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Stabilization of a clay soil by injection of different ions 

 

Abstract 

In this work the effects of calcium and magnesium ions on stabilization of a clay soil was 

studied by conducting a set of laboratory tests. A special apparatus was employed for 

performing the tests under constant voltage and time. During the tests, solutions of 

calcium chloride (CaCl2) or magnesium chloride (MgCl2) with different concentrations 

were injected to the soil samples. The electro-osmotic and electrokinetics methods were 

used for stabilization of the soil and the results were compared with each other. In the 

electo-osmotic technique distilled water was used as pore fluid but in the electrokinetic 

method, CaCl2 or MgCl2 solutions with various concentrations were injected to the pore 

of soil samples.  The results revealed an increase in strength of the soil in both methods. 

In the electrokinetic method, the amount of increase in strength was a function of 

concentration of the used solution. The results also indicated that solution of CaCl2 is 

more effective in increasing the strength, discharge flow and electro-osmotic 

permeability than MgCl2 solution at various concentrations. In addition, the variations of 

these properties are a function of concentration of used solution. 

Keywords: environment, geotechnical engineering, land reclamation 
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Introduction 

Soft clay soils are from the group of problematic soils as they generally have low shear 

strength and also experience excessive settlement under loading (Shang et al., 2004). 

Construction and buildings founded on soft soils may lead to excessive settlement and 

stability problems. Therefore, the mechanical behaviors of these soils should be improved 

before using them as construction or foundation materials. Preloading can be used to 

improve the behavior of soft soils before using for civil engineering projects but it may 

require a long time to achieve the final settlement (Charles and Watts, 2002). It is 

possible to apply larger preload; although it takes less time to reach the final settlement, 

but it could lead to failure of the soil. If the time and the availability of materials for 

stabilization are limited, there are other methods for stabilization such as preloading with 

installation of vertical drains or chemical stabilization. In chemical stabilization, agents 

such as lime or cement have been used as the stabilizing materials over many decades. 

This method of stabilization results in increase in stiffness and shear strength and 

decrease in plasticity and potential of swelling of soils. The improvement of soil by these 

methods is achieved through exchanges of ions and chemical reaction between the soil 

water system and used agent.  However, these methods cannot be used for improvement 

of soils that are located under existing buildings because of risk of settlement. Other 

techniques such as artificial freezing, electroosmotic consolidation or hydro-fracture 

grouting can be used to improve the behavior of soils under existing structures 

(Alshawabkeh and Sheahan, 2003).  However, using these suggested methods may result 

in considerable movement or damage to adjacent buildings. To overcome these 

limitations for stabilization of soils, several researchers have suggested the use of 
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Electrokinetic Stabilization (EKS) method (e.g., Rogers et al., 2003, Alshawabkeh and 

Sheahan, 2003, Barker et al., 2004, Chien et al., 2009, Ou et al., 2009 and 2018, Peng et 

al., 2015, Xue et al., 2018, Gargano et al., 2019 and Estabragh et al., 2019 and 2020). In 

this method chemical ions are transported, under an electrical gradient, between two 

electrodes that are embedded in soil mass which leads to improvement in behavior of soil. 

In this method an electrical field is created across the soil by applying a direct current 

under a voltage gradient through a pair of electrodes that are embedded in the soil. This 

facilitates the transport of chemical ions across of soil mass. This technique does not have 

the limitations of the above-mentioned methods such as the need for excavation or 

mixing of chemical agents with soil on site (Rogers et.al., 2003). The EKS method 

includes electroosmosis, electromigration and electrophoresis processes. Electroosmosis 

is the uniform movement of pore water from the anode toward the cathode, 

electromigration consists of transportation of ions in pore water and electrophoresis 

involves the movement of solid particles of soil. Usually, electrophoresis is not very 

effective in compacted soils (Mohamedelhassan and Shang, 2003). Alshawabkeh and 

Sheahan (2003) and Asavadorndeja and Glawe (2005) used this method with different 

chemical stabilizers and electrodes for stabilization of soil and reported that this method 

can improve the properties of soil. Improvement of soil behavior by injection of solution 

of CaCl2 to soil by the EKS method has been investigated by some researchers (e.g., 

Chien et al., 2009, Abdullah and Al-Abadi, 2010, Tajudin, 2012 and Estabragh et al., 

2020) who have reported acceptable results. Chien et al. (2009) used CaCl2 and NaCl, 

whereas Kamarudin et al. (2011) used CaCl2, AlCl3, and H3PO4, and Nordin et al. (2013) 

used Ca2+ and SiO3
2- ionic solutions for stabilization of soft soils. Their results showed 
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that using of this method can successfully improve the soil behavior. Several 

investigations have indicated that using calcium as stabilizing agent for treatment of soils, 

especially expansive soils that include much sulfate, may lead to a new heave distress 

problem instead of mitigating it (Puppala et al., 1999). This is called sulfate induced 

heave (Mitchell, 1986). Puppala et al. (2005) stated that the occurrence of sulfate induced 

heave is due to the presence of sulfate in natural soil and usually occurs when lime or 

cement is used as stabilizing agent. Therefore, an agent without calcium may be used for 

stabilization of soils with sulfated without any problem. MgCl2 as a stabilizer can be 

replaced by CaCl2. It is used on roads to control dust and humidity and minimize coarse 

particles scattering. Therefore, the use of MgCl2 is becoming more common because of 

its potential to improve the mechanical behavior of problematic soils (Turkoz et al., 

2014). However, studies on the use of the MgCl2 for stabilization of clay soils in the EKS 

method are rare in the literature. 

 Aim of this work 

Recently, a number of researchers have studied the use of MgCl2 for stabilization of clay 

soils (e.g., Turkoz et al., 2014 and Latifi et al., 2015). They have reported that the use of 

MgCl2 can successfully improve the geotechnical behavior of soil including potential of 

swelling and strength characteristics. A survey of literature reveals that the stabilization 

of clay soils by injection of CaCl2 has been studied under different conditions (e.g., 

different concentrations) but stabilization a clay soil by using MgCl2 through the 

electrokinetic technique has not been reported. In this work the effect of MgCl2 and CaCl2 

with different concentrations are studied through a program of experiments under 
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constant electric gradient and time. The results are analyzed and compared with each 

other at different concentrations for different solutions.  

Materials  

The materials used in this work are clay soil, calcium chloride, magnesium chloride, and 

distilled water. They are described briefly in the following sections. 

 Soil 

The soil used in this experimental work was a clay soil and was bought from a local 

supplier. The soil was sourced from around the Karaj city which is located 20 km west of 

Tehran (Capital of Iran) at foothills of Alborz Mountains. Laboratory tests were 

conducted (according to the ASTM standard) on the soil to determine its physical and 

mechanical properties. The mechanical, physical and chemical properties of the soil are 

summarized in Tables 1 and 2. The soil was classified as silt with high plasticity (MH) 

based on the Unified Soil Classification System (USCS).  Fig.1 shows the results of X-

ray diffraction (XRD) tests that were performed on the samples of the soil. The results 

indicate that the soil is composed of quartz, calcite, feldspar (Na, Ca) and feldspar (K) 

minerals (Fig.1a). The clay minerals of the soil include Illite, Chlorite and 

Montmorillonite (Fig.1b). 

Magnesium chloride (MgCl2) 

MgCl2 is a hygroscopic salt and soluble in water. It is commonly used for road pavement 

and stabilization of road materials. It is also used for controlling dust and humidity to 

prevent from scattering the coarse particles and formation of ice (Thenoux and Vera, 

2002). Due to its common usage, it has a considerable potential for improving the 

behavior of soil and hence has drawn the attention of researchers around the world (Latifi 
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et al., 2015). MgCl2 solution has no damaging effects on cement, asphalt, plants or living 

creatures (Goodrich et al., 2009). Because of these properties it is considered as a 

stabilizing agent in this research work. 

Calcium chloride (CaCl2)  

CaCl2 is used as a stabilization material because it is safe for the environment, highly 

soluble in water and cheap in price. It has been successfully applied in bench and field 

trial tests (Rogers et al., 2002 and Barker et al., 2004). Because of these properties it is 

chosen for soil stabilization in this work. 

Distilled water 

Distilled water was used for conducting the electroosmotic tests (as reference tests, 

without solution of calcium chloride or magnesium chloride). It was also used for making 

the desired solutions of calcium chloride or magnesium chloride. The distilled water had 

a pH of 7.2 and EC (electrical conductivity) of 0.009 dS/m.  

According to the literature, a number of researchers (e.g., Abdullah and Al-Abadi, 2010 

and Tajudin 2012) used solutions of CaCl2 with concentrations of 1.0 and 1.5 mol/l in 

their work respectively. In this work the concentration of 0.125, 0.25 and 0.5 mol/l were 

considered because they were close to the used concentration and allow comparison 

between the obtained results with the findings of previous researchers. Also, the same 

concentration was selected for MgCl2 to allow comparison with CaCl2. To prepare the 

desired solutions, the required amount of magnesium chloride or calcium chloride was 

weighted and poured into a large glass graduated beaker. Then distilled water was added 

until the volume reached to 1 liter. It was then mixed thoroughly by shaking to achieve a 

uniform solution, ready to be used.    
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Apparatus 

Fig.2 shows a schematic diagram the experimental apparatus used in this research. It is 

similar to the apparatus that was previously used by researchers such as 

Mohammedelhassen and Shang (2001), Rittirong et al. (2008) and Estabragh et al. (2014). 

It consists of the main cell, loading frame and D.C. power supply. The main cell is a 

rectangular tank with internal dimensions of 39 cm (length), 19 cm (width) and 25 cm 

(height). It was made of 10 mm thick transparent perspex sheets.  Perspex was chosen as 

it is nonconductive and prevents from short circuiting the current during the test. The 

main cell is used for holding the soil sample during the test. Two reservoirs, so called 

anode and cathode reservoirs, were added at the two sides of the main cell (Fig.2).  They 

were filled with desired solutions (namely anolyte and catholyte solutions). The method 

of control of the hydraulic head in the two reservoirs was similar the method that was 

used by Rittirong et al. (2008) and Mohammedalhassen and Shang (2001). The reservoirs 

were filled with the desired fluid and the total hydraulic head in them was controlled by 

adjusting two identical standing tubes through valves (Fig.2). Two electrodes (rectangular 

in shape) made of stainless steel were installed in the apparatus. They were perforated 

with holes with diameter of 1mm. The electrodes were placed vertically in the apparatus 

and their distance from the main cell was 5 cm. These perforated electrode plates allowed 

the free flow of ionic solutions in the soil block.  Two sides of soil sample were covered 

by two sheets of saturated geotextile to ensure that soil was not lost during the test. Other 

researchers have used filter paper and porous stone between soil and electrode 

compartments to prevent from the loss of soil (e.g., Kim et al., 2009 and Jeon et al., 
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2010). A number of voltage probes were installed at the bottom of the main cell at 

distances of 2, 5, 8 and 11 cm from the anode to measure the voltage throughout of soil at 

specific times during the test. A loading system was added to the apparatus to allow 

application of load on the sample in the main cell. It consisted of two plates, one placed 

on the top surface of the sample and one at the bottom of the main cell, through which the 

load was applied on the sample. The two plates were connected by an isolated bar.  

The vertical displacement of sample was measured during test by a dial gauge that was 

placed on the top plate. A generator was used to produce D.C. current at different 

voltages for the electrodes. The discharge flow of fluid through the soil was collected via 

the outlet flow into a graduated container and its volume was measured at different times 

during the test. The tests were performed at a nearly constant temperature (i.e. 25°C) in a 

temperature controlled room.  

Sample preparation 

Slurry samples were prepared for the main test as used by Estabragh et al. (2019). The 

following procedure was followed for preparing the samples for testing. 

            Air dry soil was weighed and mixed with the required volume of water to achieve a water 

content 5% higher than the liquid limit. The soil and water were then thoroughly mixed 

by hand steer. The mixture was moved to a plastic bowl and a plastic sheet was used to 

cover its surface. This mixture was kept in this condition for about 10 days for uniform 

distribution of moisture in the soil mass. To ensure homogeneity and uniform distribution 

of moisture, a number of samples were taken randomly and their water content and shear 

strength (by using a vane shear apparatus) were determined. The prepared slurry samples 

were poured in the main cell in three layers. Vibration was used for each layer in the cell 
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to remove air trapped inside the soil. Then the top surface of the soil in the main cell was 

covered by a saturated geomembrane sheet while the level of distilled water in both 

reservoirs was kept constant. The soil was left for three days to ensure its homogeneity.  

Experimental tests 

The main aim of this program of testing was to assess the influence of transportation of 

calcium and magnesium ions at different concentrations on stabilization of a clay soil and 

comparing with the results for the two ions. 

The program of experimental tests included three groups of tests as shown in Table 3. In 

the first group distilled water was used to fill the reservoirs of the apparatus. The aim of 

this test was to study the stabilization of the soil by electro osmotic method in the absence 

of any agents. For tests in group 2 or 3 the anode reservoir was filled with solution of 

CaCl2 or MgCl2 with different concentrations (0.125, 0.25 and 0.5 mol/l) while for both 

cases, distilled water was used for filling the cathode reservoir (Table 3).  

The following procedure was followed for conducting a test: 

An external surcharge pressure of 1 kPa was applied, as preloading, through the loading 

plate on the top of the sample in the main cell while both reservoirs were full of distilled 

water. Then the sample was allowed to consolidate for 7 days while the displacement of 

soil was monitored from readings the dial gauge that was mounted on the sample. 

Therefore, at this stage, the settlement of the sample occurred only under surcharge 

pressure. This stage was done because in the in situ soil is not in the form of slurry. In 

addition, the application of surcharge pressure on the soil sample during the EKS testing 

was also depended on the depth of insertion of the electrodes in the soil (Tajudin, 2012). 

This procedure of testing (using preloading) is similar to the work of Tajudin (2012). He 
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stated that the amount of preloading before EKS testing is dependent on the depth of 

insertion of the electrodes in the soil. After completion of the settlement, the anode 

reservoir was filled with solution of CaCl2 or MgCl2. Then a 50 volt electric current (as 

suggested by Mitchell and Soga, 2005) was applied to the soil that was under the pressure 

of 1 kPa and the level of fluids was kept the same in both reservoirs. This stage lasted 7 

days and during this stage both the settlement of sample and volumetric discharge flow 

from the cathode reservoir were measured. During the test, samples were taken from the 

fluids in both reservoirs every 24 hours, using a syringe. The samples taken were poured 

in small plastic bottles and stored in a cabinet at constant temperature of 25°C. Then the 

pH and EC of these samples were determined. At the end of the test, the external load and 

geomembrane cover were taken off from top of the soil and a shear vane apparatus was 

used to determine the shear strength of soil. The strength of soil was measured at 

different distances from the anode (i.e. 4, 12, 19 and 26 cm). Then the moisture content 

and consistency limits were measured on the samples that were taken from the same 

positions where the strength was measured. A number of soil samples were also taken 

from the soil mass at distances of 4, 12, 19 and 26 cm from anode for determination the 

pH and EC. Furthermore, SEM (Scanning Electron Microscopy) tests were also 

conducted on a number of samples taken from the main cell from around the anode, 

cathode and middle of the soil sample.   

Results 

In this section, the results obtained from the experiments are presented. 

 pH and EC of reservoirs 
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Fig. 3 shows typical results of variations of pH with time for both anode and cathode 

reservoirs that were filled with distilled water and calcium chloride solution at different 

concentrations. It is seen from the results that the pH is decreased and increased steadily 

with time at the anode and cathode reservoirs respectively until they reach to a nearly 

constant value. The figure also shows that when distilled water is used in both reservoirs, 

the final values of pH reach to 4.66 and 12.6 at anode and cathode reservoirs respectively. 

For the calcium chloride solution at concentrations 0.125, 0.25 and 0.5 mol/l, the values 

of pH in the anode reservoir at the start of the tests are 2.8, 1.98 and 1.83 respectively. At 

the end of the test the values of pH in the cathode reservoir reach 12.35, 12.3 and 12.2 for 

concentrations 0.125, 0.25 and 0.5 mol/l of this solution. It is seen that the variations of 

pH at the anode are function of calcium chloride concentration; increasing the 

concentration causes reduction in the value of pH at the anode reservoir in comparison 

with distilled water. The results also show that the value of pH at the cathode reservoir is 

nearly 12.3 for distilled water and different concentrations of CaCl2 solution. It can be 

said that, in the range of used concentrations of calcium chloride, the value of pH at the 

cathode reservoir is independent of the concentration of CaCl2. 

Fig.4 illustrates typical changes of EC with time when the anode and cathode reservoirs 

are filled with MgCl2 solutions at different concentrations and distilled water along with 

the results for distilled water. At the start of the test, the value of EC for distilled water is 

around 1.3 dS/m in both reservoirs. However, it changes with time and at the end of the 

test, the values of EC reach 5.3 and 2.4 dS/m at the anode and cathode reservoirs 

respectively.  
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For MgCl2 solution at concentration of 0.125 mol/l, the values of EC at the start of the 

test are 10.1 and 2.28 dS/m at the anode and cathode reservoirs respectively. By 

increasing the time, the values of EC at both reservoirs are increased but the rate of 

increasing in the cathode is more than the anode. The final values of EC at the end of this 

test reach to 22.1 and 29.8 dS/m at the anode and cathode reservoirs. For concentrations 

of 0.25 and 0.5 mol/l the trend of variations of EC is not the same as that of 0.125 mol/l. 

At these concentrations the values of EC are increased from the initial values but the final 

values in the anode are more than the cathode reservoir (contrary to 0.125 mol/l). It is 

also seen from Fig.4 that the values of EC at the end of the test for concentration of 0.25 

Mol/L are 55.5 and 30.2 dS/m at the anode and cathode reservoirs respectively. Similar 

results are seen for concentration of 0.5 mol/l. Therefore, according to the obtained 

results, for the concentrations used, the variations of EC are not a function of 

concentration.  

Q (discharge) and Ke (electro-osmotic permeability) 

Fig.5 shows the measured volume of discharge fluid from cathode reservoir together with 

the calculated Ke with time at various concentrations of CaCl2.  The results show that at 

the end of test, the volume of fluid for distilled water is 1118 cm3 but it is increased to 

1820, 3482 and 3530 cm3 for concentrations of 0.125, 0.25 and 0.5 mol/l of CaCl2 

solution respectively. Fig.5 presents the measured volume of discharge fluid from the 

cathode reservoir together with the calculated Ke with time at various concentrations of 

CaCl2.  The results show that at the end of test, the volume of discharge fluid for distilled 

water is 1118 cm3 but it is increased to 1820, 3482 and 3530 cm3 for concentrations of 

0.125, 0.25 and 0.5 mol/l of CaCl2 solution respectively. Fig.5 reveals that, in the range 
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of concentrations of CaCl2 used, the volume of discharge flow from the soil is increased 

with increasing the concentration of CaCl2. By increasing the concentration from 0.125 to 

0.25 mol/l, the discharge flow is increased by 1662 cm3 but when the concentration is 

further increased from 0.25 to 0.5 mol/l, the change in discharge volume is only 48 cm3. 

Therefore, the rate of increase in discharge flow it is reduced by increasing the 

concentration of CaCl2 solution. The value of Ke was determined according to the 

equation that was suggested by Alshawabkeh et al. (1999), as: 

qe = Ke* E                                   (1) 

Where qe is the electro-osmotic flow rate, E is the electric field intensity and Ke is electro-

osmotic permeability. The above equation shows that, for a specific electrical intensity, 

the variation of rate of outflow is directly proportional to the value of Ke. Fig.5 also 

shows the changes in the value of Ke during the tests for different concentrations of CaCl2. 

The results also indicate that the values of Ke decrease with time, so at the end of the tests,  

the values of Ke for 0.125, 0.25 and 0.5 mol/l reached to 1.61*10-9, 1.64*10-9 and 

1.86*10-9 (m2/s-v) respectively. These results show that the variations of Ke with time are 

in opposite trend of discharge flow from the soil.   

I (Intensity of electrical current) and R (Resistance) 

Fig.6 illustrates the changes in the values of I and R with time for distilled water and 

CaCl2 solutions at different concentrations. The results show that the value of I decreased 

with time for all used solutions. It is seen from this figure that the curve of distilled water 

is located at the bottom and that of the CaCl2 solution with concentration 0.5 mol/l at the 

top with final values of 0.07 (distilled water) and 0.28 (0.5 mol/l) ampere. As shown in 

this figure, the trend of variations of R with time is the opposite of the trend of I. In other 
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words, the value of R is increased by increasing the time. The value of R at the end of test 

for distilled water is 192.6 ohm and for different solutions of CaCl2 is nearly the same (i.e. 

185.7 ohm). 

Strength 

The shear strength of stabilized soil was measured at the distances of 4, 12, 19 and 26 cm 

from the anode. Fig.7 shows typical results of the measured strength of soil improved 

with distilled water and with different concentrations of MgCl2 solution at these distances 

along the soil. It is seen that the maximum shear strength is achieved at the distance of 26 

cm from the anode (around cathode). The maximum value of shear strength for distilled 

water is 8.2 kPa. For the solutions of MgCl2, the shear strength is dependent on the 

concentration of MgCl2; for concentrations 0.125, 0.25 and 0.5 mol/l of MgCl2 the values 

of strength are 17, 18 and 22.4 kPa at distance of 26 cm from the anode respectively. 

Soil water content and Atterberg limits 

Fig.8 shows the water content of the soil after testing at different distances (4, 12, 19 and 

26 cm) from the anode. As shown in this figure, the water contents of the samples for all 

tests are located below the control line (the control line shows the water content of the 

soil before testing). The results show that by using distilled water in anode and cathode 

reservoirs, the water contents at 4 and 26 cm from the anode are 47 and 48.8% 

respectively. This indicates that water content around the cathode is more than around the 

anode. The variations of water content when the anode reservoir is filled with MgCl2 or 

CaCl2 solution with different concentrations are shown in this figure. It is seen that the 

water content for each concentration at the anode is slightly less than the cathode. For 

example for MgCl2 at concentration of 0.125 mol/l, the water contents at 4 and 26 cm 

from the anode are 39.7 and 42.8 % respectively. It is also seen from this figure that by 
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increasing the concentration the water content is reduced around the anode and cathode. 

For the CaCl2 solution the water content at the same distance and concentration is less 

than the MgCl2 solution (Fig.8). For the CaCl2 solution at each concentration, the water 

content at the cathode is also more than the anode.   

The values of the liquid limit (LL) and plastic limit (PL) after the test for different 

solutions at different distances from the anode are shown in Fig.9 along with the control 

lines (values of LL and PL before testing). For distilled water the values of LL and PL 

near the anode (4 cm) are 47.5 and 25.9% but around the cathode they are changed to 

53.4 and 29.8 % respectively. It is seen that their values are increased around the cathode 

(26 cm). Similar changes in the Atterberg limits are also observed when the solutions of 

CaCl2 and MgCl2 with different concentrations are used as anode reservoir. It is seen that 

at the cathode, increasing of LL and PL is directly proportional to the concentration of 

solution in anode reservoir.  

pH and EC of soil 

At the end of each test the values of pH and EC along the soil were determined on the 

samples that were taken at the distances of 4, 12, 19 and 26 cm from anode (Fig.10). 

Fig.10a presents the values of EC and pH along the soil after stabilization by distilled 

water and solutions of CaCl2 at different concentrations. The results indicate that the 

value of pH is nearly 6 at the distance of 4 cm from the anode and it reaches to 7 at the 

distance of 12 cm from the anode. This indicates that by increasing the distance from the 

anode the value of pH is increased. The variation of pH from 12 cm to 19 cm is not 

significant but after 19 cm, the increasing trend of pH continues and it reaches to 8 at 

distance of 24 cm from the anode. The variations of EC along the length of the soil are 
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not the same as pH; around the anode (distance of 4 cm) the value of EC is maximum and 

then it decreases by increasing the distance (except for distilled water). Fig.10b shows a 

similar trend for changes of pH and EC along the length of soil when MgCl2 solution with 

different concentrations is used for soil stabilization. 

SEM results 

The effect of transported ions on the microstructure of the soil was studied by performing 

SEM tests on samples of stabilized soil. Figs.11 and 12 show the images that were 

obtained for samples at different concentrations for MgCl2 and CaCl2 respectively. As 

shown in these figures, the shape of particles around the anode are plate-like with large 

spaces between them without any bonding but in the vicinity of the cathode, the particles 

are pasted together through bonding that is produced from sediments or cementitious 

materials with agglomerated and flocculated structure. It is seen that by increasing the 

concentration, the degree of pasting of particle through bonding and the degree of 

flocculation are increased around the cathode and around the anode the size of voids is 

decreased. Comparison between the results in Figs.11 and 12 shows the degree of pasting 

of denseness of particles is more for the CaCl2 solution than the MgCl2 solution, for each 

value of concentration.  

Discussion 

The surfaces of clay minerals contain negative charges. This is as a result of isomorphous 

substitution and exchange of high valency with low valency atoms.  Due to their negative 

charge, the minerals of clay can attract cations and positively charge section of water 

molecules that surround the particles. A layer of water is strongly bonded to the surface 

of clay mineral which is termed diffuse double layer (DDL). The concentration of cations 
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is the highest at the surfaces of clay minerals and it decreases exponentially by increasing 

the distance from the clay surface.  

The chemical behavior of pore fluid can also influence the structure of clay soil (Mitchell 

and Soga, 2005). Changes in chemical quality of pore fluid can occur in different ways 

such as change in the concentration of pore fluid or the valence of the ions that exist in 

pore fluid. 

The ions in the DDL can be replaced with the ions absorbed on the surface of clay 

particles. This substitution of ions is termed as ion exchange. The exchange ion has an 

important influence on the behavior of clay soil. Many factors such as ion size and its 

valency influence on the exchange of one type of cation by another type. The total 

amount of exchangeable cations is called cation exchange capacity (CEC). Fig.13 shows 

that when distilled water or a solution of MgCl2 or CaCl2 is used at anode reservoir 

(cathode is filled with distilled water in all cases) the initial values of pH at anode and 

cathode reservoirs are decreased and increased respectively. During the stabilization of 

soil by the electrokinetic method, the applied electrical field produces a number of ions 

that change the value of soil pH due to the electrochemical reactions at the boundaries of 

electrodes. Therefore, the hydrogen and hydroxyl ions (H+ and OH-) are generated at 

anode and cathode respectively (Acar and Alshawabkeh, 1993). At this stage an acidic 

front is developed at anode that will move to the cathode through the soil. In contrast, the 

production of OH- produces a basic region at cathode that will move toward the anode by 

migration and diffusion. It can be said that producing the acidic and basic regions and 

their advancement toward the cathode and anode influence the initial pH of soil sample 

(see Fig.10). It is seen from Fig. 13 that when distilled water is used in the anode 
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reservoir, the final value of pH (pH=4.6) is more than the pH of CaCl2 or MgCl2 solution 

in this reservoir but in the cathode, the difference between the final values of pH is not 

significant. When the solution of CaCl2 or MgCl2 is used, the exchange ions of Ca+2 and 

Mg+2 produce H+1 ions. This results in an increase in the number of H+1 ions at the anode 

reservoir in comparison with distilled water and leads to reduction in the value of pH.  

When the concentration of CaCl2 is increased, there is a reduction in the value of pH. 

This is because with more Ca+2 ions, more H+1 ions are produced which increases the 

degree of acidity in the anode reservoir. For the MgCl2 solution, a reduction in the value 

of pH is observed at the anode reservoir. However, no definite relationship is observed 

between the reduction of pH and concentration of MgCl2. The results obtained in this 

work are in agreement with those presented in Hamed et al. (1991) and Estabragh et al. 

(2020).  It can be said that the initial pH of soil is under the influence pH of two 

reservoirs. Fig.10 shows that the pH of soil in the vicinity of the anode is changed to 

acidic condition and degree of acidity is related to the concentration of the used solution. 

This may be due to the movement of acidic front from anode to the soil which changes 

the pH of soil to acidic. In other words, cations that are transported to the soil mass from 

the anode reservoir are exchanged with cations on clay minerals and the produced H+1 

ions decrease the initial pH of soil. This figure (Fig.10) also shows the pH of the soil is 

increased when the distance from anode is increased. When the calcium chloride or 

magnesium chloride solution is used, the Ca+2 or Mg+2 ions are moved to the spaces of 

soil particles and some of them are substituted with other cations such as H+1. Some of 

OH- ions are moved to the cathode under the electrical field due to diffusion and 

electromigration and this plays an important role in increasing the pH of the soil. 
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Therefore, it (OH-) may be transported the formed basic front from cathode to the anode 

is effective in increasing the pH in this region of soil. The rest of the released Ca+2 or 

Mg+2 ions enter the cathode region, react with hydroxyl ions and increase the value of pH 

in soil, producing a basic environment. These results are consistent with the results that 

were published by Mohamedelhassan and Shang (2003) and Tajudin (2012). 

Fig.14 shows the final value of EC for the different solutions used for stabilization of the 

soil. The total amount of dissolved ions in water can be estimated by measuring the value 

of EC.  This figure shows that for both solutions, the values of EC at the anode reservoir 

are more than distilled water and they increase with increasing the concentration of the 

used solution. For the CaCl2 solution, when the concentration of CaCl2 is increased, the 

values of EC at the cathode reservoir are decreased. A similar trend is found for the 

variations of EC for MgCl2 solution with different concentrations. This can be explained 

as follows. When the Ca+2 ions enter the soil from the anode reservoir, majority of them 

are exchanged with other ions on the clay minerals or act with other released anions in 

soil. The rest of them move to the cathode reservoir. The amount of these actions may be 

less for Mg+2 than Ca+2 and cause increasing of EC at cathode. The changes of EC at both 

reservoirs can influence on the initial value of EC for soil in the main cell.  The value of 

EC for the soil in the vicinity of anode is increased for each solution and it is decreased 

by increasing the distance from anode (see Fig.10). Similar findings have been reported 

by other researchers (e.g., Mohamedelhassan and Shang, 2003 and Tajudin, 2012).  

Fig.15 shows the final results of outflow of the fluid from the sample for distilled water 

and CaCl2 and MgCl2 solutions at various concentrations. The results show that, for each 

of used solutions, when the concentration of the solution is increased, the volume of 
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discharge flow is also increased. The results also indicate that, at a constant concentration, 

the volumetric discharge of the CaCl2 solution is more than MgCl2 solution. This can be 

attributed to the changes in the initial form of the soil structure because of the cation 

exchange between clay and the solution. The thickness of DDL is reduced by cation 

exchange and the amount of reduction is increased by increasing the concentration of 

existing ions in the solution (Van Olphen, 1977 and Mitchell and Soga, 2005). The 

shrinkage of DDL leads to the formation of flocculated structure in soil and the degree of 

flocculation is increased with concentration. When the structure of soil becomes more 

flocculated, the void spaces between soil particles are increased and hence the outflow of 

fluid is increased. The MgCl2 solution also changed the structure of the soil to flocculated 

form due to the exchange of cations. The form of structure (orientation of particles and 

voids between them) that is made by MgCl2 solution at the same concentration as the 

CaCl2 solution is not the same (as shown in Figs.11 and1 2) and hence the discharge flow 

of the fluid from soil is reduced. The orientations of particles relative to each other are 

important in the flow of fluid in the soil. The arrangement of particles due to MgCl2 

solution could be perpendicular to the direction of flow of fluid, obstructing the flow and 

hence reducing the discharge fluid from the soil in comparison the CaCl2. Another reason 

for reduction of fluid flow from the soil with MgCl2 solution (in comparison with CaCl2 

solution) could be the reduction the pores between particles. This is because during the 

testing, acidic and alkaline conditions are created in the vicinity of anode and cathode 

respectively. The acidic front advances towards the cathode and basic front migrates from 

the cathode to anode. The movement of the acidic front is faster than the basic front. On 

the cathode side, chemical action occurs between hydroxide ions, the injected ions and 
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other metallic ions. The produced materials precipitate and clog the pores between 

particles, resulting in reduced flow of fluid from the soil mass. 

Fig.16 shows the variations of Ke for distilled water, and CaCl2 and MgCl2 solutions at 

different concentrations. It is seen that the trend of variations of Ke is similar to the 

variation of discharge fluid from the soil. It can be said the outflow of fluid from the 

sample is related to the value of Ke and hence, changes of Ke can change the amount of 

outflow of fluid. These finding are in agreement with those of discharge fluid from the 

soil samples (Fig.15). These results are also in agreement with the results that were 

presented by Mohamedelhassan and Shang (2001) and Rittirong et al., (2008).  

The results show that the values of I is increased in the initial stage of the tests and then it 

is decreased with time until it reaches to a nearly constant value (see Fig.6). These results 

are in agreement with those published by Ou et al. (2009) for stabilization a clay soil with 

CaCl2 solution. Fig.17 shows the final values of I at the end of test for different solutions. 

The results show that there is increasing in the value of I when the concentration of both 

fluids is increased. For a specific concentration, the value of I for CaCl2 solution is less 

than MgCl2 solution. It can be said that the value of CEC for different ions is not the same 

for a specific mineral of a clay soil. In other words, the CEC of Mg+2 may be less than 

Ca+2 ions for this soil.  Therefore, a number of Mg+2 ions may remain between particles 

and cause increase in the value of I.  

Fig. 7 shows that for a specific fluid, the improvement of soil is increased by increasing 

the distance from the anode; it is minimum at the anode and maximum at the cathode. 

Fig.18 compares the values of soil strength in the vicinity of cathode for different 

solutions at different concentrations. It is shown that the shear strength of the soil with 
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CaCl2 solution is more than MgCl2 solution at different concentrations and by increasing 

the concentration, the effect of CaCl2 on the shear strength is more than MgCl2. The 

outflow of fluid from the soil is important in increasing the strength because the pore 

water pressure is reduced leading to increase in the effective stress. As shown in Fig.15, 

the outflow of fluid due to CaCl2 at a specific concentration is more than MgCl2. The 

solubility of CaCl2 in water at 20oC (74.5 g/100 cc water) is more than MgCl2 (54.3 g/100 

cc water) and solution of CaCl2 produces more ions in comparison with MgCl2 resulting 

in higher values of I at different concentrations. It can be said that the exchange ions and 

reaction of Ca+2 are more than Mg+2 because of the difference in their solubility. The 

results in Fig.10 reveal that in the vicinity of cathode the value of pH is high and 

therefore soil is in alkaline condition. Pozzolanic reactions may occur in alkaline 

conditions which produce cementation materials. Ou et al. (2018) suggested that 

cementation is due to pozzolanic reactions and Calcium Silicate Hydrate (C-S-H) or 

Calcium Aluminate Hydrate (C-A-H) gel. Therefore, the movement of injected ions from 

anode to cathode is effective in forming the cementing materials. The formed materials 

paste the particles to each other by a strong bond which increases the strength of the soil 

(Fig.12). The properties of the cementing materials formed form the MgCl2 or CaCl2 

solution is not the same. It appears that the cementitious materials formed with the CaCl2 

solution are more effective in increasing the strength of the soil than the materials that are 

formed with the MgCl2 solution. Some researchers such as Micic et al. (2002), 

Alshawabheh and Sheahn (2003), Burnotte et al. (2004) and Rittirang et al. (2008), reported 

that cementation occurs during electroosmotic stabilization of soil between particles, 

particularly around the cathode. The produced cementitious material is not as strong as the 

cementation that is produced by injection of ions such as Ca+2 or Mg+2. 
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The results show that injection of calcium and magnesium ions can improve the 

properties of a clay soil. For field applications of the electrokinetic method, more 

information from laboratory tests is needed. It is suggested, as a further work, that 

different tests on different types of soil with different agents should be conducted and a 

database should be prepared for field works. 

Conclusion 

This work presented a study on the improvement the properties of a clay soil through 

EKS technique by using calcium chloride and magnesium chloride at different 

concentrations. The tests were conducted under constant electrical voltage and time. The 

obtained results are summarized as follows:  

-Both CaCl2 and MgCl2 solutions can increase the values of Ke, I, Q and shear strength of 

soil in comparison with distilled water. The amount of increase in these parameters is 

function of concentration of the used solution. For a specific concentration of solution, 

the value of strength is increased by increasing the distance from the anode. 

- In general, calcium chloride is more effective than magnesium chloride in improving 

the mechanical properties of clay soil, at least in the range of concentrations used in this 

study.  

-More studies are needed to be performed by this method to get a better understanding of 

the effects of numerous physicochemical processes that are involved during the test. This 

could lead to the development of a proven method of in situ stabilization of soils. This 

could also provide a suitable method that can be used for stabilization of soils under 

existing structures without any adverse affect on the ground 
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Table 1. Physical and mechanical properties of soil 

          

Property Standard designation Value 

Specific gravity, Gs 

 

ASTM D 854-10 2.70 

Particle distribution 

Gravel (%)  8.0 

Sand (%)  27.0 

Silt (%)  53.0 

Clay (%)  12.0 

Consistency limits 

Liquid limit, LL (%) ASTM D 4318-10 51.3 

Plastic limit, PL (%) ASTM D 4318-10 26.1 

Plastic index, PI (%) ASTM D 4318-10 25.2 

Shrinkage limit, SL (%) ASTM D 427-04 13.0 

USCS classification ASTM D 2487-11 CL 

Compaction characteristics 

Optimum water content, w 

(%) 

 

ASTM D 698-07e 

16.33 

Maximum dry unit weight, 

γdmax (kN/m3) 

17.75 

 

 

 

Table 2. Chemical composition of soil 

 

Chemical 

component 

Value Chemical 

component 

Value 

pH 8.0 Mg2+ (meq/l) 10.0 

EC* (dS/m) 0.74 Cl- (meq/l) 60.0 

Na+ (meq/l) 114.0 CO3
2- (meq/l) 0.6 

K+ (meq/l) 0.23 HCO3
- (meq/l) 4.0 

Ca2+ (meq/l) 24.0 SO4
2- (meq/l) 83.0 

CO3Ca (%) 10.2 O.C.** (%) 0.11 

 

*- Electrical conductivity 

**- Organic content 
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Table 3. Characteristics of different tests 

 

Group 

No. 

Test No. Stabilizer 

fluid 

Concentration 

(mol/l) 

Anode 

reservoir 

Cathode 

reservoir 

1 1 Distilled 

water 

- Distilled 

water 

Distilled 

water 

 

 

 

2 

2 CaCl2 0.125 CaCl2 Distilled 

water 

3 CaCl2 0.25 CaCl2 Distilled 

water 

4 CaCl2 0.50 CaCl2 Distilled 

water 

 

 

 

3 

5 MgCl2 0.125 MgCl2 Distilled 

water 

6 MgCl2 0.25 MgCl2 Distilled 

water 

7 MgCl2 0.5 MgCl2 Distilled 

water 
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Fig.1. X-ray diffraction plots (a) minerals (b) clay mineral of soil 
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Fig.2. Schematic plan of the test set-up (dimensions in mm) 
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Fig.3. Variations of pH of two reservoirs with time. CC= CaCl2 , DW.= Distilled Water, 

A=Anode, C= Cathode 
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Fig.4. Variations of EC of two reservoirs with time MC= MgCl2, DW= Distilled Water, 

A=Anode, C= Cathode 

  
  
  
  
  
  
p
H

 

       Time, h (hour) 

  Time, h (hour) 

 

  
 E

le
c
tr

ic
al

 c
o
n
d
u
c
ti

v
it

y
, 
E

C
 (

d
S

/m
) 

  
  
  
  

 



 37 

 

0

1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7

0

1

2

3

4

5

DW (Q) CC- 0.125 M/L (Q)
CC- 0.25 M/L (Q) CC- 0.50 M/L (Q)
DW (Ke) CC- 0.125 M/L (Ke)
CC- 0.25 M/L (Ke) CC- 0.50 M/L (Ke)

 
 

 

 

Fig.5. Variations of fluid discharge and Ke with time for solutions of CaCl2 at different 

concentrations. DW=Distilled Water, CC= CaCl2 
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Fig.6. Variations of current intensity and electrical resistance with time for solutions of 

CaCl2 at different concentrations. DW=Distilled Water, CC= CaCl2 
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Fig.7. Variations of shear strength along the soil sample with distance from anode 
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Fig.8. Variations of water content after each test along the soil sample with distance from 

anode. 
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Fig.9. Variations of LL (liquid limit) and PL (plastic limit) after each test along the soil 

sample with distance from anode. 
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Fig.10. Variations of pH and EC along the soil sample with time  and with distance from 

the anode for different solutions at different concentrations (a) CaCl2  (b) MgCl2. 

DW= Distilled Water, CC= CaCl2 , MC= MgCl2. 
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MgCl2-0.125-Anode                                                   MgCl2-0.125-Cathode 

      
MgCl2-0.25-Anode                                                     MgCl2-0.25-Cathode 

      
MgCl2-0.5-Anode                                                          MgCl2-0.5-Cathode 

Fig.11. Scanning electron microscope micrographs for MgCl2 solution at anode and 

cathode for different concentrations 
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CaCl2-0.125-Anode                                                          CaCl2-0.125-Cathode 

      
CaCl2-0.25-Anode                                                          CaCl2-0.25-Cathode 

      
CaCl2-0.5-Anode                                                          CaCl2-0.5-Cathode 

Fig.12. Scanning electron microscope micrographs for CaCl2 solution at anode and 

cathode for different concentrations 
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Fig.13. Comparison the values of pH at end of each test for different solutions 

 

 

 
 

Fig.14. Comparison the value of EC at end of each test for different solutions 
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Fig.15. Comparison flow discharge at the end of each test for different solutions 

 

 

 
 

Fig.16. The values of Ke at end of each test for different solutions  
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Fig.17. Final values of I for different solutions 

 

 

 
 

Fig.18.The values of measured strength of improved soil at cathode for different solution 

 


