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Abstract  

 

Ant Colony Optimization (ACO) is an optimization algorithm that is inspired by the 

foraging behaviour of real ants in locating and transporting food source to their nest. 

It is designed as a population-based metaheuristic and have been successfully 

implemented on various NP-hard problems such as the well-known Traveling 

Salesman Problem (TSP), Vehicle Routing Problem (VRP) and many more. 

However, majority of the studies in ACO focused on homogeneous artificial ants 

although animal behaviour researchers suggest that real ants exhibit 

heterogeneous behaviour thus improving the overall efficiency of the ant colonies. 

Equally important is that most, if not all, optimization algorithms require proper 

parameter tuning to achieve optimal performance. However, it is well-known that 

parameters are problem-dependant as different problems or even different 

instances have different optimal parameter settings. Parameter tuning through the 

testing of parameter combinations is a computationally expensive procedure that is 

infeasible on large-scale real-world problems. One method to mitigate this is to 

introduce heterogeneity by initializing the artificial agents with individual parameters 

rather than colony level parameters. This allows the algorithm to either actively or 

passively discover good parameter settings during the search. The approach 

undertaken in this study is to randomly initialize the ants from both uniform and 

Gaussian distribution respectively within a predefined range of values. The 

approach taken in this study is one of biological plausibility for ants with similar roles, 

but differing behavioural traits, which are being drawn from a mathematical 

distribution. This study also introduces an adaptive approach to the heterogeneous 

ant colony population that evolves the alpha and beta controlling parameters for 

ACO to locate near-optimal solutions. The adaptive approach is able to modify the 

exploitation and exploration characteristics of the algorithm during the search to 

reflect the dynamic nature of search. An empirical analysis of the proposed 

algorithm tested on a range of Travelling Salesman Problem (TSP) instances shows 

that the approach has better algorithmic performance when compared against state-

of-the-art algorithms from the literature. 
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Chapter 1 Introduction 

This chapter introduces the themes of this study and discusses the motivation for 

the work. Thereafter, the research questions and hypotheses concerning the study 

are highlighted followed by the aims and objectives of this study. Next, this chapter 

presents the scope of the research work and concludes with an overview of the 

dissertation as per-chapter basis. 

1.1 Overview 

Nature consists of various biological systems which in turn consist of 

populations of simple, individual agents that demonstrate decentralized, self-

organized behaviour. Interestingly, these intelligent agents, which adhere to a set of 

basic rules, are able to communicate directly with each other or indirectly via the 

environment without the need for centralized control. Despite the individual agents 

being simple in its behaviour, together they form a very highly structured 

organization that allows them to collectively solve complex problems as well as 

being robust to adverse conditions. As an example, collectively, a colony of ants is 

able to accomplish nest construction or foraging for food where a single ant might 

fail.  

The collective behaviour of the individual agents in the biological systems 

has inspired a collection of computational algorithms known as swarm intelligence 

used to solve complex problems. These algorithms consist of artificial agents that 

co-operate collectively without any centralized control while solving problems in 

various fields such as optimization, big data analysis, robotics and many more. It is 
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a class of metaheuristics that takes inspiration from the behaviour of animals. 

Metaheuristics can be considered as a higher level trial-and-error method to find or 

locate quality solutions but without a guarantee that an optimal solution can be found 

[1]. The idea of the metaheuristics approach in solving complex problems is to 

explore and exploit the search landscape iteratively, effectively, and efficiently. The 

near-optimal solutions of the metaheuristics approach are considered good enough 

given the trade-off between solution quality versus time taken for the solution to be 

found. Some of the well-known metaheuristics algorithms are simulated annealing, 

particle swarm optimization (PSO), genetic algorithm, tabu search, ant colony 

optimization (ACO) and many more. 

ACO is a population-based metaheuristic which is stochastic in nature and 

designed to construct solutions iteratively,  also known as a constructive method [2] 

in order to solve combinatorial optimization problems. ACO algorithms are largely 

inspired by the foraging behaviour of the Argentine ants [3]. The basic concept is 

founded on the pheromone laying mechanism of the real ants while locating and 

transporting the food from the source to the nest via the shortest path. The algorithm 

consists of a colony of artificial ants that cooperatively explores and exploits the 

search landscape by constructing solutions to the optimization problems. The ants 

then exchange information regarding the solution’s quality via artificial pheromone 

deposition and an evaporation mechanism. This mechanism, which is an indirect 

communication medium called ‘stigmergy’, allows an individual ant to alter the 

environment and thus acts as a stimuli for the colony of ants [4]. In the solution 

construction phase, each individual ant uses two important variables to guide them 

towards good solutions which are the problem-specific heuristic information and the 

feedback from other ants via the stigmergic information. These concepts act as the 

fundamental framework for most ACO algorithms [3][5][6][7].  

In recent years, many ACO variants have been developed and successfully 

applied to various problems such as routing [8], scheduling [9], image processing, 

assembly line and many more. This shows that ACO is one of the most promising 

algorithms in swarm intelligence due to its robustness in solving various problems. 

An extensive review of past research and recent trends in ACO can be found in [10].  
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1.2 Motivation 

It is well known that the behaviour and performance of an ACO algorithm 

strongly depend on the parameters initialized during the start-up [11][12][13][14]. 

Dorigo et al [6] analysed and summarised three categories of parameter values 

which are the good parameters, poor parameters that will not cause stagnation and 

lastly, poor parameters which will lead the colony to stagnation behaviour. This 

suggestion has acted as a guide for many  ACO algorithms where the parameter 

values are set during initialization and kept constant throughout the search process. 

However, various studies and analyses both empirically and theoretically have 

shown that the optimal parameter settings are very much dependant on the problem 

being solved, the problem instances or even a particular stage of the search process 

[15][16][17][18][19][20]. As an example, parameter values in job shop scheduling [9] 

did not corroborate to any of the parameter suggestions by Dorigo and Stützle [3, p. 

71]. 

Generally, parameter tuning may enhance the performance of the algorithm 

if tuned carefully. However, it is trivial and computationally expensive as it requires 

a considerable amount of time and processing power. In addition to this, a deep 

understanding of the algorithm’s behaviour and the problem being tackled is also 

important during parameter tuning. On top of that, the trial-and-error method is 

practically ineffective because it is a computationally exhaustive process to tune the 

parameters for every problem or problem instance. The tuning of the parameter 

values before the optimization process does not guarantee optimal performance in 

the ACO algorithms [21]. In essence, little research has been reported on parameter 

tuning in ACO [22].   

Another drawback of the ACO algorithm is the exploration-exploitation 

conundrum where exploration is the ability of the algorithm to continue to search in 

the unexplored area of the search landscape while exploitation is the ability of the 

algorithm to perturb the solutions found in order to locate better solutions. The 

algorithm will achieve sub-optimal performance if it spends too much time on the 

exploration phase while if an algorithm performs too much exploitation, then the 

algorithm is more likely to get stuck in local optima due to premature convergence 

to sub-optimal solutions. Hence, a proper balance is required between exploration 
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and exploitation in order to achieve a highly successful, efficient and robust 

algorithm [10][23][24]. 

Lack of population diversity is a key reason for premature convergence to 

local optima, especially in ACO algorithms. As most of the ACO algorithms deploy 

a homogeneous concept, where all ants in the colony have similar ‘behavioural 

traits’, the algorithm is unable to escape from this phenomenon due to stagnation 

behaviour of which all ants construct the same tours repeatedly. It is also down to 

the nature of the ACO algorithm that is unable to switch between the exploration 

and exploitation phase hence stuck in local optima.  

All the aforementioned problems are based on static problems while 

dynamic problems where the search environment change over time poses different 

challenges to ACO researchers [25]. As this study only focuses on the static 

environment, the drawback of the ACO algorithm in a dynamic environment will not 

be explained here but is explored in [26]. As most of the ACO algorithms with the 

aforementioned drawbacks deploy a homogeneous population, one of the possible 

approaches to overcome the problems is to maintain diversity in a population-based 

algorithm such as ACO by implementing a heterogeneous single population 

approach where the ants are initialized with individual ‘behavioural traits’. This will 

allow the algorithm to switch between exploration and exploitation as the search 

progresses due to the inclusion of explorative and exploitative ants. The proposed 

framework will then be able to promote a self-adaptive approach by taking 

advantage of the specific strengths of each individual ant in different stages of the 

search process. Both of these approaches will be able to mitigate the 

aforementioned drawbacks of the ACO algorithm by removing the need for tedious 

optimal parameter tuning process and create a more robust and scalable ACO 

algorithm.   

Lastly, heterogeneity is omnipresent in nature. Several biological studies 

have shown that real ant colonies are in fact heterogeneous where the ants are 

known to have individual ‘behavioural traits’ or personalities [27][28][29][30]. The ant 

colonies with higher variation between nest members are more productive and more 

efficient in nest maintenance and division of labour [28]. In another study, animal 

behaviour scientists have also found that the ant colonies do have individual 

personalities similar to that of humans where the colony consists of ants with 
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different levels of aggressive behaviour [31]. In conclusion, instead of heterogeneity, 

conventional ACO algorithms deploy the homogeneous concept mainly due to the 

algorithmic simplicity in implementation. Therefore, the heterogeneous approach, 

which is proven to be effective from the biological aspect point of view, will be 

explored and its effectiveness will be analysed in this study. 

1.3 Research questions & Hypotheses 

This research aims to address the following questions: 

1. How will the heterogeneous approach best be implemented and what 

degree of improvement is possible over base algorithm(s)? 

2. What is/are the most suitable parameter value(s) that can be manipulated 

in order to introduce the heterogeneous approach in ACO? 

3. How can an effective feedback mechanism to the self-adaptive approach 

be provided so that valuable information of the search landscape is taken 

into account during its decision-making? 

4. How can the performance of the proposed approach be measured in 

terms of exploration-exploitation? 

5. Can the process of evolution be used to explore the space of algorithm 

meta-parameters and lead to improved performance? 

The hypothesis is that with heterogeneity, a combination of ants that are more 

inclined towards the exploration of the search space while other ants in the colony 

exploit the best path found creates a balance in the search process. This is due to 

the behaviours of the ants of which are randomly initialized either to be more inclined 

towards exploration or exploitation. In addition to that, the diversity preservation 

introduced by the unique biases towards the pheromone trail and local heuristics for 

each ant this algorithm helps balance the exploration-exploitation, increases 

robustness with respect to parameter settings and reduces the number of algorithm 

parameters that need to be set. 
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1.4 Aims & Objectives 

The main aim of this research work is to study, explore and propose a single 

colony heterogeneous ACO framework that is robust to parameter settings with 

improved overall performance that is able to avoid getting stuck in local optima. In 

addition to that, the algorithm must be able to balance exploration and exploitation 

that indirectly increases the overall performance. The focus is on exploring and 

investigating the heterogeneous approach in ACO and how this method can 

alleviate the tedious parameter tuning procedure while able to achieve competitive 

solutions across different problem sizes with a simple to implement approach but 

still able to produce competitive results, if not the best when compared against other 

approaches. The following objectives are established to achieve these aims: 

 

1. To develop a heterogeneous ACO that is able to improve on the 

performance of the base algorithms. 

2. To explore the ranges of meta-parameters and their effect on the 

performance of the algorithm. 

3. To explore the distribution-type within meta-parameter settings in the 

heterogeneous approach. 

4. To propose a self-adaptive parameter adaptation of heterogeneous ACO 

that is able to locate and converge to instance-optimal parameter settings. 

5. To apply the method to Travelling Salesman and Printed Circuit Board 

drilling problem instances. 

6. To evaluate the performance of the proposed approach using appropriate 

measurement indicators on general problem instances such as TSP. 

7. To compare the above methods with state-of-the-art methods taken from 

the literature. 
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1.5  Major Contributions 

       The thesis contributes to the field of ACO by introducing heterogeneity in 

ACO framework which is a novel algorithmic approach. The following are the 

contributions of the thesis that support the framework and to achieve the afore-

mentioned aim and objectives: 

1. The initial study of the thesis revolves around initializing the population of 

ants randomly from a uniform (Chapter 3) and Gaussian (Chapter 4) 

distribution within a pre-defined range of values. The variety of ‘behavioural 

traits’ introduced by the heterogeneous approach maintains the population’s 

diversity hence the improvement in the performance of the algorithm 

compared to traditional ACO. The increased robustness and sensitivity to 

distinct parameters highlights the advantages of the proposed approach.  

2. A self-adaptive approach consisting a hybrid of heterogeneous ACO with 

Genetic Algorithm (GA) was proposed in Chapter 5. The approach allows the 

algorithm to adapt the parameters as the search progresses, automatically 

adjust its search strategy by alternating between exploration and exploitation 

whenever required and autonomously locate instance-optimal parameter 

settings. The collective intelligence of the heterogeneous population also 

enables the ants to explore both the fitness and parameter landscape 

simultaneously hence more feasible than the time-consuming task of fine-

tuning the parameters.  

1.6 Thesis Organization 

The remainder of this thesis is structured as follows.  

Chapter 2 presents the biological aspects of real ants and heterogeneity in nature 

followed by a comparison between real ants and artificial ants. Then, a more detailed 

explanation of the conventional ACO algorithms as well as the parameter settings 

in ACO were explored. The general performance metrics used in an optimization 
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especially in ACO is discussed in this chapter along with previous work in ACO in 

relation to heterogeneity. 

Chapter 3 discusses in detail the implementation and analysis of the heterogeneous 

Ant System (HAS) and heterogeneous Max-Min Ant System (HMMAS). A 

comparison of the proposed approach against that of the base algorithm applied to 

several TSP instances is also presented in this chapter. 

The heterogeneous approach is extended in Chapter 4 by introducing a 

heterogeneous Max-Min Ant System randomly drawn from a Gaussian distribution 

with a predefined mean and standard deviation known as GHMMAS. The chapter 

highlights the improved performance of GHMMAS over HMMAS and MMAS when 

tested on several medium-sized TSP instances. In addition to that, GHMMAS is 

applied to the PCB holes drilling problem and compared against MMPAS, a 

heterogeneous algorithm based on recruitment learning of ants.  

Chapter 5 introduces and discusses a hybrid algorithm between ACO and GA with 

the implementation of heterogeneous adaptive Max-Min Ant System termed 

HAACO. The algorithm adapts the 𝛼 and 𝛽 parameters of the ACO population over 

time in order to achieve instance-optimized parameter settings. The approach is 

tested on several TSP instances and compared against two state-of-the-art hybrid 

approaches that suggest the proposed approach has a better performance in most 

of the TSP instances applied. 

The thesis concludes by summarizing the heterogeneous approach as well as the 

results presented along with the significance of the research work in Chapter 6. 

Lastly, a future direction for the heterogeneity approach is suggested. 

1.7 List of Publication 

Part of the contributions in this study have appeared in a number of peer-

reviewed international conferences while a revised journal paper has been 

resubmitted to Applied Soft Computing. The list of publications are as follows: 
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Chapter 2 Literature Review 

This chapter presents the concept of emergent behaviour in nature followed by the 

idea of ACO from the viewpoint of real ants to artificial ants. A review of the 

conventional ACO algorithms as well as the parameter adaptation techniques 

mainly used in ACO  are elaborated by defining the general framework of ACO and 

parameter setting in ACO. Apart from ACO, Genetic Algorithm (GA) is also 

discussed briefly in this chapter that provides an insight into the framework that is 

used in Chapter 5. Meanwhile, Traveling Salesman Problem (TSP), which is a well-

known combinatorial optimization problem, is applied in this study to gauge the 

performance of the proposed approaches hence briefly discussed in this chapter. In 

addition to this, several performance metrics typically used in determining the 

efficiency of an optimization algorithm are discussed such as the branching factor 

that plays an important role in detecting stagnation behaviour in ACO. Lastly, a brief 

explanation of homogeneous and heterogeneous behaviours of social insects at the 

individual level and multi-colony level will be concluding this chapter as this acts as 

an inspiration for this thesis.  
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2.1  Emergent Behaviour 

Nature has always fascinated researchers especially in how social insects 

such as ant colonies, a swarm of bees, flock of birds or school of fish, which are 

normally considered as less-intelligent and simple agents, effectively and efficiently 

solve complex problems although individually each agent has limited ability. 

Interestingly, these agents exhibit no central control but collectively and co-

operatively able to solve the problem in a self-organized manner. These social 

insects usually display social coherence although the individual behaviour of each 

agent suggests the presence of stochasticity. This is known as the emergent 

behaviour which is a result of multiple synergistic interactions between agents or 

with the search landscape that indirectly creates this complex behaviour. Generally, 

emergent behaviour can be observed in various natural phenomena from biological 

to physics domains. This creates a synergistic effect on the swarm while tackling 

the problem in hand. The behaviour allows the researchers to study and develop 

algorithms under a field of study aptly named the nature-inspired metaheuristic 

algorithms. The word ‘Meta’ refers to high-level methodology and heuristics means 

finding new strategies in solving a problem. Therefore, metaheuristics refer to the 

complex level strategies developed to address complex level problems. A brief 

description of metaheuristic methods is given in Figure 2.1 which illustrates the 

different methodologies. Swarm intelligence [32], which is within the artificial 

intelligence field, consists of several computational methods inspired by the 

intelligent behaviours of a group of individuals, who without any form of centralized 

control, managed to collectively solve complex problems. The swarm intelligence 

algorithms are based on the local interactions of relatively simple agents that 

collectively achieve certain goals globally. The local interactions between these 

artificial agents and the environment lead to emergent behaviour that enables the 

individual agents to solve various NP-hard optimization problems. Prominent 

examples of swarm intelligence algorithms are Ant Colony Optimization (ACO) and 

Particle Swarm Optimization (PSO) although many others exist. Most swarm 

intelligence algorithms deploy homogeneous individuals due to simplicity in 

implementation thus lower the possibility of programming errors. 
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Figure 2.1: Metaheuristic categories 

 

However, it is also possible to initialize the swarm as a heterogeneous colony which 

consists of artificial agents with individual ‘behavioural traits’. As an example, some 

insects such as ant colonies exhibit heterogeneous behaviour where the individuals 

may differ in morphological characteristics as well as their function in a colony. For 

that instance, a soldier ant might be stronger compared to normal worker ant while 

worker ants might have different job scopes such as nest maintenance, foraging for 

food and many more. The individual ‘behavioural trait’ contributes to the emergent, 

colony-level behaviour in the ant colonies that in turn allows the colony to self-

organize and collectively solve problems. Correspondingly, the heterogeneous 

concept can also be implemented in swarm intelligence algorithms that can create 

a diverse population of agents with their own perspective while tackling the search 

landscape [3] [4]. 

          Furthermore, the adaptive nature of social insects is also considered as an 

emergent behaviour where in this case, ant colonies can intelligently adapt to the 

change in internal or external environments by adapting the number of workers 

engaging in different tasks. In the state of emergency such as attack to the nest, the 

ant colonies can mobilize the workers to focus on the urgent matter before returning 

to the normal state. This is achievable due to the threshold in real-ants relating to 
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decision-making without the need for central control [33]. Interestingly, the 

adaptation can also be advantageous to the performance of the swarm intelligence 

algorithms by enabling the algorithms to learn and adapt to the current state of the 

search process concerning stagnation or exploration-exploitation phases hence 

creating a robust, flexible and scalable system.   

2.2 Real ants to artificial ants 

Ants are considered social insects in the form of colonies that can be in the 

range of several dozen individual ants to highly organized colonies. These colonies 

occupy very large territories and vary in behaviours, caste, or job tasks. Ant colonies 

communicate between individuals and this behaviour is similar to human societies. 

Therefore, ant behaviours have become an inspiration and a popular subject of 

research especially their ability to solve complex problems such as foraging for food. 

Foraging ants travel distances from their nest searching for food and scent trails 

help them to manage their way back to their nest. In humid conditions and 

dangerous terrains, foraging ants may die due to dehydration thus its ability to be 

able to find the shortest path back to the nest can greatly reduce the risk. Ants find 

their way back to the nest via incorporating the pheromone trail laying with 

environmental learning. Pheromone laying is a process of stigmergy that relates to 

indirect communication between ants. The ants deposit the pheromone on the 

ground while walking to and from a food source. The ants tend to find the shortest 

path towards a food source hence the shorter path will have a higher concentration 

of pheromone. Therefore, other ants will follow the path where the pheromone 

concentration is higher thus enabling ants to transport food faster and in an efficient 

way. Foraging in ant colonies can be divided into two which are the purely individual 

foraging, a process of wandering for food for own’s consumption and foraging with 

recruitment which is a process of forager ants recruiting fellow ants from its colony 

to bring back the food to their nest in foraging with recruitment.   
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(a) 

 

(b) 

Figure 2.2: Double bridge experimental setup (a) Same length branches [34] (b) 

Different length branches [35]. 

 

The nature of real ants is that they will wander randomly unless pheromone trails 

are found on the ground and highly likely to follow one while reinforcing the trail in 

the process. Pheromone is a chemical substance that is deposited by ants while 

they travel along a certain path i.e the path from nest to the food source and back 

to the nest while transporting the food. Deneubourg et al [34] conducted the double 

bridge experiment with equal length branches from nest to the food source to study 

the pheromone laying concept of the ants. A colony of Argentine ants was used in 

the experiment where the ants were connected to food source via equal lengths of 
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a double bridge as shown in Figure 2.2a. They concluded that at the beginning of 

the experiment, ants randomly explore both paths towards the food source and lay 

pheromone while doing so. However, the ants converge onto one particular path 

after some time due to the random probabilities thus causing one path to have higher 

pheromone concentration compared to the other. In addition to this, another variant 

of the double bridge experiment was conducted by Goss et al [35] with one path 

longer than the other as shown in Figure 2.2 (b). The experimental result shows that 

the shorter path leads the ants faster from nest to food source thus receiving a 

higher amount of pheromone thus increasing the probability of other ants choosing 

the shorter path. This breakthrough is the inspiration for the implementation of ACO 

algorithms such as Ant System (AS), Rank-based Ant System (ASrank) and many 

more. 

2.3 Ant Colony Optimization 

ACO is an optimization algorithm that is inspired by the foraging behaviour 

of real ants from nest to food source and back to the nest. This foraging behaviour 

is the underlying concept of interactions between agents in ACO that conforms to 

the emergent behaviour method. The artificial agents communicate with each other 

by replicating the pheromone deposition mechanism of real ants. The ants use this 

information to act as a guide to the food source without requiring any physical 

communication between them. Therefore, the basic principle of an ACO algorithm 

is to find the optimized path in a connected graph of a problem via indirect 

communication using artificial pheromone deposition. 

The conclusion from the double bridge experiments suggests that 

autocatalytic behaviour can be used to design a system with artificial ants to solve 

various optimization problems. This is due to the fact that the ants are able to locate 

the shortest path collectively even though they are simple agents individually. 

Interestingly, the real ants also show exploratory and exploitative behaviours 

respectively where initially the ants explore both short and long paths and later 

converge to the shortest path after several iterations [8]. Additionally, the ants can 
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adapt to the changes in the pheromone landscape due to pheromone evaporation 

and the process of transporting food from the food source to the nest which is an 

iterative process. It can be seen that the deposition of the pheromone trail on the 

path traversed can be considered as a memorization process as well as this allows 

the ant to mark the path they follow while foraging. All these properties support the 

idea of designing an optimization algorithm based on the foraging behaviour of real 

ants.  

  In order to fulfil the aforementioned idea, any problem to be solved must be 

converted to a fully connected graph with several edges and nodes connecting them 

as shown in Figure 2.3. This is followed by allowing the ants to walk from the nodes 

(in this case, the nest) toward the destination (food source) as in the forward mode 

and travel back to the nest as in the backward mode. The artificial ants can “smell” 

the artificial pheromone on the path and also deposit pheromone as they travel back 

to the nest as shown in the backward mode. The pheromone intensity is inversely 

proportional to the solution found where the shorter the path, the more pheromone 

deposited by the ant that traversed the path. Hence, the amount of pheromone 

deposited depends on the quality of the solution. 

 

 

Figure 2.3: Example of a fully connected graph [36] 

 

This may look simple and straightforward but the complexity increases when the 

fully connected graph increases in size with hundreds or thousands of possible 

paths. If the artificial ants depict the same behaviour of the real ants without any 

modification, then there are chances of the artificial ants getting trapped in an infinite 
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loop thus reinforcing the same tour repeatedly. Therefore, artificial ants are allowed 

to remember the nodes they have visited thus preventing the ants to revisit a node 

twice. This at the same time allows the ants to evaluate the length of the path found 

as well as re-trace the path for pheromone deposition.   

In addition to the pheromone trail, the artificial ants also make use of 

heuristic information in their decision-making. The heuristic information contains the 

difference of each node in the fully connected graph. Therefore, the heuristic value 

is inversely proportional to the distance between each node. Traveling salesman 

problem (discussed later) contains the distance information which allows the 

algorithm to pre-compute the heuristic information. Lastly, pheromone evaporation 

does exist in the ACO framework except that the evaporation rate is much faster 

compared to that in real ants. Pheromone evaporation, usually on all paths, is 

implemented to encourage exploration of new search areas while also preventing 

the algorithm from premature convergence to local optima.   

2.4 General Framework of ACO 

ACO is specially designed to solve NP-hard combinatorial optimization 

problems [10]. The general ACO framework consists of four main phases with one 

optional phase as shown in Algorithm 2.1. Once the problem instance has been 

loaded into the algorithm and the main parameters are initialized, a population of 

ants construct their solutions and pheromone trails are updated until the stopping 

criterion is met. The additional step is applying the local search procedure which is 

usually used to improve the solution found. This step is optional as it is best used 

especially when to solve large instances as it can further improve the solution found 

by performing neighbourhood search. Each ant starts with an empty solution and 

constructs the solution by adding nodes or components that it has traversed until all 

nodes have been visited. The choice of the node to be visited is based on the 

probabilistic rule that consists of pheromone trail and heuristic information. Each 

information component has a coefficient to create a bias toward pheromone or 

heuristic during the decision-making. Each variant of ACO has its own choice of the 

coefficient values. 
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           Begin 

           Load the problem instance; 

           Initialization; 

           While termination criterion not met do 

 Ants construct solution; 

                         Local search procedure (optional); 

 Pheromone trail update; 

            End 

            End 

Algorithm 2.1: ACO General Framework 

The pheromone trail update procedure allows the reinforcement of 

pheromone on good solutions while bad solutions will see a reduction in the 

pheromone values. This is to mimic the autocatalytic behaviour from real ants to 

artificial ants because of the higher the pheromone on the components of good 

solutions, the higher the probability of ants choosing that particular component while 

constructing their solution. Firstly, the pheromone is evaporated on all the trails 

globally to prevent stagnation followed by pheromone deposition on the trail of the 

good solution. The amount of pheromone deposited is proportional to the quality of 

the solution found. Lastly, the local search procedure is an algorithm that is usually 

used to improve on the solution found and it is optional for researchers to implement 

this procedure. However, it must be noted that function evaluations from the local 

search procedure should be taken into account together with the main function in 

determining the total function evaluation count.  
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2.5 Conventional ACO 

 ACO falls under the category of constructive heuristic because of its nature 

in solving a problem by starting with an empty solution and constructively extends 

the solution until a complete solution is achieved. ACO is well suited for 

combinatorial optimization problems due to this procedure [37]. Table 2.1 shows the 

successful conventional ACO algorithms where the first ant algorithm was 

introduced by Dorigo et al [38] as a stochastic search algorithm for the well-known 

traveling salesman problem (TSP). Three key aspects of AS are the ant cycle, ant 

density and ant quantity where the difference between these variants of AS 

algorithms is that ant density and ant quantity’s pheromone are updated after every 

move to the adjacent city but ant cycle’s pheromone is updated after the candidate 

solution is built. On top of that, the amount of pheromone deposited in the ant cycle 

corresponds with the quality of its solution where the better the solution, the higher 

the amount of pheromone deposited in the tour (See equation 3). Encouraging 

results in the ant cycle as compared to ant density and ant quantity caused the latter 

algorithms to be abandoned. AS was developed with the aim of tackling the 

Travelling Salesman Problem (TSP) which is a combinatorial optimization problem 

that itself has attracted extensive research [39]. AS starts pheromone initialization 

where all the edges in the graph were given a certain amount of initial pheromone, 

τ0. Then, the artificial ants randomly deployed on cities and begin to construct their 

tour iteratively.  The ants maintain a tabu list which contains the cities it has visited 

thus preventing a city to be visited twice therefore the only unvisited city can be 

chosen in the next iteration. This is done by using a probabilistic state transition rule 

also known as random-proportional  rule (𝑃𝑖𝑗
𝑘) in which ants prefer to move to cities 

which are connected by short edges with a high amount of pheromone [38] as shown 

in equation 1 where 𝜏𝑖𝑗 and 𝜂𝑖𝑗  are pheromone trail intensity on edge (i, j) and 

heuristic information of edge (i, j) respectively. 
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Table 2.1: Successful Conventional ACO 

Num Year Algorithm Author 

1 1991 Ant System (A.S) 
Dorigo et al 

[40][41][6] 

2 1992 Elitist Ant System Dorigo et al [6] 

3 1995 Ant Q 
Gambardella et al 

[42] 

4 1997 
Ant Colony System 

(ACS) 
Gambardella et al [7]  

5 1996 Max-Min A.S Stützle et al [43][5] 

6 1999 Rank-based A.S Bullnheimer et al [44] 

 

                𝑃𝑖𝑗
𝑘  = 

[𝜏𝑖𝑗
]𝛼[𝜂𝑖𝑗]𝛽

∑ [𝜏𝑖𝑙]𝛼[𝜂𝑖𝑙]𝛽
𝑙∈𝑁𝑖

𝑘
  if 𝑗 ∈  𝑁𝑖

𝑘
                                                                  (1) 

The heuristic information of TSP is calculated by using the equation 1/dij  where dij 

is the distance between city i and j. 𝛼 and 𝛽 are two relative parameters that 

determine the weight of the pheromone trail and heuristic information. 𝑁𝑖
𝑘 are the 

unvisited cities of ant k when it is at city i. Once all the ants have built their solution, 

the pheromone is then evaporated before pheromone is deposited. This 

phenomenon is described in equation 2. 

               𝜏𝑖𝑗 ← (1 − 𝜌). 𝜏𝑖𝑗 +  ∑ ∆𝜏𝑖𝑗
𝑘𝑚

k=1                                                                    (2) 

𝜏𝑖𝑗 is the amount of pheromone on edge (i,j) while 𝜌 is the evaporation rate which 

must be set between 0 < 𝜌 < 1 to avoid an unlimited accumulation of pheromone 

that can lead to stagnation and early convergence. 𝑚 is the number of ants deployed 

in the search space while 𝑘 is associated with ant 𝑘. ∆𝜏𝑖𝑗
𝑘

  is the amount of 

pheromone laid on edge (i,j) by ant 𝑘 which is given by equation 3.  
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∆τij
k = {

Q

Lk
 if ant k uses edge (i, j) in its tour 

0                                                Otherwise
                                                        (3)                                        

𝑄 is a constant value usually set to 1 while 𝐿𝑘  is the tour length of ant 𝑘. Equation 2 

and 3 suggest that all edges will have its pheromone evaporated or decreased by a 

small amount before the edges are reinforced based on the solution found by the 

respective ants. Good solutions (in the case of TSP, the shorter path) will receive 

higher pheromone thus yielding greater chances of that path being chosen in the 

next iteration. Edges not in any solution will have their pheromone reduced to a very 

low level (possibly zero) significantly reducing the probability of being chosen in the 

future. In terms of performance, AS achieved excellent performance over small TSP 

instances namely Oliver30.tsp and eil51.tsp but the performance deteriorated when 

tested on instances larger than 75 cities [39] [40]. 

  The first improvement over AS was made by Dorigo et al [6] with the 

introduction of elitist AS (EAS). This strategy strongly reinforces the global best 

solution (Sgb) by reinforcing the value of pheromone on the edges of this solution. 

This is an exploitative measure where the ants are directed toward the global best 

solution to find better solutions. However, even though the use of a suitable number 

of elitist ants can enhance the performance of AS, the drawback of this method is 

that improper number of elitist ants can cause premature convergence to suboptimal 

tours. In addition to that, determining the suitable number of ants is a tedious 

parameter tuning task that is computationally extensive and exhaustive. Another 

well-known improvement over AS is the rank-based AS (RAS) by Bullnheimer et al 

[44] where the ants are ranked according to the solution quality.  Only a certain 

number of best ants are considered for pheromone update where the amount of 

pheromone deposited based on their rank. The possible drawback of RAS is the 

sorting overhead the approach introduced in ranking the ants as the sorting 

procedure is known to be a computationally exhaustive procedure hence increases 

the algorithms time complexity.  

Gambardella et al proposed the Q-Learning method to ACO called the Ant-

Q [42] where AS as the base algorithm. Even though the Ant-Q algorithm produced 

very good performance when tested on several TSP instances, the algorithm itself 
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is too complex for understanding. Therefore, the authors proposed the Ant Colony 

System (ACS) [7] with improvement, especially when tested on larger TSP 

instances. ACS deploys a slightly different approach compared to other 

conventional ACO algorithms that use AS as the base algorithm. Firstly, the ants 

used the pseudo-random proportional rule (equation 4) to choose its next city, j when 

at city i, by depending on a random variable, 𝑞 which is randomly distributed over 

[0,1] and a pre-determined parameter, 𝑞0. This directly balances the exploration of 

new search areas and the exploitation of prior information. Secondly, the global 

pheromone update rule (equation 5) only applies to the tour of the best ant. This, 

coupled with the pseudo-random rule, helps to make the search space more 

directed. The update process takes place only after all the ants have constructed 

their solutions. The use of the candidate list was also suggested when ACS applied 

to large TSP instances as this can reduce the time for the algorithm to locate good 

solutions. The candidate list consists of a fixed number of preferred destinations for 

each decision point. 

j =  {
𝑚𝑎𝑥𝑙∈𝑁𝑖

𝑘 {[𝜏𝑖𝑙]. [𝜂𝑖𝑙]β}         if q < q0

𝐽 using Eq 1                            Otherwise
                                               (4) 

  

𝜏𝑖𝑗 ← (1 − 𝜌). 𝜏𝑖𝑗 +  𝜌 ∆τij
𝑏𝑒𝑠𝑡                                                    (5) 

 

∆τ𝑖𝑗
𝑏𝑒𝑠𝑡 =  {

1

L𝑏𝑒𝑠𝑡
 if (𝑖, 𝑗) part of the best tour

0                                       Otherwise
                                                   (6) 

0 < 𝛼 < 1 is the pheromone decay parameter and 𝐿𝑏𝑒𝑠𝑡 is the length of the global 

best tour. Thirdly, ACS applies local pheromone update rule (equation 7) to the 

edges visited by the ants during the solution construction phase. This is to simulate 

exploration among the ants in the search space. 

𝜏𝑖𝑗 ← (1 − 𝜉). 𝜏𝑖𝑗 +  𝜉𝜏0                                                                          (7) 

where 0< 𝜉 <1 is the pheromone decay coefficient in local pheromone update. 
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Stützle and Hoos [43][5] introduced another improved variant of AS known as the 

Max-Min Ant System (MMAS) which still uses the probabilistic rule as in AS for 

constructing the fitness solution. However, the first contribution of MMAS is limiting 

the pheromone trail value to a maximum, 𝜏𝑚𝑎𝑥 or minimum, 𝜏𝑚𝑖𝑛 to prevent early 

convergence to a sub-optimal solution and also improves exploration. Secondly, 

only the best ant in every iteration is allowed to deposit pheromone based on the 

tour length using equation 8. Lastly, the trail-smoothing mechanism is introduced to 

overcome stagnation in the algorithm which is an undesirable condition where all 

ants quickly converged to a single solution and repeat the same tours in every 

iteration thus affecting the exploration process of the search landscape. 

          𝜏𝑖𝑗 ← (1 − 𝜌). 𝜏𝑖𝑗 +  ∆𝜏𝑖𝑗
𝑏𝑒𝑠𝑡                                                                (8) 

𝜏𝑖𝑗
𝑏𝑒𝑠𝑡 is calculated using equation 6 where 𝐿𝑔𝑏 can either be global best, iteration-

best or alternate between these two. Trail limits as in equation 9 are implemented 

in MMAS to promote exploration by preventing certain paths from accumulating a 

high amount of pheromone that will cause this path to be chosen always. 

τij =  {

τmax             if τij >  τmax

τmin              if τij <  τmin

τij   Otherwise                  

                                                                              (9) 

This ensures the pheromone landscape will always be within the trail limits, 𝜏𝑚𝑖𝑛 ≤

𝜏𝑖𝑗 ≤ 𝜏𝑚𝑎𝑥  while 𝜏𝑚𝑎𝑥 and 𝜏𝑚𝑖𝑛 will be recalculated every time a new global best tour 

is found using the equations below. 

τmax =
1

ρ × Lbest
                                                                                                      (10) 

𝜏𝑚𝑖𝑛 =
𝜏𝑚𝑎𝑥×(1− √𝑃𝑏𝑒𝑠𝑡)𝑛

(𝑎𝑣𝑔−1)× √𝑃𝑏𝑒𝑠𝑡
𝑛                                                                                    (11) 

where 𝑎𝑣𝑔 is the average number of choices the ant has at every decision point 

while 𝑃𝑏𝑒𝑠𝑡 is a parameter used in MMAS. Lastly, the pheromone trail-smoothing is 

used when convergence is detected which in turn uses the λ-branching factor 

(explained later).  
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2.6 Parameter Settings in ACO 

  The objective of using a metaheuristic approach is to obtain acceptable 

solutions in a short period. This is because of the difficulty in solving combinatorial 

optimization problems and it requires a very long time to solve to optimality hence 

the use of metaheuristics. The ability to tune the parameters of the metaheuristics 

in part plays an important role in achieving a fast, acceptable result and the results 

are very dependent on the parameter settings too. However, parameter tuning is a 

non-trivial task that requires a deep understanding of the algorithm in use as well as 

the problem being solved. Parameter tuning is a computationally exhaustive and 

extensive process and it is impossible to tune the parameters to every problem 

instance being solved. Similarly, the performance of ACO algorithms are parameter 

dependant and strongly influenced by the parameter settings [45].  

Two main parameters that influence the probabilistic rule are the 𝛼 and 𝛽 

which are the coefficients that control the relative influence of pheromone trail and 

heuristic information respectively. Determining the optimal 𝛼 and 𝛽 values can have 

a huge effect on the performance of the ACO algorithm while randomly sampling of 

the 𝛼 and 𝛽 parameters allows the algorithm to comprise of several co-existing 

strategies bundled up in the algorithm to tackle the optimization problem. As an 

example, if 𝛼 = 0, this renders the algorithm to act in a greedy manner thus the 

likelihood of choosing the closest cities. Meanwhile, if 𝛽 = 0, only the pheromone 

trail is taken into consideration in the probabilistic rule without any heuristic 

information. This leads to poor performance while 𝛼 > 1 is said to cause stagnation 

behaviour in ACO where all ants construct the same, suboptimal tour. Therefore, 

parameter setting in ACO is important and usually, researchers apply the parameter 

suggestions by Dorigo et al [37, p. 71] while there are researchers that perform 

extensive experiment to determine optimal parameter setting based on the problem 

they try to solve [46][47][48][49]. This is the main reason why both the 𝛼 and 𝛽 

parameters were chosen as the main candidates for the heterogeneous approach 

even though other parameters can be considered for future such as the pheromone 

evaporation coefficient, 𝜌. 
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 There are several methods to tune the parameters which can be divided into 

two categories that are the analytical and empirical methods [50]. The analytical 

approach applies the mathematical formulations for the recommendations of the 

parameter settings in ACO [51][52] while the empirical method is conducted by trial-

and-error or systematic approach [16]. However, empirical testing is computationally 

exhaustive and expensive as it requires lengthy computational time even on 

supercomputers [49]. A possible approach to the parameter exploration is the 

‘offline’ method where optimal parameter settings are explored using several test 

cases or problem instances. The resulting optimal parameter settings are then 

implemented during the actual test run of the optimization problem [16][53]. The 

advantage of this approach is that firstly, this ensures the robustness of the 

algorithm to parameter settings and secondly, one does not need to find the exact 

optimal parameter settings in ACO in respect to the 𝛼 and 𝛽 values as long as the 

parameters are within the optimal settings will be enough to ensure good algorithmic 

performance [16]. Referring to the parameter suggestions by Dorigo et al [38][6], it 

can be seen that the optimal parameter landscape is reasonably large thus easy to 

find good to optimal parameter settings via the offline method. 

Another approach is the ‘online’ parameter control where the parameters 

change over time while the algorithm solves the problem [45][54]. One of the 

advantages of this approach is the ability to alternate between exploration and 

exploitation phases, unlike conventional ACO. However, this approach requires 

additional parameters to be introduced into the algorithm. There are several 

techniques in the ‘online’ parameter control approach which are known as the pre-

scheduled, adaptive, self-adaptive and search-based adaptation [45]. The pre-

scheduled or deterministic technique involves changing the parameters as per some 

pre-defined rules such as function evaluations, iterations or computational time. This 

technique is known as the simplest of all but it involves introducing new parameter(s) 

to realize the approach. In contrast, the adaptive technique accepts feedback from 

the optimization process and adapts to the current state of the process by changing 

its parameters.  As an example, suppose a difference between fitness solution is set 

a threshold value and if it is met, then the algorithm changes its parameters 

according to a set of rules [55]. This technique still requires a pre-defined rule in 

order to activate the parameter variation. The approach described in Chapter 5 falls 
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under the self-adaptation category where the parameters are encoded into 

genotype-like solutions in the parameter space. The algorithm searches the solution 

and parameter space simultaneously to locate instance-optimal parameter settings. 

The self-adaptive technique does not require any predefined rules but usually 

involves a hybridization with the Genetic Algorithm (GA) where the parameters are 

mapped into genotypes and may involve selection, recombination and mutation to 

evolve the population of artificial ants [56]. However, a minor modification in Chapter 

5 (explained in detail in Chapter 5) is to perform parameter adaptation every 5 

iterations to allow enough information on the pheromone landscape to decide on the 

best and worst ant for selection and replacement. Readers are directed to 

[16][54][55][57][58] for a detailed review approaches to the setting of parameters.  

2.7 Genetic Algorithm 

The Genetic Algorithm (GA) is another approach for optimization that was 

initially proposed by John Holland in 1975 [41] to model and analyse the organic 

adaptation and evolution abilities but generated more interest in the optimization 

field. The concept of GA is that individuals, usually the fittest, are chosen to produce 

offspring for next generation. Candidate solutions are represented as genomes, 

which can be encoded in various ways such as binary, integer or floating-point 

representations. The population in a GA is usually created at random and is followed 

by the selection of the parents that are required to produce offspring. The selection 

process is based on the fitness score of each individual according to the fitness 

function where the higher the fitness function, the higher the fitness score hence the 

higher the chances of the individual to be selected for reproduction. The selected 

parents usually undergo crossover in order to create the offspring. Interestingly, 

crossover, which involves recombination of genetic information of both parents to 

produce offspring, is comparable to a certain aspect to the sexual reproduction in 

biology.  On the other hand, the offspring undergoes mutation operator that alters 

the value of one or several components of the genome in order to maintain 

population diversity. The most common mutation operator used is the uniform and 

Gaussian mutation. Again, a minor modification on how the mutation operator is 
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applied in Chapter 5 will be explained later. One example of crossover is the single-

point crossover that cuts the solutions at a random position before swapping the 

parents with the two parts to create two offspring. However, various crossover 

operators can be applied in GA. It should be noted that the most effective crossover 

approach is the 2-point crossover while it has been reported that there is a reduction 

in the performance of the GA when the number of crossover points is increased [42]. 

The alteration of values of genome introduces new information into the 

population and can be considered as a random variation.  After the selection 

procedure and mutation process, the member in the population to be replaced will 

be chosen. There are several ways to implement the replacement procedure such 

as by ranking and selecting the worst members for replacement or in a more 

complex method that is by a fitness proportionate selection that gives each solution 

a chance proportional to their fitness.  

2.8 Combinatorial Optimization Problem 

  The proposed approach is mainly implemented on the Traveling Salesman 

Problem (TSP) [8] which is one of the most fundamental and popular combinatorial 

optimization problem (COP). The principal objective of the TSP is to find the shortest 

tour of a number of cities by determining the order of the cities to be visited where 

each city must be visited once and only once before returning to the start city. The 

TSP can be translated into various real-world problems such as the delivery service 

where the postman must find the shortest route in completing his task. Other 

variants that take inspiration from the TSP are vehicle routing problem (VRP) [59], 

printed circuit board (PCB) drilling and many more. The standard formulation of TSP 

is as follows: 

 

𝑓(𝑥)= min ∑ ∑ 𝑑𝑖𝑗𝛹𝑖𝑗
𝑛
𝑗=0

𝑛
𝑖=0                                       (12)

             

Ψij =  {
1          if the arc (i, j)is in the tour
0                                         Otherwise

                                                (13) 
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where 𝛹𝑖𝑗  𝜖 {0,1}, 𝑛 is the number of cities and 𝑑𝑖𝑗 is the distance between 𝑖 and 𝑗.  

 

TSP can be divided into two main categories which are symmetric and 

asymmetric TSP. In the symmetric TSP, a problem instance is represented by a 

connected, undirected graph, 𝐺 = (𝑉, 𝐸) where 𝑉 represents the nodes while 𝐸 

represents the edges connecting the nodes. Each edge has a distance value 

associated, 𝑒𝑖𝑗 while the objective is to find the Hamiltonian cycle of the shortest 

tour. In the Euclidean TSP, each node has its coordinates hence 𝑒𝑖𝑗 is the straight-

line distance between 𝑖 and 𝑗. Therefore, 𝑒𝑖𝑗 can be calculated using the following 

equation. Asymmetric TSP will not be discussed here as all the instances used in 

this study are symmetric TSP instances.  

 

𝑒𝑖𝑗 =  √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)22
                                                               (14)  

 

On the other hand, PCB is a more complex variant of TSP and can be 

considered as more realistic real-world scenario. PCB holes drilling is an important 

process in order to connect the conductor of one layer to the conductor of another 

layer. Holes can be of different diameters and each time when the diameter 

changes, the head of the machine has to move to the toolbox to change the drilling 

equipment which takes time. Thus drilling process can be considered as a series of 

TSPs in which ‘cities’ are the initial position of drill and ‘distance’ is referred to the 

time taken by machine in moving from one position to the other [60]. The motivation 

in using TSP to test the performance of the proposed approach is because of the 

huge number of resources as well as the availability of the library with known optimal 

solutions for a subset of TSP instances thus enabling this study to focus on the 

development of the metaheuristic rather than the formulation of the problem. In 

addition to this, a comparison can be carried out against state-of-the-art algorithms 

that tested their approach on TSP and any improvement in finding better tours can 

be related to the performance of the algorithm when compared using the same 

problem instance. Therefore, if the algorithm is tested on lesser-known problem 
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instances, there might be very limited studies conducted that can be used for 

comparison purposes.   

2.9 Performance Metrics for Optimization  

Algorithm 

Experimental research in evolutionary optimization is common, especially 

in the case of nature-inspired algorithms that often conduct empirical assessments. 

By the stochastic nature of the optimization algorithms, a certain number of trials 

must be conducted to gain sufficient experimental data then only performance 

measures can be performed and based on some statistics. However, it can be 

difficult performing experiments with a stochastic optimization algorithm and 

presenting the results in a way that will satisfy high scientific standards. It is widely 

accepted that empirical analyses are an important aspect of stochastic optimization 

algorithms especially for metaheuristics that are complex. This section will discuss 

types of performance measurements or metrics that are usually used in an 

optimization algorithm that relates to the metrics used in subsequent chapters. 

There are no single performance metrics that are considered ‘the best’ while in some 

cases, researchers could not agree on this aspect of reporting empirical results 

[61][62]. We divide the performance metrics into two categories which are the 

optimum-based and behaviour-based performance metrics [36].  

2.9.1 Optimum-based Performance Metrics 

It is important to consider the quality of solutions in the empirical analysis of 

stochastic optimization algorithms since these algorithms usually do not guarantee 

optimal solutions. In the case of experimental research, time is the resource that is 

usually considered.  This notion is very subjective as the processing capabilities and 

platforms used may vary from one researcher to another hence rendering it as 

unsuitable. However, time which is often expressed indirectly by the number of 



 50 

     

iterations, the number of generated solutions, and the number of function 

evaluations, can be considered as useful performance metrics. The most common 

approach is to restrict the computational resources and to observe the solution 

quality. The computational resources, in this case, including but not limited to the 

processing elements, memory and elapsed time. 

Optimization algorithms in evolutionary computation are stochastic and 

produce different solutions on different executions. The performance measurement 

of the stochastic optimization algorithms must follow or apply the common practice 

by researchers which is conducting multiple trials of an algorithm. The best solution 

obtained in multiple executions of an algorithm is often used as a measure for 

performance as recommended by Eiben and Jelasity [61]. The authors stated that 

this particular performance metric is important especially when the optimum solution 

is unknown such as in the cases of optimizing real-world problems. This was 

supported by Birattari and Dorigo [62]. Using the best solutions out of a predefined 

number of attempts inside statistical tests that can handle individual values might 

be acceptable through the use of e.g. the Wilcoxon Rank Sum Test used in this 

study. It is not important if in a particular experiment one algorithm yields a better 

“best solution” than the other. Instead, it is preferred that this behaviour is consistent 

in many experiments and confirmed as statistically significant. 

In addition, the arithmetic mean is also used to measure the performance of 

an algorithm [36][63]. It allows for the reproducibility of results, provided that it is 

possible to measure the arithmetic mean in a reliable way and a suitably large 

sample is used [63]. The arithmetic mean can be defined as the average of the best 

solutions of several trials. These metrics then can be used to compare the 

performance of several algorithms. Another performance metric is the worst solution 

found in a number of trials although it is seldom used for comparison purposes. 

However, this value shows how far the solution is from the known optimal solution 

for problems such as TSP. Most of the research involving conventional ACO 

algorithms used best, average and worst solutions across multiple trials as their 

performance metrics hence also used in this study. These values can also be used 

to create a ranking-based performance comparison as in Chapter 5 which can also 

be extended to conduct the Friedman statistical test. 
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          For problems where the optimal solution are known such as TSP, one can 

easily define a success criterion and calculate the success rate (SR) metric which 

can be defined as how close the solution is from the known optimal solution in 

percentage. The higher the success rate, the closer the solution is to the optimal 

solution as introduced in Chapter 3 and 4. This value acts as an indicator of the 

probability of the algorithm achieving the optimal performance over a certain number 

of trials. Lastly, the quantiles representation in boxplots are very useful in illustrating 

and comparing the performance of several algorithms.  

 

 

Figure 2.4: Example of boxplots with the same median but different quartile values 

[63]. 

 As an example, Figure 2.4 illustrates boxplots with the same median but 

different quartile values where all algorithms managed to find the optimal solution 

and at the same time have the same maximal value over several trials. Therefore, 

in this case, the interquartile values of the algorithms can determine, which of these 

algorithms has a more desirable performance characteristic.  

2.9.2 Behaviour-based Performance Metrics 

The behaviour-based performance metrics allow the researchers to 

measure the behaviour of the algorithm  during the search process and to estimate 

when the solutions have sufficiently converged in fitness value or construction. A 

well-known metric is the standard deviation of the solution set in every iteration [64]. 
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This can be considered as one of the important performance metrics especially in 

population-based algorithms and has the capability to illustrate to some extent, the 

exploration and exploitation phases of the algorithm as well as the occurrence of 

stagnation behaviour in the population. A high standard deviation represents that 

solutions are more spread out thus indicating the exploration phase while a low 

standard deviation indicates the spread is smaller hence the algorithm is locating 

solutions much closer to the optimal thus illustrating the exploitation phase. 

Otherwise, a standard deviation of zero indicates stagnation behaviour in the ants’ 

colony that means all ants repeat the same tour in every iteration i.e. the algorithm 

has converged, which can be to a good or bad solution. 

Next, Gambardella and Dorigo [65] introduced the average lambda 

branching factor (λ-branching factor) which uses information from the pheromone 

trail values thus allowing the researcher to track the algorithm’s behaviour as the 

search progresses. This technique measures the exploration and exploitation of the 

ants. Assume ph_max(i,j) and ph_min(i, j) are the maximum and minimum 

pheromone of all the edges that exit from node i. The branching factor can be 

represented by the number of edges from node i that is greater than λ.d + ph_min(i, 

j) where 0 < λ < 1 and d is the difference between maximum and minimum 

pheromone amount that exit node i. The branching factor is also able to indicate that 

if the algorithm has achieved convergence as well as illustrating stagnation 

behaviour.  

Finally, this research work (in subsequent chapters) is the first to propose a  

metric of the distribution of the ants in the parameter space as an indicator of the 

heterogeneity effects. In addition to this, 3d graphs and convex hulls are used to 

illustrate the ants’ distribution over time thus indicating the algorithm’s robustness 

toward parameter setting. This also shows the capability of the algorithm to adapt 

to the changes as the search progress and how the algorithm explores and exploits 

both the solution space and parameter space concurrently. 
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2.10 Heterogeneity 

 Homogeneity or homogeneous population consists of individuals with the 

same traits or little variation physically or behaviourally. On the contrary, 

heterogeneity or heterogeneous population comprises of individuals with variation 

among them. The most obvious is the variation in human beings where generally, 

we differ in height, weight, skin colour and other traits. It is well known that 

heterogeneity is ubiquitous in natural systems. Behavioural variation has been 

observed in social insects by animal behaviour researchers who have been studying 

the relationship between heterogeneity and population diversity in social insects and 

how this behavioural variation, especially in social insects, is beneficial to the colony.  

Recent studies have shown that intra-colony variations do exist in ant 

colonies where the ants differ in ‘behavioural traits’ within the colony  

[33][28][27][66][67][68][69]. This can be divided into two categories which are 

variation due to the age and size of the ants [70] and secondly, the behavioural 

variations such as aggressiveness or choosiness of the ants concerning nest 

maintenance [69]. Behavioural variation also has been attributed to an increase in 

colony efficiency and higher colony fitness compared to homogeneous swarm or 

colony with less behavioural variations [28]. One example of behavioural variation 

found in ants is the variation in the exploratory behaviour of the workers where some 

ants might exhibit a higher preference toward exploration compared to others. Both 

the aggressiveness and exploratory behaviour of the colony are important traits in 

determining the evolution and efficiency of the colony [71]. The diversity in the 

population introduced by the intra-colony behavioural variation allows a more 

efficient task allocation in the division of labour thus indirectly increasing the 

productivity of the colony.  

2.10.1 Heterogeneity in PSO 

Typically, swarm intelligence consists of homogeneous agents mainly due 

to simplicity in implementation [72]. The agents exhibit identical ‘behavioural traits’ 
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because they are initialized in such a way that they have the same parameter 

settings. Particle Swarm Optimisation (PSO) [73], a successful and popular swarm 

intelligence algorithm, is inspired by the social behaviour of animals such as a 

school of fish, a flock of birds or ant colonies. PSO consists of particles that 

represent a swarm of candidate solutions that the algorithm will try to search for the 

optimal solution. Generally, PSO algorithms, as with other swarm intelligence 

algorithms, are initialized as homogeneous swarms with the particles exhibit 

identical parameter values. However, heterogeneity has been implemented with 

success in Particle Swarm Optimisation (PSO) with numerous researches that have 

been explored and conducted with significant findings. A detailed review of previous 

work in heterogeneous PSO can be found in [74] although most of the studies are 

loosely connected to heterogeneity. A more general framework of heterogeneity 

was firstly modelled by De Oca et al [72] where particles in the PSO algorithm differ 

either in the neighbourhood size, the model of influence, update rule or update rule 

parameters. However, the authors were more interested in determining ways to 

implement heterogeneity in PSO rather than identifying the behaviours that can 

produce improved performance statistically. Olorunda et al [75] assert that different 

search behaviours is exhibited by the heterogeneous coevolutionary algorithm 

which consist of a combination of several evolutionary algorithms that are assigned 

to each sub-population. However, the overall efficiency of this approach depends 

on determining optimal sub-population sizes as well as assessing the performance 

of each sub-algorithm. In another approach, particles were modelled to exhibit 

distinctive search behaviours sampled from a behavioural pool in the research 

conducted by Engelbrecht [74]. This allows the swarm to consist of multiple 

behaviours that include explorative and exploitative particles, among others, to 

tackle the optimization problem. An improved version of heterogeneous particle 

swarm optimization (IHPSO) is discussed in [76] and the results showcase that the 

proposed solution allows the particles to have a different position and velocity 

update rule that incorporates the particles’ best local position and best global 

position. In addition to this, the decision-making also includes a parameter that 

determines current fitness proportions of the entire population. The algorithm 

suggest that heterogeneity introduced in the study is able to converge quickly to 

good solutions and performs better when compared against other approaches. 
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Nepomuceno et al [19] implemented an adaptive heterogeneous PSO approach 

where the heterogeneous particles were allowed to adapt to the changes during the 

search process. The algorithm keeps track of the success rate of certain behaviours 

and uses this information when the particle is required to change its behaviour. 

There are many more heterogeneous PSO algorithms with varying degrees of 

success and the results indicate that heterogeneity can improve the efficiency and 

the performance of the algorithm. Therefore, the researches on heterogeneous 

PSO act as an inspiration for the proposed approach in this study.  

2.10.2 Heterogeneity in ACO 

 Heterogeneity is well studied in PSO as discussed above but there is 

comparatively less research conducted on heterogeneous ACO. The term 

‘behaviour’ in artificial ants is used to refer to the combination of pheromone trail 

and local heuristics intensity. Heterogeneity in a colony of ants can be set at an 

individual or colony level where artificial ants with different traits between each other 

are known as individual-level heterogeneity while sub-colonies of ants with different 

behaviour for each sub-colony is said to be the latter. 

2.10.2.1 Individual-level heterogeneity 

Various mechanisms can be used to introduce the heterogeneous approach 

in ACO. Tsutsui [77] implemented a colony of ants that consist of both donor ants 

and cunning ants.  A partial solution from the donor ant is used by the cunning ant 

in the next iteration to build its solution. The main reason for deploying this is to 

speed up convergence and escape from premature convergence. However,  

determining the right amount of information shared in the solution construction can 

prove decisive in the performance of the algorithm. In addition to that, over-

exploration or exploitation may still exist in the algorithm especially if too little or too 

much of the partial solution is shared between the solutions. More importantly, the 

idea of varying the population’s parameters was suggested in [78] where the 𝛼 and 
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𝛽 values for the whole colony change at every iteration. The values were randomly 

sampled from a uniform distribution at every iteration. Furthermore, the authors also 

modified the pheromone deposition and evaporation mechanism to further improve 

the algorithm in order to escape from local optima. This method introduces 

heterogeneity into ACO, but the concept lacks an explanation on why and how the 

parameters change every iteration and how this can improve the performance of the 

algorithm as well as relation towards the real ant colony.  

Lee et al [79] introduced heterogeneous individual ants with different sight, 

speed and function behaviours for obstacle avoidance in a robotic environment. 

Although the authors stated that the performance of the proposed approach is better 

when compared to conventional ACO, they also stressed that there is room for 

improvement in the proposed approach especially when the main ACO parameters 

are varied during execution rather than being kept constant. Nugulescu et al [80] 

reviewed the idea of synthetic genes for artificial ants similar to that of a Genetic 

Algorithm (GA) approach.  The authors suggested several parameters that can be 

converted from global to local parameters to incorporate the idea. However, the 

authors did not follow up on their initial idea as there are no published results of a 

working concept. Chira et al [81][82] discussed the effects of deploying artificial ants 

with different sensitivity levels to the pheromone trail. The parameter that influences 

the relative weight of the pheromone trail, α is randomly sampled from a normal 

distribution with a pre-defined range of 0 to 1. Ants with a low level of pheromone 

sensitivity (closer to 0) will act as an explorer thus will conduct a random search on 

the solution landscape while ants with high sensitivity level (closer to 1) will exploit 

solutions found in order to strongly follow the pheromone trail. This Sensitive Ant 

Model (SAM) improvised and extends the ACS approach by optimizing the 

properties which are responsible for inducing heterogeneity in each agent of model 

which leads to the sustainable search intensification. A similar approach was 

conducted by Yoshikawa et al [83] who used a cranky ants approach that explores 

paths with a low level of pheromone as opposed to the normal behaviour of standard 

ACO. This involves modifying the probability rule to include the reciprocal of the 

pheromone level rather than the pheromone level itself. Nevertheless, Stützle et al 

[45] suggested that both α and β, should be considered while implementing the 
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parameter variation or adaptation mechanism as they are responsible for controlling 

the influence of heuristics.  

Another heterogeneous ACO was introduced by Hara et al [84] where 

initially α value is set to constant and give-up ants were introduced that construct 

partial solutions consisting of nodes where the distance from the current node to the 

next node does not exceed a pre-defined distance, d. When the give-up ants 

encounter a situation where the distance of all possible nodes exceeds d, then the 

tour construction will be terminated immediately yielding partial solutions. Then, all 

partial solutions from the give-up ants will be merged to produce one complete tour. 

As the performance was not satisfactory, the authors then varied the α parameter 

of the give-up ants from 0 to 1 with a step size of 0.005 for every iteration. Although 

improvement in performance was noted, the authors indicated that important 

parameters are problem-dependent hence better performance can be achieved if 

parameters are varied as the search progresses. Abdelbar et al [85] also 

implemented a slightly similar approach by introducing stubborn ants where these 

ants have the ability to implement its solution from the previous iteration on the next 

iteration. The authors introduced a stubbornness parameter to determine the biases 

of each ant in using the previous solution. This approach enhanced the exploitation 

of previous tours where a single ant in every iteration will have a higher probability 

of choosing its previous solution rather than exploring a new path. This somehow 

reduces the diversity of the colony by limiting the exploration of new search areas. 

In the meantime, Zufferey et al [86] implemented pre-determined a colony of ants 

which is categorized into the normal ants, follower ants, moody ants and innovative 

ants. Follower ants have a higher probability of choosing the previous tour with the 

highest pheromone trail while moody ants can interchange its decision-making by 

choosing a tour with high in pheromone or inverse to the pheromone value and 

lastly, innovative ants can alternate between the exploration or exploitation phase. 

The main contribution of this paper was to categorize the ants with different 

personalities and then vehicle routing problem is being implemented. Although 

result reported was not according to the state-of-the-art, however, the performance 

of the better metaheuristic approach of ant personalities is encouraging.  
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The most recent study of heterogeneous ACO was conducted by Sueoka 

et al [87] in which both hard-working and lazy ants were introduced and allowed to 

interchange between each other in the colony. The hard-working ants prefer the 

path with a high concentration of pheromone level while lazy ants perform a random 

walk on the search landscape. The authors concluded that lazy ants play an 

important role in exploring the search landscape in order to locate the global 

optimum. Again, this study only focused on exploration and exploitation in context 

of the parameter that influences the pheromone trail, 𝛼 while did not take into 

consideration of the parameter that influences the heuristics, 𝛽.  This is a key 

parameter in ACO that can improve the performance  as suggested in [45] that 

should be considered when introducing parameter adaptation method. 

 

Table 2.2 Summary of individual-level heterogeneity. 

Title Author Year Drawback 

Ant Colony Optimization with 

cunning ants. [77] 

Tsutsui 2006 Exploration vs 

exploitation 

imbalance. 

Heterogeneous sensitive ant 

model for combinatorial 

optimization. [81] 

Chira, Dumitrescu, 

and Pintea 

2008 Only single 

parameter varied 

(α). 

Adaptive Ant Colony 

Optimization with Cranky Ants. 

[83] 

Yoshikawa 2009 Only involves 

pheromone 

coefficient, (α). 

Improved Robustness through 

Population Variance in Ant 

Colony Optimization. [78] 

Matthews,Sutton, 

Hains, and Whitley. 

2009 Lacks 

explanation and 

relation to the 

real world. 
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Novel ant colony optimization 

algorithm with path crossover 

and heterogeneous ants for 

path planning. [79] 

Lee and Lee 2010 Parameters kept 

constant. 

Synthetic Genes for Artificial 

Ants Diversity in Ant Colony 

Optimization Algorithms. [80] 

Nugulescu and 

Lascu 

2010 The idea not 

supported by 

results. 

Ant colony optimization using 

exploratory ants for 

constructing partial solutions. 

[84] 

Hara, Matsushima,  

Ichimura, and 

Takahama. 

 

2010 

 

Parameters were 

kept constant. 

Promoting search diversity in 

ant colony optimization with 

stubborn ants. [85] 

Abdelbar and 

Wunsch 

2012 Focused on 

exploitation that 

can cause 

stagnation. 

Ant Metaheuristics with 

Adapted Personalities for the 

Vehicle Routing Problem [86] 

Zufferey Farres 

and Glardon R. 

2015 Pre-determined 

the number of 

ants for each 

personality. 

On Heterogeneity in Foraging 

by Ant-Like Colony: How Local 

Affects Global and Vice Versa. 

[87] 

Sueoka,Nakayama, 

Ishikawa, 

Sugimoto. 

2016 Only a single 

parameter varied 

(α). 

 

Table 2.2 summarizes all individual-level heterogeneous ACO algorithms where 

each of these algorithms approaches the principle of heterogeneity from a different 

standpoint, either using different ant roles or through the implementation of problem-

specific heterogeneity. Firstly, it can be seen that there is a modest amount of 

research conducted in the heterogeneous ACO field unlike that of PSO although the 
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concept has been proven to improve the performance of optimization algorithms. 

Secondly, the algorithms reviewed mostly adopt static or constant parameter 

settings or vary only a single ACO parameter even though it is known that both 𝛼 and 

𝛽 should be taken into account for parameter adaptation. The algorithms discussed 

above, approach the principle of heterogeneity from a different standpoint, either 

using different ant roles or through the implementation of problem-specific 

heterogeneity. The approach taken in this paper is one of biological plausibility for 

ants with similar roles, but differing behavioural traits, which are being drawn from a 

mathematical distribution. Therefore, this study analyses the heterogeneity in the 

ACO approach by randomly sampling the 𝛼 and 𝛽 parameters from two different 

distributions (explained later) within a pre-defined range. This allows each ant to 

have distinctive ‘behavioural traits’ in relation to a pair of 𝛼 and 𝛽 values that remain 

constant throughout the search process. In order to measure the effectiveness of 

the proposed approach in this study, both static (parameters do not change over 

time) and dynamic approach (the parameter changes over time via adaptive 

approach) is implemented as most of the heterogeneous ACO approaches 

presented above are static which put restriction while analysing the efficiency of an 

approach. 

2.10.2.2 Multi-colony heterogeneity 

Multi-colony heterogeneity indicates a colony of ants that consists of more 

than one sub-colony where each sub-colony differs in terms of its parameter settings 

or  ‘behavioural traits’ while agents in each sub-colony have the same settings. An 

example of multi-colony heterogeneous ACO was proposed by Zhang et al. [88] 

where each sub-colony has its own pheromone updating rule that is distinguished 

from the other in order to achieve a better balance between exploration and 

exploitation of the search process. Therefore, the authors proposed two sub-

colonies with one was implemented with Elitist Ant System (EAS) and the other 

implemented with Ant Colony System (ACS) characteristics respectively. However, 

the authors indicated that the algorithm still converges to sub-optimal solutions even 

though it is capable of overcoming the stagnation problem. Melo et al [89] proposed 

a multi-caste Ant Colony System (ACS) where the whole colony was divided into 
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several castes and each caste has its own preference towards q0, the parameter 

that controls the degree of exploration or exploitation in ACS. Two multi-caste 

variants of ACS were presented that allows the usage of different values of q0 in a 

single run of algorithm which encompasses const-multi- caste (Multiple castes with 

a fixed number of ants and q0 value) and Jump-multi-caste (Different castes but 

ants are allowed to migrate from one group to the other for search). Results reported 

reveal that multi-caste configurations are subjected to more robustness than ACS 

which are effective in avoiding poor performance caused due to the suboptimal 

parameters being selected. Due to this, the proposed solution was effective in 

finding good solution without adopting the exact configuration. In another study, L. 

Isabel et al [12] introduced two variants of multi-colony ACO firstly by introducing 

sub-colonies that exchange communication or good solutions periodically among 

the sub-colonies and secondly, sub-colonies with different q0 and have the ability to 

migrate between sub-colonies. The author claimed that an ideal number of colonies 

is dependent on the number of iterations available and thus continues to improve at 

a higher rate as the search progress. The results illustrate that multi-colony 

configurations were able to avoid premature convergence which provides the main 

reason for the improvement at a later stage of research. Results support the 

advantage of self-adapting the parameters but multi-colony has also a drawback of 

computational cost as it was devised to run on a single processor. Mavrovouniotis 

et al [90] had experimented with both homogeneous and heterogeneous multi-

colony ACO. The homogeneous sub-colonies have the same evaporation rate while 

the heterogeneous sub-colonies were set with different evaporation rate each. The 

authors had reported an overall improvement in diversity when heterogeneous sub-

colonies were applied but were outperformed by the homogeneous approach in 

most of the test cases. The authors suggested that this can be due to the choice of 

parameters used to create a heterogeneous approach.  

In summary, a real ant colony does not have sub-colonies except castes 

determined by the division of labour i.e queen, soldier or forager ants [91]. In addition 

to this, the algorithmic complexity caused by the multi-colony approach as well as 

the computational cost is not desirable. Therefore, the main reason for the 

consideration of individual-level heterogeneity in this study is that the population of 
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the colony is not divided into sub-groups but is a whole group of ants with different 

responsibilities according to their role hence the direction taken in this research that 

is to analyse individual-level heterogeneity.  

2.10.3 Hybrid ACO 

Hybrid versions of ACO have been recently proposed in which ACO is 

combined with other methods to solve combinatorial optimization problems. Blum 

[92] had suggested that hybridization is recognized to be an essential aspect of high 

performing algorithms. Pure algorithms are inferior to hybridizations in terms of 

performance specifically when it comes to solving a complex problem. In fact, most 

hybridization of the current state-of-the-art ACO algorithms includes approaches 

and methods from other optimization techniques. Local search-based approaches 

such as tabu search, local search, iterated local search or hill climbing are the 

earliest types of hybridization that were incorporated into ACO. However, these 

hybridizations performed poorly when applied on large problem instances with an 

increase in the search spaces or highly complicated problems where finding feasible 

solutions are difficult. Due to this, some researchers created a hybrid ACO by 

incorporating artificial intelligence (AI) approaches such as constraint programming 

(CP) into ACO algorithms [92]. One reason why ACO algorithms are especially 

suited for this type of hybridization is because of the nature of the algorithm that 

builds its solution constructively. Due to this, the study in chapter 5 takes this as an 

inspiration and proposes a hybrid algorithm between self-adaptive Heterogeneous 

ACO that incorporates a GA-like approach and 3-Opt local search.  

One of the first studies to incorporate ACO with GA is proposed by Botee 

and Bonabeau [56] where a GA was used to evolve the parameters while ACO was 

used to explore the search landscape. ACS was used as the base algorithm where 

the ant colony was divided into three castes according to their respective q0 values. 

The approach was tested on two small scale TSP instances and the results indicate 

that the approach is time-consuming. Pilat and White [93] tried to improve the 

performance of ACS by integrating the algorithm with GA thus creating a hybrid 

approach. Empirical results suggest that the algorithm converges quickly to good 
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solutions initially but then unable to improve thereafter. Therefore, the authors 

suggested that the approach can be used to find initial solutions before allowing the 

standard ACS to exploit these initial solutions. The authors in [80] reviewed that a 

GA approach can be implemented in ACO especially for dynamic problems but they 

failed to support the claim with any valuable results. Lee et al [94] deploy a hybrid 

of ACO and GA to solve the path planning of mobile robots. However, it is to be 

noted that firstly, the algorithm was not tested on a common problem instances that 

makes comparison fair comparison impossible and secondly, the algorithm is quite 

complex in nature making it difficult to replicate or compare. A hybrid approach 

between ACO and GA was proposed by Wang et al [95] that incorporates crossover 

and inversion to enhance the global search capability of the algorithm while the 

colony size is set as adaptive. 𝛼, 𝛽 and ρ were drawn from a pre-defined range of 

values. However, the author did not mention the encoding scheme used as well as 

the mutation operator. If binary encoding is used in this study, then crossover and 

inversion can cause algorithm complexity and time-consuming. Another similar 

approach is by Deng et al [96] who proposed a GA-ACO hybrid algorithm where 

ACO represents the population in GA while each ant represents the individual 

component in GA. Even though the comparison results are promising, the authors 

did not elaborate on the parent selection, replacement and mutation operator thus 

lacking important information. The authors in [97] implemented the ACO-GA 

cooperation in order to balance the exploration and exploitation of the algorithms as 

well as to adapt its parameters. Comparison results indicate better performance in 

the proposed approach.  

    Two popular swarm inspired methods in computational intelligence are ACO and 

PSO where PSO is simple and promising, and  requires less computation time, 

though it faces difficulties for solving discrete optimization problems while ACO has 

demonstrated to be an efficient and effective tool for combinatorial optimization 

problems. The latest trend in hybridization is to combine ACO with PSO in which the 

ACO is subjected to explore the search landscape while the PSO is being used to 

search optimal parameters in the parameter landscape. Ouyang and Zhou [98] 

proposed a hybridization of ACO and PSO for solving large scale TSP where the 

authors included a simple 2-Opt [99] local search procedure to improve the solutions 
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found. The algorithm was compared against the conventional ACO algorithms and 

improvement is reported over other approaches however comparison was not made 

against any other state-of-the-art approaches. Elloumi et al [100][101] proposed a 

hybridization between PSO and ACO where the pheromone trail is used as the 

particle’s weight for better global search. However, a thorough and clear explanation 

of the cooperation between these two algorithms was lacking. Mahi et al [47] explore 

in detail the hybridization of PSO-ACO with 3-Opt algorithm. Interestingly, the 

authors suggested an approach where the PSO algorithm optimizes the 𝛼 and 𝛽 

values which then act as inputs to the ACO for exploring the search space. The 3-

Opt local search procedure is used to improve on the solution found by ACO. 

Extensive comparison results against other algorithms indicate better performance 

demonstrating that this is one of the state-of-the-art methods in hybrid ACO 

therefore used as a comparator in experiments in Chapter 5. A further approach in 

Gulcu et al [48] proposed a parallel ACO with 3-Opt algorithm where the ant colony 

is divided into several sub-populations known as a multi-colony approach. The 

colonies run in parallel on different computers and the global tour is shared among 

the colonies occasionally to guide the colonies toward the global best tour. In 

addition to that, the sub-colonies also perform the 3-Opt procedure to their best tour 

in order to improve the solution found by the ACO algorithm. An interesting element 

in the proposed approach is that if a sub-colony is stuck in local optima, other sub-

colonies are able to provide help by sharing its best tour hence enabling the sub-

colony to escape from the phenomenon. However, several computers to perform 

distributed computing are required to implement this approach and the algorithm is 

highly complex as it requires occasional communication between the sub-colonies. 

As a state-of-the-art approach, this is also used as a comparator in the adaptive 

approach methods described in Chapter 5. However, it should be noted that the real 

ant colonies only consist of single colonies and are separated by the division of 

labour.  

Most of the studies discussed lack a credible explanation of the proposed 

approach especially the underlying mechanism and the cooperation of the hybrid 

algorithms. Secondly, most of the algorithms involve complex procedures that are 

time-consuming in solving a problem. Having said that, a thorough explanation of 
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the research work was explained in [11] and [12] while the results are competitive 

when compared against other approaches. Therefore, these two state-of-the-art 

algorithms will be used to compare against the proposed approach in Chapter 5.  

2.11 Concluding remarks 

This chapter presents an introduction to swarm intelligence in general and 

more specifically ACO. Interestingly, individually simple agent, ants as a whole are 

capable of complex behaviours such as nest building and maintenance, nest 

defence, foraging for food and many more. These are only possible due to what is 

known as the ‘emergent behaviour’ where the colony does not require any 

centralized control in solving complex problems. This section also primarily focused 

on the biological explanation of the foraging behaviour of real ants that acts as the 

main inspiration for the ACO algorithms. More importantly, biological researchers 

suggest the existence of heterogeneity in real ants and how an individual ant has its 

own preferences or behaviour especially in solving problems such as choosing a 

nest. Hence, this acts as an inspiration for the proposed approach.  

Moreover, the ACO field has seen tremendous growth since the introduction 

of AS both in terms of new variants and applications that have been solved by ACO. 

However, it has been reported in several studies that the performance of heuristics, 

in general, is highly dependent on the parameter settings hence can easily 

deteriorate if not well-tune. However, tuning the optimal parameter of ACO for every 

problem or problem instance is tedious and almost impossible. Therefore, this 

chapter discussed and proposed both ‘offline’ and ‘online’ parameter control 

techniques through the proposed heterogeneous ACO approach to overcome the 

aforementioned problem. Apart from that, the static approach is generally deployed 

especially when it comes to heterogeneous studies that may limit the effectiveness 

of the algorithm. Therefore, both passive and active parameter exploration 

approaches are studied and deployed to improve the efficiency of the algorithm 

effectively.     
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Lastly, there are certain metrics over which the performance of a certain 

algorithm is measured which is either fitness solution based or behaviour-based that 

provides the fundamentals in analysing the efficiency of optimization algorithm when 

implemented to a certain optimization problem. The inspiration from the 

heterogeneity in real ants, description of conventional ACO in particular AS and 

MMAS, and the discussion on parameter adaptation technique provide a strong 

basis for the next chapter. 
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Chapter 3   

Heterogeneous Ant Colony Optimization 

via Uniform Distribution. 

Researchers have proven that real ants differ from one another in terms of their 

morphological size and behavioural traits even though they belong to the same ant 

colony. As shown in Chapter 2, these differences allow the colony to achieve greater 

efficiency in surviving the harsh conditions of the real world. Hence, this chapter 

presents and analyses the effects of diverse behavioural traits sampled via different 

distributions in heterogeneous ACO to solve NP-hard combinatorial optimization 

problems. The heterogeneous ant colony consists of a collection of diverse but 

bounded agents where each agent has a distinctive bias towards the pheromone 

trail and local heuristics. The well-known problem of the traveling salesman problem 

TSP also described in Chapter 2, is used to demonstrate the capability of the 

proposed method. 
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3.1 Motivation 

Even though ACO has been able to solve various optimization problems 

and can broadly be regarded as successful, there are still drawbacks affecting the 

performance of the algorithm. A significant issue with ACO, as in most other 

metaheuristic approaches is to find a balance between exploitation and exploration. 

Exploration of the search space denotes action by the search agent in moving 

towards unexplored areas while exploitation is a process of concentration of the 

algorithm in the areas of the search space where good quality solutions have been 

previously been found. Several studies reviewed in [9] show that a proper balance 

between exploitation and exploration is required in order for a metaheuristic 

algorithm to achieve good to optimal results. Furthermore, the balance allows the 

algorithm to find good solutions quickly but at the same time increases its capability 

of finding new solutions or promising regions. Another drawback of ACO is 

premature convergence towards local optima or suboptimal solutions. The 

occurrence of this phenomenon is partially due to non-optimal parameter settings 

in addition to a lack of diversity in the population [102] of the colony thus causing 

the ACO algorithm to get stuck in local optima. As a result of this, a number of ACO 

algorithms display stagnation behaviour where all ants generate the same tour 

which may not even be a local optimum. Most ACO algorithms are not able to 

escape from the stagnation behaviour and improve on the fitness solution found 

because of the absence of diversity in the homogeneous population that is deployed 

in the algorithm. One potential contributing reason for this is that the population is 

homogeneous and consists of agents that are set to identical parameters especially 

in relation to pheromone (𝛼) and heuristics coefficients (𝛽) in ACO. Both 𝛼 and 𝛽 

are parameters that control the relative importance of the pheromone trail and local 

heuristics used in the transition probability [6] where a larger 𝛼 will cause the fitness 

solution to have a higher influence of the pheromone trail while a larger 𝛽 will bias 

the solution toward shorter path. Researchers deploy the homogeneous population 

concept in most optimization algorithms because it is easy to implement and less 

complex but varying these parameters according to a pre-defined rule or some 

adaptive measures can increase the effectiveness of the algorithm [45]. The rule of 

thumb in any optimization algorithm is that too much emphasis on pheromone trail 
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or local heuristics may hinder the performance of the algorithm through over 

exploration or exploitation. Finally, on a lesser note of importance, biological 

researchers have proven that heterogeneity does exist in social insects and plays 

an important role in determining the efficiency of the colony [103][33][104][28][27]. 

Therefore, this investigative approach was conducted to study the influence of each 

ant having different behavioural characteristics or ‘traits’ in contrast to standard 

ACO where all ants have the same behavioural traits. 

3.2 Formulations of the Heterogeneous Approach 

The main aim of this chapter is to study and analyse the ant colonies as 

heterogeneous, multi-behaviours agents that can further improve the performance 

of the algorithm. The hypothesis is that with heterogeneity, a mixture of ants that 

are more inclined towards the exploration of the search space with others that 

exploit the best path found creates a balance in the search process. This creates a 

co-existence of search strategies as different strategies are required at different 

stages of the search process. The conventional ACO with static homogeneous 

parameter settings will not be able to interchange between exploration and 

exploitation strategies due to the fixed search behaviour where normally the 

algorithm starts with exploration before exploiting the solutions found. However, this 

search strategy of conventional ACO might hinder the performance of the algorithm 

especially when the algorithm is stuck in local optima. In addition to that, the 

performance of these algorithms is dependent on the parameter settings. The 

proposed heterogeneous approach is capable of overcoming this drawback due to 

the behaviours of the ants of which are randomly initialized either to be more inclined 

towards exploration or exploitation. The algorithm proposed in this study is a 

heterogeneous method that works by pre-assigning a random behavioural trait for 

each of the ants in the population size during initialization that will not change during 

the iterations, as would be the case with genetic variation in real ants. Each 

behaviour has a pair of continuous traits that can be related to pheromone trail 

intensity and visibility or also known as the local heuristic information drawn from a 

distribution. This research work has studied the effects of initializing the ant’s 
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population with two different distributions, the uniform distribution (this chapter) and 

the normal distribution (chapter 4). In a continuous uniform distribution with the 

interval of [a,b], each ant has an equal probability of being assigned to a value within 

the range of the interval while in a continuous normal distribution, each ant has a 

higher probability of being assigned to a value close to the central value known as 

the mean value, μ. The normal distribution or also known as the Gaussian 

distribution is the most widely used because most of the phenomenon in nature 

such as height and weight of the human population are normal distributions hence 

the tendency to be used in a study. Figure 3.1a illustrates the example of the initial 

population of the colony drawn from a uniform distribution while Figure 3.1b depicts 

the initial population of the colony drawn from a Gaussian distribution. The range of 

values used in both uniform and normal distribution heterogeneous approach is 

centered around parameter values close to those suggested by Dorigo [6] at the 

inception of the ACO technique (explained later).  

  

         (a)                                                          (b) 

Figure 3.1: Example of the initial population of a single trial drawn from (a) uniform 

distribution and (b) normal distribution. 
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3.2.1 Design of the Proposed Algorithm 

 

Figure 3.2: Flowchart of the proposed heterogeneous approach. 
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Figure 3.2 depicts the flowchart of the proposed heterogeneous approach 

where the algorithm starts by accepting input in the form of distance between nodes 

of the TSP graph followed by initialization of the parameters such as the stopping 

criterion, number of ants, constant value Q, initial pheromone and pheromone 

evaporation rate. The major difference between this approach and the conventional 

ACO is at the population initialization stage where agents will be assigned with 

𝛼 and 𝛽 values that are randomly drawn from either uniform or normal distribution 

rather than identical parameters as in the traditional ACO. In the uniform distribution 

approach, the ants will have equal probability of being assigned 𝛼 and 𝛽 within the 

range while in the normal distribution, majority of ants will have 𝛼 and 𝛽  values 

around the pre-determined mean 𝛼 and 𝛽. The range (uniform distribution) and 

selection of mean (normal distribution) for 𝛼 and 𝛽 values were based on 

suggestions of Dorigo et al in [3]  as well as additional extensive experiments that 

have been conducted to evaluate this matter (discussed briefly in the following 

section). The proposed algorithm begins by randomly placing ants in the nodes of 

the graph in which every ant moves to a new node according to the probability rule. 

Each ant has its own preference in deciding the next node due to the individual 

behavioural trait incorporated in this study. TSP used in this study is a fully 

connected graph with each edge labelled by trail intensity 𝜏𝑖𝑗(𝑡) and η 𝑖𝑗(𝑡) at time 𝑡. 

An ant at node i decides the next node with a probability rule that is based on the 

distance to that node and the amount of trail intensity on the connecting edge. This 

tour construction phase is repeated until all the ants have completed their tours. The 

pheromone updating and pheromone evaporation are two main components in the 

next phase where the pheromone trails are updated once all ants have constructed 

its tour while pheromone evaporation stops pheromone trails from an unlimited 

accumulation of pheromone that may cause stagnation in the search process. 

Depending on the base algorithm used in the study, all ants (AS) or only the ant that 

generates the iteration-best solution 𝑇𝑏𝑒𝑠𝑡(𝑡) (MMAS) is allowed to globally update 

the pheromone. Pheromone evaporation takes place on all path with the amount of 

evaporation is dependent on the pheromone evaporation rate, 𝜌. When base 

algorithm MMAS was used, both global-best G 𝑏𝑒𝑠𝑡(𝑡) and iteration-best 𝑇𝑏𝑒𝑠𝑡(𝑡) 

solutions were used interchangeably to deposit pheromone. Daemon action is an 

optional stage which is usually used to perform additional steps to the solution found 
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such as local search procedure or additional pheromone deposition. The algorithm 

terminates when the required number of function evaluations is reached. 

 

 

Figure 3.3: The principle of heterogeneity in ACO. 

 

Figure 3.3 illustrates the heterogeneous approach in ACO where each ant will be 

assigned with individual 𝛼 and 𝛽 values compared to identical values for 

conventional ACO algorithms. The concept of heterogeneity is proposed by 

modifying the probability rule (Equation 1 in Chapter 2) to incorporate the 

behavioural traits thus producing equation 15. Therefore, the ants are governed by 

the probabilistic rule but their preference can be controlled by the heterogeneous 

elements that allow each ant to have a different perspective while exploring or 

exploiting the search space by introducing αk and βk which represents the individual 

behavioural traits. 

𝑃𝑖𝑗
𝑘 =  

[𝜏𝑖𝑗]
𝛼𝑘

[𝜂𝑖𝑗]
𝛽𝑘

∑ [𝜏𝑖𝑙]
𝛼𝑘

[𝜂𝑖𝑙]
𝛽𝑘

(𝑙 𝜖 𝑁𝑖
𝑘)

  𝑖𝑓 𝑗 ∈  𝑁𝑖
𝑘     or   𝑃𝑖𝑗

𝑘
= 0 𝑖𝑓 𝑗 ∉ 𝑁𝑖

𝑘
                     (15)
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3.3 Experimental Setup, Results & Discussion for 

Heterogeneous Ant System (HAS) 

3.3.1 Experimental Setup 

The experiments were conducted on an Intel Core i7 CPU-based computer 

running Windows 7 equipped with 4GB RAM. The traditional Ant System (AS) and 

Max-Min Ant System (MMAS) approach, which are used as the base algorithm to 

implement the heterogeneous approach, are developed using the MATLAB version 

R2015a. AS was chosen as part of this study due to being the 1st ACO algorithm 

that proved the artificial ant's concept and the algorithm allows all ants to deposit 

pheromone thus the effects of heterogeneity is much bigger in AS. It is important to 

note that MMAS was chosen because it is the best conventional ACO algorithm [5]. 

Each algorithm is tested using several TSP instances taken from TSPLIB [2] where 

the value in the problem name indicates the number of cities of the instances i.e 

Oliver30 is a 30-city TSP instance. All results are of 25 trials in experiments 

hereafter except stated otherwise. This conforms with the general number of trials 

in any swarm intelligence-based optimization algorithm study which are usually 

between 15 to 30 trials. The function evaluations for all the experiments were set as 

k.n.10000 where k=1 for symmetrical TSPs used, n=number of cities of the TSP 

instance and 10 000 is the maximum number of iterations unless stated otherwise. 

3.3.2 Verifying the Base Algorithm 

   Firstly, the developed AS and MMAS (the traditional algorithm that was 

written from scratch on  were compared with that of [3] and [5] to show a level of 

confidence that the developed algorithm is similar to the original version. All the 

parameters were set according to the authors’ recommendations where for AS the 

parameters were set as follows: 𝛼=1, 𝛽=5, 𝜌=0.5 and 𝑚 =  𝑛 where 𝑚 is the number 

of ants and 𝑛 is the number of cities related to the TSP. Meanwhile, the parameters 

for MMAS were set as follows: 𝛼 = 1, 𝛽 = 2, 𝑚 =  𝑛, 𝜌 = 0.98 and 𝑃𝑏𝑒𝑠𝑡 is 0.05. Table 
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3.1 shows the comparison between the developed algorithms against its original 

versions where the results for the developed algorithms are the average of 15 trials. 

Several TSP instances were used namely 30-city, 51-city, 100-city and 198-city 

instances where known optimum tours exist. Equation 4 [105] represents the 

percentage difference that was used to indicate the similarity of the base algorithm’s 

performance to the original algorithm. As can be seen in the equation below, the 

average is used as the referral value as not to create bias towards any values used 

in the equation. If the percentage difference is small, then the performance of the 

algorithm is said to be similar and vice versa. 

  

|𝑉𝑎𝑙𝑢𝑒 1− 𝑉𝑎𝑙𝑢𝑒 2|

(𝑉𝑎𝑙𝑢𝑒 1+𝑉𝑎𝑙𝑢𝑒 2)/2
 𝑥 100                                                 (16)

   

Table 3.1: Developed AS, MMAS vs Original AS, MMAS. Results show the average 

of the best cost. (Note: Average of 15 trials) 

TSP 

Optimum 

[106] 

Developed 

AS 
AS 

Percentage 

difference 

(%) 

Developed 

MMAS 

MMAS 

[5] 

Percentage 

difference 

(%) 

Oliver 

30 
423.74 423.74 423.74 [3] 0 N.A N.A N.A 

Eil51 428.87 437.560 437.3 [5] 0.06 427.5 427.1 0.09 

kroA 

100 
21285.4 22451.98 22471.4 [5] 0.09 21299.6 21291.6 0.04 

d198 15808.65 16692.24 16702.1 [5] 0.03 15960.2 15956.8 0.02 

 

As can be seen from the table, the developed AS has almost identical result 

compared to the original AS for Oliver30 while MMAS was never tested using this 

particular instance by the author. In addition to that, eil51.tsp, kroA100.tsp and 

d198.tsp were tested on both variants of the developed base algorithm and 

comparison results suggest that the average best cost of the developed algorithms 

and that of the original developers’ are very similar demonstrating that the base 
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algorithm formulations are working appropriately. The percentage differences are 

very small thus this supports this claim.  

3.3.3 Parameter Exploration for HAS 

An ACO algorithm’s performance and convergence speed are very much 

dependant on the parameter selection [107]. However, it is also well known that 

optimal parameters vary according to problems or even different instances of the 

same problem  [20]. In addition to that, most of ACO algorithms deploy a 

homogeneous approach where the parameter values were set intuitively and remain 

static throughout the run. However, varying parameters before or during the run can 

improve the performance of the algorithm [45]. Therefore, an extensive experiment 

based on AS (and later MMAS) was conducted to find the best range of 𝛼 and 𝛽 for 

our heterogeneous approach where lower and upper bounds of 𝛼 and 𝛽 were based 

on the recommendation of [3]. We have implemented an approach from [45] that 

suggests one way of parameter exploration is to find out the good to optimal 

parameters before the actual run of the algorithm. Instead of creating a 

homogeneous group with the same 𝛼 and 𝛽 values, the proposed approach varies 

these values to create a heterogeneous colony of ants randomly drawn from a 

uniform distribution of pre-defined range. Both 𝛼 and 𝛽 play an important role in 

exploration and exploitation of the search space hence varying both parameters will 

introduce more variance in the agents. In addition, Stützle et al [45] suggest that 

both 𝛼 and 𝛽 are good candidates for parameter adaptation in ACO. Figure 3.4 

illustrates the recommendation of very good parameter settings (noted by ● symbol) 

for AS by Dorigo et al [6]. As can be seen from Figure 3.4, the authors indicate that 

suggested values for α are between 0.25 and 1.5 while β has a range of 1 to 5. 

Therefore, extensive experiments were conducted to explore the suitable range to 

create the heterogeneous approach based on AS where the ants were drawn from 

a uniform distribution of α between 0 and 1 and 0 to 2 while a uniformly distributed 

β was varied between 0 and 5, narrowed down to 4 to 5. The other parameters were 

set according to [3]: 10 000 iterations, m = n, ρ = 0.5, Q = 100, initial pheromone 

trail = m/Lnn where Lnn is the tour length of the tsp instance using the nearest 

neighbour heuristic. 
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●  Parameters that find optimal solution without entering stagnation. 

∞  Parameters that do not find good solutions but did not enter stagnation. 

 Parameters that do not find good solutions and causes the algorithm to go into  

stagnation. 

Figure 3.4: Ant System (AS) behaviour for different α-β combinations. 

Reproduced from [6] 

 The following experiment samples the parameters to find the suitable range 

for the heterogeneous approach by exploring the ranges over several TSP 

instances that are called training set before implementing the optimal settings on 

the actual test instances [16, p. 5]. This method of finding the optimal settings is 

well-known in machine learning [61][108, p. 12]. 3 tsp instances were used to test 

the algorithm namely oliver30.tsp (integer length optimum = 420, real length 

optimum = 423.7406), eil51.tsp (integer length optimum = 426, real length optimum 

= 428. 8716) and eil101.tsp (integer length optimum = 629). Table 3.2 summarizes 

the outcome of our extensive experiment and the results are average of the best 

cost found in 15 trials. The table indicates that the Heterogeneous Ant System 

(HAS) approach with α between 0 and 2, β between 3 and 5 has the best 

performance by having the lowest average best cost in all three TSP instances 

compared to other parameter settings. The results also suggest that the 

performance of the algorithm deteriorates if the colony is too diverse (range of α or 

β too high) or achieve sub-optimal performance when the colony’s diversity is low 

(range of α or β too small). This parameter exploration experiment allows us to find 

the right amount of diversity to be introduced in the colony for the heterogeneous 

approach. 
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Figure 3.5 illustrates the boxplot from the best cost of 15 trials of HAS with 

different 𝛼 and 𝛽 range as in Table 3.2 which is shown in x-axis when tested on 

Oliver 30 TSP instance. Four parameter settings of HAS were able to find the 

optimum tour in all the trials and this can be due to the right amount of diversity in 

the parameter combinations and secondly due to the fact that Oliver30 is rather a 

small TSP instance hence HAS with afore-mentioned parameter settings were all 

able to locate the optimum tour. 

 

Table 3.2: Results from parameter exploration of Heterogeneous Ant System (HAS) 

where α is uniformly distributed between 0 and 1 and 0 and 2 while β distribution 

varies. Algorithm tested on oliver30.tsp, eil51.tsp and eil101.tsp. Results represent 

the average best cost of 15 trials while values in bold represent the best in each 

category. 

α β oliver30 eil51 eil101 

0 -1 0 -5 427.0934 445.301 699.1238 

0 -1 1 -5 425.3379 441.6734 685.7444 

0 -1 2 -5 426.0892 439.5271 678.2238 

0 -1 3 -5 423.7406 436.2947 661.9443 

0- 1 4 - 5 423.7406 436.3278 659.4744 

0 -2 0 -5 427.2749 437.1203 688.2972 

0 -2 1 -5 424.6639 442.3749 672.3319 

0 -2 2 -5 423.9117 438.0173 665.7093 

0 -2 3 -5 423.7406 436.0904 645.5318 

0- 2 4 - 5 423.7406 436.6167 651.2821 
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Figure 3.5: Boxplots representing 15 trials of different HAS parameter settings as 

shown in X-axis tested against oliver30.tsp. (Note: 0_1 or 0_2 indicates the range 

of α values for heterogeneous colony while 0_5 to 4_5 indicates the range of β 

values). 

The Kruskal-Wallis statistical test is used to test the performance of HAS with 

different range of parameter settings in terms of significant difference in 

performance between each of the parameter settings. In addition to this, multiple 

comparison test or the post-hoc testing using Bonferroni correction method is 

performed to identify the best HAS parameter settings. This test is necessary in 

order to prevent Type 1 error in rejecting the null hypothesis when multiple 

comparisons are made. Kruskal-Wallis test with a significance level of α = 0.05 

produced a p-value of 1.6378e-09 hence indicating there is a significant difference 

between the parameter combinations. With Bonferroni correction, the significance 

level of α = 0.05 is divided by the number of hypotheses in the test i.e, in this case, 

is 10. Therefore, the post-hoc test with a p-value of less than 0.005 is considered 

as significantly different. 
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Table 3.3: p-values of post hoc test using the Bonferroni correction method for HAS tested on oliver30.tsp (Opt=423.74). p-values in 

bold indicate the significant difference between the algorithms in comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

Oliver 30 
HAS 

0_1,0_5 0_1,1_5 0_1,2_5 0_1,3_5 0_1,4_5 0_2,0_5 0_2,1_5 0_2,2_5 0_2,3_5 0_2,4_5 

HAS 

0_1,0_5 X 1 1 0.0008 0.0008 1 0.6821 0.0242 0.0008 0.0008 

0_1,1_5 1 X 1 0.159 0.159 1 1 1 0.159 0.159 

0_1,2_5 1 1 X 0.0172 0.0172 1 1 0.2985 0.0172 0.0172 

0_1,3_5 0.0008 0.159 0.0172 X 1 0.0018 1 1 1 1 

0_1,4_5 0.0008 0.159 0.0172 1 X 0.0018 1 1 1 1 

0_2,0_5 1 1 1 0.0018 0.0018 X 1 0.0479 0.0018 0.0018 

0_2,1_5 0.6821 1 1 1 1 1 X 1 1 1 

0_2,2_5 0.0242 1 0.2985 1 1 0.0479 1 X 1 1 

0_2,3_5 0.0008 0.159 0.0172 1 1 0.0018 1 1 X 1 

0_2,4_5 0.0008 0.159 0.0172 1 1 0.0018 1 1 1 X 
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(a)                           (b)                  

       

‘  

     (c)                              (d) 

Figure 3.6: Confidence intervals of each of the HAS parameter settings with post 

hoc Bonferroni correction method and its corresponding statistically significant 

combination when tested on oliver30.tsp. Two groups are significantly different if 

their intervals are disjoint and vice versa if their intervals overlap. 

 Figure 3.6 (and other similar figures hereafter) illustrate the confidence interval 

comparison between HAS with different 𝛼 and 𝛽 combinations as shown by the y-

axis. The x-axis represents the difference in the mean fitness solution of each 

parameter combination. The blue line indicates the subject (HAS approach) 

selected for analysis/to be compared with while the selected subject has 

performance that is statisticaly different against HAS approach represented by the 

red lines and this is indicated by the non-overlapping lines. Lines that overlap (the 

grey lines) indicate the performance of the selected HAS approach (blue-line) is not 
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statistically different when compared with the HAS approach with grey lines. Overall, 

Figure 3.6 supports the results from Table 3.3 where the performance of HAS with 

𝛼 between 0 and 1, 𝛽 between 3 and 5 (blue line in Figure 3.6a) is significantly 

different only against that of HAS with 𝛼 between 0 and 1, 𝛽 between 0 and 5 and 

that of HAS with 𝛼 between 0 and 2, 𝛽 between 0 and 5. This is indicated by the 

interval lines which did not overlap (highlighted in red). Figure 3.6b, Figure 3.6c and 

Figure 3.6d show the same scenario in regard to the significant difference between 

the parameter combinations.  

 

Figure 3.7: Boxplots representing 15 trials of different HAS parameter settings as 

shown in X-axis tested against eil51.tsp. (Note: 0-1 or 0-2 indicates the range of α 

values for heterogeneous colony while 0-5 to 4-5 indicates the range of β values). 

Figure 3.7 represents the best cost of HAS with different 𝛼 and 𝛽 range to create 

the heterogeneous approach in 15 trials. It can be noticed that HAS initialized with 

α: 0-1, β: 3-5 and α: 0-2, β: 3-5 have the best performance compared against other 

parameter combinations. HAS initialized with α: 0-2, β: 3-5 managed to find the best 

cost of 431.99 out of 15 trials with an average of 436.09. In the meantime, the best 

cost found by HAS initialized with α: 0-1, β: 3-5 is 432.24 with an average of 15 trials 

of 436.29. Figure 3.9 illustrates the result of multiple comparisons using the 
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Bonferroni correction method. As indicated by the results shown in Figure 3.7 and 

supported by Table 3.4 and Figure 3.9, it can clearly be seen that none of the HAS 

settings is significantly different when compared against other combinations. This is 

shown by overlapping confidence interval in Figure 3.8 with the closest of being 

statistically significant for HAS with α: 0-2, β: 3-5 is HAS initialized by α: 0-1, β: 0-5. 

Table 3.4 also suggest this where the p-value for HAS  initialized with α: 0-2, β: 3-5 

against HAS initialized with α: 0-1, β: 0-5 is 0.008 which is very close to being 

statistically significant. 
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Table 3.4: p-values of post hoc test using the Bonferroni correction method for HAS with different range of 𝛼 and 𝛽 values tested on 

eil51.tsp (Opt=426). p-values in bold indicate significant difference between the algorithms in comparison. 

 

eil51 
HAS 

0_1,0_5 0_1,1_5 0_1,2_5 0_1,3_5 0_1,4_5 0_2,0_5 0_2,1_5 0_2,2_5 0_2,3_5 0_2,4_5 

HAS 

0_1,0_5 X 1 1 0.0261 0.0261 0.0798 1 0.3807 0.008 0.0392 

0_1,1_5 1 X 1 0.6097 0.6097 1 1 1 0.2464 0.8283 

0_1,2_5 1 1 X 1 1 1 1 1 1 1 

0_1,3_5 0.0261 0.6097 1 X 1 1 0.5664 1 1 1 

0_1,4_5 0.0261 0.6097 1 1 X 1 0.5664 1 1 1 

0_2,0_5 0.0798 1 1 1 1 X 1 1 1 1 

0_2,1_5 1 1 1 0.5664 0.5664 1 X 1 0.2272 0.7715 

0_2,2_5 0.3807 1 1 1 1 1 1 X 1 1 

0_2,3_5 0.008 0.2464 1 1 1 1 0.2272 1 X 1 

0_2,4_5 0.0392 0.8283 1 1 1 1 0.7715 1 1 X 
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(a)                                                            (b) 

Figure 3.8: Confidence intervals of each of the HAS parameter settings with post 

hoc Bonferroni correction method and its corresponding statistically significant 

combinations when tested on eil51.tsp. Two groups are significantly different if their 

intervals are disjoint and vice versa if their intervals overlap.  

 

The lack of statistical significance in both oliver30.tsp and eil51.tsp is due to the 

small size of the TSP instance where even the base algorithm (AS) performs well 

when tested on these particular instances with the stopping criteria described in the 

methodology section. However, it is also not practical to use large TSP instances in 

this parameter exploration process as it will take a very long time to complete 

because of the increase in computational time when the problem size increases. 

Hence, 101 city TSP was used in this experiment to further validate the findings as 

this problem instance is neither too small to risk finding the optimum and skewing 

the results nor too large to carry out the required number of repeats. As indicated 

by Figure 3.9, some clear performance differences can be seen between the 

parameter combinations. Firstly, it can be noticed that a heterogeneous ant colony 

randomly initialized with α in the range of 0 and 2 has better performance when 

compared one to one against its corresponding HAS with α in the range of 0 and 1 

(HAS with α: 0-1, β: 0-5 vs HAS α: 0-2, β: 0-5, HAS with α: 0-1, β: 1-5 vs HAS α: 0-

2, β: 1-5 and so on). This suggests that the higher amount of diversity created by 

HAS with α: 0-2 compared to HAS with α: 0-1 thus allowing the colony to have more 
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freedom in choosing a path with a high concentration of pheromone which can 

improve the performance of the algorithm. Secondly, a heterogeneous colony with 

β randomly initialized between 0 and 5 is said to be too diverse while range of β 

from 4 to 5 is said to be too small or have similar behaviours thus the colony might 

not have enough behavioural diversity to be able to explore and exploit both the 

parameter and search landscape to achieve optimum parameter settings that can 

directly lead the algorithm to locate global optima.    

 

Figure 3.9: Boxplots representing 15 trials of different HAS parameter settings as 

shown in X-axis tested against eil101.tsp. (Note: 0-1 or 0-2 indicates the range of α 

values for heterogeneous colony while 0-5 to 4-5 indicates the range of β values). 
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Table 3.5: p-values of post hoc test using the Bonferroni correction method for HAS with different range of 𝛼 and 𝛽 values tested on 

eil101.tsp (Opt=629). p-values in bold indicate significant difference between the algorithms in comparison. 

 

 

 

 

 

 

eil101 
HAS 

0_1,0_5 0_1,1_5 0_1,2_5 0_1,3_5 0_1,4_5 0_2,0_5 0_2,1_5 0_2,2_5 0_2,3_5 0_2,4_5 

HAS 

0_1,0_5 X 1 1 0.0066 0.0017 1 0.6099 0.0484 0.0002 0.0002 

0_1,1_5 1 X 1 0.2837 0.0996 1 1 1 0.0002 0.0021 

0_1,2_5 1 1 X 1 0.9045 1 1 1 0.006 0.0383 

0_1,3_5 0.0066 0.2837 1 X 1 0.1087 1 1 1 1 

0_1,4_5 0.0017 0.0996 0.9045 1 X 0.0348 1 1 1 1 

0_2,0_5 1 1 1 0.1087 0.0348 X 1 0.5459 0.0001 0.0006 

0_2,1_5 0.6099 1 1 1 1 1 X 1 0.073 0.3455 

0_2,2_5 0.0484 1 1 1 1 0.5459 1 X 0.8432 1 

0_2,3_5 0.0002 0.0002 0.006 1 1 0.0001 0.073 0.8432 X 1 

0_2,4_5 0.0002 0.0021 0.0383 1 1 0.0006 0.3455 1 1 X 
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(a)                                                           (b) 

    

     (c)                                                                  (d) 

Figure 3.10: Confidence intervals of each of the HAS parameter settings with post 

hoc Bonferroni correction method and its corresponding statistically significant 

combinations when tested on eil101.tsp. Two groups are significantly different if 

their intervals are disjoint and vice versa if their intervals overlap.  

 

The Kruskal Wallis statistical test indicates p-value of 1.4533e-10 while Table 3.5 

and Figure 3.10 illustrate the multiple statistical tests with Bonferroni correction 

results. As mentioned earlier, p-values less than 0.005 is considered significantly 

different for post-hoc test with Bonferroni correction. It can be seen from Table 3.5 

that HAS initialized with α: 0-2, β: 3-5 and α: 0-2, β: 4-5 have the best performance 

due to being statistically significant against three other setups of HAS. In addition, 
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Figure 3.10a shows that HAS initialized with α: 0-1, β: 3-5 has no statistical 

difference against other parameter combinations of HAS while Figure 3.10b shows 

that the performance of HAS with α: 0-1, β: 4-5 is statistically different against HAS 

with α: 0-1, β: 0-5 only. Conversely, both Figure 3.10c and 3.10d show that the 

performance of HAS randomly initialized with α:0-2, β: 3-5 and α:0-2, β: 4-5 are 

statistically different against 3 out of 9 other parameter settings of HAS respectively. 

Therefore, the results from Table 3.2 supported by the statistical tests suggest that 

HAS initialized randomly from a uniform distribution within the range of α from 0 to 

2 and β from 3 to 5 has the best performance when tested on three different problem 

sizes of TSP. The results also give an early indication that the heterogeneous 

approach is able to locate good to optimal solution independent of the size of the 

problem. Hereafter HAS will be initialized with these settings unless stated 

otherwise. 

3.3.4 Comparison against the Base Algorithm (HAS) 

       Next, the Heterogeneous Ant System (HAS) was compared against its base 

algorithm, AS [6] based on 4 symmetrical tsp instances.  As stated by the authors 

in [41], the AS (and later MMAS [5]) systems have gone through rigorous and 

extensive experiments to determine the optimal alpha and beta settings for these 

problems. The resulting comparisons are therefore made between the randomly 

initialized heterogeneous system against well-tuned examples of the base ACO 

algorithms. HAS has the same parameter settings as AS with the only difference 

between the algorithms is that α is drawn from a uniform distribution between 0 and 

2 while β is uniformly varied from 3 and 5. In the meantime, AS used in this 

experiment is developed and verified in the previous section to be similar to that 

developed by [6]. Table 3.6 summarizes the comparison between AS and HAS on 

several TSP instances for 25 trials. It can be seen that HAS was able to locate the 

best cost of 428 while AS has a best cost of 433 out of 25 trials. In general, HAS 

improves on the best cost found by AS with an average of 436.00 compared to that 

of AS which is 437.56.  Although HAS was not able to locate the optimum of 426 

[109] in the time allotted, it has a better overall performance compared to AS in 

terms percent of deviation from the optimum. A value is said to be 1% deviation of 
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optimum when it is within the range of 1% to the optimum. In eil51.tsp case, 1% 

deviation is 1/100 x 426 (optimum value from TSPLIB [109]) =4.26+426 =430.26.  

 

426 < X< 430.26 = 1% deviation of optimum. 

430.26 < X < 434.52 = 2% deviation of optimum. 

 

Table 3.6 also shows the comparison between AS and HAS for 100-city tsp, 

kroA100.tsp. HAS managed to improve on the fitness solution compared to AS 

where the average best cost for HAS is 22347.6 and that of AS is 22469.4. Although 

both AS and HAS did not manage to find the optimum for 100-city TSP problem, 

HAS  found the  a best cost that is within 5% of the optimum 22 times compared to 

none by AS. In addition, HAS found a best cost of 22215 compared to 22384 of AS 

out of 25 trials. The table also summarizes the outcome of 25 trials of d198.tsp using 

both AS and HAS. AS found a best cost of 16356 throughout the 25 trials while HAS 

found a best cost of 16186.  In addition, HAS has a lower average compared to AS. 

Although the optimum is not found by any of the algorithms, HAS managed to find 

fitness solutions that are 3% within the optimum range 6 times and 19 times within 

4% of the optimum compared to 0 and 3 times respectively by AS. Lastly, a 

comparison was carried out between the proposed heterogeneous approach and 

AS tested on lin318.tsp and it is shown that HAS has better performance in terms 

of best cost, average and worst best cost compared to AS. Overall, HAS has better 

performance in all 4 TSP instances when compared against AS. Wilcoxon rank-sum 

test with a confidence interval of 95% was conducted to determine the statistical 

significance of the proposed approach against AS. Therefore, a p-value of less than 

0.05 indicates a statistically significant performance of the compared algorithm. A 

post hoc test with Bonferroni correction was not required here because the 

comparison was done based on 4 different TSP instances. As shown in Table 3.6, 

the p-values which are less than 0.05 indicate that the performance of HAS is 

statistically significant against that of AS for all four TSP instances. Even though 

HAS was not able to locate optimum in all four TSP instances, it managed to have 

better overall performance as shown in Figure 3.12. As can be seen, the 

heterogeneous approach has lower median when compared to the well-tuned AS 
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algorithm in all 4 TSP instances. In addition to that, even the third quartile of HAS is 

lower than the median of AS in all the boxplots. This shows that almost 75% out of 

25 trials of the best cost of HAS is better than AS for each of the TSP instance 

tested. The larger interquartile also indicates the diversity in the fitness solutions 

found by HAS unlike AS where the interquartile range is small which further support 

the claim that the heterogeneous approach is able to locate better solutions 

compared to AS.  

   
       (a)                    (b)  

   

 

      (c)                                           (d)  

     

Figure 3.11: Boxplots illustrating the performance comparison of the heterogeneous 

approach against that of AS in terms of the best cost of 25 trials tested on several 

TSP instances. The blue line in each figure represents the optimum of that particular 

instance.  
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Table 3.6: Best, average and worst cost comparison between AS & HAS for several TSP instances for 25 trials with stopping criterion 

was set at 10 000 iterations. The optimum for the TSP instances are 426 (eil51.tsp), 21282 (kroA100.tsp), 15780(d198.tsp) and 

42029(lin318.tsp). Results in bold represent best in each category. 

 

 

 

TSP Method Best Average Worst # 

Optimum 

Found 

≥ 1% 

dev of 

opt 

≥ 2% 

dev of 

opt 

≥ 3% 

dev of 

opt 

≥ 4% 

dev of 

opt 

≥ 5% 

dev of 

opt 

≥ 6% 

dev of 

opt 

p-val 

eil51 
AS 433 437.56 441 0 0 1 21 3 0 0 

0.0143 
HAS 428 436.00 442 0 1 5 15 4 0 0 

kroA100 
AS 22384 22469.4 22666 0 0 0 0 0 0 5 

3e-05 
HAS 22215 22347.6 22487 0 0 0 0 0 22 25 

d198 
AS 16356 16572.48 16724 0 0 0 0 3 3 14 

2.8e-08 
HAS 16186 16359.04 16700 0 0 0 6 19 0 0 

lin318 
AS 45517 45698.2 45882 0 0 0 0 0 0 0 

6.1e-08 
HAS 44986 45237.28 45716 0 0 0 0 0 0 0 
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Additionally, it can also be noticed both from Table 3.3 and Figure 3.11 that 

the heterogeneous approach has a greater effect as the problem size increases 

thus illustrating the effect of diversity in exploring and exploiting the search space 

to locate better solutions. Furthermore, the results also indicate that the 

heterogeneous approach can overcome the parameter tuning problem by having 

good to excellent performance even when the problem size varies. The various 

behavioural traits introduced by the heterogeneous approach in the colony allow the 

algorithm to exhibit exploration and exploitation mode simultaneously unlike 

conventional ACO algorithms that tend to explore the search space in the beginning 

before trying to exploit the initial solutions found to locate better solutions. Figure 

3.12 illustrates the convergence plot of both HAS and AS for 10 000 iterations for 

all 4 TSP instances where the figures on the left show the full version of the 

convergence plot while figures on the right are the truncated version that has been 

zoomed in for better illustration on the speed of convergence. The heterogeneous 

approach starts the search process with a higher exploration rate as can be seen in 

the figures on the left. This is because of the lack of information initially on the 

pheromone landscape for the colony to exploit. Nonetheless, the colony was able 

to locate good solutions quickly and exploited those solutions to locate better 

solutions as shown in the figures on the right which show the convergence curve of 

HAS improved on the performance of AS very early on. Figures 3.12g and 3.12h 

show that the convergence plot of the heterogeneous algorithm only improves on 

the AS after about 2500 iterations. This shows that the algorithm’s behaviour 

changes according to the problem size by further exploring and exploiting the 

search landscape to locate good solutions. A larger TSP instance or a more 

complicated problem might need a longer exploration phase which can be achieved 

by the heterogeneous approach. 
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                                          (a)                                        (b) 

   

          (c)                                        (d) 

Figure 3.12: Convergence plot of HAS and AS represented by the average best cost 

of 25 trials over 10 000 iterations. 

3.3.5 Heterogeneous Ants’ Distribution Analysis (HAS) 

The concept of heterogeneity allows for the exploration and visualization of 

the parameter space during optimization. The visualization of best-performing ants 

and their parameters in each iteration provides an understanding of the parameter 

setting best suited to different phases of the search.  It should be noted that these 

experiments explore this passively, ants are not selected for their performance at 

this stage. An adaptive method that simultaneously optimizes parameter settings is 

discussed in Chapter 5. 
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(a)                                                             (b)                                                        

 

(c) 

Figure 3.13: Histogram representing Alpha & Beta of iteration-best ants for HAS 

(eil51.tsp). 

 

Figure 3.13a illustrates the distribution of 𝛼 and 𝛽 of iteration-best ants for all trials 

of HAS when tested on eil51.tsp. As each trial is stopped at 10 000 iterations 

meaning each trial consists of 10 000 iteration-best ants and each ant has a pair of 

𝛼 and 𝛽 values assigned randomly from the pre-assigned range. Therefore, the 

figure shows the distribution of 𝛼 and 𝛽 of every iteration of all 25 trials. As can be 

seen in the figure, It can be seen the alpha values that mostly contribute are 

between 1.9 and 2, with a strong skew towards these values whereas the beta 

distribution is much more uniform with a small skew towards beta values of 4.6 and 

4.75. This shows that the heterogeneous approach introduces diversity in the 

algorithm and suggests the mechanism behind the improved performance over the 
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algorithm with a single ‘behavioural trait’. On top of that, Figure 3.13b and c 

represent the 𝛼 and 𝛽 values of the first 100 and last 100 iterations of each trial 

respectively. It can be noticed in Figure 3.14b that during the initial stages of the 

exploration, ants with low α and high β values tend to perform better in locating good 

solutions while during the later stages, ants with higher α values perform better as 

shown in Figure 3.13c. This is because initially, all the edges have the same amount 

of initial pheromone hence very little information on the pheromone landscape for 

ants that are more inclined towards higher concentration of pheromone to exploit 

on. Therefore, ants with a higher preference towards heuristics coefficient (shorter 

edges) will perform better during the early stages of the search process. As the 

pheromone build-up on the edges, there will be enough information for ants with a 

higher preference towards the pheromone coefficient to exploit this information to 

locate better solutions.  

Figure 3.14a illustrates the overall performance of the heterogeneous ant 

colony in terms of 𝛼 and 𝛽 distribution in regard to the iteration-best ants. Figure 

3.14b and c in the meantime show the distribution of 𝛼 and 𝛽 for 1st 100 and last 

100 iterations of each trial for 25 trials. Overall, it is noticeable from Figure 3.14a 

that ants in the range of 1.5< α<1.8 registered better performance by being able to 

locate good solutions while β values have a uniform distribution. The distributions 

are similar for the case of both 1st 100 and last 100 iterations of each trial where 

ants with higher β values perform best initially while as the search progresses and 

pheromone deposition increases on the edges hence ants with a higher preference 

towards pheromone perform better by exploiting this information to locate improved 

solutions. 

              

                            (a)                                                               (b) 
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(c) 

Figure 3.14: Histogram representing Alpha & Beta of iteration-best ants for HAS 

(kroA100.tsp). 

 

 

  

                          (a)                                                                (b) 
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(c) 

Figure 3.15: Histogram representing Alpha & Beta of iteration-best ants for HAS 

(d198.tsp). 

 

   

                         (a)                                                          (b) 
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(c) 

Figure 3.16: Histogram representing Alpha & Beta of iteration-best ants for HAS 

(lin318.tsp). 

 

Figure 3.15 and Figure 3.16 both suggest similar trends where strong skewness can 

be noticed towards higher 𝛼 and 𝛽 for all the iterations. The figures also support 

earlier claims in terms of ants that perform best during the 1st 100 and last 100 

iterations. It can be seen clearly that even though both α=1 and β=5 as per 

suggested in [3] are covered in the pre-determined range for heterogeneous 

approach, both 𝛼 and 𝛽 values that managed to find best cost in every iteration 

increases rapidly from 0.5 to 2 and a steady increase from 3 to 5 respectively with 

α values having a peak between 1.5 and 1.9 while β values have a peak between 

4.25 and 4.9. The algorithm shows robustness towards parameter settings as 

different ants perform better at different stages of the search process. In addition to 

that, the heterogeneous approach managed to achieve good to optimal 

performance even when tested on different problem instances. Even though the 
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results corroborate the parameter suggestion of [6], but they also suggest that these 

parameters might not be optimal for all problems or problem sizes.  

Although Figure 3.13 to 3.16 indicate that larger 𝛼 values seem to perform 

better, this can be due to the synergistic effects of the diverse population especially 

for HAS which allows all ants to affect the pheromone landscape by depositing 

pheromone. This enable ants with larger 𝛼 values to make use the knowledge 

gathered on the pheromone trail to locate better solutions. Having said that, 

however, it is worth to analyse the performance of the heterogeneous population by 

expanding the range of 𝛼 values to more than 2 in future studies and to investigate 

whether the result still corroborates to Figure 3.4 or new information can be found. 

3.4 Experimental Setup, Results and Discussion for 

Heterogeneous Max-Min Ant System (HMMAS) 

3.4.1 Parameter Exploration of HMMAS 

Even though HAS was not able to locate optimal tours of all four TSP 

instances tested,  the proposed approach managed to improve on the performance 

of the base algorithm significantly. The encouraging results from the initial 

experiments led to the implementation of the heterogeneous approach on Max-Min 

Ant System (MMAS) which is one of the best performing conventional ACO 

algorithms [43]. The 𝛼 and 𝛽 values of MMAS were both set as 1 and 2 respectively 

thus the colony was implemented as homogeneous where all ants have the same 

behaviour in tackling the optimization problem.  One of the disadvantages of 

homogeneous ants is that the colony is not able to escape from stagnation 

behaviour where all ants repeat the same tour. Implementing a colony of 

heterogeneous ants will allow the ants to have a different perspective in their 

decision making that will indirectly help the colony to escape any stagnation. First 

of all, the possible range of 𝛼 and 𝛽 values were explored in order to create the 

heterogeneous approach on MMAS where the range of values was explored based 
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on the suggestions by [6] and [43] inclusive of the suggested parameter values. The 

idea of parameter exploration is to explore the suitable range, unlike parameter 

tuning where optimal parameters for each problem instance are explored. The 

experiment was conducted on both eil51.tsp and eil101.tsp while results of 

parameter exploration using Oliver30.tsp were not reported because almost all 

parameter combinations of MMAS were able to achieve good to optimal solutions 

due to the small problem size,  hence no strong conclusion can be made of the 

parameter exploration of the proposed algorithm’s based on this TSP instance. 

Table 3.7 shows the results of parameter exploration experiment for Heterogeneous 

Max-Min Ant System (HMMAS) where the algorithm is initialized with α values in 

the range of 0 and 1 as well as 0 and 2 while the range of β values varies. The 

results indicate the average best cost of 15 trials of the heterogeneous algorithm 

when randomly initialized from the uniform distribution of α β values within the pre-

defined range. Other parameters of the algorithm were set according to that 

suggested in [43] while the stopping criterion of each trial was set to 10 000 

iterations.  

The results indicate that HMMAS with 𝛼 and 𝛽 randomly initialized from 0 

and 2 and 1-3 respectively has the best performance with an average best cost of 

428.0 when tested on eil51.tsp. However, the Kruskal Wallis statistical test 

conducted on the performance of the algorithms when tested on eil51.tsp returned 

a p-value of 0.282 thus indicating that none of the performance is statistically 

significant when compared against each other. Figure 3.18 illustrates the boxplots 

representing the best cost of 15 trials of HMMAS tested on eil51.tsp and it can be 

seen that HMMAS with parameter settings of α from 0 to 2, β from 1 to 3 as well as 

α from 0 to 2, β from 2 to 3 have slightly better performance as shown by the lower 

median compared to other parameter settings of HMMAS. Even though Table 3.7 

and Figure 3.18 indicate that HMMAS with parameter settings of α from 0 to 2, β 

from 1 to 3 have the best performance, the post-hoc confidence intervals show that 

there is no statistical significance in the performance of the algorithm with the afore-

mentioned setting when compared against other settings when tested on eil51.tsp.  

Furthermore, Figure 3.19 illustrates the boxplots that represent the best cost of 

HMMAS with several parameter combinations tested on eil101.tsp. It can be noticed 
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that HMMAS with α from 0 to 2, β from 1 to 3 managed to locate the optimum of 629 

while also have the lowest median and lowest worst cost. 

Table 3.7: Results from parameter exploration of Heterogeneous Max-Min Ant 

System (HMMAS) where α is uniformly distributed between 0 and 1 as well as 0 

and 2 while β distribution varies. The heterogeneous algorithm tested on eil51.tsp 

and eil101.tsp. Results represent the average best cost out of 15 trials while values 

in bold represent the best in each category. 

α β 
Average 

eil51 eil101 

0-1 0-2 430.07 639.4 

0-1 1-2 429.00 638.87 

0-1 0-3 429.53 639.33 

0-1 1-3 429.20 638.4 

0-1 2-3 429.33 638.47 

0-2 0-2 428.93 637.67 

0-2 1-2 428.73 637.13 

0-2 0-3 429.13 637.8 

0-2 1-3 428.00 635.13 

0-2 2-3 428.26 636.00 

 

 

Figure 3.17: Boxplots representing 15 trials of different HMMAS parameter settings 

as shown in X-axis tested against eil51.tsp. (Note: 0-1 or 0-2 indicates the range of 

α values for heterogeneous colony while 0-2 to 2-3 indicates the range of β values). 
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Figure 3.18: Confidence intervals of each of the HMMAS parameter settings with 

post hoc Bonferroni correction method and its corresponding statistically significant 

combination when tested on eil51.tsp.  

The Kruskal-Wallis statistical test produced a p-value of 0.4482 which indicates the 

performance of the algorithm is not statistically significant. The post-hoc confidence 

intervals shown in Figure 3.20 also suggest similar performance of HMMAS with 

different parameter settings as all the confidence interval lines overlap each other 

thus indicating high similarity. Although statistical significance in performance is not 

achieved by any parameter combinations of HMMAS for both TSP instances, this 

gives an idea of a suitable range for both 𝛼 and 𝛽 values to create the 

heterogeneous approach in HMMAS. The lack of statistical significance can be 

attributed to the relatively good performance of the base algorithm when tested on 

small-sized TSP instances. However, the minor improvements also suggest that the 

heterogeneous approach on MMAS can still produce better results while eliminating 

the need for parameter tuning. Therefore, hereafter, HMMAS will be randomly 

initialized from a uniform distribution of α from 0 to 2 and β from 1 to 3 unless stated 

otherwise. 
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Figure 3.19: Boxplots representing 15 trials of different HMMAS parameter settings 

as shown in X-axis tested against eil101.tsp. (Note: 0-1 or 0-2 indicates the range 

of α values for heterogeneous colony while 0-2 to 2-3 indicates the range of β 

values). 

 

Figure 3.20: Confidence intervals of each of the HMMAS parameter settings with 

post hoc Bonferroni correction method and its corresponding statistically significant 

combination when tested on eil101.tsp. 
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3.4.2 Comparison against the Base Algorithm (HMMAS) 

MMAS is one of the best conventional ACO algorithms however the 

algorithm too underwent rigorous parameter tuning to determine optimal parameter 

combinations. It has been suggested that each problem instance or each problem 

may have its optimal parameter values [53][110][45][21]. Even then the parameter 

tuning process is usually based on prior experience or trial-and-error method hence 

it is a time-consuming and computationally expensive process to determine the 

optimal parameter for each and every problem thus almost impossible. Therefore, 

the heterogeneous approach will be able to overcome this problem by including 

potential optimal parameter settings within the range of values randomly drawn from 

the distribution. Equally important, MMAS was designed in such a way that the 

artificial agents exhibit a ‘slow learning’ behaviour where the colony performs high 

exploration initially then followed by exploitation [43]. However, different processes 

(exploration or exploitation) may be required at different stages of the search 

process thus the conventional MMAS setup may not be optimal. The introduction of 

the heterogeneous approach will allow the colony to adapt to the process required 

at the specific stage thus enabling the algorithm to overcome this conundrum.  

The heterogeneous approach is compared against MMAS on 4 TSP 

instances namely eil51, kroA100, d198 and lin318 where all parameters were set 

according to the authors’ recommendation except that for heterogeneous MMAS 

where the 𝛼 and 𝛽 were randomly initialized from a uniform distribution of the pre-

defined range as reported above. The stopping criterion was set at 10 000 iterations 

in order to have a fair comparison against the original study. Table 3.8 summarizes 

the comparison results of the performance of HMMAS against MMAS and it obvious 

HMMAS has a slightly poor performance for eil51 and kroA100 compared to MMAS 

in terms of average best cost even though both algorithms managed to find the 

optimum. Having said that, HMMAS managed to locate the optimal solution 10 and 

11 times respectively compared to 4 times by MMAS in both TSP instances. This 

indicates HMMAS has a higher chance of solving a problem to its optimality as 

opposed to its base algorithm. The reason for slightly poor performance by HMMAS 

for both eil51 and kroA100 can be attributed to the improved performance of MMAS 

especially when tested on smaller TSP instances. 
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Table 3.8: Best, average and worst cost comparison between HMMAS & MMAS tested on several TSP instances for 25 trials with 

stopping criterion of 10 000 iterations. The optimum for the TSP instances are 426 (eil51.tsp), 21282 (kroA100.tsp), 15780(d198.tsp) 

and 42029(lin318.tsp). Results in bold represent best in each category. 

 

 

 

TSP Method Best Average Worst 

# 

Optimum 

Found 

≥ 1% 

dev of 

opt 

≥ 2% 

dev of 

opt 

p-val 

eil51 
MMAS 426 427.4 430 4 25 25 

0.8796 
HMMAS 426 427.6 431 10 23 25 

kroA100 
MMAS 21282 21299.6 21390 4 25 25 

0.3078 
HMMAS 21282 21316.6 21379 11 25 25 

d198 
MMAS 15846 15961.12 16137 0 10 22 

1.27e-04 
HMMAS 15795 15871.68 16006 0 21 25 

lin318 
MMAS 42220 42438.72 42862 0 15 25 

7.06e-04 
HMMAS 42186 42324.44 42684 0 22 25 



 107 

Furthermore, it can be seen from the table and Figure 3.21 that even though 

HMMAS has a 40% success rate of finding the optimal tour compared to 16% of 

MMAS, the proposed approach also found higher worst cost in 2 out of 25 trials for 

eil51.tsp and has a slightly higher median as well as larger interquartile range for 

both eil51.tsp and kroA100.tsp. It is also important to note that MMAS managed to 

locate tours much closer to the optimum in both test cases as indicated by the 

respective boxplots. The performance of HMMAS improved significantly compared 

to MMAS when tested on larger TSP instances such as d198.tsp and lin318.tsp as 

can be seen in the table below. HMMAS was able to locate the best cost of 25 trials 

as well as have lower average best cost and lower worst best cost. The algorithm 

has a success rate of 90% in locating solutions within 1% of the optimum for both 

d198.tsp and lin318.tsp even though was not able to locate the optimal tour. Even 

though the base algorithm indicates drop in performance when tested on larger TSP 

instances, the improved performance of HMMAS in these larger TSP instances can 

be attributed to the ability of the algorithm to explore and exploit the search space 

simultaneously as the search progresses. This is because of the individual 

‘behavioural traits’ introduced by the heterogeneity in the colony that consist of ants 

that are either explorative or exploitative thus enabling the algorithm to diversify and 

intensify its search capability in both solution and parameter space albeit in a static 

approach in the later. Finally, the statistical tests using the Wilcoxon rank-sum test 

with a 95 % confidence interval indicate that the proposed approach has a 

statistically significant performance over MMAS when tested on d198 and lin318 

respectively while both the algorithms have similar performance for eil51 and 

kroA100 tsp instances.  
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(a)                                                        (b) 

       

     (c)                                                                (d) 

Figure 3.21: Boxplots representing the best cost of 25 trials of both MMAS and 

HMMAS tested on several TSP instances. 

3.4.3 Heterogeneous Ants’ Distribution Analysis (HMMAS) 

The major difference in MMAS is that the algorithm only allows the iteration-

best ant to deposit pheromone on the edges it has traversed. Therefore, it can be 

noticed that the diversity effect of the whole heterogeneous colony reduces as only 

one ant may alter the pheromone landscape after finding the optimal or sub-optimal 

tour unlike HAS where all ants were able to deposit pheromone hence greater effect 

of diversity can be noticed. Figure 3.22 illustrates the distribution of 𝛼 and 𝛽 values 

that represents the iteration-best ants of all iterations in 25 independent trials as well 
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as the distribution of ants in 1st 100 and last 100 iterations of all the trials when tested 

on eil51.tsp. It can be seen in Figure 3.22a that the algorithm converges to several 

sets of iteration-best ant that was able to locate the iteration-best tour in all the trials. 

Importantly, ants with high beta values tend to locate iteration-best fitness solution 

in the initial stages of the search process. This indicates the advantage of ants with 

a higher preference towards heuristics when less information on pheromone 

landscape. Figure 3.22c suggests that when there is enough pheromone 

information, then ants with higher preference towards pheromone may exploit this 

information to locate better solutions.  

  

                             (a)                                                             (b) 

 

(c) 

Figure 3.22: 3d histograms representing the alpha and beta values of iteration-best 

ants for HMMAS on eil51.tsp, (a) Alpha and beta of 1st 100 iterations (c) Alpha and 

beta of last 100 iterations of HMMAS. 
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                         (a)                                                               (b) 

 

       (c) 

Figure 3.23: 3d histograms representing the alpha and beta values of iteration-best 

ants for HMMAS on kroA100.tsp, (a) Alpha and beta of 1st 100 iterations (c) Alpha 

and beta of last 100 iterations of HMMAS. 

 

Figure 3.23a, b and c illustrate a similar scenario of the distribution of ants for 

HMMAS where the algorithm again converged to several sets of iteration-best ants. 
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Interestingly, the diversity in the colony allows ants in the higher end of both alpha 

and beta spectrum to locate better solutions initially before exploitative ants 

managed to find improved solutions. Meanwhile, Figure 3.24 and 3.25 show the 

effects of heterogeneity in HMMAS when tested on d198.tsp and lin318.tsp 

respectively. It can be seen clearly from the figures that the ants that perform well 

initially are not necessarily the best ants in the later stages of the search process. 

This is the advantage of the proposed approach where it is capable of passively 

adapt as the search progresses. The results support the claim that different search 

strategy or parameter configurations may be required at different stages of the 

search process while suggesting the heterogeneous approach is able to overcome 

this problem as the algorithm is able to explore and exploit the parameter space in 

conjunction with optimising the problem. 

              

                        (a)                                                              (b) 

 

(c) 

Figure 3.24: 3d histograms representing the alpha and beta values of iteration-best 

ants for HMMAS on d198.tsp, (a) Alpha and beta of 1st 100 iterations (c) Alpha and 

beta of last 100 iterations of HMMAS. 
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                          (a)                                                             (b) 

 

(c) 

Figure 3.25: 3d histograms representing the alpha and beta values of iteration-best 

ants for HMMAS on lin318.tsp, (a) Alpha and beta of 1st 100 iterations (c) Alpha and 

beta of last 100 iterations of HMMAS. 
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3.5 Concluding Remarks 

In summary, a heterogeneous ACO has been introduced which implements 

artificial ants that have different ‘behavioural traits’ compared to the traditional 

homogeneous approach. This computational work in ACO is in relation to the 

biological aspect of real ants where ants are known to have diversity in their 

population. This chapter presents a heterogeneous approach initialized from a 

random distribution of a pre-defined range of values of 𝛼 and 𝛽 which represents 

the coefficients related to pheromone trail and heuristics respectively. Most 

importantly, these two parameters are chosen as heterogeneous elements because 

these two parameters are responsible for determining the performance of the 

algorithm. However, most of the previous work focused on either one of these 

parameters while some studies include too many parameters thus difficult to 

determine the effects of each parameter that contribute to the improvement in the 

algorithm. 

The overall results indicate that the heterogeneous approach outperforms 

the conventional ACO algorithms, especially for larger TSP instances. Even though 

the base algorithms have gone through rigorous parameter tuning, the 

heterogeneous Ant System (HAS) and heterogeneous Max-Min Ant System 

(HMMAS) both managed to improve on the performance tremendously. It can be 

seen in the section above that the percentage of improvement made by HAS is 

larger compared to that of HMMAS. This is due to the nature of the base algorithm 

AS itself that allows all ants (heterogeneous ants in HAS) to deposit pheromone on 

the pheromone landscape that indirectly enables greater contribution of each ant in 

the decision-making process. Generally, only single ant (global best, iteration-best 

or alternate between these two) is allowed to deposit pheromone in MMAS. This is 

the same for HMMAS, therefore, reducing the effects of colony diversity in the 

performance of the algorithm. However, having said that, MMAS is chosen as the 

base algorithm hereafter mainly due to being proven in this chapter that HMMAS 

managed to locate solutions much closer to the optimum. In addition to that, it is 

also well known that MMAS has an improved performance over AS by being able to 
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locate solutions closer to the optimum hence another reason for better performance 

over HMMAS in smaller TSP instances. 

The proposed approach which is implemented by varying both the 𝛼 and 𝛽 

parameters within a pre-defined range corroborate the parameter suggestions by 

Dorigo and Stützle [37, p. 71] to a certain extent but at the same time indicates that 

determining optimal parameter settings even for a single parameter is considered 

as a non-trivial task. This can clearly be seen where even though the ants were 

initialized from the same predefined range of values, the optimal parameters for 

each TSP instance were different. In other words, the optimal parameter settings 

are problem-dependent and it is impossible to fine-tune the algorithm for every 

problem or problem instances. This shows that the heterogeneous algorithm is 

robust to parameter settings by effectively exploring and sampling the parameter 

space while concurrently optimizing the problem. Another key advantage of this 

heterogeneous approach is that the algorithm is not complicated or has minimal 

complexity unlike some parameter-tuning algorithms such as F-Race [111]. F-Race 

is an algorithm that intends to optimize the parameters before being applied to 

another optimization algorithm. This approach is time-consuming and tedious while 

the algorithm is complex.  

This chapter implements a static heterogeneous approach where the 

parameters assigned to the ants do not change over time and the algorithm explores 

the parameter space passively. Therefore, the discovery of distinct distributions of 

parameter settings for 𝛼 and 𝛽 is interesting and demonstrates the algorithms’ 

sensitivity to these parameters. Moreover, it is worthy to note the ability of the 

heterogeneous algorithm to passively adapt to different search strategy over time. 

One possibility that arises from this chapter is the adaptive approach in Chapter 5 

that allows ants to automatically self-adapt over time. In the meantime, the 

heterogeneous approach continues with a colony of ants initialized from the 

Gaussian distribution in the next chapter. As the Gaussian distribution is ubiquitous 

in nature, it provides an interesting proportion for the implementation of the 

heterogeneous approach. 
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Chapter 4   

Heterogeneous Ant Colony Optimization 

using a Gaussian Distribution 

The Gaussian distribution is widely used in research especially in Artificial 

Intelligence related studies as it fits the distribution of many natural phenomena 

such as human heights, blood pressure and many more. This chapter further 

extends the concept of heterogeneity by introducing and analysing the effects of 

initializing the 𝛼 and 𝛽 parameters of each individual ant in HACO from a Gaussian 

distribution compared to the previous chapter that used a uniform distribution. In 

addition, the  spread (standard deviation) of  the Gaussian distribution is analysed 

in order to create optimal diversity in the colony. To assess the performance of this 

method, comparisons with state-of-the-art heterogeneous ACO algorithms are 

conducted on several TSP and Printed Circuit Board (PCB) problem instances. 

Overall, empirical results indicate the diversity introduced by the Gaussian 

heterogeneous approach improves the algorithm‘s performance over other 

approaches and alleviates the parameter tuning process required in finding optimal 

parameter settings as well as tackling the management of exploration-exploitation 

within ACO. 
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4.1 Motivation 

Premature convergence occurs in most of the population-based 

optimization algorithms mainly due to the imbalance of search information 

propagation that leads the population to converge towards sub-optimal solutions 

and combined with the loss of population diversity will cause the algorithm to not be 

able to escape from this phenomenon. It is even worse in the case of conventional 

ACO and even in some of the state-of-the-art ACO algorithms as the population is 

homogeneous where it is usually set as such that all ants will have identical 

parameters. Therefore, introducing a diverse population via heterogeneity can help 

the algorithm to maintain diversity thus indirectly improve the exploration and 

exploitation capability of the algorithm.  Empirical results of the heterogeneous 

approach introduced via the uniform distribution in the previous chapter indicate that 

the algorithm is able to improve on the performance of the base algorithms, 

especially in larger TSP instances. However, there were some indications that the 

algorithm was stuck in local optima and was unable to perturb the solutions found 

in order to locate better solutions. This can be due to the inclusion of ants with sub-

optimal performance during the initialization period as all ants have an equal 

probability of being randomly initialized with any values within the pre-defined range. 

The uniform distribution introduced a wide range of heterogeneity which includes a 

large number of extremal values in the specified range.  Many natural phenomena 

are distributed according to a normal or gaussian distribution where the majority of 

the values are located around the mean and comparatively few around the extremal 

values. This chapter investigates the use of a Gaussian distribution for 

heterogeneous ACO. Even if the scope of the study is widened to other areas such 

as physics or psychology, many random variables and data are found to follow a 

Gaussian distribution trend [112]. The data that does not exactly fit the Gaussian 

distribution can also be approximated as one because of the central limit theorem 

that states the normalized sum of randomly independent variables produces 

Gaussian-like distributions regardless of the source population distribution [113]. 

Several general attributes mimic the Gaussian distribution such as human heights 

or exam scores where the attributes have a small probability of occurring at the high 

and low tails of the distribution while a large probability of occurring around the 
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mean. Therefore, this chapter implements a heterogeneous approach where the 

ants are randomly initialized from a Gaussian distribution with a pre-defined mean 

and standard deviation. 

4.2 The Framework 

This chapter focuses on implementing the heterogeneous approach on Max-

Min Ant System (MMAS) only because empirical results in Chapter 3 have shown 

that HMMAS has better performance compared to HAS. The basic algorithmic 

framework used in this study is still the same as the previous chapter except that 

the ants’ colony is randomly initialized from Gaussian distribution rather than a 

uniform distribution. The same probabilistic rule used in the previous chapter 

(Equation 2) is maintained in this study, modified to accommodate the 

heterogeneous approach. Figure 4.1 indicates the example of a heterogeneous ant 

colony initialized from a Gaussian distribution with a mean α=1 and mean β=4 while 

the standard deviation is set to 0.2.  

         

Figure 4.1: Example of the initial population drawn from normal distribution 

consisting of 25 different populations representing 25 trials. 
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Algorithm 1: Pseudocode of Gaussian Heterogeneous MMAS 

1. Input: Distance Matrix of TSP / PCB Drilling; 

2. Initialize parameters;  

3. Initialize ants: 

4. for i = 1 : number of ants do 

5. Alpha(i) = normrnd (mean α, s.d α); 

6. Beta(i) = normrnd (mean β, s.d β); 

7. end for 

8. Start Iteration: 

9. for it = 1 : Max Iteration do 

10. for k = 1 : number of ants do 

11. Position each ant on starting node; 

12. while TourSize < n + 1 do 

13. Tour Construction; 

14. end while 

15. end for 

16. end for 

17. Update Solution; 

18. Update Pheromone; 

19. Pheromone Evaporation; 

20. Check if the termination condition is met; 

21. if True then 

22. Go to 26; 

23. else 

24. Go to 8; 

25. end if 

26. End 
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The Gaussian distribution,  also known as normal or bell-shaped distribution is a 

continuous probability distribution that is commonly associated with real-valued 

variables in nature. The two most important parameters in a Gaussian distribution 

are the mean, μ, and standard deviation, σ parameters. Therefore, the settings of 

these parameters for both 𝛼 and 𝛽 are key to the performance of the Gaussian 

heterogeneous approach.  

The experiments shown later will initialize the colony randomly from a 

Gaussian distribution with mean centred around 𝛼 and 𝛽 coefficients suggested in 

[5] while the standard deviation is pre-determined via parameter exploration 

experiment. Algorithm 1 represents the pseudocode of Gaussian Heterogeneous 

MMAS (known as GHMMAS hereafter) and it can be seen from lines 4 to 7 where 

the ‘normrnd’ function in MATLAB was used to mimic the random behavioural traits 

of agents in a colony. The 𝛼 and 𝛽 coefficients were set to 1 and 2 respectively in 

the homogeneous approach in [5] while this study implements a heterogeneous 

approach from a Gaussian distribution with mean α = 1 and mean β = 2 respectively. 

This is to create a colony of ants where each ant will have a pair of parameters close 

to the values suggested in [5]. In addition to that, exploratory experimentation was 

conducted in order to determine the right amount of spread (standard deviation) to 

create optimal diversity in the heterogeneous colony. A narrow Gaussian 

distribution may eliminate ants with 𝛼 and 𝛽 values within the suggested values of 

[6] and will limit the benefits of heterogeneity while too wide a Gaussian spread may 

include ants with poor performing values thus rendering the performance of the 

algorithm.  

4.2.1 Exploring Gaussian Properties 

Extensive experiments were conducted in order to determine the optimal 

standard deviation for the implementation of GHMMAS. MMAS was used as the 

base algorithm while the parameters were set according to suggestion in [5] except 

that the ants were initialized randomly from a Gaussian distribution with mean 𝛼 and 

𝛽 were set to 1 and 2 respectively and the standard deviations for both 𝛼 and 𝛽 are 

varied from 0.1 to 0.4 only because larger standard deviation may include poor 



 120 

     

parameter values that may cause stagnation behaviour in the algorithm as 

suggested in [6]. Therefore, smaller standard deviation allows the 𝛼 and 𝛽 values to 

be centered around and much closer the mean values which were suggested to be 

optimal values. A change in the mean values will cause a shift in the symmetrical 

axis of the distribution while a variation of the standard deviation will increase or 

decrease the sharpness and the spread of the curve. The stopping criterion for this 

exploratory experiment was set at 1 000 iterations as to reduce the computational 

cost. 

Table 4.1 compares the performance of GHMMAS with various standard 

deviations for both 𝛼 and 𝛽 tested on TSP instances of eil51 and eil101. It can be 

seen that GHMMAS with parameter settings in row 5 (standard deviations of 0.2) 

has the best performance compared to other parameter combinations. The 

algorithm with these settings was able to locate the optimal solutions of eil51 and 

eil101 4 times and once. In addition to that, the algorithm has an average best cost 

of 427.9 and 641.9 as a result of 15 trials when tested on eil51 and eil101.tsp 

respectively. However, the Kruskal Wallis non-parametric statistical test produced 

p-values of 0.1732 and 0.1993 for both eil51 and eil101.tsp thus indicating there are 

no significant differences in terms of the performances of the algorithm with different 

settings. Figures 4.2 and 4.3 illustrate the boxplots of the best cost of 15 trials of 

GHMMAS with different standard deviation combinations for eil51.tsp and eil101.tsp 

respectively. It can be seen in Figure 4.2 that only 2 out of 12 parameter 

combinations were not able to locate the optimal solution and 4 parameter 

combinations have a median of 428. Additionally, the figure also illustrates the 

interquartile range for GHMMAS with mean α = 1, σ = 0.2 and mean β = 2, σ = 0.2 

is from 426.5 to 429.5 thus supporting the results in Table 4.1 by indicating that this 

parameter combination has the best performance overall. 
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Table 4.1: Results of GHMMAS with variation in distribution spread (standard deviation (s.d)) of 𝛼 and 𝛽 tested on eil51.tsp (Opt 

= 426) and eil101.tsp (Opt = 629). Values in bold are the best in each category. Results are of 15 trials, each trial = 1 000 iterations. 

 

Num 
Mean 

α 
S.d α 

Mean 
β 

S.d β 
Best Cost Average Worst Cost No of Opt 

eil51 eil101 eil51 eil101 eil51 eil101 eil51 eil101 

1 1 0.1 2 0.1 426 633 429.1 643.3 435 652 3 0 

2 1 0.2 2 0.1 426 629 428.7 647.3 433 659 2 1 

3 1 0.3 2 0.1 426 631 430.6 648.9 436 665 1 0 

4 1 0.1 2 0.2 426 638 428.9 648.9 432 660 1 0 

5 1 0.2 2 0.2 426 629 427.9 641.9 431 657 4 1 

6 1 0.3 2 0.2 426 631 429.8 643.1 435 658 2 0 

7 1 0.1 2 0.3 426 630 429.6 642.9 439 655 2 0 

8 1 0.2 2 0.3 426 630 428.6 645.6 431 658 1 0 

9 1 0.3 2 0.3 427 635 429.3 644.6 435 658 0 0 

10 1 0.1 2 0.4 426 634 429.4 642.0 432 654 1 0 

11 1 0.2 2 0.4 428 639 429.9 646.9 434 657 0 0 

12 1 0.3 2 0.4 426 632 428.9 645.1 437 666 2 0 
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Figure 4.2: Boxplots representing 15 trials of different GHMMAS parameter settings 

as shown in X-axis tested against eil51.tsp. (Note: Ex: 0.1, 0.1 indicate the standard 

deviation for mean α and β). X-axis represents ‘Num’ column in Table 4.1. 

 

Figure 4.3: Boxplots representing 15 trials of different GHMMAS parameter settings 

as shown in the X-axis tested against eil101.tsp. (Note: Ex: 0.1, 0.1 indicate the 

standard deviation for mean α and β). X-axis represents ‘Num’ column in Table 4.1. 

 



 123 

     

 

Figure 4.3 shows that only two parameter combinations for GHMMAS managed to 

locate the optimal solution. Although the median of GHMMAS with mean α = 1, σ = 

0.2 and mean β = 2, σ = 0.2 is slightly higher, this parameter combination has the 

lowest interquartile range which is from 634 to 647 compared to others. Therefore, 

experiments hereafter involving GHMMAS will use this parameter combination. 

4.3 Experimental Setup, Results & Discussion 

4.3.1 Experimental Setup 

The experiments were conducted on an Intel Core i7 CPU-based computer 

running Windows 7 equipped with 4GB RAM. The proposed approach used Max-

Min Ant System (MMAS) as the base algorithm which is developed using the 

MATLAB version R2015a mainly because the previous chapter has shown that the 

heterogeneous approach on MMAS has a marked performance compared to that 

implemented on AS. MMAS was chosen clearly because it is the best conventional 

ACO algorithm [5]. Various studies have acknowledged both empirically and 

theoretically that different optimal parameter settings are required for different 

problem instances of the same problem and also for different problems. Each 

algorithm is tested using several medium-sized TSP instances taken from TSPLIB 

namely kroA100, d198, pr226, and lin318 TSP instances while the optimal solution 

of each instance can be referred at [8]. The approach is also compared against the 

Max-Min Paraconsistent Ant Algorithm (MMPAS) [114] tested on the Printed Circuit 

Board (PCB) drilling problem instances [106]. This is to show that the approach is 

independent and robust to different problems and also problem sizes. The PCB 

drilling problem is an example of a real-world problem where the time taken by the 

CNC machine reduces the efficiency of the drilling process thus indirectly affects the 

output of the manufacturing line and the company’s profit. The movement of the 

CNC machine has to be optimized in order to improve efficiency by minimizing the 
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machine’s drilling path. Therefore, the algorithm explores the PCB layout to identify 

the optimal drilling path. All experimental results are from 20 trials hereafter unless 

stated otherwise. This conforms with the general number of trials in any swarm 

intelligence-based optimization algorithm study which are usually between 15 to 30 

trials and also to achieve a fair and stable comparison against other algorithms. The 

function evaluations for all the experiments were set as k.n.10000 where k=1 for 

symmetrical TSPs used, n=number of cities of the TSP instance and 10 000 is the 

maximum number of iterations unless stated otherwise. The computation time for 

the algorithm to locate the optimal solution is not used as a performance indicator 

in this study because this measure is not accurate as the algorithm’s performance 

is dependent on various elements such as the hardware specifications, processor 

speed, how the program is coded et cetera.  

4.3.2 Comparison against the Base algorithm & HMMAS 

The proposed approach is compared against MMAS and HMMAS on four 

TSP instances namely kroA100, d198, pr226, and lin318.tsp. All three algorithms 

managed to find the optimal solution of 21282 when tested on kroA100.tsp and the 

GHMMAS has the lowest mean out of 20 trials followed by MMAS and HMMAS 

respectively while GHMMAS could not improve on the worst cost found by HMMAS 

which was 21379. Next, the algorithms were tested on d198.tsp with an optimum of 

15780 where GHMMAS has the lowest average of 15866.95 and found the lowest 

worst cost of 15944. The best fitness solution found by GHMMAS is 15801 which is 

not close to the best solution found by HMMAS even though neither algorithm could 

locate the optimal solution. Lastly, it can be seen that the proposed approach has 

marked improvement over other algorithms when tested on pr226.tsp and lin318.tsp 

respectively. The Gaussian heterogeneous approach managed to locate the best 

solution, an average that is closer to the optimum, and lowest worst best cost when 

tested on both TSP instances mentioned above. The improvement noticed on 

GHMMAS over HMMAS and MMAS can be attributed to the reduced number of ants 

in the extremal and initializing the colony of ants through the Gaussian distribution 

centred around the optimal parameter whereas HMMAS, which uses uniform 
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distribution, may include ants in the extremities that can be detrimental to the 

performance of the algorithm. Interestingly, this approach also conforms to an extent 

to the parameter combination suggestion in [5] and [6] because the Gaussian 

heterogeneous approach initializes the ants with 𝛼 and 𝛽 values centred around the 

‘optimal’ values suggested by the original authors. However, the diversity created 

by the Gaussian distribution allowed the heterogeneous ants to have improved 

exploration-exploitation balance thus achieving improved performance over the 

uniform as well as the homogeneous approach. Furthermore, it is also important to 

note that the performance of the homogeneous approach deteriorates significantly 

with the increase in problem size. The absence of diversity in the colony prevents 

the algorithm from efficiently alternate between exploring the search landscape and 

exploiting the solution found because it has been acknowledged that different 

search strategies are required at a different stage of the search process in order to 

achieve optimal performance in an optimization algorithm [21] [12].  

Table 4.2: Comparison between GHMMAS, HMMAS & MMAS tested on several 

TSP instances for 20 trials with stopping criterion of 10 000 iterations. The optimum 

for the TSP instances are 21282 (kroA100.tsp), 15780 (d198.tsp), 80369 (pr226.tsp) 

and 42029 (lin318.tsp). Results in bold represent best in each category. 

TSP ALGORITHM 
BEST 
COST 

AVERAGE 
WORST 

COST 

Kroa100 

MMAS 21282 21302.3 21390 

HMMAS 21282 21310.55 21379 

GHMMAS 21282 21301.9 21379 

d198 

MMAS 15848 15958.2 16137 

HMMAS 15795 15879.3 16006 

GHMMAS 15801 15866.95 15944 

pr226 

MMAS 80691 80983.8 81330 

HMMAS 80464 80682.3 81011 

GHMMAS 80401 80552.6 80851 

lin318 

MMAS 42220 42425.5 42862 

HMMAS 42186 42301.95 42612 

GHMMAS 42110 42245 42453 
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Table 4.3: Results of the Wilcoxon rank-sum test conducted on GHMMAS, HMMAS 

& MMAS based on the solutions found in each of the 20 trials. Results in bold 

represent statistical significance. 

TSP 
GHMMAS vs 

HMMAS 
GHMMAS vs 

MMAS 
HMMAS vs MMAS 

kroA100 0.4331 0.0659 0.671 

d198 0.5425 3.47E-05 1.30E-03 

pr226 0.064 5.83E-04 3.60E-03 

lin318 0.0514 1.80E-05 3.92E-04 

 

Table 4.3 represents the p-values of the Wilcoxon rank-sum test conducted on the 

performance of all three algorithms with a confidence interval of 90% where a p-

value of 0.1 or lower indicates that the performance in-test is statistically significant. 

It can be seen that the performance of GHMMAS is statistically significant over 

HMMAS on pr226.tsp and lin318.tsp but not on the other two TSP instances. This 

is likely to be due to the fact that the instances are relatively small and so the 

differences between the algorithms are harder to determine. Initialization of the 

colony from the Gaussian distribution creates better diversity by reducing the 

number of poor-performing ants hence the improved performance in GHMMAS. In 

the meantime, the performance of GHMMAS is statistically significant over MMAS 

in all four TSP instances while the performance of HMMAS is significantly different 

in 3 out of 4 TSP instances thus indicating that both heterogeneous algorithms 

significantly outperform MMAS, in terms of quality of solutions found, robustness 

and scalability of the problem size. Moreover, Figure 4.4 illustrates the boxplots 

representing the best cost of 15 trials of each algorithm when tested on all four TSP 

instances. It can be seen in all 4 TSP instances that GHMMAS has the lowest 

median and the lowest worst best cost while also being able to locate the best fitness 

solution in 3 out of 4 TSP instances. The empirical results suggest that by enabling 

ants to be randomly initialized with different behavioural traits, a colony may consist 

of a mix of explorative ants as well as exploitative ants thus allowing the algorithm 

the ability to explore the search landscape and exploit the solution found throughout 

the search process.  
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                                (a)                                                               (b) 

     

    (c)                                                               (d) 

Figure 4.4: Boxplots representing the best cost of 20 trials of MMAS, HMMAS, and 

GHMMAS tested on several TSP instances. 

4.3.3 Printed Circuit Board (PCB) Holes Drilling Problem 

The PCB drilling problem is similar to the TSP where the objective function 

is to locate the minimum distance from one hole to another for the CNC machine to 

travel for the drilling process. The location of holes drilled on a PCB is a crucial 

process especially in companies producing electronics. The optimization of the 

drilling of these holes produces a notable reduction in drilling time thus able to 

hugely improve productivity, reduce time and cost as well as increase revenue 

indirectly. A detailed review on PCB hole-drilling optimization using swarm 



 128 

     

intelligence can be found at [115]. Unlike TSP instances that have abundance of 

literature, limited work has been conducted in optimizing the PCB drilling problem 

especially by using ACO approach. However, some of the studies that uses ACO to 

solve this particular problem have repeatability problem due to important information 

not reported such as the stopping criterion [116][117], no general problem instances 

such as TSP used to test the algorithm [118]  or computational time was used as 

stopping criterion (not repeatable due to different processing power contributes to 

the performance of the algorithm)[119], [120]. Due to this, GHMMAS was tested on 

several PCB instances taken from TSPLIB [109] and compared against Max-Min 

Paraconsistent Ant Algorithm (MMPAS) [114] which implements a hybrid approach 

of MMAS and Paraconsistent Logic (PL) by deploying the concept of recruitment 

learning. As the search progresses, the ants become more knowledgeable in regard 

to the search landscape hence able to explore efficiently in order to locate the 

optimal solution. For a fair comparison, the parameter settings of GHMMAS were 

set similar to [114] except that the ants were initialized randomly from a Gaussian 

distribution with mean α = 1, mean β = 2 and standard deviations for both were set 

to 0.2. The stopping criterion was set at 2000 iterations and no local search 

procedure was applied just as in [114]. Table 4.4 shows the comparison between 

GHMMAS and MMPAS in terms of the best fitness solution found and the mean of 

the fitness solution over 20 trials. It can be noticed that GHMMAS was not able to 

improve on the best fitness solution found by MMPAS for a280.tsp and tsp225.tsp 

respectively although the local optimum found by GHMMAS was close  However, 

GHMMAS found the best fitness solution when tested on pcb442.tsp as compared 

to MMPAS. In addition to that, the mean performance of GHMMAS is closer to the 

optimum in comparison to MMPAS for all three PCB drilling instances. The 

improvement in performance especially in larger PCB instances can be attributed to 

the high number of ants that introduce a huge diversity in the colony thus enabling 

the algorithm to fully explore the search space as well as further perturb the solution 

found to locate optimal solutions. The individual behavioural traits in the ants 

enabled the algorithm to escape from stagnation behaviour by allowing the ants to 

have individual perspective in tackling the search landscape rather than following 

the same tour. It is also important to note that the proposed approach was able to 

achieve close to optimal performance even when the algorithm is stopped at 2 000 
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iterations rather than 10 000 iterations as in previous experiments. This gives an 

early indication that the heterogeneous approach is able to achieve excellent 

performance even within  budget (stopping criterion) limitations. 

 

Table 4.4: Best cost and average best cost comparison between GHMMAS and 

MMPAS tested on several PCB instances for 20 trials with stopping criterion of 2 

000 iterations. Results in bold represent best in each category. 

PCB OPTIMUM ALGORITHM 
BEST 
COST 

AVERAGE 

a280 2579 
MMPAS 2593 2642.77 

GHMMAS 2597 2635.62 

tsp225 3919 
MMPAS 3937 4012.07 

GHMMAS 3943 3982.7 

pcb442 50778 
MMPAS 52129 53290.1 

GHMMAS 51966 52671 

 

 

Figure 4.5: The optimized tour (2597) found by GHMMAS when tested on a280.tsp. 
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Figure 4.6: The optimized tour (3943) found by GHMMAS when tested on 

tsp225.tsp. 

 

Figure 4.7: The optimized tour (51966) found by GHMMAS when tested on 

pcb442.tsp. 

Figure 4.5 to 4.7 illustrate the best tour found by GHMMAS for a280.tsp, tsp225.tsp, 

and pcb442.tsp respectively where the tours found are close to the optimal except 

for pcb442.tsp. It is clearly noticeable the overlapping path in pcb442.tsp that can 

be further optimized possibly by using local search procedures such as 2-opt or 3-

opt. This will create a hybrid approach that can further improve on the fitness 

solution found as well as reduce the computational time i.e number of iterations 

required to find good to optimal solutions. However, the local search procedure is 

not implemented in this chapter (but will be explored in Chapter 5) in order to 

highlight the ability of the heterogeneous approach in improving the performance of 
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the base algorithm as well as achieve better or comparable results against some of 

the state-of-the-art algorithms. 

4.3.4 GHMMAS Ants’ Distribution Analysis 

Figure 4.8 illustrates the alpha and beta values of the iteration-best ant for 

GHMMAS when tested on kroA100.tsp where Figure 4.8a represents alpha and 

beta values of the first 100 iteration-best ants of each trial while Figure 4.8b shows 

the values for the last 100 iteration-best ants. It is noticeable that ants with β > 2 

were able to locate the iteration-best fitness solutions during the early stages of the 

search process. This is likely to be due to a lack of information on the pheromone 

landscape at this early stage for the ants to exploit hence the ants with a higher 

preference on heuristics were able to locate good solutions that will then be used 

for exploitation. Interestingly, ants with a slightly higher preference towards the 

pheromone were able to locate iteration-best fitness solution with the increase in 

pheromone deposited on the landscape in later stages of the search process. This 

shows that the algorithm is able to alternate between exploration and exploitation 

whenever necessary. In addition to that, the algorithm also is able to explore the 

parameter space making it robust to parameter selection.  

      

(a)                                                                (b) 

Figure 4.8: 3d histograms representing the alpha and beta values of iteration-best 

ants for GHMMAS on kroA100.tsp, (a) Alpha and beta of 1st 100 iterations (b) Alpha 

and beta of last 100 iterations of GHMMAS. 
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(a)                                                                (b)  

Figure 4.9: 3d histograms representing the alpha and beta values of iteration-best 

ants for GHMMAS on d198.tsp, (a) Alpha and beta of 1st 100 iterations (b) Alpha 

and beta of last 100 iterations of GHMMAS. 

 

Figure 4.9a and 4.9b represent the 3d histograms for GHMMAS when tested on 

d198.tsp. In this problem instance, similar to the previous figures where it can be 

seen clearly that ants with a higher preference towards heuristic information perform 

well during the early stages while ants with slightly lower dependency on heuristics 

perform well during later stages. Importantly, the colony was able to explore both 

the solution and parameter landscape when tested on d198.tsp. This highlights the 

advantage of the proposed approach over conventional, homogeneous approach 

by exploring the parameter space to find the optimal parameter as per the situation 

need throughout the search process. It is also important to highlight the alpha values 

were between 1 and 1.5 which supports the suggested values in but at the same 

time confirms the importance of the proposed approach that allows continued 

exploration of both search space and parameter space. 

The relationship between alpha and beta for GHMMAS on pr226 is more 

diverse when compared to the relationship in the previous experiments above. The 

algorithm explores a huge area of the parameter space as shown in Figure 4.10a 

and 4.10b respectively. It is also important to note that an increase in the number of 



 133 

     

ants with a higher preference towards pheromone in later stages of the search 

process as can be seen in Figure 4.9b. 

 

(a)                                                            (b) 

 

Figure 4.10: 3d histograms representing the alpha and beta values of iteration-best 

ants for GHMMAS on pr226.tsp, (a) Alpha and beta of 1st 100 iterations (b) Alpha 

and beta of last 100 iterations of GHMMAS. 

 

(a)                                                            (b) 

Figure 4.11: 3d histograms representing the alpha and beta values of iteration-best 

ants for GHMMAS on lin318.tsp, (a) Alpha and beta of 1st 100 iterations (b) Alpha 

and beta of last 100 iterations of GHMMAS. 
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In the meantime, Figures 4.11a and 4.11b represent the distribution of alpha 

and beta values for GHMMAS when tested on lin318.tsp. Both figures suggest that 

the algorithm is capable of implementing different search strategies at various 

stages of the search process. This will indirectly enable the algorithm to escape from 

local optima and stagnation behaviour. The results also suggest that the tedious job 

of parameter tuning can be overcome by implementing the heterogeneous approach 

that automatically explores the parameter landscape to locate the optimal 

parameters for different problem instances. One thing to note is that the distributions 

look quite different for some of the problem instances.  This reinforces the idea that 

some sort of adaptive technique is required, either passive as in this chapter or 

active as in the following chapter. 

Lastly, Figure 4.12 a, b, c, and d illustrate the standard deviations of the 

fitness solutions found by the ants in every iteration for GHMMAS when tested on 

several TSP instances for a single trial. The standard deviations represent diversity 

of the colony during the search while higher standard deviations indicate the 

algorithm in explorative mode and lower standard deviations suggest the algorithm 

is in exploitative mode. It can clearly be seen in the figures that the standard 

deviations decrease gradually over time thus indicating a clear switch of the 

algorithm from explorative behaviour to exploitative. Hence, these demonstrate that 

the proposed approach are able to maintain colony diversity throughout the search 

process, able to balance between exploration and exploitation of the search space. 

The figures suggest convergence to an acceptable fitness solution while also able 

to prevent stagnation behaviour from occurring.  
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      (a)                                                               (b) 

 

                                (c)                                                              (d) 

Figure 4.12: Standard deviations of fitness solutions found by the ants for every 

iteration (a) kroA100.tsp, (b) d198.tsp, (c) pr226.tsp and (d) lin318.tsp. 

4.4 Concluding remarks 

This chapter presents a heterogeneous approach randomly drawn from a 

Gaussian distribution with a predefined mean and standard deviation. The results 

suggest that the GHMMAS consistently outperforms both the uniform 

heterogeneous approach and the homogeneous approach on medium-sized TSP 

instances. GHMMAS has the best performance in terms of the best fitness solution 

found over a number of trials, the best average fitness solution and the best worst 
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fitness solution (worst cost indicates how poor the performance is with lower worst 

cost indicates better performance). Initializing the ant colony with a higher number 

of ants centred around these values while also reducing the number of ants in the 

far extremities of the range using the Gaussian distribution contributed to the 

increased performance in the proposed approach. The algorithm also was able to 

overcome stagnation behaviour as illustrated by the standard deviations where the 

algorithm was able to passively switch between the exploration and exploitation 

strategies while optimizing the search space.  

In addition to the TSP instances, the static Gaussian heterogeneous 

approach was tested on PCB holes drilling problem, which is a real-world problem, 

and compared against MMPAS that implements heterogeneity via recruitment 

learning. Although GHMMAS was not able to improve on the best fitness solution 

found by MMPAS on two out of three PCB instances, the best fitness solution found 

is not far off though. The results suggest that GHMMAS can be improved further 

with the introduction of 2-opt or 3-opt hybrid approaches. Another possibility is to 

create an adaptive approach where the ants will be able to actively search the 

parameter space and adapt to the best performing ant. This will be discussed in 

detail in the following chapter. 
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Chapter 5  

A Heterogeneous Adaptive Max-Min Ant 

System for Traveling Salesman Problem   

The previous chapter suggested optimal parameter settings of ACO are dependent 

on the problem instances. This chapter introduces an adaptive approach to a 

heterogeneous ant colony population that evolves the alpha and beta controlling 

parameters for ACO to locate near-optimal solutions. This is a development from 

the previous two chapters where the individual alpha and beta values of ants do not 

change over time thus remain constant. The adaptive approach is able to modify 

the exploitation and exploration characteristics of the algorithm during the search 

process to reflect the dynamic nature of the proposed approach. In addition, the 3-

opt local search heuristic is integrated into the proposed approach to further improve 

the fitness of the solution. An empirical analysis of the proposed algorithm tested 

on a range of Travelling Salesman Problem (TSP) instances shows that the 

approach has better algorithmic performance when compared against state-of-the-

art algorithms from the literature. 
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5.1 Motivation 

One of the drawbacks of most ACO algorithms is its failure to continue to 

explore new solutions once the algorithm converges thus getting stuck in local 

optima (i.e the best solution within a subset of neighbouring solutions) or unable to 

escape stagnation behaviour (e.g. where all ants construct the same tour, i.e in the 

TSP).  To counter this, several studies have suggested that different optimization 

strategies are required at different stages of the search process [13][12][121][46]. 

Another limitation of the conventional ACO is that the performance of the algorithm 

is significantly dependant on the parameter settings which are often set before the 

run by trial and error method and these parameters remain constant throughout the 

optimization process. These claims are supported by the empirical results from the 

previous chapter which show that the optimal ACO parameter settings may change 

over time as well as for different problems or even different instances of the same 

problem. In addition, parameter tuning for each and every problem is almost 

impossible for real-world problems as it is a time-consuming and computationally 

expensive process. In most cases, researchers spend a significant amount of time 

to fine-tune the ACO parameters based on experience while others implement 

settings suggested from the literature. Whilst the tuning of parameters is possible 

for standard, general problem instances, on larger real-world problems it is often 

not possible to conduct a thorough exploration of the parameter settings due to the 

computational complexity involved in the calculation of the objective function. In 

addition, the algorithm must maintain its exploratory nature even after converging 

to a set of solutions in order to improve the overall performance by being able to 

continuously explore and exploit the search space efficiently especially when 

applied to large problem instances. However, it is also important to note that over-

exploration where the algorithm continuously explores new search space without 

really perturbing the solutions found or converging to an optimal solution may occur 

and this undesirable scenario causes a waste of valuable computational resources 

and function evaluations. Self-adaptive approaches have been shown to work well 

in other metaheuristics such as in EAs [5][8][9][123] and PSO 

[124][125][126][127][128], however, little research has been conducted in regards 

to the analysis of self-adaptation methods in ACO.  
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Therefore, enabling the algorithm with the ability to learn the optimal 

parameter settings via a self-adaptation method [55][57][54], where parameters are 

encoded as genomes of individuals, can alleviate the costly parameter tuning 

procedure as well as creating an algorithm that is robust to parameter settings. This 

approach explores the synergistic effects of the adaptive evolutionary process and 

heterogeneity to allow convergence towards colony-level parameter setting through 

the self-adaptive approach indirectly enabling the algorithm to locate better 

solutions. The population diversity is preserved by implementing a Gaussian 

mutation to the selected ants to prevent the algorithm from stagnation. A detailed 

description of the algorithm is described in the following section. 

5.2 Heterogeneous Adaptive MMAS – The 

Framework 

The framework described in the following section is based on the idea of 

optimal heterogeneity that can lead the algorithm to colony-level parameter 

convergence and is able to adapt during the search process in order to escape from 

local optima while continuing exploring the search landscape. This is achievable by 

introducing a set of rules for parameter adaptation to occur in order for the 

parameter values to be close to the optimal values. The heterogeneous nature of 

the population of ants introduced in Chapter 4 and 5 allow the initial population to 

explore the most promising areas of the search space initially but there is no 

additional mechanism to modify these as the search progresses.  Therefore, the 

proposed approach in this chapter considers the initial population of ants as the 

initial population for an evolutionary algorithm that will adapt the parameters 

throughout the optimization. Algorithm 5.1 represents the pseudocode of the 

algorithm which includes the introduction of both the greedy homogeneous and the 

Gaussian heterogeneous ants as well as the adaptive mechanism.  
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Input: Distance matrix of TSP; 

Initialize ACO parameters; 

Initialize ants: 

for I =1: number of ants, do 

AlphaHet(i) = mean α, s.d α; 

BetaHet(i) = mean β, s.d β; 

end for 

AlphaHo=0; BetaHo=10; 

Start Iteration: 

for it = 1 : Max Iteration do 

if it < 6 then 

Alpha=AlphaHo; 

Beta=BetaHo; 

end if 

if it  >= 6 then 

Alpha=AlphaHet;  

Beta=BetaHet; 

end if 

for k = 1 : number of ants do 

Position each ant on starting node; 

while T ourSize < n + 1 do 

Tour Construction; 

3-opt local search; 

Adaptation mechanism; 

end while 

end for 

end for 
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Update Solution; 

Update Pheromone; 

Pheromone Evaporation; 

Check if termination condition is met; 

if True then 

Go to End; 

else 

Repeat Iteration ; 

end if 

End 

 

Algorithm 5.1: Pseudocode of Heterogeneous Adaptive MMAS 

 

Figure 5.1 illustrates the principle of the proposed approach where the parameters 

evolved in this study are the 𝛼 and 𝛽 values that control the relative importance of 

pheromone and heuristics respectively. These parameters were chosen because 

the performance of ACO is very much dependant on them [40] [20]. In addition to 

that, several studies have shown that these parameters are the best candidate for 

parameter adaptation analysis [45][53][129][130].  As shown in Figure 5.2, each ant 

has its own ’behavioural traits’ represented by the 𝛼 and 𝛽 values. The ants will 

have fitness solutions associated with them based on the tours they built in every 

iteration and given a rank according to the mean fitness value over a certain number 

of iterations (discussed below as the ‘adaptive interval’). Next, the highest and 

lowest-ranked ants are selected as the mean best and mean worst ants. Once an 

offspring is produced from the process of mutation of the mean best ant, the 

offspring then replaces the mean worst ant and is included in the population for 

exploration and exploitation in the next iteration. Additionally, the use of elitism 

ensures that the population retains the fittest individual in the population and where 

the mean worst ant over several iterations is replaced by the child of the mean best 

ant that had undergone mutation. Through the use of selection, elitism and 

mutation, the EA can generate new promising parameter settings during the ACO 
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run as well as maintaining diversity in the population. The first step in solving a 

problem via the Evolutionary Algorithm (EA) is to represent a solution to a problem. 

Choosing the right encoding scheme is crucial in determining how the solution 

space is defined. As this study encodes the parameters of the ants, an individual 

ant can be represented by a pair of the parameters (α,β) which is later evolved.  To 

achieve this, the algorithm requires representation and this is achieved here through 

the use of a floating-point representation. It is worth noting that other encodings are 

possible, in particular, binary encodings although the floating-point encoding here 

is preferred due to the ability to test fine-grained changes to the range from the 

mutation operation. By representing the parameters as the genotype, the 

heterogeneous adaptive approach explores and exploits both the solution and 

parameter space simultaneously to locate the optimal fitness solution as well as 

colony-level convergence to instance-optimized parameters. The proposed 

adaptive approach uses GHMMAS, which implements heterogeneity from a normal 

distribution, as the base algorithm as empirical results in Chapter 4 show that it has 

a better performance compared to that of the heterogeneous approach drawn from 

a uniform distribution.  

 

 

Figure 5.1: The iterative procedure of the proposed approach. 

 



 143 

     

 
 

Figure 5.2: Ant’s fitness solution representation in every iteration. 

5.2.1 Greedy Ants Initialization 

It has been reported that the choice of the initial tour plays an important role 

in the final solution [131][132]. Therefore, in this approach, a group of greedy, 

foraging ants was deployed for several iterations to act as a guide for the Gaussian 

heterogeneous ants to explore and exploit the solution found rather than starting by 

locating random tours. This method to speeds up and improve the initial tours found 

by the colony of ants.   Initially, the pheromone landscape lacks useful information 

for the ants to utilize in their exploration hence the use of these extremely greedy 

ants to quickly locate sub-optimal solutions for the heterogeneous ants to further 

perturb in order to locate better solutions. The possibility of getting stuck in local 

optima during the greedy ants' stage, if any, is overcome by the ability of the 

algorithm to escape from local optima via continuous exploration due to the 

mechanism of the heterogeneous approach. The greedy, ants consist of ants with 

a relative importance of 0 towards pheromone (α=0) and a very high preference 

towards the heuristic (next-hop distance) (β=10 [133]) that indicates high β during 

early stages of the search process is desirable. This will allow the greedy, 

homogeneous colony to locate good solutions for the heterogeneous ants to exploit 

very early on rather than starting with random tours as per conventional ACO 

algorithms. An experiment was conducted to determine an optimal setting for the 

number of iterations required for the aforementioned approach. Two different 

variants of the proposed algorithm were created where Heterogeneous Adaptive 

ACO–5 (HAACO-5) is the adaptive approach with greedy, homogeneous ants that 

were deployed for 5 iterations while HAACO-10 is the same algorithm except that 

the greedy, homogeneous ants were deployed for 10 iterations. The algorithms 
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were tested on medium-scaled TSP instances of ch150.tsp and kroA200.tsp with a 

known optimum of 6528 and 29368 respectively [109] while the stopping criterion 

was set at 10 000 function evaluations without any local search procedure. The 

experiment is designed test the settings on selected test cases of the same problem 

before applying the resulting settings for all the instances of the same problem [16]. 

The reason behind this experiment is that there might be a waste of valuable 

function evaluations if too many iterations are used for the greedy ants phase and 

the colony of ants may exhibit stagnation behaviour where all ants perform the same 

tour. On the contrary, potential sub-optimal solutions may not be found if too few 

iterations used for this phase thus defeating the main purpose of this initialization 

stage. It should be noted that this number of greedy tours approximates those seen 

in the other approaches [47][48] (compared against in section below), so as to 

confer no advantage to either algorithm.  

 

Table 5.1 compares the result of the experiment and it can be seen clearly 

that the algorithm that limits the greedy ants' exploration stage at 5 iterations has 

better overall performance compared to that of the other approach in terms of the 

best cost found, average best cost and worst best cost. A Wilcoxon rank-sum 

statistical test with a 90% confidence interval gives a p-value of 0.03 and 0.1 

respectively when tested on the performance of HAACO-5 over HAACO-10 for both 

TSP instances thus indicating the results are statistically significant. Figures 5.3 and 

5.4 illustrate the performance of the HAACO with two different deployment approach 

as stated above. The boxplots represent the best cost of 20 trials of the proposed 

approach. The result indicates that allowing the greedy, homogeneous ants to 

explore the search space for the first 5 iterations based on a greedy approach 

instead of random initial tours produces good initial solutions. The analysis also 

suggests that enabling the homogeneous ants to explore the search landscape for 

5 iterations produced the best performance. From iteration 6 onwards, the algorithm 

introduces a heterogeneous population of ants randomly drawn from a Gaussian 

distribution that will exploit the good regions found by the greedy homogeneous ants 

to further locate better solutions. Therefore, this approach will be implemented in 

the studies hereafter. The mean and standard deviations for both 𝛼 and 𝛽 

parameters of the heterogeneous ants remain as in the previous chapter. The 

population then evolves as the search progresses where the worst ant in every 
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adaptive interval (AI) was replaced with the child of the best ant in that AI that had 

undergone a Gaussian mutation (explained in the following section). 

 

Table 5.1: Performance comparison of the heterogeneous adaptive approach with 

a different number of iterations for greedy ants to explore the search space (-5 

indicates 5 iterations and -10 indicates 10 iterations for greedy ants to explore).  

Algorithm 
Best Average Worst 

ch150 kroA200 ch150 kroA200 ch150 kroA200 

Greedy-5 6548 29452 6572.1 29638 6601 29813 

Greedy-10 6554 29478 6582.6 29700 6622 30115 

 

 

Figure 5.3: Boxplots representing the best cost of heterogeneous adaptive 

approach with different initial greedy ants run tested on ch150.tsp (20 trials). 

               

Figure 5.4: Boxplots representing the best cost of heterogeneous adaptive 

approach with different initial greedy ants run tested on kroA200.tsp (20 trials). 
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                          (a)                                                            (b) 

        

                        (c)                                                             (d)    

      

   (e)                                                             (f)  

Figure 5.5: Pheromone distributions of the heterogeneous adaptive ants  

(eil76.tsp). 
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Figures 5.5 (a) to (f) illustrate an example of the pheromone distribution for a 

single run of heterogeneous adaptive approach on eil76.tsp (Opt=538) throughout 

the search process. Pheromone distributions from Iteration 1 to Iteration 5 represent 

the tours made by the greedy homogeneous ants while the pheromone distributions 

from Iteration 6 onwards represent the tours made by the heterogeneous ants. It is 

noticeable that the pheromone intensity diminishes a little in iteration 6 when the 

heterogeneous ants were introduced but the heterogeneous ants do not totally 

forget those paths found by the greedy ants but exploit those paths while also 

explore new search areas. Figure 5.5c and f can be compared and it can be seen 

that the greedy homogeneous ants were able to locate the sub-optimal solution as 

early as 5th iteration itself thus giving the heterogeneous ants a head start rather 

than starting from random tours. Thus this approach of the greedy ants acts as a 

guide for the heterogeneous ants towards good regions. 

5.2.2 Adaptive Interval 

As the heterogeneous adaptive approach does not employ additional function 

evaluations, the assessment of the quality of 𝛼 and 𝛽 parameter settings is based 

on the mean performance of ants with those parameter settings and a frequency of 

sampling of this information must be specified. Furthermore, a parameter must be 

defined to determine how often the evolution of the parameters takes place. Both of 

these factors are considered in the adaptive interval (AI) which is the number of 

ACO iterations that are completed between evolutionary steps. Setting this value is 

important because it determines how many evolutionary steps are possible within a 

given ACO run of fixed length and because it determines the robustness of the 

sampling that underpins the objective function calculation. For example, low values 

of AI (e.g. 1) indicate that parameter adaptation occurs in each ACO iteration. This 

provides many EA iterations but each one will be based on only one tour from each 

ant, leading to potentially volatile changes to the best performing ants through time. 

A more moderate setting such as 5 will yield 1/5 of the evolutionary steps but based 

on a more robust sample of 5 tours generated by the ants along with the amount of 

pheromone deposition is taken into account as well. This parameter was analysed 

across several TSPs: eil101.tsp, ch150.tsp, and d198.tsp respectively and 5 was 
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selected as the best performing of these. Figure 5.6,5.7 and 5.8 illustrate the 

boxplots of the proposed approach with different adaptive intervals while the yellow 

lines indicate the average best cost. The figures indicate that AI=5 produces the 

best performance when compared against other adaptive intervals that we have 

analysed in this section. The results show that fast adaptation is preferable over a 

slow adaptation mechanism where information over 5 iterations are used to 

determine or select the best and worst ant for replacement.  

 

 

Figure 5.6: Boxplots representing the best cost of 20 trials of heterogeneous 

adaptive ants with different Adaptive Intervals (AI) tested on eil101.tsp. 

 

 

Figure 5.7: Boxplots representing the best cost of 20 trials of heterogeneous 

adaptive ants with different Adaptive Intervals (AI) tested on ch150.tsp. 
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Figure 5.8: Boxplots representing the best cost of 20 trials of heterogeneous 

adaptive ants with different Adaptive Intervals (AI) tested on d198.tsp. 

5.2.3 Mutation 

One of the key aspects of the algorithm is that it requires a mechanism to 

explore the parameter space and to generate new parameter values for evaluation. 

However, in contrast the algorithm also has to preserve the information that it has 

already gathered thus drastic alteration is not preferable. This suggests that a very 

low amount of mutation is desirable to prevent total loss of the fittest individuals over 

time especially when a small population size is used. In addition, the mutation 

operator is also capable of preventing premature convergence to non-optimal 

solutions by enabling the algorithm to escape from local optima. On top of that, the 

mutation operator maintains the diversity in the evolving populations. Therefore, this 

study implements an approach where the mean best ant over 5 iterations (AI = 5 as 

explained above) will undergo mutation to cause a small, random change to the 

genotype before replacing the mean worst ant. The offspring will then join the 

heterogeneous population and through this repeated action will explore the 

parameter space and locate the instance-optimal parameter setting. The crossover 



 150 

     

operator, usually paired with the mutation operator in EA, is not used in this study 

because the genetic algorithm with random mutation alone results in better 

performance as compared against that of mutation with crossover and inversion 

operator [134]. 

The degree of random change that each application of the mutation 

operator can cause is related to the width of the distribution used. There are various 

mutation operators however two of the most popular mutation operators are the 

uniform and Gaussian mutation. Usually, the uniform mutation operator in GA 

replaces the value of the chosen gene or allele with that randomly drawn from the 

uniform distribution within the upper and lower bound. Likewise, the Gaussian 

mutation operator adds a random value to the allele drawn from the Gaussian 

distribution with mean = 0 and standard deviation determine empirically by the 

researcher.  The Gaussian mutation operator which is a commonly used operator 

is used in this study due to the high probability of creating an offspring that is much 

closer to the genes of the parents especially when elitism selection method is used. 

The Gaussian mutation is advantageous as it supports fine-tuning of the subject in 

study and flexible to implement. An empirical study was conducted to compare the 

performance of both uniform and Gaussian mutation operator in order to be 

implemented in the final setup of the heterogeneous adaptive approach. Initial 

experiments were conducted to determine the suitable range for the uniform 

mutation operator, M = U [-a; a] and standard deviation, σ for Gaussian mutation 

with mean 0, M = G(0; σ). Table 5.2 and 5.3 show the results of the initial 

experiments conducted where the range of [-0:05; 0:05] produces the best 

performance for uniform mutation while heterogeneous adaptive with a Gaussian 

mutation and standard deviation of 0:05 has an overall best performance. In addition 

to the results, the extent to which the uniform mutation and the standard deviation, 

σ of the Gaussian mutation operator was explored, it was expected that a large 

mutation width (large range of values for uniform mutation or high σ for Gaussian 

mutation) will cause the algorithm to engage in excessive exploration thus 

mimicking a random walk and too small a width (small range of values for uniform 

mutation or low σ for Gaussian mutation) will cause the algorithm to converge to a 

local optimum too quickly and very little exploration of the parameter space.  
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Table 5.2: Comparison of the average best cost of heterogeneous adaptive approach with different uniform mutation range tested 

on several TSP instances where the results in bold indicate best in each category. Results are of 20 trials, each trial = 1000 

iterations. 

Range Best Average Worst 

LB UB eil51 kroA100 kroA200 eil51 kroA100 kroA200 eil51 kroA100 kroA200 

-0.05 0.05 426 21416 29499 428.0 21490.2 30023.4 431 21609 30664 

-0.075 0.075 426 21355 29601 428.7 21617.1 30058 434 21860 30833 

-0.1 0.1 426 21416 29540 427.7 21531.4 30059.4 430 21877 30857 

-0.2 0.2 426 21443 29524 428.7 21518 30107.9 433 21719 30967 

-0.3 0.3 426 21379 29847 429.3 21587.5 30138.2 434 21768 30727 

-0.4 0.4 426 21443 29603 430.4 21573.7 30150.2 434 21883 30991 

-0.5 0.5 428 21393 29672 431.9 21604 30440.2 440 21899 31140 

 

Table 5.3: Comparison of the average best cost of heterogeneous adaptive approach with different standard deviation for the 

Gaussian mutation operator tested on several TSP instances where the results in bold indicate best in each category. Results are 

of 20 trials, each trial = 1000 iterations. 

TSP Opt 
Standard deviation 

0.5 0.4 0.3 0.2 0.1 0.075 0.05 0.025 

st70 675 690.6 689.4 684 681.7 680.4 682.8 676.5 679.4 

ch150 6528 6649.8 6638.6 6608.6 6598.2 6596.2 6586.6 6578.8 6584.6 

kroA200 29368 30708.1 30397.7 30525.4 30333.7 30084 29964.9 29633.2 29720.4 
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Hence, a suitable mutation width is required in order to achieve good 

performance. The mean best ant which has individual 𝛼 and 𝛽 values will undergo 

mutation using the equations below where M1 and M2 are two random values based 

on the mutation distribution used in the experiments. These values are then added 

to the 𝛼 and 𝛽 of the mean best ant thus creating a child of the mean best ant which 

replaces the mean worst ant. Table 5.4 compares the performance of the proposed 

approach with both uniform and Gaussian mutation with optimal settings as 

discussed above. It can be seen clearly that the heterogeneous adaptive with 

Gaussian mutation has an overall best performance in terms of best, average and 

worst best cost in almost all TSP instances when compared against the 

heterogeneous adaptive with uniform mutation algorithm. Therefore, Gaussian 

mutation with mean = 0 and standard deviation, σ = 0:05 will be applied in all 

experiments hereafter unless stated otherwise. 

                        (16)

    

                        (17)

     

Table 5.4: Performance comparison of heterogeneous adaptive approach with 

uniform and Gaussian mutation operator respectively tested on several TSP 

instances. Results are of 20 trials, each trial = 1 000 iterations and those in bold 

indicates the best of each category. 

TSP Opt 
Best Average Worst 

Uni Gau Uni Gau Uni Gau 

st70 675 675 675 679.9 676.5 684 678 

eil101 629 631 630 638.5 632.5 645 635 

lin105 14379 14379 14379 14453.6 14411.8 14525 14483 

ch150 6528 6554 6566 6581.7 6578.8 6599 6595 

kroA200 29368 29604 29483 30150.4 29633.2 30973 29755 
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5.2.4  Local Search 

The heterogeneous adaptive algorithm is further improved by the 3-opt local 

search heuristic where 3 edges are deleted from the tour and reconnected in some 

other possible ways in order to find the optimal solution (in this case, lowest best 

cost of all possible tours made up from the reconnection). 2-opt and 3-opt are the 

most common local search heuristics used to improve the tours while k > 3 (k-opt) 

produces better tours but with a significant increase in computational time which 

causes the algorithm to be ineffective. The heterogeneous adaptive approach 

implements the basic 3-opt local search approach to improve the solution found. 

Even though other approaches such as the “fixed-radius search” and “don’t look 

bits” are known to be better than the 3-Opt, this study did not implement any of it in 

order to confer no advantage to the heterogeneous adaptive approach over the 

algorithms in comparison. Only the tour that belongs to the iteration-best ant is 

perturbed by the 3-opt local search heuristic. This is because of the additional 

computational time as well as the extra function evaluation count if all tours in each 

iteration undergo this procedure.  

5.3 Experimental Setup 

An Intel Core i7 CPU-based computer with Windows 7 equipped with 4GB 

RAM was used to conduct the experiments and analysis. Matlab version R2015a 

was used to implement the base algorithm Max-Min Ant System (MMAS) [5]. The 

results of the developed base algorithm were shown to closely replicate the 

performance to that of the original authors which can be referred to Chapter 4. The 

performance of the proposed approach was measured on several symmetric 

Euclidean TSP instances with known optimum indicated in Table 5.5 [8]. Various 

sizes of TSP instances were used because different sizes of the search landscape 

impact the behaviour of the algorithm thus can determine how the algorithm adapts 

to the change in the search space. In addition, these cities were chosen in order to 

enable the proposed approach to be compared against state-of-the-art adaptive and 
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hybrid algorithms from the literature. Table 5.6 summarizes the parameter settings 

of HAACO where the settings for the base algorithm of MMAS are obtained from [5] 

as well as the suggestion by Dorigo and Stützle [107, p. 71] that suggest some 

parameters that produces good performances. In addition to this, specific 

parameters in relation to the HAACO are from our preliminary experiments. 

Table 5.5: TSP instances, size of the problem, and its known optimum. 

TSP Size Opt 

eil51 51 426 

Berlin 
52 

52 7542 

st70 70 675 

eil76 76 538 

rat99 99 1211 

kroA100 100 21282 

eil101 101 629 

lin105 105 14379 

ch150 150 6528 

kroA200 200 29368 

 

Table 5.6: Parameter settings as in the proposed approach. 

Parameter Symbol Value 

Number of ants m 10 

Pheromone importance 
(Heterogeneous) 

α 
Gau dist: mean = 1, s.d = 

0.2 

Heuristics importance (Heterogeneous) β 
Gau dist: mean = 5, s.d = 

0.2 

Pheromone importance (Greedy ants) α 0 

Heuristics importance (Greedy ants) β 10 

Initial pheromone τ0 1/(n*Lnn) 

Pheromone Evaporation ρ 0.02 

Stopping criterion  -  10 000 function evaluations 

Constant value Q 1 

Greedy ants initialization  - 5 iterations 

Adaptive Interval AI 5 iterations 

Gaussian mutation operator - mean = 0, s.d = 0.05 

Local search - 3-opt 

Number of trials - 20 trials 
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5.4 Results & Discussion 

5.4.1 Overall Results 

The aim of this section is to present the results and analysis of the HAACO 

approach. Moreover, the ability of the approach to explore and exploit the parameter 

space to locate instance-optimal parameter settings whilst generating competitive 

TSP tours is described. The proposed approach is compared against two state-of-

the-art hybrid ACO algorithms for TSP which are the parallel co-operative ACO 

algorithm with 3-opt [48] and hybrid PSO-ACO-3opt algorithm [47], as well as two 

variants of MMAS, where the MMAS algorithm was developed and its similarity is 

proven in Chapter 4. MMAS1 is a variant of MMAS with 3-opt and greedy, 

homogeneous ants for the first 5 iterations while MMAS2 represents a standard 

MMAS implementation also augmented with 3-opt. [48] and [47] have some 

similarities to HAACO where the algorithms also deploy co-operative approaches, 

migration strategies (similar to adaptive approach), uses 3-opt local search and 

have been compared against a number of algorithms and proven to perform well on 

several TSP instances.  For comparison purposes, all parameters were set 

according to [47] and [48] except specific parameters such as mean α and mean β 

of heterogeneous ants which were set to 1 and 5 respectively (as explained above).  

Tables 5.7 to 5.12 represent the performance comparison of HAACO 

against [47], [48]  and MMAS variants in terms of best cost, average best cost and 

worst best cost respectively. A ranking mechanism was used to rank the 

performance of each algorithm with a ranking of 1 to 5 where 1 is the best algorithm 

in each TSP instance with 5 being the poorest. Referring to Table 5.7, HAACO has 

the overall best performance as it is capable of locating the optimum or lowest 

fitness solution in 7 over 10 instances and it has the second-best fitness solutions 

in the other two TSP instances while the algorithm is third in the ranking for 

ch150.tsp. Table 5.8 supports this claim by indicating the average ranking of each 

algorithm and HAACO has an average ranking of 1.4 followed by [47] in second with 
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an average of 1.7. The results indicate that the proposed algorithm has a better 

performance when compared to the state-of-the-art algorithms.  

 

Table 5.7: Fitness solution comparison of HAACO against other approaches 

tested on several TSP instances. The result in bold indicates the best of each 

category. 

TSP Opt HAACO 

PSO-
ACO-
3Opt 
[47] 

PACO-
3Opt 
[48] 

MMAS 
1 

MMAS 
2 

eil51 426 426 426 426 427 426 

Berlin52 7542 7542 7542 7542 7542 7542 

st70 675 675 676 676 675 682 

eil76 538 538 538 538 538 538 

rat99 1211 1211 1224 1213 1212 1212 

kroA100 21282 21282 21301 21282 21315 21379 

eil101 629 630 631 629 631 631 

lin105 14379 14379 14379 14379 14379 14379 

ch150 6528 6566 6538 6570 6554 6566 

kroA200 29368 29483 29468 29533 29485 29488 

 

Table 5.8: Ranking comparison of HAACO against other approaches tested on 

several TSP instances based on the fitness solution in Table 5.7. The result in 

bold indicates the best of each category. 

TSP Opt HAACO 

PSO-
ACO-
3Opt 
[47] 

PACO-
3Opt[48] 

MMAS 
1 

MMAS 
2 

eil51 426 1 1 1 2 1 

Berlin52 7542 1 1 1 1 1 

st70 675 1 2 2 1 3 

eil76 538 1 1 1 1 1 

rat99 1211 1 4 3 2 2 

kroA100 21282 1 2 1 3 4 

eil101 629 2 3 1 3 3 

lin105 14379 1 1 1 1 1 

ch150 6528 3 1 4 2 3 

kroA200 29368 2 1 5 3 4 

average 1.4 1.7 2 1.9 2.3 
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Table 5.9 shows the average fitness solution over 20 trials, corresponding to 

Table 5.10 which illustrates the results via the ranking system. Both HAACO and 

PACO-3Opt [48]  have similar performance where both have lowest average best 

cost in 4 over 10 instances with an average ranking of 1:9. Lastly, another 

performance measure that was used in this comparison is the lowest of 20 worst 

fitness solutions of each algorithm for each TSP instance as shown in Table 5.11 

while Table 5.12 translates the results into a ranking system. Both tables indicate 

that HAACO has a better performance in terms of worst best cost with an average 

ranking of 1.8 compared to 1.9 by [48].  

Table 5.9: Comparison of HAACO against other approaches based on the average 

fitness solution. The result in bold indicates the best of each category. 

TSP Opt HAACO 
PSO-
ACO-

3Opt [47] 

PACO-
3Opt 
[48] 

MMAS 
1 

MMAS 
2 

eil51 426 427.5 426.45 426.35 429.4 428.5 

Berlin52 7542 7542 7543.2 7542 7542 7542 

st70 675 676.5 678.2 677.85 683.8 685.2 

eil76 538 542 538.3 539.85 542.8 543.5 

rat99 1211 1214.1 1227.4 1217.1 1216.9 1219.4 

kroA100 21282 21364.2 21445.1 21326.8 21528.3 21513.7 

eil101 629 632.5 632.7 630.55 640.4 640.9 

lin105 14379 14411.8 14379.15 14393.0 14429.2 14433 

ch150 6528 6578.8 6563.95 6601.4 6603.9 6581 

kroA200 29368 29633.2 29646.05 29644.5 29799.4 29760.3 
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Table 5.10: Ranking comparison of HAACO based on the average fitness solution 

in Table 5.9. The result in bold indicates the best of each category. 

 

TSP Opt HAACO 

PSO-
ACO-
3Opt 
[47] 

PACO-
3Opt 
[48] 

MMAS 
1 

MMAS 
2 

eil51 426 3 2 1 5 4 

Berlin52 7542 1 2 1 1 1 

st70 675 1 3 2 4 5 

eil76 538 3 1 2 4 5 

rat99 1211 1 5 3 2 4 

kroA100 21282 2 3 1 5 4 

eil101 629 2 2 1 3 4 

lin105 14379 3 1 2 4 5 

ch150 6528 2 1 4 5 3 

kroA200 29368 1 3 2 5 4 

average 1.900 2.300 1.900 3.800 3.900 

 

Table 5.11 Fitness solution comparison of HAACO against other approaches 

tested on several TSP instances based on the lowest worst fitness solution over 

20 trials. The result in bold indicates the best of each category. 

TSP Opt HAACO 

PSO-
ACO-
3Opt 
[47] 

PACO-
3Opt 
[48] 

MMAS 
1 

MMAS 
2 

eil51 426 430 428 427 433 432 

Berlin52 7542 7542 7548 7542 7542 7542 

st70 675 678 681 679 691 692 

eil76 538 545 539 542 547 551 

rat99 1211 1218 1230 1225 1226 1229 

kroA100 21282 21445 21554 21382 21917 21810 

eil101 629 635 638 639 651 650 

lin105 14379 14483 14381 14422 14542 14594 

ch150 6528 6595 6622 6627 6675 6617 

kroA200 29368 29755 29957 29721 30307 30033 
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Table 5.12: Ranking comparison of HAACO based on the average fitness solution 

in Table 5.11. The result in bold indicates the best of each category. 

TSP Opt HAACO 

PSO-
ACO-
3Opt 
[47] 

PACO-
3Opt 
[48] 

MMAS 
1 

MMAS 
2 

eil51 426 3 2 1 4 5 

Berlin52 7542 1 2 1 1 1 

st70 675 1 3 2 4 5 

eil76 538 3 1 2 4 5 

rat99 1211 1 5 2 3 4 

kroA100 21282 2 3 1 5 4 

eil101 629 1 2 3 5 4 

lin105 14379 3 1 2 4 5 

ch150 6528 1 3 4 5 2 

kroA200 29368 2 3 1 5 4 

average 1.8 2.5 1.9 4 3.9 

5.4.2 Parameter Adaptation 

The improved performance in HAACO can be attributed to the capability of 

the algorithm to search the parameter space and quickly converge towards optimal 

parameter settings as well as exploiting the neighbouring regions via the Gaussian 

mutation. The greedy, homogeneous sub-colony was able to locate sub-optimal 

solutions very early in the search process and this acts as a guide for the Gaussian 

heterogeneous ants to exploit to locate better solutions. When considering a limited 

budget of function evaluations i.e 1000 iterations, this mechanism provides better 

starting solutions compared to a random start approach as used in most of ACO 

algorithms. Figures 5.9a and 5.9b show the comparison of the best cost of HAACO 

with and without the use of the greedy homogeneous ants for a single trial when 

tested on eil76.tsp (optimum: 538) . Figure 5.9a shows that the greedy ants enabled 

the algorithm to start with better, shorter tours very early on while Figure 5.9b 

illustrates that the algorithm starts off with random tours due to lack of pheromone 

information during the early stages thus starting with poor fitness solution. Several 

function evaluations were required before the algorithm managed to locate good 

solutions hence a waste of function evaluations.  
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(a) HAACO with greedy                          (b) HAACO without greedy 

 

Figure 5.9: Best cost plot of a single trial of HAACO tested on eil76.tsp. 

 

It can also be seen that the HAACO with greedy ants initialization was able 

to locate a tour of 540 by iteration 100 while HAACO without greedy ants initialization 

only managed to reach 550 by iteration 500 while possibly running out of  function 

evaluations to further explore or exploit the search space especially in situations of 

limited budget evaluations. 

Figures 5.10, 5.11 and 5.12 illustrate the parameter convergence using 

convex hulls to show the convergence of parameter values during different stages 

of the optimization process when tested on st70.tsp (optimum:675), lin105.tsp 

(optimum:14379) and ch150.tsp (optimum:6528). The convex hull forms the 

perimeter of the outermost points in a Euclidean space while the histograms 

represent the number of ants within a particular range of values. From these figures, 

it can be seen that the initial distribution of heterogeneous ants introduced from 

iteration 6 onward is followed by exploration and exploitation of the parameter space 

by these ants in order to locate the instance-optimal parameter settings. It can also 

be noticed that in general, ants with high beta and low alpha values perform best. 

This depicts the exploration phase of the algorithm where the algorithm explores the 

fitness landscape to locate good to sub-optimal solutions. In addition to that, there 

is less information on the pheromone landscape for the ants to exploit hence the 

colony adapts to ants with high beta and low alpha values. The strategy changes as 
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the search progresses when there is an accumulation of pheromone on the edges 

hence ants become less reliant on the heuristics and utilizes the information on the 

pheromone landscape. Therefore, ants with higher alpha perform better in later 

stages and the colony adapts to this. This shows that the proposed approach is 

capable of adapting its strategy between exploration and exploitation whenever 

necessary and at the same time exploring the parameter space to locate instance-

optimal parameter settings.  

 

(a)                                                         (b) 

 

                              (c)                                                         (d) 
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                            (e)                                                    (f) 

Figure 5.10: Parameter convergence of HAACO tested on st70.tsp. 

 

            

(a)                                                            (b) 

             

                                        (c)                                                      (d) 
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                                          (e)                                                     (f) 

Figure 5.11: Parameter convergence of HAACO tested on lin105.tsp. 

 

           

(a)                                                      (b) 

           

                                         (c)                                                      (d) 
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                                         (e)                                                        (f)                           

Figure 5.12: Parameter convergence of HAACO tested on ch150.tsp. 

5.4.3 Algorithm’s Behaviour 

Figures 5.13a, 5.14a and 5.15a indicate that the algorithm quickly 

converges to good solutions before exploiting these parameter settings to achieve 

better solutions. The change from the exploration phase to exploitation can be 

noticed in Figure 5.13b, 5.14b and 5.15b respectively where the algorithm has a 

high standard deviation early on before it converges to sub-optimal solutions and 

further perturbation is necessary to locate better solutions. The standard deviations 

also indicate that the proposed approach did not enter stagnation behaviour in all 

three TSP instances. However, the standard deviation of HAACO is almost 0 when 

tested on lin105.tsp as indicated in Figure 5.15b. The reason could be that the 

algorithm converges to the optimal solution that was found very early on during the 

search process. Lastly, the fast convergence claim is supported by the average 

lambda branching factor of HAACO in all three TSP instances where the number of 

branches being explored starts to decrease from iteration 200 onwards as can be 

seen in Figure 5.13c, 5.14c and 5.15c respectively. This also indicates the nature of 

the algorithm which is capable of escaping from local optima as observed in Figures 

5.13c and 5.14c where the algorithm still explores new edges even after a period of 

convergence and this can be due to the Gaussian mutation operator that leads the 

algorithm to new neighbouring regions in the parameter space. The advantage of 

the algorithm is in its ability to converge to good parameter solutions quickly and 
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exploit those values to obtain optimal settings. In addition, the small mutation width 

that was used in this study allows the ants to move to neighbouring regions rather 

than execute a large jump to non-optimal search space. Finally, it is important to 

note that this algorithm does not incur any additional function evaluation calls to 

implement the adaptive approach unlike other hybrid approaches that utilizes PSO 

to optimize the parameters [47]. In addition to that, this approach also is not 

computationally extensive as it doesn’t demand heavy computation or 

computational resources compared to Parallel ACO approach [48]. 

                                                                              

                    (a)                                         (b)                                      (c) 

Figure 5.13: Analysis of HAACO tested on st70.tsp. 

 

  

                   (a)                                         (b)                                      (c) 

Figure 5.14: Analysis of HAACO tested on lin105.tsp. 
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                      (a)                                         (b)                                       (c) 

Figure 5.15: Analysis of HAACO tested on ch150.tsp. 

5.5 Conclusion 

A heterogeneous adaptive approach with Gaussian mutation was presented 

in this chapter. The relevance of the adaptive approach including the introduction of 

the greedy ants, adaptive interval and amount of mutation were studied using 

several symmetrical TSP instances. Empirical studies have shown that adapting the 

parameters of an algorithm has an advantage over fine-tuned algorithms in their 

ability to react to the changing features of a search landscape as it approaches the 

optimum. The proposed approach is more feasible than the time-consuming task of 

fine-tuning the parameters that usually require prior knowledge of the algorithm as 

well as the problem in hand. The proposed approach allows the algorithm to be able 

to adapt or interchange between different strategies i.e exploration and exploitation 

throughout the search process. Comparison against the two state-of-the-art 

algorithms also suggests that the proposed approach is able to explore the 

parameter space to locate the instance-optimal settings that would then allow the 

ants to explore the search space to find better fitness solutions. This enhances the 

robustness of the algorithm towards parameter settings. In addition to this, the 

algorithm is able to escape from local optima with the introduction of the mutation 

operator and  prevents the algorithm from going into stagnation behaviour by 

allowing the ants to exhibit individual behaviour. The small amount of mutation 

allows the algorithm to explore neighbouring regions rather than performing a 

random jump. It is also noticeable that this approach suits one with a low or small 
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budget of function evaluations as it is capable of converging to good or sub-optimal 

parameters quickly before the exploitation of those areas to locate optimal settings. 

Future work requires the investigation of the approach on larger TSP instances. In 

conclusion, this study has explored the possibilities of enabling the algorithm to self-

adapt its 𝛼 and 𝛽 parameters thus allowing the algorithm to explore both parameter 

space and search space simultaneously to locate better solutions. 
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Chapter 6 Conclusion & Future Work 

 

The last decade has seen a rise in the interest of solving combinatorial hard 

optimization algorithms using algorithms inspired by swarm intelligence. These 

algorithms use a decentralized approach and collective intelligence that are adopted 

from the behaviour of social insects such as flock of birds or swarm of bees. ACO is 

a highly successful branch of swarm intelligence that is inspired by the foraging 

behaviour of real ants. It has been widely reported that the performance of ACO is 

critically dependant on the parameter settings. However, parameter tuning is a non-

trivial task mainly because each problem or even each problem instance has its own 

optimal parameter settings but it is impossible to tune the parameters for each and 

every problem and problem instances. Even if one tries to, a deep understanding of 

both the algorithm and the problem being solved is required. In addition, the optimal 

parameter settings may change as the search landscape changes. 

This thesis addresses and presents new insights into the implementation of 

individual ‘behavioural traits’ via the heterogeneous ACO approach for static TSP 

and PCB drilling problems, although the approach is generic and not limited to these 

problems. This research work takes inspiration from recent studies that have shown 

that real ants in a colony do differ in terms of their behaviours and preferences. The 

animal behaviour scientists suggest that the different personalities could arise due 

to the ants’ genetics, its morphology, the changes in the environment or the 

availability of food resources.  Therefore, the idea is to develop a heterogeneous 

ACO that closely resembles the newfound nature of real ant colonies that is able to 

improve on the performance of the conventional ACO algorithms as well as 

overcome the problems that have been discussing in previous chapters. 
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6.1 Significance of the Research & Contributions 

6.1.1 Heterogeneous Ant System (HAS) & Heterogeneous 

Max-Min Ant System  (HMMAS) 

Chapter 3 implements and analyses a heterogeneous approach with ants 

randomly initialized from a uniform distribution within a pre-defined range of values. 

The results clearly show that the heterogeneous approach in ACO is able to produce 

improved performance over the standard, parameter-tuned algorithms on which 

they are based with increased robustness to parameter settings. The performance 

difference was particularly marked when heterogeneity was implemented on the Ant 

System (AS).  This is likely to be due to the greater contribution of each ant to the 

pheromone trail, highlighting the effect of diversity where all ants were allowed to 

modify the pheromone landscape unlike in the Max-Min Ant System (MMAS). Even 

though HMMAS still produced sup performance over the base algorithm. the smaller 

gains made by HMMAS can be explained by the increased performance of the base 

algorithm, locating solutions closer to the optimum and the effect of individual 

variance or heterogeneity is limited in HMMAS due to algorithm’s limitation of only 

a single agent to modify the pheromone limiting the overall heterogeneity 

advantage. Having a variety of ‘behavioural traits’ rather than a single behaviour 

shows the advantage in the performance of the algorithm. Recording the best 

performing alpha and beta values provided some support for the parameter values 

suggested by both Dorigo et al [6] and Stützle et al [5], but also highlighted instances 

where these parameter settings were not optimal. The discovery of distinct 

distributions of parameter settings for alpha and beta is interesting and 

demonstrates the algorithms’ sensitivity and robustness to these parameters. These 

distributions remained stable despite being tested on multiple problem sizes. This 

study shares a new understanding and knowledge of the advantages of the 

heterogeneity approach in ACO especially and swarm intelligence as a whole thus 

acting as a guide in developing effective algorithms. Based on the results discussed 

in Chapter 3, it can be concluded that the proposed algorithm is highly competitive 
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when compared against conventional ACO algorithms hence it provides a base for 

further research work. 

6.1.2 Gaussian Heterogeneous Max-Min Ant System 

(GHMMAS) 

GHMMAS is introduced in Chapter 4 as another heterogeneous approach 

to ACO that implements different ’behavioural traits’ within a population drawn from 

a Gaussian distribution thus enabling each ant pre-assigned with a pair of traits in 

relation to α, the relative importance of pheromone, and β, the relative importance 

of heuristics. The diversity in the population introduced by Gaussian distribution 

enables GHMMAS to display a better performance compared to HMMAS by virtue 

of initializing the population centered around values suggested in [40]. It was also 

found that performance can be improved through the introduction of the right amount 

of spread introduced via the standard deviation of the Gaussian distribution reduces 

and eliminates ants in the extreme-low and extreme-high values of the range which 

might cause the algorithm to perform poorly. The results also highlight ants with a 

higher preference towards heuristics (higher β) are useful during the early stages of 

the search process while ants with a slightly lower preference towards heuristics 

perform better during later stages. The shift in pattern is because the pheromone 

landscape has less information initially thus requiring ants with a higher preference 

of heuristics information to build good solutions and as the search progress, more 

pheromone is deposited hence ants with higher α and lower β perform better during 

later stages. In regard to the PCB drilling problem, the huge amount of diversity 

introduced by GHMMAS enables the algorithm to fully explore the search space to 

locate the optimal solution.  
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6.1.3 Heterogeneous Adaptive Ant Colony Optimization 

(HAACO) 

Chapter 5 extended the study to implement and analyse a self-adaptive 

approach of the heterogeneous ACO by adapting the parameters as the search 

progresses. The approach is based on the collective intelligence of the 

heterogeneous individuals and their interactions in not only exploring the fitness 

landscape but also the parameter landscape simultaneously. This allows the 

algorithm to automatically adjust its search strategy by alternating between 

exploration and exploitation whenever required. Empirical results tested on several 

TSP instances have shown that the adaptation of the algorithm’s parameters have 

an advantage over fine-tuned algorithms in their ability to react to the changing 

features of a search landscape as it approaches the optimum. The proposed 

approach is more feasible than the time-consuming task of fine-tuning the 

parameters that usually requires prior knowledge of the algorithm as well as the 

problem that is being solved. The algorithm is also able to autonomously locate 

instance-optimal parameter settings as demonstrated by the convex hull diagrams 

that showcased the algorithm’s ability to explore the parameter space thus rendering 

the algorithm to be scalable to various problem sizes. It is also noticeable that this 

approach suits applications with a low or small budget of function evaluations as it 

is capable of converging to good or sub-optimal parameters quickly before the 

exploitation of those areas to locate optimal settings.The experimental evaluations 

such as the best cost found over a certain number of trials, average best costs and 

rank indicators indicate that the proposed approach outperforms various state-of-

the-art hybrid approaches as illustrated in Chapter 5. Furthermore, ACO algorithms 

are known to suffer from stagnation behaviour where the artificial ants construct the 

same tours repeatedly from early stages. This condition is more likely to happen if 

the parameters are not optimal as the algorithm is unable to improve on the solution 

found hence higher possibility of getting trapped in local optima. Therefore, the 

average branching factor illustrations suggest that the proposed approach is able to 

overcome the stagnation behaviour issue as the individual ‘behavioural traits’ allows 
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each ant to have a different view, preference or perspective in tackling the search 

landscape. 

6.2 Limitations of The Proposed Work 

There are some limitations in the contributions of this thesis as follows: 

1. The main framework of the proposed approach revolves around both  α 

and β, which are the two main parameters in ACO that affect or 

determine the performance of the algorithm. In addition to this, the 

implementation of the proposed approaches, especially the range of 

values, are based on the parameter suggestion by Dorigo et al [6]. 

2. The proposed approaches were tested mainly on static optimization 

problems such as TSP and PCB drilling. Even though the later is a more 

realistic real-world problem, the proposed approaches ought to be tested 

on dynamic problems where the global optima changes over time. 

Preliminary results in this thesis suggest that the heterogeneous 

approach may produce good performance in dynamic problems due to 

its ability to explore the search and the parameter landscape 

simultaneously. 

6.3 Conclusion 

Overall, empirical results presented and discussed in this thesis have shown 

significant improvement in the proposed approach over the base algorithms while 

the self-adaptive heterogeneous ACO is shown to perform better than  state-of-the-

art hybrid ACO algorithms. Both of these are the result of replacing the static 

parameters with that of the heterogeneous approach where each ant is incorporated 

with its own distinguished parameters known as ‘behavioural traits’. This allows the 

ants to explore and exploit throughout the search process. Furthermore, the self-

adaptive heterogeneous approach has the ability to adapt these parameters as the 
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search progresses and thus is able to explore and exploit the search regions 

autonomously.  

In conclusion, the proposed approach is able to maintain diversity in the 

population of ants that allows the algorithm to be able to effectively achieve a 

balance between exploration and exploitation of the search space throughout the 

search process. It is also important to note that the algorithm is able to achieve 

excellent performance when tested on various problem sizes. This shows that the 

algorithm is robust to parameter settings and scalable. Lastly, the heterogeneous 

approach can be applied to real-world problems due to its improved performance 

coupled with the simplicity in implementation. Some likely problems would include 

the delivery truck route optimization, collision avoidance, telecommunication routing 

network and many more.  

6.4 Future Work 

The effectiveness of the heterogeneous ACO introduced in this study can 

be further explored in several ways. One of the areas for further analysis is to 

explore initializing the ants from different distributions such as binomial, Poisson or 

exponential distributions. This will then give a much clearer picture of the best 

distribution to implement heterogeneity in ACO.  

The self-adaptive heterogeneous ACO approach has been developed in a 

way that is well suited for dynamic environments where the global optimum changes 

over time. Therefore, the algorithm should be able to adapt to the changes in order 

to locate the global optimum. In addition to that, many of the real-world problems 

are dynamic in nature such as route planning or scheduling problems. Therefore, 

the effectiveness and suitability of the heterogeneous approach in solving the real-

world problem can be implemented and analysed. The heterogeneous approach 

can incorporate some other behaviours of real ants such as recruitment learning. 

Rather than random initialization, ants can be defined to have specific roles such as  

explorative ants, lazy ants that prefers random walk and many more. In addition, 

ants can have the ability to recruit other ants when the need arises such as 
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promising region in a solution space. This can either be at individual-level or multi-

colony approach where ants with same behaviour can be grouped into a sub-colony 

and exchange of information between the sub-colonies. Finally, the heterogeneous 

approach in this study as well as previous studies in PSO indicate the ability of this 

approach to improve on the performance of the algorithm, mainly algorithms in the 

field of swarm intelligence., The heterogeneous approach is wide in nature and has 

wide applicability thus can possibly be applied to improve other swarm algorithms 

such as artificial bee colony or the more recent intelligent water drop algorithm. 
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