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S1 ITO permittivity (Drude model)
The near-infrared permittivity of the ITO film was measured with an ellipsometer and can be described by the Drude model:

εITO(ω) = ε∞−
ω2

p

ω2 + iωγ
(S1)

with ε∞ = 3.43 as the high-frequency permittivity, ωp = 2.86× 1015 rad/s as the bulk plasmon frequency and γ = 2.24×
1014 rad/s as the damping rate. These parameters were determined experimentally by ellipsometry and subsequent fitting.

S2 Three layer dispersion

The dispersion of ENZ plasmon modes can be found using the dispersion relation taken from Ref.1:

F(k,ω) = tanh(α2d)+
ε2α2 (ε1α3 + ε3α1)

α2
2 ε1ε3 +α1α3ε2

2
= 0, (S2)

with α2
j = k2− k2

0ε j. The permittivities are n1 = 1 (air), ε2 = εITO(ω) and n3 = 1.43 (substrate). We solve for a complex
wavevector k = kr + iki and real frequency ω .

S3 Model: Intensity dependent reflection
We introduce two models that we use to interpret our pump-probe data. The first "static" model treats our sample as a
homogeneous layer, and we solve for excited state permittivity parameters. The second "dynamic" model predicts the full
dynamic behaviour of samples assuming a time dependent plasmon resonance frequency, and allows us to predict the temporal
dynamics observed in our pump-probe measurements.
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S3.1 Angle and frequency dependent reflection (Static model):
We use a transfer matrix approach to calculate the reflection and absorption of a beam from our sample, assuming a given
permittivity. The initial absorption is calculated for the TE polarized pump beam Apm (θpm, fpm), which can be seen in Figure S1.
The incoming medium is assumed to be substrate/prism (index n = 1.43), while the medium on the far side is air (n=1). The

a b

Figure S1. Pump absorption. a, The calculated TE pump absorption based on ellipsometric data. Due to
θ = θpr = θpm +3.4◦ we find the largest absorption close to 48◦, the critical angle of the pump beam. b, The calculated TM
pump absorption, which provides a strong absorption through the resonant ENZ plasmon.

calculated Apm (θpm, fpm) is used to determine the angle and frequency dependent absorbed pump intensity

I = cos
(
θpm
)

Apm
(
θpm, fpm

)
Iexternal. (S3)

The intensity dependent ITO is modelled as an effective medium layer. We assume a linear intensity dependence of the Drude
permittivitty parameters, such that the plasma frequency can be written as:

ωp(I) = (1+ωp,2I)ωp,0. (S4)

We use this to calculate the pump induced reflection of the probe Rpumped(θpr, fpr, I). By least square fitting of the proportionality
factor, ωp,2, to the experimental data in Fig. 2c of the main manuscript, we find ωp,2 = −0.38 %cm2 GW−1. The decrease
in ωp with increasing pump intensity can be understood as an increase of effective mass upon exciting the electrons in the
non-parabolic conduction band of ITO, as discussed in refs2–5.

Several references in the literature have also reported simultaneous intensity dependent changes to the scattering rate
γ2, 3. However, using our full dynamic model (introduced below), the most convincing reproduction of our measured pump-
probe dynamics is found when γ is independent or weakly dependent (γ2 <= 0.5%cm2 GW−1) on intensity. We see this by
comparing the experimental measurements (Figure 2b and Figure S2a) with the cases of γ2 = 0 (Figure S2b), γ2 = 5%cm2 GW−1

(Figure S2c), γ2 = 0.5%cm2 GW−1 (Figure S2d) and γ2 =−0.5%cm2 GW−1 (Figure S2e). Moreover, fitting our angle and
frequency dependent results assuming both ωp,2 and a similarly defined γ2 leads to an unphysical effect: a predicted small
decrease in γ with increasing intensity, which arises due to a narrowing of the resonance feature observed in the Rpumped data in
Fig. 3 for increasing intensity. This is an artefact of our data analysis, due to the oscillatory features for case II (where the ENZ
resonance shifts spectrally through the probe) which become more prominent for increasing intensity. In any case, our results
suggest that the nonlinear switching we observe in our samples is primarily due to intensity dependent changes to ωp, while
intensity dependent changes to γ are not clearly identifiable in our experimental data.

Finally, we can contrast the magnitude of the observed optical nonlinearity with the most comparable data previously
reported in the literature. Our fit result ωp,2 = −0.38%cm2 GW−1 is surprisingly similar to that report by Alam et al.2,
corresponding to ωp,2 =−0.33%cm2 GW−1, found from the absorbed intensity dependence plotted in Figure S3a. However,
this is unexpected, as the nonlinear response should be dictated by absorbed energy density, and the sample thickness is
different by a factor of ∼ 5 (310 nm, while here 60 nm). In Figure S3b we plot the calculated absorption per length using
transfer matrix modelling6 as an indicator of absorbed energy density, which eventually causes the electron heating5. For our
Kretschmann-Raether geometry with a film thickness of 60 nm, the absorbed energy density is reasonably constant across the
layer (see blue line in figure Figure S3b). However, for direct transmission from air with a 310 nm thick film, the geometry
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used in ref2, a significant exponential decay of energy density is expected across the film, with a decay length of 168 nm. This
means that the Drude parameters in this case are not expected to be homogeneous, but will be strongly dependent on spatial
position in the sample. Nevertheless, as a guide one would expect ωp,2 to be lower, by around a factor of 3, for the geometry
used in ref2 compared to the Kretschman-Raether geometry used here. We do not fully understand this discrepancy, but it may
arise due to complications in the homogeneous analysis used in ref2, or due to variations between ITO samples.

a
γ = 0 γ 5 %cm

2
 

GW
-1 γ = 0 5 % cm

2
GW

-1γ = 0 5 % cm
2
GW

-1

Figure S2. Impact of γ2 on model. a, Time delay scans presented in Fig. 2b of the manuscript (pr: TM, 48.3◦,
fpr = 261 . . .207 THz; pm: TE, 44.9◦, fpm = fpr). b, Dynamic model results for ωp,2 =−0.38%cm2 GW−1, estimated by
fitting Fig. 2c with an intensity dependent ωp only. c, Adding a γ2 = 5%cm2 GW−1, increases the estimated pumped
resonance width. This leads to a reduced absorption depth of the switched plasmon (reflection doesn’t go to zero), which is in
line with experiments, but also leads to a decreased nonlinear reflection for the high frequencies, which is in this size
incompatible with our findings. d, A more moderate effect given by up to γ2 ∼ 0.5%cm2 GW−1 could still be in-line with our
measurements. e, γ2 =−0.5%cm2 GW−1, has the opposite effect by even further increasing the nonlinear reflection for the
high frequency case. Moreover, a scattering rate which decreases with increasing electron temperature seems unphysical.

Refractive index
To enable comparison to other studies using the refractive index and n2 as the nonlinear optical parameters we provide the
nonlinear refractive index depending on the absorbed intensity:

n(Iabs) = n0 +n2Iabs +O(I2
abs) (S5)

with

n0 =

√
ε∞−

ω2
p,0

ω2 + iωγ0
(S6)

n2 =
ω2

p,0

2n0

2ω2ωp,2− iωγ0(γ2−2ωp,2)

(ω2− iωγ0)2 (S7)

To give an example, n2 takes the value of (0.01− i∗0.016)cm2 GW−1 for our ITO sample case and 1250 nm wavelength. This
equation may result in an approximate conversion for other ITO sample designs, but ωp,2 = 0.38%cm2 GW−1 is expected to be
different for materials with different band-structures such as AZO. Furthermore, to compare between different layer thicknesses
and/or pulse lengths, one should also consider that the absorbed energy density is the expected scaling parameter of the thermal
nonlinearity, not the absorbed intensity.

S3.2 Time varying medium (Dynamic model)
We now concentrate on modelling the full temporal dynamics of a probe pulse experiencing a time dependent modulation
of medium’s dielectric function, induced by the pump pulse. Without any time modulation of the permittivity, Maxwell’s
equations for an incident TM polarized wave are

∇×E =−µ0
∂H
∂ t

ẑ (S8)
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a b

Figure S3. Comparison of different sample thickness. We compare to the previous studies studies of Alam et al.2 which
features a 310 nm ITO layer with similar optical properties to ours (TM polarized). a, We convert the given intensity dependent
complex refractive index given in2 to ωp and γ by assuming a Drude model. Linear contributions for the low intensity fit region
give ωp,2 =−0.33%cm2 GW−1 and γ2 = 4.6%cm2 GW−1. b, The 310 nm film (in air, θ = 30◦, λ = 1240 nm) produces an
absorbed energy density which varies with distance, and is described by an exponential decay length of τ = 168 nm. While the
60 nm film (prism, θ = 45◦, λ = 1200 nm) exhibits a relatively constant absorption throughout the layer.

and

∇H× ẑ =
∂D
∂ t

= ε0
∂

∂ t

[
E(t)+

∫
∞

0
χ

(
t ′

∆

)
E
(
t− t ′

)
dt ′
]

(S9)

where χ

(
t ′
∆

)
is the time domain susceptibility, and ∆ is the characteristic timescale of the material response. In our case the

susceptibility function χ itself varies in time due to the heating induced changes of the plasmon frequency ωp (see Figure S4).
The later are modelled as a convolution of the pump pulse and an exponential decay with τ = 300 fs, normed such that ωp
given in Equation S4 corresponds to the extremum. We thus modify (S9) so that the susceptibility has an additional dependence
on t− t ′,

∇H× ẑ = ε0
∂

∂ t

[
E(t)+

∫
∞

0
χ

(
t− t ′

∆1
,

t ′

∆2

)
E
(
t− t ′

)
dt ′
]

(S10)

We now have two timescales ∆1 (the modulation of the permittivity), and ∆2 (the timescale over which the material responds).
These timescales are assumed to be such that the modulation is much slower than the material response ∆1 � ∆2 and the
material response tends to zero at large delay times χ(τ1,τ2 −→ ∞) = 0. Taking the curl of (S10) and applying (S8) we find the
equation for the out of plane magnetic field in a homogeneous region of space

∇
2H− 1

c2
∂ 2H
∂ t2 −

1
c2

∂

∂ t

∫
∞

0
χ

(
t− t ′

∆1
,

t ′

∆2

)
∂H (t− t ′)

∂ t
dt ′ = 0 (S11)

In general this is an integro-differential equation that is difficult to solve. To make progress we use multiple scales perturbation
theory7, and define two time variables τ1 = t/∆1 and τ2 = t/∆2. The out of plane magnetic field is approximated as a function
of these two time variables

H(t) = H
(

t
∆1

,
t

∆2

)
= H (τ1,τ2) (S12)

and the time derivatives can be written as

∂

∂ t
=

1
∆1

∂

∂τ1
+

1
∆2

∂

∂τ2
(S13)
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Figure S4. Time dependent bulk plasmon frequency. The convolution of the pump pulse and an exponential decay with
τ = 300 fs is normed such that ωp(I), given in Equation S4, corresponds to the extremum. a, The ωp(t, I) is used to calculate
the time dependent material parameters such as χ during interaction with the pump beam. For the plotted case we assume
θ = 48.3◦, Iexternal = 70GWcm−2 and a TE polarized pump (as seen in Fig. 2b). For the case of fpr = 240 THz we plot the
corresponding permittivity (b) and refractive index (c).

Given that χ(τ1− τ ′1,τ
′
2) decays with increasing τ ′2 over which time τ ′1 has not increased appreciably from zero we can expand

the integral kernel around τ ′1 = 0 with the leading order approximation being χ(τ1− τ ′1,τ
′
2) ∼ χ(τ1,τ

′
2). Further terms are

proportional to increasing powers of ∆2/∆1. Equation (S11) is thus to leading order in the small quantity ∆2/∆1

∇
2H (τ1,τ2)−

1
∆2

2c2

∂ 2H (τ1,τ2)

∂τ2
2

− 1
∆2

2c2

∫
∞

0
χ
(
τ1,τ

′
2
) ∂ 2H (τ1,τ2− τ ′2)

∂τ2
2

dτ
′
2 = 0 (S14)

Equation (S14) is different from (S11) in an important way. Having dropped the terms involving the timescale τ1 = t/∆1 from
the integral and the derivatives, the modulation of the dielectric function neither appears in the derivatives nor the integration.
The time variable τ1 is now merely a label, and we may solve (S14) as we would in the time independent situation, with the
dispersive permittivity ε(τ1,ω). Note that to improve upon this approximation, one can add back in the terms proportional to
the ratio of timescales ∆2/∆1, expanding perturbatively.

We now apply this result to the experiment. We have a total internal reflection geometry with fixed permittivities, ε1 = 2.1
in the region x < 0, and ε3 = 1 in the region x > d. In the remaining region 0 < x < d we have a layer of material with a
permittivity that is modulated over time ε2(τ1,ω) with the same separation of timescales assumed above. A pulse is incident at
a fixed angle θ from the region x < 0. The reflection coefficient (which, as with the permittivity is now a function of modulation
time τ1, and incidence frequency ω) is given by

r (τ1,ω) =
cos(k2d)

(
k2

k3ε2
− k2ε1

k1ε2

)
− isin(k2d)

(
1− k2

2ε1
k1k3ε2

2

)
cos(k2d)

(
k2ε1
k1ε2

+ k2
k3ε2

)
− isin(k2d)

(
1+ k2

2ε1
k1k3ε2

2

) , (S15)

where k0 = ω/c, k1 = k0
√

ε1 cos(θ), k2 = k0

√
ε2(τ1,ω)− ε1 sin2(θ), and k3 = k0

√
1− ε1 sin2(θ). If the spectrum of the

incident pulse is a(ω) then the total pulse in the first region x < 0 is the sum of the incident spectrum plus the incident spectrum
weighted by the modulated reflection coefficient r(τ1,ω):

H (τ1,τ2) = Hinc (τ1,τ2)+Hr (τ1,τ2)

=
∫

∞

−∞

a(ω)
[
eik0(cos(θ)x−c∆2τ2)+ r (τ1,ω)e−ik0(cos(θ)x+c∆2τ2)

] dω

2π

=
∫

∞

−∞

a(ω)

[
eik0(cos(θ)x−ct)+ r

(
t

∆1
,ω

)
e−ik0(cos(θ)x+ct)

]
dω

2π
.

(S16)

The spectrum of the reflected pulse is found by simply taking the Fourier transform of the second term in the square brackets of
(S16), at x = 0:

Hr(ω) =
∫

∞

−∞

Hr(t)eiωtdt =
∫

∞

−∞

dω ′

2π
a
(
ω
′)r
(
ω−ω

′,ω ′
)
, (S17)
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where

r (ω1,ω2) =
∫

∞

−∞

r
(

t
∆1

,ω2

)
eiω1tdt. (S18)

Equation (S17) indicates that the spectrum of the reflected pulse is the convolution of the incident spectrum with the two
frequency reflection coefficient r(ω1,ω2).

Finally, to compare to experiment, we calculate the relative reflected power given in the main text. To do this we then take
ratio of the integrated incident and reflected Poynting vectors. For instance, the time integrated incident power is

Pinc =
∫

∞

−∞

x̂ ·S(t)dt =
∫

∞

−∞

Ey,inc(t)Hinc(t)dt =
cos(θ)
cε0
√

ε1

∫
∞

−∞

dω

2π
|a(ω)|2, (S19)

and therefore the relative reflected power is

R =

∫
∞

−∞

dω

2π
|Hr(ω)|2∫

∞

−∞

dω

2π
|a(ω)|2

, (S20)

where Hr(ω) is calculated using Eq. (13), and the time-frequency reflection coefficient in Eq. (S15). Equation (S20) is used to
calculate the reflected power for the different pump pulse arrival times in Fig. 2b.

The results of our model are shown in Fig. 2b, with time dynamics split into three distinct cases. Case I: the ENZ resonance
red shifts away from the probe, the absorption decreases and we see an increase in reflectivity due to the pump excitation.
Case III: the ENZ resonance shifts spectrally towards the probe, the absorption increases and we see a decrease in reflectivity.
Both cases display expected temporal dynamics: a fast, ∼100 fs (pulse limited) initial change, followed by a slower , ∼1 ps
thermal relaxation, similar to that observed in experiment here and in previous studies2, 8. We use the magnitudes of reflection
changes in these regions to find our intensity dependent Drude parameters, ωp,2 and γ2. We find best agreement with the
data for ωp,2 =−0.38%cm2 GW−1. Including a non-zero γ2 leads to a decreased nonlinear reflection for either case I or III,
depending on sign. Both cases, i.e. γ significantly increasing or decreasing with intensity, therefore lead to discrepancies with
the experimental data for regions I or III.

Finally, we have case II: the ENZ resonance shifts spectrally through the probe, for which we observe some rather unusual
dynamics in the pump-probe signal. While we are able to reproduce similar oscillatory features with our model, these features
are smaller in the model when compared to experiment. This may be due to a very rapidly changing absorption of the pump
which is expected to vary even within the excitation timescale of the pump pulse. To fully describe this effect, we would need
to develop a much more complex dynamical model where the rapidly time dependent absorption of the pump is fully accounted
for. This is not a trivial task, and is beyond the scope of the current paper.

S4 Two-beam coupling contribution
When two coherent, co-polarised, near-degenerate beams impinge upon a plane, they generate an interference pattern. This
gives rise to a spatially dependent change to the index of the material, which can cause diffraction generated signals in the
experiment. The description we give below refers specifically to our pump-probe geometry, though it is important to realise
that similar coherent signals (i.e. resulting from interference and diffraction) can result in many types of nonlinear optical
measurement, even those employing a single focused beam9.

For the geometry used in Fig. 4c, we model beams in glass (prism) with wavelength 1250 nm wavelength, θpr = 44.9◦ and
θpm = 48.3◦. These beams will result in the interference pattern inside the ITO, as shown in Figure S5. For the beams used in
our experiment (Ipm = 70GWcm−2 and Ipr = 0.13GWcm−2) we expect the interference pattern shown in Figure S5b, with a
spatially dependent oscillation in intensity of ±4GWcm−2. Due to the intensity dependent index of refraction in ITO, one also
expects a spatial dependence to the local index of refraction. Assuming the linear intensity dependence present in Equation S4,
one can expect the refractive index of the ITO layer to roughly resemble that shown in Figure S5c. A spatial profile in the
index of refraction will act as a diffraction grating, scattering pump light into the direction of the probe beam, and subsequently
into our detector. While the spatial modulation in index is relatively small, leading to a relatively weak scattering effect, we
only require a small intensity of the much stronger pump beam scattered in the direction of the probe to give a large switching
signal. To obtain an estimate of this contribution, we use Comsol to calculate the diffraction pattern expected from the spatially
varying index shown in Figure S5c, assuming a 60 nm ITO layer with a uniform refractive index in z direction. This predicts a
1st order diffraction of ∼ 0.1 % of the pump beam that will be scattered in the direction of the probe beam. Hence, the signals
we measure in our detector are not only based on the zero order reflection of the probe, but also a contribution of the first order
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Figure S5. Diffraction through interference induced refractive index grating. a, Interference pattern of two equally
intense beams (44.9◦, 1250 nm) and (48.3◦, 1250 nm) in glass. b, Interference pattern of 70 GW/cm2 pump (44.9◦, 1250 nm)
and 0.13GWcm−2 probe (48.3◦, 1250 nm) at the glass/ITO interface. c, Corresponding refractive index distribution resulting
from B, based on Equation S4.

diffraction of the pump. Considering the spatial overlap required for the pump to be scattered, we can directly estimate the
contribution of scattered pump to the “differential reflection” signal: this corresponds to

∆RCC ∼
0.1 %∗70GWcm−2

0.13GWcm−2 ∼ 54 % (S21)

of the probe intensity. This is even larger than the difference in peak TM and TE experimental signals, which is 15 % (see Fig.
4c). However, due to their different temporal dynamics, the thermal and coherent contributions to the signal are expected to
add sub-linearly. Moreover, we note that the refractive index relation used to calculate the scattering of the pump assumes full
thermalisation, whereas the ITO will heat up during the evolution of the pump pulse. Thus the 54 % predicted above is an
overestimate, and we believe it to be consistent with the measured value of 15 %.

For non-degenerate pump and probe, one expects a non-stationary interference pattern, i.e. one that changes quickly with
time. For our geometry, one can easily show that effects of the grating will be washed out within the ∼ 100 fs of our pulses
when the pump and probe differ by only a few nm. Again, this is in agreement with our experiments presented in Fig. 4b, which
show coherent signal only for near-degenerate measurements.

S5 Probe polarization dependence of the nonlinear effect
In Figure S6 we compare the dynamical model of Fig. 2b with the corresponding TE probe case. The nonlinear optical effects
on a TE polarized probe are small, as the shifting resonance feature is only accessible for TM polarized light (see e.g. in
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Figure S1). However, these small nonlinear changes to the TE reflection/absorption are beneficial as changes to the TE pump
absorption are negligible, enabling easier modelling of time dependent effects.

a b

Figure S6. Polarization dependent nonlinear reflection. a, The TM probe case as seen in Fig. 2b or Figure S2 (pr: TM,
48.3◦, fpr = 261 . . .207 THz; pm: TE, fpm = fpr). b, The same case except for the probe being TE polarized, leading to only
small reflection changes of ∆R < 1 %. (pr: TE, 48.3◦, fpr = 261 . . .207 THz; pm: TE, fpm = fpr)

S6 TE-TE measurement
Due to the weak nonlinear response of the TE probe we expect only small thermal contributions to nonlinear measurements as
discussed in section S5. However, if the pump is also TE polarised one expects a notable two-beam coupling contribution as the
refractive index modulation inside the ITO layer remains similar to the case discussed in section S4. This is indeed what we
observe in the TE-TE experiment as seen in Figure S7. The resulting TBC can be seen as a 10% relative reflection increase
when near degeneracy of pump and probe, and is significantly larger than the thermal effect in the same measurement.
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Figure S7. TE-TE measurement. The absence of the thermal response for a TE probe leads to an isolated clear TBC
feature when pumping with a TE polarized beam. (pr: TE, 45◦, fpr = 240 THz; pm: TE, fpm = 240,260 THz)
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S7 Coverslip measurement
We have performed measurements at 45◦, both beams TM polarized and both wavelength set to 1200 nm (see Figure S8). We
first insert the ITO sample, align and measure the time delay scan (1). After that we exchange the sample for a cover slip and
only adjust the tilt of the sample holder and the angle of the sample holder to maximize reflection and compensate changes due
to slight changes in index matching fluid binding to the prism. Then we measure time delay scan (2). Finally, we change back
to ITO, again, only adjusting tilt and angle to retrieve the maximum reflection (for 1500 nm, due to higher reflection). With
the then measured scan (3) we show that the nonlinear response was perfectly reproduced. Importantly, the response of the
coverslip alone (2) is considerably smaller.
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Figure S8. Coverslip measurement. To show the negligible nonlinear response of the prism, index matching fluid and
prism we present a delay scan without ITO layer (2). To ensure the alignment not being influenced we take ITO measurements
before and after with the same alignment procedure (1,3). We also show the electronic offset without a probe, corresponding to
R = 0 %. (pr: TM, 45◦, fpr = 250 THz; pm: TM, fpm = 250 THz)

We have checked the absence of signal for case (2) for other angles, and signals are always considerably smaller than when
the ITO is present, hence we can unequivocally attribute the bulk of the signal to the ITO film.

S8 Autocorrelation measurement
The autocorrelation of our pulses at 1200 nm was measured using an APE pulseCheck autocorrelator (see Figure S9). The
measured pulse length is 107±5 fs, with no significant change in pulse length over the range in wavelengths employed in this
work. The measurement does not indicate any chirp like behaviour.

Figure S9. Autocorrelation for pulse length and quality check. The autocorrelation was measured after the pulses passed
through the prism with a wavelength of 1200 nm. The pulse has been measured multiple times, leading to a pulse time estimate
of 107±5 fs.
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