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Genetic, social and maternal contributions to Mycobacterium bovis infection status in European 34 

badgers (Meles meles)  35 

 36 

Abstract  37 

Within host populations, individuals can vary in their susceptibility to infections and in the severity 38 

and progression of disease once infected. Though mediated through differences in behaviour, 39 

resistance or tolerance, variation in disease outcomes ultimately stems from genetic and 40 

environmental (including social) factors. Despite obvious implications for the evolutionary, ecological 41 

and epidemiological dynamics of disease traits, the relative importance of these factors has rarely 42 

been quantified in naturally infected wild animal hosts. Here, we use a long-term capture-mark-43 

recapture study of group-living European badgers (Meles meles) to characterise genetic and 44 

environmental sources of variation in host infection status by Mycobacterium bovis, the causative 45 

agent of bovine tuberculosis (bTB). We find that genetic factors contribute to M. bovis infection 46 

status, whether measured over a lifetime or across repeated captures. In the latter case the 47 

heritability (h2) of infection status is close to zero in cubs and yearlings but increases in adulthood. 48 

Overall, environmental influences arising from a combination of social group membership (defined 49 

in time and space) and maternal effects appear to be more important than genetic factors. Thus, 50 

while genes do contribute to among-individual variation, they play a comparatively minor role, 51 

meaning that rapid evolution of host defences under parasite-mediated selection is unlikely 52 

(especially if selection is on young animals where h2
 is lowest). Conversely, our results lend further 53 

support to the view that social and early-life environments are important drivers of the dynamics of 54 

bTB infection in badger populations specifically, and of disease traits in wild hosts more generally.  55 

 56 
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Introduction 60 

Pathogens and parasites are key drivers of the ecological and evolutionary dynamics of their wild 61 

host populations (Schmid-Hempel 2011). In response, hosts have evolved a myriad of defence 62 

strategies that include behavioural avoidance of infection (Behringer et al. 2006), immune responses 63 

that limit parasite growth (resistance; Rigby et al. 2002), and repair of parasite-induced damage to 64 

minimise costs of infection (tolerance; Medzhitov et al. 2012).  However, there can be considerable 65 

variation amongst individuals in these traits which gives rise to differences in susceptibility to 66 

infection and the subsequent progression of disease. The importance of among-individual variation 67 

for population-level processes has become increasingly clear in recent years (e.g. Madritch & 68 

Hunter, 2002; Grist et al., 2014; Svanbäck et al. 2015), particularly with respect to our understanding 69 

of infection dynamics (Kramer-Schadt et al. 2009; van der Waal & Ezenwa, 2016). However, while 70 

among-individual variation can generally be viewed as stemming from both genetic and 71 

environmental (including social) effects, we currently have little knowledge of their relative 72 

importance in wild and unmanaged host populations where environmental factors can exert 73 

considerable influence on infection dynamics.  74 

From an evolutionary point of view, parasites (in which we include pathogenic bacteria, 75 

viruses, fungi, protozoa and macroparasites) are expected to select for improved host defences. 76 

However, any response to selection is contingent on the presence of genetic variance in the host. A 77 

partial genetic basis of variation in host defence strategies against infectious disease is well-78 

established in humans, model organisms, and livestock studies (Morris, 2007; Yan et al. 2006; 79 

Breitling et al., 2008). For instance, selective breeding for resistance to specific parasites is important 80 

to agriculture and aquaculture (Stear et al. 2001; Yáñez et al. 2014). In addition to enabling host 81 



selection responses, genetic variation among individuals may also impact on parasite transmission 82 

dynamics, and patterns of disease emergence and prevalence (Yates et al., 2006; Doeschl-Wilson et 83 

al., 2011) with consequences for host behaviour, mortality and fecundity. Among-host genetic 84 

variation can therefore influence the population-level (demographic) consequences of infection 85 

through multiple routes  (Nath et al. 2008; Lough et al. 2015).  86 

At present, relatively little is known about the extent of genetic variation in disease 87 

susceptibility in wild host populations. This is largely due to the difficulties of obtaining appropriate 88 

immunological data coupled to genetic information (e.g. pedigree or relatedness measures over 89 

multiple generations). Several quantitative genetic studies have investigated variation in avian 90 

immune response traits, with findings ranging from an apparent absence of genetic effects (Pitala et 91 

al. 2007) to moderate heritability (h2, the proportion of variance explained by additive genetic 92 

effects) of immune function (e.g. phytohaemagglutinin response in house sparrows, Passer 93 

domesticus, h2 (± SE) = 0.46 ±0.19, Bonneaud et al. 2009; in common kestrels, Falco tinnunculus, h2= 94 

0.47 ±0.10, Kim et al. 2013) . Genetic variation in resistance and tolerance to ectoparasites has been 95 

reported in a cyprinid fish (Leuciscus leuciscus; Blanchet et al. 2010; Mazé-Guilmo et al. , 2014), while 96 

analyses of helminth infection in Soay sheep (Ovis aries) revealed  genetic variation in host 97 

resistance but not tolerance (Hayward et al., 2014a; Hayward et al., 2014b). There is also growing 98 

evidence that consistent differences in host behaviours, likely to influence infection risk (e.g. 99 

dispersal, sociability; Barber & Dingemanse, 2010), are heritable in natural populations (Korsten et 100 

al. 2013; Petelle et al. 2015). However, whether this behavioural variation represents an important 101 

source of genetic variation in infection status remains to be determined.  102 

As studies to date have yielded mixed conclusions about the importance of genetic variation 103 

in disease traits in wild animal hosts, we also have limited understanding of how environmental 104 

factors contribute to among-host variation. Abiotic factors (e.g. rainfall, seasonality) can play an 105 

important role in shaping disease dynamics at the population level (Altizer et al. 2006), as can biotic 106 



environmental influences such as the distribution and social structure of host populations (Keiser et 107 

al. 2018). However, social effects, broadly defined as influences of phenotype arising from 108 

interactions with conspecifics, are also strongly associated with heterogeneity in disease dynamics. 109 

On the one hand, transmission of pathogens within groups of closely interacting individuals is 110 

thought to represent a major cost of group living (Kappeler et al. 2015). On the other hand, social 111 

immunity processes – whereby the immune response of one individual offers protection to group 112 

members - can sometimes occur (e.g. in Nicrophorus burying beetles; Palmer et al. 2016). More 113 

generally, social systems in which close-knit groups have limited among-group contact can inhibit 114 

the spread of disease over larger (among-group) scales (e.g. Delahay et al., 2000b; Rozins et al. 115 

2018).  116 

The importance of social effects on disease traits can also change with age, precisely 117 

because social behaviours and contexts are themselves frequently age- or stage-specific. For 118 

example, sexually transmitted infections may be prevalent in a population, but be restricted to 119 

adults that engage in sexual activity (Rhule et al. 2010). Earlier in life, parental effects arising from 120 

interactions of offspring with parents (and/or helpers in cooperative systems) can influence both 121 

exposure and infection risk. In birds and mammals, for instance, immunocompetence in early life can 122 

depend entirely on the transfer of maternal antibodies (Grindstaff et al. 2003; Grindstaff et al. 2006). 123 

More generally, environmental effects on maternal state  (e.g. food availability) will influence 124 

investment in care, with downstream consequences for offspring immune development and disease 125 

resistance (Karell et al. 2008; Garbutt et al. 2014). A common finding across other trait types (e.g. 126 

growth, morphology, life history; Wilson et al. 2005a; Houde et al., 2015; Falica et al. 2017) is that 127 

the importance of maternal effects as a source of phenotypic variance declines with (offspring) age 128 

(while h2 often shows the opposite pattern). However, this does not mean that adult phenotypes 129 

should be assumed to be free from early life influences (see e.g., Clark et al. 2014) and ‘silver spoon’ 130 

effects on later health are certainly well documented in the context of non-communicable diseases 131 

(Gluckman and Hanson 2004).  132 



Here, we examine the relative importance of genetic and environmental (including social 133 

and maternal) sources of variation in Mycobacterium bovis (the causative agent of bovine 134 

tuberculosis; bTB) infection status in a wild population of European badgers (Meles meles). Badgers 135 

are an important wildlife reservoir for bTB in the United Kingdom, where the disease in livestock is a 136 

longstanding socioeconomic burden on the industry and taxpayers (Defra, 2014). The primary route 137 

of infection in badgers is thought to be inhalation of infectious aerosol, occurring during close 138 

contact with infectious individuals (Gallagher and Clifton-Hadley 2000). Some of the drivers of 139 

disease in badgers have been described, such as  sexual dimorphism, whereby bTB infection 140 

probability, disease progression and mortality risk are all greater in males (Graham et al., 2013; 141 

McDonald 2014). Age effects have also been observed (Graham et al., 2013; McDonald et al., 2014; 142 

Beirne et al. 2016), while at the population-level, bTB incidence and prevalence exhibit seasonal 143 

variation (incidence being highest in spring and prevalence peaking in autumn; Delahay et al. 2013). 144 

However, the potential contribution of additive genetic variation has not previously been 145 

investigated, not least because badgers live in kin-biased social groups making disentangling genetic 146 

from environmental (social) effects challenging.  147 

Badgers are facultatively social, forming groups in medium to high density populations but 148 

adopting a more solitary lifestyle when living at low density (Roper 2010). At the level of the 149 

population, natal philopatry and territorial defence limit mixing of animals amongst social groups, 150 

which in turn is expected to reduce inter-group disease transmission (Delahay et al. 2000b), while at 151 

the same time being associated with relatively high within-group transmission rates. Social group 152 

structure should thus drive spatial clustering of bTB, and high among-group variation in disease 153 

status, relative to that found within-groups, has been previously reported (Delahay et al. 2000b). 154 

However, genetic data suggest alternative explanations for observed spatial clustering may also have 155 

merit. Parentage analyses show that among-group breeding dispersal is limited, leading to greater 156 

relatedness within than among groups (Dugdale et al., 2008).  Crucially for current purposes though 157 

some individuals are known to make permanent moves away from their natal group (Rogers et al. 158 



1998) while breeding between adults of different groups also occurs (Annavi et al 2014; Marjamäki 159 

et al. 2019).  For instance, in this population an estimated 37% of cubs born are sired by an extra-160 

group male (Marjamäki et al. 2019).  Recent work has also shown that bTB infection risk for cubs is 161 

increased by the presence of closely related infected adults (including but not limited to mothers) 162 

within the natal group (Benton et al. 2016). Spatial heterogeneity in host disease status is consistent 163 

with within-group (and by extension kin-biased) social interactions impacting infection risk, maternal 164 

effects, and/or genetic variation in one or more host defence strategies.  These alternative 165 

explanations are in no sense mutually exclusive and we also acknowledge that inbreeding 166 

depression (IBD) could play a role (e.g. if breeding dispersal and therefore inbreeding differ among 167 

groups; Benton et al. 2016). Heterozygosity-fitness correlations have provided some evidence of IBD 168 

on M. bovis disease progression although this is limited to older (senescent) females (Benton et al. 169 

2018) 170 

It is therefore clear that M. bovis infection status in badgers can be influenced by numerous 171 

factors at multiple scales. The long-term life-history and genetic pedigree data from the 172 

Woodchester Park study initiated in the 1970s (McDonald et al. 2018) affords a rare opportunity to 173 

assess the relative importance of genetic and environmental effects. We adopt a quantitative 174 

genetic animal model approach to decompose the variance in bTB infection status into its 175 

component parts and examine the relative contributions of genetic and environmental factors. We 176 

ask: i) whether variation in host infection status has a detectable additive genetic basis; ii) what are 177 

the relative contributions of additive genetic and social (including maternal) effects on the observed 178 

variation in host bTB status; and, iii) do the relative contributions of additive genetic and social 179 

effects on bTB status vary in relation to host age?   180 

 181 

Methods 182 

Study site and sampling 183 



A population of approximately 200–300 wild badgers has been the subject of an ongoing capture-184 

mark-recapture study at Woodchester Park (Gloucestershire) since 1976. The study area is 185 

approximately 11 km2 and consists of a steep-sided wooded valley surrounded by farmland, set in an 186 

area where M. bovis infection is endemic in cattle and wildlife. Badger dens (setts) in the study area 187 

have been the focus of trapping operations up to four times a year. During each quarterly ‘trap-up’, 188 

badgers are trapped for two consecutive nights using steel mesh box traps baited with peanuts, 189 

(after 4–8 days of pre-baiting). Trapped badgers are anaesthetized (de Leeuw et al. 2004) and their 190 

capture location, sex and age class (cub, yearling, adult) recorded. Biological samples are collected to 191 

allow determination of M. bovis infection status and to provide a DNA source for microsatellite 192 

genotyping (full details presented below). After a recovery period, all badgers are released at the 193 

point of capture. Social group boundaries are also determined for each year of the study by bait 194 

marking (Delahay et al. 2000a). Further details on determination of group membership are discussed 195 

in Marjamäki et al. (2019) and references therein.  196 

Overall, the mark-recapture dataset used here contained 14846 observations of M. bovis 197 

infection status on 2945 individual badgers captured between 1976 and 2014. For individuals first 198 

caught as cubs or yearlings (readily identifiable from size, pelage and toothwear; Delahay et al. 2013) 199 

age at subsequent captures is known. Unsurprisingly the age distribution is highly skewed (Figure 1); 200 

cubs, yearling and adults (i.e. age ≥ 2) account for 31.8%, 24.4% and 43.8% of observations, 201 

respectively. Among known-age adult captures the modal age is 2 years (which accounts for 32.9% 202 

of adult observations) and the mean is 4.06 (SE 0.03) years. At all ages the capture records are 203 

numerically dominated by putative uninfected animals (based on a recorded infection status score of 204 

zero; explained in full below). The data included 398 individuals first captured as adults for which 205 

ages were unknown. However, since capture records for individuals span multiple years, they still 206 

contain valuable information about within-individual changes with advancing age. In order to retain 207 

these individuals for analysis we elected to assume that age=2 years at their first capture. This is 208 



both the most likely true age (based on the distribution of known age individuals) and also 209 

represents the minimum possible age (as cubs and yearlings are readily distinguished).     210 

 211 

Microsatellite genotyping and parentage analysis 212 

Guard hairs taken at capture were used for DNA extraction, allowing microsatellite genotyping and 213 

parentage analysis. Full details are described in Marjamäki et al. (2019). Briefly, DNA was extracted 214 

from hair samples using either the protocol outlined in Carpenter et al. (2005), or an ammonium 215 

acetate extraction method (Richardson et  al. 2001). We used a minimum of five hair follicles with 216 

visible roots per individual for extraction. Individuals were genotyped using a minimum of 16 217 

(Carpenter et al. 2005) and maximum of 22 fluorescently labelled autosomal microsatellite markers. 218 

We used a 2 μl Qiagen Multiplex PCR reaction (Qiagen Inc., Valencia, USA), before separation of the 219 

amplicons on an ABI 3730 DNA Analyzer and genotype scoring using GENEMAPPER 3.7. 220 

Microsatellite genotypes and spatial data were then used for Bayesian parentage analysis performed 221 

using the R 3.3.0 (R Core Team 2016) package MasterBayes 2.54 (Hadfield et al. 2006). Markov 222 

chains were run separately for each year (i.e. cub cohort) for 2 million iterations, with a thinning rate 223 

of 100 and burn-in period of 500,000. Tuning parameters were specified for each cohort to ensure 224 

that the Metropolis–Hastings acceptance rates were within acceptable limits (0.2–0.5; Hadfield 225 

2017). The presence of unsampled males (per population) and females (per social group) was also 226 

allowed for each cohort. Assignments were accepted and used in downstream analyses when a 227 

confidence threshold of 80% was met, resulting in a total of 1175 parentage assignments (579 228 

maternities and 596 paternities). A total of 617 cubs were assigned at least one parent (35% of 229 

genotyped cubs included in the analyses), and of these, 556 (89%) were assigned both parents. 230 

Marjamäki et al. (2019) provides a thorough description of available pedigree information (see also 231 

archived data for this paper). The genetic pedigree is far from complete which may have implications 232 

for our analyses (as discussed below). We note that, in contrast to comparable long-term avian and 233 



mammalian studies, maternal identities cannot be determined by observation in badgers owing to 234 

their nocturnal and fossorial habits. Thus, pedigree analysis is especially challenging because 235 

maternities must be estimated simultaneously with paternities based on genetic and spatial data in 236 

the presence of multiple related candidate mothers and fathers.  237 

 238 

Infection status  239 

For each captured badger, M. bovis infection status is determined from the bacterial culture 240 

of a standardised set of clinical samples (as described in Clifton-Hadley et al. 1993), and a serological 241 

test for the presence of antibodies to M. bovis (Brock Elisa used 1982 to 2006 (Goodger et al., 1994) 242 

and BrockTB Stat-Pak test used 2006 to 2014 (Chambers et al., 2008)). Clinical samples of 243 

oesophageal and tracheal aspirates, urine and faeces, are collected from all animals, with additional 244 

samples collected by swabbing open bite wounds if present. Results of these diagnostic tests are 245 

used to assign badgers to one of four bTB infection status categories on an ordinal scale following 246 

Graham et al. (2013). Individuals that returned negative results for both the bacterial culture and 247 

serological test were classified as test-negative (N) and treated as free of infection. Badgers that 248 

tested antibody-positive but had negative culture results were assigned test-positive (P) status, 249 

taken to indicate recent exposure to M. bovis. Positive test results could also indicate cross-reaction 250 

or presence of maternal antibodies (Maas et al., 2013; but see Tomlinson et al, 2012). To account for 251 

this possibility, and reduce the false positive rate, we elected to reclassify single test-positive results 252 

as N (i.e. test negative) if individuals (i) had one or more subsequent recapture(s) and (ii) all 253 

subsequent tests were negative. Badgers that tested positive for the presence of M. bovis by 254 

bacterial culture were assigned as either one-site (O) or multi-site (M) excretors, based on the 255 

number of sampled body sites (i.e. distinct clinical samples) that tested positive at each capture. 256 

Although culture has relatively low sensitivity as a diagnostic test, a positive result is a strong 257 



indicator of established bTB infection (Drewe et al. 2010). These latter two categories (O, M) are 258 

therefore considered to represent more advanced infection states.   259 

 260 

 Quantitative genetic analyses 261 

To model variation in infection status we defined two different response variables. Firstly, we 262 

reduced infection status data for each individual to a single binary “lifetime” score (bTBlifetime). Thus, 263 

each individual has a single observation of either 0 (if they did not test positive for bTB during their 264 

entire recorded lifetime) or 1 (if they did). Secondly, we analysed the repeated measures collected 265 

on individuals over multiple trapping events, to investigate the possibility that contributions of 266 

genetic and/or environmental effects to variance in infection status are age dependent. Based on 267 

models of bTB immunopathogenesis in badgers (Mahmood et al., 1987; Lesellier et al., 2008), we 268 

assumed the four infection status categories described above can reasonably be ordered to reflect 269 

the progression of bTB within a host. We thus converted them to a numerical score (N=0, P=1, O=2, 270 

M=3) which we refer to hereafter as bTBcapture. Each individual thus has a number of bTBcapture records 271 

equal to its number of captures during the study. We elected to make bTBcapture score progressive, 272 

whereby values can increase (or remain constant) for an individual but cannot decrease. Both 273 

bTBlifetime and bTBcapture were analysed in conjunction with pedigree information using ‘animal models’ 274 

(i.e. linear mixed effect models that include a random effect of an individual's additive genetic merit; 275 

Wilson et al., 2010) to estimate additive genetic variance (VA). Variance components attributable to 276 

specified environmental effects were also estimated, and fixed effects were included (as specified 277 

below) to control for several known sources of variance not directly relevant to the current 278 

hypotheses. Note that fixed effect results are not presented or discussed in detail but are shown in 279 

full in the supplemental materials.  280 

 281 



Modelling lifetime bTB status 282 

bTBlifetime was modelled using a Bayesian animal model implemented using the package MCMCglmm 283 

2.26 (Hadfield 2010) in R 3.6.1 (R Core Team 2019). Sex was included as a fixed effect together with a 284 

cubic function of age at last capture. All else being equal, we would expect the probability of 285 

bTBlifetime= 1 to increase monotonically with observed lifetime (even if risk of infection is not itself 286 

age-dependent) but a cubic function was chosen simply to avoid making strong assumptions about 287 

the functional form of the relationship. The additive genetic merit, maternal identity, natal group, 288 

and birth year were included as random effects. We also included a (natal) group x birth year 289 

interaction. All random effects are assumed to be drawn from distributions with zero means, and 290 

variances to be estimated of VA, VM, VNGr, VBY and VNGrxBY, respectively. Note that ‘group’ designations 291 

are based on sett locations that are consistent across the timeline of the study. Consequently, any 292 

variance explained by (natal) group is likely to reflect spatial heterogeneity within the study area. In 293 

this model, VNGrxBY serves (albeit imperfectly) to identify sets of individuals that clustered strongly in 294 

both space and time (i.e. same cohort and same spatial location). Note that we assumed the natal 295 

group is the group where badgers first sampled as a cub or yearling were found. We elected to 296 

exclude badgers with missing predictors from this analysis which, in practice meant exclusion of 297 

individuals first caught as adults (as they had missing natal group information, even after 298 

assumptions about age at last capture). Additionally, several (3) individuals captured only once as 299 

cubs with missing sex data were excluded. However, we did include individuals with unknown 300 

mothers subject to all other predictors being available. Since the mother is unknown for the majority 301 

of individuals this was a necessary compromise. Consequently we ran this model on a data set 302 

comprising 2319 badgers of which 606 (23.7%) have bTBlifetime = 1. 303 

The Markov chain was run using the “ordinal” family (which uses a probit link for binary 304 

data) with residual variance fixed to 1. We used a parameter-expanded priors for random effects as 305 

suggested in Hadfield 2019; more specifically parameter-expanded Χ2 priors (by specifying V = 1, nu 306 



= 1000, alpha.mu = 0, alpha.V = 1) and normally distributed diffuse priors for fixed effects. 307 

Convergence of the MCMC chain was checked using Heidelberger and Welch's convergence 308 

diagnostic test for stationarity (implemented in the R package coda 0.19-3; Plummer et al 2006), and 309 

the level of autocorrelation checked to ensure adequate (>1000) effective sample size for each 310 

estimated parameter. To enable more intuitive biological interpretation, estimated variance 311 

components (conditional on fixed effects) on the latent scale were transformed to the 312 

corresponding intra-class correlations values (i.e. including heritability, h2) on the observed scale. 313 

This was done using the functions ‘QGparams’ and ‘QGicc’ from the R package QGglmm 0.7.4 and 314 

the model ‘binom1.probit’ (de Villemereuil et al. 2016).  315 

 316 

Modelling bTB status with age 317 

 We then modelled bTBcapture on the observed (0–3) scale using a series of animal models fitted by 318 

REML in ASReml-R 4 (VSN International).  In all models we assume Gaussian residuals, an assumption 319 

that is necessarily violated given that the response variable is bounded. While some caution with 320 

respect to our statistical inference is thus appropriate, we nonetheless consider this assumption very 321 

reasonable as residuals from all models showed unimodal distributions with strong central 322 

tendencies. We also note inferences from linear mixed models are relatively robust to even large 323 

departures from distributional assumptions (Schielzeth et al 2020). Significance of fixed effects was 324 

determined using conditional Wald F-tests, while statistical inference on random effects was by 325 

likelihood ratio test (LRT) comparison of the full model to reduced formulations in which the tested 326 

random effect was omitted. Twice the difference in log-likelihood between the full and reduced 327 

models was assumed to have a χ2 distribution. Following Visscher (2006), we assumed the test 328 

statistic to be asymptotically distributed as an equal mix of χ2
0 and χ2

1 (denoted as χ2
0,1) when testing 329 

a single variance component. 330 



We sought to estimate age-specific quantitative genetic parameters for bTBcapture for two 331 

reasons.  First, we wanted to determine if the relative contributions of genetic and environmental 332 

effects to variance change with age. Second, since bTBcapture can increase (but not decrease) across 333 

observations within individuals we expect among-individual variance (partitioned as additive genetic 334 

and/or permanent environmental variance) to increase with age (at least initially). Variance 335 

compounding is thus expected from trait definition as effects on the phenotype of any individual at 336 

age x will have ‘permanent’ effects (i.e. impact phenotype at all ages > x). We wanted our models to 337 

accommodate this feature of the data, and to ensure that compounding of environmental variance 338 

could not cause upward bias in the estimate of additive genetic variance at later ages.  In principle, 339 

an initial increase in among individual variance with age would be followed by a decrease among the 340 

oldest badgers if infection and disease progression were inevitable consequences of sufficient 341 

longevity. In this scenario badgers living long enough would eventually all converge on a single 342 

phenotype (bTBcapture=3). However, this does not happen here and across all ages observed records 343 

are strongly dominated by captures of putatively uninfected badgers (i.e. bTBcapture= 0; Figure 1). For 344 

instance, in cubs, yearlings, all adults (age ≥ 2) and ‘older’ adults (age ≥ 4) the proportions of capture 345 

records with bTBcapture = 0 are 88.3%, 79.6%, 76.2 %, and 75.1%, respectively.  346 

We adopted two complementary strategies to incorporate this age-specificity of variance 347 

components. The first was to analyse stage specific data subsets corresponding to cubs (age=0; 348 

nbadgers= 2407, nobservations=4723), yearlings (age=1; nbadgers=1521, nobservations= 3620), and adults (age≥2; 349 

nbadgers=1483, nobservations=6503). This allowed us to avoid assuming homogeneity of variance 350 

components across age categories (though the assumption of homogeneity with increasing adult age 351 

remains). We fitted an animal model to each data subset, including fixed effects of sex, season 352 

(spring = Mar–May, summer= Jun–Aug, autumn= Sep–Nov, winter = Dec–Feb), and for adults only 353 

we included a cubic function of age. Random effects included the additive genetic merit, a 354 

permanent environment effect (to account for non-genetic sources of repeatable differences), 355 

maternal identity, year (of observation), group (defined by spatial location of home sett), and a 356 



factor defined by the group-by-year interaction. The latter serves here as a proxy for social 357 

environment as it defines the set of individuals interacting most closely in time and space (i.e. within 358 

a year of observation at a spatial location). Random effects are assumed to be normally distributed 359 

with means of zero and variances (VA, VPE, VM, VGr, VY and VGrxY, respectively) to be estimated. For 360 

each stage-specific model, we calculated phenotypic variance as the sum of the estimated 361 

components and used this to calculate intra-class correlations (conditional on fixed effects). We also 362 

tested the significance of VA, VM, VGr, VY and VGrxY by LRT. Note we do not test VPE separately or 363 

provide an overall test for among-individual variance (VA+VPE) as its presence is inevitable given the 364 

progressive definition of bTBcapture. 365 

 Our second strategy for dealing with age-specificity was to analyse the full bTBcapture data set 366 

using a random regression animal model.  Specifically, we included random slopes on age (as well as 367 

random intercepts) for the additive and permanent environment effects that combine to determine 368 

among-individual variance.  Other fixed and random effects were specified as described above for 369 

the models applied to data subsets. Though this method is widely used to characterise (genetic) 370 

variation in reaction norm slopes (interpretable as ageing or plasticity, depending on the x-axis), 371 

here the rationale is to fit a model that can accommodate the expected compounding of among-372 

individual variance with age. The random regression model  yields estimates of genetic variances in 373 

random intercepts and slopes (and the slope-intercept genetic correlation) that can be projected to 374 

obtain a ‘character state’ estimate of the genetic variance-covariance matrix (G) among age-specific 375 

bTBcapture traits (see e.g. Roff and Wilson 2014 for equations and a didactic treatment of this 376 

strategy). Permanent environment effects are then treated analogously. In practice, we first fitted 377 

the model using slopes on a rescaled version of age; we subtracted 2 so that ‘zero’ on the new scale 378 

corresponds to 2 year old badgers (the modal age class of adults). With this scaling of age, additive 379 

genetic and permanent environment intercept variances represent VA and VPE respectively in 2 year 380 

olds (the model class of adults). We then projected the estimated covariance functions to derive 381 

corresponding estimates of VA and VPE at actual ages 0 (cubs), 1 (yearlings), and 4 (the approximate 382 



mean age of adult observations in the data) which were used to derive age-specific ICC estimates. 383 

Note that while the model assumes that the variance components, except VA and VPE, are 384 

homogeneous, all ICCs are expected to show age-sensitivity (as changes in VA and/or VPE will alter VP).  385 

 386 

Results  387 

Analysis of bTBlifetime 388 

Diagnostics on initial MCMCglmm runs suggested poor chain mixing and high levels of 389 

autocorrelation across consecutive saved samples of many model parameters. Although this was not 390 

readily resolved by adjusting run parameters, the estimated variance components were highly 391 

consistent across three runs, all based on a chain length of 3000000 with a burn in of 10000 and 392 

thinning interval of 100 (resulting in 29900 samples in the posterior). We present results based on a 393 

single one of these chains. Diagnostic plots and tests for this model fit are presented in 394 

Supplemental Appendix 1. Autocorrelation levels between saved samples remained high but the use 395 

of such long chain allowed us to obtain reasonably large effective sample sizes (>1500 across all 396 

variance components; Supplemental appendix 1) and tests for stationarity were passed for all fixed 397 

effects and variance components. Posterior distributions (on the latent probit scale) were clearly 398 

distinct from zero for VNGr, VBY and VNGrxBY but not for additive and maternal variance components 399 

(Supplemental appendix 1). For VA the posterior shows a local peak that is distinct from zero but also 400 

has high density close to zero. For VM there is no non-zero peak in the posterior distribution visible.  401 

Posterior means of variance components on the probit scale used to generate point 402 

estimates ICC on the observed scale (Table 1) indicated that additive genetic effects (h2
 = 0.092) and 403 

birth year (ICC=0.110) and natal group x birth year effects (ICC =0.087) explain similar amounts of 404 

variance in bTBlifetime while maternal effects were (effectively) absent (posterior mean ICC of <1%). 405 

Fixed effect estimates from this model are not directly relevant to hypotheses being tested but for 406 



completeness are shown in Supplemental appendix 2 (together with estimated variance components 407 

on the probit scale). 408 

 409 

Repeated measures models of age specific bTBcapture 410 

Analysis of bTBcapture provided evidence for changes in the relative importance of genetic and 411 

environmental influences on phenotype with age. Analyses of age specific data subsets provided 412 

statistical support for the presence of maternal, year, group and year x group effects in cubs, 413 

yearlings and adults (all LRT yielding P<0.05; Table 2).  In contrast, statistically significant additive 414 

genetic variance was only found in the adult (2+ years) data subset. Estimated heritability (SE) was 415 

low in cubs (h2<0.001 (0.053)) and undetectable in yearlings (with VA bound to zero in the model fit), 416 

but somewhat higher and statistically significant in adults (h2=0.119 (0.062), χ2
0,1= 3.75, P=0.026). 417 

Group effects are low with the highest ICC being just 2.4% (in cubs) suggesting little (fixed) spatial 418 

heterogeneity in bTB risk. However, ICC for year and group x year effects were somewhat higher 419 

(Table 2). Notably in cubs and yearlings these two components together explain approximately 20% 420 

of observed variance in bTBcapture. Thus, there is temporal (among year) variation, some of which is 421 

general to the study area, and some of which is specific to particular groups. The estimates of the 422 

variance components used to calculate ICC are presented in Supplemental appendix 3. As in the 423 

analysis of bTBlifetime we note that fixed effects are being used to control for ‘nuisance’ sources of 424 

variance here rather to address any specific hypotheses. Nevertheless, for completeness, fixed 425 

effects estimates and the corresponding statistical inference are shown in Supplemental appendix 4 426 

for all REML models. 427 

As expected, when modelling all ages simultaneously, the inclusion of random slopes on age 428 

for additive and permanent environment effect greatly improved the model (LRT comparison to the 429 

equivalent random intercept only model; χ2
4=4491, P<0.001). The random regression model 430 

indicated significant contributions of VM, VGr, VY and VGrxY to variance in bTBcapture (Table 2), while 431 



support for genetic variance was slightly equivocal. This is because while the presence of genetic 432 

variance (modelled as a first order covariance function of age) was marginally non-significant (LRT 433 

χ2
3=7.59, P=0.055), we also expect that use of 3 DF in the likelihood ratio test will be rather 434 

conservative here (since boundary constraints strictly apply to both slope and intercept variances for 435 

which negative values are precluded). Furthermore, the REML estimate of the slope-intercept 436 

genetic correlation was fixed to +1 to keep the genetic covariance structure within allowable 437 

parameter space (i.e. variances ≥ 0, -1≤ correlation ≤ +1). The perfect slope-intercept correlation 438 

means that projected to a character state view, estimated genetic correlations between age-specific 439 

bTBcapture traits are strongly positive (and effectively +1 among all ages >1) while there is a strong 440 

pattern of increasing VA with age (Supplemental appendix 3). For permanent environment effects, 441 

the equivalent projection reveals a pattern of increase from cubs onwards (as expected given 442 

inevitable accumulation of among-individual variance). Estimates of rPE are strongly positive 443 

(effectively +1) between observation ages 1, 2 and 4, but are less between these ages and bTBcapture 444 

at age 0 (with a minimum of rPE = 0.38 between 0 and 4; Supplemental appendix 3).  445 

Scaling the variance components estimated with the random regression models to ICC 446 

reveals broadly similar patterns to those obtained by age specific analysis (Figure 2). Specifically, 447 

both approaches to modelling bTBcapture indicate that heritability is very low in early life while social 448 

environment effects (maternal and group x year) are important in the youngest badgers. Conversely, 449 

heritable variation is present in adults. Under the random regression model, estimated heritability 450 

(SE) goes from zero in cubs, to 0.134 (0.580) at the modal adult age of 2 years and increases to 0.206 451 

(0.078) at 4 years. Some differences between the results of the two modelling strategies are also 452 

apparent. Most notably the age-specific subset analysis actually indicates increasing relative 453 

importance of maternal effects with age, while m2
 (the ICC corresponding to maternal variance) 454 

declines under the random regression model (from m2=0.21 at age 0 (cubs) to 0.04 at age 4). 455 

However, interpretation is slightly nuanced here, as maternal influences at early ages will tend to 456 

contribute to fixed-among individual differences (and so be partitioned as VPE) at later ages under 457 



the random regression formulation. This will not happen to the same extent in models of yearling 458 

and adult data subsets. The same effect may also explain the slightly lower estimates of the group x 459 

year ICC under the random regression model.    460 

 461 

Discussion 462 

Here we examined M. bovis infection status in a naturally infected population of European badgers, 463 

to ask whether, and to what extent, genetic and environmental (including social and maternal) 464 

effects contribute to variation among individuals in disease risk and progression.  Using two 465 

measures of infection status (bTBcapture, a progressive measure of disease at each capture event and 466 

bTBlifetime, a binary lifetime infection score), animal model analyses support the presence of a 467 

relatively small, but non-zero, heritable component of infection status.  Analyses of bTBcapture shows 468 

that heritability is very low in cubs and yearlings but higher in adults. Temporal (among-year) 469 

variation is present in the population as a whole, as expected, while group identity effects 470 

(interpretable as temporally fixed spatial heterogeneity) are detectable, but do not explain much 471 

variance in either bTBlifetime or bTBcapture. In contrast, group x year effects are important in all analyses 472 

and are most parsimoniously interpreted as social effects, reflecting shared infection risk of animals 473 

closely associating in space and time. The importance of maternal identity effects – both in relative 474 

and absolute terms is less clearly resolved by our analyses (discussed further below). 475 

      476 

Genetic variation in bTB status and progression 477 

Variation in the lifetime risk of infection and in progression of bTB (as measured by bTBcapture across 478 

repeated measures) both have a partial genetic basis. The heritability of the former is estimated at 479 

0.092, while our models suggest h2 for bTBcapture is very low among young animals but increases with 480 

observation age (e.g. to 0.134 in two year old adults, based on the random regression model). Most 481 



variation in bTB infection status therefore arises from environmental effects (broadly defined) rather 482 

than genetic factors. This is not surprising and mirrors findings in cattle where estimates of h2
 for 483 

bTB resistance range from 0.06 to 0.18 (Allen et al. 2010). Interestingly, using an experimental 484 

infection approach, h2 of bTB resistance to M. bovis was estimated at 0.48 in a population of farmed 485 

red deer (Cervus elaphus; Mackintosh et al., 2000), a species that, in some ecological contexts, is also 486 

thought to act as an important wildlife reservoir for this disease (Vicente et al. 2006; Delahay et al., 487 

2007). This much higher estimate was obtained from parent-offspring regression (a method which 488 

can be more prone to upward bias from common environment effects), but could also reflect the 489 

experimental infection design used. Specifically, we stress that neither bTBlifetime nor bTBcapture provide 490 

a measure of resistance alone. Rather these phenotypes will be outcomes of multiple contributing 491 

traits and processes (e.g., behavioural exposure risk, resistance, tolerance) that may themselves 492 

differ in their extent of genetic control.  493 

Since there are few heritability estimates for disease traits in wild vertebrate populations a 494 

consensus on the importance of standing genetic variation is yet to emerge. A number of studies 495 

have found additive genetic variation for host defence traits, including resistance to strongyle 496 

nematodes in feral sheep (h2= 0.13 SE 0.04) inferred from nematode-specific antibody titers; 497 

Hayward et al., 2014a) and both resistance (inclusive heritability 0.176 CI 0.072-0.322) and tolerance 498 

to copepod parasites in a freshwater cyprinid fish (Mazé-Guilmo al. 2014). Conversely, experimental 499 

studies failed to detect any influence of host genotype on cell-mediated immune responses in house 500 

martins Delichon urbica (Christe et al. 2000) and house wrens Troglodytes aedon (Sakaluk et al. 501 

2014). Interestingly, across three populations of tree swallow Tachycineta bicolor, Ardia and Rice 502 

(2006) found no heritable variation for immune function in two populations, while an estimate of h2 503 

=0.42 was reported for the third.  504 

While it seems quite possible that generalisations about the contribution of genetic factors 505 

to variation in disease outcomes will be difficult (even among populations of the same species), our 506 



analyses of bTBcapture do highlight the importance of considering age-specificity. At least initially, an 507 

increase in phenotypic variance with age is an inevitable consequence of trait definition and 508 

measurement here; the pattern of increasing h2 with age thus arises because VA goes up 509 

proportionately faster than the total phenotypic variance VP. Importantly, age-specificity of 510 

heritability does not however imply that underlying risk factors themselves (whether genetic or 511 

otherwise) must have age specific action. This is because small (but age-invariant) differences in 512 

infection risk will generate more and more variance in infection status as time available to acquire 513 

infection increases. So, while age- (or stage-) specific gene action could contribute to the pattern of 514 

increasing h2, it is not required to explain the pattern. Regardless, the main implication of low trait 515 

heritability in cubs and yearlings is that any early life natural selection acting through juvenile 516 

viability has very limited scope to affect an evolutionary response. Conversely, a response is 517 

predicted if selection against bTB infection acts through adult fitness components. Though we do not 518 

have formal estimates of selection, two recent studies have both failed to detect costs of infection 519 

on reproductive success in this badger population (Tomlinson et al. 2013; McDonald et al.  2016). 520 

However, adult badgers (particularly males) with advanced infection states do show increased 521 

mortality rates (Graham et al. 2013; McDonald et al. 2016).  522 

An important caveat in interpreting our heritability estimates is that the serological tests and 523 

bacterial culture used to define phenotypes have relatively low levels of sensitivity. This means that 524 

an unknown, but certainly non-zero, proportion of truly infected animals will not have been correctly 525 

phenotyped. For example, intermittent excretion and latent infection characteristic of M. bovis 526 

infection (Clifton-Hadley et al. 1993; Gallagher et al. 1998) limit the sensitivity of bacterial culture 527 

whilst antibody tests may fail to detect infection either due to the absence or low concentrations of 528 

antibody produced or inclusion of an inappropriate antigenic target. Assuming that propensity to 529 

test negative when truly infected is not itself a heritable trait, this form of measurement error 530 

should be partitioned into generic residual and (for bTBcapture) permanent environment variances and 531 

so may contribute to relatively low heritabilities (as well reducing ICC for all non-generic 532 



environmental effects). If so, improved confidence in assigning individual infection status (e.g. use of 533 

probabilistic approaches to incorporate full test histories, Buzdugan et al., 2016) may be needed to 534 

gain greater resolution on genetic factors predisposing to disease.  535 

 536 

Social effects tend explain more variation than genetic factors  537 

In total, social environment effects, estimated as the sum of group x year and maternal variances 538 

appeared to explain more variation in bTBcapture than genetic factors. This is certainly the case for 539 

cubs and yearlings and was also true for the estimates derived from analysis of the adult data only. 540 

Under the random regression model, genetic and social effects account for similar proportions of 541 

variance at age 2 years, while genetic effects are predicted to dominate at 4 years. However, as 542 

noted earlier, under this modelling approach where only VA and VPE were allowed to vary with age 543 

we expect ‘permanent’ non-genetic effects from early life (that may include, for instance maternal 544 

influences) to accumulate in VPE with age, somewhat complicating interpretation. In principle it is 545 

possible to allow age-dependence of all random effects within the random regression model, but 546 

initial exploration of models with additional random slopes led to instability, convergence problems 547 

and implausible levels of predicted phenotypic variance in adults.  548 

Spatial clustering of infection at the social group level has been reported previously in 549 

badger populations, with some groups in the Woodchester Park population remaining test-negative 550 

for long periods (Delahay et al., 2000b; Vicente et al. 2007). As (natal) group identity coincides with 551 

main sett location in the study area, whether this observation can be explained by spatial 552 

heterogeneity in the habitat rather than social effects per se has remained unclear. However, our 553 

finding that most group effects were year-specific (i.e. partitioned as group by year variance) 554 

strongly suggests a social origin (since group composition varies on a year-to-year basis whereas 555 

location is fixed in time). It also corroborates previous studies that suggest the importance of social 556 

processes (but which did not control for potentially confounding genetic or maternal effects). For 557 



instance, social network analyses have revealed evidence suggesting a positive association between 558 

bTB infection and levels of extra-group contact (Weber et al. 2013; Silk et al. 2018). Extra-group 559 

contacts may include temporary excursions for breeding purposes, the rates of which have recently 560 

been found to vary among social groups (Marjamäki et al. 2019). Seasonal variation in bTB incidence 561 

(accounted for in our models by the fixed effect structure) has also been shown to correlate with 562 

peaks of within-group social contact (Silk et al., 2017), although indirect transmission (e.g. via 563 

environmental contamination of communal latrines and setts) may  also occur (Courtenay et al. 564 

2006; Drewe et al. 2010).   565 

The contribution of maternal (identity) effects to bTB risk and progression in Woodchester 566 

Park badgers is not fully resolved by our study. In particular, the Bayesian analysis of bTBlifetime 567 

provided no evidence of among-mother variance in offspring lifetime risk, while maternal identity 568 

was a statistically significant predictor of bTBcapture in all REML models fitted. Based on the results in 569 

their entirety, we cautiously conclude that maternal effects exert at least some influence on bTB 570 

status among badgers in the present study. Assuming so, this adds further support to the view that 571 

early-life environments impact bTB infection risk (Tomlinson et al. 2013). It also suggests the 572 

reported positive association between cub infection and presence of infected relatives (Delahay et 573 

al., 2000; Benton et al. 2016) could be driven by a combination of both maternal and additive 574 

genetic effects. Though widely observed for life-history, reproductive and growth traits, maternal 575 

effects on disease risk have been less well documented in other wild vertebrates (but see e.g., Hall & 576 

Ebert, 2012; Seppälä & Langeloh, 2016). However, in Soay sheep maternal effects on offspring 577 

parasite load appear, at least in part, to occur through maternal age and parasite load (Hayward et 578 

al., 2010). However, in that population and in some domestic sheep quantitative genetic analyses 579 

also support a contribution of maternal effects to nematode resistance (Coltman et al., 2001; Stear 580 

et al., 2001) and to helminth-specific immune responses in lambs (Sparks et al. 2019). Our data are 581 

not informative for specific mechanisms, although similarity among maternal siblings (over and 582 

above that attributable to additive genetic and social group effects) could arise from maternal 583 



provisioning of antibodies, variation in maternal infection status, or differential contact time with 584 

cubs. Second order mechanisms are also possible, for instance if maternally influenced nutritional 585 

status has consequences for cub immune responses.  586 

Whether or not the magnitude of maternal effect contributions to variation in bTB status 587 

declines with age in Woodchester Park badgers is unclear. On the one hand, maternal effects on 588 

bTBlifetime were absent and random regression model for bTBcapture yielded only a small maternal ICC 589 

estimate (5%) in adults by age 4. On the other, this second result may be a consequence of model 590 

specification (with early acting maternal effects having permanent effects that are partitioned to VPE 591 

rather than VM in late life) while the highest maternal ICC estimated was for bTBcapture in the adults-592 

only data subset (18%). We suspect this lack of consistency arises from a data structure that is far 593 

from ideal for partitioning additive genetic from maternal (and common environment) effects. In 594 

particular the pedigree is very incomplete and while some females contribute multiple offspring (to 595 

a maximum of 11), the mean number of offspring among the 537 known mothers is just 1.07. For 596 

this reason, we also elected not to attempt further decomposition of the estimated maternal 597 

variances into maternal genetic and environmental components (e.g. following Wilson et al. 2005b, 598 

McAdam et al. 2014).  599 

 600 

Caveats arising from the consideration of genotype-(social) environment correlation   601 

As noted earlier, the preponderance of within-group paternities in the Woodchester Park population 602 

(63% within-group vs 37% extra-group paternity, Marjamäki et al. 2019) means that genetic 603 

relatedness is, on average, greater for pairs of individuals that share a (natal) social group 604 

environment than for pairs that do not. Similarly, siblings necessarily share a maternal environment. 605 

The population is thus characterised by a ‘genotype-environment correlation’ that cannot easily be 606 

disentangled.  Since experimental approaches (e.g. cross-fostering; Kruuk & Hadfield, 2007) are not 607 

appropriate in this or similar systems, we have taken the conservative approach (with respect to 608 



estimation of h2) of simultaneously modelling additive genetic, maternal and social group (including 609 

group x year) effects. Failure to model common environment effects, including mothers and shared 610 

habitat use by relatives is a well-known potential source of upward bias in h2 estimates (e.g. Wilson 611 

et al. 2005b; Stopher et al., 2012; Regan et al. 2015). However, accurate separation of correlated 612 

genetic and environmental effects necessarily depends on data structure and quality. Here 613 

incomplete parentage data is likely to have produced errors in the pedigree (e.g. unrecognised 614 

relatedness among true siblings) even in the unlikely event that all parentage assignments made are 615 

correct. Although pedigree error will usually downwardly bias the estimation of h2 (Morrissey et al. 616 

2007) the consequences are not so readily predicted here, given the kin-biased social group 617 

structure, and the fact that maternal and paternal identities are both similarly uncertain. 618 

 619 

Conclusions 620 

The long-term study of the Woodchester Park badger population provides a unique and valuable 621 

opportunity to investigate the factors driving among-individual variation in M. bovis infection status. 622 

We have found that genetic factors play a small but significant role in structuring variation in 623 

infection status, particularly in older (adult) badgers. However, it is clear that social influences arising 624 

from interactions among animals clustered in space (group) and time (year) and from maternal 625 

effects are also important. Genetic and social effects may influence observed bTB infection status 626 

through multiple pathways, including via infection risk (e.g. through behavioural traits), resistance, 627 

and/or ability to limit damage caused (tolerance). Though not mutually exclusive, resistance and 628 

tolerance in particular are predicted to have very different consequences for parasite fitness; by 629 

limiting parasite growth, resistance will negatively impact parasite fitness, while tolerance can, in 630 

fact, promote parasite fitness by increasing the period over which transmission might occur. Given 631 

the implications of individual variation in infectiousness for the long-term persistence of parasites 632 

(Kramer-Schadt et al. 2009) and microevolutionary dynamics of both host and parasite (Best et al. 633 



2008), determining whether genetic and environmental determinants of M. bovis infection status 634 

and the severity and progression of bTB operate through resistance, tolerance, or both should be a 635 

useful  – if empirically challenging – priority. 636 
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Data accessibility Data used in this study are publicly archived in Open Research Exeter (ORE) at  638 
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  951 



Table 1. Intra-class correlations (ICC) for the binary measure of lifetime risk of Mycobacterium bovis 952 

infection (bTBlifetime). Estimates presented relate to the observed data scale but are obtained from a 953 

generalised model using a probit link. Posterior means are used as point estimates of ICC and 95% 954 

credible intervals are also shown. 955 

Variance component ICC 95% CI 

additive genetic 0.092 <0.001-0.195 

maternal  0.009 <0.001-0.033 

birth year 0.110 0.060-0.169 
natal group 0.040 0.013-0.073 
natal group x birth year 0.087 0.051-0.125 

 956 

  957 



Table 2: Likelihood ratio tests of random effect in animal models of bTBcapture fitted to age specific 958 

data subsets, and random regression animal model fitted to all data.  959 

Age class Component χ2 DF P 

O (cubs) additive genetic 0.10 0,1 0.377  
maternal 5.05 0,1 0.012  
year 50.4 0,1 <0.001  
group 19.7 0,1 <0.001  
group x year 86.6 0,1 <0.001 

1 (yearling) additive genetic1 0.00 0,1 0.500  
maternal 6.46 0,1 0.006  
year 79.6 0,1 <0.001  
group 10.1 0,1 0.001  
group x year 75.7 0,1 <0.001 

2+ (adult) additive genetic 3.75 0,1 0.026  
maternal 8.31 0,1 0.002  
year 36.1 0,1 <0.001  
group 9.36 0,1 0.001  
group x year 234 0,1 <0.001 

All (random regression) additive genetic2 7.59 3 0.055 

maternal 53.4 0,1 <0.001 

year 143 0,1 <0.001 

group 21.7 0,1 <0.001 

group x year 288 0,1 <0.001 
1Additive variance was bound to zero leading to identical log-likelihoods of full and reduced models 960 

2Reduced model contains three fewer parameters, although since negative genetic variances in 961 
intercept and slope are precluded use of 3 DF is conservative for statistical inference. 962 
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Figure 1: Histogram of Mycobacterium bovis infection status records by age and infection status 967 

score bTBcapture. Note that individuals may contribute multiple records (within and across ages), and 968 

only records of known age badgers are included. Badgers have known age at capture if fist sampled 969 

as a cub (age 0) or yearling (age 1) .  970 

 971 

972 

 973 

 974 



Figure 2: Estimated heritabilities and intra-class correlations for bTBcapture. Estimates from analyses of age class specific data subsets (cubs, yearlings, adults) 975 

are shown, together with estimates from the random regression (RR) model evaluated at ages 0, 1, 2 and 4 years. Error bars indicate ± 1 standard error but 976 

could not be obtained for ICC at age 0 under the random regression model (see supplemental appendix 3 for explanation of this). 977 

 978 
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Supplemental appendix 1: Diagnostic information from mcmcglmm model of bTBlifetime 981 

Here we present diagnostic plots and test results produced using MCMCglmm to assess convergence 982 
of our model of lifetime bTB status as a binary trait (see method for description). For information on 983 
how to use these diagnostics and why they are useful checks on the validity of MCMCglmm model 984 
outputs, the interested reader should refer to Hadfield 2019, Plummer et al 2006 and de 985 
Villemereuil et al. 2016). 986 
 987 
a) Posterior plots for fixed effects  988 
Note sex2 denotes the effect of being male (relative to female) while lastage, latage_sq, 989 
and lastage_cub are regression coefficients associated with linear (first order), quadratic, and 990 
cubic effects of age at last capture  991 
 992 
 993 
 994 
 995 
 996 
  997 



b) Posterior plots for random effect variances 998 
 999 
Note animal, dam, socg, byearF and socg:byearF denote the variance estimates (on the 1000 
probit link scale) labelled as additive (VA), maternal (VM), natal group (VNGr), birth year (VBY) and natal 1001 
group by birth year (VNGrxBY) in main text 1002 
 1003 
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 1052 
c) Effective parameter sample sizes (given autocorrelation)  1053 
 1054 

Fixed effect parameters Intercept 17994.381    

sex (male) 20611.472 

lastage 5751.063    

lastage_sq 10113.619    

lastage_cub 14029.229 

Random effect variances animal 1582.926 

dam 1582.926 

socg 8024.905   

byearF 5097.583   

socg:byearF 3962.126      

units 0 

 1055 
 1056 
 1057 
d) Heidelberger and Welch's convergence diagnostic test for stationarity 1058 

 
Stationarity 
test 

start 
iteration 

P Halfwidth 
test 

Mean Halfwidth 

Fixed effects 

Intercept passed 1 0.383 passed -2.6128 1.72E-02 
Sex (male) passed 1 0.225 passed 0.25004 1.68E-03 
Lastage passed 1 0.245 passed 0.86265 3.60E-03 
Lastage_sq passed 1 0.224 passed -0.12406 5.97E-04 
Lastage_cub passed 1 0.183 passed 0.00546 3.05E-05        

Random effects 

animal passed 1 0.577 passed 1.234 0.04942 
dam passed 1 0.211 passed 0.109 0.00194 
socg passed 1 0.65 passed 0.476 0.00479 
byearF passed 1 0.766 passed 1.288 0.01267 
socg:byearF passed 1 0.307 passed 1.013 0.00873 
units failed NA NA 

   

  1059 



Supplemental appendix 2: Estimated fixed effects and random effect variances on link (probit) 1060 
scale from mcmcglmm model of bTBlifetime  1061 

 1062 
Here we present the primary output results of the mcmcmglmm model of bTBlifetime, showing point es1063 
timates of fixed effects and random effect variances (as posterior means) with 95% credible interval. 1064 
All estimates relate to the link (probit) scale while ICC on the observed (0,1) data scale are presented 1065 
in the main text.  1066 
 1067 
Fixed effect estimates 1068 
 1069 
Note sex2 denotes the effect of being male (relative to female) while lastage, latage_sq, 1070 
and lastage_cub are regression coefficients associated with linear (first order), quadratic, and 1071 
cubic effects of age at last capture  1072 
 1073 
 1074  

Posterior mean Lower 95% CI Upper 95% CI eff.samp pMCMC 

(Intercept) -2.6128 -5.17603 -0.27206 17994 0.02876 
sex2 0.250042 0.011991 0.497298 20611 0.03853 
lastage 0.862648 0.597814 1.148476 5751 <3.00E-05 
lastage_sq -0.12406 -0.18532 -0.06485 10114 <3.00E-05 
lastage_cub 0.005455 0.001775 0.009028 14029 0.00187 

 1075 
 1076 
Estimated random effect variances  1077 
 1078 
Note animal, dam, socg, byearF and socg:byearF denote the variance estimates (on the 1079 
probit link scale) labelled as additive (VA), maternal (VM), natal group (VNGr), birth year (VBY) and natal 1080 
group by birth year (VNGrxBY) in main text 1081 
 1082  

Posterior mean Lower 95% CI Upper 95% CI eff.samp 

animal 1.234 4.209e-10     3.166      1583 

dam 0.1091 1.16e-11    0.4052     21908 

socg 0.4765 0.1379     0.913      8025 

byearF 1.288     0.547     2.214 5098 

socg:byearF 1.013 0.5099     1.575      3962 

units 1 1 1 0 
 1083 
 1084 
  1085 



Supplemental appendix 3: Estimated variance components and intraclass correlations bTBcapture.  1086 
 1087 
Here we present the REML-based estimates of variance components for bTBcapture as well as the 1088 
corresponding intra-class correlations (ICC; i.e. variance components as a ration of phenotypic 1089 
variance conditional on fixed effects). Estimates are presented from analyses of stage specific data 1090 
subsets (cubs, yearlings, and adults) and from the random regression animal model (RR). Note under 1091 
RR model VA and VPE change with age while other components are estimated under assumed 1092 
homogeneity and are therefore constant). Approximated standard errors are presented in 1093 
parentheses where available. 1094 
 1095 

a) Estimated variances and ICC from REML animal models fitted to age specific data subsets and to 1096 
all data using random regression (RR).  1097 

Model (age) Component V (SE) ICC (SE) 

Cub (0) additive genetic 0.002 (0.005) 0.011 (0.037) 

 permanent environment 0.048 (0.006) 0.328 (0.040) 

 maternal 0.012 (0.006) 0.082 (0.035) 

 group 0.003 (0.001) 0.024 (0.010) 

 year 0.010 (0.003) 0.066 (0.020) 

 group x year 0.021 (0.003) 0.140 (0.020) 

 residual 0.051 (0.001) 0.349 (0.018) 

Yearling (1) additive genetic1 0.000 (-) 0.000 (-) 

 permanent environment 0.181 (0.020) 0.516 (0.061) 

 maternal 0.047 (0.020) 0.134 (0.051) 

 group 0.006 (0.003) 0.018 (0.009) 

 year 0.040 (0.013) 0.115 (0.032) 

 group x year 0.036 (0.006) 0.104 (0.018) 

 residual 0.039 (0.001) 0.112 (0.008) 

Adult (2+) additive genetic 0.073 (0.038) 0.119 (0.062) 

 permanent environment 0.240 (0.038) 0.391 (0.070) 

 maternal 0.108 (0.043) 0.176 (0.059) 

 group 0.007 (0.003) 0.011 (0.005) 

 year 0.025 (0.008) 0.041 (0.013) 

 group x year 0.038 (0.004) 0.062 (0.007) 

 residual 0.122 (0.003) 0.200 (0.015) 

RR (0)2 additive genetic 0.000 (-) 0.000 (-) 

 permanent environment 0.069 (-) 0.308 (-) 

 maternal 0.047 (-) 0.210 (-) 

 group 0.003 (-) 0.013 (-) 

 year 0.018 (-) 0.080 (-) 

 group x year 0.012 (-) 0.054 (-) 

 residual 0.075 (-) 0.335 (-) 

RR (1) additive genetic 0.017 (0.011) 0.059 (0.036) 

 permanent environment 0.120 (0.011) 0.410 (0.039) 

 maternal 0.047 (0.010) 0.162 (0.029) 

 group 0.003 (0.001) 0.009 (0.003) 

 year 0.018 (0.005) 0.062 (0.016) 

 group x year 0.012 (0.001) 0.042 (0.004) 

 residual 0.075 (0.001) 0.256 (0.011) 



RR (2) additive genetic 0.063 (0.028) 0.134 (0.058) 

 permanent environment 0.254 (0.028) 0.537 (0.058) 

 maternal 0.047 (0.010) 0.100 (0.019) 

 group 0.003 (0.001) 0.005 (0.002) 

 year 0.018 (0.005) 0.039 (0.010) 

 group x year 0.012 (0.001) 0.026 (0.003) 

 residual 0.075 (0.001) 0.158 (0.006) 

RR (4) additive genetic 0.242 (0.092) 0.206 (0.078) 

 permanent environment 0.774 (0.093) 0.661 (0.077) 

 maternal 0.047 (0.010) 0.040 (0.008) 

 group 0.003 (0.001) 0.002 (0.001) 

 year 0.018 (0.005) 0.016 (0.004) 

 group x year 0.012 (0.001) 0.011 (0.001) 

 residual 0.075 (0.001) 0.064 (0.003) 
1Additive variance bound to zero in this model so no SE obtained 1098 

2 We were unable to obtain standard errors on variance components and ICC as estimated from the 1099 
random regression model at age 0 (cubs). As described in the main text, the RR model fitted genetic 1100 
and permanent effects as first order (linear) functions of age. We initially used a rescaled age 1101 
(subtracting 2 from actual age) such that the random intercept variances (and their estimated SEs) 1102 
directly estimated by the model describe VA and VPE at age 2. We then used the estimated random 1103 
intercept-slope covariance structures to project estimates of VA and VPE at different ages (0, 1 and 4). 1104 
However, it is not mathematically trivial to obtain SEs for these projected estimates at different 1105 
ages. To obtain those as a measure of uncertainty we therefore refitted the RR model with adjusted 1106 
scalings of age, such that zero on the adjusted scale corresponded to 0, 1 or 4 instead of 2). In 1107 
principle this should allow refitting of an identical model with slightly different parameterisations, 1108 
such that intercept variance (and their SEs) would now correspond to for VA and VPE at the other 1109 
(true) ages. In practice, this was achieved as expected to generate SEs on variances (and ICC) at ages 1110 
1,2 and 4. However, we could not achieve the same model fit with age standardised to a zero point 1111 
corresponding to a real age of zero (cubs). This is because, with this scaling the random genetic 1112 
intercept variance was fixed to the boundary of allowable parameter space. This prevented us 1113 
generating directly comparable SEs on the variance components and ICC for the RR model at age 0.  1114 

b) Estimated ‘character-state’ additive genetic (G) and permanent environment (PE) variance-1115 
covariance-correlation matrices across ages for bTBcapture projected from the random regression 1116 
model. Point estimates of variance (shaded diagonal), covariance (below diagonal) and correlation 1117 
(above diagonal) for ages 0, 1, 2 and 4 years are derived from a model in which additive genetic and 1118 
permanent environment effects are treated as first order functions of age.  1119 

 1120 

 1121 

  1122 

G Age 0 Age 1 Age 2 Age 4 

Age 0 0.000 0.708 0.675 0.657 

Age 1 0.002 0.017 0.999 0.998 

Age 2 0.003 0.033 0.063 1.000 

Age 4 0.005 0.065 0.124 0.243 

     

PE Age 0 Age 1 Age 2 Age 4 

Age 0 0.069 0.809 0.590 0.377 

Age 1 0.074 0.120 0.952 0.850 

Age 2 0.078 0.166 0.254 0.970 

Age 4 0.087 0.259 0.430 0.773 



Supplemental appendix 4: Estimated fixed effect coefficients (with SE) and associated conditional F 1123 
tests from all animal models of bTBcapture fitted by REML.  1124 

Model Effect Estimate (SE) F DF P 

cub Intercept 0.202 (0.195) 0.202 1,2624.8 0.653  
sex (F) -0.003 (0.194) 0.167 2,2347.4 0.846  
sex (M) -0.011 (0.194) 

   

 
season (Winter) 0.164 (0.025) 89.71 3,3098.2 <0.001  
season (Spring) -0.154 (0.015) 

   

 
season (Summer) -0.097 (0.008) 

   

yearling Intercept 0.300 (0.044) 39.42 1,38.5 <0.001  
sex (M) 0.024 (0.026) 0.858 1,1373.1 0.355  
season (Winter) -0.096 (0.011) 23.72 3,2166.6 <0.001  
season (Spring) -0.058 (0.013) 

   

 
season (Summer) -0.043 (0.011) 

   

adult Intercept 0.132 (0.062) 5.63 1,50.7 0.021  
sex (M) 0.079 (0.035) 5.257 1,1286.1 0.022  
season (Winter) -0.065 (0.017) 5.197 3,4939.9 0.001  
season (Spring) -0.041 (0.018) 

   

 
season (Summer) -0.026 (0.013) 

   

 
age 0.085 (0.03) 8.114 1,5277.5 0.004  
age2 -0.005 (0.005) 1.017 1,5179.4 0.313 

  age3 9.21x10-5 (2.74x10-4) 0.113 1,5123 0.736 

random 
regression 

Intercept 0.237 (0.224) 0.615 1,3756.8 0.433 

sex (F)1 -0.059 (0.223) 1.593 2,2948.1 0.204 

sex (M) -0.083 (0.223) 
   

 
season (Winter) -0.071 (0.009) 37.71 3,11093.1 <0.001  
season (Spring) -0.068 (0.009) 

   

 
season (Summer) -0.054 (0.006) 

   

 
age 0.099 (0.009) 122.9 1,2205.3 <0.001  
age2 0.001 (0.002) 0.266 1,12380.1 0.606 

  age3 3.77x10-5 (1.23x10-4) 0.094 1,12313.3 0.760 

Note cub data included some individuals with missing sex. For cub and RR models we included these 1125 
records and sex=missing was treated as the reference factor level. For yearling and adult models sex 1126 
effects indicate males relative to females. Autumn provides the reference level of season in all 1127 
models.  1128 

 1129 


