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Abstract 

The applied psychology literature has discussed and used a variety of different definitions of 

dynamic individual differences. Descriptions like dynamic, agile, adaptive, or flexible can refer to a 

variety of different types of constructs. The present article contributes to the literature by presenting an 

organizing typology of dynamic constructs. We also conducted a literature review of four major applied 

journals over the last 15 years to validate the taxonomy and to use it to map what type of dynamic 

individual differences constructs are typically studied in the applied psychology literature. The typology 

includes six basic conceptualizations of dynamic individual differences: Variability constructs 

(inconsistency across situations), skill acquisition constructs (learning new skills), transition constructs 

(avoiding “loss” in performance after unforeseen change), reacquisition constructs (relearning after 

change), acceleration/deceleration constructs (losing or gaining energy by displaying the behavior), and 

integration/dissolution constructs (behavior becomes more or less uniform). We provide both verbal 

and statistical definitions for each of these constructs, and demonstrate how these conceptualizations 

can be operationalized in assessment and criterion measurement using R code and simulated data. We 

also show how researchers can test different dynamic explanations using likelihood-based R² statistics. 
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What are Agile, Flexible, or Adaptable Students and Employees? A Typology of Dynamic Individual 

Differences in Applied Settings  

Work psychologists, economists, and educational researchers have argued that the rapid 

emergence of new technologies is changing the fundamental nature of work and education (World 

Bank, 2019). Modern work environments require employees and organizations to quickly react to 

changes. This increasingly volatile nature of modern education and work environments has recently led 

to a considerable interest in studying dynamic elements in both assessment and outcome measurement. 

In particular, applied researchers and practitioners have shown interest in measuring individual 

differences in dynamic predictor constructs such as dynamic skill acquisition or flexible personality traits 

in assessment. Furthermore, there is also considerable interest into studying individual differences in 

dynamic aspects of outcomes such as job performance or educational achievement (Abrahams et al., 

2019; DeRue et al., 2012; Jundt et al., 2015).  

The term dynamic originates from the Greek word dynamikos which means "powerful" and the 

contemporary use of the word is typically inspired by its use in physics to describe constant change 

(Merriam-Webster, 2019). Thus, dynamic refers to change processes over time. Dynamic effects can be 

alike across individuals, such as a normative developmental pattern that all individuals in a population 

demonstrate. Individual differences in dynamic effects refer to individual differences between 

individuals in the amount that change processes occur over time. These individual differences are 

typically continuous and approximately normally distributed. Such differences can be individual 

differences in the dynamics of assessment constructs (e.g. a personality trait/state) or individual 

differences in the dynamics of outcome measurements (e.g. job performance). In assessment, a broad 

range of different methods can be used to capture dynamic individual differences like using Likert-scales 

(e.g., Fleeson & Gallagher, 2009; Lang, Lievens, et al., 2019), ambulatory assessment methods 

(Abrahams et al., 2019) or situational judgement tests (e.g., Lievens et al., 2018). Individual differences 
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in the dynamics of outcome measurements are typically captured by extracting information from 

multiple performance measurements over shorter or longer periods of time (Bliese et al., 2017; Farrell & 

McDaniel, 2001).  

Studying individual differences in dynamic constructs (either in assessment or in outcome 

measurement) in applied settings usually presents researchers with a number of challenges. A first 

challenge is defining the exact nature of the kind of dynamics that the researcher seeks to study. The 

literature, so far, has discussed a variety of different conceptualizations of change and dynamics, often 

from the perspective of particular science domains, such as personality psychology, motivational 

psychology, psychometrics, biology or econometrics. Moreover, very different terms like agile, adaptive, 

flexible, or learning have been used to refer to these different types of dynamic phenomena (DeRue et 

al., 2012; Jundt et al., 2015; Lang & Bliese, 2009). A second challenge is that most of these definitions of 

individual differences in dynamics and their associated labels are usually not closely tied to a 

psychometric model describing the key parameters of the individual dynamic process. This is crucial to 

advance and streamline research and facilitate comparison of research findings. A final and third 

challenge, is that this lack of clarity in the psychometric specification of the type of individual 

differences’ dynamics, hampers the development of a design and the choice for adequate measures to 

assess the type of individual differences’ dynamics. 

The current review paper tries to tackle these challenges, by (a) providing a first integrative  

taxonomy outlining and accommodating the most frequently used conceptualizations of individual 

differences in dynamics studied in applied psychology settings, (b) specifying the accompanying 

psychometric and measurement models describing all key parameters and their relationships, (c) 

providing the syntax or codes and suggestions to analyze such data, (d) running simulations to illustrate 

the types of dynamics that are included in the taxonomy, and finally, (e) list a number of examples from 

the broader psychological literature that either describe dynamic individual differences at the predictor 
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side or at the level of the outcome criteria or both. 

The aspired taxonomy is not meant to be an exhaustive taxonomy covering all individual 

differences in dynamics studied across various scientific fields, but aims to provide a comprehensive- 

enough account of dynamics that will help researchers to better articulate and specify their research 

questions, designs and choice of measures. We will build such taxonomy, starting from the perspective 

of multilevel mixed-effects models to distinguish among various individual differences’ dynamics 

conceptualizations. We will conduct a literature review of the organizational and educational psychology 

field and classify its results in this emerging taxonomy.  

The goal of the present article is to build on existing work on dynamic phenomena and also on 

methodological work outside applied disciplines like work and organizational psychology or educational 

psychology, and address some of the challenges in studying dynamic constructs in assessment and in 

outcome measurement. We specifically aim to contribute to the literature by developing and presenting 

an organizing typology of dynamic constructs, that can be conveniently used and applied for predictor 

and outcome measurement in applied settings. We therefore developed a typology that is not based 

solely on verbal descriptions but also includes prototypical psychometric/measurement models. These 

psychometric models can be fitted to empirical data but can also be used to simulate data to study 

power or to examine the plausibility of theoretical model assumptions using simulated data (e.g., 

Vancouver et al., 2010). We specifically show how researchers can test different dynamic explanations 

for dynamic processes in either assessment or outcome measurement data. 

Individual Differences in Dynamics 

Individual differences research and related fields like personality psychology are sometimes seen 

as research domains that primarily focus on individual differences in stable behavior (e.g., Mischel, 

1968; Pervin, 1994), i.e. they describe differences between individuals in mean levels of a trait typically 

indicated by the average score on a set of personality descriptive items. However, individual differences 
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researchers are also frequently interested in within-person variability of behavior related to the same 

trait, in other words studying its dynamic nature within the person (Atkinson & Birch, 1970; Carver & 

Scheier, 1998; Rauthmann et al., 2019; Verhelst & Glas, 1993). The study of individual differences in 

dynamics also has a long tradition (Flügel, 1929; Kehr, 1916; Spearman & Jones, 1950; Stern, 1911; 

Walton, 1936). For instance, William Stern discussed individual differences in intra-individual variability 

in persons already at the beginning of the last century (Stern, 1911). Other early personality researchers 

built on this work on variability, and discussed within-person differences in variability as an individual 

difference construct itself, using labels like oscillation (Flügel, 1929) and steadiness of character (Walton, 

1936).  

Such dynamic differences can take differen forms. For example, in addition to mean-level 

differences between individuals, we can also study variability in conscientiousness within the person, as 

it relates to momentary task performance (Debusscher et al., 2016) or in response to various work 

demands. Likewise, individual differences in the dynamics of neuroticism can be described in response 

to trauma. A researcher may also try to investigate a construct he or she labels “agility” by assessing 

how quickly individuals make the right decision in various situations they are confronted with, relative to 

their average situational judgement ability across these situations. These examples illustrate that, 

beyond a certain average on an individual difference construct, there is also variability in people’s 

reaction, so we have to deal with a more stable but also a dynamic counterpart. A critical test of the 

notion that a dynamic perspective adds meaningful new insights is whether it explains variance on top 

of this stable counterpart in a criterion or in the responses of a statistical model of behavior data.  

Dynamic Assessment vs. Dynamic Criteria 

In applied fields, dynamic individual differences can potentially be useful in two different 

contexts: In dynamic assessment and in dynamic criterion measurement. In dynamic assessment, the 

dynamic construct targets a form of change within a construct. Frequently, the idea is that the 
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constructs as operationalized in a measure captures a generalizable tendency of respondents (dynamic 

individual difference constructs) that is useful for predicting important criteria. Dynamic constructs can 

in principle be extracted from a variety of measures used in assessment like Likert-scale personality 

inventories, situational judgement tests, assessment centers, or mini assessment centers, or also more 

general psychological measures like ability tests or objective personality measures.  

In dynamic criterion constructs, the notion of dynamic individual differences is applied to the 

criterion side to measure individual differences in outcome criteria. For instance, an organization or a 

researcher may be interested in predicting agile behavior within a work environment like an air-traffic 

controlling task (Niessen & Jimmieson, 2016), individual differences in learning on the job, or 

employees’ ability to cope with rapid organizational change. It may seem like a logical step in many 

cases to match individual differences in dynamics of assessment constructs with dynamic criteria. 

However, this is not always the case and we will show in our literature review later in this paper that 

most studies in the literature focus on either dynamic assessment or dynamic criteria.  

Dynamic Phenomena and Individual Differences in Dynamics 

One challenging aspect of dynamic phenomena is that not all forms of dynamics reflect 

individual differences in dynamics (Bolker, 2008; Carver & Scheier, 1998; Keele & Kelly, 2006; Lang, 

2014; Verhelst & Glas, 1993). The reason is that dynamic phenomena can uniformly occur across an 

entire sample, hence demonstrating no individual differences. It is thus important for researchers to 

conceptually separate normative dynamics (i.e. those that apply to the whole sample) from dynamic 

individual differences (i.e. individual differences in change). When an effect applies to the sample as a 

whole, we refer to these effects as ‘normative’ effects, because the same patterns are on average 

followed by all individuals. However, the degree to which such normative patterns may be observed, 

may show individual differences, for example, employees becoming more agreeable with increasing age 

(the normative pattern), though this increase is less pronounced for those working in enterprising 
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occupations (Wille & De Fruyt, 2014).  

A popular approach for understanding dynamic phenomena is the use of statistical or 

psychometric models (Borsboom, 2006; Mitchell et al., 2017; Tal, 2017). The advantage of statistical 

dynamic models is that models make assumptions about a dynamic process explicit and testable, and 

also allow researchers to uncover dynamic phenomena from seemingly complex data. In the context of 

dynamic models, individual differences in dynamics can typically be viewed as latent variables in the 

language of the psychometric literature, or random effect in the language of the multilevel literature. 

Latent variables/random effects are typically assumed to be normally distributed. While individual 

differences do not necessarily need to be normally distributed, adding the normal distribution 

assumption allows researchers to use more simple psychometric models.  

A simple example that illustrates the distinction between normative dynamics and individual 

differences in dynamics, and also the use of models to understand both types of phenomena is a simple 

growth model. For instance, consider a growth model predicting reading motivation during adolescence 

for students j across measurements i. The model includes a common intercept γ00, an average effect of 

TIME, γ10, a residual error for each measurement eij, and finally an individual-difference variable 

capturing individual differences in the overall level of reading motivation, u0j. This model can be written 

using the formula Yij = (γ00 + u0j) + γ10TIMEi + eij. A more elaborate way to write the model that is 

frequently used in the literature (Bryk & Raudenbush, 1987; Singer & Willett, 2003) is to separate the 

model into a Level 1 equation, Yij = π0j + π1jTIMEi + eij, and two Level 2 equations, π0j = γ00 + u0j, and π1j = 

γ10.  

When the effect of time, γ10, is positive and substantial, this effect can be seen as an overall 

increase in reading motivation during early adolescence and this effect is dynamic in the sense that it 

captures constant change. However, this effect is not an individual differences’ effect in dynamics. In 

addition to the normative change effect, individual differences in dynamics can be added to the model 
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by adding the effect u1j to the model, Yij = (γ00 + u0j) + (γ10 + u1j)TIMEi + eij. u1j is an individual difference 

effect in the slope that captures how fast students improve in their reading motivation, hence reflecting 

variation in the steepness of the slope. This individual difference construct can be used to predict stable 

criteria in the future, or alternatively, a dynamic criterion (e.g., degree attainment).  

Development of the Typology 

Recent research on affect dynamics has noted that a proliferation of dynamic individual 

difference conceptualizations may have limited scientific advancement on understanding the link 

between affect dynamics and well-being (Dejonckheere et al., 2019; Wendt et al., 2020). A potential 

reason is that various dynamic measures of affect are redundant and mathematically interdependent 

(Jahng et al., 2008; Mestdagh et al., 2018). We therefore believe that verbal definitions of different 

types of constructs are typically limited scientifically because it is hard to reach a scientific consensus on 

the basis of verbal descriptions. Accordingly, the literature on dynamic constructs has not come to a 

clear consensus on the basis of verbal descriptions like agile, adaptive, flexible, or learning ability. Some 

improvements in scientific communication can possibly be reached by providing a typology. In the 

present paper, our goal was therefore not only to develop such a typology but also to base the typology 

on statistical definitions on how the phenomenon could be modeled. In developing the typology, we 

built on the multilevel mixed-effects modeling framework. The advantage of using this framework is that 

it is closely related to most statistical methods in individual differences research. To ensure that the 

typology would cover a broad range of phenomena, we searched for prototypical examples of dynamic 

constructs in the work and organizational psychology literature (e.g., Ackerman, 1992; Lievens et al., 

2018; Niessen & Lang, 2020; Ployhart & Bliese, 2006), the methodological and statistical literature (e.g., 

Bliese & Lang, 2016; Bliese & Ployhart, 2002; Bolker, 2008; Ployhart & Vandenberg, 2010; Raudenbush, 

1988; Singer & Willett, 2003), the educational (e.g., Connor et al., 2014; Y. S. Kim et al., 2010; Ryan & 

Shim, 2012) as well as the personality literature (e.g., Carver & Scheier, 1998; Fleeson & Jayawickreme, 
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2015; Lang, Lievens, et al., 2019; Rauthmann et al., 2019; Sosnowska, Kuppens, et al., 2019) and placed 

these constructs into the framework of multilevel mixed-effects models. From this exercise, it became 

clear that the dynamic individual difference constructs we found could all be described in terms of six 

major categories that correspond to a model component of the multilevel mixed-effects model. We did 

not come across a fundamentally different operationalization of dynamic individual differences and 

consequently the six identified categories constituted the elements of the typology: (1) Variability 

constructs (individual differences in inconsistency across situations), (2) skill acquisition constructs 

(individual differences in learning new skills), (3) transition constructs (individual differences in avoiding 

“loss” after unforeseen change), (4) reacquisition constructs (individual differences in relearning after 

change), (5) acceleration/deceleration constructs (individual differences in gaining or losing behavioral 

energy by displaying the behavior), and (6) dissolution/integration constructs (individual differences in 

the degree to which behavior becomes more or less uniform across time).   

Overview of the Typology and Examples  

After developing the typology, our next goal was to present detail on each of the categories in 

the typology. We provide both descriptions (verbal definitions) and typical statistical model 

specifications (statistical definitions) of each of the six dynamic individual differences in the typology, 

and discuss how these dynamic individual differences can be operationalized in assessment using 

psychometric methods. We therefore describe example models, we provide code to simulate dynamic 

data on the basis of each conceptualization of dynamic individual differences in the typology, visualize 

example datasets generated using this code, and fit the models to the example datasets. We also 

describe examples of how the conceptualizations have been operationalized and measured in published 

articles from the journals we reviewed in the literature study below. Table 1 provides an overview of the 

typology with additional detail.  

All material, simulated data, and scripts written in R are available through the OSF 
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(https://osf.io/x827q/?view_only=173fe10712ac48bab3c44b9fd18fbf24) so that researchers can use our 

R code and apply it to their own data. For fitting the models, we mainly utilized the R package nlme 

(Pinheiro et al., 2017; Pinheiro & Bates, 2000). However, we also ran analyses using the package brms 

(Bürkner, 2017; Lester et al., 2019). brms is convenient because it uses a more modern approach for 

model specification (Bates et al., 2015) and can fit some models that nlme cannot fit as conveniently. 

The package uses Bayesian model estimation. The simulations are based on a function with the name 

simdy that we wrote for the purpose of this paper.  

Variability Constructs (Inconsistency Across Situations) 

Variability constructs capture individual differences in consistency across time. While 

publications on variability constructs date back as far as Stern’s 1911 book and studies in the first half of 

the 20th century, the approach is today most strongly associated with whole trait theory (Fleeson & 

Jayawickreme, 2015). Whole trait theory defines traits as frequency distributions of typical behaviors.  

Consequently, whole trait theory describes personality using the average of personality states and the 

variability of these personality states with both representing important individual differences (Finnigan 

& Vazire, 2018). These ideas have recently also been applied beyond personality research in other 

research areas like assessment using situational judgement tests (Lievens et al., 2018).  

A key theoretical motivation for assuming the existence of variability constructs is research on 

person-situation interactions. A popular framework in this context is the cognitive-affective system 

theory of personality (Mischel & Shoda, 1995). This model assumes inconsistency across situations as a 

result of past experiences of individuals with specific situations. For instance, one person may have 

learned to activate his/her conscientiousness in a specific situation while another person uses other 

personality states in the same situation. The result is a person-specific activation pattern of specific 

situation-trait or “if-then” links. The simulation demonstration in the appendix in the Mischel-Shoda 

(Mischel & Shoda, 1995) article illustrates that an activation pattern in line with the CAPS theory will 
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typically lead to systematic variability across situations within a trait domain. In theory, it could be 

possible from the perspective of CAPS theory to conduct more fine-grained analyses of individual trait 

activation patterns that underly individual differences in variability. However, this would require 

knowledge of each persons’ specific ‘if-then’ links which in practice can rarely be obtained.  

A simple statistical model for studying dynamic variability constructs is to simply use the 

standard deviation across multiple comparable measurements from, for instance, a diary or an 

experience sampling study. A slight extension of this concept that has the advantage that it can also 

control for time trends and allows researchers to more conveniently simulate data is the use of 

multilevel mixed-effects models with a heterogenous variance regression (see Table 1). This model 

extends the simple growth model discussed earlier (Level 1: Yij = π0j + π1jTIMEi + eij; Level 2: π0j = γ00 + u0j, 

and π1j =- γ10) by allowing for heterogeneity in the residual variance. This change can be implemented by 

replacing the default specification of the variance of the residuals eij  ~  N (0, σ²) with the heterogenous 

formula eij  ~  N (0, σ²exp[u7j]). In this heterogenous formula, each person j has its own latent variability 

estimate, u7j. When person j = 1 has a higher value in u7 compared to person j = 2 it indicates that the 

construct of interest shows more variation in this person. The exponential formula is included to ensure 

that the variance can never become negative. Figure 1 visualizes a dataset that we generated using this 

model and the simdy function is provided in the supplementary material on the OSF. To better visualize 

individual differences in variability, we split the dataset at the median of the variability estimates and 

plotted data from individuals above and below the median in the left and the right panel, respectively. 

As shown by Figure 1, the observations in the left panel were considerably more heterogenous. The 

overall trend visualized using a solid line in both panels of Figure 1 is the overall trend predicted by the 

model after fitting it to the data. The estimates for this model are provided in Table 2, and are estimated 
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using the nlme package.1 

We highlight two prototypical operationalizations of individual differences in variability. Barnes 

et al. (Barnes et al., 2012) studied whether performance variability predicts future compensation above 

mean performance. As another example, Lievens et al. (2018) investigated the influence of variability in 

reactions to situational judgement items and used this dynamic assessment to predict performance.  

Our discussion of variability constructs in this section was restricted to individual differences in 

variance or the standard deviation (or the second moment). However, additional variability-type 

constructs have been described in the literature (Eid & Diener, 1999; Fleeson, 2001) like individual 

differences in the skewness or the kurtosis of a distribution (third and fourth moment). These types of 

constructs can also conveniently be modeled using the multilevel mixed-effects framework by specifying 

more complex variance functions (Bolker, 2008; Pinheiro & Bates, 2000; Raudenbush, 1988).   

Skill Acquisition Constructs (Learning New Skills) 

Learning, agility, or learning agility constructs are a basic form of dynamic construct that 

captures individual differences in the ability to learn new skills or change behavior. We discussed this 

basic model earlier in the paper as a basic example of a dynamic model. Skill acquisition constructs are 

 

1 A more parsimonious approach and useful alternative to using nlme is to fit the model with random 

effects instead of fixed effects using the brms package. In this context, the variability trait can be specified using 

random effects by adding the assumption of a normal distribution. While the normal distribution requires stronger 

assumptions, it also leads to a theoretically more simple model. In practice, the variability estimates from the two 

variants of the model (fixed effects fitted in nlme or brms vs. random effects fitted using brms) correlate by 1 so 

the estimates are not affected by this choice. However, note that our analyses were conducted using simulated 

data. In real data, the more complex fixed-effects model may have advantages over the random effects 

specification. 
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fundamentally individual differences in the slope of a learning curve and are thus quite common in 

psychology as a discipline. Most readers are also likely familiar with growth curve models. To recall, the 

statistical model includes the basic equation Yij = (γ00 + u0j) + (γ10 + u1j)TIMEi + eij. This equation is similar 

to a normal regression equation with two differences: u0j captures variability between individuals in the 

intercept and u1j is an individual difference effect in the slope that captures individual differences in the 

degree to which people increase or decrease over time.  

The model we present in Table 1 adds a quadratic effect to the basic linear model shown earlier. 

Quadratic effects allow modeling potential asymptotic trends and account for the fact that most 

learning processes show a learning curve (Ackerman, 1992; Thoresen et al., 2004). In the model in Table 

1, we did not assume systematic individual differences in this effect but it is possible that the overall skill 

acquisition effect can be split into a linear and an additional quadratic component.  

Figure 2 shows data generated using the model in Table 1. The solid line in both panels 

represents the normative dynamic. Again, we split the dataset at the median of the dynamic individual 

difference and graphed responses from individuals with high and low values on the left and right panel, 

respectively. Respondents in the left panel show an increasing growth curve, whereas respondents in 

the right panel show now substantial growth. The model estimates for this model are again shown in 

Table 2.  

Examples for operationalizations of skill acquisition in our literature review are the Ng and 

Lucianetti (2016) and Wang, Algozzine, Ma, and Porfeli (2011) articles. Both studies focused on a 

dynamic criterion. Ng and Lucianetti investigated how changes in self-efficacy are related to individual 

differences in the increase of innovative work behavior and Wang et al. studied how stable individual 

differences in early literacy relates to improvements in oral reading in 2nd-grade students.  

Transition Constructs (Avoiding “Loss” in Performance After Change) 

The use of transitions to understand effects of environmental change has a long tradition in 
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applied research. For instance, the Hawthorne studies conducted by Mayo at the start of the 20th 

century frequently included the use of transitions in time series like in the light bulb experiment (Mayo, 

1933). The design is frequently used in economics where it is known as the regression discontinuity 

design (Antonakis et al., 2010; Y. Kim & Ployhart, 2014; D. S. Lee & Lemieux, 2010). However, the 

realization that individuals may systematically differ in their reactions to changes, and research using the 

design to study individual differences in transitions are more recent (Bliese et al., 2017). This use of the 

design is closely associated with advances in longitudinal modeling approaches (Raudenbush, 2002; 

Singer & Willett, 2003) that allowed researchers to model dynamic individual differences in criteria like 

sleep (Bliese et al., 2006), or performance (Niessen & Jimmieson, 2016). Especially in work and 

organizational psychology, transition constructs are closely linked to the concept of individual 

adaptability (Jundt et al., 2015; Lang & Bliese, 2009; Ployhart & Bliese, 2006).  

Table 1 includes a discontinuous change model with a transition as typical statistical model 

specification. This model basically consists of two linear and quadratic growth models—one before and 

one after the transition—and a dummy (TA) contrasting the situation before (coded 0) and after the 

transition (1). While this model may appear relatively straightforward, there are several variants for 

specifying the exact coding of the change variables in the model (Bliese & Lang, 2016). The model in 

Table 1 uses a basic form where the TIME variable starts at 0 and increases by 1 with each measurement 

occasion, the SA2 variable starts at 0 and increases by 1 until the transition, and the RA variable starts 

one measurement occasion after the transition and increases by 1 until the end of the observation 

period. In the model specification and the simulated data, individuals differ in the intercept and the 

transition and not in the other change variables. Table 2 shows an example for fitting this type of model 

to a simulated dataset. Figure 3 also visualizes this simulated dataset and the overall trend from the 

model in Table 2. In Figure 3, the individuals do not differ from each other prior to the transition at Time 

= 4. After this transition happened, persons in the right panel have a considerably lower average level of 
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performance than people in the left panel (because of the individual differences in the transition). 

Examples of operationalizations using a transition dynamic construct from our systematic 

literature review are the studies of Bonner, Greenbaum, and Quade (2017), Wouters, De Fraine, Colpin, 

Van Damme, and Verschueren (2012), and Minbashian, Wood, and Beckmann (2010). Bonner et al. 

studied self-image protection after people engage unethical behavior. Wouters et al. (2012) studied 

academic self-concept after a track change in high school. Both topics deal with how individuals try to 

avoid loss after change—being caught engaging in unethical behavior, and forced to change track in high 

school. Specifically, Minbashian et al. (2010) used the degree to which people maintain their 

performance in the complex relative to more simple versions of a letter-problems task and used 

individual differences between the two as a criterion measure of adaptive performance. 

Reacquisition Constructs (Relearning After Change) 

Reacquisition constructs are closely related to the transition constructs discussed in the previous 

section in the sense that these constructs are estimated in the same type of model. The reacquisition 

construct are individual differences in the change rate in the second growth model after the change. 

Table 1 includes a discontinuous model specification with individual differences in the reacquisition 

effect as a typical statistical model. A typical idea is that reacquisition is a slower process that occurs 

after the more rapid reaction to the transition (Jundt et al., 2015; Lang & Bliese, 2009; Niessen & 

Jimmieson, 2016; Niessen & Lang, 2020). While the reacquisition idea is intuitive, in practice, it can be 

challenging to interpret these types of models because reacquisition effects can either be defined 

relative to the overall skill acquisition rate before the change or relative to no effect/0 (Bliese & Lang, 

2016). 

Figure 4 illustrates individual differences in reacquisition using a simulated dataset. Table 2 also 

includes the model estimates for this simulated data. The average trajectory in Figure 4 is based on 

these estimates. As shown in Figure 4, prior to the change at TIME = 4, there are no differences (beyond 
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chance) between the panels. Also immediately after the transition at TIME = 4, there are no differences 

between the two panels. However, over time, individuals in the left panel increase their 

performance/behavior much stronger than those in the right panel (because of individual differences in 

reacquisition adaptation).  

Examples of operationalizations of reacquisition constructs are the studies by Howe (2019) and 

Zhu, Wanberg, Harrison, and Diehn (2015). Howe predicted individual differences in performance 

adaption after change events with general mental ability. Zhu et al. focused on expatriate experiences. 

Both studies examined how individuals adjust after changes (performance/country).  

Acceleration/Deceleration Constructs (Losing or Gaining Energy By Displaying the Behavior)  

In fields outside psychology, the idea of dynamic models is typically more narrowly defined and 

typically applies to models where past occurrences have a lagged effect on future situations (also known 

as order 1 autocorrelation). In economics, these models are known as dynamic panel models, and in 

biology they are typically simply known as dynamic models (for references see Table 1). However, these 

types of models also have a long tradition in psychological research and have been discussed especially 

in motivational self-regulation research, and in the context of item-order effects in psychometrics. One 

typical rationale behind dynamic models is that past behavior may make another display of a behavior in 

the future less likely because some motivational resource or reservoir is consumed (deceleration). 

Another rationale is that past behavior may increase a reservoir (e.g., a skill) that makes it 

disproportionately easier/likely to show the behavior in the future. Models typically differ in how long 

past behavior affects future behavior and the exact mechanisms proposed in the models. Especially 

deceleration models discussed in the literature typically vary in how much time back earlier behavior 

dampens subsequent behavior. Some models only view the immediate previous item/behavior as having 

an impact (e.g., Atkinson & Birch, 1970; Lang, 2014; Tuerlinckx et al., 2002), other authors have 

suggested that the entire observation session has an impact (Lang, 2014; Lang & Tay, 2021), and again 
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other authors have suggested that people get pulled back to an underlying stable level (also discussed as 

an attractor strength or a set point, see Lucas et al., 2004; Sosnowska, Hofmans, et al., 2019; Sosnowska, 

Kuppens, et al., 2019). A challenge in dynamic models with continuous lagged variables can be that 

measurement error gets carried over in the dynamic processes. However, these types of bias are 

typically smaller when a dichotomous yes/no process is involved that can make sense when it resembles 

occurrences in the real world (e.g., winning a game, maintaining a relationship, or passing an exam).  

Most dynamic models describe what we referred to as “normative dynamics” earlier in this 

paper. While dynamic models frequently include individual differences, these individual differences are 

typically not itself dynamic and refer to the dynamic process itself. In the self-regulation literature, the 

dynamic processes have typically been discussed as potentially concealing underlying individual 

differences (Atkinson & Birch, 1970). The idea that acceleration/deceleration processes itself can differ 

across individuals is more recent (Carver & Scheier, 1998; Lang, 2014; Revelle, 1986). In the statistical 

model specifications in Table 2, the CS effect denotes consummatory strength and captures the 

normative dynamic part of the acceleration/deceleration effect. The variance in the CS effect, in 

contrast, models the individual differences between persons in the CS effect. Figure 5 then shows how 

these individual differences affect observed data. People with a strong CS effect (left panel in Figure 5) 

develop a pattern where their behavior stays at a modest level. Each increase in the behavior is counted 

by a subsequent decrease (because of the CS effect). In contrast, persons with a low CS effect (right 

panel in Figure 5) have no such stable pattern and develop different trajectories similar to a normal 

growth model with variance in the slopes.  

Examples of operationalizations of acceleration/deceleration ideas from our literature review 

include the studies by Ballard, Yeo, Loft, Vancouver, and Neal (2016) and Chawla, Gabriel, da Motta 

Veiga, and Slaughter (2019). Ballard et al. (2016) focused on decision making in the presence of multiple 

goals. Chawla et al. (2019) studied self-regulation in job searches. Both papers postulate dynamic 
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systems where behavior loses its energy the longer it is executed. Both studies also discuss factors that 

may affect the dynamic behavior.  

Integration/Dissolution Constructs (Behavior Becomes More or Less Uniform) 

The final dynamic construct in the typology is somewhat related to the variability models 

discussed earlier. However, in integration/dissolution constructs the focus is not on a constant level of 

variability that is present, but instead on people’s tendency to show either more uniform or less uniform 

behavior over time. In the individual differences literature, theories focusing on integration or 

dissolution have been discussed in the context of models of personality integration during youth or 

resilience. Ability uniformity in the context of Spearman’s so-called law of diminishing returns, or studies 

on the development of the positive manifold are examples from the intelligence literature. Another 

context where integration/dissolution ideas recently have been discussed is in the use of network 

models to model changes in relations between items/symptoms across time (Costantini et al., 2019; 

Miers et al., 2020). Longitudinal network models were originally developed to study social relations 

(Niezink et al., 2019) but when network models are applied to capture relations between 

items/symptoms the model is an alternative representation of factor models (Kan et al., 2020; van Bork 

et al., 2019). Especially indices capturing individual differences in changes in the centrality of a network 

capture the idea of changes in integration/dissolution.  

Table 1 provides a typical model specification for an integration/dissolution model. Like the 

variability model discussed earlier, this model also has a specific TIME effect for each person.2 Table 2 

 

2Again, the model can also be fitted using the brms package (Bürkner, 2017) with the additional 

assumption that the residual effects are normally distributed. This approach leads to a more simple model. Again, 

the estimates for the integration/dissolution effects for each person were correlated by 1 between the two 
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provides the model estimates for a simulated dataset, and Figure 6 graphs this dataset. As shown in 

Figure 6, there were marked differences in the degree to which observations become more similar to 

each other over time between individuals scoring high and those low on the integration/dissolution 

construct. At the start of the observation period at TIME = 0, the individuals in both panels differ quite 

considerably. Over time, the individuals in the left panel with a strong integration effect become much 

more homogenous than the persons in the right panel with a weak integration effect.  

We did not find studies focusing on true individual integration or dissolution but we have found 

a few articles studying integration in group contexts. Two example papers that include an 

integration/dissolution construct from our literature review are Grand, Braun, Kuljanin, Kozlowski, and 

Chao (2016) and S.M. Lee and Farh (2019). Grand et al. (2016) studied team cognition and investigated 

how changes in individual level processes result in changes in team-level criteria, whereas S.M. Lee and 

Farh (2019) studied dynamic leadership emergence in a team creativity and innovation setting. Both sets 

of ideas are conceptually similar to an integration/dissolution construct because both papers focus on 

how individual differences lead to more uniform behavior.  

Literature Review 

In a next step, we were also interested in the degree to which the typology and the constructs in 

it are studied in the applied psychology literature in recent years. We therefore surveyed the last 15 

years of three work and organizational psychology journals—Journal of Applied Psychology, Personnel 

Psychology, and Human Performance—and the leading educational psychology journal—Journal of 

Educational Psychology. Our goal was to identify the frequency of each of the categories of the typology, 

potential research gaps in the literature, and also potential additional conceptualizations in the existing 

 

versions of the model. Again, note that our analyses were conducted using simulated data. In real data, the more 

complex fixed-effects model may have advantages over the random effects specification. 
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literature as a further check and validiation of the typology. We also classified the degree to which the 

dynamic individual differences constructs focused on assessment of predictor constructsand criteria and 

analyzed differences between journals and time trends. 

Systematic Literature Search 

Our systematic literature search focused on research published in the last 15 years (2005-2020) 

in four major journals—the Journal of Applied Psychology, Personnel Psychology, Human Performance, 

and Journal of Educational Psychology. We focused on these four prominent journals to cover main 

research trends. The Journal of Applied Psychology and Personnel Psychology were included because 

these two journals currently have the highest prestige in the field of work and organizational psychology 

and also have held this position across the last 20 years (Highhouse et al., 2020). Human Performance 

was added because it aims to link applied psychology and individual differences. The Journal of 

Educational Psychology is typically the most highly ranked within educational psychology. In interpreting 

the findings, it is important to be aware that Personnel Psychology and Human Performance are 

generally much smaller journals than the other two journals and publish a smaller number of articles 

each year. Accordingly, the interpretation of the findings across categories is meaningful but it is not 

meaningful to compare the total number between journals as an indicator of the number of overall 

articles the journal publishes on dynamic phenomena.  

We describe our literature search process in a flow chart in Figure 7. To identify articles of 

interest, we first searched in Web of Science topic search using the terms “dynamic”, “flexible”, “agile”, 

“adaptable”, “adaptive”, “adaptability”, “within-person variability”, and “intraindividual AND individual 

differences” for papers published from 2005 until 2020. This search resulted in 271 papers. In an initial 

screening, we excluded five search results that were book reviews, a correction note, and a retracted 

article. We then analyzed the remaining 266 articles for eligibility. We excluded 39 articles that did not 

study dynamic constructs. The final sample size of eligible articles was 227: 134 papers from the Journal 
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of Applied Psychology, 23 articles form Personnel Psychology, 13 from Human Performance, and 57 

articles from the Journal of Educational Psychology. The complete dataset is available 

(https://osf.io/x827q/?view_only=173fe10712ac48bab3c44b9fd18fbf24) on the Open Science 

Framework (OSF). 

In a first step, we coded each article into one of the five following categories: Main effects 

labelled as dynamic, mentioned in the literature, normative dynamics, questionnaire asking for dynamic 

individual differences, or dynamic individual differences. Main effects labelled as dynamic includes 

articles that studied the relationship between two or more variables using the term dynamic to describe 

this relationship but did not actually include any dynamic effects. We coded articles as mentioned in the 

literature when they discussed or mentioned normative dynamics or dynamic individual differences in 

the introduction or discussion section but did not study it. Normative dynamics describes articles 

studying dynamic changes in main effects that to not differ between individuals. We coded studies as 

using questionnaires asking for dynamic individual differences when they used a questionnaire directly 

measuring change, such as questionnaires asking for adaptive performance. Finally, we coded articles as 

dynamic individual differences when they studied individual differences in dynamic changes.  

In a second step, we proceeded to code all articles in the dynamic individual differences 

category. For each article, we made two classification decisions. First, we categorized articles using the 

proposed six conceptualizations from the typology described in the previous subsection. We coded 

articles for fit with the six conceptualizations of the dynamic individual difference constructs. 

Accordingly, we did not limit the coding categories to the statistical formulation in Table 1, but also 

included other statistical implementations such as standard deviation as operationalization of variation. 

Second, we coded whether papers focused on dynamic assessment, dynamic criteria, or on both 

dynamic assessment and dynamic criteria.  
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Results and Discussion 

Table 3 provides an overview of both coding steps and distinguishes between the four journals. 

The first coding step is reported in the upper part of Table 3. From the 227 articles, 21 labelled main 

effects as dynamic, 29 mentioned dynamic constructs in their literature review, 86 articles studied 

normative dynamics, 15 articles measured dynamic individual differences directly using a questionnaire, 

and 76 articles studied dynamic individual differences. Thus, there are more studies focusing only on 

normative dynamics than on dynamic individual differences, but the difference is not large.  

In the second coding step we coded the 76 papers studying dynamic individual differences into 

the six dynamic constructs from the typology. 14 articles studied more than one dynamic individual 

difference construct resulting in 90 total codings. Results are in the lower part of Table 3. From the 90 

codings, 29 (32.22%) belonged into the variability, 36 (40.00%) into skill acquisition, 8 (8.89%) into the 

transition, 7 (7.78%) into the reacquisition, 5 (5.56%) into the acceleration/deceleration, and 5 (5.56%) 

into the integration/dissolution categories. The findings, thus, suggest that especially variability and skill 

acquisition are frequently studied. In contrast, transition, reacquisition, acceleration/deceleration 

constructs, and integration/dissolution constructs are less frequently investigated—possibly also 

because these constructs require a more complex design.  

Table 3 also includes more fine-grained information on the journals in which the respective 

papers in each category were published. As would likely be expected, the Journal of Educational 

Psychology generally had a stronger focus on skill acquisition constructs (relative to the other 

constructs) than the three work and organizational psychology journals.  

Table 4 shows the results for the classification into categories depending on whether the articles 

focused on dynamic assessment or dynamic criteria. From the 90 codings, 19 (21.11%) focused on 

dynamic assessment, 61 (67.78%) focused on dynamic criteria, and 10 (11.11%) used both dynamic 

assessment and dynamic criteria. This analysis suggests that a majority of the authors decided to focus 
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on one specific dynamic individual difference phenomenon and link this phenomenon to other, more 

conventional, type of measures.  

To study how research on dynamic constructs emerged over time, we organized our findings in 

three periods: 2005 to 2009, 2010 to 2014, and 2015 to 2020. Table 5 shows that the total number of 

articles increased over the years with 57 articles in the first period, 79 in the second period, and 91 in 

the third period. Note that the third period included articles published from 2015 until September 2020 

and, thus, includes 9 months more than the other periods (16 articles from 2020 were coded), so there 

is no increase between the second and third period. An interesting observation is that the number of 

articles coded with categories that did not study change themselves (i.e. main effects labelled as 

dynamic, mentioned in the literature, and questionnaire asking for dynamic individual differences) did 

not substantially increase over time. In contrast, both the number of articles studying normative 

dynamics (from 21 in the first period to 28 and then 37 in the following periods) and dynamic individual 

differences (from 16 in the first period to 28 and then 33 in the following periods) increased 

substantially over time. A possible explanation is that new theories on dynamic constructs and statistical 

tools to study them were developed over time and fostered research on normative dynamics and 

dynamic individual differences. 

Contrasting Competing Dynamic Explanations  

In the last sections, we described an organizing framework for the literature on dynamic 

individual differences by describing six prototypical conceptualizations. An important challenge for 

researchers who seek to study dynamic individual differences and other complex phenomena is the fact 

that it may be difficult to choose among alternative models.  

In this section, we describe an approach allowing researchers to estimate an R² that enables 

comparisons between dynamic individual differences models. First and foremost, the choice of a model 

should likely be informed by substantive theory about phenomena. However, it is still possible that 
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researchers are confronted with competing dynamic explanations for observed patterns or need to 

evaluate how relevant two potentially complementary explanations could be in their data. Another 

challenge that researchers frequently face is to provide effect size information for their models (Eby et 

al., 2020). For common regression models, R² values provide a convenient way to test how much 

variance a particular predictor or a set of predictors explains and to quantify how well two competing 

models explain the data. However, for more complex models the choice of an effect size and model 

fitting statistic is somewhat more challenging. A variety of different R² statistics exist for multilevel 

mixed-effects models (LaHuis et al., 2014; Rights & Sterba, 2019). These statistics capture different 

elements of these models and most rely either on variance components or the residuals. However, 

these approaches have limited usefulness for some of the dynamic individual differences models we 

described because these models also include change in the residuals so that these R² values can actually 

decrease even when the model fit improves.  

One potential solution to these issues that has recently been suggested (Lang, Bliese, & Runge, 

2019) is the use of likelihood-based R² statistics (𝑅 ). 𝑅  has long existed in the literature (Magee, 

1990) and was originally developed to compare glms and OLS regression models but has rarely been 

used in the past. An important advantage of 𝑅 is that this statistic can account for all elements of the 

model and is thus also suited to capture more complex dynamic individual differences components. An 

intuitive advantage of 𝑅  is that the estimate is identical to the ordinary OLS R² for ordinary regression 

models and it is thus possible to also compare simple regression models with more complex models. 𝑅  

can be estimated using the sample size (N), the likelihood ratio from a null model with only an intercept 

(𝐿 ), and the model of interest (𝐿 ).  

𝑅 = 1 − exp (− [log 𝐿 − log 𝐿 ])   

It is also possible to use this formula to estimate a Δ𝑅  by using the loglikelihood from the less 

complex model as 𝐿  instead of an intercept only model or by taking the difference between 𝑅  
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estimates for two different models.  

Table 6 provides an example of the use of 𝑅  for comparing models on dynamic individual 

differences using the simulated datasets shown in Figures 1 to 6 and Table 1. Table 6 provides bold 

printed 𝑅  for the models along the diagonal. These bold 𝑅  were estimated by fitting the models to 

the simulated datasets that were used to generate the data. The 𝑅  in off-diagonals are the result of 

fitting the respective incorrect models to the datasets. As indicated by Table 6, the off-diagonal values 

were smaller in all cases. However, it is also clear that some of the 𝑅  indicate a relatively better model 

fit than others and thus show that some of the dynamic conceptualizations in the typology we described 

may pick up overlapping elements of data.  

Discussion 

We provided a framework for organizing, evaluating, and developing constructs and theories in 

future work on dynamic individual difference constructs that also gives guidance for operationalizing 

dynamic constructs in actual research. The typology includes six basic conceptualizations of dynamic 

individual differences: Variability constructs (inconsistency across situations), skill acquisition constructs 

(learning new skills), transition constructs (avoiding “loss” in performance after unforeseen change), 

reacquisition constructs (relearning after change), dynamic consumption constructs (losing energy by 

displaying the behavior), and dynamic integration/dissolution constructs (behavior becomes more or 

less uniform).  

Experiences with the development of organizing typologies in past research (Chan, 1998; 

Harrison & Klein, 2007) suggest that conceptual and methodological typologies can be useful in 

organizing novel and complex research fields, and can help researchers to better communicate their 

contributions and findings and can allow researchers to identify gaps in the literature. The present 

typology has the potential to be also helpful in this way. For instance, our systematic literature review 

suggests that several of the dynamic conceptualizations in the typology like individual differences in 
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transition and reacquisition have so far rarely been used in educational research.  

We restricted our definition of dynamic effects to effects that include a change across time. This 

definition excludes effects that are merely situationally specific. These boundaries, however, can be 

fluent. For instance, research on variability (Fleeson, 2001; Fleeson & Jayawickreme, 2015; Lievens et al., 

2018; Sosnowska, Kuppens, et al., 2019) frequently draws on ideas from the situational specificity 

literature to argue that variability is a result of many small if-then contingencies (Mischel & Shoda, 1995, 

1998, 2008) that are so complex and situationally specific that they cannot fully be captured through 

measurement and result in individual differences in how strongly individuals adapt to situations across 

time. Based on our definition of dynamic effects, variability is included because it contains a clear time 

and continuous change idea and systematic individual differences in it. In contrast, research that studies 

one or a limited set of situations like, for instance, studies that build on the experimental personality 

psychology paradigm (Eysenck, 1996; Revelle, 2007) and examine an interaction between a personality 

trait and a dummy code contrasting two different situations would not be labeled dynamic. The reason 

is that the situational contrast dummy in these studies do not capture a dynamic individual difference. 

The study merely combines individual differences in a personality trait with a categorical situation 

variable that "deactivates" or "activates" them. The only systematic individual difference is thus the 

personality trait. Only when a study captures a new variable that itself is an individual difference with a 

(near) normal distribution component one would typically speak of dynamic individual differences. 

However, again, the boundaries can be somewhat fluent. For instance, a researcher could argue that 

individuals differ in the degree to which they react to situation A vs. situation B and define a random 

effect/individual differences variable. As soon as a time component would be added this type of cross-

level individual difference variable (e.g., Ilies et al., 2010, 2017; Lanaj & Johnson, 2016) would be 

dynamic on the basis of our definition. In our framework, an effect of this type would fit into the 

classification of a transition effect.  
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Another element that we did not include in the taxonomy are studies that investigate 

measurement properties like various forms of measurement invariance across time. The reason is that 

measurement invariance models (e.g., Vandenberg & Lance, 2000) do not include an individual 

difference variable that refers to time. However, again, the boundaries are somewhat fluent. Some of 

the dynamic individual differences constructs we discussed - when not properly included in the model - 

would also cause a lack of invariance. For instance, the integration/disolution type of effects can be seen 

as capturing systematic individual differences in a lack of metric invariance that is driven by a dynamic 

individual difference construct. Likewise, skill acquisition, transition, and reacquisition effects capture a 

systematic form of a lack of scalar invariance.  

In summary, researchers can quickly examine whether a study design would fit the definition of 

a dynamic individual difference by first checking whether a random effect or construct is involved that 

captures something about time. We believe that this definition is useful because it provides a clear 

guideline to separate dynamic individual differences from other study designs.  

Limitations 

A potential limitation of the current work is that the typology is restricted to dynamic constructs 

that can be conveniently applied and modeled using organizational data and does not include complex 

computational models (e.g., Vancouver et al., 2010). However, in many cases also complex 

computational models include core components and need to be validated with actual organizational 

data at which point the present typology allows researchers to find a workable way to do so. 

Another limitation of the models we demonstrated is that these models are for continuous 

dependent variables. We deliberately made this choice for demonstration purposes. However, especially 

in assessment, researchers may frequently also be interested in models for dichotomous or ordinal 

criteria because they seek to use items and no longer tests or scales that can be scored continuously. For 

most of the constructs in the typology, models of this type exist and we refer readers to the literature 
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we cited for such models. 

Practical Implications 

The described framework has a couple of direct practical implications for the field of applied 

psychology. First and foremost, we believe that the framework also can be fruitful in developing new 

theory and study design in several areas. In relation to the overall number of articles published in the 

journals we reviewed, the number of papers that study transition, reacquisition, 

acceleration/deceleration or integration/dissolution constructs was quite small in our literature review 

(see Table 5). Accordingly, we believe that it is likely that several research areas exist in applied 

psychology that would benefit from the use of these dynamic individual difference constructs to gain 

deeper insights into time-related change. This being said, there is a current trend in the field to more 

broadly include transition and reacquisition concepts that is partly driven by a recent review (Bliese et 

al., 2017) and the Coronavirus pandemic. The later situation has likely led to new and renewed interest.  

Second, the taxonomy and models proposed in this review may be also useful in other fields of 

psychology, beyond the work place or education. Dynamic consumption constructs, for example, may be 

very useful for studying the impact of demonstrating alternative and newly learned behaviors in 

therapeutic interventions, whereas dynamic integration/dissolution constructs are particularly well 

suited to model identity diffusion versus integration in the study of adolescent personality and its 

distinction from emerging borderline personality pathology. 

Third, the present paper also makes a novel contribution by putting a variety of dynamic 

individual differences construct into a framework that makes these models comparable. For the purpose 

of developing a research field, it is critically important to be able to compare competing theoretical 

explanations with each other. Modeling approaches can frequently appear diverse, complex, and 

seemingly unrelated. However, many models used in applied psychology are actually closely related. Our 

paper puts key dynamic concepts into the mixed-effects modeling framework so that authors can use 
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our basic code to quickly evaluate whether a novel/alternative dynamic individual differences concept 

has value in their data.  
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Table 1 

Typology of Dynamic Work-Related Individual Differences Constructs 

Dynamic 

construct 

Description Typical statistical model 

specification (Bold represents the 

individual difference construct and 

Yij the behavior) 

Examples for 

operationalizations and 

measurement 

Examples for theoretical 

concepts linked to the 

conceptualization 

Methodological techniques  

Variability  Individual 

differences in 

inconsistency 

across situations 

 Level-1 (Measurements) 

– Yij = π0j + π1jTIMEi 

+ eij 

 Level-2 (Persons) 

– π0j = γ00 + u0j 

– π1j = γ10  

 Residual part 

– eij  ~  N (0, 

σ²exp[u7j])  

 

Performance variability as 

predictor of compensation 

(Barnes et al. 2012); 

variability in reactions to 

situational judgement 

items predicting 

performance (Lievens at al., 

2018) 

Trait variability models, 

work on within-person 

fluctuations (e.g., Fleeson 

& Gallager, 2009).  

Distribution estimates like 

the standard deviation and 

the variance across time 

within the person (Fleeson, 

2001); mixed-effects models 

with variance functions  

(Bolker, 2008; Pinheiro & 

Bates, 2000; Raudenbush, 

1988); mixed effect location 

scale models (Rast, Hofer, et 

al., 2012); Trait variability 

IRT model (Lang, Lievens, et 

al., 2019) 

Skill 

acquisition  

Individual 

differences in 

learning new 

skills 

 Level-1 (Measurements) 

– Yij = π0j + π1jTIMEi+ 

π2jTIMEi² + eij 

 Level-2 (Persons) 

– π0j = γ00 + u0j 

– π1j = γ10 + u1j 

Variability in the increase 

of oral reading rates over 

one school year (Wang et 

al., 2011); predicting the 

variability in the increase of 

innovative behavior (Ng & 

Cognitive skill acquisition 

(Ackerman, 1992); 

Personality change (Wille 

& De Fruyt, 2014) 

Growth modeling (Bliese & 

Ployhart, 2002; Duncan et 

al., 1999; Ployhart & 

Vandenberg, 2010) 
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– π2j = γ20 

 

Lucianetti, 2016) 
 

Transition  Individual 

differences in 

avoiding „loss“ 

after unforeseen 

change 

 Level-1 (Measurements) 

– Yij = π0j + π1jTIMEi 

+ π2jSAi² + π3jTAi + 

π4jRAi + π5jRAi² + eij 

 Level-2 (Persons) 

– π0j = γ00 + u0j 

– π1j = γ10  

– π2j = γ20  

– π3j = γ30 + u3j 

– π4j = γ40  

– π5j = γ50  

 

Self-image protection after 

people engage unethical 

behavior (Bonner et al., 

2017); Individual 

differences in academic 

self-concept after a track 

change in high school 

(Wouters et al., 2012) 

Theories on transition 

processes and resilience 

(Bliese et al., 2017; 

Niessen & Lang, 2020) 

Discontinuous growth 

models (Bliese et al., 2017; 

Bliese & Lang, 2016; Singer 

& Willett, 2003); generalized 

estimating equation (LePine 

et al., 2000) 

Reacquisition  Individual 

differences in 

relearning after 

change 

 Level-1 (Measurements) 

– Yij = π0j + π1jTIMEi 

+ π2jSAi² + π3jTAi + 

π4jRAi + π5jRAi² + eij 

 Level-2 (Persons) 

– π0j = γ00 + u0j 

– π1j = γ10  

– π2j = γ20  

– π3j = γ30  

– π4j = γ40 + u4j 

– π5j = γ50 

Individual differences in 

performance adaption 

after change events (Howe, 

2019); work adjustment in 

expatriates after relocation 

(Zhu et al, 2016) 

Theories on transition 

processes and resilience 

(Bliese et al., 2017; 

Niessen & Lang, 2020) 

Discontinuous growth 

models (Bliese et al., 2017; 

Bliese & Lang, 2016; Singer 

& Willett, 2003); Growth 

models (Chen, 2005) 
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Acceleration/ 

deceleration 

Individual 

differences in 

losing energy by 

displaying the 

behavior 

(consummatory 

strengths) 

 Level-1 (Measurements) 

– Yij = π0j + π1jTIMEi 

+ π6jCSi + eij 

– where CSi = CSi-1 + 

Yi-1j when Yi-1j > 

cutoff (increases 

from 0, 1, 2, 3, etc. 

with π6j typically 

being negative) 

 Level-2 (Persons) 

– π0j = γ00 + u0j 

– π1j = γ10 + u1j 

– π6j = γ60 + u6j 

 

Goal selection and change 

of goal pursuit behavior 

over time (Ballard et al., 

2016); Decrease in self-

regulation after previous 

self-regulating behavior 

during a job search 

(Chawla, 2016) 

Dynamic system theories 

and models (Atkinson & 

Birch, 1970; Carver & 

Scheier, 1998; Lang, 2014; 

Revelle & Michaels, 1976; 

Sosnowska, Hofmans, et 

al., 2019)  

 

 

Simulations, autocorrelation 

models (Bolker, 2008), 

mixed-effects models, panel 

models, dynamic IRT models 

(Lang, 2014; Verhelst & 

Glas, 1993), dynamic SEM 

models (Asparouhov et al., 

2018) 

Integration/ 

dissolution 

Individual 

differences in 

behavior 

becoming more 

or less uniform 

over time 

 Level-1 (Measurements) 

– Yij = π0j + π1jTIMEi 

+ eij 

 Level-2 (Persons) 

– π0j = γ00 + u0j 

– π1j = γ10  

 Residual part 

– eij  ~  N (0, 

σ²exp[2u8jTIMEi])  

or 

Changes in individual level 

knowledge processes result 

in changes in team-level 

cognition (Grand et al., 

2016); dynamic leadership 

emergence in a team 

creativity and innovation 

setting (S.M. Lee and Farh, 

2019)  
 

Cognitive change in higher 

age (Rast, MacDonald, et 

al., 2012), resilience 

research (Gucciardi et al., 

2018); research on ability 

integration/personality 

trait integration 

Mixed-effects models with 

variance functions (Bolker, 

2008; Pinheiro & Bates, 

2000; Raudenbush, 1988), 

consensus emergence 

model (Lang, Bliese, & Adler, 

2019); location scale models 

with a time variable 

(Hedeker et al., 2008), 

longitudinal network models 
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– eij  ~  N (0, 

σ²exp[2(δ1 + 

u8j)TIMEi])  

(Miers et al., 2020; Niezink 

et al., 2019) 
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Table 2 

Model Estimates for Simulated Datasets Generated on the Dynamic Individual Differences Models in the Typology  

Parameters Variability Skill 

acquisition 

Transition Reacquisition Acceleration/ 

Deceleration 

Integration/

Dissolution 

Intercept, γ00 3.00 3.02 2.98 3.03 3.00 2.98 

TIME, γ10 0.05 0.05 0.31 0.26 0.08 0.10 

SA2², γ20 
  

-0.04 -0.03   

TA, γ30 
  

-1.01 -1.04   

RA, γ40   -0.21 -0.18   

RA², γ50   0.01 0.003   

CS, γ60     -0.47  

Intercept variance, υ0 0.10 0.05 0.03 0.02 0.08 0.03 

TIME variance, υ1 
 

0.10   0.001  

TA variance, υ3   0.10    

RA variance, υ4    0.10   

CS variance, υ6     0.11  

Residual variance, σ² 1.42 0.51 0.04 0.05 0.10 0.56 

   Intercepts, u7j 0.14…. 1.61      

   TIME effects, u8j 
  

   -0.77…-0.01 

logLik -1,051.06 -1,304.48 -75.14 -217.06 -577.47 150.87 

df 103 6 10 10 10 104 

𝑅  .37 .78 .77 .83 .75 .84 

 
Note. For all datasets, N = 100 with k = 1000 observations. All models were fitted using the nlme package in R. The 

residual variance of the variability model refers to one case that is centered at 1 and each of the 100 cases has its 

own variability effect u7j defined relative to the index case. The integration/dissolution model also has a specific 

TIME effect for each person. In both cases, we only provide the range of these values to save space but the full 

values are available in the supplementary material.  
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Table 3 

Articles on Dynamic Individual Differences Published Between 2005 and 2020 By the Type of Dynamic Individual 

Difference and Journal  

Category 

Journal of 

Applied 

Psychology 

Personnel 

Psychology 

Human 

Performance 

Journal of 

Educational 

Psychology Total 

Included articles 

Main effects labelled as dynamic 10 2 1 8 21 

Mentioned in the literature 14 5 1 9 29 

Normative dynamics 52 7 5 22 86 

Questionnaire asking for dynamic 

   individual differences 
8 2 3 2 15 

Dynamic individual differences 50 7 3 16 76 

Total 134 23 13 57 227 

Types of individual differences in dynamics 

Variability 22 3 1 3 29 

Skill acquisition 20 2 2 12 36 

Transition 6 1 0 1 9 

Reacquisition 6 1 0 0 7 

Acceleration/Deceleration 4 1 0 0 5 

Integration/Dissolution 4 1 0 0 5 

Total 62 9 3 16 90 

 
Note. The number of codings for the dynamic individual differences categories (n = 90) exceed the total 

number of articles including dynamic individual differences (n = 76), because 14 articles studied two 

dynamic individual differences categories. 
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Table 4 

Articles on Dynamic Individual Differences Published Between 2005 and 2020 By the Type of Dynamic Individual 

Difference and the Research Focus with Journal in Parentheses (Journal of Applied Psychology/Personnel 

Psychology/Human Performance/Journal of Educational Psychology)  

Dynamic individual difference 

Dynamic 

assessment 

Dynamic 

criterion 

Dynamic assessment 

and criterion Total 

Variability 9 (9/0/0/0) 15 (10/2/2/1) 5 (3/1/0/1) 29 

Skill acquisition 9 (4/0/4/1) 22 (12/1/1/8) 5 (4/1/0/0) 36 

Transition 1 (1/0/0/0) 7 (5/1/0/1) 0 8 

Reacquisition 0 7 (6/1/0/0) 0 7 

Acceleration/deceleration 0 5 (4/1/0/0) 0 5 

Integration/dissolution 0 5 (4/1/0/0) 0  5 

Total 19 (14/0/4/1) 61 (41/7/3/10) 10 (7/2/0/1) 90 

 
Note. The total number of the articles is lower than the combined total of the six categories because 14 

articles included more than one dynamic individual differences categories. 
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Table 5 

Articles on Dynamic Individual Differences Published Between 2005 and 2020 By the Type of Dynamic and years  

Category 2005 - 2009 2010-2014 2015-2020 

Included Articles 

Main effects labelled as dynamic 5 8 7 

Mentioned in the literature 10 8 12 

Normative dynamics 21 28 37 

Questionnaire asking for dynamic 

   individual differences 5 7 3 

Dynamic individual differences 16 28 32 

Total 57 79 91 

Types of individual differences in dynamics  

   Variability 4 9 16 

   Skill acquisition 9 18 9 

   Transition 2 2 4 

   Reacquisition 2 1 4 

   Acceleration/Deceleration 1 1 3 

   Integration/Dissolution 0 2 3 

Total 18 33 39 

 
Note. The number of codings for the dynamic individual differences categories (n = 90) exceed the total 

number of articles including dynamic individual differences (n = 76), because 14 articles studied two 

dynamic individual differences categories. 
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Table 6 

𝑅  For Fitting the Correct and the Wrong Models To the Simulated Datasets 

 Dataset 

Model Variability Skill 

acquisition 

Transition Reacquisition Acceleration/ 

Deceleration 

Integration/

Dissolution 

Variability .37 .61 .33 .39 .61 .58 

Skill acquisition .06 .78 .30 .46 .59 .43 

Transition .06 .70 .77 .60 .61 .41 

Reacquisition .06 .69 .72 .83 .59 .41 

Acceleration/ 

Deceleration 

NC NC NC NC .75 NC 

Integration/ 

Dissolution 

.32 .64 .36 .51 .60 .84 

 
Note. NC = nonconvergence.  
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Figure 1. Simulated data illustrating individual differences in a variability construct. The solid line in the 
two panels is the sample average across the whole sample. The left and right panel only include 
individuals with high and low levels of the variability construct, respectively (median split).  
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Figure 2. Simulated data illustrating individual differences in a skill acquisition construct. The solid line in 
the two panels is the sample average across the whole sample. The left and right panel only include 
individuals with high and low levels of the skill acquisition construct, respectively (median split).  
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Figure 3. Simulated data illustrating individual differences in a transition construct. The solid line in the 
two panels is the sample average across the whole sample. The left and right panel only include 
individuals with high and low levels of the transition construct, respectively (median split). As shown in 
the graph, individuals with high levels in the transition construct have higher performance after the 
change.  

 

 

  



Running Head: Typology of Dynamic Individual Differences  58 

Figure 4. Simulated data illustrating individual differences in a reacquisition construct. The solid line in 
the two panels is the sample average across the whole sample. The left and right panel only include 
individuals with high and low levels of the reacquisition construct, respectively (median split). As shown 
in the graph, individuals with high levels in the reacquisition construct are quicker in gradually 
relearning/adapting to the situation after the change.  
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Figure 5. Simulated data illustrating individual differences in a acceleration/deceleration construct. The 
solid line in the two panels is the sample average across the whole sample. The left and right panel only 
include individuals with high and low levels of the acceleration/deceleration construct, respectively 
(median split). The graph shows that individuals with high levels in the acceleration/deceleration 
construct have a stable pattern where increases in the behavior are countered by subsequent dynamic 
decreases. In contrast, low levels of the construct in the example allow individuals to show quite 
substantive increases (see the right panel).  
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Figure 6. Simulated data illustrating individual differences in a dissolution/integration construct. The 
solid line in the two panels is the sample average across the whole sample. The left and right panel only 
include individuals with high and low levels of the skill acquisition construct, respectively (median split). 
As shown in the graph, individuals with high levels of the construct show increasingly more consistent 
behavior over time. In contrast, individuals with low levels in the construct continue to show relatively 
more inconsistent behavior.  

 

  



Running Head: Typology of Dynamic Individual Differences  61 

Figure 7. Flow chart describing the identification, screening, eligibility assessment, and final inclusion for 
the literature study.  

 

 


