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Abstract: Optimal operation of hydropower reservoir systems is a classical optimization problem of 17 

high dimensionality and stochastic nature. A key challenge lies in improving the interpretability of 18 

operation strategies, i.e., the cause-effect relationship between system outputs (or actions) and 19 

contributing variables such as states and inputs. Here we report for the first time a new Deep 20 

Reinforcement Learning (DRL) framework for optimal operation of reservoir systems based on Deep 21 

Q-Networks (DQN), which provides a significant advance in understanding the performance of 22 

optimal operations. DQN combines Q-learning and two deep ANN networks and acts as the agent to 23 

interact with the reservoir system through learning its states and providing actions. Three knowledge 24 

forms of learning considering the states, actions and rewards are constructed to improve the 25 
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interpretability of operation strategies. The impacts of these knowledge forms and DRL learning 26 

parameters on operation performance are analysed. The DRL framework is tested on the Huanren 27 

hydropower system in China, using 400-year synthetic flow data for training and 30-year observed 28 

flow data for verification. The discretization levels of reservoir water level and energy output yield 29 

contrasting effects: finer discretization of water level improves performance in terms of annual 30 

hydropower generated and hydropower production reliability; however, finer discretization of 31 

hydropower production can reduce search efficiency and thus resulting DRL performance. Compared 32 

with benchmark algorithms including dynamic programming, stochastic dynamic programming, and 33 

decision tree, the proposed DRL approach can effectively factor in future inflow uncertainties when 34 

deciding optimal operations and generate markedly higher hydropower. This study provides new 35 

knowledge on the performance of DRL in the context of hydropower system characteristics and data 36 

input features, and shows promise of potentially being implemented in practice to derive operation 37 

policies that can be automatically updated by learning on new data. 38 

 39 
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 42 

Introduction 43 

Optimal real-time operation of hydropower reservoir systems has been widely studied and used as a 44 

classical optimization problem for testing new optimization and control algorithms (Yeh 1985;Giuliani 45 

et al. 2018). The popular algorithms include : 1) Hedging rules and operation rules-based approaches 46 

(Peng et al. 2015; Wan et al 2016; Ming et al.2017), which can be solved using evolutionary 47 

algorithms or other optimization methods; 2) various dynamic programming approaches based on the 48 

Bellman equation, including deterministic and stochastic approaches (Xu et al. 2014; Zhang et al. 49 

2019); 3) data-driven algorithms such as decision trees (Xi et al. 2010; Zhang et al. 2017) and artificial 50 

neural networks (ANN) (e.g., Wang et al. 2010). These approaches are normally developed offline and 51 

cannot effectively update operation policies according to the dynamically changing flow conditions 52 

(Quinn et al., 2019). Real-time control systems such as model predictive control, which can collect and 53 

process data and update the control algorithm in real-time or near real-time,  have been applied to 54 
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industrial control problems including urban wastewater systems (e.g., Meng et al. 2017 & 2020). Only 55 

recently, however, they were developed for reservoir systems (e.g., Galelli et al. 2014; Ficchi et al. 56 

2016; Vermuyten et al. 2018 & 2020). 57 

Hydropower operation can be modelled as a Markov Decision Process (MDP) (Lee and Labadie 58 

2007; Xu et al. 2014; Zhang et al. 2019), which is a Markov process with rewards and decisions. It can 59 

be argued that in some situations no perfect information on the system state is available, that is, the 60 

state is partially observable, so the operation problem is a partially observable MDP. For example, 61 

small reservoirs may not be fully monitored with high-resolution temporal and spatial water depth 62 

which are required for decision making. However, for simplicity, the reservoir operation problem is 63 

assumed as a fully observable MDP in this study. In the MDP, an agent (e.g., operator) interacts with 64 

the environment (e.g., the hydropower system) by taking an action (e.g., output of the turbines or 65 

reservoir release) depending on the current system states (e.g., water level), hydrological conditions 66 

(i.e., inflow) and rewards (e.g., hydropower benefit), which then affects the probability of the process 67 

moving into a new state. An MDP describes an environment for reinforcement learning (RL) where the 68 

agent can learn in real-time using new data to continuously improve its performance. Thus, RL is 69 

identified as one of the promising approaches for decision-making problems of MDP characteristics 70 

(Doltsinis et al. 2014). Indeed, it is particularly useful for optimal hydropower operation problems. 71 

RL algorithms have been substantially improved in many aspects in the past decades, including 72 

balancing exploration and exploitation (Sutton and Barto 2018), search strategies (Lin 2015), learning 73 

behaviour (Sutton and Barto 2018), reward evaluation (Gao et al. 2019). However, there is lack of 74 

application to water resources systems or hydropower systems with a few studies using traditional RL 75 

such as Opposition-based learning, Q-learning or fitted Q-iteration (Lee and Labadie 2007; Castelletti 76 

et al. 2010 and 2013). Traditional RL uses state decision tables to map the relationship between states 77 

and actions (Lin  2015; Gao et al. 2019). With an increasing number of state variables, however, the 78 

decision table approach as in the traditional RL cannot effectively handle the large number of 79 

combinations of states and actions, resulting in the curse of dimensionality problem (Mnih et al. 2013; 80 

François-Lavet et al. 2018). 81 

Recently, Deep Reinforcement Learning (DRL) was developed by combining traditional 82 

reinforcement learning with deep learning representation of non-linear high-dimensional mapping 83 
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between system states and expected action rewards (Mnih et al. 2013; Mnih et al. 2015). The DRL was 84 

first presented by Mnih et al. (2013) for Atari games using the variants of the traditional Q-learning 85 

model (Watkins and Dayan 1992). Subsequently, Mnih et al. (2015) developed a novel deep 86 

Q-network (DQN) to enhance the capability of the DRL to play the classic Atari 2600 game, where 87 

two ANNs with the same structure were applied to construct relationships between states and actions, 88 

hence DRL is capable of handling high-dimensional states and actions. LeCun et al. (2015) regarded 89 

DRL as an important model for decision-making in the field of artificial intelligence (AI). DRL is the 90 

core algorithm of AlphaGo and used to consider the future effects of each action to maximize the 91 

probability of winning (Silver et al. 2016). The learning capacity of DRL in a complex environment 92 

has been further enhanced recently (Mnih et al. 2013; Mnih et al. 2015), which promoted its 93 

application in various fields, such as electrical grid systems , mechanical control and unmanned aerial 94 

vehicles . To the best of our knowledge, DQN based reinforcement learning has not been tested or 95 

applied to solve reservoir and hydropower operation problems. 96 

In this study, we report for the first time a novel DRL framework for optimal hydropower 97 

operation and provide a significant advance in understanding its performance. The novelty of the DRL 98 

framework lies in the development of the DQN as an agent, consisting of two ANNs, to represent the 99 

relationships between states, actions and rewards, and definition of a decision value function for 100 

reward evaluation. Three forms of knowledge for DRL learning considering different system states are 101 

developed and compared. The Huanren Reservoir in North-eastern China is taken as an example to test 102 

the operation performance of the DRL framework. We benchmark our DRL results on decision tree 103 

(DT), dynamic programming (DP) and stochastic dynamic programming (SDP) models, which are 104 

already shown to be able to provide interpretability in their solutions. Interpretability is distinguished 105 

from the concept of explainability in this study. A model is defined as interpretable when a 106 

cause-effect relationship can be clearly observed within the system modelled. An explainable model 107 

focuses on describing the processing of the data or the representation of data inside a model, so it can 108 

explain how decisions are made inside the model. Through analysis of the results in terms of DRL 109 

performance and sensitivity to both input features and learning parameters, this study provides an 110 

in-depth understanding on the performance of DRL and an improved interpretability of reservoir 111 
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operation, which helps to reveal the cause-effect relationship of reservoir operation. This study moves a 112 

step further towards building trustworthy intelligent operation systems for practical application.  113 

 114 

Case Study 115 

Huanren Hydropower System 116 

Huanren Reservoir is located in the lower reaches of Hun River, in the north-eastern China. The 117 

reservoir basin covers an area within 124°43′~136°50′ E and 40°40′~42°15′ N, and the area is 118 

approximately 10,364 km2. The annual average precipitation is 860 mm and 70% of precipitation is 119 

concentrated between May and September. Huanren Reservoir is regulated in an annual cycle and is 120 

mainly operated for hydropower generation. Its main characteristics are given in Table 1. 121 

To generate a large training dataset, an Auto-Regressive and Moving Average (ARMA) model is 122 

used to simulate the inflows in the study basin, which was suggested by many studies ( e.g., McLeod et 123 

al. 1983). The observed 10-day average inflows of Huanren Reservoir from 1980 to 2010 are used to 124 

construct an ARMA model. Then, a series of 400-year synthetic inflows are generated by the ARMA 125 

for DRL training. This time series is able to capture the variability of the river flow that drives reservoir 126 

operations. The observed inflows of Huanren Reservoir from 1980 to 2010 are used to verify the 127 

performance of the trained DRL model. 128 

 129 

States and Actions 130 

In this study, the states and actions are used in discrete forms. The water level range from the dead 131 

water level to the normal water level is discretized into ten intervals using a discretization size of 1m. 132 

One year is divided into 36 periods for simulation using a 10-day time step. Note the number of days 133 

in the third period of each month varies from 8 to 11 days depending on the month. The inflow is 134 

discretized into six intervals, and the turbine output as a decision variable is also divided into six levels 135 

according to the characteristics of the turbines, which constitute the action set, as shown in Table 2. 136 

Note that the inflow and output in each row in Table 2 are not necessarily linked, i.e., no relationship 137 

between inflow and output is suggested here. 138 

 139 
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Optimal Hydropower Operation 140 

This section describes the problem of optimal hydropower operation and two classical solution 141 

methods for comparison with DRL, i.e., the SDP and DT. 142 

 143 

Problem Formulation 144 

In this study, the hydropower operation is to maximize the total power production as well as minimize 145 

the deviation from the required hydropower output to guarantee the stability of power supply. The 146 

hydropower benefit consists of two components: power production and penalty for deviation from 147 

system requirements as below 148 
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where R is the hydropower benefit; Nt is the hydropower output of the turbines at time step t and is the 149 

decision variable; ( )E  is the generated energy; and  is the penalty when Nt is 150 

less than the required firm output e, which is a constant value of 33 MW in the case study. Ft is the 151 

inflow at time step t; Fp,t is the outflow for power generation at time step t, which is determined by Nt. 152 

Fs,t is the amount of spilled water at time step t; Vt+1 is the storage capacity, which is generated by the 153 

water balance equation Eq. (5); Ht is the average head difference during time step t; Kt is the water 154 

level at the beginning of time step t; Kt+1 is the water level at the beginning of time step t+1 (i.e., the 155 

end of time step t); Dt and Dt+1 are the downstream water levels of reservoir at the beginning and end 156 

of time step t, respectively. η is the turbine efficiency, which is 0.9 in this study. t  is the simulation 157 

time interval and is 10 days in this study. 158 

The constraints are as follows: 159 

min maxtK K K   (6) 
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0 t MN N   (7) 

0 t MF F   (8) 

where Kmin and Kmax are the minimum and maximum water storage levels, respectively. NM represents 160 

the installed capacity of the hydropower plant, and FM represents the maximum release capacity of the 161 

turbines. 162 

 163 

Decision Tree Model 164 

The DT model (Bessler al. 2003; Wei and Hsu 2008; Xu et al. 2013) is used to benchmark the 165 

performance of the DRL model. DT is a type of implicit stochastic optimization and aims to determine 166 

the relationships between system states and actions (i.e., releases), i.e., to develop operation rules, 167 

through mining optimized operation policies from different inflow scenarios, which are obtained using 168 

a deterministic optimization model. DT models have a rather limited performance improvement 169 

compared to neural networks, but offer maximum interpretability to engineers as they build on 170 

revealing the cause-effect relationship between system states and actions (Bessler et al. 2003; Wei and 171 

Hsu 2008). It is not surprising that trusted DT data mining models are widely used for optimising 172 

hydropower operations since the 1990s (Xi et al. 2010; Xu et al. 2013; Hecht et al. 2020; Yang et al. 173 

2020). In this study, the C5.0 decision tree (Quinlan 2020) is employed to develop operation policies 174 

using optimization results as samples. The samples consist of condition (i.e., state) and decision (i.e., 175 

action) attributes. In this study, the condition attributes are the water level and inflow at the current 176 

time step, and the 10-day inflow forecast at the next time step, and the decision attribute is the 10-day 177 

output of the turbines at the next time step. 178 

The DT operation policies are generated using the following steps: 1) the operation policies are 179 

optimized using deterministic dynamic programming; 2) the operation policies at every time step are 180 

generated as operation samples, which are classified into four groups, i.e., dry season (November to 181 

April), prior-flood season (May to June), flood season (July to August) and post-flood season 182 

(September to October), to maintain the consistency of the sample decision-making methods; 3) the 183 

decision trees for each of the four seasons are developed using the C5.0 algorithm. Based on the 184 

decision trees, the operation policies of each season are generated from mining the results from the 185 

deterministic dynamic programming and used to simulate the hydropower operation. 186 
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 187 

Stochastic Dynamic Programming Model 188 

SDP is developed from deterministic dynamic programming and has been extensively studied in 189 

hydropower operation (Yeh 1985; Xu et al. 2014; Zhang et al. 2019). The optimal operation policies of 190 

the hydropower reservoir are derived by the recursive equation, which is based on the Bellman 191 

equation. In the SDP model, the water level at the current time step and the 10-day inflow forecast in 192 

the future are used as state variables and the output of the turbines is used as a decision variable. The 193 

inflow and water level are discretized into intervals which are represented by representative values, 194 

and the randomness of inflows can be addressed by transition probabilities (Xu et al. 2014). The 195 

interval representative values of the inflow and reservoir storage are written as  196 

1 2

t

1 2
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where tq̂  represents the inflow vector of the representative values at time step t; tK̂  represents the 197 

storage intervals at the beginning of time step t. The superscripts of μ and φ are the total number of the 198 

inflow and storage intervals, respectively. 199 

In the SDP model, it is assumed that the inflow constitutes a simple Markov process. Thus, the 200 

randomness of the inflow at time step t+1 is addressed through a Markov transition probability. The 201 

operation policies are derived using the backward Bellman equation by iterating until the ending 202 

storage reaches a steady state (Mujumdar and Nirmala 2007). The SDP model recursive equation is 203 

defined as  204 

1 1 1( , ) ( , , ) ( , )
  

 
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 
 ij

t t t t t t t

j

f K i Max R K i K P f K j  (10) 

where ft is the recursive equation at time step t. i and j are the intervals of the inflow at time steps t and 205 

t+1, respectively. 
ij

tP  is the Markov transition probability that the inflow of interval i at time step t 206 

transfers to interval j at time step t+1. 207 

 208 

Deep Reinforcement Learning Framework 209 

The main components of the DRL framework, as shown in Fig. 1, include an agent and the 210 

environment. The agent represented by the DQN interacts with its environment in discrete time steps. 211 
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At time t, the agent first receives the system states and inputs, i.e., the water storage level and inflow in 212 

this study. Then it selects an action with the maximum decision value from a set of available actions, 213 

according to the system states and inputs . Subsequently, the action is sent to the environment and 214 

implemented in the reservoir system to update the system states and evaluate the reward of the action. 215 

The states, rewards and actions are collected and stored to the computer memory, i.e., Random Access 216 

Memory (RAM), as the knowledge samples (Mnih et al. 2015). A knowledge sample is a tuple of 217 

different variables representing the states, rewards and actions. Three types of knowledge samples are 218 

tested in this study to investigate the cause-effect relationship between system states and actions. The 219 

samples are accumulated and updated by repeating the above simulation process, as shown by the solid 220 

lines in Fig. 1.  221 

The DQN acts as the agent to generate actions given system states and replaces traditional 222 

operating rules, and it aims to learning the knowledge of the environment through exploration and 223 

exploitation. The learning starts after a specified number of samples are collected. That is, it begins to 224 

train the DQN, i.e., action network (AN) and target network (TN) with the collected samples. Through 225 

use of two networks, we can achieve stability and the agent can improve the decision-making ability 226 

through continuous learning (see details of implementation and reasoning below), thus derives optimal 227 

operations for hydropower systems. The DRL framework is explained below in detail. 228 

 229 

Markov decision process 230 

The DRL operations are an MDP, and the agent interacts with its environment in discrete time steps. 231 

The MDP is a discrete time stochastic control process. It provides a mathematical framework for 232 

modeling decision making in situations where outcomes are partly random and partly under the control 233 

of a decision maker. An MDP is a 5-tuple (t, S, R, A, P), where t is time step, S is a set of states, R is 234 

the reward set, A is the action set, P is the state transition probability matrix.  235 

In MDP, the decision maker chooses action a from A according to the initial state s at the 236 

beginning of time step t. The process responds at time step t+1 by randomly moving into a new state s’ 237 

and giving the decision maker a corresponding reward. The transition probability is the likelihood that 238 

the system state moves from s to s’ considering randomness. s’ is influenced by the chosen action a 239 

https://en.wikipedia.org/wiki/Discrete_time
https://en.wikipedia.org/wiki/Stochastic
https://en.wikipedia.org/wiki/Optimal_control_theory
https://en.wikipedia.org/wiki/Decision_making
https://en.wikipedia.org/wiki/Randomness#In_mathematics
https://en.wikipedia.org/wiki/Tuple
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and the previous state s at time step t and is independent of all previous states and actions from earlier 240 

time steps. Thus, the state transition probability can be defined as below 241 

1( , ') ( ' | , )


   t t tP S S P s S s S a a  (11) 

In hydropower operation, the decision maker chooses a decision action based on the initial state s. 242 

The variables in s and s’ are specified in the knowledge forms described below. The output of the 243 

turbines is used as a decision action. The generated hydropower energy is the reward. The water level 244 

in the next state s’ is determined by the water level, inflow and action (i.e., outflow) at time step t. The 245 

inflow at time step t+1 is unknown in real time operation. Thus, the state transition probability is 246 

normally used to address the randomness of inflow. 247 

 248 

Deep Q-Network 249 

In the DQN implemented here, the twin ANNs i.e., AN and TN, have been constructed with the 250 

same structure, i.e., one input layer, one output layer and hidden layers. However, their parameter 251 

values (i.e., neuron weights) are updated at different times. The AN has the latest weights and is used 252 

to evaluate the decision value of the action in real-time operation; the TN is updated only at a certain 253 

time step (e.g., every 5 iterations of training) using the AN weights, and is used to evaluate the benefit 254 

from the remaining simulation periods. The gradient descent method which is applied to optimize and 255 

update the network weights (François-Lavet et al. 2018). The main purpose of DRL training is to 256 

update the weights of the AN and TN networks. 257 

The DQN mainly includes the following steps: (a) Building an agent including an AN and TN; (b) 258 

Training the AN; (c) Assigning the weights of the AN to the TN; (d) Selecting an action with the 259 

maximum Q value (i.e., the decision value of the action). The Q values of actions are generated using 260 

the AN with initial states (e.g. water level and forecast inflow) as inputs. During the above process, 261 

two techniques play a key role in improving the DQN performance: 262 

(1) Experience Replay. The knowledge samples are stored in the memory, and the batch samples 263 

for training are drawn from the memory randomly (Schaul et al. 2015), which breaks the correlation 264 

between the samples and makes the neural network update more efficient.  265 

(2) Target Network. If the weights of the AN are updated at each training, this would make the 266 

evaluation of the benefit from the remaining periods fluctuate greatly and impossible to converge. 267 
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Thus, the TN is used to ensure the stability of the DQN performance and should be updated less 268 

frequently than the AN. 269 

State, action and reward 270 

In this study, the reservoir storage level, inflow and operation period are used as the states of the 271 

reservoir system, and the output of the turbines is selected as the decision action. The hydropower 272 

energy benefit of an action is taken as the reward, which is evaluated using Eq. (1). 273 

 274 

Selection of decision action 275 

The DRL network takes the states (S) as inputs and the output is a vector corresponding to the Q 276 

values of all actions, i.e.,      1 2, , , , , , nQ S a Q S a Q S a   , where n represents the total number of the 277 

actions. In real-time operation, the vector is generated by the AN, and the action with the maximum Q 278 

value is selected as the optimal action. 279 

 280 

Knowledge form 281 

The hydropower generation knowledge for agent learning is constructed by the states (S) at the 282 

beginning and end of time step t, the operation decision action (At) and reward (Rt) at time step t. 283 

Understanding knowledge forms can help to improve the interpretability of reservoir operation. So the 284 

following knowledge forms are built: 285 

(1) Form A: the states (St) include the operation period (Tt) and the reservoir storage level (Kt) at 286 

the beginning of time step t. This form does not consider the inflow information and is represented as 287 

below: 288 

   1 1 1, , , , ,
  

   t t t t t t t tS T K Reward R Action A S T K  (12) 

(2) Form B: the inflows Ft at time step t and Ft+1 at time step t+1 are included in the states, as 289 

shown in Eq. (13). The inflow at time step t+1 needs to be known at time step t. Thus, the DRL model 290 

can be trained off-line with historical or synthetic data and used on-line when inflow forecasts at time 291 

step t and t+1 are available. In this study, the observed inflows are used as perfect forecasts to evaluate 292 

the performances of the models. 293 
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   1 1 1 1, , , , , , ,
   

   t t t t t t t t t tS T K F Reward R Action A S T K F  (13) 

(3) Form C: Form C is proposed for the on-line operation scenario, which is more realistic in 294 

current real world reservoir operations. In this scenario, the inflow at the current time step t (Ft) is 295 

forecasted in real-time operation and included in the states (St); the inflow (Ft+1) at the next time step 296 

t+1 is unknown or has high uncertainty, thus is not included in the states as shown in Eq. (14). Note 297 

that the time step (i.e., forecast horizon) is 10 days in this study. At the beginning of the current time 298 

step t, Ft represents the flow in the next 10 days so it cannot be observed and has to be forecasted in a 299 

real-world condition, and thus is assumed as the flow forecast in this scenario. The second 10-day 300 

inflow forecast (Ft+1) is not used directly in Form C as it is assumed to be highly uncertain. Instead, it 301 

is evaluated with Markov transition probabilities and added into St+1 to evaluate the decision value as 302 

explained in the section of Q value below.  303 

   1 1 1, , , , , ,
  

   t t t t t t t t tS T K F Reward R Action A S T K  (14) 

Q value 304 

In DRL, the immediate reward represents the performance of the action at the current time step, but the 305 

Q value reflects the performance of multiple time steps. Note that the DRL is based on the MDP, the 306 

decision value is constructed by the Bellman equation (Doltsinis et al. 2014), as shown in Eq. (15). In 307 

learning, the decision values of the training samples are evaluated and used for updating the weights of 308 

the networks. The decision values consist of the reward at time step t and the hydropower benefit at the 309 

remaining periods. An action is chosen with an aim to achieve the maximum decision value at each 310 

time step. The hydropower benefit at the remaining periods is represented by the maximum Q value at 311 

time step t+1, which is generated from the TN network using the state St+1. 312 

In the knowledge forms A and B, the state variables at time step t+1 can be obtained directly from 313 

the training sample and fed to the TN network to generate the Q value at time step t+1. Thus, the 314 

decision value function is defined as (Mnih et al. 2013; Doltsinis et al. 2014)  315 

    
1

1 1, ,


 
  

t
t t t t t

A
u S A R max Q S A  (15) 

where λ represents the discount rate. λ balances the reward at time step t and the benefit from the 316 

remaining periods. The smaller the λ value, the greater the effect of the immediate reward. 317 
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Fig. 2(a) shows the computational process of Eq. (15), i.e., knowledge forms A and B. Assuming 318 

that Action 2 is selected as the optimal action At using state St, the reward and the state St+1 of this 319 

action are evaluated. Based on St+1, assuming Action n has the maximum Q value amongst actions, so 320 

it is taken as the benefit from the remaining periods. 321 

Fig. 2 (b) shows the computational process of Form C. Inflow Ft+1 could have multiple values 322 

materialized with different transition probabilities, so the expected Q value is calculated to consider 323 

predictive uncertainties.  324 

In the knowledge form C, i.e., Eq. (14), the inflow at time step t+1 is unknown. To consider the 325 

high uncertainty of inflow at time step t+1, the Markov transition probability ij

tP  in Eq. (10) is used to 326 

represent the probability of inflow interval i at time step t to interval j at time step t+1. Then, St+1 can 327 

be obtained using the probabilistic inflows, and the Q values of the states at time step t+1 are generated 328 

by the TN network. Finally, the expected Q value, which represents the benefit in the remaining 329 

periods, is evaluated. The decision value function is defined as below 330 

 

(16) 

Whereμis the total number of inflow intervals and i should be determined at time step t and take a 331 

value from 1 to μ.  332 

 333 

Q-value update 334 

The Q value is evaluated by averaging the decision values in J time steps where J is the total number 335 

of simulation time steps, as shown in Eq. (17). Eq. (17) can be simplified as Eq. (18). During learning, 336 

Eq. (18) is applied to update the Q values based on the samples in the knowledge base (Mnih et al. 337 

2013). In machine learning, one epoch is an iteration of training when the entire training dataset passes 338 

the ANN. When the training dataset is big, it is further divided into batches for training. The loss 339 

function, i.e., Eq. (19), calculates the difference in the Q values between two training iterations (epoch 340 

or batch) k and k-1, and is used to update the weight parameters using the gradient descent method 341 

(François-Lavet et al. 2018). 342 
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       1, = 1 , , 


  k t t k t t t tQ S A Q S A u S A  (18) 

1( )


 k kLoss k Q Q  (19) 

where u represents the decision value function; Qk represents the Q value at iteration k; α is the 343 

learning rate. 344 

 345 

The algorithm 346 

In DQN, the agent's intelligence is determined by the AN and TN networks. The pseudo code of the 347 

DQN training is shown in Algorithm 1. 348 

In the algorithm, the parameters include the number of samples in the memory (W), the required 349 

minimum number of samples (w), batch size of training samples (D), training interval (L), greedy rate 350 

(ε), discount rate (λ) and weight update interval (β). W, w, L and D control the memory capacity and 351 

the conditions of learning, which are generally regarded as low sensitive to learning. By contrast, ε, λ 352 

and β are more sensitive. ε determines the probability of exploration by choosing an action randomly, 353 

which affects the search efficiency. Smaller values of λ make the DRL focus more on immediate 354 

benefits, and smaller values of β make more frequent to update TN weights and more difficult to 355 

converge. Both λ and β affect the stability of learning.  356 

In the case study, the architecture of AN and TN is determined through trial and error as below: 357 

one input layer, one output layer and three hidden layers of 100 nodes each with an activation function 358 

of Rectified Linear Unit (ReLU): g(z) = max{0, z}, and it can well represent the relationships between 359 

states and actions as shown by preliminary analysis. A deep network with more hidden layers may be 360 

required for more complex problems such as cascade reservoir operation problems. The DRL training 361 

ends after 2000 epochs, i.e., LT=2000. 362 

 363 

Algorithm 1 The Pseudo Code of the DQN-DRL Training 

Initialization： 

(1) Training epochs (LT=2000); (2) Total number of simulation time steps (J); 

(3)Training interval (L); (4) Batch size of training samples (D); (5) Memory (W=Φ) 

and minimum requirement (w); (6) TN weight update interval (β); (7) Greedy rate (ε); 

(8) Discount rate (λ); (9) Weights (η) of the AN; (10) Weights (ψ) of the TN. 

For k in Iteration count (LT): 

    Initialize States:  1 1 1 1, ,S T K F ; Cycle count (i=0) 
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For t in simulation time steps (J): 

If Random number< Greedy rate (ε): 

Choose an action randomly from the set of actions: Action=At 

Else: 

Choose the action with the maximum Q value: Action=At 

Execute the chosen action to calculate the new system state: 

Use Eq. (1) to evaluate Reward (Rt) 

Use Eq. (5) to evaluate the water storage level (Kt+1) at the end of time step t 
Save sample: The knowledge example at time step t is saved in the Memory 

Learning: 

If (W > w) and the remainder of (i×J+t)/L is 0: 

Randomly get D samples from the Memory: 1, , ,t t t tS R A S
  

Input St+1 and Rt to evaluate the decision value using the TN, i.e., Eq. 

(15) or Eq. (16) depending on the chosen knowledge form 

Input St to evaluate  1 ,k t tQ S A


 using the AN 

Use Eq. (18) to update  ,k t tQ S A  

Update the weights (η) of AN according to the Loss(k) 

k ++ 

If the remainder of (i×J+t)/β is 0:  

Update the weights of TN: ψ=η 
i++ 

 364 

Results and Discussion 365 

In this study, the 400-year synthetic inflows are used to develop the DT, SDP and DRL models. The 366 

planning horizon is 10 days, i.e., one simulation time step ahead. These models are developed to obtain 367 

the maximum benefits over the period of 400 years. Their performance is tested using the observed 368 

flows from 1980 to 2010, from which the inflow forecasts are taken. In addition, Dynamic 369 

Programming (DP) is used as a benchmark model using the observed flows, as in principle it can 370 

provide the best solution with future inflows assumed to be known during simulations.  371 

 372 

Impact of learning parameters 373 

The DRL learning performance is controlled by the model parameters. These parameters can be 374 

divided into two categories: control parameters and learning efficiency parameters, as shown in Table 375 

3. 376 

The control parameters are generally low sensitive parameters. The learning efficiency parameters 377 

determine the learning stability, search ability and convergence speed, and are normally high sensitive 378 

parameters. Thus, the impacts of the learning efficiency parameters are analyzed using the training 379 
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dataset. To compare search efficiencies, the rewards during the learning process are shown for 380 

different parameters in Fig. 3. A reward value represents the average reward of the generated samples 381 

at each time of training, and thus represents the operation performance after each training. With an 382 

increasing training epoch, the performance of the model improves and the reward values increase 383 

gradually. 384 

Fig. 3(a) shows the reward variations with different values of greedy rate ε. ε determines the 385 

probability that the operation decisions moving from exploitation to exploration. For example, when 386 

the ε greedy value is 0.95, the probability of the exploration is only 0.05. Such a large greed value can 387 

limit the DRL to discover new knowledge samples with high Q values, thus, it provides a low learning 388 

efficiency, i.e., a very flat reward curve during the learning process. When a smaller greed value is 389 

used, for example ε =0.8, a larger number of exploratory knowledge samples are generated and stored 390 

in the memory. This makes samples in the memory more diverse, However, inferior samples can also 391 

be included in the exploratory knowledge. In this case, it takes more time to exploit the samples during 392 

the learning process and the learning efficiency and accuracy can be low, in particular when a large 393 

amount of the inferior samples retains in the memory for a long time. Fig. 3(a) shows that a good 394 

balance between exploitation and exploration is achieved when ε =0.9 as the reward values are 395 

substantially higher than the reward traces of other rates. 396 

Fig. 3(b) shows the reward variations using different values of the discount rate λ. λ determines 397 

the impact of the benefit at the remaining periods on the decision value. A larger λ value implies that 398 

the benefit in the remaining periods has stronger influence on the decision value. When λ is 0.95, the 399 

decision value is predominantly determined by the benefit of the remaining periods and is only slightly 400 

influenced by the reward at the current time step. When λ is 0.75, the influence of the reward from the 401 

current action on the decision value becomes larger, and the networks of DRL pay more attention to 402 

the immediate benefit. In the learning, the discount rate λ balances the reward of the current action and 403 

the benefit of the remaining periods. The λ value of 0.85 achieves a good balance, thus has a high 404 

learning performance than other λ values.  405 

Fig. 3(c) shows the reward variations using different learning rates (α). When the value of α is 406 

0.001, the Q value is less affected by the decision value according to Eq. (18) and instead mainly 407 

affected by the historical Q value. It makes the change in the updated Q value relatively small, which 408 

javascript:;


17 

 

is not effective to the learning. With an increasing value of α, the Q and reward values are more 409 

affected by the decision value. With an increasing training epoch, the networks become stable 410 

gradually, and the reward variation curves show the performances of the α values. When the α value is 411 

0.03, the learning rate α has a higher performance than the others. 412 

Fig. 3(d) shows the reward variations using different weight update intervals (β) of the TN 413 

network. When the β value is 10, it represents that the TN network weights are updated every 10 414 

training epochs. When the β value is lower, the TN network weights are updated more frequently, 415 

making the Q value of the remaining periods more variable. Conversely, a larger β value increases the 416 

difference of the weights between the AN and TN networks, and thus increases the Q value distortion 417 

from the two networks. This can lead to slow and inefficient learning. 418 

The best parameter values obtained are provided in Table 3 and used in other analyses unless 419 

otherwise stated. As analysed above, the learning performance of the DRL is substantially affected by 420 

the learning efficiency parameters. Sensitivity analysis of learning parameters should be taken as an 421 

important diagnostic tool for generating an effective DQN policy.  422 

 423 

Impact of discretization 424 

Similar to learning parameters, the impact of discretization on model performance is investigated using 425 

the training dataset. In addition to the discretization size of 1 m, seven other scenarios are tested 426 

regarding the water level discretization, ranging from 0.25m to 2m. Fig. 4 shows the annual 427 

hydropower generated (AHG) and hydropower production reliability of the DRL with different 428 

discretization sizes. Reliability is defined as the probability that the output is no lower than the 429 

required firm output in this study (Hashimoto et al. 1982). Results show that AHG and reliability are 430 

increasing with increasing discretization precision of water level. This is mainly because the model 431 

accuracy is higher with increasing discretization precision of water level, however this is at expense of 432 

increasing search space and thus computing time. By contrast, increasing discretization precision of 433 

hydropower output reduces slightly AHG and Reliability, which results from reduced learning 434 

efficiencies. The reward variations of the eight scenarios during the training are shown in Fig. 5. The 435 

3D surface shows that the rewards are also increasing with increasing discretization precision of water 436 

level. 437 
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Similar to the learning parameters, the best performing discretization levels are used for further 438 

analysis and algorithm comparisons. Water level discretization should be considered in diagnostic 439 

analysis. 440 

 441 

Knowledge form 442 

Fig. 6 shows the results of three knowledge forms for the historical period 1980 - 2020. The reservoir 443 

water levels, shown in Fig. 6(a-c), can directly reflect the differences of the hydropower operations 444 

derived from different forms. The differences in water level between each of the three approaches and 445 

DP are shown in Fig. 6(d). 446 

Comparison of the results in Fig. 6 shows that the water levels of Forms A and B are controlled at 447 

the dead water level for most of the operation periods. Only in a few periods when the inflow is 448 

particularly large, the water level can rise to the normal water level. The main reason is that the outputs 449 

determined by the two forms are too large, which makes the water level quickly decrease to the dead 450 

water level. This result can be further explained using the knowledge samples for decisions at the 451 

current time step t=3 in Table 4 as below. 452 

In knowledge Form A, the inflow at the current time step (t=3) is not included in the states, 453 

though it is provided for each knowledge sample in Table 4 for the illustration purpose only. The 454 

samples in Table 4 have the same states at the 3rd time step, i.e., reservoir storage level K3 = 292 m, 455 

however, they have different rewards for different inflow values (F3). The states at the next period are 456 

the same (i.e., K4 = 293 m), thus the Q values at the remaining periods (i.e., Qt+1) are the same value 457 

(i.e., 6.0 MWH). However, the maximum inflow at the current period can generate greater hydropower 458 

energy using the action with higher output, and lead to a greater reward at the current step, which 459 

makes the decision value larger. That is, the sample with an inflow of F3=400 m3/s and action a6 with 460 

the maximum output of 11.5 MWH is learned by the DRL as the optimal action for time step t=3. 461 

With the DQN, the decision is made with the information of one step ahead. That is, at the current 462 

time step t, the decision is determined in anticipation of the system state at t+1, i.e., St+1. In Form B, 463 

the state St+1 is specifically related to the second 10-day flow forecast Ft+1. In Table 4, at the 3rd time 464 

step, the system state is (3, 292, 200), which means the current water level is 292 m and the flow 465 

forecast for this time step is 200 m3/s. The decision a6 at the 3rd time step is chosen with the 466 



19 

 

maximum accumulative benefit from the 3rd time step (5.5 MWH) and the remaining time steps (6.3 467 

MWH), given the system state at the 4th time step being (4, 291, 600). Note the benefit (i.e., Q value) 468 

of 6.3 MWH is estimated by the DQN for the water level of 291 m and the flow of 600 m3/s at the 4th 469 

time step. If the actual water level and flow are different at the 4th time step, however, the decision a6 470 

may not be the best decision at the 3rd time step. There is also an uncertainty in the benefit estimation 471 

by the DQN.  472 

In Form C, the state St+1 includes the water level only. However, the benefit from the remaining 473 

time steps (i.e., Qt+1 in Table 4) is evaluated as the expected Q value considering all possible flows 474 

with the transition probabilities. For the same system state (3, 292, 200) at the 3rd time step as in Form 475 

B, the decision a2 is chosen because the Q value for the water level of 292 m at the 4th time step is 476 

estimated as 6.3 MWH. Compared with the Form B decision, the Form C decision reserves more water 477 

in the reservoir at the 3rd time step. This decision is more robust as it considers the flow uncertainty in 478 

the future time steps. 479 

The results in Fig. 6 show that Form C achieves the closest water levels to those from the 480 

dynamic programming approach. This shows the flow transitions learned from the training data set can 481 

represent well the randomness of future inflows. Thus, Form C is regarded as the best knowledge form 482 

for deep learning in this case study and thus used in the following analyses. 483 

 484 

Relationships between state, inflow and outflow 485 

Operating rules or curves are commonly used for reservoir operation in practice due to their simplicity 486 

and ease to use. They generally define desired storage volumes (or water levels) or desired releases 487 

based on the time of year and the existing storage volume. Under the rules, releases or outflows are 488 

implicitly expressed as functions of system states and inflows.  These functions typically remain 489 

deterministic without considering the dynamic nature of reservoir operation, and thus offer high 490 

interpretability regarding revealing the cause-effect relationship of reservoir operation. However, the 491 

three methods used in this study, i.e., DT, SDP and DRL, provide probabilistic relationships between 492 

system states and inflows. These relationships are represented by the three models. In the case of DRL, 493 

the relationships are represented by the ANNs. They can be revealed using the mapping from water 494 
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level and inflow to outflow shown in Fig. 7. The box plots in Fig. 7 are obtained from the historical 495 

data. The DRL approach is implemented with Form C and parameters as shown in Table 3.  496 

As revealed in Fig. 7, the outflows vary greatly for a certain water level ranging from 290 m to 497 

300 m, however, the median outflows are very close for different water levels. The interquartile ranges 498 

of DRL (i.e., the distance between the first and third quantiles) are roughly the same for all water 499 

levels except the lowest and highest water levels (290m and 300m), and are wider than those of 500 

decision tree and SDP. At the highest water level 300m, the outflows from all three methods vary in a 501 

wide range, but the outflows from DRL are more varied than those from DT and SDP. This implies 502 

that DRL is more flexible and provides more varied outflows in order to maximize the total 503 

hydropower benefit in response to dynamic inflow conditions. By contrast, DT and SDP generate 504 

outflows of less variations and are unable to adjust outflows considering stochastic inflows.       505 

Note all three methods have a number of outliers at all water levels. This highlights that high outflows 506 

are needed even at low water levels, perhaps due to high inflows in the following time steps.  507 

Fig. 7 also show the relationships between inflow and outflow. The median outflows increase 508 

with increasing inflows and their interquartile ranges are also increasing except for the highest inflow. 509 

When the inflow occurs in the 6th interval, the outflow is very likely to be high in order to maintain the 510 

water level. The results from the three methods are consistent and reflect our intuitive knowledge in 511 

reservoir operation. 512 

To further explain the relationships between inflows, water levels and outflows, water level 513 

curves over an entire year are shown for two years: wet year 2010 and dry year 2002 in Fig. 8. 514 

Amongst the three methods, DT has the lowest water levels in the first six months (periods 1-16), 515 

which are dry periods, while DRL has the highest water levels and thus generate the highest 516 

hydropower benefits. In the wet year 2010, DRL increases outflows in periods 13-15 in anticipation of 517 

high inflows in July and August. This leads to the lowest water levels in periods 16-19 to prepare for 518 

high inflows and reduces the volume of spilled water over the year. In the dry year 2002, DRL releases 519 

less water to keep high water levels in periods 13-15 in anticipation of low flows in July and August. 520 

Note that the water level curves provide clear interpretability on why DRL outperforms other two 521 

methods.       522 
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Note that model interpretability focuses on describing the cause-effect relationship between 523 

inputs and outputs and making it simple and meaningful to users. By contrast, explainability is the 524 

extent to which the internal mechanics of a model can be explained in human terms. Increasing 525 

interpretability can effectively improve the model predictive ability given changes in inputs, thus 526 

improve the model trustworthiness for users. Interpretability is regarded as a key step towards 527 

explainability. In other words, explainable models must be interpretable, however, the reverse is not 528 

always true. The explainability of the DQN needs to be tackled in future research. 529 

 530 

Performance evaluation of hydropower energy 531 

The performances of the models, i.e., DRL, SDP, DT and DP, are shown in Table 5. As explained 532 

above, DRL is implemented with Form C and parameters as shown in Table 3, DRL outperforms the 533 

SDP and DT methods in the two metrics AHG and reliability. Note that the DP results are obtained 534 

with the assumption of known future inflows and thus represent the best performance that could be 535 

achieved with optimisation. The comparison in Table 5 demonstrates that DRL is effective in the 536 

development of optimal hydropower operations. The operations by DT has the worst performance on 537 

the efficiency and stability. This demonstrates a well-established trade-off: (1) DRL offers superior 538 

output and reliability performance, but very limited interpretability; whereas (2) DT models offer 539 

significantly worse output and reliability performance but provide more interpretable mapping from 540 

states to actions. Our attempts to evaluate the performance of DRL with respect to knowledge forms 541 

mitigate this trade-off and lead to improved understanding on the cause-effect relationship between 542 

energy output and system states, i.e., interpretability. In particular, this is illustrated through the 543 

knowledge samples developed from the 400-year synthetic inflows, which explain how a decision (i.e., 544 

action) is made by balancing the immediate reward from the current operation and the cumulative 545 

benefit from the future operations under a specific system state. 546 

Fig. 9 (a) shows the inflow variations during the 36 operation periods from 1980 to 2010 and Fig. 547 

9 (b) shows the 10-day hydropower output boxplots from the three models. Fig. 9 (b) shows that the 548 

AHG mainly comes from periods 6-33. To compare the performances of the models, the operation 549 

periods are divided into 3 stages: the first stage from 6 to 16, the second stage from 17 to 26 and the 550 

third stage from 27 to 33. 551 
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In the first stage, the snow in the basin begins to melt, and the inflow has the first peak, as shown 552 

in Fig. 9(a). Comparing the energies in Fig. 9(b), the boxes and black solid lines of decision tree are 553 

higher and longer than the others. This implies that the outputs of decision tree are larger, which make 554 

the water levels lower and the energy benefit at the following periods reduced.  555 

In the second stage, the inflow during wet season has the second peak. The boxes of decision tree 556 

are longer than those of SDP, especially in periods from 20 to 22. In the operation process, the 557 

decision tree, SDP and DRL spill a volume of 10.9×105, 8.8×105 and 7.2×105 m3 during this stage, 558 

respectively. The results indicate that the operation strategies of decision tree are highly variable with 559 

the worst performance. The operation strategies of SDP increase output to reduce spill water. 560 

In the third stage, the three models have large performance differences. Due to the poor control 561 

ability of the decision tree in the second stage, it makes the reservoir spill more water and has a lower 562 

water level at the end of the second stage. Thus, the lower water level reduces the efficiencies of the 563 

turbines, and the hydropower generation decreased significantly in this stage. The DRL reduces the 564 

outputs obviously in periods from 23 to 27; it makes reservoir store more water and keep higher water 565 

levels. Thus, in the following periods from 29 to 33, the DRL can generate more hydropower energies, 566 

resulting in a substantially higher annual output. 567 

Overall, the results in Fig. 9 reveal that the best performance achieved by DRL in comparison to 568 

other approaches lies in the good balance between the immediate rewards from the current operations 569 

and the cumulative benefits from the future operations. This is achieved through the appropriate 570 

knowledge form developed and the learning parameter values learn from the 400-year stochastic 571 

simulated inflows. Note that previous research has demonstrated the performance of Q-learning for 572 

hydropower operations in terms of accuracy and computational effectiveness in comparison to 573 

traditional stochastic dynamic programming (Lee and Labadie, 2007; Castelletti et al., 2010 and 2013). 574 

However, this study demonstrated for the first time the advantages of deep Q-networks in hydropower 575 

operations.  576 

 577 

Conclusions 578 

This study presented a novel deep reinforcement learning approach for reservoir operation using 579 

deep Q-networks. With the case study of Huanren reservoir, the new approach was trained using 580 
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400-year simulated inflows and was verified and evaluated according to the observed inflows from 581 

1980 to 2010. The key research findings are as below. 582 

(1) This study provides an insight into the learning efficiency of DRL considering the impacts of 583 

discretization sizes of water level and energy output. The results show that the hydropower energy and 584 

reliability improve with increasing discretization precision of water level. However, increasing 585 

discretization precision of energy output reduces the learning efficiency. This implies that increasing 586 

discretization precision of the system states can improve the DRL performance but increasing 587 

discretization precision of the actions can reduce the search efficiency and thus the DRL performance. 588 

(2) The four learning parameters of DRL, i.e., the learning rate, discount rate, greedy rate and TN 589 

updating intervals affect the trade-offs between the immediate rewards from the current operation and 590 

the cumulative benefits from the future operations. Thus, the values of these parameters need to be 591 

carefully analyzed to improve the DRL performance. 592 

(3) Three knowledge forms are developed and assessed for constructing effective deep 593 

reinforcement learning. When the future inflow is not considered in Form A or its forecast is 594 

considered as accurate without uncertainty in Form B, the operations chosen tend to generate large 595 

discharges and high hydropower output at the current time step. When the future inflow is considered 596 

as probabilistic using the Markov transition approach in Form C, however, the performance of DRL is 597 

significantly improved with the benefits from the remaining time steps well represented.  598 

(4) Compared to classical decision tree and stochastic dynamic programming, the DRL approach 599 

can factor in future inflow uncertainties when deciding optimal operations, thus achieve the best 600 

performance in term of annual hydropower generation and reliability. The twin networks can represent 601 

well the relationships between inflows, states and outflows through training with a 400-year stochastic 602 

inflow time series in the case study 603 

In summary, we contributed a deep reinforcement learning approach for hydropower operation, 604 

which outperforms the two classic hydropower operation approaches – decision tree and stochastic 605 

dynamic programming. This approach has the potential to be implemented in practice to derive 606 

optimal operation strategies that can be interpreted and automatically updated by learning on new data. 607 

 608 
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Fig. 1. The deep learning framework for hydropower operation. 722 
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Fig. 3. The effects of the learning parameters on DRL learning: (a) effect of greedy rate ε, (b) effect of 724 

discount rate λ, (c) effect of learning rate α, (d) effect of weight update interval β.  725 

Fig. 4. The AHG and reliability for hydropower operation with different discretization sizes 726 

Fig. 5. The reward variations of the DRL with different discretization sizes 727 

Fig. 6. Performances of the DRL models in the historical period 1980 - 2020. (a) water levels of the 728 
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DRL model with Form C; (d) differences in water level between the DP and each of three DRL 730 

models. 731 

Fig. 7. Relationships between system states, inflows and outputs 732 

Fig. 8. Water level variations under decision tree, stochastic dynamic programming and deep 733 

reinforcement learning. (a) wet year 2010 and (b) dry year 2002. 734 

Fig. 9. The boxplots of hydropower energy and inflow during the 36 operation periods. The boxes 735 

show 25 and 75 percentiles and the lines in the boxes are the medians (50 percentile). The 736 

whiskers show the distances to the maximum and minimum values. 737 
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Table 1. The Basic Characteristics of Huanren Reservoir 740 

 741 

Characteristic Value Characteristic Value 

Total Storage (109 m3) 3.46 Installed Capacity (MW) 222 

Usable Storage (109 m3) 2.19 Firm Output of Turbines (MW) 33 

Dead Storage (109 m3) 1.38 Outflow Capacity of Turbines (m3/s) 450 

Normal Water Level (m) 300 Dead Water Level (m) 290 

 742 

743 
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Table 2. The inflow intervals and output levels of Huanren reservoir 744 

 745 

Interval No. Inflow (m3/s) Output (MW) 

1 [0,50) 15 

2 [50,150) 33 

3 [150,300) 50 

4 [300,500) 70 

5 [500,800) 150 

6 ≥800 222 

 746 

747 
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Table 3. The parameters of the DRL model for the Huanren hydropower case study 748 

 749 

Control parameters Value Learning efficiency parameters Value 

Maximum memory capacity (W) 3000 Learning rate (α) 0.03 

Minimum sample requires (w) 200 Discount rate (λ) 0.85 

Training interval (L) 50 Greedy rate (ε)  0.9 

Batch of training samples (D) 200 Weight update interval (β) 30 

 750 

751 



32 

 

Table 4. Examples of the sample structure and Q value estimation 752 

Knowledge 

Form 

Samples in Memory at t=3 

<St, reward, action, St+1> 

Q value at 

t=4 

Decision value 

(ut=Rt+Qt+1; λ=1)1 

Form A 

< (3, 292), 4.5, a1, (4, 293) > 2 

< (3, 292), 5.0, a2, (4, 293) > 3  

… 

< (3, 292), 5.5, a6, (4, 293) > 4  

6.0 

6.0 

 

6.0 

4.5+6.0=10.5 

5.0+6.0=11.0 

… 

5.5+6.0=11.55  

Form B 

< (3, 292, 200), 4.5, a1, (4, 293, 200) > 

< (3, 292, 200), 5.0, a2, (4, 292, 300) > 

… 

< (3, 292, 200), 5.5, a6, (4, 291, 600) > 

6.0 

5.9 

 

6.3 

4.5+6.0=10.5 

5.0+5.9=10.9 

… 

5.5+6.3=11.8  

Form C 

< (3, 292, 200), 4.5, a1, (4, 293) > 

< (3, 292, 200), 5.0, a2, (4, 292) > 

… 

< (3, 292, 200), 5.5, a6, (4, 291) > 

5.9 

6.3 

 

5.6 

4.5+5.9=10.4 

5.0+6.3=11.3 

… 

5.5+5.6=11.1 

Note: 1simplified from Eqs. 15 and 16, Rt is the reward at t=3 and Qt+1 is the Q value at t=4; 2when 753 

F3=200 m3/s; 3when F3=300 m3/s; 4when F3=400 m3/s; 5the chosen decision with the maximum decision value. 754 

 755 

756 
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Table 5. The performances of the three operation models 757 

 758 

Operation model AHG (MWH) Reliability (%) 

DP 449.06 93.17 

Decision Tree 426.47 76.82 

SDP 428.47 86.46 

DRL 441.13 92.54 

 759 

 760 
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