prior distribution
2: for i = 1, 2, ... do
3: η

(i)
1 ∼ P (η(i)

1 |η(i−1)
2 , η

(i−1)
3 , ..., η(i−1)

n )
4:

...
5: η

(i)
j ∼ P (η(i)

j |η(i)
1 , ..., η

(i)
j−1, η

(i−1)
j+1 , ..., η(i−1)

n )
6:

...
7: η(i)

n ∼ P (η(i)
n |η(i)

1 , η
(i)
2 , ..., η

(i)
n−1)

8: end for

Before using a Gibbs sampler to generate posterior samples, I attempted to use

an alternative method to sample conditionally, in an effort to minimise computation

time. This was managed using the Normal conditioning equations (Kotz et al., 2000)

shown below:

ηj|ηj−1, ..., η1 ∼ N (E[ηj|ηj−1, ..., η1], var[ηj|ηj−1, ..., η1]) ,

E[ηj|ηj−1, ..., η1] = E[ηj] + cov[ηj, (ηj−1, ..., η1)]var[ηj−1, ..., η1]−1


ηj−1 − E[ηj−1]

...

η1 − E[η1]

 ,

var[ηj|ηj−1, ..., η1] = var[ηj] − cov[ηj, (ηj−1, ..., η1)]var[ηj−1, ..., η1]−1

× cov[(ηj−1, ..., η1), ηj] .

(2.3)
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Equation (2.3) allows us to draw n times from a univariate Gaussian distribution

instead of a vector length n from a multivariate distribution. Using this method

ensures that the correlation between points remains the same and we minimise

computation time. The pseudocode for the method is outlined in algorithm 2, where

s is the number of draws taken from the Latent Gaussian process. Instead of rejecting

the whole sample, we only reject each individual value for η(xi) if it does not agree

with the corresponding labelling, η(xi). We never reject any individual η(xi) values

that are shown to agree with their corresponding label. The conditional sample

comes from the same target distribution as the joint sample due to all distributions

being Normal. The first sampled point is not conditional on anything, but the

remainder of the sampled points are conditional on all previous points, and the

normal conditioning holds due to Normal theory (Kotz et al., 2000).

I did not persist with the above method because I could not prove that this method

was sampling from the same posterior predictive distribution, P (η(x)|θ,Λ(x)). To

make sure that I was sampling from this distribution, I moved to a Gibbs sampler as

everything was Normally distributed and the full conditionals are known.

When using the conditional sampling method outlined above, the ordering of

x ∈ D becomes very important. If the points are ordered by first including all those

with label l1 followed by all those with label, l2, as in Equation (2.3), then the main

expense comes from sampling the first point with label l2 (the first time that η

switches from negative to positive). The computational expense is greatest when the

conditional variance from the previous points is very small and the Gaussian process

finds it hard to make the jump into positive space. To improve on this, the points

are re-ordered as shown in Algorithm 2. There are nj points known to be in R1 and

(n − nj) points known to be in R2. Distances are calculated and ordered for each

pair from x1 ∈ R1 and x2 ∈ R2 (lines 2-3). These pairs, (x1,x2), are then added into

a new matrix, M , one at a time starting with the pair having the smallest distance.

A pair is not added if one of the points is already included in M (lines 4-9). Once

this has been completed for all pairs of points, if there are more points in one of the

regions, then these remaining points are added to the end of M (lines 10-14). For
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Algorithm 2 Conditional Sampling
1: Re− ordering :
2: Calculate Euclidean distance between each x1 ∈ R1 and each x2 ∈ R2
3: Order pairs, (x1,x2)k k = 1, ..., nj(n− nj), according to distance
4: M is an empty p× n matrix
5: for k = 1, ..., nj(n− nj) do
6: Select (x1,x2)k

7: if x1 AND x2 /∈ M
8: add x1 AND x2 to M
9: end if

10: end for
11: for i = 1, ..., n do
12: if xi /∈ M
13: add xi to M
14: end if
15: end for
16: Sampling :
17: for i = 1, ..., n do
18: draw η∗

i ∼ MVN
[
E[ηi|ηi−1, ..., η1], var[ηi|ηi−1, ..., η1]

]
19: while sign(η∗

i ) does not agree with Λ(xi) do
20: draw η∗

i ∼ MVN
[
E[ηi|ηi−1, ..., η1], var[ηi|ηi−1, ..., η1]

]
21: end while
22: ηi = η∗

i

23: end for

the example in the following section we will have 5 points in R1 followed by 7 points

in R2. This translates to ordering the points alternately outwards from the interval

between R1 and R2. Again, I did not persist with this method since the ordering of

the points does not affect the computability of a Gibbs sampler.

The methodology presented in this chapter is designed for classifying and dealing

with numerical models that have exactly two solutions. For models where there are

more than two solution regions, I would suggest a nested approach by splitting up

the problem into a series of binary classifications. For example, say we had a model

where we knew there were three separate regions to be classified. I would first apply

the method to the regions labelled as Region 1 and not Region 1. Then for the points

labelled as not being in Region 1, I would build a separate latent model to further

classify the points lying in Regions 2 and 3.

For a future research problem, it would be of interest to examine whether the

proposed methodology could be adapted to cope with a larger number of solution
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regions. However, given that I have used the negative and positive divide in the

latent Gaussian process, this may be challenging.

2.2.2 An Illustrative Example in 1 Dimension

To illustrate the concept, I now apply my method to a simple example, the results of

which are shown in Figure 2.1. For inputs x ∈ [0, 20], the true labelling function, Λ,

is set to be:

Λ(x) =


l1 if x < 7

l2 if x ≥ 7.

The initial inputs are x = {0, 1, 3, 5, 6, 8, 11, 12, 15, 17, 19, 20}, where inputs

x = {0, 1, 3, 5, 6} are known to be in R1 and are given label l1, whilst the remaining

points, x = {8, 11, 12, 15, 17, 19, 20}, are known to be in R2 and so are given label

l2. I have chosen a linear prior mean function for this example, and have applied a

linear transformation to the inputs to help with the estimation of η. See Section 2.4

for a discussion on these prior choices.

The latent Gaussian process is estimated following the method outlined in Section

2.2.1. Once a prediction for the labelling function, Λ, is obtained, the boundary is

estimated to be 7.15, as shown by the solid red line in Figure 2.1. This is a reasonable

result since the boundary was set to be x = 7, and the model was not provided with

any knowledge of where the boundary actually lies. If the boundary was actually

x = 6, then the initial information used to estimate the Gaussian process would not

differ. This high level of uncertainty in the results is shown by the credible intervals

for the estimate being large, roughly equal to the bounds of R1 and R2 that the

example was set up with.

2.2.3 Alternative Methodology

In this subsection I will outline two alternative attempts to the problem set out

previously. Due to computational constraints, and the associated difficulties of

extending to higher dimensions, I do not employ the methods detailed below, but



2.2 Methodology 25

Fig. 2.1 1 dimensional example with 2 output regions. The posterior mean of the
latent Gaussian process (solid blue) is shown along with the prior mean (dashed
blue), true boundary (dashed red) and boundary estimate (solid red). Both have
95% credible intervals included (black/grey dashed lines). Initial data points are
shown in orange with size corresponding to misclassification.

they are included for interested readers. Note that these methods were only developed

for a one dimensional example, but could be expanded to higher dimensions.

My initial frequentist approach was to use the EM algorithm (Dempster et al.,

1977) to model the latent process as a missing information problem. The EM

algorithm is an iterative process that involves two steps: the expectation step (E-

step) and the maximisation step (M-step). Carrying out the algorithm will produce

not only maximum likelihood estimates of the parameters for a probabilistic model,

but also an estimate for the model itself. It was introduced by Dempster et al. (1977)

and is a generalisation of maximum likelihood estimation used on incomplete data

sets. The general problem with using standard maximum likelihood for incomplete

data is due to the log likelihood, L(θ; x), having multiple local maxima and no closed

form solution (Do and Batzoglou, 2008). By using the EM algorithm, a unique

global maxima can be found. The E-step estimates the complete-data by taking

the expectation conditional on current maximum likelihood estimates of the model

parameters, θ. During the M-step, L(θ; x) is maximised to find an estimate for θ
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given the current values of the data. The method proceeds by iterating the E and M

steps. Convergence to a local maximum is guaranteed (Dempster et al., 1977), but

can be slow.

We can apply the EM algorithm to the latent variable problem above to estimate

the latent Gaussian process, η(x) as well as the parameters, θ = (β, σ, δ). Data are

defined as censored if there is only partial information known about its value. It is

certain the data lies beyond a boundary point, but it is not known exactly how far

above or below (Harrell, 1979; Harrell and Sen, 1979). This is therefore suitable for

my problem since we are outlining a latent model where there is no record of its true

value. We still keep the labelling function Λ(.) as used in Section 2.2.1, but the main

difference comes in the modelling of Λ(x) when conditioned on the latent Gaussian

process. Λ(x) can now be modelled using η(x), so that:

Λ(x)|η(x) =


l1 ∀ x ∈ D : η(x) < ψ

l2 ∀ x ∈ D : η(x) ≥ ψ.

Treating the problem as a censored data problem, we no longer use the negative/

positive labelling with a threshold at zero, but instead use the EM algorithm to

estimate the threshold boundary between the two regions and label this, ψ. The

nj number of points with label l1 (Region 1) are known to take any value below a

boundary, η = ψ, and the remaining (n − nj) points with label l2 (Region 2) are

known to take any value above ψ. Each of the inputs are censored differently. The

input values never change, it is the value of ψ that changes as the parameters of the

Gaussian process change. A threshold can be made here to find the approximated

boundary between regions. Hence, it is suitable to fit a censored EM algorithm.

In the likelihood step (M-step), the likelihood is maximised to find the parameters,

β, σ, δ and ψ. As before, β is a vector of unknown coefficients, σ2 is the GP variance

and δ is the correlation length parameter. For an uncensored Gaussian process,

the likelihood would simply be the multivariate normal distribution, but here it is

necessary to incorporate knowledge of the boundary. Specifically, the fact that there

are nj points below η = ψ, and (n− nj) points above η = ψ. Again, we must take
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account of the correlation between data points with the likelihood being a single

joint Gaussian, rather than the product of nj normal distributions multiplied by

(n− nj) normal distributions. Therefore, the likelihood becomes:

L(θ; x) =
|A|−1/2(2πσ2)n/2 exp

{
− 1

2σ2 (x − Hβ)T A−1(x − Hβ)
}

P (x1 < ψ)P (x2 < ψ) . . . P (xnj
< ψ)P (xnj+1 > ψ) . . . P (xn > ψ) ,

where H = (h(x1), . . . ,h(xn)), with h(x) being a vector of basis functions of x,

and A is an n × n covariance matrix with entries Aij = σ2c(xi, xj) as defined in

Section 2.2. The numerator is a multivariate Normal density and the denominator

takes into account the censoring but is only an approximation due to the data

correlation. The denominator treats the points as if they are independent, which is

unsuitable for retaining a correlation between input values. The simplification that

leads to independence here is considered not to make much difference to the overall

approximation of the latent process.

To save computation time, the β parameters in the likelihood are set to zero

(constant), adding another degree of freedom. One of the largest contributors to

computation time is the maximisation of the length parameter, δ. To overcome this

problem, I do not incorporate it in the same maximisation as σ and ψ, and is instead

only calculated every 4 or 5 iterations. This greatly reduces computation time with

little change in the final latent process approximation. δ is also transformed using

a logarithmic transformation, τ = 2log(δ) before the likelihood is maximised using

maximum likelihood. Another common tool used to speed up maximisation is to

differentiate the likelihood analytically and use the gradient to aide the maximisation.

Due to the complexity of the likelihood, this is not attempted here.

The expectation step (E-step) is much simpler than the maximisation step. We

need to calculate the expected value of the points from the latent Gaussian process,

η, given the current estimate of the parameters, θ, and known input values, x. For

the EM algorithm, it is necessary to give initial values for the η(x) estimates. These

are entirely arbitrary, but I have chosen to let η(x) = −1 for those labelled l1 and

η(x) = 1 for those with label l2. Once actual values for the latent process have been

estimated from the expectation step, the maximisation of the likelihood should be
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improved. This is due to Gaussian processes not coping well with modelling step

functions, which are obtained here with the initial η(x) = −1/1 values.

The process iterates between the E-step and the M-step until the difference

between consecutive parameter estimates is smaller than a specified tolerance. The

EM algorithm produces the estimated values for the latent Gaussian process at the

end of the iterations. This is as well as estimating the parameters for the GP and

the boundary, where the thresholding is done automatically.

Fig. 2.2 Example from Figure 2.1 using EM algorithm. Posterior mean for the
latent Gaussian process (blue) along with uncertainty bounds (dashed) and boundary
estimate (red).

The simple example from Section 2.2.2 is now used to illustrate how the censored

EM algorithm is applied to the problem. The inputs are, again, a vector of 12

integers ranging between 0 and 20, with the undefined boundary situated in the

region [6, 8]. As before, those points in the range [0, 6] are given class label l1 (region

1) and the points in the range [8, 20] are given class label l2 (region 2). By making the

assumption β = 0, the algorithm produces an estimate for the parameters ψ, σ2, δ,

as well as the latent GP, η(x). With starting values ψ = 0, σ2 = 1, δ = 1, the process

iterates between the E-step and M-step until the difference between consecutive ψ

values is smaller than 10−5. The latent Gaussian process is shown in Figure 2.2 along
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with the estimate for the region boundary. The GP is thresholded at ψ = −0.123,

resulting in the boundary lying at x = 7.50.

Overall, the EM algorithm seems to find the boundary sufficiently well, only being

slightly higher than the estimate in Figure 2.1 at x = 7.15. However, the method

does estimate the latent Gaussian process quite badly as shown in the uncertainty

bounds in figure 2.2. I would favour the Metropolis Hastings method over the EM

algorithm due to slow convergence and difficulties in expanding to higher dimensions.

I also considered other Bayesian methods, for which an alternative to Metropolis

Hastings (used in Section 2.2.1) is approximate Bayesian computation (ABC) (Turner

and Van Zandt, 2012; Wilkinson, 2008). This is specifically useful when the likelihood

cannot be fully specified and so standard methods of Bayesian estimation are difficult

to apply. ABC works by simulating predicted model data and comparing with the

known observations to estimate the posterior distribution for the model parameters.

The most basic form of ABC is based on a rejection algorithm where a set of

parameters, θ, are drawn from a prior distribution π(θ). These parameters are

then used to simulate data X from the unknown model, η(θ), and are accepted or

rejected according to a given comparison criteria with the observations, Y . Here, θ is

accepted if ρ(X, Y ) ≤ δ, where ρ(., .) is a measure of distance, usually taken to be the

Euclidean distance, ∥X−Y ∥ (Turner and Van Zandt, 2012). All accepted values of θ

come from an approximation to the true posterior distribution. δ is a small quantity

that specifies how close the approximation is to the true posterior distribution. When

δ = 0, the distributions are equal, but as δ → ∞ the approximation then becomes

equal to the prior distribution (Wilkinson, 2008).

I use a version of ABC-MCMC to estimate η(.), given the labelling function, Λ,

that I defined for the Metropolis Hastings version in equation (2.1). I no longer

estimate the threshold boundary as in the EM version, but return to the specifications

made in equation (2.2) where we model Λ(.) using η(.) thresholded at zero. Hence,

by applying this method, we obtain an estimate for the latent GP parameters,

θ = (β, σ, δ) that generates draws that are negative in all input space of the region

labelled l1 and positive in the input space of the region labelled l2.
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The algorithm starts with an initial value θ0 for θ, then a candidate, θ∗, is

proposed from a prior distribution π(θ). θ∗ is used to simulate data from the GP,

which is then accepted or rejected according to specified criteria. To ensure the

Gaussian process meets the criteria, θ∗ is accepted if the signs of the estimated data

and observations agree, and then θ1 = θ∗. If not, θ∗ is rejected and θ1 = θ0. This

process continues iteratively until there is a chain of values {θ0, θ1, . . . , θm} that form

a sample from the posterior distribution, where m is the number of iterations of the

algorithm. Hence on the (i+ 1)th iteration, θ∗ is simulated from π(θ). If accepted

we set θi+1 = θ∗, otherwise θi+1 = θi.

To illustrate the concept, the same example from the Metropolis Hastings (Figure

2.1) and EM algorithm (Figure 2.2) is shown in Figure 2.3. As in Section 2.2.2, the

points in Region 1 are given the label l1 and the points in Region 2 are given the

label l2 and the latent GP is found conditional on this. At each draw from the prior

distribution, a sample of θ = (β, σ2, δ) is taken and accepted or rejected according

to the given criteria. If the sampled latent GP, η, is negative for values in Region 1,

and positive for values in Region 2, the proposed θ is accepted. Alternatively θ is

rejected and a new proposal is drawn from the prior. After an estimate for the latent

process has been found, it is then thresholded at η = 0 to give a value of x for where

the boundary between regions lies. I find this to be x = 7.05, which is shown by the

red line in Figure 2.3. This is a reasonable estimate that is similar to the estimates

found from using the Metropolis Hastings and EM algorithms.

Overall, I have found that the Metropolis Hastings methodology is best suited for

my problem since it involves the likelihood, making the estimate far more accurate.

As well as this, it avoids the large rejection rate involved in using ABC and can

be easily expanded to higher dimensions. As the dimension increases, the rejection

rate in ABC also increases rapidly, making Metropolis Hastings a far more efficient

method.
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Fig. 2.3 Example from Figure 2.1 using ABC algorithm. Posterior mean for the
latent Gaussian process (blue) shown along with the boundary estimate (red) and
95% credible intervals for both (dashed). Initial data points are shown in orange.

2.3 Misclassification

The method of model validation I use is based on a leave-one-out cross-validation,

where the pseudocode is given in Algorithm 3. In uncertainty quantification, this

usually involves leaving each training point out in turn, fitting a Gaussian process

to the remaining points, and then using this to predict the point that was left

out (Rasmussen and Williams, 2006). Given that my method models the class

labelling function, Λ, I adapt this slightly to calculate a misclassification rate to

see which of the initial inputs are more likely to be influential to the classification

prediction. A leave-one-out cross-validation is performed on samples taken from

P (η(x)|β, σ2, δ,Λ(x)) to predict the class label of each point left out in turn. From

these samples, I calculate the proportion of times each point is misclassified. Points

that have a large misclassification rate are likely to give an indication that the

surrounding areas will have high uncertainty when making classifications. We expect

points close to the boundary between R1 and R2 to have a high misclassification rate,
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and points where there are many neighbouring points (where we have high levels of

information) to have a low misclassification rate.

Algorithm 3 Misclassification Rate Using Leave-one-out Cross-Validation
1: Leave-one-out cross validation:
2: C is a zero vector of length n
3: for j = 1, ..., 10000 do
4: for i = 1, ..., n do
5: Let x(j) be a sample from P (η(x)|β, σ2, δ,Λ(x))
6: x∗ = x(j)

1 , ...,x(j)
i−1,x

(j)
i+1, ...,x(j)

n

7: Fit η(x∗)|Λ(x∗) ∼ GP (m(x∗), v(x∗,x’∗)
8: Predict Λ(x(j)

i )|η(x∗)
9: if Λ(x(j)

i ) ̸= Λ(xi) do
10: Ci = Ci + 1
11: end if
12: end for
13: end for
14: Misclassification rate = C/10000

Leave-one-out validation applied to the example is Section 2.2.2 in shown in Figure

2.1, where the size of the data points corresponds to the rate of misclassification. As

expected, the rate is largest for the two points either side of the boundary. In a 1-d

example such as this, these points are the most critical since they are the points that

restrict the boundary to a precise region of input space. It is also interesting to note

here that the remaining points have a misclassification rate of almost (but not quite)

zero. In fact, we can see that this is due to the latent process occasionally crossing

the axis. For each point in this example, I find that roughly this happens for every 1

in 250 samples and an example draw is shown in Figure 2.4. This is caused by both a

large gap between points and the Gaussian process having a short correlation length

parameter, leading to the latent process having the chance to bend quickly over the

η = 0 threshold between known points in the same region. I have not specified that

the latent model only has one boundary. This highlights the fact that prior choices

can have a large effect on a method such as this with minimal initial information. I

discuss this further in Section 2.4.

Figure 2.5 shows the result of fitting a Gaussian process to the misclassification

rate from Figure 2.1. This means that we can predict the misclassification rate for

any point and get a general idea for the overall misclassification across the input
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Fig. 2.4 Plot to show an example of a draw from the latent Gaussian process in
Figure 2.1 when one point is left out in a leave-one out cross validation. The point,
x = 15, is left out and a GP (blue) is fitted to the remaining points shown in orange.
This is then used to predict the point left out (green). This plot shows a rare case
when the point left out is given the wrong sign and classification.

space. When performing this, I had to make sure to transform the data so that

I did not get any negative misclassification for any points. I could not use a log

transformation because this could produce zero misclassification in some places;

therefore I transformed the data by taking the square roots. The plot is as expected;

a large misclassification across the boundary where we have no knowledge of the

classification of points, then almost zero for the rest of the input space where we

have more information.

2.4 Prior Choice Methodology

Based on the example in Section 2.2.2, it is clear that it is important to place suitable

priors on the model parameters and the prior mean function (Currin et al., 1991).

One interesting aspect of Gaussian processes is their behaviour in the far edges of

the input space. As Gaussian processes get far away from any data, they revert to
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Fig. 2.5 Gaussian process fitted to the misclassification rate in Figure 2.1. The
expected mean is shown in blue, with original training point (orange) and
uncertainty (dashed). A square root transformation is applied to ensure a negative
misclassification does not occur.

the prior mean, m (Sacks et al., 1989). This would be a problem for, say, a constant

prior mean. If a constant mean function is placed on the Gaussian process, then

we start to observe the overall latent process tending towards the horizontal prior

mean in the edges of our input space. Given that I have chosen η to be negative

or positive according to the labelling, a constant prior mean may be estimated to

be close to m = 0 and we find that it is very easy for the process to switch signs,

forcing a misclassification.

In many cases, we will have extra information in the initial data that will help

us to choose a more appropriate prior mean function. For example, we might use

a prior mean function based on whether both regions are simply connected, or on

the number of times the latent process is expected to change signs over the whole

input space (for example by using a polynomial of that degree). Hence, any expert

knowledge from the system modeller is very useful, particularly if they know how



2.4 Prior Choice Methodology 35

many distinct regions are expected. In a situation such as that in Figure 2.1, I had

extra knowledge that there were only two output regions and so it should be the

case for the latent variable to only cross the x-axis once in the input space. I thus

used a linear mean function which forced the latent Gaussian process away from the

x-axis and bound η(x) away from zero near the edges of the domain.

The right plot in Figure 2.6 shows the effects of choosing a constant mean function

for the 1-d example. Although the boundary estimate between R1 and R2 is almost

the same as in the linear version in Figure 2.1, the latent process is significantly

different. We can clearly see that the Gaussian process is returning to the prior mean

(dashed blue) at the edges of the plot. Further, the misclassification rates are also

much larger here, confirming that we are much more likely to see misclassifications

when using a constant mean function.

Fig. 2.6 Same example as of Figure 2.1 but with some prior changes. The left plot is
where the data are not transformed and the prior mean (blue dashed) crosses close
to the origin (0,0). The right plot shows the effect of choosing a constant prior mean
function.

If instead, one region was split either side of the other region as shown in Figure

2.7, then it would be sensible to place a quadratic prior on the mean function,

ensuring the Gaussian process would not return to the x-axis (where η(x) = 0) in

the extreme values of the input space of the outer region. The plot in Figure 2.7 is a

simple 1-d example where the left and right sections are region 1 (Λ(x) = l1) and the

middle section is region 2 (Λ(x) = l2). For inputs x ∈ [0, 20], I set the true labelling
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function, Λ, to be the following:

Λ(x) =


l1 if x < 4 OR x > 14

l2 if 4 ≥ x ≤ 14.

The orange points show the initial input points for both regions with their size

denoting the corresponding misclassification rate. For the right plot in Figure 2.7, the

latent Gaussian process was estimated using a quadratic prior mean function, whilst

the left plot was fitted using a constant mean. If we compare the two, we can clearly

see that the latent GP in the constant version is beginning to curl up at the edges as

it attempts to return to the expected mean which is close to the axis. This does not

happen when we use a quadratic mean (right figure) as we have the extra constraint

in the prior. Thus, we are much more likely to find a misclassification in the constant

version than the quadratic (this is confirmed by the size of the misclassification

rates). The constant plot has much larger misclassification rates in the two edge

points due to the GP attempting to return to the mean, whilst the two edge points

for the quadratic plot have a zero misclassification rate. Although the points either

side of the boundaries for both the plots are by far the most misclassified (being the

largest), they are overall smaller in the right plot. This is likely to be due to the

quadratic shape I am enforcing, as it must cross the axis twice over the input range.

Fig. 2.7 1-d example where region 1 is split either side of region 2. The initial points
are shown (orange) along with the expected latent Gaussian process (blue), estimated
borders between regions (red) and uncertainty for both (dashed). Misclassification
rates are shown by the size of the initial data points. The left plot shows the example
with a constant prior mean and the right plot shows the example with a quadratic
prior mean function. These are shown by the blue dashed lines in both plots.
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In two dimensions, if we had a circle as one region, and the outer remaining space

as the other region, then we could choose to fit a quadratic mean function. Or, if we

had two distinct circles as one of the regions and the outer remaining space was the

other region, then we could consider fitting a quartic mean function.

Although these would appear to be sensible choices, polynomials of a higher order

come with a larger number of estimated parameters. Therefore, we should consider

whether the classification in the edges of our input space away from the data is useful

or not. It may be far more computationally expensive to calculate a high number of

parameters and introduce more uncertainty than to assess whether the classification

is accurate or not at the edges. As a rule of thumb, I would suggest choosing either

a linear or quadratic mean function if these are sensible choices. However, if it is

decided that a higher polynomial would better suit the problem, but estimating the

latent Gaussian process becomes far too complicated then I suggest using a constant

mean. It is important to be careful about any potential misclassifications. If it is

such that the number of data points is large, then I leave this up to the reader’s

judgement on whether fitting a higher order polynomial is worthwhile or not. One

could fit Voronoi polygons to the original data to get a rough idea of the number of

regions and the general shape, especially if there is little known information from

the expert.

If the choice is made to use either a linear or quadratic prior mean function, then

there is more prior information that we can use to help with the computation. The

estimated boundary between R1 and R2 becomes equivalent to the corresponding

x ∈ D such that it is the solution to η(x) = 0. Therefore, the latent process, η(x),

must cross the x-axis at approximately the boundary between R1 and R2 and we

can incorporate this into the prior knowledge of our model. Specifically, this will

help approximate the parameter that controls where the latent process crosses the

vertical axis more efficiently.

As described in Section 2.2.2, a transformation was applied to the input points

so that the boundary between regions in the x-axis was approximately at zero in

the vertical axis. With this transformation, a tight prior could be placed over the
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axis intercept parameter, ensuring the latent process crosses the axis at zero. If we

contrast the plot in Figure 2.6 (left) compared with that in Figure 2.1, we notice

a significant difference in the resulting latent process. The prior means for each

plot are shown with dashed blue lines. Figure 2.1 uses the transformed data and is

shown to have an expected mean Gaussian process which follows its prior direction.

Figure 2.6 (left) does not include the transformation and is shown to differ by the

posterior estimate in region 1 levelling out as it approaches zero. This is clearly

not appropriate since (in this simple two region example with no information of the

system input) we would expect both sides of the latent process to match. This shows

that the transformation in the data can greatly improve the estimate in the latent

process and any predictions that would follow.

With the consideration of prior knowledge, it is also important to choose a good

estimate for the correlation length parameter, δ (Oakley and O’Hagan, 2002). The

correlation length parameter determines how much the Gaussian process is allowed

to bend between each of the initial data points (Rasmussen and Williams, 2006).

In particular, if we consider the 1-d example in Figure 2.1, we know that there is

only one boundary where the latent Gaussian process is not expected to change sign

between data points (apart from at the boundary between regions). If the correlation

lengths are allowed to become too small, then there is a chance that the Gaussian

process would be able to curve round quickly and briefly incorrectly change sign,

causing a misclassification of regions in some input areas. To ensure this does not

happen, inverse gamma priors are placed on the δ’s so that they are forced away

from zero and being too small. The mean of the prior distribution is kept away from

being zero, whilst the scale is kept large to increase the spread. An inverse gamma

prior is also placed on the variance, σ2. This is a common choice in literature which

only allows positive values that are not too close to zero, adding extra flexibility to

the model.
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2.5 Examples in Higher Dimensions

I will now expand my method to two dimensions, and look at an example similar in

structure to that seen in Example 2.1. The output is shown in Figure 2.9, where 20

input points, (x1, x2), are generated using a Latin hypercube (Welch et al., 1992)

over the region [−1, 7]2. I have specified the boundary between R1 and R2 in this

example to be the line x1 = 3 (shown in red) so that the true labelling function

becomes:

Λ(x1, x2) =


l1 if x1 < 3

l2 if x1 ≥ 3.

In the figure, the yellow points are those initial data points in R1 with label l1

(input space x1 < 3) and the purple points are those initial points in R2 with label

l2 (input space x1 ≥ 3). The latent Gaussian process has been applied to a grid

of points over the input space to show the estimated classification labellings. Two

possible draws from the latent Gaussian process are shown in Figure 2.8.

To show uncertainty within the 2-d example, Figure 2.9 shows the probability

of input points being classified into R1 compared with R2. The dark blue regions

represent high probability of being classified into R1 and the light blue represents

high probability of being classified into R2. A misclassification rate is calculated for

each point as described in Section 2.3 and is shown in Figure 2.9. As expected, the

points near the boundary have a larger rate of misclassification and the uncertainty

increases.

I chose to fit the Gaussian process with a linear prior mean because I know that

the boundary is parallel to the x2-axis. Even if we didn’t know this apriori, we can

see from the initial data that a linear mean might be a reasonable choice since there

only seems to be one change in region over the space filling design.

The method outlined in Section 2.2.1 can be further extended to three (or higher)

dimensions. As an example of this, Figure 2.10 shows two examples of my method

being applied to a 3 dimensional problem. I will not go into great detail about

these plots (since it is difficult to plot examples in 3-d), but they are included to

demonstrate the model’s capabilities. The left plot is a 3-d extension to the plot
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Fig. 2.8 Two different draws of Λ for the 2 dimensional example where the two
region are split by an x1 = 3 plane (red). The dark blue region corresponds to being
classified into R1, whilst light blue corresponds to being classified into R2.

shown in Figure 2.9 where the cuboid is split into two regions by the plane given by

x1 = 3. The right plot is slightly more complicated where one region is a sphere and

the other region is the outer remaining input space. My method has been successful

in finding the boundary in both of these cases.

2.6 Comparison with Existing Methods

2.6.1 Logistic Regression

Using the 2-d example described in Section 2.5, I will now illustrate the strengths of

my method by comparing it with existing methods. One of the most widely used

methods for this type of classification is logistic regression (Diggle et al., 1998; Hilbe,

2009; Kleinbaum and Klein, 1994). Similar methods in uncertainty quantification

literature are given in Chang et al. (2016) and Salter et al. (2019).

The outputs of using logistic regression for the 2-d example are shown in Figure

2.11, where the logistic model is stated to be the following:

Λ(x) ∼ Bernoulli(η(x)), logit (η(x)) = β0 + β1x1 + β2x2.

The bottom right plot shows the underlying probability of being classified into

R1. This is a smooth function that shows high probability of being sorted into either

of the regions where expected. Two samples are shown in the top two plots in Figure
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Fig. 2.9 2 dimensional example where the two region are split by an x1 = 3 plane
(red). The dark blue region corresponds to a high probability of be classified into
R1, whilst light blue corresponds to high probability of being classified into R2. A
misclassification rate is also shown based on point size.

2.11, computed using the geoRglm package in R. This exposes the main flaws of

using logistic regression for this framework since we can clearly see that because the

random Bernoulli sample does not take into account the distance correlation between

points, the sampled Λ(x) field is not smooth. In practice, E[Λ(x)] might be used as

a classifier, but with my method, all samples give a coherent full classification. There

is no distinct boundary between R1 and R2. Comparing to samples drawn using my

method in Figure 2.8, I am able to produce a clean cut boundary in every sample.

The main problem when using logistic regression is the lack of correlation when

sampling from the Bernoulli distribution, whereas my method is able to classify jointly

over the input space. The underlying probability function retains the correlation

structure, but when we sample marginally over all points, all of this is lost. We could

run a smoother over these samples, but this can get very complicated and we still

would not be able to define the exact boundary between regions. Alternatively, we

could take a threshold on the probability function, but it is not clear what value we

would choose for this threshold. To make a fairer comparison to my method, the
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Fig. 2.10 Two examples of applying the method from Section 2.2.1 to 3 dimensional
problems. The orange and purple points show the initial points from regions 1 and
2 and the dark blue and light blue show the classification estimates for the input
space for regions 1 and 2 respectively.

bottom left plot in Figure 2.11, averages over 1000 Bernoulli samples. This now has

the smoothness of the probability function, and is similar to Figure 2.6, but still

does not provide an estimate of the boundary. Since I am able to define a boundary

estimate, I am therefore able to classify a set of points at the same time rather than

only individual points. It is also important to note that we can generate samples

that have a clean cut boundary. This can be important when trying to visualise the

possible extreme boundary partitions that can be valid from the initial data.

2.6.2 Voronoi Tessellation

Figure 2.12, shows a naive approach to this problem by splitting up R1 and R2 using

Voronoi tessellation (Gallier, 2008; Kim et al., 2005). We can clearly see that this

outperforms the classifications made using logistic regression, but again has several

flaws. One of the main problems is that it is only able to classify along arbitrary

smooth curves, which means we lose a certain amount of precision compared to my

method. Another point to make is that with Voronoi tessellation, we just take the

mid-point between the closest points in R1 and the closest points in R2. My method

is able to learn more from all initial points. This is shown in Figure 2.6 where the

upper section of the boundary estimate is shown to curve far more into R2 than that
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Fig. 2.11 2 dimensional example from Section 2.5 modelled using logistic regression.
Top row: Bernoulli samples of region classifcations using logistic regression. Bottom
left: average of 1000 Bernoulli samples. Bottom right: underlying probability function
of being classified into R1 or R2.

of the lower section. Similarly, we can not make any uncertainty statements with

this method.

2.6.3 Classification Using Contours

Ranjan et al. (2008) propose an alternative method to logistic regression by attempting

to model the boundary between the two separate output regions, specifically as a

contour. They use an improvement function in estimating a contour, S(a) = {x :

y(x) = a}, where a is the value of the response surface. A relatively small designed

experiment is performed and points are chosen sequentially based on the improvement

function weighted towards choosing points on or near the estimate of the contour, (i.e.

choose new points, x, where ŷ(x) belongs to a neighbourhood, (a− ϵ, a+ ϵ), of the

current contour estimate), or where the predicted variance is high. The improvement
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Fig. 2.12 2 dimensional example from Section 2.5 where classifications have been
made using Voronoi tessellations.

function has the following form:

I(x) = ϵ2(x) − min{(y(x) − a)2, ϵ2(x)}, (2.4)

where ϵ(x) = αs(x) for some positive constant α and y(x) ∼ N (ŷ(x), s2(x)). The

term, ϵ, defines a neighbourhood around the contour that is a function of the standard

deviation s(x). This process is aided with the use of Gaussian process emulation. To

begin the process of estimating a contour, a small design (25-35%) is first obtained

to outline the response surface. The GP is then calculated, and the model parameter

estimates are used to evaluate E[I(x)] on the sample space. A new run of the

computer simulation is performed at the optimum location of E[I(x)], and the GP

is updated. This process is repeated until the budget of allocated simulator runs is

exhausted and the final contour estimate, S(a), is extracted.

Although this method appears to be ideal in calculating uncertainty, it requires

an underlying smoothness assumption. The whole output space is modelled by one

single Gaussian process, where there is a simplifying assumption of the response
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surface being smooth in the form of the covariance function. We cannot guarantee

that there will not be a discontinuity between the regions, meaning that this method

may be unsuitable in some cases. Further, it is likely to become increasingly complex

in higher dimensions.

2.6.4 Classification Using History Matching

A process known as history matching is used in a method developed by Caiado

and Goldstein (2015). History matching is an iterative process designed to reduce

the input space of the simulator such that input values that are not likely to result

in the observed data are discarded (Andrianakis et al., 2015; Craig et al., 1996;

Vernon et al., 2010). Here, it is used to sort data into the separate output regions by

discarding regions which are unlikely based on an implausibility criterion. The main

feature of the process is the use of an implausibility measure, I, which uses a metric

based on the number of standard deviations between the observed data, zi, and the

model outputs, fi(x):

Ii(x) = (zi − E(fi(x)))2

var(zi − E(fi(x)) = (zi − E(fi(x)))2

var(ei) + var(ϵi) + var(fi(x)) ,

where ei is the observational error (difference between the observations and the real

physical process) and ϵi is the model discrepancy (difference between the real physical

process and the simulated computer model). For the model output and observations,

large values of I(x) imply that the predicted output of the model at x is far away

from where we would expect it to be if fi(x) were consistent with the observations

zi. A threshold, a is usually chosen to define the implausible input space. Here, the

implausibility measure eliminates any input space that is unlikely to belong to one of

the two distinct regions. Applying the full method, the input space then divides into

these regions, Ri, such that the simulator output is smooth within each region, but

discontinuous across boundaries. The method discussed in the paper is as follows:

Sort inputs x into regions and take a sample from each region, Ri. Choose an initial

subvector z1 from the observed data (across both regions). From the samples of each

region, construct two emulators, f(1) and f(2). For each input, x, from the subvector,
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z1, two implausibility measures, I(1)(x) and I(2)(x) are calculated, where the model

discrepancy, ϵ, can differ for both regions. Two region subspaces of non-implausible

input values, C(1)(z1) and C(2)(z1) associated with the respective emulators, are

constructed, where an input is removed from the input space if it is not a member of

either subspace. This process is continued by refocussing in waves within each of the

two sub-regions, producing a decreasing sequence of subsets of input space.

This method can then be used to test which region a general input value belongs

to. With each iteration of history matching, the next sample of points is taken

from the subspace that is not yet ruled out from either of the regions, and a new

emulator is formed using these points. This process continues until it is unclear

which region the points will lie in, and hence the uncertainty is high near the border.

Although this method has no smoothness assumption, it may still be difficult in

higher dimensions. Hence, in both of these cases, I would prefer to use my method

as it is more general.

2.7 The Design Problem

An important topic in uncertainty quantification is the design problem; if we could

run the simulator again, where in the input space would be the optimum place to

include more points? The design problem is discussed in detail by Sacks et al. (1989),

who look at the criteria for choosing a design that predicts the response well at

new points in the input space. One of these criteria is based on the mean squared

error (MSE), by choosing the design that minimises the integrated MSE between

the computer model output and observations. They show that this method is fairly

easy to implement, and can be effective at reducing the squared error in prediction.

Additionally, they look at choosing points that minimise the maximum MSE. This

can be equally effective, but computationally complex for continuous regions. A

Bayesian design scheme focuses on the minimisation of the expected posterior entropy

which calculates the ‘amount of information’ in an experiment. There are many

variations on this approach, all of which are explained by Sacks et al. (1989) and by

Currin et al. (1991).
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As discussed in Section 2.2.3, Ranjan et al. (2008) tackle this problem through

the use of contour estimation. In their article, they work on improving the efficiency

of estimating the boundary so that they can minimise the number of design points

needed to obtain an accurate estimate. Initially, they prioritise points that are as

close to being on the boundary as is possible, by choosing them such that they lie

within a small neighbourhood of the current contour estimate. To improve on this,

they develop an improvement function as stated in Equation (2.4), which is averaged

over the uncertainty in the response surface. This is important for deciding whether

it is better to choose points to explore the input space, or to choose points that are

close to the contour. More recent work also includes that by Knudde et al. (2019).

Picheny et al. (2010) address the issue of designing experiments for metamodels

that need to be accurate for particular level-sets of the response. Similar to Ranjan

et al. (2008), they aim to construct a design such that the metamodel accurately

estimates a contour. They describe similar approaches to space filling designs,

maximum MSE and integrated MSE before presenting a variation called the ‘weighted

integrated mean squared error’ criterion. This allows the user to put more weight on

choosing points to improve the contour estimate, rather than reducing the overall

variance of the model (as seen in just the integrated mean squared error method).

Both this method, and that by Ranjan et al. (2008), give interesting details on how

to adapt their designs to focus on improving the estimate of a boundary, which is

definitely an important aspect to consider for the design problem considered here.

Lastly, Bect et al. (2012) work on estimating the volume of an excursion set of

a function above a given threshold under a probability measure. They use what

they call ‘stepwise uncertainty reduction strategies’ with an aim to improve the

estimation of a probability of failure. Several possible methods are discussed which

include analysing the Shannon entropy, minimising the utility as a loss function and

minimising the quadratic loss function. Their chosen method is based on trying to

minimise the probability of misclassification (the probability of predicting a point

above the threshold when the true value is under). More recent work also includes

that by Knudde et al. (2019).
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All these would be valid approaches in a traditional setting, but for my model

there is the key difference that the function being emulated is the labelling function,

Λ(.), which only takes values l1 or l2 for the corresponding regions. I also have a

choice of whether it would be better to place points to find a better estimation of

the boundary, or to create a more space filling design. If we are only interested

in classifying the input space, then it is likely that we would only choose to place

points that were close to the boundary. Having additional knowledge in the areas of

the input space which are far away from the boundary is unlikely to give any extra

confidence on where the boundary actually lies. Bearing in mind that if the number

of regions is unknown, then if we are not careful in searching all areas of input space,

we may find that we are falsely classifying. Alternatively, we may want to fit separate

emulators to the regions after we have made the classification. In this scenario it is

important that we both place points to give a better estimate of the boundary, and

create a space filling design for both regions. For a space filling design, we would

concentrate on including more points in sparse areas. I therefore do not want to use

any design method that only bases its selection criteria on either the uncertainty or

variance of the Gaussian process, as such methods will only choose to place points in

the corners of the input space or in sparse regions.

One possible design method for my model makes use of the misclassification rate,

and would choose additional points that maximise the change in misclassification

rate across the whole input space. One way to do this is to sample several points

in the input space from the latent Gaussian process. We would include each

point at a time into the latent model, assuming that it is classified correctly, and

calculate the misclassification rates as before. We then introduce the point into

the design (and run the simulator or model function) that changes the maximum

or average missclassification rate the most. Unfortunately, when trying to apply

this method, there are problems with the leave-one-out validation used to calculate

the misclassification rate. In the leave-one-out method, each point is left out in

turn, the latent model is fitted to the remaining points, and this is used to predict

the sign of the point left out, giving us a value for our misclassification. However,
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this means that when the misclassification rate is calculated for a specific point, we

are not including any information regarding that point, even though we are certain

of its sign. So, when calculating the rate, we are ignoring the fact that we do in

fact know the classification of that point, leading us to ignore the information for

misclassification of the local points. Consequently, if we then attempt to pick the

optimum point based on changing the maximum misclassification rate the most, we

end up trying to choose points that are very close to points that we already know,

and have included in our design. This method would ignore the local points, and so

I can conclude that this is not an efficient way of tackling the design problem.

One way of trying to solve the above problem is to add a penalty so that we

do not end up choosing points that are too close together. For new point, x′, this

can take the form: missclassification + λmin ∥ x − x′ ∥, to ensure that we add more

weight to the points that are furthest away. The addition of this penalty then assures

that our design is more space filling. When implementing this process, we could

choose a larger value of λ to begin with (to be more space filling), then gradually

reduce λ to focus on the accuracy of the classifier. Although adding this penalty is

feasible, I still find that the method becomes computationally expensive, and so I

feel that it would be better to tackle this problem from another angle.

Some alternatives to this are, for example, to maximise the change in total area

of misclassification rate by integrating or taking the sum over the input space, as

well as fitting emulators to the misclassification rate. I could also use a second set of

points as a separate test or verification set (similar to Bastos and O’Hagan (2009)).

This would mean that we would have one set of data which we use to fit the main

model, and a separate set of data which we use to validate the latent Gaussian

process, and produce an independent misclassification rate. We would then avoid

the problems of ignoring local points in the misclassification, so that we can properly

measure how much we mislabel things, and still produce a clean estimate. We could

also continue to use a distance penalty to control how space filling our design is at

each step. I believe that this would be a successful approach, but also believe that it

may not be very practical due to the large amount of initial data required. Since
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all of these suggestions still have computational problems, I instead use a different

method, which I will detail below.

Due to the computational difficulties in using the misclassification rate to base

my design problem on, I instead look for solutions that use the latent model itself.

In Figure 2.9, I am able to plot the probability of being classified into region 1 for

the entire input space. This is generated by taking samples of the latent GP, and

predicting the classification for a grid of points covering the input space. I therefore

propose that we use this uncertainty information to judge where the next best place

would be to choose a point to run the simulator at. I decide that anywhere the

probability gets close to 50% is the ideal place to choose a new point, since the latent

model is most unsure where the boundary is. The implementation of this method

focuses on the exploitation side of the design problem. I have discussed above how it

is important to also consider the exploration aspect of the design problem. We could,

for example, choose all points (from a selection) that are in the range 45-55% of being

classified into region 1, and then choose the point which is the most space filling. To

increase the exploration side further, we could change the size of the interval that

we are concentrating on. For example, choosing the most space filling point from the

interval 40-60% will explore the input space more than just looking at 45-55%. As

before, I would prefer for the method to be more space filling when placing the initial

extra points, and then for later points to focus on improving the classification. By

making sure we are exploring all space before we start to concentrate on improving

the estimate of the boundary, we ensure that we go into some of the regions where we

are falsely confident in our classification estimate. To maximise the explore feature,

we would just include the entire input space in the interval before choosing the most

space filling point. For future research, it may be advantageous to find a way of

optimising the range interval at each step. To decide which point is the most space

filling, I look at the Euclidean distance from each point to each other point, and

choose the point that maximises the minimum distance. See Section 2.8 below for

an example.
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2.8 Another Example in 2 Dimensions

I apply my method to a two-dimensional example (provided by T. Santner after a

private communication), with test function:

f(x) =



∞ if x2
1 + x2

2 ≤ c2
1

exp −(a′x+x′Qx)
(x2

1+x2
2−c2

1) if c2
1 ≤ x2

1 + x2
2 ≤ c2

2

−∞ if x2
1 + x2

2 ≥ c2
2,

where,

a = [3, 5], Q =

 2 1.5

1.5 4

 , c2
1 = 0.252, c2

2 = 0.752 .

This function is plotted in Figure 2.13. The space between the two circles is R1 and

Fig. 2.13 2 dimensional example with two regions. R1 lies within the two circles and
R2 is the remaining input space. The contours show the function, f , for various
values of x1 and x2.

the remainder is R2, both over the input space [−1.25, 1.25]2. The output function

to the model, f , is only valid for R1, and we ignore the difference between −∞ and
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∞ in Equation 2.8. Hence, the true labelling function, Λ, becomes:

Λ(x1, x2) =


l1 if 0.252 ≤ x2

1 + x2
2 ≤ 0.752

l2 if x2
1 + x2

2 < 0.252 OR x2
1 + x2

2 > 0.752.

I have used a 2-d maximin Latin hypercube to select 50 data points, (x1, x2) ∈ D,

where they are given class labels (l1 if (x1, x2) ∈ R1 and l2 if (x1, x2) ∈ R2). These are

shown by the purple and orange points in Figure 2.14 along with the hard boundary

(red). The labelling classification after applying my method is also shown in the plot

with uncertainty as the background colour. As in the previous example, the light blue

areas represent a high probability of being labelled l1 and the dark blue areas show

high probability of being labelled l2. The largest areas of uncertainty correspond to

the areas where the classification method performed the poorest. Figure 2.15 shows

two draws from the latent GP. The plot on the left is fairly accurate to the truth,

but it is particularly interesting to note that the doughnut shape in the right plot is

no longer fully connected. This is likely to be due to the lack of information in that

area of input space.

Overall, my method is estimating the regions well with only a few larger deviations

in the upper left and right sections of the doughnut region. This is likely to be caused

by the lack of information in these areas. Due to the more complicated shape, I chose

to fit a constant prior mean function. This has proved to be successful since no areas

have been misclassified in the far corners of the input space. Alternatively, a quartic

polynomial could have been used for the prior mean function, but, as discussed in

Section 2.4, I do not recommend using a polynomial with greater complexity than a

quadratic (unless there is a sufficient quantity of data). Adding the quartic prior

would involve estimating 8 additional parameters.

Two input points of particular interest are those at the bottom of the larger circle;

they are labelled in different regions but are very close together. In this area, the

latent Gaussian process must change sign quickly but has been able to without any

complications.
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Fig. 2.14 Estimated regions for the 2-d example shown in Figure 2.13. Initial data
points are displayed (orange - Region 1 and purple - Region 2), with the actual
region boundaries shown in red. Uncertainty on the estimate is included where light
blue areas correspond to high probability of being classified into R1 and dark blue
areas correspond to high probability of being classified into R2. A misclassification
rate is also shown.

A misclassification rate is also included in Figure 2.14, where the points are more

likely to missclassify in R1 (between rings). This is likely to be due to a higher

proportion of points being in R2 and so the majority of the latent process is negative,

making it more likely for areas to be classified into R2. This is supported by the

constant mean function estimated to be −2.25.

The larger misclassification rates (compared to those in Figure 2.9) can also be

attributed to the use of a constant mean function. It becomes a lot more uncertain

without the directional force of a higher order polynomial. Although it appears

that the corners misclassify very infrequently, when I observe the underlying latent

Gaussian process (not shown), η, I can see that it is in fact starting to curve up in

the corners towards the constant mean value. But since the mean value is −2.25,

there will not be a misclassification in this case.
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Fig. 2.15 Two different draws from the 2 dimensional example with two regions. R1
lies within the two circles and R2 is the remaining input space. The dark blue and
light blue regions correspond to areas being classified into R1 and R2 respectively.

2.8.1 Design

The design problem is an important aspect of uncertainty quantification, as outlined

in Section 2.7. Figure 2.16 displays the output of applying the design method in

Section 2.7 to the doughnut example shown here. To apply this, I have chosen to

run the simulator at 20 extra points (one at a time) and then observe the difference

the extra points have made to the overall classification of the two regions. As said

previously, my method is based on choosing regions of points where the classifier is

most uncertain, where there is close to an equal chance for the point to be sorted

into either of the regions. Then from these points, I chose the one that is most space

filling based on a maximin criterion (Sacks et al., 1989). I am able to change the

design to either be more space filling or to concentrate on estimating the border by

altering the area of points that we look at to choose the most space filling points. If

we were focusing on the border, we might choose points with 45-55% probability of

being classified into region 1, but if we were trying to be more space filling, we might

choose the area of points that has 30-70% chance of being classified into region 1.

For the first 14 points, I chose to alternate between selecting points to be very

space filling and improving the boundary. Therefore, I alternated between choosing

to pick the most space filling point from the whole input space and from the top

40% of points that have a probability of being classified into region one close to 50%.
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Fig. 2.16 Plots to show design implemented to the example in Figure 2.14. Left:
Original estimate for the classification of the input space with extra points added.
Points are labelled to the order they would be added in the design. Right: New
estimate for the classification with the extra 20 input points included. Light blue
shows high probability of being classified into region 1 and dark blue show high
probability of being classified into region 2.

I felt this was important to make sure that there weren’t any areas of the input

space where I was wrongly predicting the classification. For the remaining 6 points,

I decided to just focus on improving the classification by choosing the top 1-5% of

points that have a probability of being classified into region 1 close to 50%. From

the plot, you can tell this has proven to be successful since the last 7 points have

been placed very close to the actual boundary between regions. This is ideal since I

have still not given the model any knowledge of where the actual border is and the

accuracy of our classification is based on how well we can estimate the boundary

between regions.

The right plot in Figure 2.16 shows the output of the model when I have included

all 20 new points into the initial data. As before, the light blue areas of input space

show high probability of being sorted into region 1, and the dark blue areas show high

probability of being sorted into region 2. Comparing this to the original estimate in

Figure 2.14, we can see that there is definitely an improvement in our classification

as well as a reduction in uncertainty near the borders. Before, there was a large

bulge in the estimate towards the bottom right of the input space. However, with the

new data points included, this is no longer the case and the estimate is hugging the

border much more tightly. The new points have also greatly improved the estimate

of the centre of the doughnut with it appearing much more accurate to the circular
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shape. Previously, the classification had a 8% misclassification rate, however this is

reduced to just 4% after the extra design points have been included.

2.9 Application

My motivating example has been supplied by Voliotis et al. (2018) where the

subject is the reproductive system in mammals, particularly how this is controlled

by connections between the brain, the pituitary gland, and the gonads. There

are particular neurones in the brain that secrete a specific hormone known as the

gonadotrophin-releasing hormone (GnRH). These are vital in regulating gametogenesis

and ovulation. Signals are made by the pituitary gland which then simulate the

gonads for this cycle to start. One of the regulators of the GnRH neurone is

neuropeptide kisspeptin, of which two are located within areas of the hypothalamus

(the arcuate nucleus (ARC) and the proptical area). Other research suggests that

one of these areas (ARC) is the location of the GnRH pulse regulator of which

the core are neurones (ARC kisspeptin or KNDy) that secretes two neuropeptides:

neurokinin B (NKB) and dynorphin (Dyn). The objective of the model presented

is to understand the role of NKB and the firing rate of these neuropeptides on

the regulation of GnRH, and subsequentially in controlling reproduction. To do

this, the model identifies the population of the KNDy neurones where the GnRH

pulse regulator is said to be found. The model consists of a set of coupled ordinary

differential equations (ODEs) to describe the dynamics of m synaptically connected

KNDy neurones. There are several fixed parameters including the concentration of

Dyn, rates at which Dyn and NKB are lost and those that describe the characteristic

timescale for Dyn and NKB. The variables are the concentration of NKB secreted at

the synaptic ends and the firing rate, measured in spikes/min. Using the population

of KNDy neurones is shown to be critical for GnRH pulsatile dynamics and that this

can stimulate GnRH secretion. Analysing the output of this model shows that the

population can behave as a bistable switch so that the firing rate is either high or

low. Hence, this causes us to have a system with two distinct solutions, and is an

example of the type of system that I wish to model. This bistable system is coupled
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with a negative feedback leading to sustained oscillations that drive the secretion of

GnRH hormones that are involved in reproduction. Being able to model the system

and locate the areas of low and high firing rates means that, not only can we aid

predictions on the reproduction rate, but we can also have a better understanding of

the specific input parameters that are associated with high rates of reproduction.

The inputs are NKB concentration and firing rate, where I create a Latin

hypercube over the input space of [0.1, 0.2] × [10, 200]. The choice was made to

transform the data to [0, 1]2 for computational simplicity. The system is bimodal with

two labels, where I have 20 initial points with known region classification. I apply the

labelling function, Λ where there are 5 points labelled l1 in R1, and 15 labelled l2 in

R2 (as seen in Figures 2.17 and 2.18). The true function, Λ and resultant boundary

are not known in this example.

One of the most important choices to be made in this example was the form

of the prior mean on the latent Gaussian process. I chose a linear prior based on

consultation with the expert (M. Voliotis) of the system and examination of the

initial points (yellow and purple shown in Figure 2.17). The output of the predicted

region boundary is shown in Figure 2.17 along with uncertainty. In general, the

solution classifies as expected in most areas, where the area between the regions is

the most uncertain. We would therefore expect the true boundary between R1 and

R2 to be almost a straight line, with potential to curve at either of the ends of the

input space. This uncertainty is down to lack of information in the area, but since

the area of uncertainty is not too large, I have greater confidence in my estimation.

The model is computationally expensive to run, hence we cannot run the model

extensively to compare the boundary estimate with the truth. Figure 2.18 shows

two draws from the latent GP and confirms that there is more uncertainty in the

lower half of the input space close to the boundary. They both capture a similar

linear trend, with the plot on the right having more curvature. Misclassification is

also shown through the size of the points where we can notice that it is more likely

to misclassify points near the boundary.
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Fig. 2.17 2 dimensional example looking at the effects of hormone release on mammal
reproduction, where the system has two regions of high and low rates of hormone
release. Initial points are displayed (orange - R1 and purple - R2), with predicted
region classification and uncertainty. Dark blue areas correspond to high probability
of being classified into R1 and light blue areas correspond to high probability of
being classified into R2. A misclassification rate is also shown.

2.10 Discussion

I have developed a new method for classifying models or simulators into two distinct

regions. My method includes correlation through a distance metric and it can

be applied to a broad range of applications where outputs to the model are not

necessarily quantitative. I use aspects of classification from Nickisch and Rasmussen

(2008) in the form of class labelling and incorporate Gaussian process emulation. To

ensure that correlation between data points is included, a latent variable modelled as

a Gaussian process is used to structure the two output solutions using the assigned

class labelling. The latent Gaussian process is estimated using Metropolis Hastings

MCMC with distinct prior specifications. As a form of model validation, I have
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Fig. 2.18 Two different draws from the 2 dimensional application with two regions.
Initial inputs are shown in yellow and purple with the dark blue and light blue
regions corresponding to areas being classified into R1 and R2 respectively.

calculated a misclassification rate which is based on a leave-one-out cross-validation.

I have also included details on how I would tackle the design problem.

I feel that this method will be applicable to a wide range of applications across

many disciplines including computer science, climate science and biology. My main

motivating example is based on assessing reproduction rates in mammals (Voliotis

et al., 2018). I have successfully modelled this bimodal system, where it can be used

for class prediction for other input points with estimates of uncertainty included. It

would be interesting to try my method on more real life data sets to see how well it

performs for more intricate output regions.

Comparisons have also been made with logistic regression and Voronoi tessellation.

There are several other approaches to problems that are similar to the one presented

here that would be interesting to make further comparisons with. For example

Pope et al. (2018), have developed a method for modelling spatial processes with

heterogeneity or discontinuities by using a combination of Voronoi tessellation and

Gaussian processes. As well as this, I would like to reach deeper into machine learning

classification methods to see if there are any similar comparisons or ideas on how I

can improve my method.

There are some other important extensions to the work presented in this chapter.

One would be to now expand the method to cope with situations when there are
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more than two output solution classes. Although I outlined how I would like to

tackle this problem, I would like to improve on this and apply it to some real life

data. Ideally I would like to adapt our model to cope with more solution regions,

however this is likely to be challenging due to the positive and negative layout that I

have chosen.

There is also room for research in areas of experimental design where I can

improve the accuracy of the classification and boundary estimation with limited

initial data. This has been quite a difficult problem due to the fact I am applying

the Gaussian process to the labelling function and not the actual model output itself.

This means that a lot of current design methods are no longer applicable. I have

touched on the direction that I would like to go in, but I would like to continue

this research to make sure that this is the most efficient method. I would also like

to improve on my method by creating an optimiser (similar to the improvement

function used by Ranjan et al. (2008)) that would indicate whether we should be

choosing points to be more space filling or to improve the boundary estimate. I

would also like to improve the efficiency of the design by having a feature where we

can choose multiple new points at a time.

There are also obvious extensions in improving the efficiency of the computer

code. For example, I could change the MCMC to Hamiltonian MCMC to speed up

the calculations.



Chapter 3

De Bruijn Graphs

3.1 Introduction

The aim of this chapter is to investigate a correlated Bernoulli process that improves

on the independent drawing problems that are known to occur when using classification

methods such as logistic regression (Chang et al., 2016; Diggle et al., 1998). Logistic

regression models the probability of being in one of two regions and, when classifying

new points, it is common practice to take draws from an independent Bernoulli

distribution. From these draws, we then choose to arbitrarily use 0 to represent one

of the regions, and 1 to represent the other. As shown in Figure 1.3 in Chapter

1, taking independent draws with probability determined by the logistic regression

means that all of the distance correlation that we initially had is lost. Hence, we end

up with many misclassifications, and we cannot easily produce a clean cut boundary

between regions. Although we can take many independent Bernoulli draws and

average them to create a smooth boundary, this would not be a complete solution as

we would still have to assign a threshold to find the two regions.

Therefore, the aim of this chapter is to produce a Bernoulli process where

correlation is incorporated when selecting draws or samples. This novel process must

have a high correlation between points that are close together and a low correlation

for points that are far apart. In a one dimensional scenario, this would correspond

to being able add structure to a sequence of 0’s and 1’s so that we can force when

like symbols cluster together instead of appearing uncorrelated. When classifying,
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we will then hopefully observe a clean cut boundary between regions (as shown

in Chapters 1 and 2), instead of having frequent misclassifications. As we saw in

Chapter 1, the multivariate Bernoulli distribution introduced by Teugels (1990) was

promising, as it can produce probability distributions for whole sequences of 0’s and

1’s for a set number of individual Bernoulli trials, but his method can quickly get

very complicated for long sequences. Hence, I seek to improve on his method in a

way that incorporates the between data correlations into calculating the probability

of occurrence of a given sequence.

From alternative literature, Tallis (1962) looked into finding a generalised multinomial

distribution that invokes correlation in discrete data. He first defines a random

variable, X, that takes the values 0, 1, 2, ..., k (which is slightly more general than the

proposed method here, which has two values, 0 and 1). He also defines a probability

generating function for the joint probabilities, P (X1 = a,X2 = b,X3 = c, ...) =

αabc... (a, b, c = 0, 1, 2, ..., k). A generating function is often easier to work with than

the actual distribution itself (Wilf, 1994). The generating function of Tallis (1962)

is defined in terms of a parameter, ρ, which is the correlation coefficient between

variable pairs in X. Later on in the paper, he states that E[X] must remain constant

throughout, which is something that we may not always want to hold for the method

which is the focus of this chapter. The work was continued in Tallis (1964), where

the author determines how to estimate the distribution of a sum of non-independent

multinomial variates.

Although the method presented in Tallis (1962) gives the required attention to

the correlation between points that I require, there is still extra work that would be

necessary before it could be applied to the problem at hand. We would first have to

ensure that the correlation between variable pairs is based on a distance measure,

so that there is a higher correlation between points that are close together. We

may also want to further control the spread of the correlation, so that it is not only

between pairs. For example, we could include three-fold correlations, or higher, into

the model. This controlling of the spread of correlation is similar to the correlation

length scale parameter involved in Gaussian processes. Alternatively, if we wanted
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to continue working only with correlation pairs, then we could say that we only care

about the nearest neighbours; i.e., conditional on second order terms, the third order

terms (and higher) do not give us any additional information.

We would then also need a method for inference and simulation so that, given a

set of parameters, we could produce sequences of 0’s and 1’s that follow the patterns

produced from the region classifications. Tallis (1962) shows how to estimate the

relevant parameters using maximum likelihood, but we would still need to consider

how to apply this to the given problem to make classification predictions, given

logistic regression.

Alternatively, Dai et al. (2013) consider how to use a multivariate Bernoulli

distribution to estimate the structure of graphs with binary nodes, somewhat similarly

to the structures used in Teugels (1990). The advantages of this method, as compared

with that of Tallis (1962), is that it is able to take account of higher order interactions

as well as pairwise interactions. This allows much more structure to be incorporated

into the model. They also consider the multivariate Bernoulli distribution in the

framework of the exponential family, where the binary nodes are described as random

variables formed to allow pairwise relationships in terms of the edges. This is where

correlation is included into their model: variables are conditionally independent if

the associated nodes are not linked by an edge.

For example, Figure 3.1 shows a graph with the set of variables {N1, N2, N3, N4,

N5} displayed as the nodes of the graph. The edges between nodes show us which

variable pairs have correlation and which ones are conditionally independent. N1

is directly correlated to variables N2, N3 and N5. Although N1 is conditional on

N2, N1 and N4 are conditionally independent when conditioned on N2. N4 is only

dependent on N2 and independent from all other variables. Nodes N1, N3 and N5

form a cycle in the graph. Additionally, arrows can be placed on the edges to show

the direction of the dependency.

It is interesting to view the correlated Bernoulli problem using a graphical

structure as it gives a clear indication of the dependence between variables that are

linked on the graph, and the independence between variables that are not. One of



64 De Bruijn Graphs

Fig. 3.1 Example of a graph with nodes representing the variables, {N1, N2, N3,
N4, N5}. Edges drawn between nodes represent the dependencies between variables.

the largest problems with both the method from Dai et al. (2013), and that seen in

Teugels (1990), is the complexity of the distribution, and the number of parameters

to be estimated. For example, for sequences of 0’s and 1’s of length two, we already

require three parameters. As the sequences under consideration get longer, the

number of parameters explodes, making the inference problem infeasible for the types

of problems considered here.

Leisch (1998) focuses on generating multivariate binary random variables. The

method he proposes is to transform normally distributed random variates to binary

values via componentwise thresholding to include the correlation between variates.

The pairwise relations between variables can be written as a covariance matrix, or

by specifying pairwise probabilities. He also addresses the problem specified above

with the methods introduced in Dai et al. (2013) and Teugels (1990), where the

number of parameters to be estimated explodes when looking at long chains of

multivariate Bernoulli trials. Leisch (1998) suggests converting the probabilities

with a lower-dimensional parametrisation so that the number of parameters to be

estimated is equivalent to the number of 0’s and 1’s in the chain, n. This is a

substantial reduction from the previously estimated value of 2n.
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Although this method seems interesting and there exists an R package (bindata),

I did not take this any further since the paper was never published and the author

did not continue the work.

Due to the described problems with these methods, I looked for other possible

solutions, and came across the notion of de Bruijn graphs. They appeared to capture

a lot of what was needed, including higher order interactions, and even a graph

structure similar to that seen in Dai et al. (2013). The rest of this chapter outlines

what de Bruijn graphs are, and how I wish to use them to produce a correlated

Bernoulli process.

3.2 De Bruijn Graphs

Definition (de Bruijn Graphs): De Bruijn Graphs (De Bruijn, 1946; Fredricksen,

1992; Golomb, 1967; Good, 1946) are directed graphs consisting of overlapping

sequences of symbols: given a set of s symbols, V = {v1, ..., vs}, the vertices or nodes

of the graph consist of all the possible sequences of V . Each graph has sm vertices,

where m is the length of each possible sequence given the set of symbols, V . The

possible nodes are as follows:

V m = {(v1, ..., v1, v1), (v1, ..., v1, v2), ..., (v1, ..., v1, vs), (v1, ..., v2, v1), ...,

(vs, ..., vs, vs)}.

Edges in de Bruijn graphs are drawn between node pairs in such a way that the

connected nodes have overlaps of m− 1 nodes. An edge is created by removing the

first symbol from the node sequence, and then adding a new symbol to the end of

the sequence from V . Thus, from each vertex, (v1, ..., vm) ∈ V m, there is an edge to

vertex (v2, ..., vm, v) ∈ V m for every v ∈ V . There are exactly s directed edges going

into each node and s directed edges going out from each node. I name the symbols,

v, the ‘letters’ of the de Bruijn graph, and the sequence of these letters at each node

a de Bruijn ‘word’ of length m.
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By travelling along a random walk through the de Bruijn graph, we are able to

create chains of letters that are all dependent on the m letters that come before

(Fredricksen, 1992). Hence, by altering m, we are able to change the dependence

structure of the de Bruijn graph. A de Bruijn sequence of order m on a size-s set of

letters, V , is a cyclic sequence in which every possible length-m string on V occurs

exactly once as a substring. Such a sequence is denoted by B(s,m) and has length

s×m, which is also the number of distinct substrings of length m on V (Golomb,

1967).

Figure 3.2 shows an example of an m = 2 de Bruijn graph consisting of the

set of letters V = {A,B}. All of the possible length-two sequences are V 2 =

{AA,AB,BA,BB}. These sequences make up the four nodes of the graph, where

there are two directed edges both coming out and going in to each node. The end of

the initial sequence is the same as the start of the next sequence that each edge is

attached to.

Fig. 3.2 Example of a length two de Bruijn graph with the letters A and B

De Bruijn graphs are used in a number of applications including genome sequencing

(Compeau et al., 2017), and the mathematics of juggling (Ayyer et al., 2015). In

genome sequencing, de Bruijn graphs are used to assemble whole genome sequences

given small collections of nucleotides, which are substrings of the required genome.

The bases A, G, C and T that constitute the sequences of DNA are the possible de

Bruijn letters and, given a set length m, we can decompose each of the substrings

into overlapping sequences of length m. Once this has been done, any sequences of
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length m that match up across the different substrings can be put together to start

forming the full genome sequence.

For example, say we have the two substrings, TCAAGGTTA and GGTTACGT,

and we want to identify the whole genome sequence that they come from. If we were

using a de Bruijn graph of length m = 4, then we could decompose the two substrings

into the sets of sequences; {TCAA, CAAG, AAGG, AGGT, GGTT, GTTA} and

{GGTT, GTTA, TTAC, TACG, ACGT} respectively. This gives us all the sequences

of length 4 from both of the substrings, where each one is created by shifting down the

line one letter at a time. Noticing that the two sequences, GGTT and GTTA overlap

in the two substrings means that the resulting sequence is TCAAGGTTACGT.

Additionally, in the mathematics of juggling, de Bruijn graphs are used to model

the patterns balls make when being juggled. For example, imagine you have 4 slots

for balls (one in each hand and two in the air), and you can have either ball or not

ball at each of the slots. A ball can go from your hand to the air, but it can not go

from one hand to the other if there is already a ball there - hence there needs to be

some conditioning structure in the modelling that controls where each ball is allowed

to go at each time.

Given a de Bruijn graph such as that in Figure 3.2, one can assign a value to each

of the directed edges to show the probability of transitioning from each node to the

next. We can thus immediately see that there is a connection to Markov chains (see

below) (Billingsley, 1961; Ching and Ng, 2006; Feller, 1950; Isaacson and Madsen,

1976). The next possible node to transition to depends only on the current node and

a set of probabilistic rules. This choice structure introduces the required correlation.

A Markov chain is a stochastic system where transitions occur from one state

to the next according to probabilistic rules. At each time step t, the probability of

transitioning to the next state is solely dependent on the current state and time step.

Markov chains are often described as ‘memoryless’. This means that the current

position depends only on the previous state, but not any further back, nor any future

states. This is known as the Markov property.



68 De Bruijn Graphs

Definition (The Markov Property): For random variables, X0, X1, ..., any

positive integer, t and possible states, i0, i1, ..., it, a stochastic process forms a Markov

chain if P (Xt = it|Xt−1 = it−1, Xt−2 = it−2, ..., X0 = i0) = P (Xt = it|Xt−1 = it−1).

If we compare the Markov property to the conditional dependence in de Bruijn

graphs, we notice that there is a crucial difference. I make a key definition here that

de Bruijn graphs have a Markov property on the de Bruijn word and not the letter.

The current word is dependent on only the previous word in the sequence, and no

other. This means that we can create far more structure than if it were simply the

letters that were Markov. For example, looking at Figure 3.2, the word AB can

follow either the word AA or BA, and we can assign different probability values to

both of these possible transitions. AB is thus dependent on the whole word that

comes before it, and not just the single letter A. The letters can instead be viewed as

having a latent Markov property, as they are where we observe the Markov structure

in the sequences, but it is the words that actually create the Markov chains.

We can change how many letters we are dependent on by altering the length of

the word, m. The length of each word in the de Bruijn graph tells us how spread

the correlation is over nearby data points (which is somewhat equivalent to a length

scale since it is the distance over which things are correlated). If we have a length

m = 2 de Bruijn graph, we are dependent on two letters back, and if we have a length

m = 3 de Bruijn graph then we are dependent on three letters back. If m = 1, then

the model collapses down to be classically Markov (Markov on the letter), and if we

have a zero length de Bruijn graph, this is just equivalent to independent Bernoulli

trials.

Since a de Bruijn graph is Markov on the word, the transition probabilities

give us the the probability of transitioning from word to word. I denote this pj
i to

mean the probability of transitioning from the word i to the word j. Like Markov

chains, all of the transition probabilities for the de Bruijn graph can be written

into a matrix, T . Each element of the matrix, T , at time step, t, is given by

Tij = P (Xt+1 = j|Xt = i) = pj
i . The corresponding transition matrix for the example
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in Figure 3.2 is as follows:

T =



pAA
AA pAB

AA 0 0

0 0 pBA
AB pBB

AB

pAA
BA pAB

BA 0 0

0 0 pBA
BB pBB

BB


=



1 − pAB
AA pAB

AA 0 0

0 0 1 − pBB
AB pBB

AB

1 − pAB
BA pAB

BA 0 0

0 0 1 − pBB
BB pBB

BB


,

where pBA
AB is the probability of transitioning from the word AB to the word BA.

Due to a conservation of probability property, each row of the transition matrix is a

probability vector, and so every row in the matrix must sum to one; i.e. ∑2m

j=1 Tij =

1 for all i. Hence, as there are s = 2 letters in this example, there are only two edges

coming out of each node of the graph and we can state pAA
AA = 1 − pAB

AA. This reduces

the number of transition probabilities by half.

3.2.1 Further Markov Properties

Since de Bruijn graphs are Markov on the word, we are able to use some of the

properties of Markov chains to state properties for de Bruijn graphs. Before we look

into these, there are a few important definitions (Norris, 1997; Ross, 2014).

Definition (Irreducibility): A Markov chain is irreducible if it is possible to get

from every state to every other state with positive probability.

Definition (Aperiodicity): An irreducible Markov chain is said to be aperiodic

if for some t ≥ 0 and state j:

P (Xt = j|X0 = j) > 0 and P (Xt+1 = j|X0 = j) > 0

The stationary (or ergodic) distribution of a Markov chain (Isaacson and Madsen,

1976; Jones and Smith, 2001) tells us the proportion of overall time spent at each

state or word. It describes how the chain will be distributed among the states after it

has been run for a long amount of time. The state of the system at time t is given by

π(t) = (π(1)(t), ..., π(m)(t)) so that each component π(i)(t) indicates the probability

of being at each word, i, at time t.
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Definition (Stationary Distribution): The stationary distribution of a state

j ∈ S from an irreducible, persistent, aperiodic Markov chain is defined as:

π(j) = limt→∞ pj
i

(t)
,

where pj
i

(t) = P [Xk+t = j|Xk = j]. The π’s must also satisfy the following:

π(j) > 0,
∑
j∈S

π(j) = 1 and π(j) =
∑
i∈S

π(i)pj
i ,

The stationary distribution is hence found when π(t) remains unchanged as t gets

larger. Since π(j) = limn→∞ pj
i

(n) and pj
i

(n+1) = ∑
k p

k
i

(n)
pj

k for states k ∈ S, we can

find the stationary distribution by letting n → ∞. This gives:

π(j) =
∑

k

π(k)pj
k,

=⇒ π = πT,

for transition matrix T . I will denote the stationary distribution as π for the

remainder of this thesis.

Providing the Markov chain on the word is stationary (discussed below), we can

calculate the stationary distribution by powering up the transition matrix as follows

(Isaacson and Madsen, 1976):

P (Xt = i) =
∑

j

P (Xt = i|X0 = j)P (X0 = j)

=⇒ π(t) = T tπ(0),

for time step t and states i, j. Let t → ∞, then we are left with:

π = limt→∞T
tπ(0),

which gives us a row vector for the stationary distribution. For these Markov chains,

the marginal probabilities are irrespective of the starting state, π(0), and so for any

starting chain the steady state remains the same.
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The stationary distribution of a Markov chain can also be calculated by looking

at the eigenvalues and eigenvectors of the transition matrix, T (Feller, 1950; Isaacson

and Madsen, 1976). Considering the equation, πT = π, we can see that this looks

very similar to the column vector equation for eigenvalues and eigenvectors, Av = λv

(where A is a matrix and v is the eigenvector associated to the eigenvalues λ of A).

By letting λ = 1 (and A = T , v = π) and taking a transpose we have the following:

(Tπ)T = πT

=⇒ πTT T = πT .

We can see that for the transposed matrix, T T , the eigenvector that is associated to

the eigenvalue λ = 1 is π, which is the stationary distribution.

The eigenvalues and eigenvectors can also make powering up the transition matrix

T computationally easier. This is down to using the eigendecomposition of T , which

is shown by Isaacson and Madsen (1976). Let L be a matrix where the rows of L are

the left eigenvectors of T . Let Λ be a diagonal matrix where the diagonal consists

of the eigenvalues of T , and all other elements are zero. Since LT = ΛL and L is

invertible, we get:

L−1LT = T = L−1ΛL.

Taking powers of T , we find that T 2 = L−1ΛLL−1ΛL = L−1Λ2L, which gives the

following general result:

T t = L−1ΛtL,

where Λt is a diagonal matrix with diagonal elements, λt
1, λ

t
2, . . . , λ

t
m.

Not only can we find the stationary (or ergodic) distribution from the eigenvalues

and eigenvectors, but we can also find other important properties. One of these is

the convergence rate of the Markov chain, and hence the convergence rate of the

de Bruijn graph towards the stationary distribution of the words (Jones and Smith,

2001; Ross, 2014).

Definition (Convergence Rate): The convergence rate of a Markov chain is the

speed in which π(t) approaches the stationary distribution, π, as t → ∞.
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If λ = 1 is an eigenvalue of T , then for the remaining eigenvalues, |λ| < 1

(as proved by Rosenthal (1995) and Isaacson and Madsen (1976)). Number the

eigenvalues such that 1 = |λ1| > |λ2| ≥ . . . ≥ |λm| and let xT = ∑m
i=1 aili for ai ∈ R,

where li is the ith row of L.

π(t) = xT t

= xLΛtL−1

= (a1l
T
1 + a2l

T
2 + . . .+ aml

T
m)LΛL−1

= a1λ
t
1l

T
1 + a2λ

t
2l

T
2 + . . .+ amλ

t
ml

T
m

= λt
1

{
a1l

T
1 + a2

(
λ2

λ1

)t

lT2 + . . .+ am

(
λm

λ1

)t

lTm

}
.

Since the stationary distribution is given by l1 and λ1 = 1 , we find that λ2 is

the dominant term. Therefore the second eigenvalue tells us how fast the Markov

chain converges to its stationary distribution. For a fast convergence rate, we want

eigenvalues close to one.

We can then state the expected first return time for a particular state or word, i

(Ross, 2014).

Definition (Expected Return Time): For a Markov chain with stationary

distribution π, the expected first return time Ri for state i is given by:

Ri = 1
π(i) .

This is the associated long run time of the word i.

The mean passage time to get from word i to word j is then given by nii−nij

π(i)

where nij is an element from the matrix N = (I−T −W )−1 with I being the identity

matrix and W being a matrix whose rows are the stationary distribution π.

3.2.2 Non-Stationary Markov Chains and Further Connections

The type of Markov chains we have been discussing for de Bruijn graphs are so far

not dependent on the time step, t (Feller, 1950). These are said to be stationary or

homogeneous in time.
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Definition (Stationary Markov Chain): A Markov chain is stationary if the

probability of going from one state to another is independent of the time step. For

all states i and j, we can state that P (Xt = i|Xt−1 = j) = P (X1 = i|X0 = j) for any

time t = 0, 1, 2, ....

Alternatively, there exist Markov chains where this doesn’t necessarily have to

be the case, and the probabilities of transitioning can change dependent on both the

current state and time. These are known as non-stationary Markov chains where we

are able to change the probabilities for transitioning to certain words dependent on

the current time step. For the example in Figure 3.2, the transition matrix is now as

follows:

T (t) =



1 − pAB
AA

(t)
pAB

AA
(t) 0 0

0 0 1 − pBB
AB

(t)
pBB

AB
(t)

1 − pAB
BA

(t)
pAB

BA
(t) 0 0

0 0 1 − pBB
BB

(t)
pBB

BB
(t)


,

for t = 0, 1, 2, ....

If we are dealing with a non-stationary de Bruijn graph, many of the Markov

properties discussed above are no longer applicable (Isaacson and Madsen, 1976;

Ross, 2014). For example, a stationary distribution or steady-state does not typically

exist for Markov chains with non-stationary transition probabilities. An important

exception are periodic Markov chains where the transition matrix repeats after a set

number of time steps. If the transition matrix repeats after q time steps such that,

T (t+q) = T (t), then the stationary distribution is as follows:

π(j) = limn→∞p
j
i

(nq+t)
,

where π(j) = π(0)T (1) . . . T (j−1) with π(0) = π(0)R and R = T (1)T (2) . . . T (q). The

main disadvantage with this (and most calculations for non-stationary Markov chains)

is that it is not analytically tractable and an approximation must be found.

For de Bruijn graphs, if transitioning from word to word is dependent on the

time step, this allows us to change the pattern of letters in the chains at different

times. We would also be able to determine when certain states are more likely to
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be visited, which introduces additional structure for the determination of when like

letters will clump together. Although it would be ideal to apply all of my future

work in this thesis to non-stationary Markov methods it is very challenging. Hence,

I will mostly work with stationary Markov chains, with the aim that I can extend

my work to non-stationary cases at a later date.

De Bruijn graphs as Markov chains have many connections to alternative methods

in the literature. One of the most obvious examples are higher order Markov chains

(Ching and Ng, 2006; Raftery, 1985; Wang et al., 2013). The main difference between

higher-order Markov chains and the first-order Markov chains we have considered

so far is that the state probability distribution of the chain at the present time

depends on the m previous time steps; i.e., the state of the Markov chain at time t

is dependent on the states at times t− 1, t− 2, ..., t−m+ 1.

One simple way of defining a higher order Markov chain is to rewrite the states

so that we combine the previous m states into one new state. If we do this at each

time step, then we have the ability to combine the correlation from all m previous

time steps into a simple first-order Markov chain. As you might have noticed,

this is exactly what a de Bruijn graph does, where the higher-order states are the

letters and the transformed first-order states are the words. Therefore, de Bruijn

graphs are equivalent to higher-order Markov chains where we can simply change

the order or spread of correlation through the word length m. Both have parameters

of O(sm(s− 1)), given there are s states in the model.

An alternative higher-order Markov chain was developed by Raftery (1985) with

the aim to reduce the number of parameters. These higher-order Markov chains have

a Markov dependency on a linear combination of previous individual letters and are

defined in the definition below. Similarly to above, the states of the Markov chain

are the individual letters, and we are looking at the probability of transitioning to

the next letter dependent on the past m letters in the chain.
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Definition (Higher-order Markov Chain): If we have a sequence, {Xt : t ∈

{1, 2, ...}}, then the higher-order Markov model takes the form:

P (Xt = i0|Xt−1 = i1, ..., Xt−m = im) =
m∑

j=1
λjqi0ij

,

where, λ1+...+λm = 1, and Q = qik is a transition matrix such that 0 ≤ ∑m
j=1 λjqikj

≤

1 for i, k1, ..., km = 1, ..., t. This shows that the probability of the current state is

dependent on a linear combination of the past m states.

As we increase the number of time steps that the current letter is dependent on

we add an extra parameter into the model, so that the total number of parameters

is of O(ms2) if the Markov chain has s states (Ching et al., 2008). Although this

number of parameters is larger than that of de Bruijn graphs (O(sm(s− 1))), I prefer

the simplicity of using the first-order Markov chains, and so proceed with de Bruijn

graphs for the remainder of this thesis. It is my aim to produce methodology for a

correlated Bernoulli process using de Bruijn graphs, with the hope that I can reduce

the number of parameters at a later date. Thus, although I will not be considering

higher-order Markov chains any further, they may be important for future work in

parameter reduction.

A further connection to de Bruijn graphs which we shall discuss is that with group

theory, where previous work includes that by Hauge and Mykkeltveit (1996) and

Rhodes et al. (2017). A de Bruijn graph can be thought of in terms of permutations,

as the individual words create an ordering for the full sequence. A directed cycle in

group theory is simply a finite sequence of elements that can be generated by running

a random walk on the de Bruijn graph. Cycles are created by repeatedly applying a

permutation to the elements in a set, which are equivalent to the words (or nodes)

of the de Bruijn graph. Taking each word in turn, we apply the permutation (by

running through the Markov chain), and determine the next word in the sequence.

We can then form separate cycles (or sets) from various subsets of the nodes in these

graphs. In the shift register literature (Golomb, 1967), there are also techniques to

calculate the longest cycle of 0’s and 1’s that contain all words without any repeats.

There are many existing theorems that can be applied to the de Bruijn structures,
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such as cyclic decomposition of Markov chains (Isaacson and Madsen, 1976; Sonin,

2008). A Markov process can thus be decomposed into a collection of directed cycles

with positive weights which are proportional to the probability of travelling through

a cycle in a random walk. In graph theory, cyclic decomposition is taken to be the

partitioning of the edges of the graph and so gives the same interpretation as for

Markov chains.

Although I do not go into the details of group theory in this thesis, it is a very

vast and important topic for future work as it may be able to offer simplifications, or

allow generalisations to higher dimensions. As well as group theory, there are also

links to graph theory, where I will discuss de Bruijn graphs expressed as trees in

Section 3.3.3.

The final property that I am interested in is the expected run length of certain

letters of the de Bruijn graph, which I investigate in Chapter 4.

3.3 Towards a Correlated Bernoulli Process

Now that I have outlined what de Bruijn graphs are, I will now move on to show how

they can be used for the problems considered in this thesis. The aim of this work is

to be able to produce sequences of 0’s and 1’s, for which same letters cluster together.

By incorporating correlation between variables using the de Bruijn structure, I aim

to produce an improvement on drawing independently from a Bernoulli distribution.

An interesting approach to using de Bruijn graphs within the context of a

correlated Bernoulli process is outlined by Ayyer and Strehl (2011), who look at

producing a stationary distribution for a de Bruijn process. They begin with a

very similar structure to the one proposed here, by viewing the de Bruijn graphs

as generalised Markov chains with associated transition probabilities. They let the

set of letters be {1, 2, ..., n} and proceed by decomposing de Bruijn sequences into

blocks, such that they are a repetition of a single letter. For example, an a− block is

a word which is the repetition of the single letter a k times in a row, displayed as ak.

Every sequence of letters has a unique decomposition into these blocks of maximal

length. A weight is then assigned to each node made up of these blocks, which is
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determined by the letter and number of repetitions. Through the use of a Kirchhoff

matrix, the resulting transition matrix is found. The de Bruijn process is then a

continuous time Markov chain for the de Bruijn graph with specified weights. The

stationary distribution of the probabilities of given sequences are found conditional

on the given weights.

In one example they refer to a de Bruijn-Bernoulli process, which refers to when

the associated weights cause the stationary distribution to be a Bernoulli measure.

Although this sounds similar to the goal considered here, one major flaw is that the

probabilities of being in each Markov state are independent to each other.

The disadvantages of the work of Ayyer and Strehl (2011) mainly lie in the

objectives. The authors focus on trying to find the stationary distribution of

sequences from the underlying Markov chain along with any properties associated

with it. In contrast, I am more interested in learning about the transitions, and

what a random walk through the de Bruijn graph would look like. Further, their

transition probabilities are treated as variables in time, whereas I initially want to

keep them constant to be able to use stationary Markov properties. Their paper is

also very complex and I think it would greatly benefit from a new set of notation,

simplifying the majority of definitions. Therefore, although I do not take any of the

ideas further in this thesis, it is still interesting to note the connections and layouts

of notation and de Bruijn graph definitions.

Rhodes et al. (2017) focus on random walks on de Bruijn graphs, and present a

definition for a de Bruijn-Bernoulli process. Whilst quite similar to the goal here, a

deeper reading indicates that it does not have the required form. First, they have

used the term ‘de Bruijn-Bernoulli process’ to refer to attaching an independent

probability to all of the transition edges on the graph, such that there is now a

corresponding probability to adding any of the letters in the de Bruijn graph (and

not the word). This has the effect of removing the dependence of the current state

on the one before in the Markov chain, hence removing all the correlation that I

want to retain. Therefore, I do not look into this further and instead create my own

correlated Bernoulli process.
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To link de Bruijn graphs with this idea of a correlated Bernoulli process, I will

be dealing with the set of s = 2 letters, V = {0, 1}. This is similar to Fredricksen

(1992) who introduces a binary de Bruijn graph. The order of the de Bruijn graph

is then the length of each word that makes up the nodes of the graph, where these

words will be length m sequences of 0’s and 1’s. The de Bruijn graphs of lengths

m = 2 and m = 3 for V = {0, 1} are shown in Figure 3.3. The possible words are

shown by the blue and orange nodes. Since the graphs are made up of two letters

(0 and 1), there are two edges coming in and out of each node so that there are a

total of 2m nodes and 2m+1 edges. The middle plot emphasizes the fact that the

m+ 1 word length graph can be created by placing an appropriate node on each of

the existing edges in the m word length graph and then adding in the corresponding

edges. Hence, for the m+ 1 length de Bruijn graph there are an extra 2m nodes and

2m+1 edges.

A de Bruijn graph is Markov on the word. Hence, the nodes of the de Bruijn graph

are the states of a Markov chain, where the edges are the transition probabilities for

either adding a 0 or 1 to the sequence depending on the current word. As a reminder,

the notation, pj
i , represents the transition probability of going from state (word) i to

state (word) j; e.g., for word length m = 3, p100
010 is the probability of going from the

word 010 to the word 100. This is the same as saying a 0 is added to the sequence

010 to create the sequence 0100. By running through the de Bruijn graph, it is then

possible to create long chains of 0’s and 1’s.

The transition probabilities can be written in terms of a transition matrix. For

example, for a de Bruijn graph of word length 2 (top graph in Figure 3.3), the

possible words are: 00, 01, 10 and 11. The corresponding transition matrix is formed

as follows:

T =



1 − p01
00 p01

00 0 0

0 0 1 − p11
01 p11

01

1 − p01
10 p01

10 0 0

0 0 1 − p11
11 p11

11


,
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Fig. 3.3 Examples of length 2 and 3 de Bruijn graphs with two letters: 0 and 1.

where p00
00 = 1 − p01

00 due to conservation of probability. As the word length increases,

we end up with more transition probabilities and an increasingly large transition

matrix. For word length m there are 2m+1 different transition probabilities (same as

the number of edges in the graph).

I can now incorporate this to formally define the new process, which I name

the de Bruijn process. This is a correlated Bernoulli process, and has the following

properties. I note that the set of letters does not necessarily have to be V = {0, 1},

but this is used for the rest of work in this thesis.

Definition (de Bruijn Process): The de Bruijn process is a process to produce

sequences of ‘letters’ from the set, V = {0, 1}, where correlation is included through

a de Bruijn graph structure with length m ‘words’. There is defined to be a Markov
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property on the de Bruijn words but not on the letters such that for time step, t:

P (Xt = it|Xt−1 = it−1, Xt−2 = it−2, ..., X0 = i0) = P (Xt = it|Xt−1 = it−1)

= pit
it−1 ,

for random variables, X, and where pit
it−1 is the probability of transitioning from the

word it−1 to word it.

The main aim for developing this de Bruijn process is to be able to produce chains

of 0’s and 1’s so that we get blocks of letters, and avoid getting spikes of misclassified

values that occur when making predictions using a classification method or logistic

regression. The word length and associated transition probabilities are where we can

add a certain amount of ‘stickiness’ into the model so that we are able to control

how clumped together the letters will be. For example, if we let the probabilities

be: {p01
00 = 0.1, p11

01 = 0.9, p01
10 = 0.1, p11

11 = 0.9} in a length m = 2 de Bruijn process,

this will ensure that there is a high level of stickiness for both 0’s and 1’s, avoiding

changes between values. Equivalently, we can make the model very ‘anti-sticky’ by

choosing the transition probabilities that retain the current letter to be small. It is a

combination of both the transition probabilities and the word length that gives us

the vast about of possible structure. As we increase the word length, this generates

a larger number of intricate transition probabilities where we can set values to give

us the exact de Bruijn process we are looking for.

As before, I distinguish the marginal probabilities, π, from the transition probabilities,

p, to avoid confusion. I state π({i}) when referring to i as a letter, and π(i) when

referring to i as a word. If the Markov chain on the word is stationary, then the

marginal probabilities (for both words and letters) can be calculated using the

methods described in Section 3.2. The probabilities of getting a 0 or 1 will vary as

you go through (dependent on the current word), but the marginal probabilities of

getting 0’s and 1’s will be constant over time.

Since it is the transition probabilities that control the structures of the letters,

there are relationships between the marginal probabilities and the transition probabilities

which we can express in the following equations. For m = 2 we know the following
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relationships are true:

π({1}) = p01
00π(00) + p11

01π(01) + p01
10π(10) + p11

11π(11),

π({0}) = p00
00π(00) + p10

01π(01) + p00
10π(10) + p10

11π(11),
(3.1)

where π({0}) + π({1}) = 1. These expressions are derived from the law of total

probability that states that π({j}) = ∑
n P (j|in)π(in), so that the probability of a

letter (0 or 1) is the weighted average of all the possible words that could generate

that letter. In other words, we average over all of the possible starting words to

get the probability of obtaining a single 0 or 1. We are able to obtain the π′s from

the transitions, p, but we are not able to obtain all of the transitions from just

knowing the marginals, π. There needs to be some constraints to make the transition

probabilities identifiable.

For the above example (where {p01
00, p

11
01, p

01
10, p

11
11} = {0.1, 0.9, 0.1, 0.9}), the marginal

probabilities for the words are: {π(00), π(01), π(10), π(11)} = {0.45, 0.05, 0.05, 0.45},

and the marginal probabilities for the letters are: π({0}) == 0.5 and π({1}) = 0.5.

There is a 50% chance of getting a 0 or a 1, but by including the de Bruijn graph

structure into the Markov chains, we are forcing correlation to be included and so

the 0’s and 1’s will appear in clustered blocks (see examples in Figures 3.4 and 3.6).

If we remove the de Bruijn structure and generate a sequence of independent random

Bernoulli trials, we would observe the same proportions of each letter, but they

would no longer be clustered in blocks.

We can expand Equation (3.1) to be applicable for any word length, m, as follows:

π({1}) =
2m−1∑
i=0

p
(2i+1) mod2m

i π(i),

where π({0}) + π({1}) = 1. This is written in the same structure as for the word

length 2 case in Equation (3.1), but to simplify the notation and to apply to a general

word length, we can write the words in terms of the decimal representation of the
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binary values, e.g. for word length m = 3 the words translate as follows:

000 → 0

001 → 1

010 → 2

011 → 3

100 → 4

101 → 5

110 → 6

111 → 7

This form is repeatedly used for the remainder of this thesis and is formally written

as, ∑m
i=1 ki 2i−1, where ki ∈ {0, 1} is each letter in the word; e.g. for the word 010,∑m

i=1 ki 2i−1 = k120 + k221 + k322 = 0 · 1 + 1 · 2 + 0 · 4 = 2.

All of the calculations in this and the following chapters are based on sequences

and run lengths of 1’s. However, since there are only two possible letters, there are

some symmetries, and we can easily convert this to be applicable to 0’s.

3.3.1 Examples

Figures 3.4, 3.5, 3.6, 3.7 and 3.8 present some examples of how the transition

probabilities and word length effect the chains of 0’s and 1’s that are produced when

running through the corresponding de Bruijn process. To generate a sample from

the de Bruijn processes, we run through the transition matrix to generate long runs

of 0’s and 1’s. It is also currently assumed that the starting value is unknown. We

simulate for a sufficient amount of time to be in steady state, taking a large enough

burn-in to ensure that this does not affect any results. This is equivalent to a random

walk on a de Bruijn graph.

Figure 3.4 shows the effects of altering the transition probabilities. Each panel

gives one of four examples of running a word length m = 2 de Bruijn process

for n = 200 time steps. The marginal probabilities are kept the same (π({0}) =

π({1}) = 0.5) so that we can make a better comparison of the spread of letters.
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We would expect that like letters become far more sticky when the probabilities for

remaining at the same letter are kept close to one. If the transition probabilities are

all kept at 0.5, then we would expect the opposite, which would be the equivalent

of a series of random Bernoulli trials. The transition probabilities set for each

m = 2 example are {p01
00, p

11
01, p

01
10, p

11
11}, where for the four examples (from top to

bottom) these parameters take the values {0.5, 0.5, 0.5, 0.5} , {0.25, 0.75, 0.25, 0.75} ,

{0.1, 0.9, 0.1, 0.9} and {0.05, 0.95, 0.05, 0.95} respectively. The first (top) example

behaves as expected, where the distribution of the 0’s and 1’s appears fairly random.

The 0’s and 1’s in the second and third plots then show increasingly sticky behaviour,

to the point that the final (fourth) plot shows a large region where the de Bruijn

process has favoured 1’s over 0’s. Note that there are not equal numbers of 0’s and

1’s in the final plot because the average run lengths are becoming much larger and

it is harder to find a length 200 window when the marginals are equal. If I let this

graph run forever, then over time we would be left with equal numbers of 0’s and 1’s.

Fig. 3.4 Four samples from de Bruijn processes with letters 0 and 1 to show the
effects of changing the transition probabilities. From top to bottom, the transition
probabilities, {p01

00, p
11
01, p

01
10, p

11
11}, are: {0.5, 0.5, 0.5, 0.5} , {0.25, 0.75, 0.25, 0.75} ,

{0.1, 0.9, 0.1, 0.9} and {0.05, 0.95, 0.05, 0.95}.

The corresponding run length histograms for these examples are shown in Figure

3.5. A run length is defined as follows:
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Definition (Run Length): A run length is defined as the number of consecutive

1’s (or 0’s) in a row bounded by a 0 (or 1) at both ends.

The plots in Figure 3.5 show the distributions of these run lengths for given

sequences of 0’s and 1’s. The histograms confirm the results indicated in Figure 3.4,

by showing that not only are there far fewer shorter run lengths when the letter

stickiness increases, but also that the more extreme run lengths are far larger. We

still see some shorter run lengths in the very sticky de Bruijn process plots, but there

are far less, which is to be expected in a stochastic process. There is also far less

variation in the top plot: for the majority of the time we see run lengths of length

one or two.

Fig. 3.5 Corresponding histograms showing the distributions of run lengths of 1’s
from the de Bruijn process examples in Figure 3.4. The run lengths are shown to
increase as the de Bruijn processes become more sticky to 1’s.

As a measure of stickiness of the de Bruijn process, we can also look at the

average run length of 1’s (or 0’s) in a corresponding chain. This is discussed in
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greater detail in Chapter 4, so I will just state the run lengths for the examples

in Figure 3.4 here. The average run lengths of 1’s are 1.95, 4.10, 9.47 and 19.60

respectively for each of the four simulations of length 200. These results are what

we would expect, given that the average run lengths are getting increasingly longer

as the stickiness of the de Bruijn process is increased. It is interesting to note that

although there is not a huge difference between the probabilities, {0.1, 0.9, 0.1, 0.9}

and {0.05, 0.95, 0.05, 0.95}, there is a substantial difference between their average

run lengths. During a run of 1’s, there is a 10% chance for the next letter to be a 0

for the {0.1, 0.9, 0.1, 0.9} de Bruijn process, but a 5% chance for the next letter to

be a 0 for the {0.05, 0.95, 0.05, 0.95} chain.

As stated previously, it is also possible to alter the transition probabilities to

create a structure that is anti-sticky to like letters. This is shown in Figure 3.6,

for which three panels show the results of simulations of word length m = 2 de

Bruijn processes with transition probabilities {0.9, 0.1, 0.9, 0.1} , {0.5, 0.5, 0.5, 0.5}

and {0.1, 0.9, 0.1, 0.9} respectively. If we compare the top and middle sequences, it is

clear how much difference the anti-sticky probabilities can make, as compared to the

independent Bernoulli version. The top sequence is seen to be much more structured,

with the 0 and 1 values swapping constantly to create a regular anti-clustering

pattern. This is in contrast to the bottom sequence where the 0’s and 1’s are far

more sticky to the same letter. These three sequences show that by using the de

Bruijn structure we can form a vast variety of different patterns.

So far, I have only discussed examples for which the marginal probabilities for

the letters are equal (π({0}) = π({1}) = 0.5); i.e., for the example where p11
11 = 0.9,

we must also have p00
00 = 0.9. If the marginals were changed to be π({1}) = 0.8 and

π({0}) = 0.2, then if p11
11 = 0.9, we must also have p00

00 = 0.225. This is calculated

using either the definition, π({0})p11
11 = (1−π({0}))p00

00 or (1−π({1}))p11
11 = π({1})p00

00.

Hence, if you know the marginals for 0 and 1, then you can reduce the number of

transition probabilities by half. An example using these values is shown in Figure

3.7, with word length m = 2. From top to bottom the transition probabilities,

{p01
00, p

11
01, p

01
10, p

11
11}, are: {0.1, 0.8, 0.2, 0.9} and {0.775, 0.8, 0.8, 0.9} so that we can
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Fig. 3.6 Three samples from de Bruijn processes with letters 0 and 1 to show
the differences between an anti-sticky de Bruijn, independent Bernoulli de Bruijn
and sticky de Bruijn processes. From top to bottom, the transition probabilities,
{p01

00, p
11
01, p

01
10, p

11
11}, are: {0.9, 0.1, 0.9, 0.1} , {0.5, 0.5, 0.5, 0.5} and {0.1, 0.9, 0.1, 0.9}.

compare a symmetrical example against a non-symmetrical example. Here we can see

that there are far more chains of 1’s than 0’s in the bottom plot (non-symmetrical),

but roughly equal numbers of chains of both 1’s and 0’s in the top plot (symmetrical).

The transition probabilities in this example are defined such that the stickiness to

1’s is the same, but the number of 1’s in the non-symmetric example should be 80%

of the total number of letters. This is emphasized by the average run lengths for the

two chains being very close in value at 9.96 and 9.68 respectively.

Fig. 3.7 Two samples from de Bruijn processes with letters 0 and 1 to show the
differences between symmetric and non-symmetric de Bruijn processes. From
top to bottom, the marginal probabilities are: π({0}) = π({1}) = 0.5 and
π({0}) = 0.2, π({1}) = 0.8, and the transition probabilities, {p01

00, p
11
01, p

01
10, p

11
11},

are: {0.1, 0.8, 0.2, 0.9} and {0.775, 0.8, 0.8, 0.9}.

Figure 3.8 shows the effects of the run lengths and letter stickiness when changing

the word length, m, of the de Bruijn process. From top to bottom, the word

lengths used are m = 1, m = 2, m = 3 and m = 4. It is much trickier to
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make direct comparisons here due to the extra transition probabilities that are

introduced at each increase in word length (this plot is just to give a rough idea

of the difference a longer word length can make). The transition probabilities for

each case are chosen to be fairly similar to each other, but we must keep in mind

that we can induce a larger impact on run length when changing both the word

length and transition probabilities simultaneously. The transition probabilities used in

Figure 3.8 are as follows: {p1
0, p

1
1} = {0.2, 0.8}, {p01

00, p
11
01, p

01
10, p

11
11} = {0.1, 0.8, 0.2, 0.9},

{p001
000, p

011
001, p

101
010, p

111
011, p

001
100, p

011
101, p

101
110, p

111
111} = {0.1, 0.7, 0.4, 0.8, 0.2, 0.6, 0.3, 0.9} and {p0001

0000,

p0011
0001, p

0101
0010, p

0111
0011, p

1001
0100, p

1011
0101, p

1101
0110, p

1111
0111, p

0001
1000, p

0011
1001, p

0101
1010, p

0111
1011, p

1001
1100, p

1011
1101, p

1101
1110, p

1111
1111}

= {0.1, 0.6, 0.5, 0.7, 0.3, 0.5, 0.4, 0.8, 0.2, 0.6, 0.5, 0.7, 0.3, 0.5, 0.4, 0.9}. As we can see,

the length of the word does make a difference to the stickiness of the letter (since

there is a slight increase in run length as we move down the different plots), but one

of the main advantages of selecting a longer word is the increased structure that can

be incorporated through the more intricate transition probabilities.

Fig. 3.8 Four samples from de Bruijn processes with letters 0 and 1 to show the
effects of changing the the word length, m. From top to bottom, the word lengths are
m = 1, m = 2, m = 3 and m = 4. Transition probabilities are kept fairly equivalent
for all examples to show the effects of the word lengths alone.

Normally, when increasing the word length, we can also increase the inherent

complexity, and we can add in further structure to the de Bruijn process. However,
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we may find that two different de Bruijn processes with different word lengths

may actually be equivalent, such that the same sequences could be generated from

either process. Two sequences generated from both processes would have the same

properties and the run length distributions from both processes would be equivalent.

The intermediate transition properties of the larger de Bruijn process are not adding

any more structure to the process, so we can actually remove these and convert the

larger length word process to that of the shorter word length. A simple example of

this is shown in Figure 3.9 where there are four different sequences created with de

Bruijn processes with word lengths, m = 1, m = 2, m = 3 and m = 4. The transition

probabilities are defined such that there is a 10% chance of changing to a different

letter and a 90% chance of remaining at the same letter for each of the four different

sequences. Here, the intermediate transition probabilities in the larger word length

processes are not adding any further structure to the process since there is still a

90% chance of observing the same letter regardless of the word length. This is clearly

seen in Figure 3.9 where the run lengths in each of the sequences are all similar to

the run lengths generated from the m = 1 de Bruijn process (classical Markov).

Fig. 3.9 Four samples from de Bruijn processes with letters 0 and 1 to show how
certain chains with larger word lengths can be equivalent to chains with shorter word
lengths. From top to bottom, the word lengths are m = 1, m = 2, m = 3 and m = 4.
Transition probabilities are set at 0.1 for adding a different letter (e.g. p101

110) and 0.9
for adding the same letter (e.g. p111

011).
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3.3.2 Markov Properties

In Section 3.2, I showed that the eigenvalues and eigenvectors of the transition

matrix for the de Bruijn word Markov chain can offer valuable information. The first

eigenvalue is λ = 1, and the second eigenvalue tells us how fast the Markov chain

converges to its stationary distribution (convergence rate). If the transition matrix

has the form:

T =



q p 0 0

0 0 p q

q p 0 0

0 0 p q


,

then the rate of convergence is q − p. So, for the example presented in Figure 3.4

where the transition probabilities are {0.1, 0.9, 0.1, 0.9}, the rate of convergence is

q−p = 0.9−0.1 = 0.8, indicating that the Markov chain will converge at a reasonably

fast rate (around 480 steps to convergence within 0.001 error). For the other

examples in Figure 3.4, where the transition probabilities are {0.25, 0.75, 0.25, 0.75}

and {0.05, 0.95, 0.05, 0.95}, the convergence rates are 0.5 and 0.9 respectively (with

associated steps to convergence of 600 and 330 each within 0.001 error). This shows

that the transition probabilities have an influence on the convergence rate; when the

letters tend to be more sticky, the Markov chain on the word converges at a higher

rate. This is to be expected, since the closer the Markov chain is to being equivalent

to independent Bernoulli trials, the more random the sequence is, and convergence

to the stationary distribution is slower.

Either powering up the transition matrix, or finding the eigenvector corresponding

to the eigenvalue λ = 1 gives the marginal distribution. For the examples in

Figure 3.4 the marginal distributions for the words, {π(00), π(01), π(10), π(11)},

are {0.25, 0.25, 0.25, 0.25}, {0.375, 0.125, 0.125, 0.375}, {0.45, 0.05, 0.05, 0.45} and

{0.475, 0.025, 0.025, 0.475} respectively. We can see that all the marginals sum

to one so that π(00) + π(01) + π(10) + π(11) = 1 as expected, and that the

individual marginals for 0 and 1 both sum to 0.5 (π({0}) = π({1}) = 0.5) so that

π({0}) = π(00) + π(10) = 0.5 and π({1}) = π(01) + π(11) = 0.5.
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The mean recurrence time for a state, i, for each of the examples in Figure 3.4

is given by 1
πi

. So, if we are interested in finding the mean recurrence time for the

state 11, we just need to find 1
π(11) for each of the examples in Figure 3.4. This gives

times of 4, 2.667, 2.222 and 2.105 respectively. This is again as expected; if the

de Bruijn process is very sticky towards 1’s then it is much more likely to return

to the state 11 again in a short period of time. The mean recurrence times of the

state 01 are found to be 4, 8, 20 and 40 for each example respectively. We would

expect the de Bruijn processes that are sticky towards 1’s to not return to the state

01 very quickly. They are likely to get stuck in the state 11 for a long time, then

switch to 10, then stay stuck in the state 00 for a while (if the marginals between the

letters 0 and 1 are equal) before returning to the state 01. If instead the de Bruijn

process is similar to independent Bernoulli trials, then we would expect the state 01

to appear far more often. For the independent Bernoulli case when the marginals

are {p01
00, p

11
01, p

01
10, p

11
11} = {0.25, 0.25, 0.25, 0.25}, the mean recurrence time is 4 for all

states. This is because we are equally likely to go to any state, so on average we

would visit all other states before returning to the same one. If we looked at the

mean recurrence time for a de Bruijn process with a larger word length, we would

find the same patterns, but the overall times would likely be shorter since there are

more available states to travel to because the graph is larger.

3.3.3 De Bruijn Graphs as Trees

In this section, I will define connections between de Bruijn graphs for a correlated

Bernoulli process and a specific type of graphical model called trees (Lauritzen, 1996).

Consider a graph G = (W,E), where W is a set of vertices (or nodes) and E is a

set of edges such that E is a subset of the set W × W of ordered pairs of distinct

vertices. The edges can either be directed or non-directed, but multiple edges or

loops do not exist. Graphs can be extremely useful for visualising certain data or

models. By expressing edges between nodes of the graph, we can clearly see any

relationships or dependencies in the data.
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A tree is a connected, undirected graph without cycles, where a rooted tree is a

tree with direction. A single vertex is chosen as the root and all edges are directed

away from this point. We can immediately see the connection to de Bruijn graphs

since there is a clear direction away from the initial letter, and when we take a

random walk on the de Bruijn graph, this is equivalent to taking a specific route

down a tree. A de Bruijn graph with letters 0 and 1 expressed as a tree is shown in

Figure 3.10.

Fig. 3.10 De Bruijn graph with letters 0 and 1 expressed as a section of a tree starting
from the root word, 00.

The plot consists of a small section from the tree where the nodes are the de

Bruijn words and each edge corresponds to either adding a 0 or a 1 to the sequence.

The starting node (the root) in this example is the word 00, but this would be

equivalent to any starting word since the tree creates a factorial pattern. We can link

trees closer to de Bruijn graphs by attaching the appropriate transition probabilities

to each of the edges. In the literature, for example (Sedgewick and Flajolet, 2013),

there are different types of trees. In fact, the tree shown in Figure 3.10 is a binary
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tree. Binary trees are trees where the nodes have no more than two edges directed

out.

De Bruijn graphs as trees is just one example of another way of viewing the

graphs themselves. I have not gone into great detail on the subject as it is a topic for

future work. By connecting de Bruijn processes to other existing graphical models,

we may be able to expand or simplify some of the concepts developed. Therefore I

believe research into other existing graph theory is going to be a vital step for the

future.

3.4 Discussion

In this Chapter, I have given an initial overview of how we can build a correlated

Bernoulli process using de Bruijn graphs. There has been very little previous research

done in this area, with nothing having the desired structures and simplicity required.

The eventual goal is to be able to use de Bruijn processes in conjunction with a

classification method such as logistic regression. When taking draws or samples

to make classification predictions in logistic regression, we end up neglecting any

between input correlation, so it is vital that we can find an alternative to improve

on classification predictions.

De Bruijn graphs are a way of creating sequences of 0’s and 1’s such that we can

control the spread of correlation across neighbouring points. They have connections to

Markov chains, whose properties can help to define quantities such as the stationary

distribution, mean recurrence time and letter run lengths. In this chapter I have

defined the de Bruijn process and shown examples including samples of the types of

sequences that we can generate from them. I have also given examples on how we

can change the structures of the sequences so that we can force the 0’s and 1’s to be

more sticky and clump together for like letter. I feel that there are many areas for

further research in this area which will be discussed in detail in Chapter 7.

In the following chapter I will be developing the de Bruijn process further to

look at the run length distributions of letters, as well as inference. In Chapter 5, I

will show possible methods to expand de Bruijn graphs to higher dimensions and in
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Chapter 6 I will present thoughts on moving towards a non-directional de Bruijn

graph. My aim is to fully remove the direction out of de Bruijn graphs since it is not

always natural to have a direction when considering the chains (or grids in Chapter

5) of 0’s and 1’s.





Chapter 4

De Bruijn Process Properties and

Inference

4.1 Introduction

In Chapter 3, I outlined an approach to producing a correlated Bernoulli process

using de Bruijn graphs. I demonstrated how to create chains of 0’s and 1’s, for which

we can introduce structure so that the sequence becomes far more ‘sticky’ to the

same letters. Similarly, we can reverse this so that we can produce the inverse effect:

creating an ‘anti-sticky’ sequence that constantly swaps between letters. We will first

be discussing the run length distribution of the de Bruijn process. The run length

distribution specifies the chance of observing each length of runs of 1’s (or 0’s) in a

sequence for a given de Bruijn process. The number of consecutive 1’s (or 0’s) in a

row will hence give a measure of how sticky a sequence generated from a specific de

Bruijn process is likely to be. The structure of the run length problem allows me to

use well established results developed for the geometric distribution to help derive

results. Examples are given comparing the theoretical expected run lengths against

the simulated run lengths obtained in Section 3.2.1 for Figures 3.4, 3.6, 3.7 and 3.9.

Secondly, I have developed a method of inference which is discussed in Section

4.3. Given a sequence of 0’s and 1’s, we want to be able to estimate the de Bruijn

process that was used to create it. This involves estimating both the word length,

m, and the transition probabilities, p, that determine the correlated structure of the
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corresponding Markov chains. Both frequentist and Bayesian solutions are given,

along with an example to illustrate the method.

4.2 Run Length

A property of interest within the de Bruijn process is the run lengths of particular

letters, and in particular whether these run lengths change with different word lengths

and/or transition probabilities. For the remainder of this section, I will discuss,

without loss if generality, the run lengths of 1’s for my de Bruijn processes discussed

in Section 3.2.1. The aim is to improve on current run length literature such as

Fu and Koutras (1994) who focus on the run lengths in sequences of independent

Bernoulli trials. A run is defined as the number of consecutive 1’s in a row bounded

by a 0 at each end. We saw in Chapter 3 that by changing both the length of the

de Bruijn word and the transition probabilities, we are able to create both sticky

and anti-sticky sequences of 0’s and 1’s. We also know that the very sticky de

Bruijn processes produce far longer run lengths of 1’s than those that are closer to

independent Bernoulli trials. Therefore, by analysing the run lengths of different

de Bruijn processes we will be able to give some quantification of the stickiness of

different sequences, and identify the de Bruijn graphs that created them. As well as

the distribution itself, properties of the run length will be discussed including the

expectation, variance and generating functions. As a reminder, π(i) represents the

marginal probability of the word i (or π({i}) for the letter i) and pj
i represents the

probability of transitioning from the word i to the word j.

4.2.1 Run Length Distribution

The run length distribution for a word length m = 2 de Bruijn process with transition

probabilities {p10
01, p

11
01, p

10
11, p

11
11} is given in Lemma 4.1. This distribution gives the

probability of a run of 1’s of length n, for any n ∈ N+. The probability of a single

1 is simply the transition probability p10
01, since this gives us the probability of

transitioning from the word 01 to the word 10, giving the sequence 010. For higher

run lengths we again start with the word 01, but now transition to the word 11, with
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probability p11
01. For a run of length two, we would then finish with the probability

p10
11, but for a run length of three, we would further transition to the same word

11 with transition probability p11
11. For run lengths of greater than three, we would

continue to return to the word 11 until a run length of n is reached. Hence, in

Lemma 4.1 this transition probability is raised to the power n − 2. The power is

taken to be n− 2 here instead of n since a run length of two is already created with

the other two transition probabilities in the equation, and so two must be removed

to compensate. Every run must finish with the probability p10
11 since the zero must be

there to finish the run off. As said previously in Chapter 3, if the de Bruijn process

is very sticky to 1’s, then the value of p11
11 will be close to one and the probability of

long run lengths will be high. Also, for small values of p11
11, the probability of long

run lengths will be small. Note that this distribution is conditional on a run existing.

For future work this could be extended to also include run lengths of length zero.

Lemma 4.1 (Run Length Distribution, m = 2).

P (run length = n) =


p10

01 for n = 1

p11
01(p11

11)n−2p10
11 for n ≥ 2,

Proof. P (run length = n) = p10
01 for n = 1. For n ≥ 2, the run starts with the

word 01 and transitions to 11 with probability p11
01 creating the sequence 011. The

run continues by transitioning to the word, 11, with probability p11
11, n− 2 times to

create a run of length n. The run ends with the first zero with probability p10
11, hence:

P (run length = n) = p11
01(p11

11)n−2p10
11, for n ≥ 2.

For the above equation to be the appropriate distribution function, for all values

of n from 1 to ∞, then it must be true that ∑∞
n=1 P (run length = n) = 1:
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∞∑
n=1

P (run length = n) = p10
01 +

∞∑
n=2

p11
01(p11

11)n−2p10
11

= p10
01 + p11

01p
10
11

∞∑
n=0

(p11
11)n

= p10
01 + p11

01p
10
11

1 − p11
11

= p10
01 + p11

01p
10
11

p10
11

= p10
01 + p11

01

= 1

since, ∑∞
n=0 x

n = 1
1−x

when |x| < 1, p10
11 + p11

11 = 1 and p10
01 + p11

01 = 1.

In Theorem 4.2 the run length distribution is extended for de Bruijn words of

length three and higher using the decimal representation of the binary notation

discussed in Section 3.2.1. Although this appears to be far more complicated than

the m = 2 version, it follows the same pattern. We retain the term that represents

when the de Bruijn process continues to return to the state that only consists of

1’s
(
p2m−1

2m−1

)
, but there is now a longer run in period until this point. To start a

sequence of 1’s off, the first word must take the form ∗ 01; the run starts with the

first 1 after a 0, and it makes no difference which letters come before. Hence, ∗

can represent any possible sequence of length m− 2, and therefore there are 2m−2

possible starting words that will eventually lead into the same run of 1’s. Since there

are 2m−2 starting positions, we must average over all possibilities using the law of

total probability (Feller, 1950) to get the full run length distribution. The equation

for total probability is used as follows:

P (run length = n) =
2m−2−1∑

i=0
P (run length = n|∗i)π(∗i), (4.1)

where π(∗i) is the marginal probability for the ith starting sequence. Since the

sequences represented by ∗ are of length m− 2, the marginal probabilities for these

sequences must be found given that we are working with a de Bruijn process with
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word length m. We do this by applying the law of total probability again, such that:

π(∗i) =
2m−2−1∑

j=0
P (∗i|j)π(j),

making it possible to find the probabilities of the sequences ∗i by averaging over all

of the possible starting words that could produce this sequence.

For example, assume we have a de Bruijn process of word length m = 3. To

begin our run of 1’s, we can either start with the word 001 or 101. Therefore, using

Equation (4.1), we need to find π({0}) and π({1}) where,

π({0}) = p000
000π(000) + p010

001π(001) + p100
010π(010) + p110

011π(011)

+ p000
100π(100) + p010

101π(101) + p100
110π(110) + p110

111π(111).
(4.2)

As a reminder, π({i}) represents the marginal probability of i if i is a letter, whilst

π(i) represents the marginal probability of i if i as a word.

For larger word lengths, there are not only more possible starting positions, but

the run-in or burn-in period is also longer. This is due to the fact that it takes longer

for a larger word to reach a sequence of all 1’s. Thus, in Theorem 4.2, I have chosen

to write the cases where n is smaller than the word length, m, separately as there is

a slightly different pattern. In these cases, the run does not reach the state with all

1’s before it hits a 0, and instead transitions to a word of the form ∗10. All runs of

length n which are greater than the word length m end up reaching the all 1 state,

and then finish the run with the first 0, resulting in a word of the form 11..10 with

transition probability p2m−2
2m−1. The state with all 1’s must also be raised to the power

n−m since a length of m 1’s is obtained in the run up period.
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Theorem 4.2 (Run Length Distribution, m ≥ 3).

P (run length = n)

=



∑2m−2−1
i=0 π(i) p23(i mod 2m−3)+2

4i+1 for n = 1
∑2m−2−1

i=0 π(i) p23(i mod 2m−3)+3
4i+1 for n = 2 : m− 1

×
[∏n−1

j=1 p
2j+3(i mod 2m−j−3)+(2j+2−1)−1j=n−1
2j+2(i mod 2m−j−2)+(2j+1−1)

]
∑2m−2−1

i=0 π(i) p23(i mod 2m−3)+3
4i+1

×
[∏m−2

j=1 p
2j+3(i mod 2m−j−3)+(2j+2−1)
2j+2(i mod 2m−j−2)+(2j+1−1)

]
for n ≥ m.

×
[(
p2m−1

2m−1

)n−m
p2m−2

2m−1

]

where,

π(i) =
2m−1∑
j=0

m−3∏
k=0

[
p

2k+1(j mod 2m−k−1)+
∑k+1

s=1 2k−s+1[( 1
2m−s−2 (i−(i mod 2m−s−2)))mod 2]

2k(j mod 2m−k)+
∑k

s=1 2k−s[( 1
2m−s−2 (i−(i mod 2m−s−2)))mod 2]

]
π(j)

Proof. See Appendix A

For example, consider again the run length distribution for a length m = 3 de

Bruijn process. We can start the run off with either the word 001 or 101 so that the

run length distribution becomes:

P (run length = n) = P (run length = n|{0})π({0})

+ P (run length = n|{1})π({1}),

where P (run length = n|{0}) represents the probability of getting a run of length

n conditional on starting at the letter 0 with word 001. To find π({0}) (and similarly

π({1})) we use the definition in Equation (4.2). This converts the length m − 2

marginal distribution into an expression in terms of the length m marginals. Then,

providing the underlying Markov chain is stationary, we can find the length m

marginals by powering up the transition matrix or by looking at the eigenvalues and

eigenvectors (see Section 3.2.1). Note that it is easier to understand these problems
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by looking at the corresponding de Bruijn graph; the graph for m = 3 is shown in

Figure 3.3.

For a run length of a single 1 (keeping m = 3), we consequently have the

probability p010
001π({0}) + p010

101π({1}), which create the sequences 0010 and 1010

respectively. For a run length of two 1’s we instead make two transitions such

that the next letters to include are a 1 and a 0. Such a run has probability

p011
001p

110
011π({0}) + p011

101p
110
011π({1}). For run lengths of three or more, we now have a run

up long enough to reach the state 111, and we proceed in a similar way as above, but

also include powers of p111
111 until we reach the desired run length. A run of length n

then has probability p011
001p

111
011 (p111

111)
n−3

π({0}) + p011
101p

111
011 (p111

111)
n−3

π({1}). The power

we apply to p111
111 is now n− 3, as the run up to p111

111 includes three 1’s.

It is clear that the run length distribution has a connection to the discrete

geometric distribution (Feller, 1950; Johnson et al., 2005). The geometric distribution

gives the probability that the first success (1) from a set of independent trials, X,

with probability of success, p, happens on the (k + 1)th trial. The density is given

by: P (X = k) = (1 − p)kp for k = 0, 1, 2, ..., giving the probability distribution of

the number of independent Bernoulli trials needed to get the first success.

We can consider the run length distribution as a generalised geometric distribution

due to the burn-in period that is required for the de Bruijn process. Although the

geometric distribution considers independent trials, whilst I want to retain correlation

as a vital part of the run length, we can still observe the transitions in a geometric

way. Since the transitions have a specific ordering to make the words fit into the de

Bruijn structure, there is still a correlation enforced in this way. I will be using this

link to the geometric distribution to help in following calculations in this chapter.

4.2.2 Expected Run Length

From the run length distribution, we can now calculate subsequent measures. I first

consider the expectation (Feller, 1950), where the expected run length for a length

m = 2 de Bruijn process is given in Lemma 4.3. Due to the connections between

the de Bruijn process run length and the geometric distribution, we can use results
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for the geometric distribution to make simplifications to expressions. The geometric

distribution function takes the form, P (X = x) = (1 − p)xp, for x = 0, 1, 2, 3, ...,

meaning that we can use the expectation, E[X] = ∑
x xP (X = x) = ∑

x x(1 − p)xp =
q
p
, to help make simplifications. Even though the smallest run is of length one, I use

the geometric distribution starting from x = 0 since raising p11
11 to the power zero

still gives a positive run length.

Lemma 4.3 (Expected Run Length, m = 2).

E [run length] = p10
01 + p11

01 (1 − (p10
11)2)

p11
11p

10
11

.

Proof.

E [run length] =
∞∑

n=1
n× P (run length = n)

= p10
01 +

∞∑
n=2

np11
01(p11

11)n−2p10
11

= p10
01 + p11

01
(p11

11)2

∞∑
n=2

n(p11
11)np10

11

= p10
01 + p11

01
(p11

11)2

[ ∞∑
n=0

n(1 − p10
11)np10

11 − p11
11p

10
11

]

= p10
01 + p11

01
(p11

11)2

[
p11

11
p10

11
− p11

11p
10
11

]

= p10
01 + p11

01 (1 − (p10
11)2)

p11
11p

10
11

.

since E[X] = ∑
x xP (X = x) = ∑

x x(1 − p)xp = 1−p
p

for a geometric distribution

with P (X = x) = (1 − p)xp and x = 0, 1, 2, 3, ....

Following from this, the expressions for the expected run lengths for de Bruijn

processes of length m = 3 and m = 4 are given in Lemmas 4.4 and 4.5 respectively.

I have included these so that the reader can get a better idea of how the de Bruijn

run length distribution works.
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Lemma 4.4 (Expected Run Length, m = 3).

E [run length]

= π({0})p010
001 + π({1})p010

101 + 2
[
π({0})p011

001p
110
011 + π({1})p011

101p
111
011

]
+ 1

(p111
111)3

[
π({0})p011

001p
111
011 + π({1})p011

101p
111
011

] [p111
111
p110

111
− p111

111p
110
111 − 2(p111

111)2p110
111

]
,

where,

π({0}) = p000
000π(000) + p010

001π(001) + p100
010π(010) + p110

011π(011)

+ p000
100π(100) + p010

101π(101) + p100
110π(110) + p110

111π(111)

π({1}) = p000π(001) + p011
001π(001) + p101

010π(010) + p111
011π(011)

+ p001
100π(100) + p011

101π(101) + p101
110π(110) + p111

111π(111).
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Proof.

E [run length] =
∞∑

n=1
n× P (run length = n)

= π({0})p010
001 + π({1})p010

101 + 2
[
π({0})p011

001p
110
011 + π({1})p011

101p
110
011

]
+
[
π({0})p011

001p
111
011 + π({1})p011

101p
111
011

] ∞∑
n=3

n(p111
111)n−3p110

111

= π({0})p010
001 + π({1})p010

101 + 2
[
π({0})p011

001p
110
011 + π({1})p011

101p
110
011

]
+ 1

(p111
111)3

[
π({0})p011

001p
111
011 + π({1})p011

101p
111
011

] [ ∞∑
n=0

n(p111
111)np110

111 − p111
111p

110
111

− 2(p111
111)2p110

111

]
= π({0})p010

001 + π({1})p010
101 + 2

[
π({0})p011

001p
110
011 + π({1})p011

101p
111
011

]
+ 1

(p111
111)3

[
π({0})p011

001p
111
011 + π({1})p011

101p
111
011

] [p111
111
p110

111
− p111

111p
110
111 − 2(p111

111)2p110
111

]
,

where,

π({0}) = p000
000π(000) + p010

001π(001) + p100
010π(010) + p110

011π(011)

+ p000
100π(100) + p010

101π(101) + p100
110π(110) + p110

111π(111)

π({1}) = p000π(001) + p011
001π(001) + p101

010π(010) + p111
011π(011)

+ p001
100π(100) + p011

101π(101) + p101
110π(110) + p111

111π(111).

since E[X] = ∑
x xP (X = x) = ∑

x x(1 − p)xp = 1−p
p

for a geometric distribution

with P (X = x) = (1 − p)xp and x = 0, 1, 2, 3, ....
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Lemma 4.5 (Expected Run Length, m = 4).

E [run length]

= π(00)p0010
0001 + π(01)p1010

0101 + π(10)p0010
1001 + π(11)p1010

1101

+ 2
[
π(00)p0011

0001p
0110
0011 + π(01)p1011

0101p
0110
1011 + π(10)p0011

1001p
0110
0011

+ π(11)p1011
1101p

0110
1011

]
+ 3

[
π(00)p0011

0001p
0111
0011p

1110
0111 + π(01)p1011

0101p
0111
1011p

1110
0111 + π(10)p0011

1001p
0111
0011p

1110
0111

+ π(11)p1011
1101p

0111
1011p

1110
0111

]
+ 1

(p1111
1111)4

[
π(00)p0011

0001p
0111
0011p

1111
0111 + π(01)p1011

0101p
0111
1011p

1111
0111 + π(10)p0011

1001p
0111
0011p

1111
0111

+ π(11)p1011
1101p

0111
1011p

1111
0111

]
×
[
p1111

1111
p1110

1111
− p1111

1111p
1110
1111 − 2(p1111

1111)2p1110
1111 − 3(p1111

1111)3p1110
1111

]

where,

π(i) =
15∑

j=0

p2(j mod 8)+
[

( 1
2 (i−(i mod 2)))mod 2

]
(j mod 16)

× p
4(j mod 4)+2

[
( 1

2 (i−(i mod 2)))mod 2
]

+i mod 2

2(j mod 8)+
[

( 1
2 (i−(i mod 2)))mod 2

] π(j)

for i ∈ {00, 01, 10, 11} and where the decimal representation of binary

notation is used (i.e. i ∈ {0, 1, 2, 3}).
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Proof.

E [run length] =
∞∑

n=1
n× P (run length = n)

= π(00)p0010
0001 + π(01)p1010

0101 + π(10)p0010
1001 + π(11)p1010

1101

+ 2
[
π(00)p0011

0001p
0110
0011 + π(01)p1011

0101p
0110
1011 + π(10)p0011

1001p
0110
0011

+ π(11)p1011
1101p

0110
1011

]
+ 3

[
π(00)p0011

0001p
0111
0011p

1110
0111 + π(01)p1011

0101p
0111
1011p

1110
0111 + π(10)p0011

1001p
0111
0011p

1110
0111

+ π(11)p1011
1101p

0111
1011p

1110
0111

]
+
[
π(00)p0011

0001p
0111
0011p

1111
0111 + π(01)p1011

0101p
0111
1011p

1111
0111 + π(10)p0011

1001p
0111
0011p

1111
0111

+ π(11)p1011
1101p

0111
1011p

1111
0111

]
×

∞∑
n=4

n(p1111
1111)n−4p1110

1111

= π(00)p0010
0001 + π(01)p1010

0101 + π(10)p0010
1001 + π(11)p1010

1101

+ 2
[
π(00)p0011

0001p
0110
0011 + π(01)p1011

0101p
0110
1011 + π(10)p0011

1001p
0110
0011

+ π(11)p1011
1101p

0110
1011

]
+ 3

[
π(00)p0011

0001p
0111
0011p

1110
0111 + π(01)p1011

0101p
0111
1011p

1110
0111 + π(10)p0011

1001p
0111
0011p

1110
0111

+ π(11)p1011
1101p

0111
1011p

1110
0111

]
+ 1

(p1111
1111)4

[
π(00)p0011

0001p
0111
0011p

1111
0111 + π(01)p1011

0101p
0111
1011p

1111
0111 + π(10)p0011

1001p
0111
0011p

1111
0111

+ π(11)p1011
1101p

0111
1011p

1111
0111

]
×
[ ∞∑

n=0
n(p1111

1111)np1110
1111 − p1111

1111p
1110
1111

− 2(p1111
1111)2p1110

1111 − 3(p1111
1111)3p1110

1111

]
= π(00)p0010

0001 + π(01)p1010
0101 + π(10)p0010

1001 + π(11)p1010
1101

+ 2
[
π(00)p0011

0001p
0110
0011 + π(01)p1011

0101p
0110
1011 + π(10)p0011

1001p
0110
0011

+ π(11)p1011
1101p

0110
1011

]
+ 3

[
π(00)p0011

0001p
0111
0011p

1110
0111 + π(01)p1011

0101p
0111
1011p

1110
0111 + π(10)p0011

1001p
0111
0011p

1110
0111

+ π(11)p1011
1101p

0111
1011p

1110
0111

]
+ 1

(p1111
1111)4

[
π(00)p0011

0001p
0111
0011p

1111
0111 + π(01)p1011

0101p
0111
1011p

1111
0111 + π(10)p0011

1001p
0111
0011p

1111
0111

+ π(11)p1011
1101p

0111
1011p

1111
0111

]
×
[
p1111

1111
p1110

1111
− p1111

1111p
1110
1111 − 2(p1111

1111)2p1110
1111 − 3(p1111

1111)3p1110
1111

]
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where,

π(i) =
15∑

j=0

p2(j mod 8)+
[

( 1
2 (i−(i mod 2)))mod 2

]
(j mod 16)

× p
4(j mod 4)+2

[
( 1

2 (i−(i mod 2)))mod 2
]

+i mod 2

2(j mod 8)+
[

( 1
2 (i−(i mod 2)))mod 2

] π(j)

since E[X] = ∑
x xP (X = x) = ∑

x x(1 − p)xp = 1−p
p

for a geometric distribution

with P (X = x) = (1 − p)xp and x = 0, 1, 2, 3, ....

Finally, the expected run length for de Bruijn processes with word length three

or higher is given in Theorem 4.6.

Theorem 4.6 (Expected Run Length, m ≥ 3).

E [run length]

=
2m−2−1∑

i=0
π(i) p23(i mod 2m−3)+2

4i+1

+
m−1∑
k=2

k

2m−2−1∑
i=0

π(i) p23(i mod 2m−3)+3
4i+1

k−1∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)−1j=k−1
2j+2(i mod 2m−j−2)+(2j+1−1)


+ 1(

p2m−1
2m−1

)m

2m−2−1∑
i=0

π(i) p23(i mod 2m−3)+3
4i+1

m−2∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)
2j+2(i mod 2m−j−2)+(2j+1−1)


×
[
p2m−1

2m−1

p2m−2
2m−1

−
m−1∑
n=1

n
(
p2m−1

2m−1

)n
p2m−2

2m−1

]

where,

π(i) =
2m−1∑
j=0

m−3∏
k=0

[
p

2k+1(j mod 2m−k−1)+
∑k+1

s=1 2k−s+1[( 1
2m−s−2 (i−(i mod 2m−s−2)))mod 2]

2k(j mod 2m−k)+
∑k

s=1 2k−s[( 1
2m−s−2 (i−(i mod 2m−s−2)))mod 2]

]
π(j)
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Proof.

E [run length] =
∞∑

n=1
n× P (run length = n)

=
2m−2−1∑

i=0
π(i) p23(i mod 2m−3)+2

4i+1

+
m−1∑
k=2

k

2m−2−1∑
i=0

π(i) p23(i mod 2m−3)+3
4i+1

k−1∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)−1j=k−1
2j+2(i mod 2m−j−2)+(2j+1−1)


+
2m−2−1∑

i=0
π(i) p23(i mod 2m−3)+3

4i+1

m−2∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)
2j+2(i mod 2m−j−2)+(2j+1−1)


×
[ ∞∑

n=m

n
(
p2m−1

2m−1

)n−m
p2m−2

2m−1

]

=
2m−2−1∑

i=0
π(i) p23(i mod 2m−3)+2

4i+1

+
m−1∑
k=2

k

2m−2−1∑
i=0

π(i) p23(i mod 2m−3)+3
4i+1

k−1∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)−1j=k−1
2j+2(i mod 2m−j−2)+(2j+1−1)


+ 1(

p2m−1
2m−1

)m

2m−2−1∑
i=0

π(i) p23(i mod 2m−3)+3
4i+1

m−2∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)
2j+2(i mod 2m−j−2)+(2j+1−1)


×

 ∞∑
n=0

n
(
p2m−1

2m−1

)n
p2m−2

2m−1 −
m−1∑
j=1

j
(
p2m−1

2m−1

)j
p2m−2

2m−1


=

2m−2−1∑
i=0

π(i) p23(i mod 2m−3)+2
4i+1

+
m−1∑
k=2

k

2m−2−1∑
i=0

π(i) p23(i mod 2m−3)+3
4i+1

k−1∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)−1j=k−1
2j+2(i mod 2m−j−2)+(2j+1−1)


+ 1(

p2m−1
2m−1

)m

2m−2−1∑
i=0

π(i) p23(i mod 2m−3)+3
4i+1

m−2∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)
2j+2(i mod 2m−j−2)+(2j+1−1)


×

p2m−1
2m−1

p2m−2
2m−1

−
m−1∑
j=1

j
(
p2m−1

2m−1

)j
p2m−2

2m−1



where,

π(i) =
2m−1∑
j=0

m−3∏
k=0

[
p

2k+1(j mod 2m−k−1)+
∑k+1

s=1 2k−s+1[( 1
2m−s−2 (i−(i mod 2m−s−2)))mod 2]

2k(j mod 2m−k)+
∑k

s=1 2k−s[( 1
2m−s−2 (i−(i mod 2m−s−2)))mod 2]

]
π(j)

since E[X] = ∑
x xP (X = x) = ∑

x x(1 − p)xp = 1−p
p

for a geometric distribution

with P (X = x) = (1 − p)xp and x = 0, 1, 2, 3, ....
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4.2.3 Variance

The next important measure to consider is the variance of the run length distribution.

We can still use results from the geometric distribution to help simplify calculations,

where, for the distribution function, P (X = x) = (1 − p)xp for x = 0, 1, 2, ..., it

is known that, E[X2] = ∑
x x

2P (X = x) = ∑
x x

2(1 − p)xp = (1−p)(2−p)
p2 . Then, by

using the results of Section 4.2.2, and the well known result, Var[run length] =

E[run length2]−(E[run length])2, we can calculate the variance for the run length

distribution. The squared expectation of the run length distribution for the m = 2

word length case is given in Lemma 4.7.

Lemma 4.7 (Squared Expectation of Run Length, m = 2).

E[run length2] = p10
01 +

p11
01

(
2 − p10

11 − (p10
11)

3)
p11

11 (p10
11)

2

Proof.

E[run length2] =
∞∑

n=1
n2 × P (run length = n)

= p10
01 +

∞∑
n=2

n2p11
01(p11

11)n−2p10
11

= p10
01 + p11

01
(p11

11)2

∞∑
n=2

n2(p11
11)np10

11

= p10
01 + p11

01
(p11

11)2

[ ∞∑
n=0

n2(1 − p10
11)np10

11 − p11
11p

10
11

]

= p10
01 + p11

01

(p11
11)

2

[
p11

11(2 − p10
11)

(p10
11)2 − p11

11p
10
11

]

= p10
01 +

p11
01

(
2 − p10

11 − (p10
11)

3)
p11

11 (p10
11)

2

since E[X2] = ∑
x x

2P (X = x) = ∑
x x

2(1 − p)xp = (1−p)(2−p)
p2 for a geometric

distribution with P (X = x) = (1 − p)xp and x = 0, 1, 2, 3, ....

Further, the squared expectation of the run length distribution for word lengths

m ≥ 3 is shown in Theorem 4.8. Again, we can find the variance by substituting this

in to the equation, Var[run length] = E[run length2] − (E[run length])2, and

where E[run length] is found from Theorem 4.6.
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Theorem 4.8 (Squared Expectation of Run Length, m ≥ 3).

E [run length2]

=
2m−2−1∑

i=0
π(i) p23(i mod 2m−3)+2

4i+1

+
m−1∑
k=2

k2

2m−2−1∑
i=0

π(i) p23(i mod 2m−3)+3
4i+1

k−1∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)−1j=k−1
2j+2(i mod 2m−j−2)+(2j+1−1)


+ 1(

p2m−1
2m−1

)m

2m−2−1∑
i=0

π(i) p23(i mod 2m−3)+3
4i+1

m−2∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)
2j+2(i mod 2m−j−2)+(2j+1−1)


×

p2m−1
2m−1(2 − p2m−2

2m−1)
(p2m−2

2m−1)2 −
m−1∑
j=1

j2
(
p2m−1

2m−1

)j
p2m−2

2m−1

 .
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Proof.

E [run length2] =
∞∑

n=1
n2 × P (run length = n)

=
2m−2−1∑

i=0
π(i) p23(i mod 2m−3)+2

4i+1

+
m−1∑
k=2

k2

2m−2−1∑
i=0

π(i) p23(i mod 2m−3)+3
4i+1

k−1∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)−1j=k−1
2j+2(i mod 2m−j−2)+(2j+1−1)


+
2m−2−1∑

i=0
π(i) p23(i mod 2m−3)+3

4i+1

m−2∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)
2j+2(i mod 2m−j−2)+(2j+1−1)


×
[ ∞∑

n=m

n2
(
p2m−1

2m−1

)n−m
p2m−2

2m−1

]

=
2m−2−1∑

i=0
π(i) p23(i mod 2m−3)+2

4i+1

+
m−1∑
k=2

k2

2m−2−1∑
i=0

π(i) p23(i mod 2m−3)+3
4i+1

k−1∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)−1j=k−1
2j+2(i mod 2m−j−2)+(2j+1−1)


+ 1(

p2m−1
2m−1

)m

2m−2−1∑
i=0

π(i) p23(i mod 2m−3)+3
4i+1

m−2∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)
2j+2(i mod 2m−j−2)+(2j+1−1)


×

 ∞∑
n=0

n2
(
p2m−1

2m−1

)n
p2m−2

2m−1 −
m−1∑
j=1

j2
(
p2m−1

2m−1

)j
p2m−2

2m−1


=

2m−2−1∑
i=0

π(i) p23(i mod 2m−3)+2
4i+1

+
m−1∑
k=2

k2

2m−2−1∑
i=0

π(i) p23(i mod 2m−3)+3
4i+1

k−1∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)−1j=k−1
2j+2(i mod 2m−j−2)+(2j+1−1)


+ 1(

p2m−1
2m−1

)m

2m−2−1∑
i=0

π(i) p23(i mod 2m−3)+3
4i+1

m−2∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)
2j+2(i mod 2m−j−2)+(2j+1−1)


×

p2m−1
2m−1(2 − p2m−2

2m−1)
(p2m−2

2m−1)2 −
m−1∑
j=1

j2
(
p2m−1

2m−1

)j
p2m−2

2m−1



where,

π(i) =
2m−1∑
j=0

m−3∏
k=0

[
p

2k+1(j mod 2m−k−1)+
∑k+1

s=1 2k−s+1[( 1
2m−s−2 (i−(i mod 2m−s−2)))mod 2]

2k(j mod 2m−k)+
∑k

s=1 2k−s[( 1
2m−s−2 (i−(i mod 2m−s−2)))mod 2]

]
π(j)

since E[X2] = ∑
x x

2P (X = x) = ∑
x x

2(1 − p)xp = (1−p)(2−p)
p2 for a geometric

distribution with P (X = x) = (1 − p)xp and x = 0, 1, 2, 3, ....
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4.2.4 Generating Functions

Generating functions (Johnson et al., 2005; Wilf, 1994) are a powerful tool which

are often used as an alternative to a distribution when it is too complex to work

with. If there is an unknown sequence of numbers (or letters) and there does not

exist a simple formula to describe it, then we can employ generating functions. Such

functions provide a formula for the sum of a power series where the coefficients of

each term make up this original sequence. Often, generating functions are formed

from recurrence relationships which give the general form for the sequence, but not

a specific formula. This is how I will be forming the generating functions in the

remainder of this section, by treating the de Bruijn process run length distribution

as an unknown sequence. Although I have defined the formula for the distribution

here, it is often the case that the generating functions are easier to work with than

the distributions themselves. Since there is a relationship between the de Bruijn run

length distribution and a geometric distribution, both the probability and moment

generating functions for the geometric distribution are initially given.

First, lets consider a simple example (Wilf, 1994). We have the sequence;

a0, a1, a3, ... = 0, 1, 3, 7, 15, 31, ... where we do not know the general formula which

generates the sequence, but we do know that the recurrence formula satisfies the

following:

an+1 = 2an + 1 for n ≥ 0 and a0 = 0. (4.3)

We want to find a general form for each term an using the generating function

G(x) = ∑
n≥0 anx

n. We will be able to determine each term in the sequence by

expanding G into a power series and reading off the coefficients of each term.

To find the generating function, we first multiply both sides of Equation (4.3) by

xn and sum over values of n. We then simplify the expression until we are left with
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an equation for G. This is shown below:

∑
n≥0

an+1x
n =

∑
n≥0

(2an + 1)xn,

a1 + a2x+ a3x
2 + ... = 2

∑
n≥0

anx
n +

∑
n≥0

xn,

{(a0 + a1x+ a2x
2 + ...) − a0}/x = 2G(x) +

∑
n≥0

xn,

G(x)/x = 2G(x) + 1
1 − x

,

G(x) = x

(1 − x)(1 − 2x) .

Then if we expand G into a series, we can find an as the coefficient of xn.

Probability Generating Function

The probability generating function for the run length distribution takes the form

G(x) = E[xn] = ∑∞
n=1 x

nP (run length = n). Probability generating functions

are used as a power series representation of the probability mass function. The

probability mass function is obtained by taking derivatives of the generating function,

such that, P (X = s) = G(s)(0)
s! . In other words, the probability of a run length, s,

will be found by evaluating the sth derivative of G at zero and dividing by s factorial.

For each of the following generating functions, if we expand the result into a power

series, we could reproduce the corresponding distribution. The probability generating

function for the geometric distribution is given in Theorem 4.9.

Theorem 4.9 (Geometric Probability Generating Function).

G(x) = p

1 − x(1 − p)

for success probability, 0 ≥ p ≥ 1

Proof.

P (X = n) = (1 − p)np for n ≥ 0

The recurrence relationship has the following form:
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a0 = p

a1 = (1 − p)p

an+1 = (1 − p)an for n ≥ 0

We solve this to find the generating functionG(x) = ∑
n≥0 anx

n. Then, multiplying

by xn and summing over n gives the following:

∑
n≥0

an+1x
n =

∑
n≥0

(1 − p)anx
n

[
a1 + a2x+ a3x

2 + . . .
]

= (1 − p)
∑
n≥0

anx
n

1
x

[(
a0 + a1x+ a2x

2 + . . .
)

− a0
]

= (1 − p)G(x)

G(x) − p

x
= (1 − p)G(x)

G(x) = p

1 − x(1 − p)

The probability generating function for the de Bruijn process run length when

m = 2 is given in Lemma 4.10. Due to the similarities with the geometric distribution,

the format will be very similar and we can use some of the same techniques used

previously to obtain the final result.

Lemma 4.10 (Run Length Probability Generating Function, m = 2).

G(x) = (p11
01p

10
11 − p10

01p
11
11)x2 + p10

01x

1 − p11
11x

Proof.

P (run length = n) =


p10

01 for n = 1

p11
01(p11

11)n−2p10
11 for n ≥ 2,

The recurrence relationship has the following form:
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a0 = 0

a1 = p10
01

a2 = p11
01p

10
11

an+1 = p11
11an for n ≥ 2

This is solved to find the generating functionG(x) = ∑
n≥0 anx

n. Then, multiplying

by xn and summing over n gives the following:

∑
n≥2

an+1x
n =

∑
n≥2

p11
11anx

n

(
a3x

2 + a4x
3 + a5x

4 + . . .
)

= p11
11

∑
n≥0

anx
n − a0 − a1x


1
x

[(
a0 + a1x+ a2x

2 + . . .
)

− a0 − a1x− a2x
2
]

= p11
11

(
G(x) − p10

01x
)

G(x) − p10
01x− p11

01p
10
11x

2

x
= p11

11

(
G(x) − p10

01x
)

G(x) = (p11
01p

10
11 − p10

01p
11
11)x2 + p10

01x

1 − p11
11x

Finally, the probability generating function for the de Bruijn process run length

for m ≥ 3 is given in Theorem 4.11. Again, it has the same structure as both the

geometric and m = 2 cases, with the slight difference that there is now an additional

polynomial added to the final answer. This additional polynomial comes from the

initial burn-in period until we hit the point when we reach the all 1 word. Once

we have hit this word, and continue adding 1’s to the chain, then this becomes

equivalent to the geometric distribution. This can be seen in the result since the first

polynomial terms represents the burn-in and the fraction term is of the same form

as the geometric generating function.
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Theorem 4.11 (Run Length Probability Generating Function, m ≥ 3).

G(x) =
m∑

s=0
asx

s+p
2m−1
2m−1amx

m+1

1 − p2m−1
2m−1x

where,

a1 =
2m−2−1∑

i=0
π(i)p23(i mod 2m−3)+2

4i+1

a2 =
2m−2−1∑

i=0
π(i)p23(i mod 2m−3)+3

4i+1 p
24(i mod 2m−4)+(23−1)−1
23(i mod 2m−3)+(22−1)

...

am−1 =
2m−2−1∑

i=0
π(i)p23(i mod 2m−3)+3

4i+1

m−2∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)−1j=n−1
2j+2(i mod 2m−j−2)+(2j+1−1)


am =

2m−2−1∑
i=0

π(i)p23(i mod 2m−3)+3
4i+1

m−2∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)
2j+2(i mod 2m−j−2)+(2j+1−1)

 p2m−2
2m−1

Proof.

P (run length = n)

=



∑2m−2−1
i=0 π(i) p23(i mod 2m−3)+2

4i+1 for n = 1
∑2m−2−1

i=0 π(i) p23(i mod 2m−3)+3
4i+1 for n = 2 : m− 1

×
[∏s−1

j=1 p
2j+3(i mod 2m−j−3)+(2j+2−1)−1j=s−1
2j+2(i mod 2m−j−2)+(2j+1−1)

]
∑2m−2−1

i=0 π(i) p23(i mod 2m−3)+3
4i+1

×
[∏m−2

j=1 p
2j+3(i mod 2m−j−3)+(2j+2−1)
2j+2(i mod 2m−j−2)+(2j+1−1)

]
for n ≥ m.

×
[(
p2m−1

2m−1

)n−m
p2m−2

2m−1

]

where,

π(i) =
2m−1∑
j=0

m−3∏
k=0

[
p

2k+1(j mod 2m−k−1)+
∑k+1

w=1 2k−w+1[( 1
2m−w−2 (i−(i mod 2m−w−2)))mod 2]

2k(j mod 2m−k)+
∑k

w=1 2k−w[( 1
2m−w−2 (i−(i mod 2m−w−2)))mod 2]

]
π(j)
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The recurrence relationship has the following form:

a0 = 0

a1 =
2m−2−1∑

i=0
π(i)p23(i mod 2m−3)+2

4i+1

a2 =
2m−2−1∑

i=0
π(i)p23(i mod 2m−3)+3

4i+1 p
24(i mod 2m−4)+(23−1)−1
23(i mod 2m−3)+(22−1)

...

am =
2m−2−1∑

i=0
π(i)p23(i mod 2m−3)+3

4i+1

m−2∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)
2j+2(i mod 2m−j−2)+(2j+1−1)

 p2m−2
2m−1

an+1 = p2m−1
2m−1an for n ≥ m

This is solved to find the generating functionG(x) = ∑
n≥0 anx

n. Then, multiplying

by xn and summing over n gives the following:



118 De Bruijn Process Properties and Inference

∑
n≥m

an+1x
n =

∑
n≥m

p2m−1
2m−1anx

n

(
am+1x

m + am+2x
m+1

+am+3x
m+2 + . . .

)
= p2m−1

2m−1

(∑
n≥0

anx
n − a0 − a1x− . . .

− am−1x
m−1

)
1
x

[ (
a0 + a1x+ a2x

2 + . . .
)

−a0 − a1x− . . .− amx
m
]

= p2m−1
2m−1

(
G−

m−1∑
s=0

asx
s

)
G−∑m

t=0 atx
t

x
= p2m−1

2m−1

(
G−

m−1∑
s=0

asx
s

)

G−
m∑

t=0
atx

t = xp2m−1
2m−1G− xp2m−1

2m−1

m−1∑
s=0

asx
s

G
(
xp2m−1

2m−1 − 1
)

= xp2m−1
2m−1

m∑
s=0

asx
s −

m∑
t=0

atx
t − xp2m−1

2m−1amx
m

G =

(
xp2m−1

2m−1 − 1
)

(∑m
s=0 asx

s) − xp2m−1
2m−1amx

m

p2m−1
2m−1x− 1

G =
m∑

s=0
asx

s + p2m−1
2m−1amx

m+1

1 − p2m−1
2m−1x

where,

a1 =
2m−2−1∑

i=0
π(i)p23(i mod 2m−3)+2

4i+1

a2 =
2m−2−1∑

i=0
π(i)p23(i mod 2m−3)+3

4i+1 p
24(i mod 2m−4)+(23−1)−1
23(i mod 2m−3)+(22−1)

...

am−1 =
2m−2−1∑

i=0
π(i)p23(i mod 2m−3)+3

4i+1

m−2∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)−1j=m−2
2j+2(i mod 2m−j−2)+(2j+1−1)


am =

2m−2−1∑
i=0

π(i)p23(i mod 2m−3)+3
4i+1

m−2∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)
2j+2(i mod 2m−j−2)+(2j+1−1)

 p2m−2
2m−1
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Moment Generating Function

As well as probability generating functions, it is also important to calculate moment

generating functions. They take the formG(x) = E[enx] = ∑∞
n=1 e

nxP (run length =

n) for n = 0, 1, 2, ..., and are used to find the moments of the distribution. G(0)

always exists for the generating function and is equal to one. The moments, ms, are

found by taking derivatives of a power series of the generating function, such that,

ms = G(s)(0). In other words, the sth moment, will be found by evaluating the sth

derivative of G at zero.

As before, I will start by showing the moment generating function for the geometric

distribution, given in Theorem 4.12. Results from this theorem will then be used to

help form G(x) for the run length distribution.

Theorem 4.12 (Geometric Moment Generating Function).

G(x) = p

1 − ex(1 − p)

Proof.

P (X = n) = (1 − p)np for n ≥ 0

The recurrence relationship has the following form:

a0 = p

a1 = (1 − p)p

an+1 = (1 − p)an for n ≥ 0

This is solved to find the generating function G(x) = ∑
n≥0 ane

nx. Then,

multiplying by enx and summing over n gives the following:
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∑
n≥0

an+1e
nx =

∑
n≥0

(1 − p)ane
nx

[
a1 + a2e

x + a3e
2x + . . .

]
= (1 − p)

∑
n≥0

ane
nx

1
ex

[(
a0 + a1e

x + a2e
2x + . . .

)
− a0

]
= (1 − p)G(x)

G(x) − p

ex
= (1 − p)G(x)

G(x) = p

1 − ex(1 − p)

The moment generating function for the de Bruijn process run length when

m = 2 is given in Lemma 4.13. We can clearly see the similarities between this, the

geometric moment generating function and the probability generating function for

the m = 2 de Bruijn run length. If we differentiate this result, we can obtain the

results for the expected run length from Lemma 4.3, which is given in Appendix A.

Using a computer package such as Maple, we can further obtain the result for the

squared expected run length in Lemma 4.7.

Lemma 4.13 (Run Length Moment Generating Function, m = 2).

G(x) = (p11
01p

10
11 − p10

01p
11
11) e2x + p10

01e
x

1 − p11
11e

x

Proof.

P (run length = n) =


p10

01 for n = 1

p11
01(p11

11)n−2p10
11 for n ≥ 2,

The recurrence relationship has the following form:
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a0 = 0

a1 = p10
01

a2 = p11
01p

10
11

an+1 = p11
11an for n ≥ 2

This is solved to find the generating function G(x) = ∑
n≥0 ane

nx. Then,

multiplying by enx and summing over n gives the following:

∑
n≥2

an+1e
nx =

∑
n≥2

p11
11ane

nx

(
a3e

2x + a4e
3x + a5e

4x + . . .
)

= p11
11

∑
n≥0

ane
nx − a0 − a1e

x


1
ex

[(
a0 + a1e

x + a2e
2x + . . .

)
− a0 − a1e

x − a2e
2x
]

= p11
11

(
G(x) − p10

01e
x
)

G(x) − p10
01e

x − p11
01p

10
11e

2x

ex
= p11

11

(
G(x) − p10

01e
x
)

G(x) = (p11
01p

10
11 − p10

01p
11
11) e2x + p10

01e
x

1 − p11
11e

x

Finally, the moment generating function for a length m ≥ 3 de Bruijn process

run length is given in Theorem 4.14. As for the case in Theorem 4.11, we can see

the similarities to the geometric case, but with the addition of a polynomial term

representing the burn-in period to the de Bruijn word consisting of all 1’s. The

addition of the polynomial is necessary as it represents all of the different possible

starting points for all of the different runs created until we reach long runs of 1’s.

Using Maple, we can obtain the results for the expected run length and squared

expected run length shown in Lemmas 4.6 and 4.8 from the moment generating

function.
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Theorem 4.14 (Run Length Moment Generating Function, m ≥ 3).

G(x) =
m∑

s=0
ase

sx+p
2m−1
2m−1ame

(m+1)x

1 − p2m−1
2m−1e

x

where,

a1 =
2m−2−1∑

i=0
π(i)p23(i mod 2m−3)+2

4i+1

a2 =
2m−2−1∑

i=0
π(i)p23(i mod 2m−3)+3

4i+1 p
24(i mod 2m−4)+(23−1)−1
23(i mod 2m−3)+(22−1)

...

am−1 =
2m−2−1∑

i=0
π(i)p23(i mod 2m−3)+3

4i+1

m−2∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)−1j=n−1
2j+2(i mod 2m−j−2)+(2j+1−1)


am =

2m−2−1∑
i=0

π(i)p23(i mod 2m−3)+3
4i+1

m−2∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)
2j+2(i mod 2m−j−2)+(2j+1−1)

 p2m−2
2m−1

Proof.

P (run length = n)

=



∑2m−2−1
i=0 π(i) p23(i mod 2m−3)+2

4i+1 for n = 1
∑2m−2−1

i=0 π(i) p23(i mod 2m−3)+3
4i+1 for n = 2 : m− 1

×
[∏n−1

j=1 p
2j+3(i mod 2m−j−3)+(2j+2−1)−1j=n−1
2j+2(i mod 2m−j−2)+(2j+1−1)

]
∑2m−2−1

i=0 π(i) p23(i mod 2m−3)+3
4i+1

×
[∏m−2

j=1 p
2j+3(i mod 2m−j−3)+(2j+2−1)
2j+2(i mod 2m−j−2)+(2j+1−1)

]
for n ≥ m.

×
[(
p2m−1

2m−1

)n−m
p2m−2

2m−1

]

where,

π(i) =
2m−1∑
j=0

m−3∏
k=0

[
p

2k+1(j mod 2m−k−1)+
∑k+1

s=1 2k−s+1[( 1
2m−s−2 (i−(i mod 2m−s−2)))mod 2]

2k(j mod 2m−k)+
∑k

s=1 2k−s[( 1
2m−s−2 (i−(i mod 2m−s−2)))mod 2]

]
π(j)

The recurrence relationship has the following form:
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a0 = 0

a1 =
2m−2−1∑

i=0
π(i)p23(i mod 2m−3)+2

4i+1

a2 =
2m−2−1∑

i=0
π(i)p23(i mod 2m−3)+3

4i+1 p
24(i mod 2m−4)+(23−1)−1
23(i mod 2m−3)+(22−1)

...

an+1 = p2m−1
2m−1an for n ≥ m

This is solved to find the generating function G(x) = ∑
n≥0 ane

nx. Then,

multiplying by enx and summing over n gives the following:
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∑
n≥m

an+1e
nx =

∑
n≥m

p2m−1
2m−1ane

nx

(
am+1e

mx + am+2e
(m+1)x

+am+3e
(m+2)x + . . .

)
= p2m−1

2m−1

∑
n≥0

ane
nx − a0 − a1e

x − . . .

− am−1e
(m−1)x


1
ex

[ (
a0 + a1e

x + a2e
2x + . . .

)
−a0 − a1e

x − . . .− ame
mx
]

= p2m−1
2m−1

(
G−

m−1∑
s=0

ase
sx

)
G−∑m

t=0 ate
tx

ex
= p2m−1

2m−1

(
G−

m−1∑
s=0

ase
sx

)

G−
m∑

t=0
ate

tx = exp2m−1
2m−1G− exp2m−1

2m−1

m−1∑
s=0

ase
sx

G
(
exp2m−1

2m−1 − 1
)

= exp2m−1
2m−1

m∑
s=0

ase
sx −

m∑
t=0

ate
tx − exp2m−1

2m−1ame
mx

G =

(
exp2m−1

2m−1 − 1
)

(∑m
s=0 ase

sx) − exp2m−1
2m−1ame

mx

p2m−1
2m−1e

x − 1

G =
m∑

s=0
ase

sx + p2m−1
2m−1ame

(m+1)x

1 − p2m−1
2m−1e

x

where,

a1 =
2m−2−1∑

i=0
π(i)p23(i mod 2m−3)+2

4i+1

a2 =
2m−2−1∑

i=0
π(i)p23(i mod 2m−3)+3

4i+1 p
24(i mod 2m−4)+(23−1)−1
23(i mod 2m−3)+(22−1)

...

am−1 =
2m−2−1∑

i=0
π(i)p23(i mod 2m−3)+3

4i+1

m−2∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)−1j=n−1
2j+2(i mod 2m−j−2)+(2j+1−1)


am =

2m−2−1∑
i=0

π(i)p23(i mod 2m−3)+3
4i+1

m−2∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)
2j+2(i mod 2m−j−2)+(2j+1−1)

 p2m−2
2m−1
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Cumulants

Cumulants (McCullagh, 1987; Wilf, 1994) offer an alternative to moment generating

functions, and the first three are equal to the central moments. The first cumulant

is the mean, the second is the variance and the third is the third central moment.

Cumulants are often used instead of moments, or even instead of the distribution

itself, because they are simpler to work with, especially if the form of the distribution

is complicated. The cumulant generating function is found by taking the log of the

moment-generating function such that:

K(x) = log [G(x)]

= log [E(enx)]

= log
[ ∞∑

n=1
enxP (run length = n)

]

The cumulants are found by taking derivatives of a power series expansion of the

cumulant generating function, and then evaluating at zero. So, the sth cumulant, µs,

is found by evaluating Ks(0). Due to the relationship between the culmulant and

moment generating functions, it is therefore possible to obtain the cumulants from

the moments and the moments from the cumulants.

When trying to find the cumulant generating function for the run length distribution,

we take the natural log of the moment generating function. However, by doing this

we find that the expression ends up more complicated due to the term, 1 − p2m−1
2m−1, in

the denominator which is hard to simplify. Therefore, I choose to not proceed any

further. I will, however, briefly use the cumulant generating functions in Section 4.2.6

for examples of the run length distribution. I will use the fourth central moment,

the kurtosis, µ4 = K4(0), to find the variance of the sample variance, µ4
n

− σ4(n−3)
n(n−1) .

It is possible to develop new cumulants. For example there exist tree cumulants,

binary cumulants (Zwiernik and Smith, 2012) and generalised cumulants (McCullagh,

1987). Tree cumulants are used for describing models that have a specific graphical

structure, whereas binary cumulants are used for simplifying distributions on binary

sequences. Generalised cumulants are formed from different groups of joint cumulants



126 De Bruijn Process Properties and Inference

which can be partitioned in different ways based on different correlations between

variables. It therefore may be possible to generate a new type of cumulant that

would be more suited to de Bruijn graphs, but I leave this for future exploration.

4.2.5 Non-Stationary de Bruijn processes

Non-stationary models were briefly mentioned in Chapter 3 and, although I do not go

into great detail on the subject, I will show how non-stationarity can change the run

length distribution and expected run lengths of length m = 2 de Bruijn processes.

For the non-stationary case, the transition matrix of the latent Markov chain

changes with respect to time, such that the transition probabilities are different at

each change in state. Hence, for a length two de Bruijn process, the non-stationary

transition matrix is as follows:

T (t) =



1 − p01
00

(t)
p01

00
(t) 0 0

0 0 1 − p11
01

(t)
p11

01
(t)

1 − p01
10

(t)
p01

10
(t) 0 0

0 0 1 − p11
11

(t)
p11

11
(t)


,

for t = 0, 1, 2, ....

The distribution of the run length for word length two is given in Lemma 4.15.

This is equivalent to the stationary version shown in Lemma 4.1 with the addition

of the transition probabilities being dependent on the time t. The time starts with

t = 1, representing the beginning of the run of 1’s, and finishes when the 0 is added

to complete the run.

Lemma 4.15 (Non-Stationary Run Length Distribution, m = 2).

P (run length = n) =


p10

01
(t=1) for n = 1

p11
01

(t=1) [∏n−1
i=2 p

11
11

(t=i)]
p10

11
(t=n) for n ≥ 2,

Proof. Follows from Lemma 4.3 with the addition of the transition probabilities

being dependent on time, t.
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Similarly as for the stationary case, the expected run length for the non-stationary

length m = 2 de Bruijn processes is given in Lemma 4.16. Since the transition

probabilities are now dependent on the time step, we can no longer use results from

the geometric distribution to simplify results.

Lemma 4.16 (Non-Stationary Expected Run Length, m = 2).

E [run length] = p10
01

(t=1) + p11
01

(t=1)
[ ∞∑

n=2
n

n−1∏
i=2

p11
11

(t=i)
p10

11
(t=n)

]

Proof.

E [run length] =
∞∑

n=1
n× P (run length = n)

= p10
01

(t=1) +
∞∑

n=2
np11

01
(t=1)

[
n−1∏
i=2

p11
11

(t=i)
]
p10

11
(t=n)

= p10
01

(t=1) + p11
01

(t=1)
[ ∞∑

n=2
n

n−1∏
i=2

p11
11

(t=i)
p10

11
(t=n)

]

4.2.6 Examples

In this section I will discuss several examples which are designed to compare the de

Bruijn process run length distribution against run lengths that are created though

simulation. I will be considering the examples shown in Figures 3.4, 3.6 and 3.7

from Chapter 3. These figures consisted of six examples from de Bruijn processes

with word length m = 2 with the transition probabilities, {p01
00, p

11
01, p

01
10, p

11
11}, being:

{0.5, 0.5, 0.5, 0.5}, {0.25, 0.75, 0.25, 0.75}, {0.1, 0.9, 0.1, 0.9}, {0.05, 0.95, 0.05, 0.95},

{0.9, 0.1, 0.9, 0.1} and {0.775, 0.8, 0.8, 0.9} respectively.

Table 4.1 shows the probabilities of getting a run length of n 1’s, where n =

1, ..., 10, from the run length distribution in Theorem 4.2 for these six examples

(presented in the same order as above so that DBP 1 refers to the de Bruijn process

with transition probabilities {0.5, 0.5, 0.5, 0.5} and DBP 6 refers to probabilities

{0.775, 0.8, 0.8, 0.9}).
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Run Length, n DBP 1 DBP 2 DBP 3 DBP 4 DBP 5 DBP 6
1 0.5 0.25 0.1 0.05 0.9 0.2
2 0.25 0.188 0.09 0.0475 0.09 0.08
3 0.125 0.141 0.081 0.0451 0.009 0.072
4 0.0625 0.105 0.0729 0.0429 0.0009 0.0648
5 0.0313 0.0791 0.0656 0.0407 9 × 10−4 0.0583
6 0.0156 0.0593 0.0590 0.0387 9 × 10−5 0.0525
7 0.00781 0.0445 0.0531 0.0368 9 × 10−6 0.0472
8 0.00391 0.0334 0.0478 0.0349 9 × 10−7 0.0425
9 0.00195 0.0250 0.0430 0.0332 9 × 10−8 0.0383
10 0.000977 0.0188 0.0387 0.0315 9 × 10−9 0.0344

Table 4.1 Table to show the probabilities of getting run lengths of n = 1, ..., 10 for
six different de Bruijn processes of word length m = 2. The corresponding transition
probabilities ({p01

00, p
11
01, p

01
10, p

11
11}) for these four processes are as follows, DBP 1:

{0.5, 0.5, 0.5, 0.5}, DBP 2: {0.25, 0.75, 0.25, 0.75} , DBP 3: {0.1, 0.9, 0.1, 0.9}, DBP
4: {0.05, 0.95, 0.05, 0.95}, DBP 5: {0.9, 0.1, 0.9, 0.1}, DBP 6: {0.775, 0.8, 0.8, 0.9}.

We see that DBP 1 has a much higher chance at 50% of a short run length of

just one as compared to the next three de Bruijn processes (DBP 2, DBP 3, DBP

4). This then drops for the stickier processes until DBP 4 only has a 5% chance of

a short run length. We also notice that the probabilities for the stickier processes

stay fairly similar for all run lengths compared to the Bernoulli process (DBP 1)

that reduces very quickly. This is what we would expect since the run lengths for

independent Bernoulli trials tend to be very short. We also see this behaviour in the

anti-sticky example in DBP 5 where the probabilities for a run length any higher

than two quickly becomes very small. There is a 90% chance of a run length of just

a single 1 since this process is designed to alternate between the two letters. The

non-symmetric example in DBP 6 is shown to behave fairly similar to either DBP 2

or DBP 3.

We will now look at comparing the theoretical expected run lengths of 1’s and the

average run lengths of 1’s calculated from the simulations in Chapter 3. In the same

order as above, the average run lengths from the simulations were: 2.02, 4.10, 9.47,

19.60, 1.11 and 9.09 for length 200 sequences. Using Equation (4.3), the calculated

theoretical expected run lengths for the de Bruijn processes are: 2, 4, 10, 20, 1.11

and 9 respectively (see Table 4.3). For all cases, both values are shown to agree
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with on average a difference of 2.02%. Hence, this gives confidence that both the

simulated and analytic run lengths are calculated correctly.

If we now compare the theoretical variance of run length with the simulated

variance of run length we can see that the error between the results is much higher.

There is likely to be more variance in the simulations, especially if the de Bruijn

Markov chains are not run for a sufficient amount of time. For the example above,

the variance of run lengths from the simulations were: 2.21, 12.07, 93.57, 304.76, 0.12

and 88.69 respectively. We can see that when the de Bruijn process gets very sticky,

the resulting variances become much larger with a larger difference even between

DBP 3 and DBP 4 where the transition probabilities are fairly similar. This can also

be seen in the histograms in Figure 3.5, where the spread of run lengths gets much

larger in the sticky processes. We can see that occasionally we get a very long run

length, but also get times when we have very short lengths. If we compare this to

the analytical variances calculated, we get: 2, 12, 90, 380, 0.12 and 88 respectively

(see Table 4.3). So, for the first three de Bruijn processes we get very similar results,

but for the very sticky case (DBP 4), the variances from the simulation are lower.

This is likely to be due to the simulations being able to occasionally produce a very

long run length which will consequently skew the results by a large amount. We may

also not be running the de Bruijn process for a sufficient amount of time. Table 4.3

shows the analytical and simulated expected run lengths and variance of run length

for eight de Bruijn process examples. Alongside this are values for two standard

deviations of the sample expected run length and two standard deviations of the

sample variance of run length. These are calculated using the expressions,
√

σ2

n
and√

µ4
n

− σ4(n−3)
n(n−1) respectively, where n = 200 and µ4 is the kurtosis. This is the fourth

central moment and is found from the fourth differential of the cumulant generating

function of the run length distribution evaluated at zero (see Section 4.2.4). We can

see here that although the analytical and simulated variances of the DBP 4 example

do not agree, the difference is within ± two standard deviations.

The expected run length of the structured example (DBP 5) is 1.11, which is what

we would expect since the de Bruijn process is designed to be constantly flipping
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letters. The variance for this process is 0.12 which confirms that the process is

designed to be very structured and does not alter much from having an average run

length close to one. These both match exactly to the theoretical results. For the

non-symmetrical example (DBP 6) the expected run length is 9.09 and the variance

is 88.69. This is to be expected as I have defined the process to have the same

stickiness to 1’s as DBP 3 with transition probabilities {0.1, 0.9, 0.1, 0.9}. As stated

in Chapter 3, I have defined the stickiness to be the same, but the example differs

due the marginal probabilities on the letters (π({0}) = 0.2 and π({1}) = 0.8). So,

the run lengths of 1’s should be similar, but the number of 0’s is reduced to just 20%

of the overall number of letters.

In Chapter 3, I also showed in Example 3.9 how certain de Bruijn processes with

higher word lengths can produce equivalent chains of 0’s and 1’s to those with shorter

word lengths. Hence, some larger word length de Bruijn processes can collapse down

to a shorter word length process. Table 4.2 gives the probabilities of getting a run

length of n 1’s for n = 1, ..., 4 for three different de Bruijn processes with word lengths

m = 2 (DBP 3), m = 3 (DBP 7) and m = 4 (DBP 8) respectively. All transition

probabilities for each process are such that there is a 90% chance of remaining at

the same letter and a 10% chance of transitioning to a different letter. This table

emphasizes how each de Bruijn process is equivalent since the probabilities are equal

for each n.

Run Length, n DBP 3 DBP 7 DBP 8
1 0.1 0.1 0.1
2 0.09 0.09 0.09
3 0.081 0.081 0.081
4 0.0729 0.0729 0.0729

Table 4.2 Table to show the probabilities of getting run lengths of n =
1, ..., 4 for three equivalent de Bruijn processes of word lengths m = 2,
m = 3 and m = 4. The transition probabilities are as follows:
DBP 3: {p01

00, p
11
01, p

01
10, p

11
11} = {0.1, 0.9, 0.1, 0.9}, DBP 7: {p001

000, p
011
001, p

101
010, p

111
011,

p001
100, p

011
101, p

101
110, p

111
111} = {0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9}, DBP 8: {p0001

0000, p
0011
0001,

p0101
0010, p

0111
0011, p

1001
0100, p

1011
0101, p

1101
0110, p

1111
0111, p

0001
1000, p

0011
1001, p

0101
1010, p

0111
1011, p

1001
1100, p

1011
1101, p

1101
1110, p

1111
1111} =

{0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9}
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D. B. Process A. Exp S. Exp 2 Sd(S. E.) A. Var S. Var 2 Sd(S. V.)
DBP 1 2 2.02 0.20 2 2.21 0.66
DBP 2 4 4.10 0.49 12 12.07 3.83
DBP 3 10 9.47 1.34 90 93.57 28.52
DBP 4 20 19.60 2.76 380 304.76 120.32
DBP 5 1.11 1.11 0.05 0.12 0.12 0.063
DBP 6 9 9.09 1.33 88 88.69 29.10
DBP 7 10 10.25 1.34 90 95.05 28.52
DBP 8 10 9.91 1.34 90 93.78 28.52

Table 4.3 Table to show the analytical expectation (A. Exp), simulated expectation (S.
Exp), two standard deviations of the simulated expectation (Var(S. E.)), analytical
variance (A. Exp), simulated variance (S. Var) and two standard deviations of the
simulated variance (Var(S. V.)) of the run length distribution given a sequence of
length 200 for eight different de Bruijn processes. These are the same de Bruijn
processes from Tables 4.1 and 4.2.

4.3 Inference

In this section I will outline a method for inference such that, given a chain of 0’s

and 1’s we will be able to estimate the de Bruijn process that may have generated

it. This will include estimating both the length of the de Bruijn word, m, and the

transition probabilities, p.

I first look to define the word marginal likelihood for a sequence of 0’s and 1’s

at steady state. We will then be able to estimate the marginal distribution for the

de Bruijn words in the chain. Either maximum likelihood or Bayesian inference can

be used, which should give the same answer as counting the proportion of each of

the words in the given sequence. For the de Bruijn structure, the likelihood takes a

similar form to a multivariate Bernoulli likelihood. The likelihood of the de Brujin

process with word length m = 2 (consisting of words {00, 01, 10, 11}) is given in

Lemma 4.17. π(i) is the marginal probability for the word i, and ni is the number

of words, i, in that sequence. The marginal likelihood is the joint distribution of

a sequence in terms of the proportion of different words in that given sequence.

Therefore, it consists of the marginal probabilities for each word raised to the power

of how many there are in the sequence. It is possible to reduce the dimensionality

slightly using the fact that all the marginal probabilities sum to 1, and that the n’s

add up to the total sum of all words (defined as N).
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Lemma 4.17 (Marginal Likelihood, m = 2).

L(seq) = π(00)n00π(01)n01π(10)n10π(11)n11

= π(00)n00π(01)n01π(10)n10 [1 − (π(00) + π(01) + π(10))]N−(n00+n01+n10)

for N = n00 + n01 + n10 + n11 and π(00) + π(01) + π(10) + π(11) = 1

Proof. Given a sequence of letters of length N + 1, the sequence can be split up into

its associated words of length m = 2, where π(i) gives the probability of obtaining

the word i. The joint distribution is given by the product of the respective π’s for

each word and N gives the total number of words. By collecting like terms, the

above definition is given.

The marginal likelihood for a de Bruijn process with general word length m is

given in Theorem 4.18. This theorem has the same structure as for the m = 2 case,

where we are also able to take advantage of the π’s summing to one, and that we

know the total number of words in the given sequence. Again, I have chosen to write

this in terms of the decimal representation of the binary values.

Theorem 4.18 (Marginal Likelihood, m ≥ 1).

L(seq) =
2m−1∏
i=0

π(i)ni

=
2m−2∏
i=0

π(i)ni

1 −

2m−2∑
j=0

π(j)
N−

(∑2m−2
j=0 nj

)

for N = ∑2m−1
j=0 nj and ∑2m−1

j=0 π(j) = 1

Proof. See Appendix A

It is then possible to write down the likelihood for the transition probabilities so

that they can be estimated given a sequence. To begin with, I assume that the word

length is known, and concentrate on estimating the transitions. I note here that it is

far more difficult to estimate the word length as it is the word length that controls

how many transition parameters there are to be estimated. One possible solution is
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to use reversible jump MCMC (Green, 1995), but I have developed a more efficient

method explained further down in this section.

The likelihood for the transitions of a length m = 2 de Bruijn process is given

in Lemma 4.19, and the likelihood for the m ≥ 1 case is given in Theorem 4.20.

The likelihood is the joint distribution of the sequence in terms of the transition

probabilities. However, the form of the likelihood does not obviously indicate that

this does in fact give the joint distribution of the sequence. The ordering of the

letters in the sequence is fixed and, due to the de Bruijn structure, the ordering

of the words is very important. This is due to the fact that for each word in the

sequence there are only two possible words that can be transitioned to. Hence, the

distinct number of times each transition occurs in the sequence defines the exact

ordering of the letters. Recall that each term pj
i in the likelihood is the transition

probability from word i to word j, and nj
i is the corresponding number of times this

transition occurs in the given sequence.

Lemma 4.19 (Transition Likelihood, m = 2).

L(seq|p) = (p00
00)n00

00 (p01
00)n01

00 (p10
01)n10

01 (p11
01)n11

01 (p00
10)n00

10 (p01
10)n01

10 (p10
11)n10

11 (p11
11)n11

11

= (1 − p01
00)n00

00 (p01
00)n01

00 (1 − p11
01)n10

01 (p11
01)n11

01 (1 − p01
10)n00

10 (p01
10)n01

10

× (1 − p11
11)n10

11 (p11
11)n11

11 ,

Proof. Assume a sequence of letters, L = l1, l2, ..., ln, where li ∈ [0, 1] and the ordering

is fixed. This sequence can be expressed in terms of its de Bruijn words such that

L = w1, w2, ..., wn−1, where wi are the de Bruijn words of length m = 2. Consider the

joint distribution of this sequence. Starting from w1, the probability of transitioning

to the next word is pw2
w1 . The probability of transitioning to the next following word

is, pw3
w2 . This is continued until the transition pwn−1

wn−2 is reached and produces the

joint distribution, L(L|p) = pw2
w1 × pw3

w2 × ...× pwn−1
wn−2 . By collecting like terms for each

possible transition probability the above result is given.

Theorem 4.20 (Transition Likelihood, m ≥ 1).

L(seq|p) =
2m−1∏
i=0

(
1 − p

(2i+1) mod 2m

i

)n
((2i+1) mod 2m)−1
i

(
p

(2i+1) mod 2m

i

)n
((2i+1) mod 2m)
i

.
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Proof. See Appendix A

The likelihood can then be used to estimate the transition probabilities given a

sequence of 0’s and 1’s either through frequentist maximum likelihood estimation

or using Bayesian methods. Given Bayes’ theorem, we know that the posterior

distribution is equal to the product of the likelihood, L(seq|p), and prior, P (p),

normalised by the probability of the data, P (seq), to give:

P (p|seq) = L(seq|p)P (p)
P (seq)

= L(seq|p)P (p)∫
L(seq|p)P (p)dp.

(4.4)

The prior distribution is where we can specify any prior knowledge we might have

about the transition probabilities. For example, we may know that the sequence is

very sticky to 1’s, and we can incorporate this into the prior distribution to put higher

weighting onto the transition that remains at the all 1 word. We can also look at the

form of the likelihood to help us choose the form of the selected prior distribution. If

the posterior distribution is in the same probability distribution family as the prior

probability distribution, then they are conjugate and the prior is a conjugate prior

for the likelihood function. Looking at the form of the transition likelihood, we can

see that it has a very similar structure to the beta distribution. Hence we are able

to use a Beta prior of the form, P (p) = Γ(α+β)
Γ(α)Γ(β)p

α−1(1 − p)β−1, for α > 0 and β > 0,

to produce the posterior distribution for the transition probabilities.

If we initially start with the de Bruijn word length m = 2 case, the transition

likelihood is as above:

L = (1−p01
00)n00

00 (p01
00)n01

00 (1−p11
01)n10

01 (p11
01)n11

01 (1−p01
10)n00

10 (p01
10)n01

10 (1−p11
11)n10

11 (p11
11)n11

11 ,



4.3 Inference 135

which we can then combine with a Beta prior to obtain a posterior distribution which

is proportional to the following:

P (p|seq) ∝ L(seq|p)P (p)

= (1 − p01
00)n00

00 (p01
00)n01

00 (1 − p01
00)β1−1 (p01

00)α1−1

× (1 − p11
01)n10

01 (p11
01)n11

01 (1 − p11
01)β2−1 (p11

01)α2−1

× (1 − p01
10)n00

10 (p01
10)n01

10 (1 − p01
10)β3−1 (p01

10)α3−1

× (1 − p11
11)n10

11 (p11
11)n11

11 (1 − p11
11)β4−1 (p11

11)α4−1

= (1 − p01
00)n00

00+β1−1 (p01
00)n01

00+α1−1

× (1 − p11
01)n10

01+β2−1 (p11
01)n11

01+α2−1

× (1 − p01
10)n00

10+β3−1 (p01
10)n01

10+α3−1

× (1 − p11
11)n10

11+β4−1 (p11
11)n11

11+α4−1.

Hence, the posterior distribution for the de Bruijn process transition probabilities

is a product of beta densities. Although the denominator in Equation (4.4) is often

difficult to define explicitly, it can be found in this example due to the prior and

posterior distributions having a conjugate relationship. Hence, we can state the

following:

∫
P (seq|p)P (p)dp =Γ(n00

00 + β1)Γ(n01
00 + α1)

Γ(n00
00 + n01

00 + β1 + α1)
× Γ(n10

01 + β2)Γ(n11
01 + α2)

Γ(n10
01 + n11

01 + β2 + α2)
×

Γ(n00
10 + β3)Γ(n01

10 + α3)
Γ(n00

10 + n01
10 + β3 + α3)

× Γ(n10
11 + β4)Γ(n11

11 + α4)
Γ(n10

00 + n11
11 + β4 + α4)

.

(4.5)

This equation is known as the model evidence. For the general case when m ≥ 1,

the posterior distribution is given in Theorem 4.21.

Theorem 4.21 (Posterior Distribution for de Bruijn Probability Transitions, m ≥ 1).

P (p|seq) = L(seq|p,m)P (p|m)
P (seq)

= L(seq|p,m)P (p|m)∫
L(seq|p,m)P (p|m)dp
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where,

L(seq|p,m)P (p|m) =
2m−1∏
i=0

(1 − p
((2i+1) mod 2m)
i )n

((2i+1) mod 2m)−1
i +βi+1−1

× (p((2i+1) mod 2m)
i )n

((2i+1) mod 2m)
i +αi+1−1

and

∫
P (seq|p,m)P (p|m)dp =

2m−1∏
i=0

Γ(n((2i+1) mod 2m)−1
i + βi+1)Γ(n((2i+1) mod 2m)

i ) + αi+1)
Γ(n((2i+1) mod 2m)−1

i + n
((2i+1) mod 2m)
i + βi+1 + αi+1)

Proof. See Appendix A

For large data sizes, this result can experience computational problems. Hence,

we can either work in the log scale, or we can use the following:

Γ(n1 + α)Γ(n2 + β)
Γ(n1 + n2 + α + β) =

αΓ(α)
α+n1

∏n1
i=1(α + i)βΓ(β)

β+n2

∏n2
j=1(β + j)

(α+β)Γ(α+β)
α+β+n1+n2

∏n1+n2
k=1 (α + β + k)

= αβΓ(α)Γ(β)(α + β + n1 + n2)
Γ(α + β)(α + β)(α + n1)(β + n2)

n1∏
i=1

α + i

α + β + i

×
n2∏

j=1

β + j

α + β + n1 + j
.

Now that I have shown how to estimate the transition probabilities given a

sequence of 0’s and 1’s, I will outline a method to estimate the de Bruijn word length

which was most likely used to generate the sequence. This is a much harder problem

when linked with the transition probabilities, since we require a different number of

transition probabilities for different word lengths, m. Since the word lengths can only

take integer values, I have chosen to proceed using a method of model comparison

called Bayes’ factors (Kass and Raftery, 1995; O’Hagan, 1997). This is based on

the Bayesian approach to hypothesis testing where we decide whether some given

data has arisen under one of two different hypotheses. In terms of the de Bruijn

process, we would question whether a sequence, S, of 0’s and 1’s was created from a

word length m1 de Bruijn process (hypothesis 1) with probability P (S|m1), or from

a length m2 de Bruijn process (hypothesis 2) with probability P (S|m2). For both

of these, we would also have the prior probabilities, P (m1) and P (m2) respectively
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that the sequence was indeed generated using a length m1 or m2 de Bruijn process.

When combined with the data this then gives appropriate posterior probabilities,

P (m1|S) and P (m2|S) = 1 −P (m1|S). If we consider Bayes’ theorem in terms of an

odds scale of these hypotheses when in favour of m1, then we come to the following

equation:
P (m1|S)
P (m2|S) = P (S|m1)

P (S|m2)
P (m1)
P (m2)

.

If we say that the hypotheses, m1 and m2, are equally likely then we can define the

Bayes’ factor to be the posterior odds in favour of m1:

B1,2 = P (S|m1)
P (S|m2)

.

Since the transition probabilities are unknown parameters in this case, we find

an expression for P (S|mk) by integrating over the parameter space. This becomes:

P (S|mk) =
∫

L(S|pk,mk)P (pk|mk) dpk,

for k ∈ {1, 2}, where L(S|pk,mk) is the likelihood of the data and P (pk|mk) is the

prior density of the model parameters, p. We immediately notice the similarity

between this and the model evidence in Equation (4.5) (for m = 2) and Theorem

4.21. Due to the fact that we have a conjugate relationship, we can now state that

the Bayes’ factor ratio is equivalent to the ratio of the model evidences for each of

the model hypotheses, which is shown in Theorem 4.22. I note here that it is not

necessary to calculate the posterior on the transition probabilities since the expression

for the Bayes’ factor is only dependent on the prior density. For each calculation

of P (S|mk), we will know the length mk and hence the quantity of parameters, p,

which are to be estimated.

In the set up of the de Bruijn process, I make the assumption that the word

length, m, will remain fairly small. This is pragmatic as large word lengths create a

vast number of transition probabilities to be estimated, and the increase in dimension

does not have much effect on the accuracy of the estimates. Therefore, I will make

the choice to limit word lengths to not be greater than 10. So, to choose the word
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length that best represents the data, we calculate Bi,j = P (S|mi)
P (S|mj) for each pair of

models where i, j ∈ {1, 2, ..., 10} and select the value for m in which the Bayes’ factor

is consistently higher. When values of Bi,j are large, this gives us more evidence that

we should reject the model with word length mi in favour of the model with word

length mj.

By only selecting 10 different models to compare and choosing the one that best

represents the data, this adds a frequentist aspect to our method. Instead, we could

opt to do this in a fully Bayesian way to maximise the Bayes’ factor and allow any

word length to be considered. However, to do this we would have to put a fairly

strong prior on m to minimise large potential word lengths. This is left for future

work.

Theorem 4.22 (Estimation of De Bruijn Word length by Bayes’ factors, m ≥ 1).

Consider a sequence of 0’s and 1’s which was generated under one of two hypotheses.

The first is a de Bruijn process with word length m1 and the second is a de Bruijn

process with word length m2. The Bayes’ factor ratio is as follows:

B1,2 = P (S|m1)
P (S|m2)

where,

P (S|mk) =
∫
P (S|p,mk)P (p|mk)dp

=
2mk −1∏

i=0

Γ(n((2i+1) mod 2mk )−1
i + βi+1)Γ(n((2i+1) mod 2mk )

i ) + αi+1)
Γ(n((2i+1) mod 2mk )−1

i + n
((2i+1) mod 2mk )
i + βi+1 + αi+1)

,

for k ∈ {1, 2}. When values of B1,2 are large, we have more evidence to reject the

first hypothesis with word length m1 in favour of the second hypothesis with word

length m2.

Proof. Follows from Theorem 4.21.

I would lastly like to point out that, when calculating P (S|mk) for each possible

word length, we integrate over the unknown transition probabilities. This then

removes this parameter from the equation and we are left with a result that is
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independent of the transitions. The only knowledge that we need to estimate the

word length is the prior distribution on the transition probabilities, and the number

of times each transition takes place in the sequence. This is a highly efficient result

since the number of transition probabilities changes dependent on the word length.

Since we have a conjugate relationship, and are independent of the transitions, we

find that it is then very computationally efficient to calculate P (S|mk) for each word

length mk for each k = 1, ..., 10. Thus, given a sequence, once we have successfully

estimated the word length m, we can then use the result given in Theorem 4.21 to

estimate the corresponding transition probabilities for the chosen model.

4.3.1 Examples

I will now present three simple examples to illustrate how to perform the inference

from Theorems 4.22 and 4.21 on a given sequence. This will include how to use Bayes’

factors to select the most likely word length, m, and how to estimate the transition

probabilities. The first given sequence, S, is shown in Figure 4.1. This sequence

was created with a length m = 3 de Bruijn process with transition probabilities,

{p001
000, p

011
001, p

101
010, p

111
011, p

001
100, p

011
101, p

101
110, p

111
111} = {0.10, 0.80, 0.30, 0.85, 0.15, 0.70, 0.20, 0.90}.

It has 500 time steps and is shown to be very sticky to both 0’s and 1’s (since the

marginals are π(0) = π(1) = 0.5).

Fig. 4.1 Sample from a length m = 3 de Bruijn process with letters 0 and
1. The transition probabilities are: {p001

000, p
011
001, p

101
010, p

111
011, p

001
100, p

011
101, p

101
110, p

111
111} =

{0.10, 0.80, 0.30, 0.85, 0.15, 0.70, 0.20, 0.90}.

We begin the example by trying to estimate the word length using Bayes’ factors

with the model evidence stated in Theorem 4.22. The model evidence for the sequence,

S, is calculated for each of the models, mk. Each of these models represents the de

Bruijn process for different word lengths, m = 1, ..., 10, for comparison. We require

the prior distribution for the transition probabilities to calculate the model evidence.

We do not assume any prior knowledge, so let each α = β = 1 for the equivalence of
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a Uniform prior. A Bayes’ factor ratio is calculated for each pair of word lengths

such that:

Bi,j = P (S|mi)
P (S|mj)

, for i, j = 1, ..., 10.

The ratios, Bi,j, produced for word lengths m = 2, .., 8 are shown in Table 4.4.

The values given are on a logarithmic scale and I note that since the table is anti-

symmetric about the leading diagonal, we only need to analyse the lower triangular

section. When Bi,j > Bi′,j for all i′ = 2, ..., 8 and j = 2, ..., 8, this indicates that the

model, mi, is preferred and that the sequence was created with a length m = i word

de Bruijn process. Looking at the table, we can see that the values in the column for

m = 3 are always largest across each row. Therefore, we conclude that the sequence

was generated using a length three de Bruijn process.

m 2 3 4 5 6 7 8
2 0.00 5.91 -0.81 -13.85 -34.14 -55.76 -75.15
3 -5.91 0.00 -6.72 -19.75 -40.05 -61.66 -81.05
4 0.81 6.72 0.00 -13.03 -33.33 -54.94 -74.33
5 13.85 19.75 13.03 0.00 -20.30 -41.91 -61.30
6 34.14 40.05 33.33 20.30 0.00 -21.62 -41.00
7 55.76 61.66 54.94 41.91 21.62 0.00 -19.39
8 75.15 81.05 74.33 61.30 41.00 19.39 0.00

Table 4.4 Table giving the log of Bayes’ factors for 7 models with word lengths,
m = 2, ..., 8 for the sequence shown in Figure 4.1.

I then estimated the word lengths of 1000 different sequences each of length

500 that were generated with a length m = 3 de Bruijn process with transition

probabilities: {p001
000, p

011
001, p

101
010, p

111
011, p

001
100, p

011
101, p

101
110, p

111
111} = {0.10, 0.80, 0.30, 0.85, 0.15,

0.70, 0.20, 0.90}. The distribution of these estimated word lengths is shown in the

histogram in Figure 4.2. We can see here that although the majority of the sequences

are estimated to have a word length of three, it is possible to produce sequences

from the same transition probabilities that are actually more similar to sequences

produced with word lengths one, two or four. This is to be expected and if we

increased the length of the sequences, the proportion of sequences estimated to have

the correct word length would also increase.
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Fig. 4.2 Histogram of estimated word lengths from the example in Figure 4.1.

Having estimated the word length to be m = 3, the corresponding transition

probabilities for the sequence are now estimated. This can be done by either

using a maximum likelihood approach or by using a simple Metropolis Hastings

MCMC. By taking the Bayesian approach using the likelihood in Theorem 4.20,

and assuming we have uninformative priors, I estimated the parameters to be:

{0.108, 0.809, 0.278, 0.852, 0.168, 0.658, 0.177, 0.902}. Comparing this with the de

Bruijn process that was used to generate the sequence shows that the estimation has

proven to be successful with minimal error uncertainties on estimates.

The sequence for a second example is shown in Figure 4.3. This example differs

from the first one above since the marginal probabilities for the letters are not equal.

Instead I have set π({0}) = 0.2 and π({1}) = 0.8. The sequence is of length 500 and

was generated with a length m = 2 de Bruijn process with transition probabilities:

{p01
00, p

11
01, p

01
10, p

11
11} = {0.775, 0.7, 0.825, 0.9}. Therefore, we still expect the 1’s to be

highly sticky.

The word length for the given sequence is estimated using the same method as

explained for the previous example. This includes calculating the model evidence

used for the Bayes’ factor for de Bruijn processes with word lengths m = 1, ..., 10,

and then calculating the Bayes’ factor ratio for every possible pair of models. Table
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4.3 shows the results from this and shows that the most likely word length to have

generated the sequence is in fact m = 2 since all values in the second column

are always the largest across each row. Again, these values are converted to the

logarithmic scale and we need only focus on the lower triangular section of the table

due to the anti-symmetry about the leading diagonal. Given the word length was

estimated to be two, we can then estimate the corresponding transition probabilities.

Using a simple Metropolis Hastings MCMC, I obtained the following estimates:

{p01
00, p

11
01, p

01
10, p

11
11} = {0.768, 0.688, 0.819, 0.897}.

Fig. 4.3 Sample from a length m = 2 de Bruijn process with letters 0 and 1. The
transition probabilities are: {p01

00, p
11
01, p

01
10, p

11
11} = {0.775, 0.7, 0.825, 0.9}.

m 1 2 3 4 5 6 7
1 0.00 14.17 3.12 -5.99 -17.90 -36.45 -51.65
2 -14.17 0.00 -11.06 -20.17 -32.07 -50.62 -65.83
3 -3.11 11.06 0.00 -9.10 -21.01 -39.56 -54.76
4 5.99 20.17 9.10 0.00 -11.90 -30.45 -45.66
5 17.90 32.07 21.01 11.90 0.00 -18.55 -33.76
6 36.45 50.62 39.56 30.45 18.55 0.00 -15.21
7 51.65 65.83 54.76 45.66 33.76 15.21 0.00

Table 4.5 Table giving the log Bayes’ factors for 7 models with word lengths, m =
1, ..., 7 for the sequence shown in Figure 4.3.

I again then estimated the word lengths of 1000 different sequences each of length

500 that were generated with a length m = 2 de Bruijn process with transition

probabilities: {p01
00, p

11
01, p

01
10, p

11
11} = {0.775, 0.7, 0.825, 0.9}. The distribution of these

are shown in the histogram in Figure 4.2. Comparing this with the histogram in

Figure 4.2, we can see that the number of sequences with the correct estimated word

length (m = 2) has greatly increased with very few shown to be slightly lower or

higher. This may be because all of the transition probabilities in this example have

a significant effect on the resulting sequence and so we are sure of the word length

every time.
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Fig. 4.4 Histogram of estimated word lengths from the example in Figure 4.3.

The sequence for the final example is shown in Figure 4.5. This is the same

example as from Figure 3.9 where I showed that some de Bruijn processes can collapse

down to other de Bruijn processes with shorter word lengths. The example shows

a sequence of length 500 generated from a length m = 4 de Bruijn process where

the marginal probabilities are equal (π({0}) = π({1}) = 0.5) and the transition

probabilities are such that there is a 10% chance of swapping letter and a 90% chance

of remaining at the same letter.

After calculating the Bayes’ factors in the same way as the previous two examples,

the results are shown in Table 4.5. As expected, the results imply that the sequence

was generated using a length m = 1 de Bruijn graph, which is equivalent to just

a classical Markov chain. It gives a lower estimate because the sequence of letters

is indistinguishable from a sequence produced with a shorter word length. The

intermediate transition probabilities are not adding any further structure in the

model and are hence unnecessary. Given the estimate of m = 1, the transition

probabilities for the sequence are estimated to be p1
0 = 0.102 and p1

1 = 0.902. Hence

we can conclude that the sequence could have equally been generated with a length

m = 1 de Bruijn process with transition probabilities p1
0 = 0.1 and p1

1 = 0.9.



144 De Bruijn Process Properties and Inference

Fig. 4.5 Sample from a length m = 4 de Bruijn process with letters 0
and 1. The transition probabilities are: {p0001

0000, p
0011
0001, p

0101
0010, p

0111
0011, p

1001
0100, p

1011
0101, p

1101
0110,

p1111
0111, p

0001
1000, p

0011
1001, p

0101
1010, p

0111
1011, p

1001
1100, p

1011
1101, p

1101
1110, p

1111
1111} = {0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1,

0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9}.

m 1 2 3 4 5 6 7
1 0.00 -7.24 -15.72 -24.49 -36.85 -56.61 -68.84
2 7.24 0.00 -8.48 -17.25 -29.61 -49.37 -61.61
3 15.72 8.48 0.00 -8.77 -21.13 -40.89 -53.12
4 24.49 17.25 8.77 0.00 -12.36 -32.12 -44.35
5 36.85 29.61 21.13 12.36 0.00 -19.76 -31.99
6 56.61 49.37 40.89 32.12 19.76 0.00 -12.23
7 68.84 61.61 53.12 44.35 31.99 12.23 0.00

Table 4.6 Table giving the log Bayes’ factors for 7 models with word lengths, m =
1, ..., 7 for the sequence shown in Figure 4.5.

This is emphasised by the histogram in Figure 4.6 which shows the distribution

of the estimated word lengths of 1000 different sequences each of length 500. Each

of these sequences was created using the m = 4 length de Bruijn process (Figure

4.5) but for the majority of them, the Bayes’ factor method suggests that an m = 1

length de Bruijn process was more likely used.

4.4 Discussion

In this chapter, I have extended the ideas from Chapter 3 to look at both properties

of de Bruijn processes and inference. The main property that I have focused on is

the run length of 1’s that appear in the sequences of 0’s and 1’s generated from the

de Bruijn processes. I have presented expressions for the run length distribution,

expectation, variance and generating functions for both m = 2 and for general word

lengths greater than three. Due to similarities with the geometric distribution, I

was able to use known results to help simplify expressions where possible. I have

included examples to compare the simulated run lengths from Figure 3.4 in Chapter

3 to the theoretical expected run lengths that I have calculated here. They have
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Fig. 4.6 Histogram of estimated word lengths from the example in Figure 4.5.

shown to mostly agree, with the exception that we see more variance in the simulated

expected run lengths.

I then went on to look at the inference for de Bruijn processes and have shown

how to use a simple Bayes’ factor method to choose the word length that best fits

a given sequence. Once we have estimated the word length, it is then possible

to estimate the transition probabilities using either maximum likelihood or using

Bayesian MCMC.

In the next Chapter I will be discussing ways to extend the de Bruijn process to

two dimensions (and higher). This is a difficult problem since there is not a natural

direction in a two dimension grid, that is a key feature of de Bruijn graphs.





Chapter 5

De Bruijn Processes in Two

Dimensions (and Higher)

5.1 Introduction

In Chapters 3 and 4, I demonstrated that there was a need for a correlated Bernoulli

process, which would offer an improvement to current classification methods, such

as logistic regression (Chang et al., 2016; Diggle et al., 1998). To do this, I defined

a de Bruijn process, including methods of simulation and inference. A run length

distribution was also derived for the de Bruijn process which led to calculation of

an expected run length, variance of run length and generating functions. Several

examples were given to show the effectiveness of the method.

The natural next stage of this work, which I will develop in this chapter, is

a two dimensional correlated Bernoulli process. Although it would be simpler to

progress in the same way as the 1-d version, the distinct directionality in the de

Bruijn structure cannot easily be applied to a 2-d grid. Therefore, we must consider

whether it is better to adapt the 1-d directional methodology, including direction in

2-d in some way, or if it is better to develop a new formulation for the correlated

Bernoulli process.

In this chapter I will attempt the former, creating a directional multi-dimensional

correlated Bernoulli process using de Bruijn graphs. In the following sections, I outline

two different methods for generating such a process. The first method (Method 1)
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takes advantage of the structures of multivariate and higher-order Markov chains

(Ching and Ng, 2006; Ching et al., 2008), whilst the second method (Method 2)

focuses on defining the 2-d equivalent of a de Bruijn word. The second method proves

to be the more successful of the two, requiring fewer parameters, and allows us to

perform inference. The inference presented is equivalent to the inference method

in Chapter 4, as we are able to calculate the 1-d equivalence for each of the 2-d de

Bruijn words generated. Hence, each 2-d de Bruijn process is shown to be treatable

in the same way as a 1-d problem. Examples are given, along with a motivation

for a 2-d version of the run length distribution. Although not discussed at length,

insights on how to extend Method 2 to higher dimensions are also considered.

5.2 Towards a 2-d De Bruijn Process

To begin, we will discuss Markov random fields (Rue and Held, 2005; Winkler, 1995),

since they are a natural extension of a Markov chain to higher dimensions.

A random field, x, is a random function defined by its joint distributions. For

the random field to be Markov, it must satisfy the following constraint:

P (xi|{xj : j ̸= i}) = P (xi|{xj : j ∈ Si}),

where Si is a neighbourhood of points, {sj : j ∈ Si}, to the point, si. Hence, the

distribution of a point within a Markov random field is only conditional on the

points within a specified neighbourhood and nothing else. In practice, Gauss Markov

random fields are used when x is Normally distributed with mean and covariance

functions. For such Markov random fields to be applicable for a 2-d correlated

Bernoulli process, we require that the random fields are discrete in space, and so

we may want to consider a binary Markov random field (Possolo, 1986; Smith and

Smith, 2006).

One particular type of Markov random field is a conditional autoregressive (CAR)

model (Banerjee et al., 2004; Besag, 1974), which lives on lattice grids or regions.

Each variable xi,j is conditional on the neighbourhood of points, such that the
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probability distribution of xi,j is independent of non-neighbouring points. Often,

a neighbourhood consists of the four surrounding points, xi−1,j, xi+1,j, xi,j−1 and

xi,j+1, but it is possible for this to be extended. The outputs of a CAR model are

calculated by specifying the set of full conditional distributions satisfying a form of

auto-regression. These conditional distributions are often Normal, but can also be

taken from the exponential family.

Therefore, a Bernoulli CAR model may be appropriate for the 2-d correlated

Bernoulli process, and I may be able to use the concept of de Bruijn words to help

define different possible neighbourhoods depending on the amounts of correlation

required.

A similar concept to a Markov random field is a Markov mesh, introduced in

Abend et al. (1965). There, the authors extend a Markov chain to a 2-d Markov

mesh which follows a similar structure to a Markov random field, where each point is

dependent on its nearest neighbours. They also discuss whether the neighbourhood

dependence of each point need only be on those points in the upper left sector, rather

than all surrounding points. Hence, this incorporates a notion of direction.

Another possible approach, which has a similar structure to Markov chains

and de Bruijn graphs, is cellular automata (Agapie et al., 2014, 2004; Wolfram,

2002). Cellular automata (CA) define a discrete model consisting of a set of grid

cells, where each of these cells takes the value of one of a set of pre-defined states.

Often these states are just ‘on’ and ‘off’ or ‘black’ and ‘white’, and so there is an

obvious connection with the type of grids being considered here. The CA model is

of particular interest as the value of a particular cell depends on a set of rules based

on the values of neighbouring cells. These rules are applied iteratively to each cell

until a desired outcome is reached. There are many alterations to the basic model,

including probabilistic cellular automata and Conway’s game of life (1970).

CA models initially appear to be ideal for generating 2-d correlated Bernoulli

simulations, as they are able to produce a grid of cells that each take one of two

different states, 0 or 1. We would then need to generate a set of rules similar to the

transition probabilities of Chapter 3 and 4, allowing us to iteratively produce the final



150 De Bruijn Processes in Two Dimensions (and Higher)

grid pattern. In particular, we may be interested in probabilistic cellular automata,

discussed in Agapie et al. (2014), as we require a structure that is analogous to the

de Bruijn transition probabilities. Agapie et al. (2014) consider a model with an

N -length binary string consisting of the values 0 and 1. At each time step, one

cell is allowed to flip, and each cell has probability 1
N

of being selected to flip. If

selected, then the probability that the cell will flip is dependent on how many 1’s

there are in the neighbourhood of that cell. The Markov chain associated with this

process comprises of the 2N possible binary strings of length N , where each string

can transform to any other string that is at most one cell flip in difference. The

stationary distribution is also provided in their article. Although I believe their

work could be extended to 2 dimensions, since there is no focus on direction, the set

up seems to have similarities with the multivariate Bernoulli distribution discussed

by Teugels (1990). Hence, it may have similar issues such as the high number of

parameters

Both cellular automata and probabilistic cellular automata simulate grids of 0’s

and 1’s iteratively. One of the main advantages of simulating iteratively is that it

removes any of the directionality that was present in the 1-d de Bruijn process, similar

to the work by Besag (1986) on removing noise from pixelled images. Although this

sounds promising, it is a large step away from the de Bruijn process described in

Chapters 3 and 4, and so I leave non-directional methods for discussion in Section 6.

Finally, we notice that cellular automata lack the de Bruijn structure that

determines how wide the dependent neighbourhood is for each cell. The model

structure may need to be changed so that it is also dependent on how many cells are

included in each neighbourhood. This could be treated in a similar way to the de

Bruijn word length. The majority of work on both probabilistic and non-probabilistic

cellular automata has been published by the same authors, implying that there has

either been little interest in the subject, or that its applications are limited. Due

to this and the other reasons stated above, I do not proceed with this method any

further, and instead attempt to find an approach that has more similarities with de

Bruijn processes.
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By trying to progress in a direction that is more closely related to de Bruijn

processes, I discovered that the term ‘2-d de Bruijn graph’ does in fact already exist

in the literature. However, after further investigation, I found that such methods

did not have the desired properties I am looking for. In fact, multi-dimensional de

Bruijn graphs normally refer to 1-d de Bruijn graphs where the word length is large.

Thus, I began considering alternatives for two dimensional de Bruijn graphs.

The first thing to consider when trying to build a two dimensional de Bruijn graph

is direction. As described previously, direction is a key aspect of a de Bruijn graph,

but it is not clear what form the direction takes on a 2-d grid. Initially, to retain

directionality, one can think of the space as being a 2-d grid, and consider having

two separate de Bruijn graphs - one in the x direction and one in the y direction.

Starting from the bottom left hand corner, we may then be able to simulate a grid

from a pre-defined initial condition. Although this is unlikely to cause problems

when considering its distributions and expectations, we have to ensure that there are

no contradictions in the simulation. The contradictions occur because it is possible

to simulate each point from two different directions (x and y). Hence, for consistency,

we would have to make sure that the probability of getting a 1 when simulating in

both directions at the same point was the same.

The second problem with such a model is that it ignores any correlation in

the diagonals. If you move only along the horizontal and vertical lines, then you

are ignoring the diagonal dependencies, which are clearly important for the full

correlation structure. Therefore, it may be more appropriate to build a de Bruijn

graph that simulates along the two dimensions simultaneously. I develop two possible

methods for this, which are described in the following sections. The first of these is

based on averaging over several 1-d de Bruijn graphs, whilst the second considers

what form a de Bruijn word may take in two dimensions.

5.2.1 Method 1

The connection between de Bruijn graphs and Markov chains means that we can

consider building a two dimensional Bernoulli process using multivariate Markov
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chains. Multivariate Markov chains are introduced by Ching and Ng (2006) and Ching

et al. (2008) to model multiple categorical data sequences that have been generated by

a similar source or have notable correlation between them. They consider s different

categorical sequences, each with v possible states in the set V = {1, 2, ..., v}. Each

jth sequence has a state vector, X(j)
t , at time t where, X(j)

t = el = (0, ..., 0, 1, 0, ..., ),

if the jth sequence is in state l at time t. The state probability distribution of the

jth sequence at time t + 1 depends on the state probabilities of all s sequences at

time t and so they propose a multivariate Markov chain model as follows:

x(j)
t+1 =

s∑
k=1

λjkP(jk)x(k)
t , for j = 1, 2, ..., s and t = 0, 1, ...

where the weights, λjk, are non-negative real numbers such that,

λjk ≥ 0, 1 ≤ j, k ≤ s and
s∑

k=1
λjk = 1, for j = 1, 2, ..., s .

P(jk) is the one-step transition probability matrix from the states at time t in

the kth sequence to the states at time t + 1 in the jth sequence. x(k)
t is the state

probability distribution of the kth sequence at time t, where, x(j)
0 , is the initial

probability distribution of the jth sequence. The state probability distribution of the

kth sequence at time (r+ 1) depends on the weighted average of P (jk)X(k)
r . In matrix

form, this becomes:

Xt+1 ≡



x(1)
t+1

x(2)
t+1
...

x(s)
t+1


=



λ11P
(11) λ12P

(12) · · · λ1sP
(1s)

λ21P
(11) λ22P

(22) · · · λ2sP
(2s)

... ... . . . ...

λs1P
(s1) λs2P

(s2) · · · λssP
(ss)





x(1)
t

x(2)
t

...

x(s)
t


.

We can therefore consider multivariate Markov chains as a way to connect many

different 1-d Markov chains so that there is correlation spread across the ensemble.

The weights, λ, act as a correlation parameter, controlling how much influence each

individual Markov chain has in the whole multivariate chain.
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Let’s consider an example with two sequences, S1 and S2 which are known to

have a degree of correlation between them. This gives us the multivariate Markov

chain as follows for each of the sequences, S1 and S2:

x(S1)
t+1 = λS1S1P(S1S1)x(S1)

t + λS1S2P(S1S2)x(S2)
t ,

x(S2)
t+1 = λS2S1P(S2S1)x(S1)

t + λS2S2P(S2S2)x(S2)
t , for t = 0, 1, ...

where in matrix form, this is as follows:

Xt+1 ≡

 x(S1)
t+1

x(S2)
t+1

 =

 λS1S1P
(S1S1) λS1S2P

(S1S2)

λS2S1P
(S2S1) λS2S2P

(S2S2)


 x(1)

t

x(2)
t


.

For the model above, we require four values for λ and four different transition

matrices, P. Each of the transition matrices, P(SiSj), give the probabilities of

transitioning from all of the states in Si to all of the states in Sj. For example, say

both S1 and S2 have possible states V = {v1, v2, v3}. Then P (S1S2) is a 3 × 3 size

matrix, where the elements in P (S1S2) each give the probability of transitioning from

the state vi in S1 to the state vj in S2 for all i, j = 1, 2, 3.

It is important to note here that the authors (Ching and Ng (2006) and Ching

et al. (2008)) also introduced a higher order Markov chain (as mentioned in Section

3.2), for which there are many similarities with de Bruijn graphs. Higher order

Markov chains have a fairly similar structure to multivariate Markov chains since the

model becomes the weighted average of transition probabilities from the previous n

states. Abend et al. (1965) utilise higher-order Markov chains for the classification

of binary random patterns, where they consider black and white images to be two

dimensional arrays of binary random variables. Although they appear to be identical

in the output produced to a de Bruijn graph, I believe that de Bruijn graphs offer a

different layout that is simpler to follow. The total number of parameters for the

higher-order Markov chain is of order ns2 (where n is the order of the Markov chain

and s is the number of states), but the total number of parameters for the similar de

Bruijn graph is of order 2m (where m is the de Bruijn word length).
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Although the authors do also consider a higher-order multivariate Markov chain

model, due to my previous work and simplicity in defining these sequences as de

Bruijn graphs, I have chosen to just adapt the first-order multivariate Markov chain

model to fit my layout in de Bruijn graphs. This is possible because de Bruijn graphs

are Markov on the ‘word’.

In the work of Ching and Ng (2006), correlation is included across s different

sequences that are known to be generated from a similar source. For it to be possible

to use the ideas from this method to help create a two dimensional correlated Bernoulli

process, we must define a model input space that lies on a 2-d grid. We thus define

each row of symbols (or letters) in the model space to be the s individual sequences

with known correlation in the multivariate Markov chain framework. Therefore, we

are able to simulate grids of letters by initiating the Markov chain from one edge

and moving across, as we would in an ordinary 1-d Markov chain.

To fit within the de Bruijn framework, each state in the multivariate Markov

chain is a word of 0’s or 1’s that have length, m, so that like the 1-d case, words

are dependent on previous words in the chain. The notion of transitioning from

word to word in a simulation is lost slightly, since we focus on whether a specific

point is a 0 or a 1, dependent on the words that come before. The word length, as

defined previously for the 1-d de Bruijn graph, requires multivariate Markov chains

to be adapted further. In the general multivariate Markov model, the correlation

between sequences is spread over all rows. In this case, we define how much to

spread correlation via the word length, and so reduce how many rows are included

by only selecting those that are within the de Bruijn word neighbourhood. In 1-d de

Bruijn graphs, each point is dependent on the previous word which consists of the m

points that come before. Similarly, in the 2-d case, each point is now specified to be

dependent on the points in the m closest rows above and below in the input space.

In terms of de Bruijn words, we have each point being dependent on the previous m

length word along the same row, lower diagonal and upper diagonal. The model is

written as follows, where the probability distribution of the jth sequence of 0’s and

1’s is dependent on the probabilities of the m closest sequences in terms of the words
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at time t:

x(j)
t+1 =

j+1∑
k=j−1

λjkP(jk)x(k)
t , for j = 1, 2, ..., s and t = 0, 1, ...

Since the transition matrix, P(jk), gives the transitions in terms of words, and we

are still working with something that is Markov on the word and not the letter,

the summation only sums over three quantities. This is because the m rows either

side of sequence j are contained within the two diagonal m length de Bruijn words.

Hence, regardless of the word length, it is only ever necessary to average over three

probabilities.

The m = 2 structure is shown in Figure 5.1, where the green point is dependent

on the current row, as well as the two rows above and below. This translates to the

green point being dependent on the three words of length two in the three different

directions. The blue points represent 0’s and the orange points represent 1’s. We

can see that the green point is dependent on the m = 2 rows above and below the

current row, but it is due to the de Bruijn word property that we need only consider

the average probability in these three directions.

For a 2-d 3-word de Bruijn process, we would expand this to include the six

closest sequences to the current sequence chosen (three above and three below). Each

point would be dependent on the weighted average of the three length m = 3 words

along the same row, the upper diagonal and the lower diagonal. This is equivalent

to saying that each letter is dependent on the de Bruijn graphs running in three

different directions; along the same row, the upper diagonal and the lower diagonal

(shown in the diagram in figure 5.1).

The de Bruijn word length, m, determines how many rows are included in the

correlation, and, since I am defining the states to be words of length m, this is

equivalent to having three separate (but connected) de Bruijn graphs. If we then

simulate the grid of letters from the left edge, a transition matrix is needed for each

row, down diagonal and up diagonal in the input space. Following Equation 5.2.1,

we are taking the weighted average over the transition probabilities for the three
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de Bruijn graphs, which hence provides a direction from left to right as in the one

dimensional case.

Fig. 5.1 2-d de Bruijn Graph example with word length m = 2 to show the three
weighted de Bruijn graphs that the green symbol is dependent on. The blue points
represent 0’s and the orange points represent 1’s.

So far, each weight, λ, is taken to be 1
3 , as I am not assuming the correlation

in any one direction is stronger than in any other direction. This can be changed

to add weight to a particular direction, or we may consider ways to estimate these

weights for a given example. This is discussed in Ching et al. (2008) where they find

λ to minimise the maximum distance between ∑m
k=1 λjkP̂

(jk)x̂(k) and x̂(j) subject to∑s
k=1 λjk = 1 and λjk ≥ 0, ∀ k. Here, x̂, is the proportion of the occurrence of each

state (or word) in each of the sequences.

Method 1 has to be adapted slightly when we are at the edges of the input

space and the number of letters in the diagonal de Bruijn graphs is less than the

word length, m. Here, we would have insufficient knowledge of all prior m letters,

and we instead use the maximum word length possible for these de Bruijn graphs.

This means that the very edge letters have no dependencies in one direction, and

so the contributed probability for the weighted equation above is drawn from an

independent Bernoulli distribution. For the next row in, this would then be the

equivalent to Markov since we know about one other letter. This continues for each

row until we reach the word length required for the remaining de Bruijn graphs.
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Examples and Extensions to Higher Dimensions

Two examples of 2-d de Bruijn processes with word length m = 3 are shown in figure

5.2. Both processes are run long enough to reach a grid of size 8 × 70. The top plot

is the simulated 2-d sequence when the de Bruijn word length is m = 0, and so each

letter is simulated from Bernoulli trials with probability 0.5. The dark blue points

represent simulated 1’s and the light blue points represent simulated 0’s. They are

shown to be equally and randomly distributed, as expected. The bottom plot is

constructed such that the 0’s and 1’s are forced to be very sticky, but the marginal

probabilities remain at 0.5. The dark blue and light blue points now occur in patches,

which is the 2-d equivalent to the large run lengths seen in the 1-d version.

To generate both of these plots 24 different transition matrices are required, to

reach a total of 158 transition probabilities. There are 158 such probabilities required

because a transition matrix for each row, upwards diagonal and downwards diagonal

is required. In the bottom plot, for the rows and inner diagonals where we have

not reached the edge, I have set the transition probabilities to be approximately

{p001
000, p

011
001, p

101
010, p

111
011, p

001
100, p

011
101, p

101
110, p

111
111} = {0.1, 0.7, 0.3, 0.8, 0.2, 0.7, 0.3, 0.9} to create

a sticky grid for both 0’s and 1’s. As we get closer to the edges of the top and

bottom of the grid, we must reduce the length of the word for the corresponding

diagonal de Bruijn graph. Here I have chosen the transitions {p01
00, p

11
01, p

01
10, p

11
11} =

{0.1, 0.8, 0.2, 0.9} and {p1
0, p

1
1} = {0.1, 0.9}. For simulating points on the far edges

of the grid, we have no information for that corresponding edge, and so I just state

that there is a 50% chance of a 1 for that diagonal de Bruijn graph. The letters in

the top plot are generated using the equivalence of Bernoulli trials, and I thus set all

158 transition probabilities to be 0.5.

Figure 5.3 shows another example of a word length m = 3 2-d de Bruijn process.

As before, the transition probabilities are chosen such that the process is very sticky

to both 0’s and 1’s. The top plot shows the simulation produced, where the dark

blue points represent 1’s and the light blue points represent 0’s. The middle plot

shows the probability of getting the letter 1 at each point in the grid, calculated

after averaging the three separate de Bruijn graphs. We can see that generally, this
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Fig. 5.2 Plots showing 2-d simulations of 0’s and 1’s generated from a Bernoulli
distribution (top) and a word length 3 de Bruijn process (bottom). The transition
probabilities for the bottom plot are such that the points are sticky to both 0’s and
1’s.

pattern closely reflects the final 0/1 classification, where we can see that the edges

of the patches in the top plot have close to a 50% chance of being either a 0 or a 1.

The bottom plot is similar, but instead shows the range of probabilities (difference

between the smallest and largest probabilities) from the three de Bruijn graphs in

each direction. Darker areas represent a larger range in probabilities. Although it is

not very clear in this plot, we can see that the darker areas tend to occur near the

boundary of each cluster of 0’s or 1’s.

We now consider whether this method is extendable to higher dimensions. If

we first consider the step up from two dimensions to three, we can see that we will

require an extra two diagonal de Bruijn graphs when averaging in each direction.

The de Bruijn processes can still be simulated from left to right across a plane, but

we will now have additional diagonal dependencies. Hence, at each point we have

the average of 5 probabilities instead of 3. For even higher dimensions, we would

continue to add another 2 diagonal de Bruijn graphs in the extra directions of the

dimension. Therefore, for a problem in x dimensions, we require 2x different de

Bruijn graphs, and will end up averaging 2x probabilities for each point required.
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Fig. 5.3 2-d simulation of 0’s and 1’s from a word length 3 de Bruijn graph that is
sticky to both 0’s and 1’s. The output is shown in the top plot where light blue
areas represent a 0 and dark blue areas represent a 1. The middle plot shows the
probability of a one, where dark blue indicates high probability. The bottom plot
shows the range in probabilities from each direction that are averaged for each letter.

We can clearly see that the number of transition probabilities needed for high

dimensions will explode very quickly. Already, we require 158 transition probabilities

for the 2-d case when we only have 8 rows in the input grid. Not only do we need the

extra two de Bruijn graphs for each dimension, we also require additional transition

probabilities depending on how many rows we have in our grid. For the 2-d case, for

every increase in row, we require an extra three transition matrices that each have

2m parameters (for word length m).

This high quantity of transition probabilities is one of the main disadvantages

of this method, and is why I look for other methods to overcome this problem. I

am also aware that it is very hard to write down the likelihood for this method due
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to the averaging, and so it may not be possible to carry out inference. In the next

section, I outline a more successful method that is more inline with the structures of

the 1-d de Bruijn process from Chapters 3 and 4.

5.2.2 Method 2

Although Method 1 is entirely valid, and I have shown that it is possible to simulate

2-d grids of 0’s and 1’s with the required structure, it is very hard to take the method

any further. Therefore, I propose a new method that has more similarities to the 1-d

de Bruijn process, and is a more natural extension.

Retaining the two dimensional grid established in Method 1, we begin to consider

potential forms for a 2-d de Bruijn word. With the directional aspect of de Bruijn

graphs in mind, I choose the structure given in Figure 5.4. Here, I present the form

of the 2-d de Bruijn word for the one, two and three word cases. The points for each

word are given by the outlined areas. I decide which points belong to each word by

counting how many steps away each point is moving either to the right or upwards.

Hence, for the size m = 1 word case (red), the word is made up of all the points

that can get to the green point in one step by moving either upwards or to the right.

This is expanded for the size m = 2 word case (purple), where the word consists of

all the points that can get to the green point in one or two steps, again only moving

upwards or to the right. The pattern also follows for the size m = 3 (yellow) and

higher word cases.

The structure enforced is now equivalent to the 1-d de Bruijn case due to the

2-d version of the de Bruijn words included. We still require an equivalent to the

transition probabilities, but the main difference for the 2-d case is that the concept

of transitioning from word to word is still no longer valid. There is still a Markov

structure, since each letter is dependent on the word of letters that comes before

it, but instead of going from word to word, we can visualise it more as what is the

word that the current point is dependent on; i.e., in figure 5.4, what is the word that

the state of the green point is dependent on. It is thus no longer possible to visualise

the associated graph for this de Bruijn process. As a future problem, it would be



5.2 Towards a 2-d De Bruijn Process 161

Fig. 5.4 2-d de Bruijn Graph example where the green point is the current point to
be simulated. The blue points represent 0’s and the orange points represent 1’s. The
forms of the words for word sizes m = 1, m = 2 and m = 3 that the green point is
dependent on are outlined in red, pink and yellow respectively.

interesting to see if we could draw a graph of the possible words each word could

transition to. Hence, we would be considering the word to word transitions even

though the underlying process transitions from a word to a single letter.

It is clear that the number of transition probabilities associated with each word

will get very large with increasing word size. However, it is still possible with enough

data and the number of transitions is still greatly reduced as compared with Method

1. There will be 2µ different transition probabilities for each word consisting of µ

letters. The first possible word (m = 1) contains µ = 2 letters with 22 transition

probabilities, the second word (m = 2) contains µ = 5 letters with 25 transition

probabilities and the third word (m = 3) contains µ = 9 letters with 29 transition

probabilities. For an m size word in 2 dimensions, there are 1
2 (m2 + 3m) letters in

that word with 2
1
2(m2+3m) transition probabilities.

For efficiently simulating a grid of 0’s and 1’s using this 2-d de Bruijn structure,

I approach the simulation as if we were in one dimension, so that I can use the tools

already developed. To do this, for each word shape, I deconstruct the word to form

a vector of 0’s and 1’s. I can then treat this vector as a 1-d de Bruijn word and

carry out the simulation as described in Chapters 3 and 4. A simulation example is

presented in Figure 5.5, where we are interested in simulating the letter represented

by ∗ given the current simulated 0’s and 1’s in the grid.
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Fig. 5.5 2-d de Bruijn process simulation example where the point represented by ∗
is the current point to be simulated. The forms of the words for word sizes m = 1
and m = 2 that ∗ is dependent on are outlined in red and blue respectively.

For the m = 1 case, ∗ depends on the two closest letters on the diagonal outlined

in red. We can treat this 2-d word as the 1-d word equivalent, 10, where we will have

an associated probability given this word for what value ∗ will take. The one-word

2-d de Bruijn word is equivalent to the two-word 1-d de Bruijn word. If we now

consider the m = 2 case, ∗ then depends on the letters in the closest two diagonals.

These letters are outlined in blue in Figure 5.5. Converting this 2-d word to a vector,

we have the word 01100 with a corresponding probability attached to this regarding

the value of ∗. Therefore, the two-word 2-d de Bruijn word is equivalent to the

five-word 1-d de Bruijn word. If we were to increase the word length further, we

find that an m-word 2-d de Bruijn word is equivalent to a 1
2 (m2 + 3m)-word 1-d de

Bruijn word.

Note that the ordering of the letters from each of the 2-d words to its associated

vector is arbitrary, but must be maintained for the entire simulation. The main

reason for considering the 1-d equivalents for each of these 2-d words is that it makes

programming the 2-d simulation simpler, and additional properties are easier to work

with and develop. As long as there is a clear one-to-one mapping from each word to

its associated transition probability then simulation can be carried out regardless. I

use the notation p1
i to mean the probability of getting a 1 given the dependent word

is i. The word i will be written in terms of its 1-d equivalent for notational simplicity.
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Note the slightly different notation here for the superscript as we no longer transition

to whole words, but rather the individual 0 or 1.

One of the main disadvantages for the proposed 2-d de Bruijn process method is

the large number of parameters that need to be defined, even for small values of m.

For m = 1 there are 4 transition probabilities, increasing to 32 for m = 2 and 512 for

m = 3. For general word length, m, there are 2d parameters, where d = 1
2 (m2 + 3m).

To limit the number of transition probabilities, we can apply two constraints. The

first constraint takes advantage of the known marginal probabilities for the overall

proportion of 0’s and 1’s, allowing us to calculate the transition probabilities from

one another. For example, say we knew that 0’s and 1’s were equally likely, and that

the vector of the word was 00101, with transition probability p of getting a 1. This

then means that the transition probability of getting a 1 for the vector of the word

11010 is 1 − p. Hence, we are able to reduce the number of transition probabilities

to be estimated by half, becoming 2d−1.

The other constraint that we are able to make for certain cases takes account of

symmetries in the words. If the probabilities in the x-direction are known to be the

same as the probabilities in the y-direction, then we are able to further reduce the

total number of transition probabilities. In other words, if we take the words in their

2-d form and one is the reverse of the other in the x = y diagonal, then we can say

that the transition probabilities for these words are the same. For a general m length

2-d word, the total number of parameters reduces from 2d to 2d−1 + 2 1
4 (2d+m−4−1m odd).

In the case that both of these constraints are applicable, we can reduce the total

number of parameters to 2d−2 + 2 1
4 (2d+m−4−1m odd).

We may also be able to make other constraints to restrict the number of parameters

further, but this would require further prior knowledge of the data and the process;

i.e., we may have strong priors for certain transition probabilities to help in estimation.

For example, if two words have equal numbers of 0’s and 1’s, then we could use a

prior that says they are likely to be very similar. For future work, I could investigate

the use of hyperparameters for controlling large numbers of transition parameters.
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Examples

Figures 5.6 and 5.7 present several examples of simulated 2-d de Bruijn processes,

where light blue areas represent the letter 0 and dark blue areas represent the letter

1. Figure 5.6 shows four examples on a grid of size 80 × 80. The top two plots

are made using m = 1 word 2-d de Bruijn processes, and the bottom two plots are

produced using m = 2 word 2-d de Bruijn processes. The two plots on the left are

shown to be highly sticky to both 0’s and 1’s, and the right two plots are generated

using the equivalent to random Bernoulli trials. The effect of adding the de Bruijn

structures is clear in both of the left plots, where we can see that the 0’s and 1’s have

started to clump together. We can also see that changing the word size in a 2-d de

Bruijn process makes slightly more difference than in a 1-d de Bruijn process. The

patches in the m = 2 word plot are slightly larger with less distributed random letters

than the m = 1 word plot. This is likely to be because there are significantly more

intricate transition probabilities involved in the m = 2 de Bruijn process, allowing a

more complex structure to be introduced. There is also a slight diagonal trend in

both of these plots. This could be caused either by the word structure or simply the

chosen transition probabilities. More research is required to identify this.

For the m = 1 word de Bruijn processes shown in Figure 5.6, each word consists of

the two previous letters as outlined in red in Figure 5.4. The words are equivalent to

m = 1 word 1-d de Bruijn words, and hence the four transition probabilities required

are: {p1
00, p

1
01, p

1
10, p

1
11}. For the Bernoulli example, these are all set to 0.5, but for

the sticky simulation, I have set these to be: {0.1, 0.5, 0.5, 0.9}. For the m = 2 word

plot, we have far more transition probabilities, as the words are equivalent to m = 5

word 1-d de Bruijn words. In this case, the words consist of the five previous letters

as outlined in purple in Figure 5.4, requiring a total of 32 transition probabilities.

Again, I have set all of these probabilities to be 0.5 for the Bernoulli plot, but have

set the probabilities to give a sticky result for the other m = 2 word plot.

Figure 5.7 gives four examples of 2-word 2-d de Bruijn processes, each of which

has a different set of transition probabilities. The top left plot is the most sticky,

followed by the top right. Both of these have large concentrated areas of either 0’s or
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Fig. 5.6 2-d simulations of 0’s and 1’s from one word de Bruijn processes (top) and
two word de Bruijn processes (bottom). The right plots have no correlation structure
included (Bernoulli trials), whilst the left plots are shown to have high levels of
stickiness for both 0’s and 1’s.

1’s. The bottom left plot is generated using random Bernoulli trials, and the bottom

right plot gives a simulation from a de Bruijn process designed to be anti-sticky for

both 0’s and 1’s. This final plot is distinct, in that an almost regular pattern has

emerged where the 0’s and 1’s are almost constantly alternating.

Inference

Due to the connections with the 1-d de Bruijn process, we can therefore write down

the likelihood for the 2-d de Bruijn process, and consider possible inference. The

likelihood for the transition probabilities is the same as that for the 1-d version,

meaning that the m = 1 likelihood has the following form:

L = (p0
00)n0

00 (p1
00)n1

00 (p0
01)n0

01 (p1
01)n1

01 (p0
10)n0

10 (p1
10)n1

10 (p0
11)n0

11 (p1
11)n1

11

= (1 − p1
00)n0

00 (p1
00)n1

00 (1 − p1
01)n0

01 (p1
01)n1

01 (1 − p1
10)n0

10 (p1
10)n1

10 (1 − p1
11)n0

11 (p1
11)n1

11 ,
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Fig. 5.7 2-d simulations of 0’s and 1’s from a 2-word de Bruijn processes. The top
two plots are shown to have high stickiness towards 0’s and 1’s, whilst the bottom
left plot is generated from random Bernoulli trials. The bottom right plot shows an
anti-sticky de Bruijn process.

where p1
i is the probability of getting a 1 given that the dependent word is i, and

n1
i is the number of times that transition takes place. The transition likelihood for

general m ≥ 1 cases is given by:

L =
2d−1∏
i=0

(
1 − p1

i

)n0
i
(
p1

i

)n1
i

where d = 1
2 (m2 + 3m). This is written in terms of the decimal representation of

the binary values, as was done for the 1-d version.

Since the general likelihood is equivalent to the 1-d de Bruijn process in Theorem

4.20, we can therefore use the exact same method of inference to estimate the

transition probabilities. Further, we can use the method of Bayes’ factors (Kass and

Raftery, 1995; O’Hagan, 1997) from Theorem 4.22 to best estimate the word length
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for a given sequence. I will now present two examples to show how this inference

method is still effective for the 2-d de Bruijn processes.

The first example is shown in Figure 5.8, which is a simulation on an 80 × 80 grid

from a 2-d de Bruijn process with word length m = 1 and transition probabilities:

{p1
00, p

1
01, p

1
10, p

1
11} = {0.1, 0.5, 0.5, 0.9}. Given that I know the data was generated

using a 1-word de Bruijn process, the transition probabilities are estimated using

the 1-d inference described in Section 4.3. This can either be done using a maximum

likelihood approach or by using a simple Metropolis Hastings MCMC. I treat the

estimation as a 2-word 1-d problem, and the results are given in Table 5.1. I have

also included estimates from two other sized grids (30 × 30 and 150 × 150) to show

how differently sized data effects the estimation of the transition probabilities. Both

of these examples were generated using the same set of transition probabilities.

We can see that the method has successfully estimated the transition probabilities

for all three simulation grid sizes, where as expected, the larger two sizes have a

higher level of accuracy. The average error for each of sizes are 10.44%, 2.52% and

1.03% respectively.

Fig. 5.8 2-d simulation of size 80 × 80 consisting of 0’s and 1’s from a 2-d de Bruijn
processes with word length m = 1 and transition probabilities: {p1

00, p
1
01, p

1
10, p

1
11} =

{0.1, 0.5, 0.5, 0.9}.
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p 30 × 30 80 × 80 150 × 150
0.1 0.123 0.108 0.098
0.5 0.537 0.497 0.493
0.5 0.544 0.506 0.498
0.9 0.923 0.897 0.903

Table 5.1 Table to show estimates of the transition probabilities from the example
in Figure 5.8. The true values, {p1

00, p
1
01, p

1
10, p

1
11} = {0.1, 0.5, 0.5, 0.9}, are shown on

the y-margin. Estimates are given for data grid sizes 30 × 30, 80 × 80 and 150 × 150.

The second example is given in Figure 5.9, where I estimate both the word length

and the transition probabilities. The simulation is an 80 × 80 grid of 0’s and 1’s

generated from a 2-word 2-d de Bruijn process, where the transition probabilities

are set to be sticky for both 0’s and 1’s.

I first attempt to estimate the most likely word length used to generate the

example, using the method of Bayes’ factors with the model evidence stated in

Theorem 4.22 for the 1-d methodology. I start by calculating the model evidence

for the 2-d grid for four different models corresponding to 2-d de Bruijn processes

with words m = 1, m = 2, m = 3 and m = 4. These are equivalent to 1-d de Bruijn

processes with word lengths m = 2, m = 5, m = 9 and m = 14 respectively, and so

we generate the model evidences for the given data as if they were 1-d de Bruijn

processes of these lengths. To calculate these, we require the prior distributions for

the transition probabilities. I do not assume that we have any prior knowledge of

the transitions and hence let α = β = 1 in Equation 4.22 for the equivalence of a

uniform prior. I then calculate a Bayes’ factor for each pair of word lengths such

that:

Bi,j = P (S|mi)
P (S|mj)

, for i, j = 1, ..., 4.

The values for Bi,j for i, j = 1, ..., 4 are given in Table 5.2. When Bi,j > Bi′,j for all

i′ = 1, ..., 4 and j = 1, ..., 4, then we can conclude that the grid of 0’s and 1’s was

most likely created with a length m = i de Bruijn process. Looking at the table,

we can see that this is the case for the second column and therefore the method

suggests that the simulation data comes from an m = 2 word 2-d de Bruijn graph.
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Fig. 5.9 2-d simulation of size 80 × 80 consisting of 0’s and 1’s from a 2-d de Bruijn
processes with word length m = 2. The transition probabilities for this example are
given in Table 5.3.

m 1 2 3 4
1 0.00 229.63 -63.91 -1066.21
2 -229.63 0.00 -293.54 -1295.84
3 63.91 293.54 0.00 -1002.31
4 1066.21 1295.84 1002.31 0.00

Table 5.2 Table giving the log Bayes’ factors for 4 models with 2-d word lengths,
m = 1, 2, 3, 4 for the given data in Figure 5.9. These are equivalent to the 1-d word
length, m = 2, 5, 9, 14.

Having estimated the word length to be m = 2, I now estimate the corresponding

transition probabilities. A 2-word 2-d de Bruijn word is equivalent to a 5-word 1-d

de Bruijn word, giving a total of 32 transition probabilities to be estimated. Using

the simplifying conditions described above we can reduce the number of parameters.

First, by using the marginal probabilities for the overall numbers of 0’s and 1’s, we

can reduce the total number by half to 16. The number of parameters can then be

further reduced by taking account of the symmetries in words, making the total

number of transition probabilities to be estimated 10.

Given the reduced number of parameters, I take a Bayesian approach with

uninformative priors to estimate the transition probabilities. The true transition
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probabilities along with estimates for each number of parameters (32, 16 or 10) are

given in Table 5.3. p is the true value for the transition probability given by p1
i and

p̂ is the corresponding estimate. We can see that although the method does fairly

well at estimating all of the transition probabilities, the estimates when there are

far fewer parameters are superior. I therefore recommend to simplify the number of

parameters used where possible.

5.2.3 3 Dimensions and Higher

Overall, it is clear that Method 2 is preferable as it has a structure that closely

resembles the successful structure of the one dimensional de Bruijn process. It also

requires far fewer parameters to build sticky 2-d grids of 0’s and 1’s, and we are

able to perform inference on both the word and the transition probabilities. An

obvious extension is to now expand this method to higher dimensions. Given that

we are able to reduce the 2-d de Bruijn process down to something that looks and

behaves like a 1-d de Bruijn process, we can therefore consider doing the same for

higher dimensions. We would then be able to continue using the same methods for

simulation and inference from the 1-d methodology, with the only difference being

the shape and form of the word. As long as we are able to reduce these words down

to a 1-d vector, then there is no reason why we cannot form n dimensional de Bruijn

processes.

Let us first consider 3-d de Bruijn processes, where, to form the words, we can

take a similar approach to that of the 2-d case. The word structure on a 3-d grid

is shown in Figure 5.10. For an m-word, we must include all the points that are m

moves away from the point of interest, only moving in the up, forward and right

directions.

From Figure 5.10, we can see that the 3-d words form shapes similar to corners

from a cube. To form the next larger word, the corner increases in size by the

addition of the next triangle plane. The first word (green) contains three points,

and so is equivalent to the 3-word 1-d de Bruijn word. The second word (blue)

contains 9 points, and is thus equivalent to the 9-word 1-d de Bruijn word. This
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p1
i p p̂

p1
0 0.05 0.054
p1

1 0.10 0.091
p1

2 0.40 0.429
p1

3 0.50 0.508
p1

4 0.15 0.197
p1

5 0.20 0.124
p1

6 0.50 0.585
p1

7 0.50 0.473
p1

8 0.40 0.362
p1

9 0.55 0.635
p1

10 0.75 0.716
p1

11 0.80 0.898
p1

12 0.55 0.536
p1

13 0.55 0.651
p1

14 0.80 0.805
p1

15 0.85 0.874
p1

16 0.15 0.152
p1

17 0.20 0.203
p1

18 0.45 0.437
p1

19 0.45 0.496
p1

20 0.20 0.174
p1

21 0.25 0.198
p1

22 0.45 0.466
p1

23 0.60 0.599
p1

24 0.50 0.456
p1

25 0.50 0.452
p1

26 0.80 0.876
p1

27 0.85 0.831
p1

28 0.50 0.489
p1

29 0.60 0.610
p1

30 0.90 0.900
p1

31 0.95 0.947

p1
i p p̂

p1
0 0.05 0.155
p1

1 0.10 0.110
p1

2 0.40 0.395
p1

3 0.50 0.498
p1

4 0.15 0.172
p1

5 0.20 0.221
p1

6 0.50 0.522
p1

7 0.50 0.463
p1

8 0.40 0.421
p1

9 0.55 0.494
p1

10 0.75 0.809
p1

11 0.80 0.721
p1

12 0.55 0.579
p1

13 0.55 0.535
p1

14 0.80 0.800
p1

15 0.85 0.848

p1
i p p̂

p1
0 0.05 0.050
p1

1 0.10 0.102
p1

2 0.40 0.374
p1

3 0.50 0.499
p1

4 0.15 0.105
p1

5 0.20 0.198
p1

6 0.50 0.493
p1

9 0.55 0.555
p1

10 0.75 0.758
p1

14 0.80 0.818

Table 5.3 Tables to show estimates of the transition probabilities from the example
in Figure 5.9. In each table, p1

i shows the transition probability (using the decimal
representation of the binary word), p gives the true transition probability and p̂ gives
the estimate for the transition probability. The far left table gives the estimates for
all 32 parameters, whilst the other two tables give estimates for parameters where
constraints have been made (16 and 10 parameters respectively).

pattern continues, where the 3-word 3-d de Bruijn word is equivalent to the 19-

word 1-d de Bruijn word and the m-word 3-d de Bruijn word is equivalent to the
1
6 (m3 + 6m2 + 11m)-word 1-d de Bruijn word.

It is also important to note that the set of additional points included with each

increase in word size is equivalent to the same word of the dimension below (making
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Fig. 5.10 Plot to show the form of de Bruijn words in 3 dimensions. The words
that the black point is dependent on are shown in green (m = 1), blue (m = 2) and
orange (m = 3).

sure we include the extra point). In other words, the triangle that is added to the

2-word for the 3-word 3-d de Bruijn (only orange points in Figure 5.10) is the same

as the 3-word 2-d de Bruijn (including 1 extra point). This relationship appears to

be the same regardless of the dimension or word size, meaning that we can form the

following relationship for the number of points in the word for an m-word n-d de

Bruijn graph:

an,m+1 = an,m + an−1,m+1 + 1,

where, an,m is the number of points in the m size de Bruijn word in n dimensions.

As the dimension increases, it is clear that the number of parameters will again

explode. Hence, it becomes increasingly important to use constraints similar to

those found for Method 2. It is possible to reduce parameters by considering the

marginal distributions for each letter, and by observing any symmetries in the words
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themselves. We can also make other assumptions, such as defining certain transition

probabilities to be equal, or by providing strong priors in estimation. Examples in

higher dimensions are left for future work.

5.2.4 Run Length and Future Work

One of the key results that I focused on in Chapter 4 was the run length distributions

of letters in a sequence obtained from a de Bruijn process. In this section, we begin

to consider what the two dimensional equivalent of a run length is. This is a hard

problem, since we do not naturally have a start and end point to a run of letters

that we had in the 1-d version. Instead of a run of 1’s, we must consider what a

patch size or area of 1’s would be defined as on our grid.

To begin with, we could define the patch size by counting how many 1’s (or 0’s)

are touching at least one other 1 (or 0). However, this means that we can end up

with long chains of 1’s that would technically be equivalent to a more circular patch

that contained the same number of 1’s. Therefore, we arrive at the situation where

it depends on what one defines as a patch. If we require patches that are spherical,

then we could require that each 1 must be touching at least two other 1’s on the

grid to be classed as a patch. Equally, we may consider how many 1’s are touching

in small groups, such as a cross made up of five individual 1’s. Hence, it may be

necessary to consider what is suitable for a specific application before defining a

constraint on the patch shape.

In relevant literature, the concept of patch size has been discussed in mathematical

ecology (Pielou, 1969, 1984). For example, we may want to model patch size of trees

in a forest, or estimate the maximum size for a collection of bacteria in an experiment.

Pielou (1969) discusses the measurement of aggregation of a population’s spatial

pattern. The result of his work is essentially what I require, as I wish to know

how clustered each letter is in a defined grid of 0’s and 1’s: the author describes

several methods to do this. The first of his methods assumes that the data is Poisson

distributed, and so he considers the ratio between the data variance and mean to

test for randomness. Highly clustered discrete distributions tend to have a variance



174 De Bruijn Processes in Two Dimensions (and Higher)

which exceeds the mean. Hence, if the points are dispersed at random, the ratio of

the variance and mean should be close to one. With this in mind, I may want to

consider patch size in random Poisson processes before focusing on the 2-d de Bruijn

process.

Secondly, he references Lloyd’s indices of mean crowding and patchiness as a

measure of aggregation. For each individual point, this requires defining the number

of other points that are in the same pre-defined neighbourhood. Hence, we can

calculate the mean number per individual point of other individual points in a

neighbourhood.

It is clear that patch size, and measurements of clustering in general, is a large

topic itself. Hence I make the choice to leave this as future work. I believe the main

focus of such future work should be developing a formal definition of a patch size.

Although the concepts described in the ecological literature are interesting, and I can

use some of the main ideas, they are mostly focused on testing whether clustering

exists instead of actually modelling it.

As well as patch size, we could consider diagonal lines of 0’s and 1’s across the

grid as an alternative to run length. In the setup of the word structure described

in Method 2, I ended up building the grid across diagonal lines from the top left

hand corner down to the bottom right hand corner. However, this means that I do

not take account of the correlation between neighbouring points along this diagonal.

There must be some degree of dependence structure along these diagonals, as the

points along the diagonal are dependent on several of the same previous points in

their respective words. To see this correlation, we could consider the distribution

or expected run length of the letters along the diagonals. This would provide more

information on the connections between these neighbouring points on the diagonal

line. I may then be able to consider a de Bruijn structure along these diagonal lines,

so that we have each line being dependent on the lines before. I can also analyse the

structure and correlation across each of these diagonal lines. Such an analysis would

be far more difficult than when we considered the run lengths in the one dimensional

case, as we do not have the de Bruijn structure along the diagonals; i.e., we do not
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know which letter comes before in the diagonal until we actually simulate it. Hence,

I leave this for future work.

As mentioned throughout this section, the major hurdle of de Bruijn processes

in higher dimensions is the directionality. Despite my attempts to produce a two

dimensional de Bruijn process in this chapter, the directionality in a 2-d grid still

does not make logical sense. Inspired by the work from Wolfram (2002) and Besag

(1986), Chapter 6 explains my initial thoughts on how to develop a de Bruijn process

with the directionality removed. This is a very difficult problem to tackle, hence I

have not completed all work proposed, where much of it is left for future research.

5.3 Discussion

In this section I have presented an introduction to a two dimensional de Bruijn

process. The main problem to overcome with this was the natural directionality of

de Bruijn graphs. I can no longer start at one end and let the de Bruijn graph run

to produce a sequence of 0’s and 1’s. Instead, I consider trying to produce a grid of

0’s and 1’s that lies in two dimensions with the hope that I can easily extend the

method to higher dimensions.

Since I used Markov chains in the one dimensional de Bruijn process so that

the words had a Markov property, I initially began thinking about 2-d alternatives

including Markov random fields, Markov mesh grids and CAR models. I also discussed

the possibility of using a version of cellular automata to iteratively produce grids or

lattices of 0’s and 1’s. Since these methods had a lack of directionality, I decided

to focus on these in a later chapter, and first attempted a directional 2-d de Bruijn

process. Although I believe that a non-directional de Bruijn process will be a vital

way forward with the correlated Bernoulli process, I was keen to see if there was a

natural 2-d extension to the already developed 1-d directional de Bruijn process.

Progressing on from here, I began developing my own methods for a directional

2-d de Bruijn process. My first method (Method 1) has connections to multivariate

and higher-order Markov chains which average over several sequences that have been

generated from a similar source. I took this concept and combined it with the de
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Bruijn word structure to create a de Bruijn process. Depending on an m length de

Bruijn graph, I generated a simulation by averaging over the closest m rows above

and below for each point in a grid. Hence, for simulating each point in the grid, I

averaged over three separate but linked de Bruijn graphs across the same row and

the upper and lower diagonals. I therefore required a transition matrix (similar to

those in Sections 3 and 4) for each row, upwards diagonal and lower diagonal in

the grid I was simulating. Since this generated a large number of parameters in the

model, I chose not to progress any further in this way. I also found that developing

any inference for this method would be challenging due to the averaging that takes

place at each step.

I then moved on to improve on this with my second method (Method 2). My aim

when developing this method was to consider what the two dimensional equivalent

to a de Bruijn word is. By doing this, I hoped to produce a method that was more

similar to the one dimensional version so that parts of my 1-d methodology could be

carried over to the 2-d version. I therefore defined the form of the 2-d word structure

in Figure 5.4. However, I found that since we can no longer transition from word

to word (instead we have word to letter), we can no longer visualise the associated

graph to the process.

The major advantage of this method is that we can convert each of the 2-d words

into their 1-d word equivalent. For example, a 1 word 2-d de Bruijn word is equivalent

to a 2 word 1-d de Bruijn word and a 2 word 2-d de Bruijn word is equivalent to

a 5 word 1-d de Bruijn word. Providing we keep the ordering consistent, we can

convert each 2-d word into a vector and treat it as if it were the 1-d equivalent. This

means that we can use the same method of simulation from the 1-d de Bruijn process,

but more importantly it enables us to perform inference on 2-d de Bruijn processes.

Then with little extra work, we can convert this method into higher dimensions to

produce an n-d de Bruijn process. For future work, I plan to find the equivalence of

the run length distribution from Chapter 4 for 2-d de Bruijn processes.

It has become clear that a non-directional version of a de Bruijn graph would be

ideal in simulating two dimensional (and higher) grids of 0’s and 1’s for my correlated
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Bernoulli process. Although it is a challenging problem, I present my initial thoughts

on the topic in the next chapter.





Chapter 6

Towards Non-directional De

Bruijn Graph Structures

6.1 Introduction

One of the major disadvantages of the current method for de Bruijn processes

(Chapters 3, 4 and 5) is the directionality that is required. This is especially the case

when trying to form a 2-d version of a de Bruijn process: we are trying to force a

specific directionality on a spatial grid where directionality does not make logical

sense. In this chapter, the aim is to find a non-directional equivalent to the de Bruijn

process.

The inspiration for this came from looking at Besag (1986). Here, the author

develops a new method for reconstructing two-dimensional images, where the aim

is to estimate the true colouring for each pixel located in the image. The image

(region) is split up into a fine rectangular grid, where each of the pixels in this grid

has a true colouring from a set of known colours. The main application for the work

is to reconstruct blurred or damaged images, hence the method is required to have a

starting image for reconstruction.

Their model combines two sets of data. One is a multivariate record containing

some information of the colouring at each pixel, which follows a known statistical

model (normally Gaussian). The other data source states that pixels close together

tend to have the same colour, and is presented as a non-generate Markov random
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field. We can relate these ideas to the de Bruijn process by having a set of two

possible colours (i.e. black = 1 and white = 0) which are dependent on a specified

local neighbourhood of points. If we were to adapt this method to be more suited to

de Bruijn processes, we could consider including an extra dependency on the size of

the neighbourhood, changing how many points are included. We would also need to

define what the initial image would be, and consider how to define the information

included in the statistical model. The author uses a Normal distribution, but we

could investigate whether a binary distribution could also be used.

For inference, Besag (1986) makes use of Bayes’ theorem to find the probability

of any colour at each pixel. The likelihood becomes an observation from a Gaussian

distribution, and the prior is expressed as a simple Markov random field defining

that neighbouring points will be similar in colour.

As discussed in Chapter 5, there are also other alternative methods in the Markov

random field literature. These include CAR models (Banerjee et al., 2004; Besag,

1974) and Markov meshes (Abend et al., 1965). Both of these act in a similar way to

the work by Besag (1986) as each point in a specified grid is dependent on the local

neighbourhood of points. Cellular automata (Agapie et al., 2014, 2004; Wolfram,

2002) were also mentioned in Chapter 5, where (again) the value of a particular cell

in a grid depends on a set of rules based on the neighbouring cells.

Combining the ideas of the above literature and the de Bruijn process already

developed, I will attempt to produce a method for a non-directional de Bruijn

process. This is a difficult problem, and the majority of the research for this is left

for future work. I begin by attempting to define a non-directional de Bruin process

for the one-dimensional case in Section 6.2. Due to the success of converting the 2-d

directional de Bruijn words into their 1-d word equivalents in Chapter 5 (Method 2),

I also attempt this for the non-directional 1-d de Bruijn words. From this, we will

then be able to calculate a run length distribution (Section 6.2.2) with expectation,

variance and generating functions. In Section 6.2.9, I then show how it is possible to

apply the same method of inference from Chapter 4 using Bayes’ factors. Section 6.3
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outlines my initial ideas on a 2-d non-directional de Bruijn process (the majority of

this is left for future work).

6.2 1-d Methodology

The main aim for this section is to develop a method for a de Bruijn process that has

many of the same characteristics as the existing 1-d de Bruijn process, but is no longer

restricted to a specific direction. As shown in Chapter 5, it was possible to retain

some of the structure from the 1-d de Bruijn process for the 2-d de Bruijn process

(Method 2), meaning that I could use some of the existing properties developed, such

as inference. Therefore, I choose to keep the idea of ‘words’ which are vital to de

Bruijn graphs, but change the form.

Previously, in the 1-d directional de Bruijn process, the word consisted of the m

letters that came before the point of interest. Here, to ensure that the dependency is

equivalent either side of each point, I define the word of the de Bruijn process to now

consist of the m letters that fall on both sides of the point of interest. This ensures

that there is no direction involved in the dependent word. Since there are equal

numbers of influential points on each side, the total number of possible words for

each word length m is 22m. Examples on non-directional words are given in Figure,

6.1, where the m = 1, m = 2 and m = 3 word cases that the green point is dependent

on are labelled. Here, the blue points represent 0’s and the orange points represent

1’s. The one-word case is shown in red, the two-word is shown in purple, and the

three-word is shown in yellow.

Fig. 6.1 1-d non-directional de Bruijn example to show the form of specific words.
Blue points correspond to 0’s and orange points correspond to 1’s. The green point
is the point of interest for looking at which words it is dependent on. The forms of
the word for m=1, m=2 and m=3 are outlined in red, purple and yellow respectively.

The classification of a single point being either a 0 or a 1 is dependent on the

number and positions of the m 0’s and 1’s located either side of the point, forming
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the word. As in directional de Bruijn processes, each of the possible words can have

a probability attached to them. Since this will tell us the probability of the centre

point (green point in Figure 6.1) being a 1, we find that it is no longer possible to

transition to full words, but rather just to a single 0 or 1. To avoid confusion, these

probabilities will now be known as conditional word probabilities. They are written

as p1
i:j, representing the probability of getting a 1 from the word i : j. For example,

if we had the sequence 100 ∗ 101, then the probability of ∗ being a 1 for the one-word

case would be displayed as p1
0:1 since ∗ has a 0 to the left and a 1 to the right. For

the two-word and three-word cases, the probabilities of ∗ being a 1 would be p1
00:10

and p1
100:101 respectively. Therefore, in a similar way to Method 2 in Chapter 5, we

are also not able to easily visualise the associated de Bruijn graph for this process.

Using these conditional word probabilities, we are still able to influence the

‘stickiness’ of the generated sequences from the de Bruijn process. If the word

consists of entirely 1’s (or 0’s), and the probability of the centre point also being a

1 (or 0) is close to one, then we would expect this sequence to be very sticky. For

example, if m = 3, then for the sequences generated from the de Bruijn process to

be sticky to both 0’s and 1’s, we would expect the probabilities p0
000:000 and p1

111:111

to be close to one.

Even though we cannot consider the word to word graph of the non-directional

de Bruijn process, and hence cannot form a transition matrix, we can still use some

of the same identities from the directional process. The most important of these

is the necessity that the rows of the transition matrix sum to one. For example, if

m = 3, then p0
000:000 + p1

000:000 = 1. This is also true for any word of length m. This

relationship still holds true as it is only possible to produce either a 0 or a 1 from each

conditioning word, hence the sum of the conditional word probabilities of getting

either a 0 or a 1 must be equal to one. Unfortunately, it is no longer possible to

easily find Markov properties such as the stationary distribution or the convergence

rate as in Chapter 3, and thus is left for future work. One future problem is to decide

whether the process is Markov or not, as it is not clear from initial observations. The

conditional independence assumption still holds since each symbol is only dependent
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on the closest word of symbols either side and no other. However, since we are no

longer transitioning from word to word, we no longer have a clear set of states for

the associated Markov chain. To prove that the process is Markov, it must satisfy all

of the conditions from the Markov property definition in Section 3.2. It may be that

we have to change which part of the process has a Markov property. For example,

we could treat an entire sequence as one state and observe the Markov property as

we transition from one sequence to the next. Alternatively, we may have a collection

of Markov chains that describe the process, so that each symbol and associated word

becomes a single Markov chain. I do not fully understand the process at this level,

so it is something that I am keen to progress with in future research. If we can prove

that the process is Markov in some way, then we will be able to use well known

properties to help progress the methodology further.

As described above, it would be ideal if the non-directional de Bruijn process had

a similar form to the 1-d directional de Bruijn process so that the properties and

inference developed for this could be carried over. For the 2-d de Bruijn process in

Method 2, we were able to decompose each of the 2-d de Bruijn words into their 1-d

de Bruijn word equivalents. Hence, we were still able to use the method of Bayes’

factors with either maximum likelihood or Bayes’ theorem to estimate both the word

length and the associated transition probabilities. All that is necessary for this is to

have a one-to-one corresponding transition probability for each possible word.

Each of the non-directional words are written as i : j. If we convert i : j to

its vector form, ij, then it becomes the 1-d directional de Bruijn word equivalent

to the non-directional word. Since each non-directional word can be written as its

directional word equivalent, I can conclude that we can also view this problem in

the same way as the 1-d directional de Bruijn process. Thus, a large part of the

1d directional de Bruijn process methodology can be used for the non-directional

de Bruijn process. By having a one-to-one correspondence from the non-directional

word i : j to the directional word ij, I can conclude that a length m non-directional

de Bruijn word is equivalent to a length 2m directional de Bruijn word.
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I have chosen to display a non-directional word in the form i : j since it is easier

to interpret the sequence that we are referring to, rather than writing the split word

as one. In the calculations that follow, the words will be written in terms of their

decimal representations of the binary values, as used previously.

6.2.1 Simulation and Examples

One major difference between the non-directional and the directional de Bruijn

processes is the simulation. In the directional version, a sequence of 0’s and 1’s was

generated by letting the Markov chain on the words run for the desired length. At

each step, the current letter was dependent on those that came before in the set word

length neighbourhood. For the non-directional version, since each letter is dependent

on those located either side, this is no longer possible. In this section, I describe

two possible alternate methods for simulating a sequence from a non-directional de

Bruijn process.

When simulating a sequence for the directional de Bruijn process, we required

the first m letters to be known (and fixed) to act as an initial condition. This initial

condition is also required for the non-directional version, but we now require m

initial known letters at both ends of the sequence. This condition enforces that the

process is now truly non-directional. We can arbitrarily define these initial letters,

or use reduced word length de Bruijn processes to simulate the m edge letters. At

least two fixed boundary letters (one at each end) will be required for each simulated

sequence. Alternatively, to avoid any such boundary condition complications, and to

show examples for the methods that will follow, we can form the sequence into a loop

so that the de Bruijn condition affects both of the end letters (periodic boundary

conditions).

Simulation 1

The joint probability of obtaining a sequence of 0’s and 1’s can be defined as the

product of conditional word probabilities. This is possible because the product of

probabilities defines the exact ordering of the words for the sequence, and hence it
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also uniquely defines the sequence of letters. One possible method for simulation I

will discuss uses this definition of the joint probability to iteratively produce possible

sequences given the de Bruijn process. At each time step, we calculate the joint

probability of obtaining every possible sequence given the current sequence, then

draw from these to give a single realisation from the process.

First, begin with an initial estimate for each of the letters, v, in a length n

sequence: (v(0)
1 , v

(0)
2 , ..., v(0)

n ). This sequence can then be written in terms of its

non-directional de Bruijn words: (w(0)
1 , w

(0)
2 , ..., w(0)

n ). To avoid boundary condition

problems, we form the sequence into a loop, so that the end letters are dependent

on the letters at the opposite end of the sequence (periodicity). For each iteration,

i = 1, 2, ..., we calculate:

P(i) = pj1

w
(i−1)
1

× pj2

w
(i−1)
2

× ...× pjn

w
(i−1)
n

for jk ∈ {0, 1} and where pjk
wk

is the probability of obtaining the letter jk from the

non-directional word wk. P(i) is then a vector of joint probabilities for each possible

sequence of 0’s and 1’s obtained from the (i− 1)th sequence at iteration i. Drawing

from P(i) gives us the ith sequence in our iterations, which is the most likely given

both the current sequence and the conditional word probabilities. This process is

repeated a number of times until convergence of a suitable sequence, giving a sample

from the de Bruijn process.

Three samples from non-directional de Bruijn processes with word length m = 1

are given in Figure 6.2. The marginal probabilities are π({0}) = π({1}) = 0.5

for each sequence and the conditional word probabilities {p1
0:0, p

1
0:1, p

1
1:0, p

1
1:1}, are:

{0.5, 0.5, 0.5, 0.5}, {0.1, 0.1, 0.9, 0.9} and {0.1, 0.9, 0.1, 0.9} respectively (from top to

bottom). The 0’s and 1’s in the top plot appear uncorrelated as expected, as this

sequence is equivalent to drawing independently from a Bernoulli distribution with

probability 0.5. The bottom two sequences are seen to be more sticky with larger

groups of both 0’s and 1’s, which is also to be expected as these de Bruijn processes

were designed to be equally sticky.
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Although this method of simulation appears to be successful, it is very computationally

inefficient. For a length n sequence, we must calculate and store 2n joint probabilities

at each iteration for each of the possible sequences of 0’s and 1’s generated from the

current sequence. Hence, for the previous simulation examples, I was only able to

produce sequences of length 20 before it became computationally infeasible. Since

this is a relatively short sequence, I am also unable to study the run lengths to

justify whether the method is working in the way that we expect. Therefore, I either

need to produce a different method for simulation or provide a way to limit the

computational difficulties.

The average run lengths for the samples from top to bottom are 1.79, 2.33 and

1.99. This emphasises that there is either an error with this method, or that we are

simply not generating long enough sequences to be able to view the longer run lengths

for the de Bruijn process with conditional word probabilities {0.1, 0.1, 0.9, 0.9} and

{0.1, 0.9, 0.1, 0.9}. The average run length for the top plot is as expected, but we

would expect the average run lengths for the other two de Bruijn processes to be

much larger; i.e. closer to 10, as seen in the directional version in Section 3.3.1 (third

sequence in Figure 3.4) and Section 4.2.6 (DBP 4 in Table 4.3).

Fig. 6.2 Three samples from length m = 1 non-directional de Bruijn processes
with letters 0 (light blue) and 1 (dark blue). From top to bottom the conditional
word probabilities, {p1

0:0, p
1
0:1, p

1
1:0, p

1
1:1}, are: {0.5, 0.5, 0.5, 0.5}, {0.1, 0.1, 0.9, 0.9} and

{0.1, 0.9, 0.1, 0.9}.
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Simulation 2

As an alternative to the above methodology, I attempted to generate a simulation

from the de Bruijn process through Gibbs sampling (Brooks et al., 2012; Gilks et al.,

1996). I believed this to be possible due to the connection between Markov chains

and the de Bruijn words where we can provide the full conditional distributions for

the letters. Since I am currently unsure of the Markov nature of the non-directional

de Bruijn process, I note that this method may be unsuitable for the given simulation

problem.

The purpose of a Gibbs sampler is to generate posterior samples for a given

distribution by moving through each variable and sampling from its conditional

distribution, given that the remaining variables are fixed at their current values. We

would begin with an initial estimate for each of the letters, v, in a length n sequence:

(v(0)
1 , v

(0)
2 , ..., v(0)

n ). Then for iteration, i = 1, 2, ..., we calculate the following:

v
(i)
1 ∼ P (v(i)

1 |v(i−1)
2 , v

(i−1)
3 , ..., v(i−1)

n )
...

v
(i)
j ∼ P (v(i)

j |v(i)
1 , ..., v

(i)
j−1, v

(i−1)
j+1 , ..., v(i−1)

n )
...

v(i)
n ∼ P (v(i)

n |v(i)
1 , v

(i)
2 , ..., v

(i)
n−1),

where,

v
(i)
j ∼ P (v(i)

j |v(i)
1 , ..., v

(i)
j−1, v

(i−1)
j+1 , ..., v(i−1)

n )

= P (v(i)
j |v(i)

j−m, ..., v
(i)
j−1, v

(i−1)
j+1 , ..., v

(i−1)
j+m )

= p1
wj
,

for a non-directional de Bruijn process with word length m, where p1
wj

is the

conditional word probability for the letter vj with associated word, wj = (v(i)
j−m, ..., v

(i)
j−1) :

(v(i−1)
j+1 , ..., v

(i−1)
j+m ). This process continues iteratively until the sequence has converged

to a series of 0’s and 1’s that satisfies the specifications of the de Bruijn process.

Providing the sequence of letters, v1, v2, ..., vn, remains in the same order, the final
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simulation should be consistent irrespective to the ordering of the sampling of each

letter in each iteration; i.e., the resulting simulations should have the same properties

whether we sample the letters from v1 to vn or sample the letters from vn to v1. This

is due to the non-directionality of the process.

Four examples are given in Figure 6.3 which are each sequences of length 200

generated with an m = 1 word non-directional de Bruijn process. I have again

formed each sequence into a loop to avoid any boundary condition complications.

The marginal probabilities are kept equal for the first three sequences, with values

π({0}) = π({1}) = 0.5, but are changed to π({0}) = 0.2, π({1}) = 0.8 for the

final sequence. The set of conditional word probabilities for these examples are,

{p1
0:0, p

1
0:1, p

1
1:0, p

1
1:1}. As with the directional de Bruijn processes, we would expect

that letters become far more sticky if both p0
0:0 and p1

1:1 are chosen to be close to

1. For the examples in Figure 6.3, the conditional word probabilities are set at the

following values respectively (top to bottom): {0.5, 0.5, 0.5, 0.5}, {0.1, 0.1, 0.9, 0.9},

{0.1, 0.9, 0.1, 0.9} and {0.775, 0.023, 0.994, 0.9}.

Fig. 6.3 Four samples from length m = 1 non-directional de Bruijn processes with
letters 0 (light blue) and 1 (dark blue) to show simulation using Gibbs sampling.
From top to bottom the conditional word probabilities, {p1

0:0, p
1
0:1, p

1
1:0, p

1
1:1}, are:

{0.5, 0.5, 0.5, 0.5}, {0.1, 0.1, 0.9, 0.9}, {0.1, 0.9, 0.1, 0.9} and {0.775, 0.023, 0.994, 0.9}.

The top plot is shown to behave fairly randomly (like random Bernoulli trials),

which is as expected, since each conditional word probability is set to be 0.5. The
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second and fourth plots are also shown to behave as expected since we are generating

much larger run lengths compared to the first plot. The average run lengths of 1’s

for each of these sequences are 2.04, 11.54 and 8.64 respectively (the first, second

and fourth sequences). We can also see that for the fourth sequence (non-symmetric

sequence), the total proportion of 1’s is much higher than the proportion of 0’s at

71%. This is slightly lower than expected since the example was set up with marginal

probabilities π({1}) = 0.8 and π({0}) = 0.2.

The most surprising result comes from the third sequence, where although

p0
0:0 = p1

1:1 = 0.9, the 0’s and 1’s are occurring far more at random than the second

plot. The average run length of 1’s for this plot is 1.78. Due to symmetry and the

non-directionality that we have forced (since p1
0:1 = 0.1 and p1

1:0 = 0.9 for sequence

two, but p1
0:1 = 0.9 and p1

1:0 = 0.1 for sequence three), we would expect the second

and third sequences to have the same run lengths of 0’s and 1’s. However, we are

producing different run lengths depending on the direction of simulation. Therefore,

I conclude that there is something wrong with this method, and leave the simulation

problem for future work. As stated above, this is likely to be due to not knowing

whether the process is Markov or not. I also note here that there are certain

constraints that we must make when choosing values for both of these conditional

word probabilities (p1
0:1 and p1

1:0). This is discussed further in Section 6.2.2.

Due to the similarities between this method and the 1-d direction de Bruijn

process, I am able to look at the run length distribution. This is described in the

following section.

6.2.2 Run Length Distribution

The run length distribution for 1-d directional de Bruijn processes was described in

Chapter 4. This is a property of great interest, as it is a way to evaluate the stickiness

of a particular de Bruijn process. Further, it allows us to assess whether these run

lengths are affected by different word lengths and/or transition probabilities. Due

to the similarities between the proposed non-directional de Bruijn process and the
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directional version explained in Chapters 3 and 4, it is possible to now consider the

run lengths of 1’s (or 0’s) of the non-directional de Bruijn sequences.

As before, a run of 1’s is defined by the number of consecutive 1’s in a row, which

is bounded by a 0 at each end. Very sticky de Bruijn processes are far more likely to

produce very long runs, whilst those that are closer to Bernoulli trials are expected

to have runs closer to length one. De Bruijn processes that are very anti-sticky will

tend to produce very short runs close to one, as they are designed to constantly swap

between letters. As a reminder, p1
i:j, is the conditional word probability of obtaining

a 1 given the associated word is i : j.

The run length distribution for a word length m = 1 non-directional de Bruijn

graph is given in Lemma 6.1. The conditional word probabilities for this process are

{p1
0:0, p

1
0:1, p

1
1:0, p

1
1:1}. For a run length of n = 1, we simply require the sequence 010,

where this is just defined by the conditional word probability, p1
0:0.

For run lengths of two or more, the run sequence must start with the letters 011

and end with the letters 110. These sequences have corresponding probabilities p1
0:1

and p1
1:0 respectively. This result is similar to the run length distribution from Lemma

4.1 with the exception that because the de Bruijn process is now non-directional,

we must have a run-in period at both ends of the sequence of 1’s. Due to this

non-directionality, we could equally consider the run as going from right to left since

the distribution is independent of the direction. p1
0:1 × p1

1:0 gives the probability of a

run of length n = 2, but for a run length of n ≥ 3, we must include the probability

p1
1:1. Similarly to Lemma 4.1, we require p1

1:1 to be raised to the power n− 2 since

two 1’s are generated in the two end run-in probabilities.

Lemma 6.1 (Run Length Distribution, m = 1).

P (run length = n) =


p1

0:0 for n = 1

p1
0:1(p1

1:1)n−2p1
1:0 for n ≥ 2,

Proof. P (run length = n) = p1
0:0 for n = 1. For n ≥ 2, the run is bounded by

the word 0 : 1 with probability p1
0:1 and the word 1 : 0 with probability p1

1:0. This

generates the sequences 011 and 110 respectively. The run is formed by increasing
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the number of 1’s with probability p1
1:1. For a run of length n, this probability is

required n− 2 times, hence: P (run length = n) = p1
0:1(p1

1:1)n−2p1
1:0, for n ≥ 2.

For the simulated examples presented in Section 6.2.1, the choice of conditional

word probabilities was very important, and, due to specific constraints of the process,

it is not possible to choose the parameters arbitrarily. The four parameters that

are in the m = 1 examples in Section 6.2.1 are {p1
0:0, p

1
0:1, p

1
1:0, p

1
1:1}. When initially

considering the values that these parameters could take, I assumed we must have

p1
0:1 = p1

1:0 as we were now dealing with non-directional de Bruijn processes; i.e., I did

not want to enforce any different structure moving left to right compared with right

to left. However, when considering that the distribution in Lemma 6.1 must sum to

one for all run length n, there is a slightly different constraint that we must obey.

Given that the distribution must sum to 1 over all values of n, we have the

following:

∞∑
n=1

P (run length = n) = p1
0:0 +

∞∑
n=2

p1
0:1(p1

1:1)n−2p1
1:0

= p1
0:0 + p1

0:1p
1
1:0

∞∑
n=0

(p1
1:1)n

= p1
0:0 + p1

0:1p
1
1:0

1 − p1
1:1

= p1
0:0 + p1

0:1p
1
1:0

p0
1:1

since ∑∞
n=0 x

n = 1
1−x

when |x| < 1. Hence, we can state that:

p1
0:0 + p1

0:1p
1
1:0

1 − p1
1:1

= 1

⇒ p1
0:0(1 − p1

1:1) + p1
0:1p

1
1:0 = 1 − p1

1:1

⇒ p1
0:0 + p1

0:1p
1
1:0 − p1

0:0p
1
1:1 = 1 − p1

1:1

⇒ p1
0:1p

1
1:0 − p1

0:0p
1
1:1 = p0

0:0 − p1
1:1,

(6.1)

since p0
0:0 + p1

0:0 = 1.

We have always made the assumption that we know the marginal distributions for

the letters (π({0}) and π({1})). For example, if we knew that there were expected
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to be equal numbers of 0’s and 1’s then we know that π({0}) = π({1}) = 0.5 and

p0
0:0 = p1

1:1. Consequently we then have the following relationship that must hold

when defining the conditional word probabilities for the m = 1 case:

p1
0:1p

1
1:0 = p1

0:0p
1
1:1. (6.2)

This can be seen in the examples in Figure 6.2 and in the first three examples in

Figure 6.3. For the top sequence in both figures, all parameters are set to be 0.5,

and so this satisfies Equation (6.2). For the other two sequences (the second and

third sequences of Figure 6.3), we have p0
0:0 = 0.1, p1

1:1 = 0.9, and either p1
0:1 = 0.1,

p1
1:0 = 0.9 (second sequence) or p1

0:1 = 0.9, p1
1:0 = 0.1 (third sequence). From Equation

(6.2), we must have p1
0:1p

1
1:0 = 0.09 which is satisfied by both of these examples.

Alternatively, if we know that the marginal probabilities for the letters are

not equal, then we can state that the parameters, p1
0:0 and p1

1:1 have the following

relationship: π({0})p1
1:1 = (1 − π({0}))p0

0:0 = π({1})p0
0:0. Therefore, equation (6.1)

becomes:

p1
0:1p

1
1:0 − p1

0:0p
1
1:1 = p0

0:0 − p1
1:1

⇒ p1
0:1p

1
1:0 = p1

0:0p
1
1:1 − p1

1:1 + p1
0:0p

1
1:1

⇒ p1
0:1p

1
1:0 =

(
1 − p0

0:0

)
p1

1:1 + p0
0:0 − p1

1:1

⇒ p1
0:1p

1
1:0 = p1

1:1 − p0
0:0p

1
1:1 + p0

0:0 − p1
1:1

⇒ p1
0:1p

1
1:0 = p0

0:0

(
1 − p1

1:1

)
⇒ p1

0:1p
1
1:0 = p0

0:0

(
1 − π({1})

π({0})p
0
0:0

)

⇒ p1
0:1p

1
1:0 = α

(6.3)

OR
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p1
0:1p

1
1:0 − p1

0:0p
1
1:1 = p0

0:0 − p1
1:1

⇒ p1
0:1p

1
1:0 = p0

0:0

(
1 − p1

1:1

)
⇒ p1

0:1p
1
1:0 = π({0})

π({1})p
1
1:1

(
1 − p1

1:1

)
⇒ p1

0:1p
1
1:0 = β

(6.4)

where α = p0
0:0

(
1 − π({1})

π({0})p
0
0:0

)
and β = π({0})

π({1})p
1
1:1 (1 − p1

1:1). Parameters must

satisfy these constraints to be valid. These constraints are used to define the

conditional word probabilities for the de Bruijn process in the last sequence of Figure

6.3.

Specifically, in that example, I set the marginal probabilities to be π({0}) = 0.2

and π({1}) = 0.8. Following on from this, I required the sequence to again be sticky

for 1’s and set p1
1:1 = 0.9. Given that π({0})p1

1:1 = π({1})p0
0:0, this gives p0

0:0 = 0.225.

From (6.3) (or equally (6.4)), we can therefore state,

p1
0:1p

1
1:0 = α

= p0
0:0

(
1 − π({1})

π({0})p
0
0:0

)

= 0.225 ×
(

1 − 0.8
0.2 × 0.225

)
= 0.0225.

(6.5)

Further, given that we also have the marginal constraint, we can state that π({0})p1
0:1 =

π({1})p0
1:0. Both this result, and that in Equation (6.5), then give the following values

for the conditional word probabilities, {p1
0:0, p

1
0:1, p

1
1:0, p

1
1:1} = {0.775, 0.023, 0.994, 0.9}.

The non-directional run length distribution is extended to higher word lengths,

m ≥ 2 in Theorem 6.2, following a similar pattern to both the m = 1 non-directional

run length distribution and the m ≥ 3 directional run length distribution.

If we first consider a run length of just n = 1, then the distribution will consist

of a single probability, as we only require the probability of getting that single letter

given the associated de Bruijn word. These words will be of the form ∗0 : 0∗′,

where both ∗ and ∗′ can be any sequence of letters of length m− 1. In terms of the
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conditional word probability, this will be p1
∗0:0∗′ , where the resulting sequence, to give

a run of length one, will be of the form ∗010∗′. Due to the non-directionality, we

require the run-in period that we had in the directional version at both ends of the

run sequence. Hence, there are 22m possible words that take this form. For example,

consider a length m = 2 non-directional de Bruijn process where we are looking for

run lengths n = 1. All possible words that take this form are 00100, 00101, 10100

and 10101, which would have the corresponding conditional word probabilities, p1
00:00,

p1
00:01, p1

10:00 and p1
10:01.

If we now consider run lengths of length n = 2, we require two conditional word

probabilities for each of the 1’s in the run. The first of these probabilities, p1
∗0:10∗′ ,

refers to a word of the form ∗0 : 10∗′ where the sequence represented by ∗ is of

length m− 1. Given that we know there will be exactly two 1’s, the second half of

the word must be of the form 10∗′, where the sequence represented by ∗′ is now of

length m− 2. The second conditional word probability, p1
∗01:0∗′ , refers to a word of

the form ∗01 : 0∗′. This is a mirror image of the first word, since, due to the form of

non-directional words, we require a run-in period at both ends of the run of 1’s. ∗

is now any sequence of length m − 2 and ∗′ is any sequence of length m − 1. The

resulting sequence is of the form ∗0110∗′, where both ∗ and ∗′ are of length m− 1.

There are 22m possible ways to form this sequence.

For run lengths longer than n = 2, the structure is very similar to above, where

we require the same run-in conditional word probabilities at both ends of the run

of 1’s. If the run length is larger than the word length, m, then the first words on

both ends will be of the form ∗0 : 1...1 and 1...1 : 0∗′. Both ∗ and ∗′ are any possible

sequences of 0’s and 1’s of length m− 1. Moving from the outer words to the inner

words, we decrease the length of the sequences ∗ and ∗′, and include the next letter 1

into this part of the word; i.e. the word ∗0 : 1...1 goes to the word ∗01 : 1...1 (where

∗ is now of length m− 2), then to the word ∗011 : 1...1, carrying on in this way until

we reach the word 01...1 : 1...1. This pattern occurs on both ends of the run-up. For

runs of length n > 2m+ 1, the probability p1
1...1:1...1 is included n− 2m times since

m 1’s are included in the run-in periods on both sides of the run.
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For run lengths between n = 2 and n = 2m, the length of the word is longer than

the run itself, and we thus never reach the point where we require the probability

p1
1...1:1...1. The run-in periods at each end will have to accommodate this by also

including letters from the opposite end for certain words.

Since there are different possibilities for both the start sequence and the end

sequence which are included in the de Bruijn words, we must again use the law of

total probability in the same way to Theorem 4.2. The equation is used as follows:

P (run length = n) =
22(m−1)−1∑

i=0
P (run length = n| ∗ _∗′

i)π(∗_∗′
i), (6.6)

where the notation, ∗_∗′
i, is used to represent the ith combination of both of the

length m− 1 sequences which are contained in the end words of a non-directional

run length. Hence, π(∗_∗′
i) is the ith joint marginal probability for a run to start

with the sequence ∗ and end with the sequence ∗′. Since the start sequence must

be of the form ∗0 and the end sequence is of the form 0∗′, where both ∗ and ∗′ are

sequences of length m− 1, there are 22(m−1) possible combinations that could contain

the same run of 1’s.

In Chapter 4, the joint marginal probabilities in Equation (6.6) were found by

applying the law of total probability again, so that the marginal probabilities of the

m− 2 sequences were found in terms of the marginal probabilities of the length m

de Bruijn words. The marginal probabilities of the de Bruijn words are equivalent to

the stationary distribution of the de Bruijn process Markov chain, which was found

by either powering up the transition matrix or by calculating the corresponding

eigenvectors. Unfortunately, we can no longer use this process to find the marginal

probabilities of certain sequences for the non-directional de Bruijn process. The

main problem here is that we require calculation of the joint marginal probability of

simultaneously getting two length m− 1 sequences (at the beginning of the run and

at the end of the run), given that we are working with a length m de Bruijn process.

We also do not have a transition matrix, and so cannot calculate the stationary

distributions of the words in the de Bruijn process. Therefore, I leave this part of

the run length distribution for future work. Currently, I plan to use a recurrence
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relationship for the marginal probabilities of length m− 1 de Bruijn words in terms

of length m de Bruijn words. If we have a given sequence from the de Bruijn process,

then it may be possible to estimate the marginal probabilities (π(∗_∗′
i)) by counting

the number of times each combination of start (∗) and end (∗′) sequences occur

around a run of 1’s.

Theorem 6.2 (Run Length Distribution, m ≥ 2).

P (run length = n)

=



∑2m−1−1
i=0

∑2m−1−1
j=0 π(i_j)p1

2i:j for n = 1

∑2m−1−1
i=0

∑2m−1−1
j=0 π(i_j) for n = 2 : 2m

×∏n−1
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(n−k−2,m−1)
t=0 {2m−t−1}+ 1

2n−k−1 [j−(j mod 2n−k−1)]
}

∑2m−1−1
i=0

∑2m−1−1
j=0 π(i_j) for n ≥ 2m+ 1

×∏2m−1
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(2m−k−2,m−1)
t=0 {2m−t−1}+ 1

22m−k−1 [j−(j mod 22m−k−1)]
}

×
(
p1

2m−1:2m−1

)n−2m

Proof. See Appendix B

For example, assume that we have a non-directional de Bruijn process of word

length m = 2. We thus require words of the form ∗0 : 11 and 11 : 0∗′, at either ends

of the run of 1’s, where both ∗ and ∗′ can either be a 0 or a 1 to complete each of

these words. Hence for ∗0 : 11, we can either have the word 00 : 11 or 10 : 11, and

for 11 : 0∗′, we can either have the word 11 : 00 or 11 : 01. Obtaining a 1 in the

place of : for all of these words gives the sequences 00111, 10111, 11100 and 11101

respectively.

For the next word in (moving towards the run of 1’s) on either end of the run,

we no longer have the sequences ∗ and ∗′, and so we have the word 01 : 11 in the left
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run-in and the word 11 : 10 in the right run-in. These will be the next words in the

run regardless of the words on the ends.

Finally, we require the word 11 : 11 until the desired length of 1’s is reached.

Using Equation (6.6), we hence have the following for the probability of a run length

of size n:

P (run length = n) = π(0_0)
[
p1

00:11p
1
01:11

(
p1

11:11

)n−2
p1

11:10p
1
11:00

]
+ π(0_1)

[
p1

00:11p
1
01:11

(
p1

11:11

)n−2
p1

11:10p
1
11:01

]
+ π(1_0)

[
p1

10:11p
1
01:11

(
p1

11:11

)n−2
p1

11:10p
1
11:00

]
+ π(1_1)

[
p1

10:11p
1
01:11

(
p1

11:11

)n−2
p1

11:10p
1
11:01

]
,

where π(0_1) is the joint marginal probability of obtaining a 0 and a 1 in place of ∗

and ∗′ in the two words at the end of the run, ∗0 : 11 and 11 : 0∗′, respectively.

6.2.3 Expected Run Length

Given the non-directional run length distribution, we can now calculate the expectation.

The expected run length for an m = 1 non-directional de Bruijn process is given in

Lemma 6.3. Unlike the results of Section 4.2.2, we can no longer utilise connections

to the geometric distribution to help refine the results. In Lemma 4.3, we obtained

an expression in the form ∑
n n(1 − p)np, which we were able to simplify to 1−p

p

using the definition for the expectation of a geometric distribution. In Lemma

6.3 we are instead left with the expression ∑∞
n=2 n (p1

1:1)
n
p1

1:0. Although this looks

similar to the expression in Lemma 4.3, it may not be the case that p1
1:1 + p1

1:0 = 1,

meaning that we can no longer use the geometric distribution. Instead, we can use

the relationship, ∑∞
n=0 np

n = p
(p−1)2 to simplify results, providing |p| < 1. Note that

we are disregarding any cases with p = 1, as the de Bruijn process would produce a

sequence consisting entirely of 1’s (or 0’s).

Lemma 6.3 (Expected Run Length, m = 1).

E [run length] = p1
0:0 + p1

0:1p
1
1:0 (2 − p1

1:1)
(1 − p1

1:1)
2 for p1

1:1 < 1
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Proof.

E [run length] =
∞∑

n=1
n× P (run length = n)

= p1
0:0 +

∞∑
n=2

np1
0:1

(
p1

1:1

)n−2
p1

1:0

= p1
0:0 + p1

0:1p
1
1:0

(p1
1:1)

2

∞∑
n=2

n
(
p1

1:1

)n

= p1
0:0 + p1

0:1p
1
1:0

(p1
1:1)

2

[ ∞∑
n=0

n
(
p1

1:1

)n
− p1

1:1

]

= p1
0:0 + p1

0:1p
1
1:0

(p1
1:1)

2

[
p1

1:1

(1 − p1
1:1)

2 − p1
1:1

]
since p1

1:1 < 1

= p1
0:0 + p1

0:1p
1
1:0 (2 − p1

1:1)
(1 − p1

1:1)
2 .

The expected run length of non-directional de Bruijn processes with word length

two or higher is given in Theorem 6.4. The result ∑∞
n=0 np

n = p
(p−1)2 can still be used

to simplify results, providing |p| < 1.

Theorem 6.4 (Expected Run Length, m ≥ 2).

E [run length]

=
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)p1
2i:j

+
2m∑
l=2

l

[ 2m−1−1∑
i=0

2m−1−1∑
j=0

π(i_j)
l−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(l−k−2,m−1)
t=0 {2m−t−1}+ 1

2l−k−1 [j−(j mod 2l−k−1)]
}]

+
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
2m−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(2m−k−2,m−1)
t=0 {2m−t−1}+ 1

22m−k−1 [j−(j mod 22m−k−1)]
}

×
{(

1
p1

2m−1:2m−1

)2m[
p1

2m−1:2m−1
(1 − p1

2m−1:2m−1)2 −
2m∑
s=0

s(p1
2m−1:2m−1)s

]}

Proof. See Appendix B
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6.2.4 Variance of Run Length

The next measure of interest is the variance of the run length distribution. We can

calculate the variance using the results from Lemma 6.1 and Theorem 6.2, along with

the well known definition, Var[run length] = E[run length2] − (E[run length])2.

The squared expectation of the run length distribution for the m = 1 word length

case is given in Lemma 6.5. Again, it is no longer possible to use properties from the

geometric distribution to help make simplifications to results. In Lemma 6.5, we are

left with the expression, ∑∞
n=2 n

2 (p1
1:1)

n, which we can simplify using the relationship,∑∞
n=0 n

2pn = −p(p+1)
(p−1)3 providing |p| < 1.

Lemma 6.5 (Squared Expectation of Run Length, m = 1).

E [run length2] = p1
0:0 −

p1
0:1p

1
1:0

(
(p1

1:1)
2 − 3p1

1:1 + 4
)

(p1
1:1 − 1)3 for p1

1:1 < 1

Proof.

E [run length2] =
∞∑

n=1
n2 × P (run length = n)

= p1
0:0 +

∞∑
n=2

n2p1
0:1

(
p1

1:1

)n−2
p1

1:0

= p1
0:0 + p1

0:1p
1
1:0

(p1
1:1)

2

∞∑
n=2

n2
(
p1

1:1

)n

= p1
0:0 + p1

0:1p
1
1:0

(p1
1:1)

2

[ ∞∑
n=0

n2
(
p1

1:1

)n
− p1

1:1

]

= p1
0:0 − p1

0:1p
1
1:0

(p1
1:1)

2

[
p1

1:1(p1
1:1 + 1)

(p1
1:1 − 1)3 + p1

1:1

]
since p1

1:1 < 1

= p1
0:0 −

p1
0:1p

1
1:0

(
(p1

1:1)
2 − 3p1

1:1 + 4
)

(p1
1:1 − 1)3 .

The squared expectation of the run length distribution for word lengths m ≥ 2

is given in Theorem 6.6. Again, the variance is found by substituting this result

into the known result, Var[run length] = E[run length2] − (E[run length])2.

E[run length] is given in Theorem 6.4 and the relationship, ∑∞
n=0 n

2pn = −p(p+1)
(p−1)3

is used providing |p| < 1.
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Theorem 6.6 (Squared Expectation of Run Length, m ≥ 2).

E [run length2]

=
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)p1
2i:j

+
2m∑
l=2

l2
[ 2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
l−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(l−k−2,m−1)
t=0 {2m−t−1}+ 1

2l−k−1 [j−(j mod 2l−k−1)]
}]

+
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
2m−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(2m−k−2,m−1)
t=0 {2m−t−1}+ 1

22m−k−1 [j−(j mod 22m−k−1)]
}

×
{(

1
p1

2m−1:2m−1

)2m[
p1

2m−1:2m−1(p1
2m−1:2m−1 + 1)

(p1
2m−1:2m−1 − 1)3 +

2m∑
s=0

s2(p1
2m−1:2m−1)s

]}

for p1
2m−1:2m−1 < 1

Proof. See Appendix B

6.2.5 Examples

Having calculated the run length distribution, we can now discuss the analytical

run lengths for the examples in Section 6.2.1. In Figures 6.2 and 6.3, we had four

examples of length m = 1 non-directional de Bruijn processes with the conditional

word probabilities {p1
0:0, p

1
0:1, p

1
1:0, p

1
1:1} being {0.5, 0.5, 0.5, 0.5}, {0.1, 0.1, 0.9, 0.9},

{0.1, 0.9, 0.1, 0.9} and {0.775, 0.023, 0.994, 0.9}.

Table 6.1 shows the probabilities of getting a run length of n 1’s using the m = 1

word run length distribution in Lemma 6.1 for these four examples (presented in

the same order as above). We immediately notice that the expected run lengths

for the de Bruijn processes with conditional word probabilities {0.1, 0.1, 0.9, 0.9}

and {0.1, 0.9, 0.1, 0.9} are now equal. This is what we expected, and further proves

that there are errors in both of the simulation methods presented in Section 6.2.1.

The results are similar to that seen in Table 4.1, for the 1-d directional de Bruijn

processes. Both DBP 1 (Bernoulli trials) and DBP 4 (non-symmetrical process) are

shown to have a high chance of a short run length, where the probabilities of getting
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a run of just n = 1 are 50% and 77.5% respectively. The other two stickier processes

have a much lower chance of a short run length, and are also shown to stay fairly

consistent for similar run lengths.

Run Length, n DBP 1 DBP 2 DBP 3 DBP 4
1 0.5 0.1 0.1 0.775
2 0.25 0.09 0.09 0.0225
3 0.125 0.081 0.081 0.0203
4 0.0625 0.0729 0.0729 0.0182
5 0.0313 0.0656 0.0656 0.0164
6 0.0156 0.0590 0.0590 0.0148
7 0.00781 0.0531 0.0531 0.0133
8 0.00391 0.0478 0.0478 0.0120

Table 6.1 Table to show the probabilities of getting run lengths of n = 1, ..., 10
for four different non-directional de Bruijn processes of word length m = 1. The
corresponding conditional word probabilities ({p1

0:0, p
1
0:1, p

1
1:0, p

1
1:1}) for these four

processes are as follows, DBP 1: {0.5, 0.5, 0.5, 0.5}, DBP 2: {0.1, 0.1, 0.9, 0.9} , DBP
3: {0.1, 0.9, 0.1, 0.9}, DBP 4: {0.775, 0.023, 0.994, 0.9}.

The theoretical expected run lengths of 1’s for these four sequences (DBP 1,

DBP 2, DBP 3 and DBP 4) are 2, 10, 10 and 3.25 respectively. These values are

as expected, as DBP 2 and DBP 3 are designed to produce sticky sequences of

0’s and 1’s, whilst DBP 1 is designed to produce random sequences. DBP 4 is

interesting since, although we have set the conditional word probabilities to produce

sticky sequences, the expected run length is fairly short at 3.25. This is likely to

be due to the intermediate conditional word probabilities, p1
0:1 and p1

1:0. Setting

p1
0:1 = 0.023 causes there to be a low chance of observing a run of 1’s longer than

one. This is confirmed in Table 6.1, where we see that the probability of a run of

length n = 1 is large at 77.5%. With the results from Table 6.1 we can conclude that

for this non-symmetrical process, it is very hard to start a run of 1’s longer than

one, but once we have started the run off, we have equal chances of observing longer

runs. Therefore, by using all available conditional word probabilities, we can create

sequences with a vast amount of structure.

Finally, the theoretical variances for the four de Bruijn processes are 6, 190, 190

and 48.25 showing that there is more variability in the stickier processes.
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6.2.6 Generating Functions

Probability Generating Function

We can also find generating functions (Johnson et al., 2005; Wilf, 1994) for the

non-directional de Bruijn process run length distribution. The first of these is the

probability generating function, which takes the formG(x) = E[xn] = ∑∞
n=1 x

nP (run length =

n). As a reminder, the probability of a run of length s is found by evaluating the sth

derivative of G at x = 0, and dividing by s! so that P (X = s) = G(s)(0)
s! . See Section

4.2.4 and Johnson et al. (2005); Wilf (1994) for more information and background

reading on generating functions

The probability generating function for the de Bruijn process with word length

m = 1 is given in Lemma 6.7. The result is very similar to that given for the

directional version with word length m = 2 in Lemma 4.10. Unlike the expectation

and variance of the non-directional run length distribution, we are now able to follow

the same format as the generating function for the geometric distribution seen in

Theorem 4.9.

Lemma 6.7 (Run Length Probability Generating Function, m = 1).

G(x) = (p1
0:1p

1
1:0 − p1

0:0p
1
1:1)x2 + p1

0:0x

1 − p1
1:1x

Proof.

P (run length = n) =


p1

0:0 for n = 1

p1
0:1(p1

1:1)n−2p1
1:0 for n ≥ 2,

The recurrence relationship has the following form:

a0 = 0

a1 = p1
0:0

a2 = p1
0:1p

1
1:0

an+1 = p1
1:1an for n ≥ 2
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This is solved to find the generating functionG(x) = ∑
n≥0 anx

n. Then, multiplying

by xn and summing over n gives the following:

∑
n≥2

an+1x
n =

∑
n≥2

p1
1:1anx

n

(
a3x

2 + a4x
3 + a5x

4 + . . .
)

= p1
1:1

∑
n≥0

anx
n − a0 − a1x


1
x

[(
a0 + a1x+ a2x

2 + . . .
)

− a0 − a1x− a2x
2
]

= p1
1:1

(
G(x) − p1

0:0x
)

G(x) − p1
0:0x− p1

0:1p
1
1:0x

2

x
= p1

1:1

(
G(x) − p1

0:0x
)

G(x) = (p1
0:1p

1
1:0 − p1

0:0p
1
1:1)x2 + p1

0:0x

1 − p1
1:1x

The probability generating function for the run length distribution of non-

directional de Bruijn processes with word length m ≥ 2 is given in Theorem 6.8.

Again, it has a similar structure to both the m = 1 word length case and the m ≥ 3

directional case in Theorem 4.11. There are still additional polynomial terms which

arise from the words during the run-in periods at both ends of the run (before we

reach words of the form 1...1 : 1...1). There is no recurrence relationship that can

describe the pattern between each of these terms in the generating function, hence it

is formulated as a polynomial. For the main part of the run, where we only have

words of the form 1...1 : 1...1, this becomes equivalent to a geometric distribution,

and hence the result becomes equivalent to the geometric generating function.
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Theorem 6.8 (Run Length Probability Generating Function, m ≥ 2).

G(x) =
2m∑
s=0

asx
s + p1

2m−1:2m−1a2mx
2m+1

1 − p1
2m−1:2m−1x

where,

a1 =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)p1
2i:j

a2 =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
{
p1

2i : 2m−1+ 1
2 [j−(j mod 2)]

}
×
{
p1

1+4[i mod 2m−2] : j

}
...

a2m =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j) ×
2m−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(2m−k−2,m−1)
t=0 {2m−t−1}+ 1

22m−k−1 [j−(j mod 22m−k−1)]
}

Proof. See Appendix B

Moment Generating Function

We can also find the moment generating functions for both the m = 1 and m ≥ 2 non-

directional de Bruijn process run length distributions. Moment generating functions

take the form G(x) = E[enx] = ∑∞
n=1 e

nxP (run length = n) for n = 0, 1, 2, ..., and

are used to find the moments of the distribution. The sth moment, can be found by

evaluating the sth derivative of G at x = 0 such that, ms = G(s)(0). G(0) always

exists for the generating function and is equal to one. From Section 4.2.4 we can also

find the cumulant generating function by taking the log of the moment generating

functions given below (McCullagh, 1987; Wilf, 1994).

The moment generating function for the m = 1 case is given in Lemma 6.9. There

is a clear similarity between this result and the result shown in Lemma 4.13. If we

differentiate the moment generating function, we can obtain the expression for the

expected run length given in Lemma 6.3 (this calculation is given in Appendix B).

Using Maple, we can further obtain the result for the squared expected run length

in Lemma 6.5.
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Lemma 6.9 (Run Length Moment Generating Function, m = 1).

G(x) = (p1
0:1p

1
1:0 − p1

0:0p
1
1:1) e2x + p1

0:0e
x

1 − p1
1:1e

x

Proof.

P (run length = n) =


p1

0:0 for n = 1

p1
0:1(p1

1:1)n−2p1
1:0 for n ≥ 2,

The recurrence relationship has the following form:

a0 = 0

a1 = p1
0:0

a2 = p1
0:1p

1
1:0

an+1 = p1
1:1an for n ≥ 2

This is solved to find the generating function G(x) = ∑
n≥0 ane

nx. Then,

multiplying by enx and summing over n gives the following:

∑
n≥2

an+1e
nx =

∑
n≥2

p1
1:1ane

nx

(
a3e

2x + a4e
3x + a5e

4x + . . .
)

= p1
1:1

∑
n≥0

ane
nx − a0 − a1e

x


1
ex

[(
a0 + a1e

x + a2e
2x + . . .

)
− a0 − a1e

x − a2e
2x
]

= p1
1:1

(
G(x) − p1

0:0e
x
)

G(x) − p1
0:0e

x − p1
0:1p

1
1:0e

2x

ex
= p1

1:1

(
G(x) − p1

0:0e
x
)

G(x) = (p1
0:1p

1
1:0 − p1

0:0p
1
1:1) e2x + p1

0:0e
x

1 − p1
1:1e

x

Lastly, the moment generating function for the non-directional run length

distribution when m ≥ 2 is given in Theorem 6.10. This has a similar form to

both the m = 1 case and the directional case for m ≥ 3. The additional polynomial
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terms are once again present, coming from the end run-in words, where we are either

leading into or out of the run of 1’s. The simplified fraction term is of the same form

as the moment generating function for the geometric distribution. Using Maple, we

can differentiate the moment generating function to obtain the expressions for the

expected run length and squared expected run length, given in Theorems 6.4 and

6.6.

Theorem 6.10 (Run Length Moment Generating Function, m ≥ 3).

G(x) =
2m∑
s=0

ase
sx + p1

2m−1:2m−1a2me
(2m+1)x

1 − p1
2m−1:2m−1e

x

where,

a1 =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)p1
2i:j

a2 =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
{
p1

2i : 2m−1+ 1
2 [j−(j mod 2)]

}
×
{
p1

1+4[i mod 2m−2] : j

}
...

a2m =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j) ×
2m−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(2m−k−2,m−1)
t=0 {2m−t−1}+ 1

22m−k−1 [j−(j mod 22m−k−1)]
}

Proof. See Appendix B

6.2.7 Marginal Likelihood

Given that we can define a one-to-one relationship between the non-directional words

and the 1-d directional words, we can extend the directional word marginal likelihood

(from Lemma 4.17 and Theorem 4.18) to be applicable to the non-directional de

Bruijn process. The marginal likelihood is the joint distribution of a sequence in

terms of the proportion of different words in that given sequence. In exactly the

same way as Section 4.3, given a sequence of 0’s and 1’s, we will be able to use the
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marginal likelihood to estimate the marginal probabilities for each of the de Bruijn

words. This can be done using either maximum likelihood or Bayesian inference.

The marginal likelihood for a de Bruijn process of word length m = 1 is given in

Lemma 6.11, which is equivalent to counting the proportion of each of the words in

the sequence. As a reminder, π(i : j), is used to represent the marginal probability

for the word i : j, and ni:j is the number of times the word i : j appears in the

sequence. Dimensionality is reduced slightly since all marginal probabilities sum to

one and all the n’s add up to the total sum of all the words, defined as N .

Lemma 6.11 (Marginal Likelihood, m = 1).

L(seq) = π(0 : 0)n0:0π(0 : 1)n0:1π(1 : 0)n1:0π(1 : 1)n1:1

= π(0 : 0)n0:0π(0 : 1)n0:1π(1 : 0)n1:0

× [1 − (π(0 : 0) + π(0 : 1) + π(1 : 0))]N−(n0:0+n0:1+n1:0)

for N = n0:0 + n0:1 + n1:0 + n1:1 and π(0 : 0) + π(0 : 1) + π(1 : 0) + π(1 : 1) = 1

Proof. Given a sequence of letters 0 and 1 of length N+1, the sequence can be defined

by its associated de Bruijn words of length m = 1. π(i : j) gives the probability

of obtaining the word i : j. The joint distribution is given by the product of the

respective π’s for each word and N gives the total number of words. By collecting

like terms, the above definition is given.

The marginal likelihood for a de Bruijn process with general word length m is

given in Theorem 6.12, following the same structure as in both the directional version

(Theorem 4.18) and the non-directional version for m = 1 (Lemma 6.11). As used

previously in this thesis, I have chosen to write the result in terms of the decimal

representation of the binary values.
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Theorem 6.12 (Marginal Likelihood, m ≥ 1).

L =
22m−1∏

i=0
π
( 1

2m
[i− (i mod 2m)] : i mod 2m

)n 1
2m [i−(i mod 2m)] : i mod 2m

=
22m−1∏

i=0
π(d(i))nd(i)

=
22m−2∏

i=0
π(d(i))nd(i)

[
1 −

( 22m−2∑
j=0

π(d(j))
)]N−

(∑22m−2
j=0 nd(j)

)

where, d(i) = 1
2m [i− (i mod 2m)] : i mod 2m

Proof. See Appendix B

6.2.8 Conditional Word Likelihood

As with the directional process, we can now define the likelihood for the conditional

word probabilities of a sequence generated from a non-directional de Bruijn process.

Given the likelihood, we will then be able to estimate the conditional word probabilities

using either maximum likelihood or Bayesian inference (since the conditional word

probabilities are the non-directional equivalent to the directional transition probabilities).

For the same reasons as before, we assume that we know what the word length used

to generate the sequence is before we begin estimation, as a different number of

conditional word probabilities are needed for each word length.

The likelihood of a sequence in terms of its conditional word probabilities for a

length m = 1 non-directional de Bruijn process is given in Lemma 6.13. As with

Lemma 4.19, the number of times each conditional word probability occurs in a

sequence is very important since this defines the exact ordering of the letters for that

sequence. The de Bruijn structure ensures that only certain probabilities of obtaining

a 1 can occur next to each other, and so gives us the unique ordering of both the

words and letters. Therefore, the joint distribution of the sequence in terms of the

conditional word probabilities can be described by the product of all the subsequent

conditional word probabilities. p1
i:j is the probability of getting a 1 in the sequence

i ∗ j and n1
i:j is the number of times the sequence i1j occurs with word i : j.
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Lemma 6.13 (Conditional Word Likelihood, m = 2).

L =
(
p0

0:0

)n0
0:0
(
p1

0:0

)n1
0:0
(
p0

0:1

)n0
0:1
(
p1

0:1

)n1
0:1
(
p0

1:0

)n0
1:0
(
p1

1:0

)n1
1:0
(
p0

1:1

)n0
1:1
(
p1

1:1

)n1
1:1

=
(
1 − p1

0:0

)n0
0:0
(
p1

0:0

)n1
0:0
(
1 − p1

0:1

)n0
0:1
(
p1

0:1

)n1
0:1
(
1 − p1

1:0

)n0
1:0
(
p1

1:0

)n1
1:0

×
(
1 − p1

1:1

)n0
1:1
(
p1

1:1

)n1
1:1

Proof. Assume a sequence of n letters, L = l1, l2, ..., ln, where li ∈ [0, 1] and the

ordering is fixed. This sequence can be expressed in terms of its de Bruijn words

such that L = wl1:l3 , wl2:l4 , ..., wln−2:ln , where wli:li+2 is the de Bruijn word of length

m = 1 that consists of the letters li and li+2. Consider the joint distribution of this

sequence. Starting from wl1:l3 , l2 can either be a 1 or 0 with probabilities p1
wl1:l3

and p0
wl1:l3

= 1 − p1
wl1:l3

. Then l3 can either be a 1 or 0 with probabilities p1
wl2:l4

and

p0
wl2:l4

= 1 − p1
wl2:l4

. This continues for all letters in L, where ln−1 is either a 0 or

a 1 with probabilities p1
wln−2:ln

and p0
wln−2:ln

= 1 − p1
wln−2:ln

. This produces the joint

distribution, L(L|p) = pl2
wl1:l3

× pl3
wl2:l4

× ...× pln−1
wln−2:ln

, where by collecting like terms

for each possible conditional word probability, the above result is given. Note that

this is invariant to direction. The direction or labelling is arbitrary providing the

letter ordering in the sequence remains.

For any word length, m ≥ 1, the likelihood in terms of the conditional word

probabilities is given in Theorem 6.14. This again has the same form as that seen in

Lemma 6.13 and for the directional version in Theorem 4.20.

Theorem 6.14 (Conditional Word Likelihood, m ≥ 1).

L =
22m−1∏

i=0

(
p0

1
2m [i−(i mod 2m)] : i mod 2m

)n0
1

2m [i−(i mod 2m)] : i mod 2m

×
(
p1

1
2m [i−(i mod 2m)] : i mod 2m

)n1
1

2m [i−(i mod 2m)] : i mod 2m

=
22m−1∏

i=0

(
1 − p1

d(i)

)n0
d(i)
(
p1

d(i)

)n1
d(i)

where, d(i) = 1
2m [i− (i mod 2m)] : i mod 2m

Proof. See Appendix B
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6.2.9 Inference

Given a sequence of 0’s and 1’s, we can estimate the word length and conditional

word probabilities using Bayes’ theorem and Bayes’ factors (Kass and Raftery, 1995;

O’Hagan, 1997) in a similar method to the directional de Bruijn version. As previously

stated, it is possible to perform inference in a similar way to the directional de Bruijn

process since the non-directional words can be converted to their directional de

Bruijn word equivalents. The method of inference is also similar to that used by

Besag (1986), but I choose to incorporate the neighbourhood property of de Bruijn

graphs in the likelihood, rather than in the prior.

To estimate the conditional word probabilities, we can combine the likelihood from

Theorem 6.14 with a beta prior, P (p) = Γ(α+β)
Γ(α)Γ(β)p

α−1(1−p)β−1 for α > 0, β > 0, using

Bayes’ theorem. This is the same as was seen in Chapter 4, where we can incorporate

any initial information we might have about the conditional word probabilities

into the prior. I have again chosen a beta prior due to the conjugate relationship

between the prior and likelihood. The posterior distribution for the conditional word

likelihood for the non-directional de Bruijn process with word length m = 1 is as

follows:

P (p|seq) = L(seq|p)P (p)∫
L(seq|p)P (p)dp

∝ L(seq|p)P (p)

= (1 − p1
0:0)n0

0:0 (p1
0:0)n1

0:0 (1 − p1
0:0)β1−1 (p1

0:0)α1−1

× (1 − p1
0:1)n0

0:1 (p1
0:1)n1

0:1 (1 − p1
0:1)β2−1 (p1

0:1)α2−1

× (1 − p1
1:0)n0

1:0 (p1
1:0)n1

1:0 (1 − p1
1:0)β3−1 (p1

1:0)α3−1

× (1 − p1
1:1)n0

1:1 (p1
1:1)n1

1:1 (1 − p1
1:1)β4−1 (p1

1:1)α4−1

= (1 − p1
0:0)n0

0:0+β1−1 (p1
0:0)n1

0:0+α1−1

× (1 − p1
0:1)n0

0:1+β2−1 (p1
0:1)n1

0:1+α2−1

× (1 − p1
1:0)n0

1:0+β3−1 (p1
1:0)n1

1:0+α3−1

× (1 − p1
1:1)n0

1:1+β4−1 (p1
1:1)n1

1:1+α4−1
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Again, the posterior distribution for the de Bruijn process conditional word

probabilities is a product of beta densities. Due to the conjugate relationship, the

denominator in Bayes’ theorem (
∫

L(seq|p)P (p)dp) can easily be found using the

identity,
∫ 1

0 x
α−1(1 − x)β−1dx = Γ(α+β)

Γ(α)Γ(β) . This gives the model evidence as follows:

∫
P (seq|p)P (p)dp =Γ(n0

0:0 + β1)Γ(n1
0:0 + α1)

Γ(n0
0:0 + n1

0:0 + β1 + α1)
× Γ(n0

0:1 + β2)Γ(n1
0:1 + α2)

Γ(n0
0:1 + n1

0:1 + β2 + α2)
×

Γ(n0
1:0 + β3)Γ(n1

1:0 + α3)
Γ(n0

1:0 + n1
1:0 + β3 + α3)

× Γ(n0
1:1 + β4)Γ(n1

1:1 + α4)
Γ(n0

1:1 + n1
1:1 + β4 + α4)

×

The posterior distribution for the general case when m ≥ 1 is given in Theorem

6.15.

Theorem 6.15 (Posterior Distribution for de Bruijn Conditional Word Probabilities,

m ≥ 1).

P (p|seq) = L(seq|p,m)P (p|m)
P (seq)

= L(seq|p,m)P (p|m)∫
L(seq|p,m)P (p|m)dp

where,

L(seq|p,m)P (p|m) =
22m−1∏

i=0

(
1 − p1

1
2m [i−(i mod 2m)] : i mod 2m

)n0
1

2m [i−(i mod 2m)] : i mod 2m
+βi+1−1

×
(
p1

1
2m [i−(i mod 2m)] : i mod 2m

)n1
1

2m [i−(i mod 2m)] : i mod 2m
+αi+1−1

=
22m−1∏

i=0

(
1 − p1

d(i)

)n0
d(i)+βi+1−1 (

p1
d(i)

)n1
d(i)+αi+1−1

and

∫
P (seq|p,m)P (p|m)dp

=
22m−1∏

i=0

Γ
(
n0

1
2m [i−(i mod 2m)] : i mod 2m + βi+1

)
Γ
(
n1

1
2m [i−(i mod 2m)] : i mod 2m) + αi+1

)
Γ
(
n0

1
2m [i−(i mod 2m)] : i mod 2m + n1

1
2m [i−(i mod 2m)] : i mod 2m + βi+1 + αi+1

)

=
22m−1∏

i=0

Γ
(
n0

d(i) + βi+1
)

Γ
(
n1

d(i)) + αi+1
)

Γ
(
n0

d(i) + n1
d(i) + βi+1 + αi+1

)
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with d(i) = 1
2m [i− (i mod 2m)] : i mod 2m

Proof. See Appendix B

Due to the similarities between the directional and non-directional de Bruijn

processes, the method to estimate the de Bruijn word length can again be treated in

the same way for the non-directional process. Therefore, we still proceed to estimate

the word lengths using Bayes’ factors. Given a sequence of 0’s and 1’s, we will then

be able to estimate both the conditional word probabilities and the word length of

the non-directional de Bruijn process which is most likely to have generated it. The

general method of Bayes’ factors used is exactly the same as explained in Section 4.3,

where we use the method to question whether a given sequence, S, was generated

from one of two hypotheses. The first hypothesis says the sequence was generated

from a de Bruijn process with word length m1 and the second says the sequence was

generated from a de Bruijn process with word length m2. We have a probability for

each of these occurring, along with prior probabilities that each of these sequences

was indeed generated with the proposed word length. We can then produce the

appropriate posterior probabilities, and if we consider Bayes’ theorem in terms of an

odds scale of these hypotheses in favour of m1, we can define the Bayes’ factor ratio

as follows:

B1,2 = P (S|m1)
P (S|m2)

,

if the hypotheses, m1 and m2, are equally likely. As in Chapter 4, we can find an

expression for P (S|mk) by integrating over the parameter space for the conditional

word probabilities, such that:

P (S|mk) =
∫

L(S|pk,mk)P (pk|mk) dpk,

for k ∈ {1, 2}, where L(S|pk,mk) is the likelihood of the data and P (pk|mk) is the

prior density of the model parameters, p. This gives the equation for the model

evidence from Theorem 6.15, which is possible to calculate as we have a conjugate

relationship between the likelihood and the prior. It is important to note here that

the model evidence is independent of the conditional word probabilities, p. This
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means that we are able to estimate the form of the de Bruijn process (the word

length) before we make any attempt to estimate the p’s. To help with computation,

I use the log scale. We calculate a Bayes’ factor ratio, Bi,j = P (S|mi)
P (S|mj) , for each

combination of models, where i, j ∈ {1, 2, ..., 10}, in order to find which model is

preferable.

In the set up of the de Bruijn process, I make the assumption that the word length,

m, cannot be too large. Otherwise, we are left with very large word lengths with far

too many parameters to be estimated with little benefit to the model. Therefore, I

make the decision to limit word lengths to not be any greater than 10. Since we have

a conjugate prior, it is easy to calculate the evidence for each word length, compare

each model in turn and determine the word length that best represents the given

sequence. When values of Bi,j are large, we have more evidence to reject the model

with word length mi in favour of the model with word length mj. The method of

Bayes’ factor for estimating the word length for non-directional de Bruijn processes

is given in Theorem 6.16.

Theorem 6.16 (Estimation of Non-Directional De Bruijn Word length by Bayes’

factors, m ≥ 1). Consider a sequence of 0’s and 1’s which was generated under one

of two hypotheses. The first is a de Bruijn process with word length m1 and the

second is a de Bruijn process with word length m2. The Bayes’ factor ratio is as

follows:

B1,2 = P (S|m1)
P (S|m2)

where,

P (S|mk) =
∫
P (seq|p,mk)P (p|mk)dp

=
22m−1∏

i=0

Γ
(
n0

d(i) + βi+1
)

Γ
(
n1

d(i)) + αi+1
)

Γ
(
n0

d(i) + n1
d(i) + βi+1 + αi+1

) ,

for k ∈ {1, 2} and d(i) = 1
2m [i− (i mod 2m)] : i mod 2m

When values of B1,2 are large, we have more evidence to reject the first hypothesis

with word length m1 in favour of the second hypothesis with word length m2.

Proof. Follows from Theorem 6.15.
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Once we have estimated the word length, we are then able to estimate the

conditional word probabilities by applying the result in Theorem 6.15.

6.3 2-d Methodology

Following on from the 1-d methodology for non-directional de Bruijn processes, it

is now important to consider what form 2-d non-directional de Bruijn processes

might take. The main inspiration for non-directional de Bruijn processes came from

considering 2-d directional de Bruijn processes, where applying a directionality did

not strictly make sense. There has been a large amount of previous research done in

this area, particularly within the scope of Markov random fields and image processing,

including Besag (1986). In this current section, I have outlined how I would proceed

in solving the problem based on the non-directional de Bruijn process established

in this chapter. For future work, I would like to look at comparisons with existing

methods, and determine whether we can use any existing methodology or properties

to improve the ideas further.

One of the main objectives is to find a form of the word so that, like the 2-d

directional de Bruijn process (method 2) and the 1-d non-directional de Bruijn graph,

we can convert the words into their 1-d directional word form. This is providing that

we can decompose each of the 2-d words in the same way to give a 1-d vector. We

can then use the methodology from Section 4.3 for inference to estimate both the

conditional word probabilities and the word length.

When considering what the form of the word could take for the 2-d non-directional

case, there are many different options. Not only do we want to define the shape or

form of the word, but we also want to classify different sizes of the word so that we

can have different ‘word’ length de Bruijn processes. When considering different sizes

of words for different types of 2-d de Bruijn words, we can start to form families of

words. I define a family of words as all of the possible words for a de Bruijn process

for each word length m. For example, the words defined in Figure 5.2.2 for Method 2

2-d directional de Bruijn process would define a family. I chose this form of the word

to best include all of the letters that the current point may be dependent on. Equally,
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I could have changed the form of the word to include all letters in an L shape behind

the current letter. Where, for each m, the next L row of letters would be added to

the current letters to form the next word. All of these words for each word of length

m would form another family of words for the 2-d directional de Bruijn process. Any

family of words can be chosen providing the words in each family are nested (the

smaller words must be contained in the larger sized words).

Two different possible families of 2-d non-directional de Bruijn words are shown in

Figure 6.4. Here, there are two fairly similar families of words that are formed from

diamond or square patterns in the grids of letters. The grey points represent either

0’s or 1’s, and the green point is the current point we are interested in estimating.

Initially, when considering what the first word might look like for either of these

cases, the simplest option is to take the four closest points in a cross shape. These

are outlined by the red lines in both plots in Figure 6.4, representing size m = 1

words in both cases. Now, considering what points might make up the size m = 2

word, we could include the additional four corner points to produce a square. This is

outline by the purple line in the right hand plot. Alternatively, as shown in the left

hand plot, the size m = 2 word (purple) could be chosen to follow the same diamond

pattern as the m = 1 word with an increased diameter. The remaining words in

this family would follow this pattern by increasing the size of the diamond with

increasing word size. Each word is formed by including letters which are m points

away from the green point moving horizontally or vertically (city block distance).

A third possible family of words is shown in Figure 6.5. This family was

created using the Euclidean distance taken from the green point to the letters

in the neighbourhood. The word of size m = 1 then consists of the four closest letters

to the green point in a cross. Larger words are then obtained by adding in the next

closest points with respect to the Euclidean distance.

Given that we have generated a family of 2-d words for the de Bruijn process,

it would then be ideal if we had a formula for generating the coordinates of the

points in the next word size given the current word. My current idea is to generate a

recurrence relationship, or generating rule, so that we would have a general formula
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Fig. 6.4 Two examples of 2-d non-directional de Bruijn word families, where the
green point is the point of interest to be simulated. Grey points represent either 0’s
or 1’s. The forms of the words for word sizes m = 1, m = 2, m = 3, m = 4 and
m = 5 that the green point is dependent on are outlined in red, pink, yellow, blue
and green respectively. The words in the left plot are formed from letters which are
m points away from the green point moving vertically and horizontally.

for producing the individual words for each family. For example, if the green points

in Figure 6.4 have coordinates (a, b), then we can calculate formulas to generate the

coordinates for all of the letters included in a size m de Bruijn word. For the diamond

word family on the left in Figure 6.4, the coordinates, (x, y)m, for the included letters

in a size m word are given by,

(x, y)m = (a, b) + Cm

where,

Cm = {(m, 0), (−m, 0)} ∪ {(0,±m) + (bn,∓n) : b ∈ {−1, 1}, 0 ≥ n ≥ m− 1}.

For the word family in Figure 6.5 where the words are generated using Euclidean

distance, the coordinates, (x, y)m, for the letters in a size m word are given by,

(x, y)m = Cm−1 + Cm

where,

Cm = {(a, b) :
√
a2 + b2 ≤

√
x2 + y2

∀ (x, y), (a, b) ∈ (X, Y ), where (x, y) /∈ Cm−1}.
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Fig. 6.5 Example of a 2-d non-directional de Bruijn word family generated using
Euclidean distance, where the green point is the point of interest to be simulated.
Grey points are either 0’s or 1’s. The forms of the words for word sizes m = 1, m = 2,
m = 3, m = 4, m = 5, m = 6 and m = 7 that the green point is dependent on are
outlined in red, pink, yellow, blue, green, purple and orange respectively.

where (X, Y ) is the set of all possible coordinates in the predefined grid.

Unfortunately, I still have the same difficulties in simulating sequences from 2-d

non-directional de Bruijn processes as I did for the 1-d version. This is thus a high

priority future problem so that we can easily view samples from 1-d and 2-d de

Bruijn processes. There is also a combinatoral problem with the word sizes for all of

the families proposed above. As the word size increases, the number of letters in each

word quickly gets very large, requiring enormous numbers of potential words and

conditional word probabilities. Hence, for future work it would be a good idea to try

and reduce this number somehow by introducing further constraints. For example,

we may be able to define the conditional word probability to be dependent on how

many 1’s or 0’s there are in each word. As well as this, we should also be able to

reduce the number of parameters by taking advantage of symmetries in the word

and marginal probabilities.

A useful tool for future work with non-directional de Bruijn processes may be

graph theory. Using graph theory, we may be able to write the de Bruijn words
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themselves as graphs and apply well known identities. This may then help us tackle

the simulation problem, or give interesting properties such as a 2-d equivalence

to run length. In graph theory, there is a Markov property known as conditional

independence (Lauritzen, 1996). This property states that a set of nodes in a graph

can be conditionally independent of another set of nodes given dependence of a third

set of nodes. If we apply this to our de Bruijn words in Figure 6.4, then we could

say that the green point which we are interested in, conditional on the outer letters

in the word, is independent of all other letters. In other words, the centre letters

are independent of each other conditional on knowing the outer letters of the word.

Hopefully this would then give the joint distribution over all of the letters in the

word, where some are independent of each other. Then, given this joint distribution,

we may be able to decompose it into a set of conditionally independent objects. A lot

of the theory behind this is described in the literature as ‘total positivity’, where we

would be particularly interested in total positivity in binary distributions (Lauritzen

et al., 2019).

Hence, I believe a deeper understanding of graph theory will be a vital part of

future work on de Bruijn processes to see if there are any important properties that

we may be able to take advantage of. This may be useful when considering patch

size, or the 2-d equivalent to run length. For example, we may have the diamond

de Bruijn word family shown in the left plot in Figure 6.4, and look to define patch

run sizes also in a diamond shape. The runs we are trying to observe are diamond

shapes consisting entirely of 1’s with a ring of 0’s around the edge. Therefore, using

conditional independence, conditional on the 0’s surrounding a diamond of 1’s, the

1’s are independent of everything else. Conditional on the boundary of 0’s, we should

then be able to calculate the probability of every letter within the diamond being 1.

This provides the conditional probability, where we would then need to provide the

probability of getting the ring of 0’s for the full joint distribution.
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6.4 Discussion

In this chapter, I have given an overview of one possible method for a non-directional

de Bruijn process. The inspiration for this work came from looking at 2-d directional

de Bruijn processes, where I argued that the direction used in de Bruijn graphs did

not make logical sense in a 2-d input space. Inspiration was taken from existing

literature including Abend et al. (1965); Agapie et al. (2014, 2004); Banerjee et al.

(2004); Besag (1974, 1986); Wolfram (2002).

The non-directional de Bruijn process presented here is based on a 1-d directional

de Bruijn process, so that many of the properties and method of inference could

be carried across. Therefore, I chose the form of the de Bruijn word so that they

could be written in terms of their 1-d directional de Bruijn word equivalents. I was

then able to define a run length distribution and give definitions for the expectation,

variance and generating functions for the run length distribution. The method of

inference is also outlined where we are again able to use the method of Bayes’ factors

with either maximum likelihood or Bayesian inference to estimate both the word

length and associated conditional word probabilities.

One of the major issues with the current non-directional methodology is simulation.

I currently do not have a successful method of simulating a sequence from a given de

Bruijn method. I have outlined two possible solutions for this, but they both either

have errors in the formulation or have high combinatorial problems. This is one area

of this thesis that I am keen to rectify in future work.

Another area for future work is the run length distribution. Although I have

fully defined the run length distribution for the m = 1 length word, the run length

distribution for larger word lengths is not complete. Due to the run-in period at

both the start and end of each run of 1’s (or 0’s), we must average over all possible

combinations of start and end sequences to give the full distribution. This results in

requiring the joint marginal probabilities for each of these sequence combinations in

terms of the length m de Bruijn word. I have not currently found a solution for this,

but have considered whether it would be possible to form a recurrence relationship to
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define the marginal probability of a smaller word in terms of the marginal probability

of a larger word.

In Section 6.3 I also gave a brief introduction on how we might be able to solve

the 2-d non-directional de Bruijn process problem. This was mainly based on trying

to define the form of the word for such a process, which we can then decompose into

the 1-d directional de Bruijn process so that we can use the methodology developed

in Sections 3 and 4. To do this, I have introduced the concept of a family of words

which defines each size of the de Bruijn word in the process. This is a challenging

topic, so the majority of this is left for future work.

Overall, this method of non-directional de Bruijn processes is not necessarily the

best way to view this problem, but it is my initial thoughts, designed such that it

links in well to the work already accomplished in the thesis. Therefore, a main aim

of future work is to look back at this concept of non-directionality to improve on the

method outlined here and potentially seek alternative methods.



Chapter 7

Conclusions and Future Work

The main motivation for this thesis was uncertainty quantification for numerical

models where there are two or more output solutions which are separated by distinct

boundaries. Given that these types of models can produce discontinuities between

the distinct regions, it was important not to assume any continuity across the entire

input space, as has been done in previous work such as treed Gaussian processes

Gramacy and Lee (2009). This constraint meant that it was infeasible to fit a single

Gaussian process emulator to the whole of the model. It was also decided that the

model outputs could take any form, being either qualitative or quantitative. Hence,

I moved towards modelling the separate regions using a classification method.

The main problem with current classification methods, such as logistic regression,

is the lack of any distance correlation when drawing from an independent Bernoulli

distribution to give classification predictions. Therefore, in Chapter 2 of this thesis,

I detailed one method for producing a correlated classifier using a latent Gaussian

process. Then, in Chapters 3 to 6, I outlined an alternative methodology for a

correlated Bernoulli process using de Bruijn graphs. The rest of this chapter gives

an overview of each previous chapter along with suggestions for future work.

Chapter 2 outlined a new method for classifying models or simulators with two

distinct regions. The proposed method is an improvement on current methods

of classifications, such as logistic regression, as it includes correlation through a

distance metric and can be applied to a wide range of applications. The model

is based on a class labelling system where initial points are labelled according to
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which known region they lie in. We were then able to model the labelling function

instead of the function itself. This is important because we are now able to deal

with a much broader range of applications where outputs to the model are not

necessarily quantitative. The labelling function becomes latent in the model and can

be modelled as a Gaussian process, hence introducing the necessary correlation into

the model. This latent Gaussian process was estimated using Metropolis Hastings

MCMC. The prior specification is very important to the model, and model validation

was included using a misclassification rate based on a leave-one-out cross-validation.

Several examples are given, including a motivating example based on analysing the

reproductive system in mammals. This bimodel system has two regions in output

space corresponding to high and low rates of reproduction.

Following the success of the motivating example, I am keen to test the method

out on more real life data sets to see how well it performs for more intricate output

regions. The example in Figure 2.17 had a fairly simple linear boundary between

regions, and so I would like to test out the limits of the method for more complex

region shapes. I have already shown that my method performs well with a doughnut

shape, so I have confidence that it will be able to cope in other scenarios. As well

as this, I would like to work with examples in higher dimensions. I have tested the

method out on toy examples in 1d, 2d and 3d, but it would be interesting to see if the

classifier would struggle if we increased the dimensions further. As the dimensions

increase, we would need more initial points, and a clear idea of how many different

regions we expect to get a sufficient boundary estimate. I expect prior specifications

will become increasingly important as we move up in dimensions.

Following on from this, I would also like to experiment with examples that have

more than two distinct output regions. I have already briefly outlined how I would

initially tackle this problem, but I would like to take this further to produce an

actual methodology. If possible, I would like to adapt the latent Gaussian process

so that it could cope with more output regions, but I expect this to be a difficult

problem due to the negative/positive condition that is vital for the classification.



223

In Section 2.6 I discussed the comparisons between the latent Gaussian process

method, and logistic regression and Voronoi tessellation (naive approach). In both

of these cases, it is clear that my method outperforms the alternative. In the

future, I would like to make comparisons with other methods that are currently

being developed, where it is not necessarily guaranteed that my new method will

outperform. An example of this is Pope et al. (2018), who model spatial processes with

heterogeneity or discontinuities by using a combination of Voronoi tessellation and

Gaussian processes. If I were to also compare my method to alternative classification

methods in machine learning literature, I may be able to use their tools to adapt and

improve my method further. I also hope to improve the efficiency of my computer

code. For example, I could look into changing the MCMC to Hamiltonian MCMC

to speed up calculations.

Lastly, there is still a significant contribution that could be made to the design

problem. In Section 2.7, I briefly discussed a possible way to solve this problem,

but it may not be the most efficient. A design method is required to improve the

accuracy of the classification and the boundary estimation with limited initial data.

Since the Gaussian process is applied to the labelling function, Λ, instead of the

actual function output itself, we find that most current design methods are not

applicable. Therefore, I would like to either continue developing my current design

method, or seek out an entirely new method that may be more efficient in improving

the classification. It would also be ideal if we could create an optimiser (similar to

the improvement function used by Ranjan et al. (2008)) that would indicate whether

we should be choosing points to be more space filling or to improve the estimate for

the boundary. Currently, I am only choosing one new point at a time in the design,

but I would like to expand this to be able to select multiple new points at a time.

Chapters 3 and 4 introduced a correlated Bernoulli process using de Bruijn graphs.

The aim of this work was to produce an equivalence to a Bernoulli process where

correlation is incorporated when making draws or samples: if we had a sample

sequence of 0’s and 1’s, then we would like to see like symbols cluster together instead

of appearing at random. Eventually, I would like to use this method alongside a



224 Conclusions and Future Work

classification method such as logistic regression so that, when we draw 0’s and 1’s to

make classification predictions, correlation with respect to distance is accounted for.

I am keen to see if I can use the methodology developed in these two chapters for a

real life data set with classification.

The method that I have proposed is based on de Bruijn graphs, which are directed

graphs that have a Markov property on the de Bruijn ‘word’ but not on the ‘letter’.

A de Bruijn word of length m consists of any combination of 0’s and 1’s of length m.

The length of the de Bruijn word allows us to control the spread of the correlation

between neighbouring letters in a sequence; i.e. the length scale. Using the defined

de Bruijn process we are able to generate sequences that appear very ‘sticky’, as well

as ‘anti-sticky’ sequences that are much more structured, and alternate between 0’s

and 1’s.

In Chapter 4, I looked into the properties of de Bruijn processes, including the

run length distribution. The run length distribution gives the probability of a run of

1’s of length n bounded by a 0 at each end. From this, we were then able to calculate

the expected run length, variance of run length and generating functions. Lastly, I

discussed the inference for de Bruijn graphs so that, given a sequence of 0’s and 1’s,

we can estimate both the word length m and the associated transition probabilities.

This was achieved using Bayes’ factors accompanied with either maximum likelihood

or Bayesian inference.

There are many areas for future work on the topic of de Bruijn graphs and

correlated Bernoulli processes. To start with, there is a lot of progress that could be

made by looking at group theory. Since we are incorporating well known structures

like Markov chains, there are many theorems and identities that we could apply to

the de Bruijn process. Such theorems would hopefully enable me to improve on

the definitions by making simplifications and help in expanding de Bruijn graphs to

higher dimensions. Hence, I think that it would be advantageous to dedicate some

research into linking de Bruijn graphs to group theory, graph theory and extensive

Markov chain theory. As well as this, there are also many properties that come from

the eigenvalues and eigenvectors of Markov chains. Although I have considered them
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briefly, there is still plenty of extra work that could be done, including whether we

could find any more general definitions, such as the stationary distribution and chain

conversion rates. This also includes problems similar to a k-out-of-n problem or an

extreme event problem. For example, the sequence 111 may be an extreme event

and we would like to know the probability of it occurring in a given sequence.

Secondly, it has stood out that de Bruijn graphs can quickly become very

complicated with many possible transition probabilities for large word lengths.

Therefore, I believe that it would be useful to try and limit the number of transition

probabilities, which could be particularly important in inference (Chapter 4). I have

considered reducing the probabilities by making the probability of getting a 1 next in

the sequence be dependent on how many 1’s there are currently in the word before.

In other words, we would have fewer transition probabilities that were functions of

the proportion of 1’s in a small window or word. Even if this simplification were

successful, we would have to be careful not to reduce the flexibility too much. If we

set it so that the probability of getting a 1 was solely dependent on how many 1’s

there were in the previous word, then the word 011 would have the same probability

of getting a 1 as the word 101. Therefore, we would ideally like to reduce the number

of parameters whilst also maintaining the flexibility that I have incorporated so far.

Although mentioned briefly, I also intend to develop non-stationary de Bruijn

processes further. The transition probabilities associated with the de Bruijn process

will depend on the time step of the Markov chain. Hence, we would be able to create

chains that are sticky in some places and not sticky in others. This will be particularly

important when trying to apply the de Bruijn process to an actual classification

problem. The process will act sticky for areas away from the region boundary, where

we are sure of the classification. However, the process will then be similar to Bernoulli

trials close to the boundary where we have little information for where the exact

boundary lies. We should then hopefully be able to produce something similar to

a step function, with 0’s corresponding to one region and 1’s corresponding to the

other. There will probably still be a small fuzzy section near the border, but the

results will be an improvement on logistic regression (such as that in Figure 1.3).
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One of the main challenges for non-directional de Bruijn processes is that we can

no longer use many of the Markov and geometric distribution properties that were

used to help simplify the expressions describing stationary de Bruijn processes. This

includes difficulties in finding stationary distributions, and calculating subsequent

measures for the run length distribution.

One of the areas I would also like to research is the accuracy of the word length

and transition probability estimates. Currently in my examples, I am able to assess

the accuracy of the estimates by comparing them against the true values that I

simulated the sequences with. This is not going to be possible for real life examples

and so I would like to establish a method of validation to give a level of uncertainty

in the estimates. A more extensive research into Markov properties may be able to

help me solve this problem.

Chapter 5 expanded the ideas from Chapters 3 and 4 in an attempt to produce a

2-d de Bruijn process. This was a very challenging problem since the vital direction

in de Bruijn graphs does not make logical sense on a two-dimensional grid. I outlined

two possible methods for producing a 2-d de Bruijn process. Method 1 was based on

multivariate Markov chains which allowed the rows in a 2-d grid to have a notable

correlation between them. The rows are connected using the de Bruijn word length

so that each point is dependent on de Bruijn graphs in three directions. Although

simulation was possible, the method required high numbers of parameters to be

estimated and inference would be challenging.

Method 2 proved to be more successful, and enabled us to perform inference.

The aim of Method 2 was to be closer aligned to the 1-d de Bruijn process already

developed, with the hope that some of the methodology could be applied. This was

possible by changing the form and shape of the de Bruijn word. Although it is no

longer possible to visualise the associated de Bruijn graph, it is possible to use the

inference methodology developed in Chapter 4. By converting each 2-d de Bruijn

word into a vector, we can find the 1-d de Bruijn word equivalent. We can then use

the method of Bayes’ factors to estimate the word length, along with either maximum

likelihood or Bayesian inference to find the associated transition probabilities.
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One area of improvement for this method would be to reduce the large numbers

of transition probabilities that occur with increasing word size. This was mentioned

briefly in Chapter 4, but it would be ideal if we could reduce the number of parameters

further. Expanding Method 2 to higher dimensions was also discussed, where I

proposed how I would tackle a three dimensional de Bruijn process. As future work,

I would like to attempt to simulate a 3-d example and also attempt to adapt the

method further to higher dimensions. I believe this to be possible providing we can

state the 1-d de Bruijn word equivalent to an n-d word.

I am particularly interested in developing the 2-d equivalent to the run length

distribution introduced in Chapter 4. This will involve defining what a patch size is

on a 2-d grid, since it is possible to have both circular patches and long chains or

1’s (or 0’s). If we just define a patch size by counting how many 1’s (or 0’s) that

are touching at least one other 1 (or 0), then these patches would technically be

equivalent. The main focus of this work will be to develop a formal definition of a

patch size. As well as this, we could also consider the structures of diagonal lines of

1’s (or 0’s) across a 2-d grid. I am also considering whether 2-d de Bruijn processes

have to stay on a rectilinear grid. If we had the 0’s and 1’s laid out in a hexagonal

grid, then it is clear that each point has six nearest neighbours. This may then help

in defining what a patch size is.

It would also be ideal to extend de Bruijn processes to infinite dimensions where

currently, I have only focused on methodology in finite dimension. If we had a grid

of points, and the points then get so close together that we have something more like

a correlation function rather than a matrix. However, this is a very hard problem to

solve. It may be the case that the infinite and finite cases have a similar relationship

to a Gaussian Markov random field and a Gaussian process. This conversion acts to

transform something that is split into blocks, into something that is then continuous.

Therefore, I believe that further research into non-Gaussian Markov random fields

will be of great importance for future work.

One of the major disadvantages of the proposed 2-d de Bruijn process is the

directionality that was imposed. The main aim of Chapter 6 was to remove this
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direction to produce a non-directional de Bruijn process. I started by developing

the 1-d methodology, where I again chose to base the 1-d non-directional de Bruijn

process on the already developed 1-d directional de Bruijn process. This meant

changing the form of the word so that each non-directional word could be written

in terms of their 1-d directional de Bruijn word equivalent. From this, it was then

possible to define a run length distribution, expected run length, variance of run

length, generating functions and inference through Bayes’ factors. The topic of

non-directional de Bruijn processes is of great interest to me, and I am eager to

pursue the research further following on from this thesis.

Currently, the de Bruijn processes described in this chapter have no successful

method of simulating a sequence of 0’s and 1’s. Two possible methods are outlined,

but they either contain an error or are very computationally inefficient. This would

be one of my initial areas to concentrate on in future work, as it is important that

we can view sample sequences from certain de Bruijn processes. Given a simulated

sequence, we will also be able to test the inference stated in the chapter. I have

not attempted to apply the inference method yet due to being unable to generate a

specific sequence with the correct correlations between letters.

Another important area for future work is the run length distribution. The run

length distribution is successfully given for length m = 1 de Bruijn processes, but is

incomplete for larger word lengths. I have not yet defined the marginal probabilities

for the burn-in sequences of 0’s and 1’s that occur at both ends of a run of 1’s (or

0’s). The major problem with this is defining the probability of a short sequence,

given that we are working with a de Bruijn process with word length m. Once I have

defined this (as well as improving the method of simulation), we will be able to use the

run length distribution to compare both analytical and simulated run lengths from

sequences generated from both sticky and non-sticky de Bruijn processes. Currently,

I plan to calculate these marginal probabilities using a recurrence relationship to

define the marginal probability of a smaller word in terms of the marginal probability

of a larger word.
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The overall aim for this work is to produce a non-directional de Bruijn process

for any finite dimension. I have given a brief introduction on how I would proceed

in trying to develop a 2-d non-dimensional de Bruijn process, but a lot of further

research is required to develop the methodology. I have introduced the concept of a

family of words which defines each size of the de Bruijn word in the process. Using

this and an improved knowledge of graph theory, I believe the described goals can

be achieved.

Overall, I have only skimmed the surface of non-directional de Bruijn processes

and believe there is an extensive field of potential research. For example, the ideas

presented in Chapter 6 may not necessarily be the best way to view this problem,

and we may need to start from scratch to progress further. I have also generated

ideas on possibly linking this work to that by Teugels (1990) to produce a more

general Bernoulli process. As with the previous chapters, I am keen to progress

further with de Bruijn processes and will hopefully one day apply the concepts to

some real world examples.
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Appendix A

Proofs for Chapter 4 Theorems

A.1 Theorem 4.2 (Run Length Distribution, m ≥

3)

P (run length = n)

=



∑2m−2−1
i=0 π(i) p23(i mod 2m−3)+2

4i+1 for n = 1
∑2m−2−1

i=0 π(i) p23(i mod 2m−3)+3
4i+1 for n = 2 : m− 1

×
[∏n−1

j=1 p
2j+3(i mod 2m−j−3)+(2j+2−1)−1j=n−1
2j+2(i mod 2m−j−2)+(2j+1−1)

]
∑2m−2−1

i=0 π(i) p23(i mod 2m−3)+3
4i+1

×
[∏m−2

j=1 p
2j+3(i mod 2m−j−3)+(2j+2−1)
2j+2(i mod 2m−j−2)+(2j+1−1)

]
for n ≥ m.

×
[(
p2m−1

2m−1

)n−m
p2m−2

2m−1

]

where,

π(i) =
2m−1∑
j=0

m−3∏
k=0

[
p

2k+1(j mod 2m−k−1)+
∑k+1

s=1 2k−s+1[( 1
2m−s−2 (i−(i mod 2m−s−2)))mod 2]

2k(j mod 2m−k)+
∑k

s=1 2k−s[( 1
2m−s−2 (i−(i mod 2m−s−2)))mod 2]

]
π(j)

Proof. Given a sequence of the letters 0 and 1, of length N , the sequence can be

written in terms of its de Bruijn words of length m. Each of these words can be
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expressed by the numerical representation of their binary form. Transitioning from

the word i to the word j is stated by pj
i .

For a run length of 1’s of length n, the run starts with a word of the form ∗01

irrespective of the word length, m. Hence, ∗ defines a sequence of length m− 2, and

so there are 2m−2 words of the form ∗01. The law of total probability states:

P (run length = n) =
2m−2−1∑

i=0
P (run length = n|∗i)π(∗i),

where π(∗i) is the marginal probability for the ith starting sequence of length m− 2.

For run lengths of n = 1, this corresponds to transitioning from a word of the

form ∗01 to a word of the form ∗10. Hence:

P (run length = 1|∗) = p∗10
∗01.

The sequence, ∗, corresponds to all possible length m− 2 sequences of 0’s and 1’s

which are the binary representations of the numbers 0, 1, ..., 2m−2 − 1 (all possible

combinations of 0’s and 1’s). Going from right to left, ∗ starts in the third position

representing 22 in the numerical representation. Hence, all starting words of the

form ∗01 are given by 4i+ 1 ∀ i ∈ (0 : 2m−2 − 1).

From words of the form ∗01, it is then only possible to transition to words of the

form ∗010. The sequence, ∗, now represents all possible sequences of length m− 3,

represented by 0, 1, ..., 2m−3 − 1. Since the first word is of the form 00 . . . 010, and

translating to 2 in the numerical representation, the words are given by (23)i+2 ∀ i ∈

(0 : 2m−3 − 1). However, since there are only 2m−3 words to transition to, half of

the initial 2m−2 words transition to the same following word. This forms a repeated

cycle of recurring end words that correspond to the starting words in logical order

(1, ...,m). The cycle repeats every 2m−3 and so depends on the word length, m.

Combining this with the law of total probability gives:

P (run length = 1) =
2m−2−1∑

i=0
π(i) p23(i mod 2m−3)+2

4i+1 .
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For P (run length = n) where n = 2, ...,m − 1, starting words, ∗01, must

transition to a word of the form ∗011 with p∗011
∗01 . Following this, there will be n− 1

transitions each adding an extra 1 to the sequence. At each transition, the sequence

∗ will reduce by one letter. The final transition will be to a word of the form ∗10,

containing n 1’s and stopping the run.

The first transition will have a similar form to the n = 1 case with the exception of

transitioning to a word of the form ∗011, hence the transition is p23(i mod 2m−3)+3
4i+1 ∀ i ∈

(0 : 2m−2 − 1). For the remaining transitions, the words will take the form ∗01...1

where the sequence ∗ reduces by 1 each time. The 1’s move to the left each time and so

the numerical binary number increases by a power of 2 to become 2j+3 ∀ j ∈ (0 : n−1).

This is the increase in value for each i. As for the n = 1 case, a repeated cycle of

recurring end words occurs. To begin with, the cycle repeats every 2m−3, however as

the sequence ∗ decreases with increasing transitions, this decreases the total number

of possible words and the length of the cycle to give:

2j+3(i mod 2m−j−3) ∀ i ∈ (0 : 2m−2 − 1), j ∈ (0 : n− 1).

Also for increasing transitions, the first possible word of the form 0...01...1, gets

larger by a power of 2 and so we must add on 2j+2 − 1 for the starting word when

i = 0.

Finally, the run of 1’s is stopped with a word of the form ∗10 and so an indicator

is used remove one from the numerical representation of the last transition. Since

the end word from the previous transition is the starting word of the next this gives:

P (run length = n) =
2m−2−1∑

i=0
π(i) p23(i mod 2m−3)+3

4i+1

×

n−1∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)−1j=n−1
2j+2(i mod 2m−j−2)+(2j+1−1)

 ,
for n = 2, ...,m− 1.

For run lengths n ≥ m, the initial m−1 transitions will be identical to the n < m

cases where the indicator is removed. The remaining n−m transition probabilities
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are of the form p11...1
11...1 = p2m−1

2m−1 . The last word is of the form 11...10 = 2m − 2, hence:

P (run length = n) =
2m−2−1∑

i=0
π(i) p23(i mod 2m−3)+3

4i+1

m−2∏
j=1

p
2j+3(i mod 2m−j−3)+(2j+2−1)
2j+2(i mod 2m−j−2)+(2j+1−1)


×
[(
p2m−1

2m−1

)n−m
p2m−2

2m−1

]
,

for n ≥ m.

For π(i) ∀i ∈ (0 : 2m−2 − 1), the law of total probability states:

π(i) =
2m−2−1∑

j=0
P (i|j)π(j),

where the numerical representation of the binary words are used. Since the run must

start with a word of the form ∗01, π(i) represents all possible sequences, ∗ of length

m−2. π is defined in terms of length m words and associated transition probabilities.

Finding the conditional probabilities involves m− 2 transition probabilities for each

j ∈ (0 : 2m − 1) since there are 2m words in an m length de Bruijn graph.

First consider the case when i = 0 for any word length m (in the numerical

representation of the binary word, 0...0). The first word for each j, is always j itself.

For each following transition, for each j, the letters shift to the left, and a 0 is added

to the end of the word. Hence, the word becomes an extra factor of 2 larger at each

transition i.e. 2k × j for each k ∈ (0 : m− 3). However, since the word transitions to

a word of the form ∗0...0 each time, where ∗ reduces in length by one, some words

can transition to the same word, creating a cycle on j. Initially all 2m words are

unique, but the cycle reduces with each transition (as ∗ becomes smaller), so the

words become: 2k(j mod 2m−k).

If i ∈ (0 : 2m−2 − 1), the initial pattern is the same as for i = 0, with different

contributions to each word for each transition. 1’s must be added to the base

case (i = 0) when they turn up in the transitions for any i. For all 2m−2 possible

binary sequences of length m − 2, the 1’s appear in cycles depending on which

column they lie in. From the left entry, the first 2m−3 words begin with a 0 and

the last 2m−3 words begin with a 1. The next column repeats 0’s and 1’s every
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2m−4 words. This continues until the last column alternates between 0’s and 1’s for

each i. This reduces to ( 1
2m−s−2 (i − (i mod 2m−s−2)))mod 2, where s ∈ (1 : k) for

each transition. Since the current 1’s increase by a power of two for each transition,

a summation is formed to make sure each is included. Hence the words become:∑k
s=1 2k−s[( 1

2m−s−2 (i− (i mod 2m−s−2)))mod 2].

Since the end word of the current transition is the start word of the next transition,

this gives the following:

π(i) =
2m−1∑
j=0

m−3∏
k=0

[
p

2k+1(j mod 2m−k−1)+
∑k+1

s=1 2k−s+1[( 1
2m−s−2 (i−(i mod 2m−s−2)))mod 2]

2k(j mod 2m−k)+
∑k

s=1 2k−s[( 1
2m−s−2 (i−(i mod 2m−s−2)))mod 2]

]
π(j)
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A.2 Expected Run Length for m = 2 Obtained

from Moment Generating Function

E [run length] = p10
01 + p11

01 (1 − (p10
11)2)

p11
11p

10
11

.

Proof.

G(x) = (p11
01p

10
11 − p10

01p
11
11) e2x + p10

01e
x

1 − p11
11e

x

G′(x) = [2 (p11
01p

10
11 − p10

01p
11
11) e2x + p10

01e
x] (1 − p11

11e
x)

(1 − p11
11e

x)2

− [(p11
01p

10
11 − p10

01p
11
11) e2x + p10

01e
x] (p11

11e
x)

(1 − p11
11e

x)2

G′(0) = [2 (p11
01p

10
11 − p10

01p
11
11) + p10

01] (1 − p11
11) − [(p11

01p
10
11 − p10

01p
11
11) + p10

01] (p11
11)

(1 − p11
11)

2

= 2p11
01p

10
11 − 2p10

01p
11
11 + p10

01 − p11
01p

10
11p

11
11 + p10

01 (p11
11)

2

(1 − p11
11)

2

=
p10

01

[
(p11

11)
2 − 2p11

11 + 1
]

(1 − p11
11)

2 + 2p11
01p

10
11 − p11

01p
10
11p

11
11

(1 − p11
11)

2

= p10
01 + 2p11

01p
10
11 − p11

01p
10
11p

11
11

(p10
11)

2

since
(
1 − p11

11

)2
=
(
p11

11

)2
− 2p11

11 + 1 and p10
11 + p11

11 = 1

= p10
01 + 2p11

01 − p11
01p

11
11

p10
11

= p10
01 + p11

01
p10

11p
11
11

[
2p11

11 −
(
p11

11

)2
]

= p10
01 + p11

01
p10

11p
11
11

[
2
(
1 − p10

11

)
−
(
1 − p10

11

)2
]

since p10
11 + p11

11 = 1

= p10
01 + p11

01 (1 − (p10
11)2)

p11
11p

10
11

= E [run length] from Theorem 4.3.
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A.3 Theorem 4.18 (Marginal Likelihood, m ≥ 1)

L(seq) =
2m−1∏
i=0

π(i)ni

=
2m−2∏
i=0

π(i)ni

1 −

2m−2∑
j=0

π(j)
N−

(∑2m−2
j=0 nj

)

for N = ∑2m−1
j=0 nj and ∑2m−1

j=0 π(j) = 1

Proof. Given a sequence of letters of length N +m− 1, the sequence can be split up

into its associated words of predefined length m ≥ 1, where π(i) gives the probability

of obtaining the word i and N is the total number of words. The joint distribution is

given by the product of the respective π’s for each word and like terms are collected.

There are 2m words for an m length de Bruijn process, hence:

L(n) =
2m−1∏
i=0

π(i)ni

Since the sum of all ni gives the total number of words, N , and the sum of the

marginal probabilities of the words equals one, this gives the following:

L(n) =
2m−2∏
i=0

π(i)ni

1 −

2m−2∑
j=0

π(j)
N−

(∑2m−2
j=0 nj

)
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A.4 Theorem 4.20 (Transition Likelihood, m ≥ 1)

L(seq|p) =
2m−1∏
i=0

(
1 − p

(2i+1) mod 2m

i

)n
((2i+1) mod 2m)−1
i

(
p

(2i+1) mod 2m

i

)n
((2i+1) mod 2m)
i

.

Proof. Assume a sequence of letters, L = l1, l2, ..., ln, where li ∈ [0, 1] and the ordering

is fixed. This sequence can be written in terms of its de Bruijn words such that

L = w1, w2, ..., wn−1, where wi are the de Bruijn words of length m. Consider the

joint distribution of this sequence. Starting from w1, the probability of transitioning

to the next word is pw2
w1 . The probability of transitioning to the next following word

is, pw3
w2 . This continues until the transition pwn−1

wn−2 which gives the joint distribution,

L(L|p) = pw2
w1 × pw3

w2 × ...× pwn−1
wn−2 . Like terms are collected for each possible transition

probability.

There are 2m+1 possible transition probabilities since each word can be followed

by either a 0 or a 1. Since rows in the transition matrix sum to one, the transition

likelihood can be expressed in terms of 2m parameters. These are all words of the

form ∗1, which end in the letter 1 and so are expressed as 2i+ 1 for i ∈ (0 : 2m − 1)

(using the numerical representation of the binary words). Since all possible words

can transition to a word of the form ∗1, where ∗ is of length m − 1, two words

each transition to the same end word and a cycle is formed. This occurs every 2m

transitions, hence:

L(L|p) =
2m−1∏
i=0

(
1 − p

((2i+1) mod 2m)
i

)n
((2i+1) mod 2m)−1
i

(
p

((2i+1) mod 2m)
i

)n
((2i+1) mod 2m)
i

.
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A.5 Theorem 4.21 (Estimation of De Bruijn Word

length by Bayes’ factors, m ≥ 1)

Consider a sequence, S, of 0’s and 1’s which was generated under one of two

hypotheses. The first is a de Bruijn process with word length m1 and the second is a

de Bruijn process with word length m2. The Bayes’ factor ratio is as follows:

B1,2 = P (S|m1)
P (S|m2)

where,

P (S|mk) =
∫
P (S|p,mk)P (p|mk)dp

=
2mk −1∏

i=0

Γ(n((2i+1) mod 2mk )−1
i + βi+1)Γ(n((2i+1) mod 2mk )

i ) + αi+1)
Γ(n((2i+1) mod 2mk )−1

i + n
((2i+1) mod 2mk )
i + βi+1 + αi+1)

,

for k ∈ {1, 2}. When values of B1,2 are large, we have more evidence to reject the

first hypothesis with word length m1 in favour of the second hypothesis with word

length m2.

Proof. The equation:

P (p|S) = L(S|p,m)P (p|m)
P (S)

= L(S|p,m)P (p|m)∫
L(S|p,m)P (p|m)dp

is taken from Bayes’ theorem where the likelihood is given in Theorem 4.20 and the

prior is defined to be a product of beta densities:

P (p|m) =
2m−1∏
i=0

Γ(αi+1 + βi+1)
Γ(αi+1)Γ(βi+1)

pαi+1−1(1 − p)βi+1−1,
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for unknown parameters α and β. Substituting this in gives:

P (p|S) ∝ L(S|p,m)P (p|m)

=
2m−1∏
i=0

 (1 − p
((2i+1) mod 2m)
i

)n
((2i+1) mod 2m)−1
i

(
p

((2i+1) mod 2m)
i

)n
((2i+1) mod 2m)
i

×
(
1 − p

((2i+1) mod 2m)
i

)βi+1−1 (
p

((2i+1) mod 2m)
i

)αi+1−1


=
2m−1∏
i=0

(1 − p
((2i+1) mod 2m)
i )n

((2i+1) mod 2m)−1
i +βi+1−1

× (p((2i+1) mod 2m)
i )n

((2i+1) mod 2m)
i +αi+1−1.

Both the prior, P (p|m), and the posterior, P (p|S), take the form of a product of

beta densities, hence there is a conjugate relationship and the following is true:

∫
P (S|p,m)P (p|m)dp =

2m−1∏
i=0

Γ(n((2i+1) mod 2m)−1
i + βi+1)Γ(n((2i+1) mod 2m)

i ) + αi+1)
Γ(n((2i+1) mod 2m)−1

i + n
((2i+1) mod 2m)
i + βi+1 + αi+1)

.
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Proofs for Chapter 6 Theorems

B.1 Theorem 6.2 (Run Length Distribution, m ≥

2)

P (run length = n)

=



∑2m−1−1
i=0

∑2m−1−1
j=0 π(i_j)p1

2i:j for n = 1

∑2m−1−1
i=0

∑2m−1−1
j=0 π(i_j) for n = 2 : 2m

×∏n−1
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(n−k−2,m−1)
t=0 {2m−t−1}+ 1

2n−k−1 [j−(j mod 2n−k−1)]
}

∑2m−1−1
i=0

∑2m−1−1
j=0 π(i_j) for n ≥ 2m+ 1

×∏2m−1
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(2m−k−2,m−1)
t=0 {2m−t−1}+ 1

22m−k−1 [j−(j mod 22m−k−1)]
}

×
(
p1

2m−1:2m−1

)n−2m
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Proof. Given a sequence of the letters 0 and 1, of length, N , the sequence can be

written in terms of its de Bruijn words of length m. Each of these words can be

expressed by the numerical representation of their binary form. The probability of

getting the letter 1 from the word i : j is given by p1
i:j.

For a run length of 1’s of length n, the run is bounded by two words of the form

∗0 : ... and ... : 0∗′ symmetrically. The sequences represented by ... are dependent on

the run length, and both ∗ and ∗′ are any sequence of 0’s and 1’s of length m− 1.

Hence, there are 2m−1 words of either the form ∗0 : ... or ... : 0∗′, which gives 22(m−1)

combinations in total. The law of total probability states:

P (run length = n) =
22(m−1)−1∑

i=0
P (run length = n| ∗ _∗′

i)π(∗_∗′
i),

where π(∗_∗′
i) is the marginal probability for the ith combination of starting and

end sequences of length m− 1 each.

For run lengths of n = 1, this corresponds to transitioning from a word of the

form ∗0 : 0∗′ to the letter 1. Hence:

P (run length = 1| ∗ _∗′) = p∗1
∗0:0∗′ .

The sequence, ∗, corresponds to all possible length m− 1 sequences of 0’s and 1’s,

hence ∗0 corresponds to all even numbers in the numerical representation of the

binary sequences, 2i ∀ i ∈ (0 : 2m−1 − 1). The sequence, ∗′ also corresponds to all

possible length m− 1 sequences, and so 0∗′ corresponds to j ∀ j ∈ (0 : 2m−1 − 1).

Since each possible starting sequence, ∗, for a run can finish with each ending

sequence, ∗′, this gives:

P (run length = 1) =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)p1
2i:j,

where π(i_j) is the marginal probability of getting the ith possible starting sequence

represented by ∗ and the jth possible ending sequence represented by ∗′.

For P (run length = n) where n = 2, ..., 2m, there will be n conditional word

probabilities for each of the 1’s in the run. Each non-directional word is of the
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form w1 : w2, where each of these sequences, wk, is of length m. Due to the non-

directionality, that patterns that occur with w1 will also symmetrically occur with

w2. Considering the left and right sides of the word separately, w1 will start off as

a sequence of the form ∗0 and go to a sequence of the form ∗01. This continues,

where at each time, the sequence ∗ reduces in length by one and an extra letter 1 is

added to the end. If ∗ is shifting to the left and reducing in length each time, the

numerical binary number represented by this will increase by a power of two each

time to become 2k+1 ∀ k ∈ (1 : n− 2). The baseline is 22 = 4 since the sequence will

be of the form ∗01 where ∗ starts in the third position from the right. As ∗ reduces

in length with k, there are less options for what the sequence can be. Hence, a cycle

forms of repeated start sequences. Initially this cycle is of length 2m−2, which reduces

by a factor of 2 with each transition until the cycle is of length 2m−n+1. Therefore,

w1 becomes 2k+1(j mod 2m−k−1) ∀ k ∈ (0 : n− 1). For all run lengths larger than m,

this expression reduces to 0 since w1 consists entirely of 1’s.

Whilst this happens, an extra 1 is added to the sequence at each transition.

Hence the corresponding number must be added to the result to represent these 1’s.

This starts from one and increases by a power of 2 at each transition until w1 is of

the form 1...1. This is given by 2min(k,m) − 1 ∀ k ∈ (0 : n− 1). The minimum value

between k and m is taken since when w1 consists entirely of 1’s, its maximum value

is 2m − 1.

Putting these together gives: w1 = 2min(k,m) − 1 +
[
2k+1(j mod 2m−k−1)

]
for

k ∈ (0 : n− 1).

Now consider the right side of the word, w2. The patterns emerging in w2 will

be the reverse to the patterns in w1 due to the non-directionality of the form of the

words. w2 will start off as a sequence of either the form 1...1 or 1...10∗′ depending on

the run length n. As the number of transitions increase, the sequence ∗ increases in

length by one each time and a 1 is removed from the initial run. This continues until

the last transition, and w2 is of the form 0∗′, where ∗′ is any sequence of 0’s and 1’s

of length m− 1. Accounting for the initial run of 1’s, ∑min(n−k−1,m−1)
t=0 2m−t−1 adds

in the numeric value for each of the 1’s starting from the left with 2m−1. Taking the
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minimum value between n − k − 2 and m − 1 for the summation in necessary for

when w2 consists of entirely 1’s and has maximum value 2m−1 + 2m−2 + ...+ 20.

As the number of 1’s in w2 decreases, the length of the sequence ∗ increases.

Depending on the current value of k, ∗′ is of length m− n+ k which gives 2m−n+k

different sequences of 0’s and 1’s. Since j ∈ (0 : 2m−1 − 1) and there must be all

combinations of w1 with w2, each sequence ∗ will occur 2m−k times. This is given

by 1
2n−k−1

[
j − (j mod 2n−k−1)

]
, which gives the sequence 0...01...1...2m−n+k...2m−n+k.

When w2 consists entirely of 1’s, n− k − 1 ≥ m and just 0’s are produced.

Putting these steps together gives: w2 = ∑min(n−k−2,m−1)
t=0 {2m−t−1} + 1

2n−k−1[
j − (j mod 2n−k−1)

]
for k ∈ (0 : n− 1).

Therefore, for n = 2, ..., 2m the run length distribution is given by:

P (run length = n) =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)

×
n−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(n−k−2,m−1)
t=0 {2m−t−1}+ 1

2n−k−1 [j−(j mod 2n−k−1)]
}

For run lengths n ≥ 2m+ 1, the run-in periods occurring for both of the end m

transitions will be identical to the n ≤ 2m cases. For longer run lengths than 2m,

the following n− 2m transitions are of the form p1
1...1:1...1 where both w1 and w2 are

sequences of 1’s of length m. This is represented by p1
2m−1:2m−1.

Therefore, for n ≥ 2m+ 1 the run length distribution is given by:

P (run length = n) =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)

×
n−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(n−k−2,m−1)
t=0 {2m−t−1}+ 1

2n−k−1 [j−(j mod 2n−k−1)]
}

×
(
p1

2m−1,2m−1

)n−2m
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B.2 Theorem 6.4 (Expected Run Length, m ≥ 2)

E [run length]

=
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)p1
2i:j

+
2m∑
l=2

l

[ 2m−1−1∑
i=0

2m−1−1∑
j=0

π(i_j)
l−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(l−k−2,m−1)
t=0 {2m−t−1}+ 1

2l−k−1 [j−(j mod 2l−k−1)]
}]

+
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
2m−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(2m−k−2,m−1)
t=0 {2m−t−1}+ 1

22m−k−1 [j−(j mod 22m−k−1)]
}

×
{(

1
p1

2m−1:2m−1

)2m[
p1

2m−1:2m−1
(1 − p1

2m−1:2m−1)2 −
2m∑
s=0

s(p1
2m−1:2m−1)s

]}

Proof.

E [run length]

=
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)p1
2i:j

+
2m∑
l=2

l

[ 2m−1−1∑
i=0

2m−1−1∑
j=0

π(i_j)
l−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(l−k−2,m−1)
t=0 {2m−t−1}+ 1

2l−k−1 [j−(j mod 2l−k−1)]
}]

+
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
2m−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(2m−k−2,m−1)
t=0 {2m−t−1}+ 1

22m−k−1 [j−(j mod 22m−k−1)]
}

×
{ ∞∑

n=2m+1
n(p1

2m−1:2m−1)n−2m

}
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=
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)p1
2i:j

+
2m∑
l=2

l

[ 2m−1−1∑
i=0

2m−1−1∑
j=0

π(i_j)
l−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(l−k−2,m−1)
t=0 {2m−t−1}+ 1

2l−k−1 [j−(j mod 2l−k−1)]
}]

+
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
2m−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(2m−k−2,m−1)
t=0 {2m−t−1}+ 1

22m−k−1 [j−(j mod 22m−k−1)]
}

×
{(

1
p1

2m−1:2m−1

)2m[ ∞∑
n=0

n(p1
2m−1:2m−1)n −

2m∑
s=0

s(p1
2m−1:2m−1)s

]}

=
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)p1
2i:j

+
2m∑
l=2

l

[ 2m−1−1∑
i=0

2m−1−1∑
j=0

π(i_j)
l−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(l−k−2,m−1)
t=0 {2m−t−1}+ 1

2l−k−1 [j−(j mod 2l−k−1)]
}]

+
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
2m−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(2m−k−2,m−1)
t=0 {2m−t−1}+ 1

22m−k−1 [j−(j mod 22m−k−1)]
}

×
{(

1
p1

2m−1:2m−1

)2m[
p1

2m−1:2m−1
(1 − p1

2m−1:2m−1)2 −
2m∑
s=0

s(p1
2m−1:2m−1)s

]}

for |p1
2m−1:2m−1| < 1

since ∑∞
n=0 np

n = p
(p−1)2 providing |p| < 1
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B.3 Theorem 6.6 (Squared Expectation of Run

Length, m ≥ 2)

E [run length2]

=
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)p1
2i:j

+
2m∑
l=2

l2
[ 2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
l−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(l−k−2,m−1)
t=0 {2m−t−1}+ 1

2l−k−1 [j−(j mod 2l−k−1)]
}]

+
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
2m−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(2m−k−2,m−1)
t=0 {2m−t−1}+ 1

22m−k−1 [j−(j mod 22m−k−1)]
}

×
{(

1
p1

2m−1:2m−1

)2m[
p1

2m−1:2m−1(p1
2m−1:2m−1 + 1)

(p1
2m−1:2m−1 − 1)3 +

2m∑
s=0

s2(p1
2m−1:2m−1)s

]}

for p1
2m−1:2m−1 < 1

Proof.

E [run length2]

=
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)p1
2i:j

+
2m∑
l=2

l2
[ 2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
l−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(l−k−2,m−1)
t=0 {2m−t−1}+ 1

2l−k−1 [j−(j mod 2l−k−1)]
}]

+
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
2m−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(2m−k−2,m−1)
t=0 {2m−t−1}+ 1

22m−k−1 [j−(j mod 22m−k−1)]
}

×
{ ∞∑

n=2m+1
n2(p1

2m−1:2m−1)n−2m

}



258 Proofs for Chapter 6 Theorems

=
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)p1
2i:j

+
2m∑
l=2

l2
[ 2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
l−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(l−k−2,m−1)
t=0 {2m−t−1}+ 1

2l−k−1 [j−(j mod 2l−k−1)]
}]

+
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
2m−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(2m−k−2,m−1)
t=0 {2m−t−1}+ 1

22m−k−1 [j−(j mod 22m−k−1)]
}

×
{(

1
p1

2m−1:2m−1

)2m[ ∞∑
n=0

n2(p1
2m−1:2m−1)n −

2m∑
s=0

s2(p1
2m−1:2m−1)s

]}

=
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)p1
2i:j

+
2m∑
l=2

l2
[ 2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
l−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(l−k−2,m−1)
t=0 {2m−t−1}+ 1

2l−k−1 [j−(j mod 2l−k−1)]
}]

−
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
2m−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(2m−k−2,m−1)
t=0 {2m−t−1}+ 1

22m−k−1 [j−(j mod 22m−k−1)]
}

×
{(

1
p1

2m−1:2m−1

)2m[
p1

2m−1:2m−1(p1
2m−1:2m−1 + 1)

(p1
2m−1:2m−1 − 1)3 +

2m∑
s=0

s2(p1
2m−1:2m−1)s

]}

for p1
2m−1:2m−1 < 1

since ∑∞
n=0 n

2pn = −p(p+1)
(p−1)3 providing |p| < 1
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B.4 Theorem 6.8 (Run Length Probability Generating

Function, m ≥ 2)

G(x) =
2m∑
s=0

asx
s + p1

2m−1:2m−1a2mx
2m+1

1 − p1
2m−1:2m−1x

where,

a1 =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)p1
2i:j

a2 =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
{
p1

2i : 2m−1+ 1
2 [j−(j mod 2)]

}
×
{
p1

1+4[i mod 2m−2] : j

}
...

a2m =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j) ×
2m−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(2m−k−2,m−1)
t=0 {2m−t−1}+ 1

22m−k−1 [j−(j mod 22m−k−1)]
}

Proof.

P (run length = n)

=



∑2m−1−1
i=0

∑2m−1−1
j=0 π(i_j)p1

2i:j for n = 1

∑2m−1−1
i=0

∑2m−1−1
j=0 π(i_j) for n = 2 : 2m

×∏n−1
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(n−k−2,m−1)
t=0 {2m−t−1}+ 1

2n−k−1 [j−(j mod 2n−k−1)]
}

∑2m−1−1
i=0

∑2m−1−1
j=0 π(i_j) for n ≥ 2m+ 1

×∏2m−1
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(2m−k−2,m−1)
t=0 {2m−t−1}+ 1

22m−k−1 [j−(j mod 22m−k−1)]
}

×
(
p1

2m−1:2m−1

)n−2m
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The recurrence relationship has the following form:

a0 = 0

a1 =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)p1
2i:j

a2 =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
{
p1

2i : 2m−1+ 1
2 [j−(j mod 2)]

}
×
{
p1

1+4[i mod 2m−2] : j

}
...

an+1 = p1
2m−1:2m−1an for n ≥ 2m

This is solved to find the generating function G = ∑
n≥0 anx

n. Then multiplying

by xn and summing over n gives the following:

∑
n≥2m

an+1x
n =

∑
n≥2m

p1
2m−1:2m−1anx

n

(
a2m+1x

2m + a2m+2x
2m+1

+a2m+3x
2m+2 + . . .

)
= p1

2m−1:2m−1

(∑
n≥0

anx
n − a0 − a1x− . . .

− a2m−1x
2m−1

)
1
x

[ (
a0 + a1x+ a2x

2 + . . .
)

−a0 − a1x− . . .− a2mx
2m
]

= p1
2m−1:2m−1

(
G−

2m−1∑
s=0

asx
s

)
G−∑2m

t=0 atx
t

x
= p1

2m−1:2m−1

(
G−

2m−1∑
s=0

asx
s

)

G−
2m∑
t=0

atx
t = xp1

2m−1:2m−1G− xp1
2m−1:2m−1

2m−1∑
s=0

asx
s

G
(
xp1

2m−1:2m−1 − 1
)

= xp1
2m−1:2m−1

2m∑
s=0

asx
s −

2m∑
t=0

atx
t − xp1

2m−1:2m−1a2mx
2m

G =

(
xp1

2m−1:2m−1 − 1
) (∑2m

s=0 asx
s
)

− xp1
2m−1:2m−1a2mx

2m

p1
2m−1:2m−1x− 1

G =
2m∑
s=0

asx
s + p1

2m−1:2m−1a2mx
2m+1

1 − p1
2m−1:2m−1x
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where,

a1 =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)p1
2i:j

a2 =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
{
p1

2i : 2m−1+ 1
2 [j−(j mod 2)]

}
×
{
p1

1+4[i mod 2m−2] : j

}
...

a2m =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)

×
2m−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(2m−k−2,m−1)
t=0 {2m−t−1}+ 1

22m−k−1 [j−(j mod 22m−k−1)]
}
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B.5 Theorem 6.10 (Run Length Moment Generating

Function, m ≥ 3)

G(x) =
2m∑
s=0

ase
sx + p1

2m−1:2m−1a2me
(2m+1)x

1 − p1
2m−1:2m−1e

x

where,

a1 =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)p1
2i:j

a2 =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
{
p1

2i : 2m−1+ 1
2 [j−(j mod 2)]

}
×
{
p1

1+4[i mod 2m−2] : j

}
...

a2m =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j) ×
2m−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(2m−k−2,m−1)
t=0 {2m−t−1}+ 1

22m−k−1 [j−(j mod 22m−k−1)]
}

Proof.

P (run length = n)

=



∑2m−1−1
i=0

∑2m−1−1
j=0 π(i_j)p1

2i:j for n = 1

∑2m−1−1
i=0

∑2m−1−1
j=0 π(i_j) for n = 2 : 2m

×∏n−1
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(n−k−2,m−1)
t=0 {2m−t−1}+ 1

2n−k−1 [j−(j mod 2n−k−1)]
}

∑2m−1−1
i=0

∑2m−1−1
j=0 π(i_j) for n ≥ 2m+ 1

×∏2m−1
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(2m−k−2,m−1)
t=0 {2m−t−1}+ 1

22m−k−1 [j−(j mod 22m−k−1)]
}

×
(
p1

2m−1:2m−1

)n−2m
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The recurrence relationship has the following form:

a0 = 0

a1 =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)p1
2i:j

a2 =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
{
p1

2i : 2m−1+ 1
2 [j−(j mod 2)]

}
×
{
p1

1+4[i mod 2m−2] : j

}
...

an+1 = p1
2m−1:2m−1an for n ≥ 2m

This is solved to find the generating function G = ∑
n≥0 ane

nx. Then, multiplying

by enx and summing over n gives the following:

∑
n≥2m

an+1e
nx =

∑
n≥2m

p1
2m−1:2m−1ane

nx

(
a2m+1e

2mx + a2m+2e
(2m+1)x

+a2m+3e
(2m+2)x + . . .

)
= p1

2m−1:2m−1

(∑
n≥0

ane
nx − a0 − a1e

x − . . .

− a2m−1e
(2m−1)x

)
1
ex

[ (
a0 + a1e

x + a2e
2x + . . .

)
−a0 − a1e

x − . . .− a2me
2mx

]
= p1

2m−1:2m−1

(
G−

2m−1∑
s=0

ase
sx

)
G−∑2m

t=0 ate
tx

ex
= p1

2m−1:2m−1

(
G−

2m−1∑
s=0

ase
sx

)

G−
2m∑
t=0

ate
tx = exp1

2m−1:2m−1G− exp1
2m−1:2m−1

2m−1∑
s=0

ase
sx

G
(
exp1

2m−1:2m−1 − 1
)

= exp1
2m−1:2m−1

2m∑
s=0

ase
sx −

2m∑
t=0

ate
tx − exp1

2m−1:2m−1a2me
2mx

G =

(
exp1

2m−1:2m−1 − 1
) (∑2m

s=0 ase
sx
)

− exp1
2m−1:2m−1a2me

2mx

p1
2m−1:2m−1e

x − 1

G =
2m∑
s=0

ase
sx + p1

2m−1:2m−1a2me
(2m+1)x

1 − p1
2m−1:2m−1e

x
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where,

a1 =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)p1
2i:j

a2 =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)
{
p1

2i : 2m−1+ 1
2 [j−(j mod 2)]

}
×
{
p1

1+4[i mod 2m−2] : j

}
...

a2m =
2m−1−1∑

i=0

2m−1−1∑
j=0

π(i_j)

×
2m−1∏
k=0

{
p1

2min(k,m)−1+[2k+1(i mod 2m−k−1)] :

∑min(2m−k−2,m−1)
t=0 {2m−t−1}+ 1

22m−k−1 [j−(j mod 22m−k−1)]
}
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B.6 Expected Run Length for m = 1 Obtained

from Moment Generating Function

E [run length] = p1
0:0 + p1

0:1p
1
1:0 (2 − p1

1:1)
(1 − p1

1:1)
2 for |p1

1:1|

Proof.

G(x) = (p1
0:1p

1
1:0 − p1

0:0p
1
1:1) e2x + p1

0:0e
x

1 − p1
1:1e

x

G′(x) = [2 (p1
0:1p

1
1:0 − p1

0:0p
1
1:1) e2x + p1

0:0e
x] (1 − p1

1:1e
x)

(1 − p1
1:1e

x)2

− [(p1
0:1p

1
1:0 − p1

0:0p
1
1:1) e2x + p1

0:0e
x] (p1

1:1e
x)

(1 − p1
1:1e

x)2

G′(0) = [2 (p1
0:1p

1
1: − p1

0:0p
1
1:1) + p1

0:0] (1 − p1
1:1) − [(p1

0:1p
1
1:0 − p1

0:0p
1
1:1) + p1

0:0] (p1
1:1)

(1 − p1
1:1)

2

= 2p1
0:1p

1
1:0 − 2p1

0:0p
1
1:1 + p1

0:0 − p1
0:1p

1
1:0p

1
1:1 + p1

0:0 (p1
1:1)

2

(1 − p1
1:1)

2

=
p1

0:0

[
(p1

1:1)
2 − 2p1

1:1 + 1
]

(1 − p1
1:1)

2 + 2p1
0:1p

1
1:0 − p1

0:1p
1
1:0p

1
1:1

(1 − p1
1:1)

2

= p1
0:0 + 2p1

0:1p
1
1:0 − p1

0:1p
1
1:0p

1
1:1

(1 − p1
1:1)

2

since
(
1 − p1

1:1

)2
=
(
p1

1:1

)2
− 2p1

1:1 + 1

= p1
0:0 + p1

0:1p
1
1:0 (2 − p1

1:1)
(1 − p1

1:1)
2

= E [run length] from Theorem 6.3.
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B.7 Theorem 6.12 (Marginal Likelihood, m ≥ 1)

L =
22m−1∏

i=0
π
( 1

2m
[i− (i mod 2m)] : i mod 2m

)n 1
2m [i−(i mod 2m)] : i mod 2m

=
22m−1∏

i=0
π(d(i))nd(i)

=
22m−2∏

i=0
π(d(i))nd(i)

[
1 −

( 22m−2∑
j=0

π(d(j))
)]N−

(∑22m−2
j=0 nd(j)

)
,

where, d(i) = 1
2m [i− (i mod 2m)] : i mod 2m

Proof. Given a sequence of letters 0 and 1 of length N + 2m, the sequence can

be defined by its associated de Bruijn words of length m ≥ 1. π(i : j) gives the

probability of obtaining the word i : j and N gives the total number of words. The

joint distribution is given by the product of the respective π’s for each word and like

terms are collected. Since each word consists of 2m letters, there are 22m possible

words. Each non-directional word is of the form w1 : w2, where each of these sequences,

wk, is of length m. All possible words must consist of all combinations of w1 with

w2. Hence to give all possible words, if one wk repeats each word 2m times in turn

and the other wk repeats the whole list 2m times this will produce all combinations.
1

2m [i− (i mod 2m)] for i = 1, 2, ... gives the sequence 0, ..., 0, 1, ..., 1, ..., 2m, ..., 2m

whilst i mod 2m gives the list 1, 2, ..., 2m, 2m times. Hence this gives:

L =
22m−1∏

i=0
π
( 1

2m
[i− (i mod 2m)] : i mod 2m

)n 1
2m [i−(i mod 2m)] : i mod 2m

=
22m−1∏

i=0
π(d(i))nd(i) ,

where d(i) = 1
2m [i− (i mod 2m)] : i mod 2m.

Since the sum of all ni gives the total number of words, N , and the sum of the

marginal probabilities of the words equals one, this gives the following:

L =
22m−2∏

i=0
π(d(i))nd(i)

[
1 −

( 22m−2∑
j=0

π(d(j))
)]N−

(∑22m−2
j=0 nd(j)

)
.
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B.8 Theorem 6.14 (Conditional Word Likelihood,

m ≥ 1)

L =
22m−1∏

i=0

(
p0

1
2m [i−(i mod 2m)] : i mod 2m

)n0
1

2m [i−(i mod 2m)] : i mod 2m

×
(
p1

1
2m [i−(i mod 2m)] : i mod 2m

)n1
1

2m [i−(i mod 2m)] : i mod 2m

=
22m−1∏

i=0

(
1 − p1

d(i)

)n0
d(i)
(
p1

d(i)

)n1
d(i) ,

where, d(i) = 1
2m [i− (i mod 2m)] : i mod 2m

Proof. Assume a sequence of letters, L = l1, l2, ..., ln, where li ∈ [0, 1] and the

ordering is fixed. This sequence can be expressed in terms of its de Bruijn words

such that L = wl1:l3 , wl2:l4 , ..., wln−2:ln , where wli:li+2 is the de Bruijn word of length

m. Consider the joint distribution of this sequence. Consider the joint distribution

of this sequence. Starting from wl1:l3 , l2 can either be a 1 or 0 with probabilities

p1
wl1:l3

and p0
wl1:l3

= 1 − p1
wl1:l3

. Then l3 can either be a 1 or 0 with probabilities p1
wl2:l4

and p0
wl2:l4

= 1 − p1
wl2:l4

. This continues for all letters in L, where ln−1 is either a 0 or

a 1 with probabilities p1
wln−2:ln

and p0
wln−2:ln

= 1 − p1
wln−2:ln

. This produces the joint

distribution, L(L|p) = pl2
wl1:l3

× pl3
wl2:l4

× ... × pln−1
wln−2:ln

. Like terms are collected for

each possible transition probability.

Since each word consists of 2m letters, there are 22m possible words. Therefore

there are 22m+1 possible transition probabilities since each possible word can either

transition to a 0 or a 1. Each non-directional word is of the form w1 : w2, where

each of these sequences, wk, is of length m. All possible words must consist of all

combinations of w1 with w2. Hence to give all possible words, if one wk repeats

each word 2m times in turn and the other wk repeats the whole list 2m times this

will produce all combinations. 1
2m [i− (i mod 2m)] for i = 1, 2, ... gives the sequence

0, ..., 0, 1, ..., 1, ..., 2m, ..., 2m whilst i mod 2m gives the list 1, 2, ..., 2m, 2m times.
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Each word can then transition to either a 0 or a 1 which gives the following result:

L =
22m−1∏

i=0

(
p0

1
2m [i−(i mod 2m)] : i mod 2m

)n0
1

2m [i−(i mod 2m)] : i mod 2m

×
(
p1

1
2m [i−(i mod 2m)] : i mod 2m

)n1
1

2m [i−(i mod 2m)] : i mod 2m

=
22m−1∏

i=0

(
1 − p1

d(i)

)n0
d(i)
(
p1

d(i)

)n1
d(i) ,

where, d(i) = 1
2m [i− (i mod 2m)] : i mod 2m
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B.9 Theorem 6.15 (Posterior Distribution for de

Bruijn Conditional Word Probabilities, m ≥

1)

P (p|seq) = L(seq|p,m)P (p|m)
P (seq)

= L(seq|p,m)P (p|m)∫
L(seq|p,m)P (p|m)dp,

where,

L(seq|p,m)P (p|m) =
22m−1∏

i=0

(
1 − p1

1
2m [i−(i mod 2m)] : i mod 2m

)n0
1

2m [i−(i mod 2m)] : i mod 2m
+βi+1−1

×
(
p1

1
2m [i−(i mod 2m)] : i mod 2m

)n1
1

2m [i−(i mod 2m)] : i mod 2m
+αi+1−1

=
22m−1∏

i=0

(
1 − p1

d(i)

)n0
d(i)+βi+1−1 (

p1
d(i)

)n1
d(i)+αi+1−1

,

and

∫
P (seq|p,m)P (p|m)dp

=
22m−1∏

i=0

Γ
(
n0

1
2m [i−(i mod 2m)] : i mod 2m + βi+1

)
Γ
(
n1

1
2m [i−(i mod 2m)] : i mod 2m) + αi+1

)
Γ
(
n0

1
2m [i−(i mod 2m)] : i mod 2m + n1

1
2m [i−(i mod 2m)] : i mod 2m + βi+1 + αi+1

)

=
22m−1∏

i=0

Γ
(
n0

d(i) + βi+1
)

Γ
(
n1

d(i)) + αi+1
)

Γ
(
n0

d(i) + n1
d(i) + βi+1 + αi+1

) ,

with d(i) = 1
2m [i− (i mod 2m)] : i mod 2m
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Proof. The equation:

P (p|seq) = L(seq|p,m)P (p|m)
P (seq)

= L(seq|p,m)P (p|m)∫
L(seq|p,m)P (p|m)dp,

is taken from Bayes’ theorem where the likelihood is given in Theorem 6.14 and the

prior is defined to be a product of beta densities:

P (p|m) =
2m−1∏
i=0

Γ(αi+1 + βi+1)
Γ(αi+1)Γ(βi+1)

pαi+1−1(1 − p)βi+1−1,

for unknown parameters α and β. Substituting this in gives:

P (p|seq) ∝ L(seq|p,m)P (p|m)

=
22m−1∏

i=0

[ (
1 − p1

d(i)

)n0
d(i)
(
p1

d(i)

)n1
d(i)

×
(
1 − p1

d(i)

)βi+1−1 (
p1

d(i)

)αi+1−1
]

=
22m−1∏

i=0

(
1 − p1

d(i)

)n0
d(i)+βi+1−1 (

p1
d(i)

)n1
d(i)+αi+1−1

,

where, d(i) = 1
2m [i− (i mod 2m)] : i mod 2m.

Both the prior, P (p|m), and the posterior, P (p|seq), take the form of a product

of beta densities, hence there is a conjugate relationship and the following is true:

∫
P (seq|p,m)P (p|m)dp =

22m−1∏
i=0

Γ
(
n0

d(i) + βi+1
)

Γ
(
n1

d(i)) + αi+1
)

Γ
(
n0

d(i) + n1
d(i) + βi+1 + αi+1

) .
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