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Abstract 45 
Terrestrial ecosystems remove about 30% of the CO2 emitted by human activities each year1, yet 46 
the persistence of this carbon sink partly depends on how plant biomass and soil carbon stocks 47 
respond to future increases in atmospheric CO2

2,3. While plant biomass often increases in 48 
elevated CO2 (eCO2) experiments4–6, soil carbon has been observed to increase, remain 49 
unchanged, or even decline7. The mechanisms driving this variation across experiments remain 50 
poorly understood, creating uncertainty in climate projections8,9. Here, we synthesized data from 51 
108 eCO2 experiments and found that the effect of eCO2 on soil carbon stocks is best explained 52 
by a negative relationship with plant biomass: when plant biomass is strongly stimulated by 53 
eCO2, soil carbon accrual declines; conversely, when biomass is weakly stimulated, soil carbon 54 
accumulates. This trade-off appears related to plant nutrient acquisition, whereby enhanced 55 
biomass requires mining the soil for nutrients, which decreases soil carbon accrual. We found an 56 
increase in soil carbon stocks with eCO2 in grasslands (8±2%) and no increase in forests (0±2%), 57 
even though plant biomass in grassland responded less strongly (9±3%) than in forest (23±2%). 58 
Ecosystem models do not reproduce this trade-off, which implies that projections of soil carbon 59 
may need to be revised. 60 
 61 
  62 



Introduction 63 
The future of the land sink, especially of soil carbon, is particularly uncertain9. Soils can become 64 
either sources or sinks of carbon with rising levels of atmospheric CO2, depending on the 65 
prevalence of gains via photosynthesis or losses via respiration9,10. This uncertainty in terrestrial 66 
ecosystem model projections reflects uncertainty in both the mechanisms and the parameter 67 
values controlling soil carbon cycling under eCO2

11. 68 
 69 
Plant growth generally increases in response to eCO2

4,12, with soil nutrients identified as the 70 
dominant factor explaining variability across experiments12–15. The effect of eCO2 on soil carbon 71 
stocks (βsoil) is more equivocal. Although the expectation is that soil carbon will accrue as eCO2 72 
increases plant growth16, a few experiments show increases in βsoil, many show no change, and 73 
some even show losses7. The observed variation in βsoil across experiments is puzzling, and there 74 
is large disagreement regarding the dominant mechanisms explaining this variation7,17,18.  75 
 76 
A positive relationship between the effects of eCO2 on plant biomass and soil carbon pools is 77 
expected if increased plant production under eCO2 increases carbon inputs (litter) into the soil. 78 
Indeed, a positive relationship between inputs and soil carbon storage is formalized in first order 79 
kinetics16 and is applied in most terrestrial ecosystem models19,20. Because the effect of eCO2 on 80 
plant aboveground biomass (βplant) is strongly correlated with the effect of eCO2 on litter 81 
production (Extended Data Fig. 1a, r=0.81) and on root production21, a positive relationship 82 
between βplant and βsoil can thus be expected based on first order kinetics. This hypothesis, 83 
however, ignores soil carbon losses associated with accelerated soil organic matter 84 
decomposition sometimes observed under eCO2

7,18. Plants acquire limiting resources from soils 85 
through carbon investment belowground in root growth, exudates, and symbiotic bacteria and 86 
fungi. Accelerated decomposition of soil organic matter fueled by plant carbon inputs can enable 87 
plant nutrient uptake (the “priming effect”22). The return on this belowground carbon investment 88 
is an increase in aboveground biomass production15. However, the priming effect can decrease 89 
soil carbon5. A negative relationship between βplant and βsoil may thus emerge through the 90 
economics of plant resource acquisition.  91 
 92 
Here, we evaluate the mechanisms of βsoil, including its relationship with βplant, by synthesizing 93 
268 observations of βsoil from 108 eCO2 experiments spanning the globe with coupled βplant-βsoil 94 
data (Supplementary Table 1) using meta-analysis techniques. We explore how well these 95 
mechanisms are represented in ecosystem models, and upscale the geographical distribution of 96 
βsoil derived from experiments to identify regions where models might be missing important 97 
processes. 98 
 99 
Results 100 
Predictors of SOC accrual under eCO2 101 
Overall, eCO2 increased soil carbon stocks by 4.6% across experiments (Fig. 1, 95%-CI: 1.7% to 102 
7.5%). Given the strong variation in βsoil across factors (Fig. 1), we used a random-forest 103 
approach in the context of meta-analysis (meta-forest) to quantify the importance of 19 potential 104 
predictors (Extended Data Table 1), including climate, soil, plant, and ecosystem variables and 105 
their interactions, accounting for covariation across predictors and potential nonlinearities. 106 
 107 



We found that βplant is the most important predictor of βsoil (Extended Data Fig. 2a,b, n=108), 108 
revealing a strong coupling between CO2-driven changes in plant biomass and soil carbon. In 109 
addition, βsoil increased with background SOC stocks (Fig. 1), also identified as an important 110 
predictor. 111 
 112 
Contrary to expectations from some first order models19,20, the relationship between βsoil and 113 
βplant was negative. For the subset (n=73) of field experiments with intact soils (non-potted plants 114 
and non-reconstructed soils), we found a significant interaction between βplant and nitrogen (N)-115 
fertilization (Extended Data Fig. 2c, p<0.01). In non-fertilized experiments, the slope between 116 
βsoil and βplant was significantly negative (Fig. 2a, p<0.0001, R2=0.67, n=38), whereas in fertilized 117 
experiments the slope was less pronounced and nonsignificant (p=0.34, n=35) (Extended Data 118 
Fig. 3a). In non-fertilized experiments, increases in plant biomass were associated with 119 
decreasing soil carbon stocks (Fig. 2a), consistent with the priming effect. In N-fertilized 120 
experiments, eCO2 generally increased both plant biomass and soil carbon (Extended Data Fig. 121 
3b), in line with first order kinetics. 122 
 123 
We propose a framework to explain the negative relationship between βsoil and βplant based on 124 
plant nutrient acquisition strategies. Symbiotic associations between plants and arbuscular (AM) 125 
and ecto (ECM) mycorrhizal fungi mediate βplant (Extended Data Fig. 2d), resulting in much 126 
higher βplant in ECM than AM when nutrient availability is low (Fig. 2b). ECM plants efficiently 127 
increase N-uptake under eCO2 (Fig. 2c, n=12), enhancing βplant. However, acquiring N from soil 128 
organic matter via priming accelerates soil carbon losses7, reducing βsoil in ECM (Fig. 2b). In 129 
contrast, eCO2 did not significantly affect N-uptake in AM systems (Fig. 2c, n=12). This 130 
outcome limits βplant in AM systems but stimulates βsoil (Fig. 2b), likely due to increased carbon 131 
inputs through fine-root production and rhizodeposition21,23,24 combined with decreased carbon 132 
losses25. The composition of the soil organic matter may mediate this effect as well; AM plants 133 
produce more easily decomposable litter26, which enhances mineral-associated soil organic 134 
matter (MAOM) formation27 and results in a greater fraction of soil carbon in MAOM under AM 135 
relative to ECM systems28,29. Indeed, eCO2 increases MAOM more strongly in AM systems than 136 
in ECM systems (Fig, 2d, n=19). Because MAOM is less accessible to microbial decomposers30, 137 
greater MAOM in AM systems could limit priming-induced losses and promote long-term soil 138 
carbon storage. 139 
 140 
We considered three alternative mechanisms that could potentially explain this tradeoff. First, 141 
grasses allocate more carbon to roots than trees, which is associated with greater SOC stocks31,32. 142 
Because grassland species associate with AM fungi and the majority of tree species in the dataset 143 
associate with ECM, the observed increase in βsoil in AM could be driven by ecosystem type 144 
rather than mycorrhizal type. However, we found that eCO2 effects on root biomass and fine-root 145 
production were generally lower in grasses than trees, and also in AM than ECM trees (Extended 146 
Data Fig. 4). Second, in non-fertilized experiments with available data (n=16), eCO2 increased 147 
litter C:N by 8%, which could reduce the decomposability of litter and the stabilization of carbon 148 
in the soil27. If litter quality is reduced more in ECM than AM, this could help explain why eCO2 149 
increased SOC in AM, but not in ECM. However, the effect of eCO2 on litter quality was similar 150 
between mycorrhizal types (Extended Data Fig. 4). Finally, contrasting βsoil in AM vs. ECM 151 
could be driven by larger background SOC in grasslands vs. forests, given that higher SOC is 152 
associated with higher βsoil (Fig. 1). We found, however, that background SOC was similar 153 



between mycorrhizal types and ecosystem types (Extended Data Fig. 4). Thus, differences in root 154 
allocation, litter quality and background SOC in grasses vs. trees cannot explain the tradeoff 155 
between βsoil and βplant. Instead, losses in SOC associated with plant nutrient uptake (priming 156 
effect) in ECM, and gains associated with rhizodeposition in AM, are likely key. Experiments 157 
including both AM and ECM tree species should be targeted to better understand the impacts of 158 
nutrient-acquisition strategies under eCO2. 159 
 160 
Upscaling 161 
To explore the potential geographical distribution of βsoil, we simulated a global FACE 162 
experiment (Fig. 3a). Unlike Fig. 1 where predictors are analyzed individually, our meta-forest 163 
model can upscale βsoil from experiments while accounting for all important predictors 164 
simultaneously on a grid (Extended Data Figs. 5-6, 10-fold cross-validated R2 = 0.51). 165 
Grasslands, croplands, and shrublands showed a stronger potential to accumulate soil carbon in 166 
response to experimental eCO2 than forests (Fig. 3a,b). Soils in semi-arid herbaceous ecosystems 167 
were particularly responsive to eCO2, consistent with the results from the Mojave desert FACE 168 
experiment that showed eCO2-driven increases in soil carbon, but not biomass33. We identified 169 
large areas not currently sampled with eCO2 experiments, particularly in the tropics and high 170 
latitudes (Fig. 3c,d, Extended Data Fig. 6), where new experiments would help reduce 171 
uncertainties. 172 
 173 
Data-model comparison 174 
In addition to the negative relationship between βsoil and βplant, we also found a significantly 175 
negative relationship between βsoil and the effect of eCO2 on aboveground biomass production 176 
(Extended Data Fig. 1b, R2=0.55, p<0.001), which is strongly correlated with litter production 177 
(Extended Data Fig. 1a, R2=0.63, r=0.81, p<0.01). This result questions the positive relationship 178 
between litter inputs and soil carbon stocks encoded in most ecosystem models. Thus, we 179 
investigated the relationship between βsoil and βplant in models from three different model 180 
ensembles (description in Extended Data Table 2). First, models from the FACE model-data 181 
synthesis project (FACE-MDS)34 mimic the experimental treatment in six eCO2 experiments and 182 
allow for a direct comparison with respective observations. While observations from the six 183 
experiments included in FACE-MDS showed a negative relationship between βsoil and βplant (Fig. 184 
4a, blue line, R2=0.99, p<0.001), the twelve models simulated a positive relationship when 185 
pooled by experiment (Fig. 4a, red line, R2=0.91, p<0.01). The relationship across all models 186 
individually was positive as well (Extended Data Fig. 7a, dashed line, R2=0.37, p<0.0001), and 187 
none of the individual models was able to reproduce the observations. Second, to investigate 188 
whether the same relationships emerge across the globe and in simulations where CO2 increases 189 
gradually, we evaluated global century-scale relationships between βsoil and βplant from the 190 
TRENDY and CMIP5 model ensembles (Fig. 4b,c). Overall, TRENDY and CMIP5 models did 191 
not simulate a negative relationship either (Fig. 4b,c). Instead, most models simulated a positive 192 
relationship and the vast majority of model simulations fell into the upper-right quadrant 193 
(Extended Data Fig. 7b,c), reflecting that inputs drive SOC accumulation in the first-order 194 
decomposition soil model structure common to the models.  195 
 196 
In TRENDY and CMIP5 model simulations, βsoil was estimated over a much longer time period 197 
than in experiments (Extended Data Table 2). Given the relatively slow turnover times of SOC 198 
pools, and the slow pace of changes in species composition and evolutionary pressures on both 199 



plants and soil microbes, long-term effects likely differ to those found in experiments. However, 200 
first order models simulate a positive relationship βplant:βsoil when they are forced to simulate the 201 
temporal scale of experiments (Fig. 4a), suggesting important processes are missing in models. 202 
By including explicit links between plant growth, belowground carbon allocation and SOC 203 
decomposition rates, models may more effectively reproduce the observed negative relationship 204 
between βsoil and βplant and improve long-term projections. 205 
 206 
To estimate the error in terrestrial ecosystem model projections of βsoil caused by ignoring the 207 
tradeoff between βsoil and βplant, we calculated “expected”-βsoil as a function of our upscaled βplant 208 
and the ratio βsoil/βplant simulated by CMIP5 models. CMIP5 models overestimated βsoil for 209 
forests (Fig. 3e,f, red color). In contrast, CMIP5 models underestimated βsoil in large areas 210 
dominated by grasses (Fig. 3e,f, blue color), likely because they do not account for the effects of 211 
rhizodeposition on βsoil

21. Results with TRENDY models were similar (Extended Data Fig. 8). 212 
 213 
Discussion 214 
In summary, our synthesis of experiments shows that soil carbon stocks can increase by ~5% in 215 
response to a 65% step increase in CO2 concentrations, with a strong coupling between CO2-216 
driven changes in plant aboveground biomass and soil carbon. However, the coupling between 217 
plant biomass and soils is an inverse relationship (Fig. 2a, Extended Data Fig. 1b), opposite to 218 
that simulated by many ecosystem models (Fig. 4). The effect of eCO2 on soil carbon storage is 219 
dependent on a fine balance between changes in inputs and changes in turnover18, where the 220 
latter is dependent on root-microbe-mineral interactions in the rhizosphere. Our results suggest 221 
that rhizosphere responses, and especially priming, explain much of the variation in βsoil across 222 
experiments (Fig. 2). Most models focus on carbon inputs and underestimate rhizosphere 223 
effects11,20,35, likely explaining the disagreement in βsoil between observations and models (Figs. 224 
3,4). We propose a framework to explain βsoil based on nutrient acquisition strategies15,36,37. On 225 
one end of the spectrum, substantial acquisition of soil N is possible via priming5 in ECM plants, 226 
causing a stronger plant biomass sink at the expense of soil carbon accrual. On the other end, low 227 
nutrient availability strongly constrains the plant biomass sink38 in AM plants. However, the 228 
ecosystem-level sink is not necessarily eliminated; instead, eCO2 can trigger soil carbon accrual 229 
through plant carbon-allocation belowground21,23,24. When plant growth is severely limited by N 230 
or other nutrients, eCO2 may only cause a transient priming effect in ECM, with high soil 231 
decomposition and insufficient nutrient uptake rendering no ecosystem-level sink39. 232 
 233 
Our results underline the potential of grassland soils to store carbon as atmospheric CO2 levels 234 
continue to rise. The results also suggest that current state of the art models may overestimate the 235 
soil carbon sequestration potential of forests in large parts of the world. Previous studies suggest 236 
that the potential of vegetation to take up CO2 will slow later in this century due to nutrient 237 
constraints12–14,38,39. Our synthesis indicates that these nutrient constraints extend to carbon 238 
storage in ecosystems as a whole — through a partial tradeoff between increased plant growth 239 
and soil carbon storage whereby ecosystems where plant growth is more nutrient limited 240 
accumulate more carbon belowground. The apparent mismatch between observations and how 241 
most models represent the biomass-to-soil link suggests that many terrestrial ecosystem models 242 
do not adequately represent the critical processes driving soil carbon accumulation. Models are 243 
evolving to include more sophisticated representations of soil nutrient cycling, and some now 244 
include microbial activity explicitly36,40. This change towards coupled carbon-nutrient cycling 245 



mediated by plant-soil interactions is important for more realistically and accurately modeling 246 
the carbon cycle today and for projecting the land sink in the future. 247 
 248 
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FIGURE LEGENDS 336 
 337 
Fig. 1. Meta-analysis of the effect of elevated CO2 on soil carbon (%) across different factors. n=108. 338 
Overall means and 95% confidence intervals are given; we interpret CO2 effects when the zero line is not 339 
crossed by the confidence intervals. Arrows represent 95% confidence intervals that extend beyond the 340 
limits of the plot. Soil carbon stocks represent values in ambient CO2 plots as a continuous variable, here 341 
expressed as intervals of equal sample size for illustration purposes. Values in parenthesis are sample 342 
sizes. 343 
CO2 effects represent, on average, an increase in CO2 from 372 ppm to 616 ppm. FACE: Free Air CO2 344 
Enrichment, OTC: Open Top Chamber, AM: arbuscular mycorrhizal, AM-ER: mix of AM and ericoid 345 
mycorrhizal, ECM: ectomycorrhizal, N-fixer: fixation of atmospheric nitrogen. 346 
 347 
Fig. 2. Elevated CO2 experiments show an inverse relationship between the effects of elevated CO2 348 
on plant biomass and soil carbon (a). This inverse relationship can be explained by the different 349 
efficiencies in plant nutrient uptake (c) between arbuscular mycorrhizal (AM) and ectomycorrhizal 350 
(ECM) nutrient-acquisition strategies driving opposite effects on plant biomass and soil carbon pools (b), 351 
including mineral-associated soil organic matter (MAOM) stocks (d). Regression line (a) is based on a 352 
quadratic mixed-effects meta-regression model and 95% confidence interval (R2=0.67, p<0.0001, n=38). 353 
Dots in (a) represent the individual experiments in the meta-analysis, with dot sizes proportional to model 354 
weights. Dots in (b-d) represent overall effect sizes from a meta-analysis and 95% confidence intervals. 355 
Data shown here are for non-fertilized experiments (see Extended Data Fig. 3 for nutrient-fertilized 356 
experiments). 357 
 358 
Fig. 3. Effect of elevated CO2 (~240 ppm) on soil carbon stocks upscaled from 108 CO2 experiments. 359 
(a,b) Relative effect of elevated CO2 on soil carbon upscaled based on a meta-forest approach with data 360 
from CO2 experiments. (c, d) Standard error in (a). Green dots represent the location of the CO2 361 
experiments included in the analysis. (e,f) Difference between expected CO2 effects on soil carbon stocks 362 
based on CMIP5 models and upscaled based on experiments (shown in a). Expected values result from 363 
the relationship between βsoil and βplant coded in models. Positive values (red color) indicate an 364 
overestimation by models; negative values (blue color) indicate an underestimation by models. Shaded 365 
areas between -15 to 15 and from 60 to 90 degrees in latitude represent ecosystems not well sampled by 366 
experiments and are excluded from the analysis. Boxplots show the median, the first to third quartile, 367 
the 1.5x interquartile ranges, and outliers. 368 
 369 
Figure 4. Comparison of modeled and measured relationships between aboveground biomass and 370 
soil carbon responses to CO2. (a) Relationship observed (blue) and modeled (red) across 6 eCO2 371 
experiments. Model results are based on 12 models applied to the same 6 experiments with a common 372 
forcing and initialization protocol. Experiments included are Duke FACE (DUKE), Kennedy Space 373 
Center (KSCO), Nevada Desert FACE (NDFF), Oak Ridge FACE (ORNL), Prairie PHACE (PHAC), and 374 
Rhinelander (RHIN). Regression line across observations in (a) is based on a quadratic meta-regression 375 
model. Modeled simulations averaged in (a) for each experiment are from the FACE Model-Data-376 
Synthesis project phase 2. (b,c) Global-scale relationship simulated by ecosystem models (b) from the 377 
TRENDY ensemble for the historical increase in CO2 since the year 1700 and (c) from the CMIP5 378 
ensemble for an increase in CO2 from 372 ppm to 616 ppm as in eCO2 experiments. Dotted lines are the 379 
1:1 line. 380 
 381 
 382 
  383 



Methods 384 
Overview. Here, we collect data on the effects of elevated CO2 on soil carbon stocks (βsoil) in 385 
both relative and absolute terms and synthesize them through meta-analysis. We also collect data 386 
on climatic, experimental, and vegetation characteristics that could potentially explain variability 387 
in βsoil (“predictors”). In Fig. 1, we show a descriptive meta-analysis of overall βsoil across 388 
different predictor factors. We next combine the strengths of meta-analysis (e.g. accounting for 389 
within-study variability, weights) with random-forest (e.g. computational efficiency, 390 
nonlinearities, interactions) – meta-forest – to quantify the relative importance of 19 predictors in 391 
explaining variation in βsoil in the dataset. In Fig. 2, we describe the regression between βsoil and 392 
its most important predictor (βplant), and explore the possible mechanisms underlying this 393 
relationship. In Fig. 3, we apply the data-trained meta-forest model to upscale βsoil. Finally, we 394 
investigate whether the emerging relationship between βsoil and βplant found in experiments is 395 
represented in models (Fig. 4). 396 
 397 
Data collection. We have compiled the openly available Report of Mutualistic Associations, 398 
Nutrients, and Carbon under eCO2 (ROMANCE) v1.0 dataset41 with data on soil organic carbon 399 
(SOC) and plant biomass from eCO2 experiments. Expanding van Groenigen et al’s 2014 meta-400 
analysis7 of 53 experiments reporting soil organic carbon (SOC) data, we used Google Scholar to 401 
gather a total of 166 studies related to eCO2 experiments, published from 1st January 2013–1st 402 
May 2019. Search terms were either “elevated CO2”, “increased CO2” or “CO2 enrichment” and 403 
either “soil carbon” or “plant biomass.” To account for experiments that could have been omitted 404 
by van Groenigen et al. prior to 2013, we consulted the list of CO2 experiments from 405 
INTERFACE (https://www.bio.purdue.edu/ INTERFACE/experiments.php), the Global List of 406 
FACE Experiments from the Oak Ridge National Laboratory 407 
(http://facedata.ornl.gov/global_face.html), the ClimMani database on manipulation experiments 408 
(www.climmani.org) and the database described by Dieleman et al.42. We recorded the structure 409 
of each eCO2 experiment from the papers, taking into consideration the start date and total 410 
duration of the experiment (years), and the location of the experiment (coordinates). When the 411 
data were presented in figures, mean values and standard error were extracted using GraphClick. 412 

For this meta-analysis, only one datum per experiment was considered to avoid 413 
pseudoreplication. The effects of eCO2 on soil C pools are modulated by increases in soil C 414 
inputs from plant litter as well as feedbacks between plants and soils altering soil biogeochemical 415 
cycles that can take several years to occur. Thus, we used the most recent measurements in each 416 
experiment as the most representative data of the effect of eCO2 on SOC. 417 

For plant biomass, measurements across different time-points were combined so that only 418 
one effect size was analyzed per study. The combined effect size and variance that account for 419 
the correlation among the different time-point measurements was calculated following the 420 
method described in Borenstein et al.43, using a conservative approach by assuming non-421 
independency of multiple outcomes (r = 1) and performed using the MAd package in R44.  We 422 
collected data on both aboveground biomass stocks and production. When aboveground biomass 423 
production data were unavailable, we collected plant data in the following order or preference: 424 
NPP, aboveground biomass increment, foliage production and yield. When biomass or soil data 425 
were not reported, studies were excluded. We also included the data on litter production reported 426 
by Song and Wan45 to study the interactions with aboveground biomass and production data. 427 

Soil carbon measurements in the dataset were reported at different depths, varying from 5 428 
to 30 cm maximum depth, with an average depth of ~20 cm. When upscaling eCO2 effects on 429 



SOC through meta-forest, we included a fixed value of 0-30 cm in depth as a covariate to control 430 
for the influence of soil depth, interpolating predictions for the same soil depth of models. 431 

SOC data reported as concentrations were transformed to stocks (g m-2) using soil bulk 432 
density. When bulk density was not reported, we used data reported for similar experiments 433 
within the same site or assumed a bulk density of 1 g cm-3. Assumptions are indicated in the 434 
dataset. 435 

Studies from ROMANCE v1.0 were not included in the meta-analysis if they met any of 436 
the following exclusion criteria: i) studies with no SOC data; ii) papers with no plant biomass 437 
data; iii) studies where the duration of the eCO2 experiment lasted less than 0.5 years. A total of 438 
138 independent experiments were collected, of which, 108 were included in the final analysis 439 
based on these exclusion criteria. 440 
 441 
Meta-analysis. Two types of effect size were calculated:1) the log response ratio (mean response 442 
in elevated-to-ambient CO2 plots), to measure effect sizes in relative terms (%) for each 443 
experiment; and 2) the raw mean difference, to compute effect sizes in absolute terms (g m-2). 444 
For each experiment, we collected data on SOC stocks, standard deviation and sample size under 445 
elevated and ambient (control) CO2 plots. Effect sizes were calculated using the escalc function 446 
from the R package metafor46. We calculated overall effects in a weighted, mixed-effects model 447 
using the rma.mv function in metafor. The potential non-independency of studies within the 448 
same site (e.g. different species, different treatments) was accounted for by including “site” as a 449 
random effect. Effect size measurements from individual studies in the meta-analysis were 450 
weighted by the inverse of the variance47. 13% of studies did not report standard deviations, 451 
which were thus imputed using Rubin and Schenker’s48 resampling approach from studies with 452 
similar means. These calculations were performed using the R package metagear49. 453 
 454 
Variable Importance and upscaling approach. 19 potential moderators were coded (Extended 455 
Data Table 1). Including all 19 moderators in a meta-regression risks overfitting the model. 456 
Therefore, we applied the R package ‘metaforest’50 to identify potentially relevant moderators in 457 
predicting βsoil across the complete dataset of 108 studies. The approach is based on the machine-458 
learning ‘random forest’ algorithm, which is robust to overfitting, and is integrated in a meta-459 
analytic context by incorporating the variance and weight of each experiment as in classic meta-460 
analysis (see above).  461 

As an initial step, we conducted variable pre-selection by including the 19 predictors in 462 
metaforest with 10,000 iterations and replicated 100 times with a recursive algorithm in the 463 
preselect function from metafor46. Moderators that consistently displayed negative variable 464 
importance (i.e., that showed a reduction in predictive performance) were dropped using the 465 
preselect_vars function. Moderators that improved predictive performance were then carried 466 
forward to optimize the model. Parameters of the meta-forest model were optimized using the 467 
train function from the caret package51, and calculated 10-fold cross validated R2 with 75% of 468 
the data used as training data and 25% for validation. Unlike maximum likelihood model-469 
selection approaches, this method can handle many potential predictors and their interactions and 470 
considers non-linear relationships. Partial dependence plots were produced which visualize the 471 
association of each moderator with the effect size, while accounting for the average effect of all 472 
other moderators. 473 

As a sensitivity test, and to identify important interactions between predictors, we ran an 474 
alternative model-selection procedure using maximum likelihood estimation. For this purpose, 475 



we used the rma.mv() function from the metafor R package46 and the glmulti() function from the 476 
glmulti R package52 to automate fitting of all possible models containing the 5 most important 477 
predictors and their interactions (level=2). Model selection was based on Akaike Information 478 
Criterion corrected for small samples (AICc), with the relative importance value for a particular 479 
predictor equal to the sum of the Akaike weights (probability that a model is the most plausible 480 
model) for the models in which the predictor appears.  481 

Finally, the data-trained meta-forest model was applied to global gridded data of pre-482 
selected predictors (see Extended Data Table 1 for gridded data sources) to estimate the effect of 483 
elevated CO2 on SOC. The resulting global maps are geographically constrained to ecosystems 484 
best represented by experiments. We remove the estimates for latitudes comprised between -15 485 
to 15 degrees, corresponding to tropical ecosystems not sampled by experiments (Fig. 3c, green 486 
dots), and from 60 to 90 degrees.  487 

 488 
Nitrogen fertilization and soil disturbance. We used the information reported in the papers to 489 
assess whether the soils were exposed to external inputs of N fertilization (“yes”) or not (“no”). 490 
Experiments were also classified as either having "disturbed" or "intact" soils as noted in the 491 
papers. If not, experiments which used pots or reconstructed soils were categorized as disturbed. 492 
We used the same approach and classification as in ref53. 493 

To upscale the effect of nitrogen fertilization and disturbance on βsoil, we reclassified the 494 
ESA CCI land cover map https://www.esa-landcover-cci.org/?q=node/164. Reclassification files 495 
are accessible online https://figshare.com/account/projects/74721/articles/11710155. For 496 
example, we classify “Cropland, rainfed”-“Herbaceous cover” (class 11) and “Cropland, 497 
irrigated or post-flooding” (class 20) as fertilized. 498 
 499 
Nutrient-acquisition strategy classification. We considered the importance of the type of 500 
symbiotic association as a driver of eCO2 effects on soil C. Mycorrhizal status includes AM, 501 
ECM and a mix of AM and ericoid (ER) mycorrhizal fungal associations. Here, we also 502 
considered some plant species known to associate with N-fixing microorganisms. We refer to 503 
this classification as "Symbiotic", because it includes both mycorrhizal status and N-fixation. 504 
Together, these four symbiosis types represent different mechanisms plants use to acquire 505 
nutrients15. 506 

We assessed the impact of the dominant symbiotic association type by classifying all 507 
studies as ECM, AM, AM-ER, and N-fixers, using the check-lists by Wang et al.54 and Maherali 508 
et al.55, with additional classifications derived from the literature. Species that associate with 509 
both ECM and AM (e.g. Populus spp.) were classified as ECM because these species can 510 
potentially benefit from increased N-availability due to the presence of ECM fungi56. Most of the 511 
N-fixers in the dataset were associated with both N-fixing symbionts as well as AM fungi, but 512 
we classified them as N-fixers because these species can potentially benefit from N acquired 513 
through N-fixation. 514 

 515 
MAOM data. We retrieved data on mineral-associated organic matter (MAOM) and particulate 516 
organic matter (POM) for the subset of studies employing size or density fractionation of soil 517 
organic matter (n = 19). Because of methodological differences, POM is loosely defined as 518 
organic matter recovered in the total coarse (typically > 53µm) or light (typically < 1.6 g cm-3) 519 
soil fraction. Where MAOM was not reported, it was estimated based on mass balance by 520 
subtracting the POM fraction from total C.  521 



 522 
FACE Model-Data-Synthesis. We use data from the FACE Model-Data Synthesis (FACE-523 
MDS) Project Phase 257–62, in which 12 models were applied to 6 eCO2 experiments. Each model 524 
covered the time periods representative of the FACE experiments, following a standardized 525 
protocol including meteorological forcing, CO2 concentration, site history, and vegetation 526 
characteristics for each site. 527 

Experiments included in the FACE-MDS Phase 2 were Duke FACE63, Kennedy Space 528 
Center64, Nevada Desert FACE65, Oak Ridge FACE38, Prairie PHACE66,67 and Rhinelander68. 529 
Models included were CLM4.069, CLM4.5, DAYCENT, CABLE, JULES70, LPJ-GUESS, OCN, 530 
TECO, ORCHIDEE71, GDAY, ISAM, and SDGVM. See ref.61 for an overview of model 531 
structures and processes. As in the observational data, we compared relative changes in 532 
aboveground biomass and soil carbon stocks of each experiment for eCO2 relative to control 533 
treatments. 534 
 535 
TRENDY models We use model outputs from the TRENDY v7 S1 simulations, where each 536 
model is driven by standardized forcings of observed increasing CO2 for years 1700-2018 CE, 537 
and constant preindustrial climate and land use. We selected six models that provided outputs for 538 
aboveground vegetation carbon (taken as the sum of wood and leaf carbon), soil carbon, and 539 
NPP (CABLE-POP72, CLM5.073, ISAM74, LPJ-GUESS75, ORCHIDEE71, ORCHIDEE-CNP76). 540 
Wood carbon often includes coarse roots in models. Here, we evaluate relative changes and 541 
numbers are not sensitive to the exact definition. Description of models can be found in ref77. 542 
Briefly, ORCHIDEE-CNP includes an interactive N and phosphorus cycle, whereas ORCHIDEE 543 
is a C-only model. The rest have coupled C-N cycles. Relative changes were calculated based on 544 
means over ten initial years (i, vary depending on the model) and  j = 2008-2017 as (Cj – Ci)/Ci. 545 
To reduce effects of discrepant response timescales of soil C and biomass, we estimated the 546 
steady-state soil C storage (C*) as:  547 ܥ∗ 	= ஼ೕଵ	ି	 ೩಴ೕಿುುೕ		, 548 

where ܥ߂௝	is the change in soil C over the years 2008-2017. The relative change in soil C is then 549 
taken as (ܥ∗  ௜. Data shown in Fig. 4 is based on pooled data from all six models. We 550ܥ	/	(௜ܥ	−	
randomly sampled outputs from N gridcells for each model in order not to bias the visualization 551 
towards models with a large number of gridcells (i.e. higher resolution). N is chosen as the 552 
number of gridcells in the model with the coarsest resolution. 553 
 554 
CMIP5 Models - Expected βsoil. We used projected SOC (Csoil) and biomass pool (Cveg) 555 
responses to rising CO2 as simulated by CMIP5 models as a comparison for the upscaled values 556 
we derive from experiments. Specifically, we used data from the experiment “esmFixClim1”, in 557 
which CO2 is increased by 1% per year from 285 ppm. In the esmFixClim1 experiment, the 558 
increase in [CO2] only affects vegetation and not the radiation code of the models, enabling a 559 
quantification of the effect of eCO2 in isolation (e.g. excluding warming), and thus a close 560 
comparison with eCO2 experiments. At a [CO2] increasing rate of +1% year-1, [CO2] reaches 372 561 
ppm (average concentration in ambient CO2 plots in the dataset) in the 28th year and 616 ppm 562 
(average concentration in elevated CO2 plots in the dataset) in the 78th year. ΔCveg and ΔCsoil 563 
were calculated as the difference between the respective carbon stocks in the 28th and the 78th 564 
year.  565 



Though plants in both experiments and our CMIP5 dataset see a similar increase in [CO2], 566 
experiments simulate a step increase in CO2 over half a decade, whereas the increase in CO2 in 567 
CMIP5 models is much slower and over the course of 50 years (Extended Data Table 2). As soil 568 
organic matter turns over slowly, the resulting βsoil from experiments is lower than ΔCsoil from 569 
models, and the comparison not meaningful. We thus focus on the specific relationship βplant:βsoil 570 
in experiments vs. models. Here, we calculated the spatially explicit ratio of ΔCvegCMIP to 571 
ΔCsoilCMIP. This was done for five Earth System Models in the CMIP5 ensemble with 572 
esmFixClim1 simulations (CanESM2; GFDL-ESM2M; HadGEM2-ES; IPSL-CM5A-LR; MPI-573 
ESM-LR). Then, we calculate “expected” βsoil from CMIP5 applying the same βplant used for 574 
experiments with the model-average ΔCvegCMIP to ΔCsoilCMIP ratio: 575 

(ℎܽିଵ	ܥ	݃ܯ)	݀݁ݐܿ݁݌ݔ݁	 576  	= 	ݐ݈݊ܽ݌ߚ × ∆஼௦௢௜௟಴ಾ಺ು∆஼௩௘௚಴ಾ಺ು	  577 

 578 
With βplant as the effect of elevated CO2 on plant biomass derived from eCO2 579 

experiments. We then computed the difference between the expected (modeled) and observed 580 
(upscaled) effects of elevated CO2 on βsoil. As both expected and upscaled βsoil use the same βplant, 581 
this transformation allows us to directly tackle the consequences of the different βsoil/βplant ratios 582 
between experiments and models. We acknowledge, however, that the ratio is likely to change 583 
over time, so the comparison needs to be interpreted with caution. We found, however, that first-584 
order models also simulate a positive relationship between βsoil and βplant when forced to simulate 585 
the same duration as experiments (Fig. 4a), suggesting that the sign of the βsoil:βplant relationship 586 
in CMIP5 models would not likely reverse if CMIP5 models would be forced to simulate a step 587 
increase in CO2 over 5 years as in experiments.  588 
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Extended Data 729 

 730 
Extended Data Figure 1 | Relationship of the effects of eCO2 on aboveground biomass 731 
production with litter production (a) and soil carbon storage (b). Results for non-fertilized 732 
field eCO2 experiments (n=10, and n=35, respectively). Dots represent individual experiments, 733 
with dot size in (b) proportional to the weights in the meta-regression. 734 
 735 
Extended Data Figure 2 | Variable importance of 19 predictors of the effects of CO2 on soil 736 
carbon and biomass stocks. (a-b) Variable importance of the effect of CO2 on soil carbon 737 
stocks in (a) relative (%) and (b) absolute terms (g m-2) across the full dataset (n=108). (c) 738 
Variable importance of the effect of CO2 on soil carbon stocks (%) across the subset of eCO2 739 
experiments in “intact” soils (n=73). (d) Variable importance of the effect of CO2 on plant 740 
aboveground biomass (n=138). Variable importance in (a,b,d) is quantified based on a meta-741 
forest model. Variable importance in (c) is quantified based on the sum of AICc weights, which 742 
allows for the quantification of the importance of interactions between predictors. As an initial 743 
step, moderators that consistently displayed negative variable importance (i.e., that showed a 744 
reduction in predictive performance) were automatically dropped. 745 
 746 
Extended Data Figure 3 | Effects of elevated CO2 on soil carbon and plant biomass in the 747 
subset of nitrogen-fertilized eCO2 studies (n=35), expressed as a regression (a) and overall 748 
effects in meta-analysis (b). Dot sizes in (a) represent the individual studies and are drawn 749 
proportional to the weights in the model. The regression with the subset of non-fertilized studies 750 
is also shown here for comparison. Dots in (b) represent the effect sizes and 95% confidence 751 
intervals from the meta-analysis. 752 
 753 
Extended Data Figure 4 | Analysis of variables potentially explaining the observed effects of 754 
elevated CO2 on soil carbon. Effects of elevated CO2 on root biomass (n=45), fine-root 755 
production (n=11), litter C:N (n=16) and background soil carbon stocks (n=38), between 756 
ecosystem types (grassland vs. forest) and nutrient-acquisition strategies (arbuscular mycorrhizae 757 
–AM– vs. ectomycorrhizae –ECM–). Boxplots show the median, the first to third quartile, the 758 
1.5x interquartile ranges, and outliers. 759 
 760 
Extended Data Figure 5 | Partial dependence plots of the six most important predictors of 761 
the effect of elevated CO2 on soil carbon stocks across 108 experiments. The figure shows the 762 
predicted CO2 effect (yi) in relative (a) and absolute terms (b) across each predictor and the most 763 



important interaction between predictors (right panels) in a random-forest meta-analysis. Error 764 
bands represent 95% confidence intervals. Partial regression plots give a graphical depiction of 765 
the marginal effect of a variable on the response and the shape and direction of the relationship. 766 
Little variation in yi across the values of a predictor generally reflects the low predictive power 767 
of the predictor for yi. However, important predictors may show little variation in yi when 768 
involved in interactions, so the right panels show the most important interaction in the model. 769 
More details about the different predictors in Extended Data Table 1. From a total of 19 770 
predictors, only the six most important predictors and the most important interaction are shown 771 
here. 772 
 773 
Extended Data Figure 6 | Representativeness of the upscaling predictors of the effect of 774 
elevated CO2 on soil carbon stocks. Histograms showing the distribution of both the predictors 775 
in the training dataset of CO2 experiments and the data used to upscale the global distribution of 776 
the effect. Predictions exclude regions between -15 to 15 and from 60 to 90 degrees latitude due 777 
to the lack of experiments. 778 
 779 
Extended Data Figure 7 | Relationship between the effects of CO2 on aboveground biomass 780 
and soil carbon across individual models from three model ensembles. (a) FACE Model Data 781 
Synthesis Phase 2. Individual model results are represented by colored symbols and lines. Each 782 
symbol represents one site; lines represent model-specific linear regressions. To ease 783 
interpretation of the results and the comparison with Fig. 4 axis limits are set. Dashed line and 784 
error band represent the linear regression line and standard error across all experiment-by-model 785 
results. (b) TRENDY v7 models. (c) CMIP5 models. 786 
 787 
Extended Data Figure 8 | Difference between expected CO2 effects on soil carbon stocks 788 
based on TRENDY models and upscaled based on experiments. Expected values result from 789 
the relationship between βsoil and βplant coded in models. Positive values (red color) indicate an 790 
overestimation by models; negative values (blue color) indicate an underestimation by models. 791 
 792 
Extended Data Table 1 | List of predictors used to examine and upscale the effects of 793 
elevated CO2 on soil carbon. 794 
 795 
Extended Data Table 2 | Synthetic description of the basic characteristics of three model 796 
ensembles in terms of their treatment of CO2 effects. 797 
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