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Abstract

Cellular distribution of organelles in living cells is achieved via a variety of transport mech-

anisms, including directed motion, mediated by molecular motors along microtubules (MTs),

and diffusion which is predominantly heterogeneous in space. In this paper, we introduce a

model for particle transport in elongated cells that couples poleward drift, long-range bidirec-

tional transport and diffusion with spatial heterogeneity in a three dimensional space. Using

stochastic simulations and analysis of a related population model, we find parameter regions

where the three-dimensional model can be reduced to a coupled one-dimensional model or

even a one-dimensional scalar model. We explore the efficiency with which individual model

components can overcome drift towards one of the cell poles to reach approximately even

distributions. In particular, we find that when lateral movement is well mixed, increasing

binding ability of particles to MTs is an efficient way to overcome a poleward drift. When

lateral motion is not well mixed, increasing the axial diffusivity away from MTs becomes

an efficient way to overcome the poleward drift. Our three-dimensional model provides a

new tool that will help to understand the mechanisms by which eukaryotic cells organise

their organelles in an elongated cell, and in particular when the one-dimensional models are

applicable.
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1 Introduction

1.1 Coordinated transport processes within the living cell

Physiology and survival of eukaryotic cells depends on proper spatial organization of vesicles or or-

ganelles. For instance, organelles that are involved in lipid homeostasis and fatty acid metabolism,

such as peroxisomes and lipid droplets, are evenly positioned. This may foster dynamic interaction

to transfer and distribute lipids, exchange metabolites or transduce signals [1] and is thought to

be of critical importance to their functional role in reactive oxygen species homeostasis [2]. A ran-

dom distribution of organelles can be achieved by various types of intracellular transport including

diffusion and directed motion. In living cells, both diffusion and directed motion are important

for organelle/vesicle transport and stochastic transitions between them has also been reported for

several organelles [2, 3, 4, 5].

Long-range directed transport is mediated by molecular motors such as plus end-directed ki-

nesins and minus end-directed dyneins, which use the polarity of microtubules (MTs) in the cell for

bidirectional organelle motility [6]. In contrast, diffusion of particles is generally assumed to under-

pin in random organelle motility (see [2] and references therein). In addition short range motility

of organelles occurs in living cells [7, 8] which might be driven by unidirectional motion associated

with cytoplasmic flow [9]. Coordination between diffusive transport and directed transport has

been studied in various systems [10, 11, 12]. In particular, within the fungus Ustilago maydis where

the cytoskeletal architecture and molecular basis of motor motility and membrane trafficking is

well understood [13, 14]. In this system it was shown that active diffusion and directed transport

cooperate to distribute organelles against a poleward drift, mediated by actin-based processes [2].

Diffusive behaviors within the cytoplasm can be complicated and highly heterogeneous. En-

hancement of passive diffusion by ATP-dependent movements in the cell (also known as “active

diffusion”) as well as anomalous diffusion behaviour (subdiffusion or superdiffusion) has been ob-

served in living cells [15, 16, 17, 18, 19, 20, 21]. Enhanced diffusion could be due to motor-based

stirring of the cytoplasm, movement on a random network within the cytoskeleton, or transient

interactions with moving motors/cargos [15, 16, 22, 23, 24]. Anomalous diffusion can be associ-

ated with transient immobilization or trapping, molecular crowding or cytoskeletal networks that

impose obstacles around diffusing molecules [25]. As a consequence, diffusion process inside cells

could be inhomogeneous and space dependent. In particular, studies on membrane trafficking in
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the elongated hyphal cells of the model fungus U. maydis have shown that MT-based bidirectional

motility of organelles (in particular early endosomes), as well as cytoplasmic particles (e.g. ri-

bosomes) interacting with early endosomes, enhance the diffusion of peroxisomes near MTs, by

potential collisions [26, 2]. This adds to the growing body of evidence that organelles and vesicles

undergo diffusion with heterogeneity.

1.2 Modelling coordinated transport

Mathematical modelling has already elucidated many basic aspects of cargo transport and motor

behaviour [2, 27, 28, 29, 30]. For the long-range directed transport, interactions between particles

are often modelled using an exclusion process on a lattice and analysis is usually based on mean

field approximations [27, 31, 32, 33]. Diffusion of particles through a homogeneous medium can be

modelled as an unbiased random walk on a discrete lattice or a Brownian motion formulated as a

stochastic differential equation (SDE) on a continuous space with spatially homogeneous diffusivity

[25]. The time evolution of spatial distribution (or concentration) of particles in association with

the SDE is usually described as a drift-diffusion equation in a number of biological applications [34,

35, 36, 37, 38]. Coordinated diffusive and directed transport is usually modelled by a system of

partial differential equations (PDEs) (e.g. in [39, 40]) by ignoring interactions of particles.

A previous study of the spatial organization of peroxisomes in living U maydis hyphal cells [2]

considers a simple 1-D coordinated model to describe the axial placement of three populations of

diffusive organelles that are well mixed laterally and coordinated with other two populations (the

directed moving organelles).

∂ρ
∂t

= Dax
d2ρ
dx2
− v dρ

dx
− waρ+ wd(ρ

+ + ρ−)

∂ρ±

∂t
= ∓udρ±

dx
+ wa

2
ρ− wdρ± − ω(ρ± − ρ∓)

(1)

with boundary conditions:

Daxρx − vρ = 0, x = 0, L

ρ+(x) = ρ−(x), x = 0, L.
(2)

This coupled 1-D model is similar to the three-state model for kinesin motor transport in [41]

but allows the transition between two directed transport states and poleward drift of diffusive

particles. Analytical methods such as the quasi-steady-state (QSS) method [25, 41, 42] under

certain conditions have been proposed to reduce and solve these PDEs and have been applied for

a wide range of active transport processes.

Models have also been developed to take the heterogeneous environment into account in the

diffusion process. For instance, a computational model was implemented to study diffusion in

3



dendrite-like structures yielding anomalous diffusion [17]. Another geometrically heterogeneous

example is diffusion in a narrow 2-D (or 3-D) channel of a varying cross section such as the motion

of molecules through carbon nanotubes [43], for which methods have been introduced to project

the diffusion into a lower dimensional space with an effective diffusivity [43, 44, 45]. To address the

influence of molecular crowding on diffusion, heterogeneity has been modelled in terms of randomly

positioned obstacles with the effects of excluded volume [46].

Heterogeneous diffusivity leads naturally to considerations of diffusion processes with disconti-

nuity in diffusion rates (referred as skew diffusion); see e.g. [47, 48]. 1-D skew diffusion process is

tractable [49, 50] and several simulation methods have been proposed to simulate its process; see

[51] and references therein. Theoretical study of advective skew dispersion has been extended to

cases with non-zero drift or multiple layered media [49, 52, 53], and simulation methods have been

extended for high-dimensional interface such as hyperplanes and circles [48, 54]. In the presence

of drift in diffusion with discontinuity the process can be described by an elastic skew Brownian

motion [49].

In this paper, we extend the coupled 1-D transport model (1) to a more realistic (but still

idealized) 3-D model that includes heterogeneous and piecewise-constant diffusivity. We focus on

steady state distribution of particles and explore conditions where the extended 3-D model are

well described by the coupled 1-D model (1) of [2] or even a simplier 1-D scalar model. We explore

the efficiency of individual components in our model, in opposing a poleward drift in order to give

approximately even equilibrium distribution of organelles within the cell.

2 An idealized 3-D model of coordinated organelle motion

within an elongated cell

2.1 A particle-based 3-D model

We present here a model for the transport of organelles within an elongated living cell represented

by a cylinder domain Ω := {x = (x, y, z) : y2 + z2 ≤ R, 0 ≤ x ≤ L}. The model takes into account

the drift diffusion in the cytoplasm and long-range bidirectional transport along MTs. The MTs

are allocated in the center of the cell and is organized in an orientation given by a unit vector field

m := (1, 0, 0). Organelles near MTs are assumed to have different diffusivity compared to those

far away from MTs as seen in [2]. For simplicity, we consider a zone around MTs (that we call the

MT zone) denoted by ΩC := {(x, y, z) ∈ Ω : y2 + z2 ≤ R0}. With this set up for the MT zone and
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the cell geometry (see the cartoon in Fig 1), we make the following assumptions on the transport

behaviour:

A1 Diffusive organelles move with a drift velocity v and diffusivity tensor D, both of which may

depend on locations. For simplicity we assume piecewise constant diffusivity which has a

discontinuity at the MT zone boundary ∂ΩC ; we denote by D− for the diffusivity inside MT

zone and by D+ for that outside the MT zone. The poleward drift of organelles is shown to

be mediated by actin-based processes in U. maydis [2] and thus we include only one non-zero

component - the x-component. We denote v := v ·m for the non-zero velocity component

of drift.

A2 Organelles in the MT zone bind onto MTs at a constant rate wa (with equal probability

for each direction) to move directly along MTs with a mean velocity ±um for each of two

directions respectively. We denote “+” for motion towards the tip (x = L) and “-” for away

from the tip.

A3 Organelles on MTs unbind from the MTs at a constant rate wd to move diffusively in the

cytoplasm.

A4 Organelles on MTs change direction of motion at a constant rate w. At the ends of MT zone

(i.e. Γ := {x = (x, y, z) ∈ ΩC : x = 0, L}), they change direction immediately; this reflects a

situation where there is no clustering of organelles at MT ends [2].

A5 The system is in a dilute state, i.e., we do not consider crowding of the organelles that are

being transported and we assume particles do not interact with each other.

A6 On the timescale considered, no organelles enter or leave the cell, nor is there production or

destruction of organelles. This means that the total amount of organelles is conserved during

the transport and there is no net flux of organelles at the cell membrane.

It is noticed in [2] that organelles near MTs diffuse faster than those far away from MTs; this

is considered to be the influence of interactions with cargos moving along MTs. Similarly, axial

diffusion can be larger than lateral diffusion due to interactions with directed moving cargos along

the cell axis, or interactions with actin-based movement near the cell cortex. Thus, we assume

different diffusivity for particles within the MT zone compared to those outsize the MT zone and

also different diffusivity between axial (i.e. x−axis) and lateral (i.e. y(z)−axis) diffusivity (denoted

as Dlat, Dax respectively.). For simplicity we assume the diffusion rates to be piecewise constant,
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with discontinuity at the interface ∂ΩC , to model the heterogeneity in the cytoplasm and write

the diffusion matrix D(x) as

D(x) =


Dax(x) 0 0

0 Dlat(x) 0

0 0 Dlat(x)


where Dax(x) = D−ax, Dlat(x) = D−lat if x ∈ ΩC and otherwise Dax(x) = D+

ax, Dlat(x) = D+
lat where

D±ax(lat) are constants. That is D(x) = D− if x ∈ Ωc and otherwise D(x) = D+.

wa

wd

u

v

w

w
u

R

R0

c

D+

D-

Figure 1: Illustration of a cylindrical geometry for the 3-D coordinated transport model. Ω :=

{x = (x, y, z) : y2 + z2 ≤ R, 0 ≤ x ≤ L} represents the domain of a cell with length L and radius

R; ΩC := {(x, y, z) ∈ Ω : y2 + z2 ≤ R0} represents a MT zone with radius R0 where microtubule-

based bi-directed transport occurs with speed u; transition between forward and backward directed

movement occurs with rate ω. Particles diffuse with diffusivity D+ when outside ΩC and with D−

when inside Ωc. Particles in the MT zone ΩC leave the zone with rate ωd and particles outside

the MT zone enter into the zone with rate ωa. Diffusive particles are also assumed to drift with

velocity v.

Particle movements are simulated according to a stochastic simulation scheme given in Ap-

pendix A. Fig 2 illustrates an example of a particle path simulated within a geometry of L = 30µm,

R = 0.86µm and R0 = 0.25µm, considering the radius and typical hyphal cell and MT zone inside

[2]. This geometry is used throughout the manuscript.

2.2 A dilute population-based 3-D model

With the assumptions A1-A5 in Section 2.1 and an assumption of a dilute population with no

interaction, we model the spatial distribution of particles P (x, t) (i.e., the probability of finding

a particle at position x ∈ Ω and time t) using coupled drift-diffusion equations as follows. We

classify particles into three populations and denote the density of each population by ρ(x, t) for

drift-diffusive particles and ρ±(x, t) for directed moving particles in an orientation. Thus P (x, t) =
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Figure 2: Illustration of a single trajectory simulated in a geometry with L = 30µm,R =

0.86µm,R0 = 0.25µm for 50s; only a section of the geometry is shown for visualization effect.

Diffusion rates used are (in µm2/s): D−lat = 0.04, D+
lat = 0.001, D−ax = 0.015, D+

ax = 0.003 and

other parameters are u = 1.9µm/s, v = 4.4 × 10−4µm/s, wa = 0.2/s, wd = 0.17/s, ω = 0.12/s.

Observe how the particle switches from a diffusive motion to a deterministic long range motion in

the MT zone and then back to diffusive motion. The deterministic long range motion only occurs

if the particle is within the inner cylinder (the MT zone).

ρ(x, t) + ρ+(x, t) + ρ−(x, t) and their time evolutions are governed by the following equations:

∂ρ
∂t

= ∇ · J(ρ), x ∈ Ω\ΩC

∂ρ
∂t

= ∇ · J(ρ)− (waρ− wdρ+ − wdρ−), x ∈ ΩC

∂ρ±

∂t
= ∓um · ∇ρ± + wa

2
ρ− wdρ± − ω(ρ± − ρ∓), x ∈ ΩC

(3)

with boundary conditions:

n · J = 0, ∀x ∈ ∂Ω

ρ,n · J continuous , ∀x ∈ ∂ΩC

J+ = −J−, ∀x ∈ {Ωc|x = 0, or, L}

(4)

where J(ρ) = D∇ρ − vρ and J± = ±uρ±. Recall that D(x) is a piecewise constant function

with two constant matrix-valued diffusion rates for x ∈ ΩC and x ∈ Ω\ΩC . The first boundary

condition refers to the net flux of particles, the second condition requires continuity in the density

and flux of particles, while the last condition refers to the immediate return at MT ends in the

directed transport. The immediate return (change of population type) of directed moving particles

at MT ends corresponds to the observation that their carrier early endosomes typically do not fall

off the MT or form cluster at the cell tip, instead they rapidly move away from the tip due to

dynein motor activity [13, 29, 2].

Note there is invariance of particle density of each population ρ(x), ρ±(x) to rotation in the

y-z space in the steady state, and so we consider polar coordinates in the cross section. Let

y = r cos θ, z = r sin θ, then we have dρ
dθ

= dρ±

dθ
= 0. Thus in the steady state, the model (3) has a
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solution independent of θ that satisfies

0 = D−axρxx + 1
r
∂
∂r

(rD−latρr)− vρx r ∈ [R0, R], x ∈ [0, L]

0 = D+
axρxx + 1

r
∂
∂r

(rD+
latρr)− vρx − (waρ− wdρ+ − wdρ−), r ∈ [0, R0], x ∈ [0, L]

0 = ∓u∂ρ±
∂x

+ wa

2
ρ− wdρ± + ω(ρ± − ρ∓), r ∈ [0, R0], x ∈ [0, L]

(5)

subject to boundary conditions:

Jax := Dax(r)ρx − vρ = 0, r ∈ [0, R], x = 0, L

Jlat := Dlatρr = 0, r = R, x ∈ [0, L]

Jax, Jlat, ρ continuous , r = R0, x ∈ [0, L]

ρ+(r, x) = ρ−(r, x), r ∈ [0, R0], x = 0, L

where Dax(r) = D−ax, Dlat(r) = D−lat if r ≤ R0 and otherwise Dax(r) = D+
ax, Dlat(r) = D+

lat. We use

the same notation Dax(·), Dlat(·) in different coordinates without ambiguity. The corresponding

dimensionless equations can be found on setting τ = ωt, s = r/R, ξ = x/L and s0 = R0/R, namely

0 = ρξξ + Q+

s
∂
∂s

(sρs)− Pe+ρξ, s ∈ [s0, 1], ξ ∈ [0, 1]

0 = ρξξ + Q−

s
∂
∂s

(sρs)− Pe−ρξ − (Waρ−Wdρ
+ −Wdρ

−), s ∈ [0, s0], ξ ∈ [0, 1]

0 = ∓U ∂ρ±

∂ξ
+ Wa

2
ρ−Wdρ

± + 1

D̂−
ax

(ρ± − ρ∓), s ∈ [0, s0], ξ ∈ [0, 1]

(6)

where Pe± := vL
D±

ax
, Q± :=

L2D±
lat

R2D±
ax

, Wa,d :=
wa,dL

2

D−
ax

, U := uL
D−

ax
and D̂−ax := D−

ax

ωL2 ; see Appendix B.

This means the population dynamics arises through a combination of a standard single-species

drift-diffusion, coupled to two other populations confined to s < s0 that are of hyperbolic type.

In the following sections, we investigate conditions where the 3-D model (6) or (5) can be

reduced to the coupled 1-D model (1) or even a simplier scalar 1-D model and study the impor-

tance of individual components in the coordinated transport in opposing drift to evenly distribute

particles.

3 Results

3.1 Reduction to the coupled 1-D model

In this section, we examine conditions where the 3-D model (5) could be reduced the 1-D model (1).

From dimensionless Eq. (6), when Q± are sufficiently large (i.e. sufficiently large lateral diffusivity

D±lat), we consider the dependence of ρ, ρx on radius r is weak. We take integral over the cross

section in Eq. (5) and denote ρ̃(x) =
∫ R

0
2πrρ(r, x)dr, ρ̃±(x) =

∫ R
0

2πrρ±(r, x)dr. By ignoring
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the term ∂
∂r

(rρr) in Eq. (5) and dependence on r of ρ, ρx, we write the 3-D mode (5) as the 1-D

model (1) for ρ̃, ρ̃± where diffusivity and binding rates are replaced by effective rates expressed as

Dax,eff := D−axp+D+
ax(1− p), wa,eff = pwa (7)

Here p =
R2

0

R2 is the proportion of volume in the inner cylinder ΩC . Thus the total density profile

along the x-axis can be expressed as P̃ (x) = 2π
∫ R

0
P (r, x)rdr = ρ̃(x) + ρ̃+(x) + ρ̃−(x). For

convinience, we still denote P (x) as the total density profile along x-axis.

To examine this reduction from 3-D to 1-D model, we compare the total density profile P (x)

obtained from the particle-based simulation described in Appendix A with numerically calculated

solution of the model (1) using effective rates (7). Fig 3 (a2,d2) show two examples where the

3-D model (5) well reduces to the coupled 1-D model (1) in terms of the density profile P (x) for

cases: drift diffusion only with wa = 0−1s and coupled with directed transport (ωa = 0.0034s−1);

the corresponding variation on the lateral direction of density profile ρ(r, x) of diffusive particles

can be seen in Fig 3 (a1,d1) which show homogeneous density in radius.

To further confirm the validity of the effective rate expression (7), we calculate the effective

rates from simulated paths xt. The simulated effective diffusion rate is calculated by fitting the

mean square displacement MSD(t) with a time lag t in longitude direction to the linear function

MSD(t) = 2Dt in a short time scale. The effective binding rate is calculated as the inverse of

simulated mean first binding time to the MT. The mean binding time takes averages over a number

of initially evenly-distributed particles in the domain Ω. We remark here that the first binding

time is not simply a combination of first entering time to the MT zone and its waiting time to bind

onto MTs, as a particle within the MT zone could diffuse out of the zone before it has a chance to

bind. Fig 4 shows that the simulated effective rates indeed agree with the analytical expression (7)

for various MT zone radius.

We calculate the difference of total density profiles P (x) between 3-D model and 1-D model

reduction (1) using effective diffusion and binding rates from (7), on varying Pe+ and Q+ for

fixed Pe− and Q−, and show this in Fig 3 (c,f). The difference is calculated using the L1 metric

|P ′(x)− P (x)|1 :=
∫ L

0
|P ′(x)− P (x)|dx where P (x) and P ′(x) are total density profiles from 3-D

model simulations and 1-D model calculations respectively. Indeed, we see from Fig 3 (c,f) that

with larger Q+, the total density profile P (x) from 1-D model reduction gets closer to the total

density profile from 3-D model simulation, meaning that given sufficiently large Q− and Q+, the

3-D model can be reduced to 1-D model with effective rates (7). In terms of diffusivity, this

indicates for fixed axial diffusivity, sufficiently large lateral diffusivity allows the reduction of the

3-D model (5) to the 1-D model (1) with effective rates given in (7).

9



10 20 30

0.2

0.4

0.6

0.8

8

10

12

10
-6

0 10 20 30

0.02

0.04

0.06
3-D model simulation

1-D model reduction

5 28 51 74 97 120

0.4

20.2

40

59.8

0.2

0.4

0.6

0.8

1

1.2

10 20 30

0.2

0.4

0.6

0.8 0

2

10
-4

0 10 20 30

0

0.5

1

5 28 51 74 97 120

0.4

20.2

40

59.8

0.2

0.4

0.6

0.8

1

1.2

10 20 30

0.2

0.4

0.6

0.8

8

10

10
-6

0 10 20 30

0.02

0.03

0.04

10 20 30

0.2

0.4

0.6

0.8
5

10

15

10
-5

0 10 20 30

0

0.5

Figure 3: The panels show density profile ρ(r, x) for the diffusive population (left panels), total

density profiles of all populations P (x) (middle panels) and the difference (right panels) of the

total density profiles P (x) between simulations of the 3-D model (3) and numerical calculations

of the reduced 1-D model (1) with effective diffusion and binding rates from (7). The difference

on P (x) is calculated as L1 metric. Note that the total density profile P (x) = 2π
∫ R

0
r(ρ(r, x) +

ρ+(r, x) + ρ−(r, x))dr is conserved as
∫ L

0
P (x) = 1. The top panels (a-c) show for wa = 0/s while

bottom panels (d-f) show for wa = 0.0034 s−1. (a1-a2) use parameters Pe+ = 0.4 and Q+ = 5

which corresponds to D+
lat = 2.7 × 10−4µm2/s, D+

ax = 3.15 × 10−2µm2/s, and wa = 0/s. The

difference on P (x) between 3-D model and 1-D model is marked ‘×’ in (c). (b1-b2) use parameters

Pe+ = 66.4, and Q+ = 120 which corresponds to D+
lat = 3.9×10−5µm2/s, D+

ax = 1.4×10−3µm2/s,

and wa = 0/s. The difference on P (x) is marked ‘+’ in (c). (d1-d2) use parameters the same as

in (a1,a2) except that wa = 0.0034/s. The difference on P (x) is marked ‘×’ in (f). (e1-e2) use

parameters the same as in (b1,b2) except that wa = 0.0034/s. The difference on P (x) is marked

‘+’ in (f). Simulated densities are averaged over 2 × 1010 steps. Other parameters if unspecified

are v = 4.4 × 10−4µm/s, wd = 0.17/s, w = 0.12/s, u = 1.9µm/s, D−lat = 1.4 × 10−3µm2/s,

D−ax = 0.015µm2/s (which correspond to Pe− = 0.88 and Q− = 113).
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Figure 4: Illustration of effective axial diffusion rate (a) and binding rate (b) on varying radius R0.

Effective binding and axial diffusion rates from 3-D model simulations agree well with the analytical

approximation (7). (a) uses parameters v = 0µm/s, wa = 0/s, D−lat = 1.4×10−3µm2/s and (b) uses

parameters wa = 3.4× 10−3/s, D−lat = 4.2× 10−3µm2/s. In both panels D+
lat = 1.4× 10−3µm2/s,

D−ax = 0.015µm2/s, D+
ax = 3× 10−3µm2/s and other parameters are the same as in Fig 3 (d2). In

panel (b), the corresponding Pe− = 0.88, Q− = 341, Pe+ = 4.4, Q+ = 568.

Fig 3 (b2,e2) shown two examples when Q+ is no longer sufficiently large that the 3-D model (5)

cannot be well reduced to 1-D model (1) with the effective rates given in (7) for cases with/without

directed transport. In such cases the density profile ρ(r, x) has sharp gradient in radius as shown

in Fig 3 (b1,e1). We also test the effective binding rate expression (7) in Fig 5. When Q+ is no

longer sufficiently large, the simulated effective binding rate deviates from the value given by (7).

In particular, decreasing Q+ (i.e. decreasing D+
lat), the simulated effective binding rate gets further

away from (7) as seen from Fig 5.

3.2 Reduction via QSS to a scalar 1-D model

In this section, we consider parameters where the reduced coupled 1-D model (1) can be further

reduced to a scalar 1-D model of the total density profile along cell axis via QSS approximation.

The QSS reduction is based on the method described by Newby and Brossloff [42] and assumes

that the timescale associated with transitions between particle populations is short relative to the

time taken for particles to move across the cell. Explicitly, we consider when transitions occurs

much faster than movement (i.e. ω,wa,d � max{u,v}
L

). We set t → tu
L

and x → x
L

. The rescaled

system of Eq. (1) can be written as

∂ρ±

∂t
= ∓∂ρ±

∂x
+ waL

2u
ρ− wdL

u
ρ± + ωL

u
(ρ± − ρ∓), x ∈ [0, 1]

∂ρ
∂t

= Dax

uL
ρxx − v

u
ρx − waL

u
ρ+ wdL

u
(ρ+ + ρ−), x ∈ [0, 1]

(8)
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Figure 5: Left: effective binding rate calculated from the mean first binding time from 3-D model

simulations of paths. The line gives value from expression (7). D−lat = 1.4 × 10−3µm2/s. Other

parameters are the same as in Fig 3 (d2). The corresponding Pe− = 0.88, Q− = 113, Pe+ = 4.4.

Q+ decreases from 162 to 40 when D+
lat decreases from 4× 10−3µm2/s to 1× 10−4µm2/s.

Then there exist ε� 1 such that transition rates
wa,dL

u
, ωL
u

are of order O(1/ε). Following from [41,

42], we write in a matrix form as

∂p

∂t
=

1

ε
Ap +M(p) (9)

where p = (ρ+, ρ−, ρ)T is a state vector, A is a modified transition matrix of order 1, and M

is a differential operator for the spatial derivatives and can be written as a matrix with zeros

off the diagonal and diagonal entries Mii = −vi∂x + Di∂
2
x; here v1 = 1, v2 = −1, v3 = v/u,

D1 = D2 = 0, D3 = Dax

uL
, and

A =


− ε(wd+ω)L

u
εωL
u

εwaL
2u

εωL
u

− ε(wd+ω)L
u

εwaL
2u

εwdL
u

εwdL
u

− εwaL
u

 . (10)

Matrix A has one zero eigenvalue with the corresponding normalized eigenvector

Pss :=
wd

wa + wd
(
wa
2wd

,
wa
2wd

, 1)T

such that ΨTPss = 1 (here the vector Ψ = (1, 1, 1)T ). Using the quasi-steady approach [41],

assuming diffusivities are of order O(ε), the equation for total particle density P (x, t) to the order

of ε can be approximated as

∂tP = −V ∂xP +D∂2
xP, x ∈ [0, 1] (11)
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with boundary conditions: V P − DPx = 0, x = 0, 1, where V = 〈v〉 = v
u

wd

wa+wd
and D = 〈D〉 +

εvT θ = wdDax

uL(wa+wd)
+( 1

2ω+wd
+ v2wd

u2(wa+wd)2
) uwa

L(wa+wd)
(see Appendix C for details). Here 〈·〉 is a weighted

mean, using entries of the vector Pss as the weights. The solution in the original space [0, L] is

then

P (x) = γ exp(
V x

DL
), x ∈ [0, L] (12)

where γ is a normalization such that
∫ L

0
P (x) = 1. Fig C.1 shows an example of particle total den-

sity distribution calculated from analytical solution (12) that agrees well to numerical calculation

of the Eq. (1) in steady state.

3.3 Mechanisms that oppose poleward drift

An even distribution of organelles such as peroxisomes and lipid droplets is critical to their role in

lipid and reactive oxygen species homeostasis [2]. Mechanisms underlying even distribution remain

elusive. With quantitative information from [2], it was shown that directed transport and, to a

lesser degree diffusion, contributes to overcoming the poleward drift to ensure an “even” distribu-

tion of organelles. In this section, we further study mechanisms underlying even distribution of

particles by quantitative analysis of effects from individual model components.

For a spatial distribution P (x), we use the L1 metric distance to characterize its difference to

the even distribution Θ(x) = 1/L (x ∈ [0, L]). This distance ranges over [0, 2). We say that the

axial distribution P (x) is approximately even if |Θ − P |1 is sufficiently small. It was shown that

peroxisomes are approximately in an even distribution [2]. Assuming organelles are well mixed

in lateral diffusion, and using experimentally estimated poleward drift velocity, directed transport

speed and effective transition rates (as in Fig 3(d2)) together with effective axial diffusivity Dax =

0.015µm2/s [2], the model gives axial particle density P (x) with a distance |Θ − P |1 = 0.025 for

peroxisomes in wild type cells. When cells are treated with a MT-depolymerizing drug (where

directed transport was blocked, i.e. ωa = 0/s), the effective axial diffusivity was measured as

Dax = 0.003µm2/s [2]; together with estimated drift velocity, the model gives |Θ − P |1 = 0.86.

This is far from even; in fact, the peroxisomes clusters at the cell tip under such treatment. In the

following, we explore contribution of individual parameters in overcoming poleward drift.

Firstly, we consider the case where the 3-D coordinated transport model can be reduced to the

coupled 1-D model (1). We still denote Dax and wa for the effective diffusion and binding rates

respectively without ambiguity. We investigate the importance of individual components (directed

velocity, turning, binding, unbinding, and diffusivity) in overcoming increased drift. To compare

the effects of individual components in opposing polar drift, we choose a reference parameter set

13



that gives total density profile P such that d = |Θ−P |1 ≈ 0.025, and then calculate their minimum

changes of individual parameters relative to the reference value for an increased drift, in order to

maintain its distribution P ′(x) such that |Θ − P ′|1 = d. For instance, for an increased drift, we

change parameter u to u′ while remaining other parameters unchanged such that the new spatial

distribution |P ′ −Θ| = d and refer the minimum change u′/u (if possible) as multiplicative factor

for the parameter u. A multiplicative factor larger (less) than 1 indicates the required increase

(decrease) of the corresponding parameter to overcome an increased drift.

In the case wa = 0 and wd > 0, particles eventually undergo drift diffusion in cytoplasm, and

the system (1) reduces to

0 = −v dρ
dx

+Dax
d2ρ

dx2
, ρ± ≡ 0 (13)

with boundary conditions −vρ + Daxρx = 0 at x = 0, L. This leads to the steady state solution

ρ(x) = γevx/Dax where γ is a normalization factor. Note that ωd > 0 is assumed to ensure steady

state solution independent of initial conditions. The distance to even distribution is then

|Θ− P |1 = 2
ln( e

c−1
c

)− 1

c
+

2

ec − 1
(14)

where c = Lv/Dax is the Péclet number. This distance increases with increasing c (also v for

fixed Dax) and the speed of increase slows down with increasing c. Thus, for drift-diffusion only

systems, in order to reach approximately-even distribution of peroxisomes, a large diffusivity is

required to oppose the drift. In particular, using estimated poleward drift velocity, a diffusivity of

0.15µm2/s (i.e. 50 times larger than that measured in treated cells Dax = 0.003µm2/s) is required

to overcome the poleward drift and reach a distance |Θ− P |1 = 0.025 from Eq. (14).

If the transition between modes of transport is much faster than deterministic movement, i.e

rates wd, wa, ω are much larger than max{u,v}
L

, we can approximate the system (1) by the QSS

method [25, 41] to a scalar system (11), giving the overall density profile (12). This gives an

effective Péclet number as

Pe =
vwdL

Daxwd + u2wa

2ω+wd
+ wawdv2

(wa+wd)2

. (15)

A reference parameter set that give total density profile close to even distribution with distance

d = |Θ−P |1 ≈ 0.025, corresponds to an effective Péclet number Pe ≈ 0.1 from distance (14). For

increasing drift velocity, we calculate the multiplication factor for individual parameters (including

directed velocity, (un)binding rates, turning rate and axial effective diffusion rate) using effective

Péclet number approximation (15) and show this in Fig. 6. From Fig 6, we see that increasing

diffusivity, directed velocity or binding rate, or reducing unbinding/turning rates can overcome

increased drift to give an approximately even distribution. Reducing unbinding or turning rates,
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allows particles to stay and move longer time on tracks. Moreover, we see in Fig 6 that enhance

directed moving transport (in particular, the directed moving velocity) is relatively more efficient

to overcome increased drift than increasing diffusivity. We also notice that reducing turning rate

has limited capability to overcome increased drift; for large drift velocity, reducing turning rate is

not able to reach approximately even distribution.
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Figure 6: The multiplicative factor for individual parameters relative to reference parameter values,

calculated from |Θ − P |1 = 0.025 in Eq. (14) where the Péclet number is approximation as in

Eq. (15). (a) uses reference parameters: wa = 1/s, wd = 1.7/s, ω = 1.2/s, u = 2µm/s, D =

0.05µm2/s while (b) uses reference parameters: wa = 3/s, wd = 1/s, ω = 2.2/s, u = 1µm/s,

D = 0.05µm2/s.

If one or more of the transition rates wd, wa, ω is much smaller than max{u,v}
L

, then the as-

sumptions for QSS reduction method in [25] are no longer satisfied. In particular for observed

peroxisome movement in U maydis, the experimentally estimated effective binding rate of perox-

isomes ωa = 0.0034/s is much lower than other transition rates (e.g wd = 0.17/s, w = 0.12/s)

and directed movement (u/L = 0.063/s). We calculate the total density profile using numerical

calculation of the 1-D model (1). We take estimated drift velocity, directed transport speed and

effective transition rates (the same as in Fig 3(d2)) together with D = 0.015µm2/s as a reference

parameter set and show in Fig 7(a) the multiplication factor for each parameter in order to reach

approximately even distribution. Similar to the case shown in Fig 6, we see from Fig 7(a) that by

decreasing the turning rate w (only for limited increase of drift velocity), or the unbinding rate

wd, or increasing the diffusivity Dax, the directed velocity u, or the binding rate wa, particles can

overcome drift to achieve an approximately even distribution. In contrast to other components, it

is more efficient to increase the directed velocity u or the binding rate ωa than other components

(e.g. turning rate w, unbinding rate ωd and diffusivity Dax) to enhance the even distribution. This
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still holds for reference parameter set with a smaller order of effective diffusivity (Fig 7(b)). For

a reference parameter set with a smaller order of effective binding rate wa ∼ O(10−4), increasing

directed transport speed u is no longer among the most efficient components in overcoming drift

(Fig 7(c-d)); besides effective binding rate, increasing effective diffusivity becoming efficient as well

to overcome drift. However, note that in the 3-D model, effective diffusivity (7) is the weighted

average of axial diffusivity inside D−ax and outsize the zone D+
ax. Regarding individual diffusivity

D±ax, it would then be less efficient than the effective diffusivity. Overall, the effective binding rate

in general is a key mechanism in opposing poleward drift to reach approximately even distribution.
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Figure 7: The multiplicative factor for the parameters relative to those measured in experiment to

overcome large drift to reach a distance |Θ − P |1 = 0.025. The reference experimental estimated

parameters are: (a)wa = 0.0034/s, wd = 0.17/s, ω = 0.12/s, D = 0.015µm2/s, u = 1.9µm/s.

(b)wa = 0.003/s, wd = 0.2/s, ω = 0.11/s, D = 0.003µm2/s, u = 1.9µm/s. (c)wa = 0.0003/s,

wd = 0.1/s, ω = 0.11/s, D = 0.015µm2/s, u = 1.9µm/s. (d)wa = 0.00046/s, wd = 0.1/s,

ω = 0.1/s, D = 0.005µm2/s, u = 1.9µm/s.

Next, we consider cases where the 3-D model is not well approximated by the reduced 1-D
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model (1) with effective rates given in (7). To examine the importance of individual parameters,

we simulate the particle paths to get its spatial distribution. We consider an increased drift velocity

of 8.8× 10−4µm/s (i.e. two times of that experimentally estimated poleward drift) which cluster

particles at one end of the cell. We then increase or reduce (e.g. for the parameter wd) individual

parameters by 5 times or 10 times when keeping other parameters the same, and calculate the

difference (L1 distance) to an even distribution. The differences of total density profiles to the

even distribution are shown in Fig 8 for two sets of reference parameters with different binding

rates: wa = 0.034/s in panels (a1-a3) and wa = 0.0034/s in panels (b1-b3). In the case with equally

large lateral diffusivity inside and outside the MT zone, particle density from the 3-D model can be

well approximated from 1-D model, and as expected the binding rate is more efficient than other

model components; see Fig.8 (a1,b1). When either lateral diffusivity (D+
lat or D−lat) is significantly

small (i.e. either Q+ or Q− is no longer sufficiently large), Fig.8 (a2-b3) show that enhancing the

axial diffusivity outside the zone D+
ax becomes efficient. This is probably due to that with increased

axial diffusivity outside the zone, it efficiently reduces the cluster and thus leads to a more even

distribution, in particular when the reference binding rate is small (Fig.8 (b2-b3)). Moreover,

when lateral diffusivity within the zone D−lat is significantly small, from Fig. 8(a3) and Fig. 8(b3)

we note that increasing the binding rate is also effective to overcome poleward drift, in particular

when the reference binding rate is relative large (Fig. 8(a3)).

4 Discussion and further considerations

The 3-D model introduced in Section 2.1 includes for cooperation between MT-mediated long-

range bidirectional transport and heterogeneous drift-diffusion of particles in the cytoplasm. It is

motivated by observations in living cells of the fungus U. maydis, which serves as a model system

for long-range membrane trafficking [55, 56, 28].

The 3-D model introduced includes lateral motility of particles and heterogeneous diffusion

representing the presence of a more active mixing of organelles near MTs. We study the influence

of heterogeneous diffusivity on the particle distribution, and present parameter regions where the

reduction to 1-D model can be achieved using effective rates; reduction to a 1-D model allows

convenient analytical analysis of system properties and further reduction (e.g. using QSS) may be

possible under certain parameter conditions.

Moreover, we study the efficiency with which individual parameters of the model can be used

to oppose poleward drift and drive the distribution back towards even.. We find that if lateral

motion is well mixed, then increasing the binding rate is efficient, whereas if lateral motion is not
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Figure 8: Bars show the difference of particle total density P (x) from 3-D model simulation to

the even distribution when the parameter is increased (for wa, D
±
ax, u) or reduced (for wd, ω)

by 5 (10) times for an increased different drift velocity v = 8.8 × 10−4µ/s. The reference sets of

parameters are: (a1-b1) using homogeneous lateral diffusivity D+
lat = D−lat = 1.4×10−3µm2/s; (a2-

b2) using D+
lat = 1.4× 10−6µm2/s, D−lat = 1.4× 10−3µm2/s; (a3-b3) using D+

lat = 1.4× 10−3µm2/s,

D−lat = 1.4 × 10−6µm2/s. Other parameters in reference are wa = 0.034/s for panels (a1-a3)

(wa = 0.0034/s for panels (b1-b3)), wd = 0.17/s, u = 1.9µm/s, ω = 0.12/s, D−ax = 0.015µm2/s,

D+
ax = 3× 10−3µm2/s.

well mixed, then increasing the diffusivity outside the MT zone becomes more efficient to overcome

drift. This analysis gives indications of the roles of key mechanisms that can contribute to evenly

distribute organelles within a cell.

We remark that our model should be adaptable to help understand transport in similar elon-

gated cells such as neuronal cells [57, 58]. Vesicles of various size in neuronal cells have been shown

to be transported by coordinated diffusive and directed transport [4]; microtubule-associated pro-

tein tau in neuronal cells has also been modelled as a coordinated transport process [59] in one

dimension along MTs. Modelling the coordinated transport in elongated cells takes advantage of

its relative simple geometry.

Possible adaptations and extensions include more complicated geometric domains such as trans-

port in mammalian cells where the MTs forms a more complicated network, or including crowding

effects for organelles that are not dilute. In-depth understanding of the organization of mam-
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malian MT cytoskeleton and roles of motor proteins in intracellular transport will help meeting

this challenge.
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A Stochastic simulation of particle paths for the 3-D model

In the case where Ω 6= ΩC for the particle motion described in Section 2.1, there is an interface

C := {(x, y, z) : x ∈ [0, L], y2 + z2 = R0} ⊂ ∂ΩC with a discontinuous jump in diffusivity. We use

stochastic simulations of particle paths with a constant time step dt in order to investigate the

particle spatial distribution in steady state of the system.

To simulate the bi-directional directed transport, we assign particles to one of the three possible

states st ∈ {−1, 0,+1}: s = ±1 correspond to directed transport along the MT orientation and

its inverse orientation respectively while the state s = 0 corresponds to drift diffusion. The

simulation of directed transport s = ±1 and the transition between different states is implemented

using discrete time and continuous space and generating evenly distributed random variables with

the following transition rates

xt ∈ ΩC

st −1 0 1

−1 0 wd ω

0 wa/2 0 wa/2

1 ω wd 0

To implement the diffusion process in our 3-D model, we amend the direct simulation scheme

for 1-D skew diffusion with a constant time step dt as introduced in [51, 54]. The direct scheme

first calculates the probability to arrive at each of the two sides of the interface, makes a decision

on which side to move for the next position, and then simulates its next position in that chosen

region. This 1-D simulation method has been extended to a 2-D diffusion process with a hyper

plane interface [54]. In our 3-D model, the interface at cross section is a circle; for a curved

interface in 2-D domain, we consider small enough time step such the expected motion of the

particle is small compared to the local radius of the interface. Explicitly, the simulation procedure

is as detailed below.

(a1) For a given time step dt, we set up an interface layer Idt := {(x, r) ∈ Ω|r ∈ [R0 −
c
√

2D−latdt, R0 + c
√

2D+
latdt], x ∈ [0, L]}. Thus a particle outside this interface layer has

a probability αc = 2Φ(−c) reaching the interface within time dt where Φ is the cumulative

distribution function of the standard normal distribution. In particular, we use c = 5, which

gives the probability αc = 5.7× 10−7. We also set smaller time step δt such that the bound-

ary of the new interface layer Iδt with the time step δt has a distance less than dR0 to the

interface C. Here we choose d = 0.02. We update positions according to below:
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(b1) If a particle is outside the interface layer, then we simulate its next position after time

dt by using a Euler scheme [60] for the drift diffusion.

(b2) If a particle is inside the interface layer, then we approximate its local curved boundary

by its tangent plane perpendicular to the vector from the center of the cross section

to the current position, then update its position for dt/δt steps as follows. At each

timestep δt, if a particle is outside the new interface layer Iδt, then we simulate its next

position using the Euler scheme for drift diffusion with a time step δt; otherwise, we do

the following:

(c1) we move it along the lateral direction towards the center in the cross section using

the direct scheme for skew diffusion introduced in [51];

(c2) we simulate its first hitting time τ to the interface C in the lateral direction using

an inverse Gaussian distribution [51] and move it along the tangent direction in the

cross section in two steps if τ < δt (otherwise we use the corresponding drift and

diffusion rate to update its position): firstly, we simulate the path for a time step τ

along the tangent plane in the cross section using the corresponding lateral diffusion

rate; secondly, we simulate the path for the remaining time step δt − τ along the

tangent plane using the mixing scheme method [54] with mixed lateral diffusion rate

D−latα+D+
lat(1−α) where α :=

√
D−

lat√
D−

lat+
√
D+

lat

is the parameter for the corresponding

skew Brownian motion, concerning the proportion of mean occupation time in one

region.

(c3) we apply a similar two-steps simulation (one time step τ and the other δt − τ)

as in step (c2) for the axial diffusion and the drift simultaneously. This two-step

approximation for the drift diffusion along the x-axis takes advantage of the fact

that the interface does not depend on x.

Considering the model assumptions for the boundary, we specify:

• a reflecting boundary condition on the boundary ∂Ω for diffusion process.

• particles in directed transport state immediately reverse direction when reaching x = 0 or L.

Our simulation results use a time step dt = 0.01 s and the spatial distribution is obtained from

a time average over 2× 1010 steps. With no drift and no binding, i.e. v = wa = 0, the simulation

(not shown) gives an even distribution as expected from the model even with discontinuity in the

diffusion rate.
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B Dimensionless analysis of the 3-D model

We can transform the 3-D model (5) into a dimensionless form. By setting τ = ωt, s = r/R and

ξ = x/L, and also setting s0 = R0/R ∈ [0, 1] which is the radius ratio of inner and outer cylinders,

the equations in (5) can be written as

0 = D−
ax

ωL2ρξξ + 1
sR2

∂
∂s

(s
D−

lat

ω
ρs)− v

ωL
ρξ, s ∈ [s0, 1], ξ ∈ [0, 1]

0 = D+
ax

ωL2ρξξ + 1
sR2

∂
∂s

(s
D+

lat

ω
ρs)− v

ωL
ρξ − (wa

ω
ρ− wd

ω
ρ+ − wd

ω
ρ−), s ∈ [0, s0], ξ ∈ [0, 1]

0 = ∓ u
ωL

∂ρ±

∂ξ
+ wa

2ω
ρ− wd

ω
ρ± + (ρ± − ρ∓), s ∈ [0, s0], ξ ∈ [0, 1]

(B.1)

subject to boundary conditions:

Jax := Dax(s)
L

ρξ − vρ = 0, s ∈ [0, 1], ξ = 0, 1

Jlat := Dlat

R
ρs = 0, s = 1, ξ ∈ [0, 1]

Jax, Jlat, ρ continuous , s = s0, ξ ∈ [0, 1]

ρ+ = ρ−, s ∈ [0, s0], ξ = 0, 1

If we define dimensionless parameters

D̂±ax :=
D±ax
ωL2

, D̂±lat :=
D±lat
ωR2

, v̂ :=
v

ωL
, û :=

u

ωL
, ŵa,d :=

wa,d
ω

then Eq. (B.1) becomes:

0 = D̂+
axρξξ + 1

s
∂
∂s

(sD̂+
latρs)− v̂ρξ, s ∈ [s0, 1], ξ ∈ [0, 1]

0 = D̂−axρξξ + 1
s
∂
∂s

(sD̂−latρs)− v̂ρξ − (ŵaρ− ŵdρ+ − ŵdρ−), s ∈ [0, s0], ξ ∈ [0, 1]

0 = ∓û∂ρ±
∂ξ

+ ŵa

2
ρ− ŵdρ± + (ρ± − ρ∓), s ∈ [0, s0], ξ ∈ [0, 1].

(B.2)

with boundary conditions:

Ĵax := D̂ax(s)ρξ − v̂ρ = 0, s ∈ [0, 1], ξ = 0, 1

Ĵlat := D̂latρs = 0, s = 1, ξ ∈ [0, 1]

Ĵax, Ĵlat, ρ continuous , s = s0, ξ ∈ [0, 1]

ρ+ = ρ−, s ∈ [0, s0], ξ = 0, 1.

Reorganizing Eq. (B.2) gives

0 = ρξξ + Q+

s
∂
∂s

(sρs)− Pe+ρξ, s ∈ [s0, 1], ξ ∈ [0, 1]

0 = ρξξ + Q−

s
∂
∂s

(sρs)− Pe−ρξ − (Waρ−Wdρ
+ −Wdρ

−), s ∈ [0, s0], ξ ∈ [0, 1]

0 = ∓U ∂ρ±

∂ξ
+ Wa

2
ρ−Wdρ

± + 1

D̂−
ax

(ρ± − ρ∓), s ∈ [0, s0], ξ ∈ [0, 1]

(B.3)

where Pe± := v̂

D̂±
ax

= vL
D±

ax
, Q± :=

L2D±
lat

R2D±
ax

, Wa,d :=
ŵa,d

D̂−
ax

=
wa,dL

2

D−
ax

and U := û

D̂−
ax

= uL
D−

ax
.
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C QSS reduction for the 1-D model

Here we discuss QSS reduction to support the reduced 1-D scalar equation of the total density

profile in the main text. The procedure follows from [41, 42]. The first step of the QSS reduction

involves rescaling x and t so that the cell length is L = 1 and a typical particle moving speed is 1.

Now the rescaled matrix equation is of the form

∂p

∂t
=

1

ε
Ap +M(p) (C.1)

We decompose an arbitrary state vector p into its uniform steady state value Pss := wd

wa+wd
( wa

2wd
, wa

2wd
, 1)T

plus a (spatially nonuniform) deviation w,

p = PPss + w. (C.2)

Pss is the normalized eigenvector of the transition matrix A such that ΨTPss = 1 (here the vector

Ψ = (1, 1, 1)T ) for eigenvalue 0, and the overall particle density is P = ΨTp. Multiplying ΨT in

Eq. (C.2) we have ΨTw = 0. Note that ΨTA = 0. Multiplying Eq. (C.1) with ΨT we have

∂P

∂t
= ΨTM(PPss + w). (C.3)

Note w = p− PPss and APss = 0 as Pss is the eigenvector for eigenvalue 0, then

∂w

∂t
=
∂p

∂t
− ∂P

∂t
Pss =

1

ε
A(PPss + w) +M(PPss + w)−PssΨTM(PPss + w) (C.4)

=
1

ε
Aw + (I −PssΨT )M(PPss + w) (C.5)

We make an asymptotic expansion w = w0 + εw1 + · · · . To the leading order we have Aw0 = 0.

As A has one zero eigenvalue and ΨTw0 = 0, we have w0 = 0. The O(1) terms result in the

following relation for w1 :

Aw1 = (PssΨT − I)M(PPss) (C.6)

We decompose w1 into terms of the form:

w1 = −θPx + qPxx (C.7)

where θ and q are undetermined vectors. Expanding Eq. (C.6) we have

A(−θPx + qPxx) = Pss(−〈v〉Px + 〈D〉Pxx)−


−v1P

ss
1 Px +D1P

ss
1 Pxx

−v2P
ss
2 Px +D2P

ss
2 Pxx

−v3P
ss
3 Px +D3P

ss
3 Pxx

 (C.8)
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where 〈·〉 is the weighted mean using entries of the vector Pss as the weights. Explicitly 〈v〉 =

v
u

wd

wa+wd
and 〈D〉 = wdDax

uL(wa+wd)
. Then

Aθ = −


(v1 − 〈v〉)P ss

1

(v2 − 〈v〉)P ss
2

(v3 − 〈v〉)P ss
3

 and Aq =


(D1 − 〈D〉)P ss

1

(D2 − 〈D〉)P ss
2

(D3 − 〈D〉)P ss
3

 . (C.9)

The vector θ can be determined through ΨTw1 = 0 which gives

θ1 = −( 〈v〉
wa+wd

− 1
2ω+wd

)
uP ss

1

εL

θ2 = −( 〈v〉
wa+wd

+ 1
2ω+wd

)
uP ss

1

εL

θ3 = 2〈v〉
wa+wd

uP ss
1

εL

. (C.10)

Substituting the expansion for w1 (C.7) into the scalar equation (C.3) gives

Pt = −〈v〉Px + 〈D〉Pxx + ε
3∑
j=1

(vjθjPxx − (vjqj +Djθj)Pxxx + qjDjPxxxx) (C.11)

Assuming diffusivities in order of O(ε), vector components qj are then in order of O(ε). This leads

to

∂tP = −V ∂xP +D∂2
xP, x ∈ [0, 1] (C.12)

where V = 〈v〉 = v
u

wd

wa+wd
and D = 〈D〉+ εvT θ = wdDax

uL(wa+wd)
+ ( 1

2ω+wd
+ v2wd

u2(wa+wd)2
) uwa

L(wa+wd)
.

Boundary conditions ρ+ = ρ− at x = 0, 1 and D3ρx− v3ρ = 0 at x = 0, 1 satisfy v1ρ
+ + v2ρ

−+

v3ρ−D3ρx = 0 at x = 0, 1. By noting

ρ+ = PP ss
1 + ε(−θ1Px + · · · )

ρ− = PP ss
2 + ε(−θ2Px + · · · )

ρ = PP ss
3 + ε(−θ3Px + · · · )

this corresponds to boundary condition V P −DPx = 0, x = 0, 1.
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Figure C.1: An example of QSS approximation of total density from Eq. (C.12). Parameters are:

wa = 1/s, wd = 1.7/s, ω = 1.2/s, u = 2µm/s, v = 0.005µm/s, D = 0.05µm2/s.
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