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Graded index confined spin waves in a mixed Bloch-Néel domain wall
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We propose a mathematical model for describing propagating confined modes in domain walls of intermediate
angle α (0 < α < π/2 radians) between domains. The model is obtained from the linearized Bloch equations of
motion and under reasonable assumptions that can apply to the scenario of a thick (80 nm) magnetic patch, which
simplifies the calculations without a high impact on the model accuracy. The model shows that there is a clear
dependence of the local wave number of the confined spin wave on the local angle of domain magnetization with
respect to the wall and on the excitation magnetic field frequency. From this model, we can define a local mode
index in the wall as a function of such angle and excitation frequency. Therefore, the model can be applied to
1D propagating modes, although it also has physical implications for 2D scenarios where a domain wall merges
with a saturated magnetic region. Micromagnetic simulations are in good agreement with the predictions of the
model. Our model can also give insight on the effects that curved edge structures may have on the propagating
characteristics of spin waves bounded in domain walls.
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I. INTRODUCTION

Due to their low loss and shorter wavelength compared
to electromagnetic waves in free space, spin waves are a
promising candidate for information carrier in micrometer
and submicrometer scale magnonic circuits [1–3]. Inhomo-
geneities such as vortex cores have been widely studied as
spin waves emitters [4–6]. Once the spin wave is excited, an
adequate control of its propagation is key for the develop-
ment of circuits that channel spin waves. Local excitation of
spin waves and their spatial confinement have been widely
studied in terms of local ferromagnetic resonances due to in-
homogeneities [7–9], confinement along edges [10,11], along
domain walls, and by domain wall natural fluctuation modes
or so-called Winter magnons [10,12]. It is well known that
domain walls act as natural channels for spin waves due to the
energy well that they present [13]. More importantly, Winter
magnons can be excited across a wide range of frequencies
since they are gapless modes, which makes them very useful
for efficiently directing spin waves in a variety of potential
applications.

Graded index media for wave propagation have been
widely studied specially in electromagnetics, in the field
known as transformation optics [14–16]. The development of
structures and metamaterials ranging from nanometer size to
centimeters has presented interesting possibilities not exhib-
ited in nature. In addition, graded-index (GRIN) devices, e.g.,
for optical elements and slow-light devices that may utilize
these novel materials, have found application in an extremely
wide range of frequencies, from microwaves to visible light.

In the field of magnonics, graded index magnetic media
may serve a similar purpose, taking advantage of the high
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anisotropic behavior of spin waves [7]. For example, tailoring
the spin wave propagation in magnetic domains allows the
development of lenses for spin waves [17–19]. Regarding
unidirectional propagation in domain walls, previous studies
have dealt mainly with redirection and steering the spin wave
path [20–22], inducing phase changes [23,24] or nonrecipro-
cal paths by means of nonlinear effects [25] or conventional
dynamic dipolar interactions [26].

However, anisotropic magnetic media can provide more
functionality beyond simply the modification of direction,
intensity, or temporal frequency of the spin wave. Spatial
frequency modulation or ‘spatial chirping’ is a widely used
technique in telecommunication engineering and photonics.
For example, it is used in fiber-Bragg gratings and in other
chirped mirrors as filters, where wave number (k) or equiv-
alently wavelength (λ = 2π/k) shows a spatial dependence.
The analysis of spatially chirped signals can even be extended
to the processing of images where periodic features are vi-
sualized in a perspective view. The graded-index technique
for steering electromagnetic waves could also have an equiv-
alence for spin waves, and therefore, mathematical tools are
required to understand and model this. Using the nonuni-
form demagnetizing field in a saturated YIG nonellipsoidal
rod, the pioneering work from Schlömann [27] for backward
volume spin waves and from Stancil [28] for surface spin
waves and further experimental results using spatially varying
external fields [29] confirmed the realization of the ‘spatial
chirping’ technique for spin waves. A change of wavelength
has also been observed by using tapered saturated magnonic
waveguides [30].

In this paper, we demonstrate a spatially dependent wave
number (spatial dispersion) of confined modes in domain
walls (and therefore, in nonsaturated films), providing with an
equation that allows us to model their local wave number and
propagation properties. We run micromagnetic simulations to
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model a ‘double-teardrop’ or ‘bowtie’ shaped patch, because
in remanence it retains a single intermediate domain wall of
variable angle between two vortex cores. The results from
these simulations show good agreement with the model we
propose.

II. DESCRIPTION OF THE MODEL

As a first step to obtain a useful model, and in similarity
to what is done in Ref. [23], we search for an expression
of a spatially dependent wavelength for a spin wave travel-
ing in a domain wall, based on a Wentzel-Kramers-Brillouin
(WKB) approximation [31]. Assuming a Neel-type domain
wall along the x direction, this implies that magnetization
components at its center can be expressed as: mx = m0eiωt ,
my = Ms, mz = m0eiωt eik(x)x. As it will be shown later in this
section, this description of the dynamic magnetization is still
approximately correct even for a mixed Bloch-Neel wall of
an arbitrary angle. Now, let us assume an internal magnetic
field perpendicular to the wall and only related to dipolar
and exchange interactions, Hi = (Hd + Hex)y, where the de-
magnetizing field is Hd = Hd(x) and the exchange field is
Hex = 2Aex∇2m(x)/(μ0Ms). Substituting Hi into dM(t )/dt =
−|γ |M(t ) × Hi, we obtain the following expressions for the
linearized equations of motion,

i
ω0

|γ |mz = mx(Hd + Hex) = mxHd + 2Aex

μ0Ms

∂2mx

∂x2
, (1)

ω0

|γ |mx = imz(Hd + Hex) = imzHd + i
2Aex

μ0Ms

∂2mz

∂x2
. (2)

As in Ref. [23], in order to find an expression for a
spatially dependent wave number k(x) that includes the de-
magnetizing field magnitude Hd(x) = |Hd(x)|, we combine
the previous linearized Bloch equations, (1) and (2), by
defining a compact expression for magnetization φ = mx +
imz, assuming φ ∼ φ0eik(x)x. Finally, we can reduce the lin-
earized Bloch equations of motion to the following first-order,
complex, nonlinear differential equation (see Supplemental
Material [32] for a more detailed derivation),

ω0

|γ | = |Hd(x)| + 2Aex

μ0Ms
(ixk′′ + x2(k′)2 + 2(x − i)k′ + k2),

(3)

where ω0 is the excitation frequency and γ the gyromagnetic
ratio and the primes indicate derivation with respect to x.
As a first approach to solve this differential equation, we
can assume that variations of spin wave wavelength along
the domain wall will be smooth, since no sudden changes in
the demagnetizing field along the longitudinal direction are
expected in a straight domain wall configuration. This can be
formulated as |∇Hi| � kHi [33] (p. 198). The small variations
of the internal field mean in turn that the variations of wave
number may be small too, as the ferromagnetic resonance is
not strongly changed. Therefore, both variations are assumed
to have similar order of magnitude, |∇Hi| ∼ |∇k|. The latter
two formulated conditions combined suggest that the first and
second derivatives of k with respect to x can be reasonably
neglected when compared to k2. Removing the dependences
on k′ and k′′ from Eq. (3) gives an approximate description for

(x)/2

x

y

z

x'
z' r'
r

t

m1

m2

domain wall border

FIG. 1. Schematic of a domain wall in terms of the domain
magnetization (red arrows) and their angle (α) with respect to the
domain wall of initial width 	(0) = 	0 in a sample of thickness t .
The domain wall borders (green areas) and the domain wall center
(black area) are shown. The absolute and relative coordinate systems,
chosen for the calculations, are also shown.

a spatially dependent wave number, similar to Schlömann’s
work [27], as a function of the module of the demagnetizing
field in the wall,

k(x) =
√

k2
0 − μ0Ms

2Aex
|Hd(x)|, (4)

where k0 =
√

μ0Ms

2Aexγ
ω0 is the wave number for a confined spin

wave of frequency ω0 when the transversal in-plane demagne-
tizing field is zero, or in other words, in a 180 degrees Bloch
domain wall [25].

Finding a general demagnetizing field expression in a non-
saturated ferromagnet of a nonellipsoidal, arbitrary shape is
not trivial [34,35]. To do this for our design, we use an ap-
proach based on a magnetostatic scenario to find an expression
for the in-plane demagnetizing field across the mixed wall,
i.e., from one domain into the other. In other words, we aim
to establish a link between Eq. (4) and the angle (α) between
magnetization in the domains and the wall.

Let us assume the scenario from Fig. 1 for the domain
wall of initially constant width 	(x) = 	0 and an angle α

that the magnetization m1,2 makes with the straight domain
wall. From the pioneering work by Landau and Lifshitz [36],
to generally calculate a domain wall structure or profile, the
expressions of the specific wall energies involved must be
minimized and solved through a method of variational calcu-
lus. Examples of this process on standard domain wall types
can be found in Ref. [37], Chap. 3.6 and Ref. [38].

Below a critical angle αc, a mixed Bloch-Neel behavior
of the wall is obtained, where the Neel component is always
dominant if t ∼ 	0 or t < 	0 and if α < αc [39]. If α > αc,
the out-of-plane component of magnetization in the wall van-
ishes, and the wall becomes essentially a Neel-type [40]. In
Ref. [39], it is found that the critical angle αc is of π/4 for
a sample as thick as t ∼ 4	0. For situations where t ∼ 	0,
the critical angle αc is almost zero. Therefore, note that the
conditions for a dominant Neel component in the mixed wall
can be, in principle, easily met in the 80 nm patch modeled
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in our work. From micromagnetic simulations (not shown
here), the width of the domain wall (as of the vortex core)
is approximately ∼90 nm and the domain angles are always
smaller than π/4 radians, yielding in practice a very low criti-
cal angle αc. In addition to this, a sin(α) coefficient, dependent
on the angle of magnetization in the domains, is added to
the magnetization in-plane components transverse to the wall
(my) to consistently model the limiting value before entering
into the domains.

Accounting for all the above, following similar calcula-
tions to those shown in Ref. [37], Chap. 3.9, and considering
that Ms =

√
m2

x + m2
y + m2

z must be satisfied for every y
position across the domain wall, the three components of
magnetization in the wall region can be regarded as

mx = Ms

√
1 − sin2(α)sech2

(
y

	0

)
− cos2(α)ξ (α, y)2

(1 − sin(α))2 , (5)

my = Mssin(α)sech

(
y

	0

)
, (6)

mz = Ms
cos(α)

1 − sin(α)
ξ (α, y), (7)

where

ξ (α, y) = 1 + sin(α)cosh
(
cos(α) y

	0

)
sin(α) + cosh

(
cos(α) y

	0

) − sin(α). (8)

A more detailed mathematical description of the deriva-
tion of these equations can be found in the Supplemental
Material [32]. From Fig. 1, note that r′ = y. Following an
approach based on a magnetostatic scenario and assuming
that dmx

dx ≈ 0 and dmz
dz ≈ 0, a bulk magnetic density charge

[ρm(r′) = ρm(y) = ∇M(y) ≈ dmy

dy ] can be found,

ρm(r′) = −Mssin(α)tanh
( y

	0

)
sech

( y
	0

)
	0

. (9)

The antiderivative (i.e., the function resulting from an indef-
inite integration) of the latter expression [Eq. (9)] effectively
retrieves my [Eq. (6)]. This expression implies a ‘slow’ vari-
ation of the demagnetising field at the central region of the
domain wall (y → 0), in accordance with the y dependence of
the ‘sech’ function. Notice that, if α = α(x), 	0 = 	0(x), and
a cross-tie wall were formed, the term dmx

dx is not necessarily
zero, and therefore, it should count into the expression of
the bulk magnetic density charge. However, for the sake of
simplicity, in this case we consider (i) slow variations of the
domain angle, (ii) a constant domain wall’s width along its
length ( dα

dx ≈ 0 and d	0
dx ≈ 0), and (iii) no formation of a cross-

tie profile, as we can observe in simulations [see Fig. 3(a)].
Hence, we can assume dmx

dx ≈ 0. Also, an 80 nm thick patch
is considered, sufficiently thick so that at the central region
of the patch, far enough from the surface pinning effects,
variations of magnetization across the thickness can also be
neglected ( dmz

dz ≈ 0) even despite the formation of a cross-tie
wall [41].

Under the above mentioned assumptions, and due to the
conservation of the transverse component of magnetization

(my) in the domain wall border (following on the schematic
from Fig. 1), surface magnetic charges can also be considered
negligible (σm = my,1 − my,2 = 0). Choosing the right inte-
gration volume, for example a rectangular prism of chosen
dimensions equivalent to the domain wall width (	0) in the x
and y directions and to the total thickness (t) in the z direction,
an expression of the demagnetizing field can be found. The
resulting expression, derived from the magnetostatic potential
obtained in turn from the defined magnetic density charge,
Eq. (9) (see Supplemental Material [32]), is

Hd(y) = −tMssin(α)tanh
( y

	0

)
sech

( y
	0

)
4πy

, (10)

where t is the thickness of the magnetic patch and 	0 the
‘constant’ domain wall width. A more detailed derivation of
Eq. (10) is shown in the Supplemental Material [32]. Note
that Eq. (10) is only valid for values of y in the wall re-
gion (−	0

2 < y < 	0
2 ). The demagnetizing field from Eq. (10)

shows an overall even symmetry due to the ‘sech(y/	0)’ and
‘tanh(y/	0)/y’ even functions and yields lower demagnetiz-
ing field magnitude values at positions off the wall center
(y 	= 0). This is in good agreement with the observations made
in Ref. [42] for a Neel wall. In the latter reference, they
suggest that a larger wave number is expected at positions
slightly displaced from the wall center because magnetiza-
tion M and wave vector k make an angle θk smaller than
π/2 radians, due to the turning magnetization in the domain
wall structure. Therefore, as the mode there is not in a full
Damon-Eshbach configuration, it may show features from
the backward volume regime, which for an exchange spin
wave implies a larger wave number for the same excitation
frequency. Notice that the angle θk in Ref. [42] is different
from the variable angle α in our model, which indicates the
orientation of magnetization in the domains with respect to
the direction of the wall. Also, Eq. (10) yields a numerical
indeterminate at the center of the wall although this is not
a physically realizable solution. At the midwidth (taking the
limit y → 0) of the domain wall, where the confinement of the
mode is the strongest (in accordance with the maximum of
the ‘sech’ function), and assuming t ∼ 	0 in a sufficiently
thick sample (as assumed above), Eq. (10) finally leads to

Hd(α) = −Mssin(α)

4π
. (11)

This equation expresses the demagnetizing field perpen-
dicular to the wall at its core in terms of the arbitrary
angle of magnetization between the magnetic domains and
the wall. Moreover, it is consistent with the assump-
tion of a dominant Neel component in the domain wall
profile.

Considering Eq. (11) further, it is worth noting that at an
angle of α = π/2 there is, by definition, no domain wall since
magnetization is ‘continuous.’ The wall width is by definition
‘zero,’ suggesting that the model no longer applies. The
competition between dipolar and exchange energies means
that this angle will also determine the width of the domain
wall. In other words, finding an expression for the demag-
netizing field as a function of the domain angles and the
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domain wall width is a self-consistent problem. In order to
find a more complete and exact expression for Hd(x), given
α = α(x), an additional demagnetizing field should be derived
from the respective magnetic potential, obtained in turn from
the magnetic density charges defined by dmx

dx in a similar way.
These considerations, together with a variable domain wall
width 	(x), add more complexity to the model. However, as
described before, the following reasonable assumptions can
be made for sake of simplicity in our approximate model:
(1) Since the maximum intensity of the confined mode will
be at the center of the domain wall (y → 0) for the cho-
sen excitation frequencies [22,25,42], the quotient y

	0
is very

small regardless of the domain wall width while 	0 > 0, or
equivalently, for α < π/2. In fact, it is under these conditions
that the proposed model is intended to be applied. Therefore,
there is a certain equivalence between y

	0
and y when y → 0,

so replacing the first term by simply y in the equations avoids
the dependence on the wall width (this can be formulated as

y
	0

:= y). (2) The main assumption for these results is that
the demagnetizing field is orientated almost fully in-plane and
perpendicular to the domain wall. This assumption is not far
from reality, since it has been shown that, in mixed domain
walls (between 180 degrees Bloch and Neel wall), the Neel
component is dominant. This behavior is observed in arbitrary
α-Bloch walls where α < π/2 radians. In fact, above a critical
angle, the out-of-plane component of magnetization vanishes,
and the wall becomes essentially a Neel wall [40]. Not only
that, this argument is even more convincing for thicker sam-
ples since the critical angle reduces with increasing thickness
almost reaching zero when t ∼ 	0 [39]. Equation (11) is con-
sistent with these results, since it also reduces in magnitude as
α reduces.

After all these considerations, we need to stress again that
finding an exact solution for a local demagnetizing field is
very often an extremely complicated task for nonellipsoidal
shapes, even in saturation or quasisaturation [35,43,44]. When
not found numerically through micromagnetic simulations,
approximate analytical approaches are usually taken under
reasonable assumptions [34,45]. For all this, and realizing
that Eq. (11) is a physically consistent model for the defined
scenario, we consider it from now on as a valid first approxi-
mation for the transverse demagnetising field along a domain
wall of variable domain angle. Therefore, this expression can
be combined with Eq. (4) to give the dependence with the
variable angle between magnetic domains,

k(x) =
√

k2
0 − μ0M2

s

8πAex
sin(α(x)). (12)

This equation relies on an initial k (k0 x) which is found to
be the wave number of a Winter’s magnon for a frequency
ω0 through a 180 degrees domain wall (i.e., when α = 0).
Regarding this, through the dispersion relation of Winter’s
magnons [ω0(k0)], a spatial modal index can be defined as
n(x, ω0) = k(x)/k0,

n(x) =
√

1 − |γ |
ω0

|Hd(x)| =
√

1 − ωM

4πω0
sin(α(x)), (13)

where ωM = γ Ms and ω0 is the frequency of a continuous
wave excitation. This equation predicts the change in wave
number (or wavelength) from a given k0 along the domain
wall. In other words, a different initial k0 will give different
values of local wave numbers, but always varying with α in
accordance to this model. Therefore, this applies as well to
the mode index if we assume an index of unity for an arbitrary
initial k0. Figure 2(a) shows a contour plot of the real values of
Eq. (13) as a function of the magnitude of Hd and f = ω0/2π .
Most importantly, it shows how at lower frequencies, the
change in wave number is more sensitive to the transversal
demagnetizing field than at higher frequencies. Figure 2(b)
shows the same behavior even when Eq. (11) is introduced
into Eq. (13), which reflects now the dependence on the
angle α.

It can be inferred from Eq. (13) that, in the absence of
a biasing field, there is an upper limit for the frequency at
which a mode index of zero can be obtained. This maximum
is reached when the demagnetizing field is maximal. In prin-
ciple, in terms of the magnetic moments’ orientation, this is
when α = π/2. However, notice that, in this situation, the
definition of domain wall is meaningless. The scenario would
imply the vanishing of the domain wall into a saturated region
in the y direction (i.e., a magnetic domain). In that region,
Eq. (13) can be modified by replacing the formerly dominant
demagnetizing field from the (also former) domain wall by
an expression of an effective or internal magnetic field Hi.
Interestingly, Eq. (13) implies then that a mode index of zero
would be obtained at ω0 = |γ |Hi, which is actually the ferro-
magnetic resonance main mode (i.e., all precessions in phase)
of a saturated film for a given internal field Hi. This result
agrees with the wave perspective of a uniform ferromagnetic
resonance (FMR) precession, which lays a wave number of
k = 0 (infinite wavelength and n = 0). Additional simulations
(see Supplemental Material [32]), show that at this combi-
nation of frequency and effective field, the FMR main mode
is not necessarily excited in the saturated region but instead,
a spin wave mode with at least kx = 0 (but not necessarily
ky = 0) can be excited (i.e., a backward volume spin wave
mode). This result still agrees with the perspective of a ‘con-
fined mode’ in the x direction, since the model becomes a
loose approximation to a scenario where domains or saturated
regions are present. In other words, it does not account for
modes that may show nonzero wave number in a different
direction of propagation, such as the y direction (orthogonal to
the original domain wall) although it effectively retrieves the
expected zero wave number in the x direction (i.e., the domain
wall axis). More interestingly, the model predicts the existence
of, conceptually speaking, evanescent spin waves below that
‘pseudo-FMR’ frequency condition. In this paper, our scope
is in the region where n > 0, but a more detailed analysis of
the implications from the model when n � 0 can be found in
the Supplemental Material [32].

III. MATERIALS AND NUMERICAL METHODS

To obtain insight into the dynamics, we performed a set
of micromagnetic simulations using Mumax3 [46]. We sim-
ulated a ‘rounded bowtie’ shaped patch [see Fig. 3(a)] of
6000 nm length, 80 nm thickness (t), and 2000 nm diameter

224431-4



GRADED INDEX CONFINED SPIN WAVES IN A MIXED … PHYSICAL REVIEW B 102, 224431 (2020)

FIG. 2. Contour plots showing the real part of (a) Eq. (13) as a
function of the magnitude of the demagnetizing field and (b) Eq. (13)
as a function of the angle α for MS = 720 kAm−1, a gyromagnetic
ratio = 2.2×105 Hz(Am)−1 and Aex = 1.3×10−11 Jm−1. Red dashed
line with slope γ shows the ‘n = 0’ condition in (a). Dark blue area
is the imaginary index.

(d) of the circumscribed circles at the ends, with the typical
material parameters of Permalloy at room temperature with
saturation magnetization Ms = 7.2×105 Am−1, exchange
constant Aex = 1.3×10−11 Jm−1, and Gilbert damping con-
stant αG = 0.008 for a weighted average of iron and nickel.
In the model, the grid was discretized in the x, y, z space
into 1536×512×16 cells. The cell size along x and y was
3.9 nm, while the cell size along z was fixed to 4 nm. The
cell size along three dimensions is always kept smaller than
the exchange length of permalloy (5.3 nm). The number of
cells was chosen to be powers of 2 for sake of computa-
tional efficiency. We also set a ‘smooth edges’ condition
with value 8. A key point in micromagnetic simulations is
to achieve a stable equilibrium magnetization state. We first
set a double vortex state with polarity and ‘vorticity’ numbers
of (1,−1) and (1,+1) and then executed the simulation with
a high damping (αG = 1) to relax the magnetization until the
maximum torque (‘maxtorque’ parameter in Mumax3), which
describes the maximum torque/γ over all cells, where γ is the
gyromagnetic ratio of the material, reached 10−7 T, indicating
convergence and the achievement of a magnetization equilib-
rium state. The typical time to achieve the equilibrium state
was 100 ns. Note that this value has no direct physical mean-
ing due to the artificial high damping. Once the ground state
was obtained, damping was set back to original (αG = 0.008),
the relaxation process was repeated, the spin configuration
was recorded as the ground state of the sample, and then used
for the simulations with the dynamic activation. For analyzing
time evolution of the magnetic signal, we apply a continuous
wave excitation with a magnetic field B at a specific frequency
f0 in the first vortex core region only,

B(t ) = B0sin(2π f0t )), (14)

and each mode is excited with a relatively small oscillating
field, B0 = 0.3 mT. A sampling period of Ts = 25 ps was used,
recording up to 300 simulated snapshots in space and time,
only after the steady state is reached. With these parameters,
the time window of observation of the spin waves propagating
in the domain wall covers up to 7.5 ns.

To numerically validate the change in wavelength pre-
dicted by the model, we run micromagnetic simulations with

(a)

(b)

(c)

FIG. 3. (a) Schematic of the proposed structure of size
2000 nm×6000 nm×80 nm. A Bloch domain wall is induced
and then left to relax before running the dynamic excitations.
(b) Normalized out-of-plane component of magnetization is shown,
demonstrating the formation of a Bloch domain wall in the middle
of the structure. (c) Normalized in-plane y component of the demag-
netizing field, showing a reduction in magnitude at the center of the
structure. Inset in (c) shows the magnitude of the in-plane component
of the demagnetizing field, perpendicular to the wall [Hy(x)], along
the midwidth of the wall (y = 0) obtained from micromagnetic sim-
ulations (blue curve) and a sinusoidal dependence with the x position
between the two vortex core positions (at x = 2000 nm and x =
−2000 nm from the center of the structure). These are in qualitative
good agreement with the proposed ‘sinelike’ model from Eq. (11).
The spatial frequency of 0.03 nm−1 is obtained from the slope of the
spatially-dependent angle α between magnetic moments in the shape
[Fig. 4(a)] (the degree unit can be dropped for simplicity).

an excitation frequency of 1.5 GHz and 3 GHz so Winter’s
magnons [13] can be efficiently launched from the core region
and travel along the domain wall [25]. Numerical results for
the spatially dependent wavelength [λ(x)] are obtained from
the time-averaged spectrograms of the channelled spin wave
profiles using a Hanning window of 128 FFT points and 100
overlapping points. Since the spatial wavelength is constantly
changing along the domain wall length, a fixed width of the
window will introduce a tradeoff between spatial frequency
resolution and position accuracy in the x direction. A wider
spatial window yields less position accuracy to the wave
number and a very narrow window cannot properly resolve
the spatial frequency at large wavelengths, leading to spatial
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(a)

(b)

FIG. 4. (a) Profile of angle α for the structure studied in this
paper, calculated as tan−1(my/mx) along a line, parallel to the wall,
at 50 nm from the domain wall midwidth. The red dotted line is
a linear fit to the values from the vortex core region to the center
of the structure. (b) The local mode index from Eq. (13) with the
wavelength of a Winter’s magnon in a 180 degrees Bloch wall as
reference for 3 GHz and 1.5 GHz.

frequency leakage per frequency bin. The chosen parameters
of window width and overlapping points are obtained after an
optimization process considering several different outcomes.
Another solution could be using a width-variable window as
described in Ref. [47].

IV. NUMERICAL VALIDATION

In order to validate our model for the real values obtained
from Eq. (13), micromagnetic simulations on the magnetic
structure shown in Fig. 3(a) are performed and recorded for
comparison with the analytical model. Since it is inevitable to
start from an angle of approximately π/4 at the source (the
vortex core), the shape of this structure has been chosen so
because it allows it to cover the widest range of values of α

and therefore of n, see Fig. 4. In this way, for the shape of this
patch, the demagnetizing field transversal to the wall is not
constant along its length: The angle α at both sides of the wall

changes from π/4 at the core region to 0 at the center of the
shape and to π/4 back again.

Notice that, as reference, a mode index of unity midway
between the vortex cores, in a 180 degrees Bloch wall, is
considered. The reference wave number k0 is that of a Winter’s
magnon along a 180 Bloch wall. For a spin wave propa-
gating from one of the core regions, a reduction in α [or
equivalently, a reduction in the transverse demagnetizing field,
see Fig. 3(c)] implies an increase in the local wave number.
From numerical results on this particular shape, small and
smooth variations of the angle are considered far from the
core regions, so the assumption dα

dx ≈ 0 and d	0
dx ≈ 0 is still

valid and therefore: dm
dy ≈ dmy

dy . Close to the core regions, the
domain wall angle is large enough to assume the domain wall
Neel component to be clearly dominant [40] and therefore,
dm
dy ≈ dmy

dy is also satisfied at the center of the domain wall.
In other words, the assumptions discussed in the previous
section are still valid as well as the model derived for the
demagnetizing field transverse to the wall.

Figure 4(a) shows the spatial position profile of angle α

from an axis parallel to the domain wall at 50 nm from
the center of the wall, calculated as tan−1(my/mx), where
the components of magnetization are extracted from numer-
ical simulations and magnetization is assumed in-plane. The
features in the data close to the central region come from
the resulting magnetization configuration after a process of
relaxation. In that region, the edge with the greatest radius of
curvature is closest to the domain wall [see Fig. 4(a)], and the
in-plane magnetization keep an apparent ‘zigzagging’ path as
a middle-ground solution to minimize energy. Consequently,
as the angle α is calculated from the simulated values of
mx and my, the angle local value is also affected. Ideally,
this should not be happening, and magnetization should be
lying completely in-plane and smoothly following the shape
contour even when close to the domain wall. Still, the shape
of the structure allows us to approximate the dependence of
angle with position x by a fitting linear dependence α(x) −
0.029x + 87, see red dotted line in Fig. 4(a). This linear fitting
suggests a ‘spatial frequency’ of ∼0.03 nm−1 [the degree unit
is dropped for simplicity as it is not an official metric (SI)
dimension]. The latter result, combined with the proposed
model for the demagnetizing field [Eq. (11)] shows good qual-
itative agreement with the values obtained from simulations
[see inset in Fig. 3(c)].

Quantitatively, the simulation result fits better to a si-
nusoidal function with a maximum value of 105 Am−1.
While of the same order of magnitude, this value is about
three times the maximum of that obtained from the model
from Eq. (11) for α = π/4, which yields a value of
Mssin(π/4)/4π ≈ 0.32×105 Am−1 (for a saturation mag-
netization of 7.2×105 Am−1). This quantitative mismatch
can be explained by the neglection of other components of
the magnetostatic potential in the model, which leads to a
‘weaker’ demagnetizing field than in reality, due to fewer con-
tributions. We note that these additional contributions should
be accounted for a more accurate description.

Figure 4(b) shows the analytical mode index from Eq. (13)
with the obtained values of α as inputs for the excitation
frequencies of 1.5 GHz and 3 GHz. This agrees with analytical
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FIG. 5. (a) Simulated wave profiles for an excitation frequency of
3 GHz and 1.5 GHz, with the chosen regions highlighted in dashed
lines (note: this does not represent the Hanning window): Region
I centered around x = 1900 nm and region II centered around x =
2800 nm, showing the spin wave profile in one half of the structure.
Note that, for ease of comparison, the color scale in the insets for
region II is not comparable (it is reduced) to that of region I. The local
wavelengths are indicated in the insets, along a length of 400 nm.
(b) Results from the analytical model from Eq. (13) (solid curves) for
1.5 GHz (orange) and 3 GHz (blue) and the ratios λII/λ(x) obtained
from micromagnetic simulations (dots) for each frequency and per
Hanning window.

results from Fig. 2(b), at 3 GHz excitation frequency, which
show that the wave vector can be reduced as much as approx-
imately 0.7 times the reference wave vector k0 (i.e., n ≈ 0.7)
when the spin wave approaches the core regions (at 900 nm
from the vortex core) and α is approximately π/4.8 ≈ 0.205π

radians [i.e., 37 degrees, see Fig. 4(a)].
Figure 5(a) shows the wave profile of the propagating mode

and the respective wavelengths found in the regions I (λI) and
II (λII) (insets). A significant attenuation of the spin wave
is observed in region II (the color intensity in the insets is
manually adjusted for ease of comparison). We believe this
is associated with the ‘zigzagging’ path of magnetization in
the domains that induces a pronounced gradient in the local

demagnetizing field halfway between the two regions [see
blue curve in the inset of Fig. 3(c)]. In turn, this modifies the
spatially local ferromagnetic resonance in the wall and thus
leads to low transmission between regions in the wall [48,49],
as a 1D analogy of the 2D scenario explored in Ref. [49].
Figure 5(b) shows the mode index profiles for 1.5 GHz and
3 GHz (solid lines) obtained from Eq. (13), with the range
of angles found from simulations as the input, and numerical
results (dots) for the spatial frequency in the x direction,
normalized to the value at 3000 nm (i.e., the simulated spatial
mode index). Numerical results confirm what the equation
predicted: The change in wave number is more pronounced,
and more sensitive to the transverse demagnetizing field (or
equivalently, to the domain angle α), when the frequency is
smaller. Therefore, the range of values for the local mode
index is wider at lower frequencies. Also, as expected from
the model, the values of the obtained mode index from simu-
lations agree with the predicted values from Eq. (13) with the
specified angle α = 37 degrees at the corresponding position
(x = 1900 nm) in the shape (n ≈ 0.7 at 3 GHz and n ≈ 0.4
at 1.5 GHz). An apparent physical anomaly for an excitation
frequency of 3 GHz is observed from simulations [blue dots
in Fig. 5(b)] halfway between the regions I and II, i.e., around
x = 2200 nm. The x positions near that value actually corre-
spond to the region where the ‘zigzagging’ of in-plane mag-
netization is more marked, or in other words, where the edge
with the greatest radius of curvature is closest to the domain
wall. This suggests that the simulated value is not comparable
to the value from the model, which assumes a smooth vari-
ation of the demagnetizing field. This may contribute to the
considerable mismatch at around x = 2200 nm in Fig. 5(b).
More importantly, it suggests that the effects of curved edges
on propagation in a straight domain wall might be difficult to
avoid in certain localized areas in a finite structure and that
these are more significant for higher excitation frequencies.

In conclusion, Eq. (12) or its generic form Eq. (4) is pro-
posed as a valid model for finding the local wave number
[and Eq. (13) for the local mode index] of a spin wave along
domain walls under the influence of different demagnetizing
fields or shape contour effects. The model helps to predict how
these effects modify the wavelength of a confined mode in a
domain wall.

V. SUMMARY

The main result of this work is the proposed mathemat-
ical model for an effective spatial frequency dependence of
confined spin waves in an ‘intermediate angle’ domain wall
as a function of that angle. The equation of the model is
derived from the fundamental Bloch equations of motion,
based on an approximate (under reasonable assumptions, sim-
ilar to those in Ref. [45]) expression of the demagnetizing
field transversal to the wall that is applied to a variety of
magnonic scenarios. The model can be applied to straight do-
main walls of variable domain angles, which can be useful as
a first approximation to the study of more complex scenarios,
such as spin waves in confined structures of arbitrary shapes
showing magnetic domains. Reciprocally, the connection be-
tween the shape of the magnetic ‘patch’ and the shape-induced
demagnetizing field transverse to the wall potentially allows
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us to design a shape for a particularly desired channelled spin
wave profile.

The model also leads to situations that have physical
meaning such as when considering the FMR main mode
frequency or backward volume spin waves propagation in
domains, and therefore potentially further extending the ap-
plicability of the model to not only localized modes in domain
walls.

In summary, an equation for a spatial-dependent wave
number for spin waves is proposed, which offers a good
model for predicting their propagating behavior in domain
walls. This result may help in the development of more

complex models for spin wave propagation in nonsaturated
nanostructures, spin waves channelled along domain walls, or
propagating into magnetic domains.

ACKNOWLEDGMENTS

This work was supported by Engineering and Physical Sci-
ences Research Council (EPSRC) and the Centre of Doctoral
Training (CDT) Grant No. EP/L015331/1 in Metamaterials,
University of Exeter. All data created during this research are
openly available from the University of Exeter’s institutional
repository [50].

[1] V. V. Kruglyak, S. O. Demokritov, and D. Grundler, J. Phys. D
43, 264001 (2010).

[2] A. D. Karenowska, A. V. Chumak, A. A. Serga, and B.
Hillebrands, in Handbook of Spintronics, edited by Y. Xu, D. D.
Awschalom, and J. Nitta (Springer, Netherlands, Dordrecht,
2016), pp. 1505–1549.

[3] A. Hoffmann and S. D. Bader, Phys. Rev. Appl. 4, 047001
(2015).

[4] S. Wintz, V. Tiberkevich, M. Weigand, J. Raabe, J. Lindner, A.
Erbe, A. Slavin, and J. Fassbender, Nat. Nanotechnol. 11, 948
(2016).

[5] G. Dieterle, J. Förster, H. Stoll, A. S. Semisalova, S. Finizio,
A. Gangwar, M. Weigand, M. Noske, M. Fähnle, I. Bykova,
J. Gräfe, D. A. Bozhko, H. Y. Musiienko-Shmarova, V.
Tiberkevich, A. N. Slavin, C. H. Back, J. Raabe, G. Schütz, and
S. Wintz, Phys. Rev. Lett. 122, 117202 (2019).

[6] V. Sluka, T. Schneider, R. Gallardo, A. Kakay, M. Weigand,
T. Warnatz, R. Mattheis, A. Roldán-Molina, P. Landeros, V.
Tiberkevich, A. Slavin, A. Erbe, A. Deac, J. Lindner, J.
Raabe, J. Fassbender, and S. Wintz, Nat. Nanotechnol. 14, 328
(2019).

[7] C. S. Davies, A. Francis, A. V. Sadovnikov, S. V. Chertopalov,
M. T. Bryan, S. V. Grishin, D. A. Allwood, Y. P. Sharaevskii,
S. A. Nikitov, and V. V. Kruglyak, Phys. Rev. B 92, 020408(R)
(2015).

[8] C. S. Davies, V. D. Poimanov, and V. V. Kruglyak, Phys. Rev.
B 96, 094430 (2017).

[9] F. B. Mushenok, R. Dost, C. S. Davies, D. A. Allwood, B. J.
Inkson, G. Hrkac, and V. V. Kruglyak, Appl. Phys. Lett. 111,
042404 (2017).

[10] F. G. Aliev, A. A. Awad, D. Dieleman, A. Lara, V. Metlushko,
and K. Y. Guslienko, Phys. Rev. B 84, 144406 (2011).

[11] A. J. Lara, J. R. Moreno, K. Y. Guslienko, and F. G. Aliev, Sci.
Rep. 7, 5597 (2017).

[12] J. M. Winter, Phys. Rev. 124, 452 (1961).
[13] N. J. Whitehead, S. A. R. Horsley, T. G. Philbin, A. N. Kuchko,

and V. V. Kruglyak, Phys. Rev. B 96, 064415 (2017).
[14] L. Kang, Q. Zhao, H. Zhao, and J. Zhou, Opt. Express 16, 8825

(2008).
[15] A. B. Rinkevich, D. V. Perov, S. O. Demokritov, M. I.

Samoylovich, and O. V. Nemytova, Photon. Nanostruct.:
Fundam. Applic. 15, 59 (2015).

[16] J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).

[17] J.-N. Toedt, M. Mundkowski, D. Heitmann, S. Mendach, and
W. Hansen, Sci. Rep. 6, 33169 (2016).

[18] N. J. Whitehead, S. A. R. Horsley, T. G. Philbin, and V. V.
Kruglyak, Phys. Rev. B 100, 094404 (2019).

[19] N. J. Whitehead, S. A. R. Horsley, T. G. Philbin, and V. V.
Kruglyak, Appl. Phys. Lett. 113, 212404 (2018).

[20] S. Hamalainen, M. Madami, H. Qin, G. Gubbiotti, and S.
Dijken, Nat. Commun. 9, 4853 (2018).

[21] E. Albisetti, D. Petti, G. Sala, R. Silvani, S. Tacchi, S. Finizio, S.
Wintz, A. Calò, X. Zheng, J. Raabe, E. Riedo, and R. Bertacco,
Commun. Phys. 1, 56 (2018).

[22] K. Wagner, A. Kákay, K. Schultheiss, A. Henschke, T.
Sebastian, and H. Schultheiss, Nat. Nanotechnol. 11, 432
(2016).

[23] C. Bayer, H. Schultheiss, B. Hillebrands, and R. L. Stamps,
IEEE Trans. Magn. 41, 3094 (2005).

[24] X. S. Wang and X. R. Wang, arXiv:1512.05965.
[25] F. Garcia-Sanchez, P. Borys, R. Soucaille, J.-P. Adam,

R. L. Stamps, and J.-V. Kim, Phys. Rev. Lett. 114, 247206
(2015).

[26] Y. Henry, D. Stoeffler, J.-V. Kim, and M. Bailleul, Phys. Rev. B
100, 024416 (2019).

[27] E. Schlömann, J. Appl. Phys. 35, 159 (1964).
[28] D. D. Stancil and F. R. Morgenthaler, J. Appl. Phys. 54, 1613

(1983).
[29] K. R. Smith, M. J. Kabatek, P. Krivosik, and M. Wu, J. Appl.

Phys. 104, 043911 (2008).
[30] V. E. Demidov, M. P. Kostylev, K. Rott, J. Münchenberger,

G. Reiss, and S. O. Demokritov, Appl. Phys. Lett. 99, 082507
(2011).

[31] P. E. Zilberman, A. G. Temiryazev, and M. P. Tikhomirova,
J. Exp. Theor. Phys. 81, 151 (1995).

[32] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.102.224431 for more details in the corre-
sponding section.

[33] A. Gurevich and G. Melkov, Magnetization Oscillations and
Waves (CRC Press, Boca Raton, Florida, 1996).

[34] J. C. Slonczewski, J. Appl. Phys. 44, 1759 (1973).
[35] A. Aharoni, J. Appl. Phys. 83, 3432 (1998).
[36] L. Landau and E. Lifshitz, Phys. Zeitsch. Sow. 8, 153 (1935).
[37] A. Hubert and R. Schäfer, Magnetic Domains: The Analysis of

Magnetic Microstructures (Springer-Verlag, Berlin, Heidelberg,
1998).

224431-8

https://doi.org/10.1088/0022-3727/43/26/264001
https://doi.org/10.1103/PhysRevApplied.4.047001
https://doi.org/10.1038/nnano.2016.117
https://doi.org/10.1103/PhysRevLett.122.117202
https://doi.org/10.1038/s41565-019-0383-4
https://doi.org/10.1103/PhysRevB.92.020408
https://doi.org/10.1103/PhysRevB.96.094430
https://doi.org/10.1063/1.4995991
https://doi.org/10.1103/PhysRevB.84.144406
https://doi.org/10.1038/s41598-017-05737-8
https://doi.org/10.1103/PhysRev.124.452
https://doi.org/10.1103/PhysRevB.96.064415
https://doi.org/10.1364/OE.16.008825
https://doi.org/10.1016/j.photonics.2015.03.004
https://doi.org/10.1103/PhysRevLett.85.3966
https://doi.org/10.1038/srep33169
https://doi.org/10.1103/PhysRevB.100.094404
https://doi.org/10.1063/1.5049470
https://doi.org/10.1038/s41467-018-07372-x
https://doi.org/10.1038/s42005-018-0056-x
https://doi.org/10.1038/nnano.2015.339
https://doi.org/10.1109/TMAG.2005.855233
http://arxiv.org/abs/arXiv:1512.05965
https://doi.org/10.1103/PhysRevLett.114.247206
https://doi.org/10.1103/PhysRevB.100.024416
https://doi.org/10.1063/1.1713058
https://doi.org/10.1063/1.332146
https://doi.org/10.1063/1.2963688
https://doi.org/10.1063/1.3631756
http://link.aps.org/supplemental/10.1103/PhysRevB.102.224431
https://doi.org/10.1063/1.1662444
https://doi.org/10.1063/1.367113


GRADED INDEX CONFINED SPIN WAVES IN A MIXED … PHYSICAL REVIEW B 102, 224431 (2020)

[38] D. D. Stancil and A. Prabhakar, Spin Waves: Theory and Appli-
cations (Springer, Boston, 2009).

[39] E. J. Torok, A. L. Olson, and H. N. Oredson, J. Appl. Phys. 36,
1394 (1965).

[40] A. L. Olson, H. N. Oredson, E. J. Torok, and R. A. Spurrier,
J. Appl. Phys. 38, 1349 (1967).

[41] K. L. Metlov, Appl. Phys. Lett. 79, 2609 (2001).
[42] L. Körber, K. Wagner, A. Kákay, and H. Schultheiss,

IEEE Magn. Lett. 8, 1 (2017).
[43] J. A. Osborn, Phys. Rev. 67, 351 (1945).
[44] D. Berkov and N. Gorn, Phys. Rev. B 71, 052403 (2005).

[45] M. D. DeJong and K. L. Livesey, Phys. Rev. B 92, 214420
(2015).

[46] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-
Sanchez, and B. Van Waeyenberge, AIP Adv. 4, 107133 (2014).

[47] S. Nisar, O. U. Khan, and M. Tariq, Computat. Intellig.
Neurosci. 2016, 6172453 (2016).

[48] X.-G. Wang, G.-H. Guo, G.-F. Zhang, Y.-Z. Nie, and Q.-L. Xia,
J. Appl. Phys. 113, 213904 (2013).

[49] L.-J. Chang, Y.-F. Liu, M.-Y. Kao, L.-Z. Tsai, J.-Z. Liang, and
S.-F. Lee, Sci. Rep. 8, 3910 (2018).

[50] https://ore.exeter.ac.uk/repository/.

224431-9

https://doi.org/10.1063/1.1714317
https://doi.org/10.1063/1.1709617
https://doi.org/10.1063/1.1409946
https://doi.org/10.1109/LMAG.2017.2762642
https://doi.org/10.1103/PhysRev.67.351
https://doi.org/10.1103/PhysRevB.71.052403
https://doi.org/10.1103/PhysRevB.92.214420
https://doi.org/10.1063/1.4899186
https://doi.org/10.1155/2016/6172453
https://doi.org/10.1063/1.4808298
https://doi.org/10.1038/s41598-018-22272-2
https://ore.exeter.ac.uk/repository/

