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  Abstract 
 

Twice each year, vast numbers of birds and insects undergo poleward 

migrations. Species which cross between Europe and Africa must negotiate 

traversing the Mediterranean region. Many birds are known to avoid crossing 

seas and therefore in the east they bypass the Mediterranean by taking an 

overland route and migrating through Israel, Lebanon and Syria. However, some 

birds do make the sea crossing and use Cyprus as a steppingstone between 

Africa and Europe. Despite widespread knowledge of this route, no dedicated 

studies on bird migration have been carried out in the north of Cyprus, and no 

season-long assessments of insect migrants has been carried out on the island. 

From March through to May of 2019, a team of five University of Exeter students 

surveyed insect and bird spring migration occurring through the northeast 

peninsular of Cyprus over a 39-day period; this survey was to be repeated in 

spring 2020, but the COVID-19 pandemic rendered fieldwork impossible. In 

Chapter 1 observations of bird migration on Cyprus were contextualised by 

comparing them with ornithological radar data from Israel (a known migratory 

hotspot), then assessing broad migration trends and the effect of wind on bird 

migration intensity. In agreement with existing studies, larger birds like raptors 

were less impacted by wind currents than smaller birds such as songbirds. 

Moreover, when beneficial tailwinds were scarce, songbirds chose to migrate in 

lower wind speeds. Migration traffic rates for day-migrating birds were found to be 

proportionally greater over the Karpaz peninsular than in the Hula valley of Israel. 

Thirdly, temporal migration patterns for raptors over Cyprus and Israel correlated 

significantly. Chapter 2 takes a natural history focus by detailing the taxonomic 

assemblages of migrants recorded on Cyprus, and then discussing the 

implications of our findings. Higher than expected numbers of migrating crag 

martins (Ptyonoprogne rupestris), common kestrels (Falco tinnunculus) and pallid 

harriers (Circus macrourus) for Cyprus were recorded during our spring survey. 

Observed numbers for pallid harriers suggest that the Karpaz peninsular may 

possibly be Europe’s most significant flyway for the species. These provisional 

findings are of great conservation importance as pallid harriers are listed as a 

globally near threatened species on the IUCN Redlist. In addition, the first African 

migrant butterfly (Catopsilia florella) on Cyprus since 1986 and the first ever 
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Cyprus record of the ladybird Harmonia quadripunctata were recorded. 

Furthermore, evidence of mass migratory behaviour in the flies Delia platura and 

Stomoxys calcitrans is presented, both of which were not previously considered 

migratory. Observations of signs of illegal bird trapping at the Cyprus study sites 

is discussed anecdotally. 
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 General Introduction 
 

   Introduction to migration 
 

 The term migration often conjures images of many animals of the same 

species undergoing a long journey. Indeed, one of the widely accepted definitions 

is that migration is when a population of a particular species embarks on annual 

to-and-fro trips between a breeding ground and wintering ground (Newton, 2003). 

This definition however excludes many other examples, particularly of the most 

important and numerous terrestrial migrants, insects (1.3). In this writeup I will 

use a broader definition originally proposed by Kennedy in his classic 1985 

paper, and then promoted and expanded upon by Dingle (2014) and Dingle & 

Drake (2007). This definition posits that migration is characterized as a persistent, 

straightened out movement during which an individual ignores cues that are 

usually attractive, such as those associated with feeding and reproducing (Dingle, 

2014). The main strength of this definition is that it focuses less on distance 

travelled and population outcomes (such as degrees of dispersal), and more on 

behaviour at an individual level, the level on which natural selection acts. Finally, 

the Dingle & Kennedy definition also excludes ranging and commuting 

movements, which may cover vast distances and involve many individuals but 

are driven by immediate cues such as feeding and reproducing, and thus no 

inhibition of cues is occurring.  

 

 Migration can broadly be described as an adaptive response to seasonal or 

geographic variation in resources. Each migratory movement is thought to be 

driven by benefits to one or more of the following: feeding opportunity, survival 

(e.g. avoiding of unfavourable climates) and reproductive success (Heape, 1931). 

Therefore, migration is particularly abundant at higher latitudes (Newton & Dale, 

1996). Here annual cycles lead to large differences in duration and intensity of 

solar energy received on each hemisphere over a temporal scale, resulting in 

seasonal periods of extreme favourability and unfavorability (Choe, 2019). In the 

northern hemisphere (e.g. northern Europe) this results in very cold winters and 

temperate summers, in the southern hemisphere (e.g. sub-Saharan Africa) this 

produces wet and warm winters, but very hot, dry summers. Many species travel 
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to high latitudes to take advantage of these periods of high productivity and long 

days, then escape before the onset of poorer climates, or in the case of many 

insects, diapause (Johnson, 1969). These temporary plentiful regions also 

present good breeding sites as they tend to have less competition due to winter’s 

low carrying capacity (Shaw, 2016). Breeding at high latitudes can also result in 

lower predation: nest predation in shorebirds decreases at higher latitudes 

(McKinnon et al. 2010). Migration is not restricted to high latitudes however; for 

example, globe skimmer dragonflies (Pantala flavescens) follow the monsoon 

rains around tropical regions, and reproduce in temporary puddles with no 

predators in an attempt to reduce competition and predation for their nymphs 

(Anderson, 2009).  

 

Migration may also evolve in order to escape high pathogen and parasite levels. 

For example, migratory monarch butterfly (Danaus plexippus) populations have 

significantly lower pathogen levels than sedentary populations. This is due to 

migrants constantly moving on from heavily infested regions (‘migratory escape’) 

and highly infected individuals dying on the journey (‘migratory culling’); thus the 

migrant population maintains lower parasite levels than it would if it were 

sedentary (Bartel et al. 2011, Bradley & Altizer, 2005). Migration may also be a 

way to escape high pathogen levels. Parasite abundance and diversity is highest 

in lower latitudes, this combined with high competition and predation levels is 

likely why many species don’t remain in these areas year-round (Hansson et al. 

2014). The interaction between pathogens and migrants appears to be complex 

and not yet fully understood. It has been theorised that comparatively greater 

investment into flight capability, energy storage and subsequent longer periods 

actively flying may negatively impact on immune systems in both migratory birds 

and insects (Bonte et al., 2012; Chapman et al., 2015; Hansson & Akesson, 

2014; Milner-Gulland et al., 2011). Conversely it has been theorised that annual 

exposure to two or more faunas of parasites (as opposed to resident populations 

exposure to one parasitic fauna) and (in some cases) higher conspecific densities 

should result in migrants having superior immune systems to resident species. 

Supporting evidence has been found for both theories (Eikenaar & Hegemann, 

2016; Møller & Erritzøe, 1998; Wilson et al., 2001), indicating that the migratory 
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host-pathogen relationships may highly case specific or simply poorly 

understood.     

 

   Bird migration 
 

 Birds are the best studied of all migratory groups. The extensive research on 

birds is likely due to a combination of their high visibility, often remarkable 

journeys, and because they are much loved by people (Dingle, 2014). Examples 

of these include the Arctic tern’s (Sterna paradisaea) biannual pole-to-pole 

migrations spanning 22,000 km per leg, and the Amur falcon’s (Falco amurensis) 

extreme to-and-fro routes between China and Southern Africa (Egevang et al. 

2010; Bildstein, 2006). Whilst most avian migration isn’t as spatially extensive as 

these examples, it is certainly taxonomically extensive. A probable underestimate 

of 19% of all bird species are known to make regular annual movements away 

from their breeding distributions (Somveille et al. 2013). These species exhibit an 

impressive array of morphological adaptations and behaviours to enable 

migration.  

 

 Birds can be described as true navigators, by which we mean that on the 

journey, adult birds are aware of their current location in relation to a target 

destination. Birds are capable of true navigation via a combination of 

physiological adaptations, experience, and finely-tuned methods of orientation. 

These sets of orientation methods are split into innate or near innate cues 

(wherein no learning, or only a small degree of learning is required) and learnt 

cues, and are discussed in more depth below. 

 

The primary innate modes of orientation are achieved via the use of celestial and 

magnetic cues. Celestial cues are visually sourced from light patterns in the sky 

such as the sun, stars and polarised light patterns. These are highly predictable 

and can be used for navigation in conjunction with the earth’s rotation (Foster et 

al. 2018). Diurnally migrating birds use the sun’s azimuth direction in conjunction 

with an internal clock to determine their flight direction (Chernetsov, 2016). Many 

small birds such as passerines migrate at night to reduce energetic costs and 

predation, and therefore use the stars to navigate. Such nocturnal migrants are 
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capable of learning the position of the centre of stellar rotation, which allows them 

to identify the direction of the geographical poles and use this to orientate (Emlen, 

1967). Magnetic cues are acquired from the earth’s geomagnetic field, in this the 

field’s polarity (direction of north and south), inclination (the field’s angle to/from 

the horizon), intensity (strongest at the poles, weakest at the equator), and 

declination (angle between the magnetic and geographical poles) can be 

determined. Magnetic cues are imperceivable to humans, but in birds are 

believed to be visually received, this has been supported by restlessness in 

migratory birds as they exhibit more head-scans in absence of a magnetic field 

(Mouritsen & Hore, 2012; Mouritsen et al., 2004). These navigational cues do not 

act independently of each other, but instead are frequently used in conjunction. 

Depending on external conditions magnetic or celestial cues may be favoured, for 

example if stars are visible, celestial cues may be used and vice versa. 

Furthermore, changes in declination angle during travel lead to magnetic sense 

requiring recalibration, this is achieved at sunset via celestial cues (Cochran et al. 

2004).  

 

Learning combined with various navigational mechanisms further assist in 

navigation during migration. Evidence for use of an olfactory map has been 

shown in birds such as pigeons and shearwaters. In this, odour plumes are used 

to create a chemical map of regions allowing birds to accurately return to e.g. 

breeding grounds (Gagliardo, 2013; Lefeldt et al., 2014). Birds are also able to 

remember a network of local features (or a ‘mosaic map’) to better pinpoint a 

destination. This has been demonstrated in juvenile chaffinches (Fringilla 

coelebs) which were unable to relocate their natal grounds in following seasons 

after being restricted to a subsection of their breeding range and then relocated 

(Sokolov et al., 1984). This indicates that free roaming across unconfined 

swathes of breeding (and wintering grounds) is essential for the creation of a 

mosaic map and subsequent successful return. Some migrants use landmarks 

such as rivers as markers to help compensate for wind drift (Bingman et al., 

1982). Consistent variation amongst migration routes of marsh harriers (Circus 

aeruginosus) has presented evidence that distinct landmarks are learnt from 

previous migratory trips (Vardanis et al., 2011). Finally, the magnetic sense has a 

further, more precise application – a ‘magnetic map’. Herein a bird remembers 
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magnetic intensity, inclination and declination (of e.g. breeding grounds) to create 

a bicoordinate map or effective magnetic signature of a region (Chernetsov, 

2016). This has been demonstrated in thrush nightingales as they increased their 

feeding when artificially exposed to a magnetic field replicating that of Egypt’s, 

the last stopover before crossing the Sahara Desert (Fransson et al. 2001). 

 

 The migrations undergone by birds come with many risks and costs, 

however these have been offset by a plethora of physiological and behavioural 

adaptations. Firstly, energetic costs are reduced by low skeletal masses and the 

ability to fly (an energetically efficient method of transport) (Butler, 2016). Many 

migrants have evolved higher aspect ratio wings to increase efficiency over 

distance. This has been observed in partial migrants such as blackcaps (Sylvia 

actricapilla) in which sedentary populations have broader and shorter wings than 

migrants (Linossier et al., 2016; Fiedler, 2005). Before the onset of migration 

resources are reallocated by reducing the size of liver, kidneys, intestines and 

stomach to promote hypertrophy of heart and pectoral muscles (Piersma, 1998). 

Some species are so morphologically adapted for flight that migration is not 

energetically costly. For example, common swifts (Apus apus) remain on the wing 

for all life stages except reproduction and are such excellent flyers that their legs 

have been reduced making it more difficult to land than fly, and thus migration is 

not an energetically expensive task (Hedenström et al., 2016; Åkesson et al. 

2012). Behaviourally, one of the main ways in which birds reduce costs is via use 

of stopover sites. These areas present opportunities to lay down fat and moult 

worn feathers (Leu & Thompson, 2002; Hutto, 1998; Jehl, 1990). Stopovers are 

crucial in anticipation of crossing geographical barriers such as large water 

bodies and mountain ranges. Similarly, some species have evolved to buffer 

energetic costs whilst travelling; for example, Amur falcons are believed to 

coincide their crossing of the Indian Ocean with migratory dragonflies on which 

they may feed (Anderson, 2009). Finally, some of the main benefits acquired from 

completing multiple migrations in a lifetime are learning and experience. 

Experienced raptors crossing between Europe and Africa have 2% mortality 

rates, far lower than the 31% of juveniles that die en route (Strandberg et al. 

2009). Moreover, moving in groups and following behaviours improve juvenile 

survivorship. Large species such as great white pelicans (Pelecanus onocrotalus) 
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are a good example of this, often moving in V-formations with juveniles further 

back, expending less energy (Weimerskirch et al., 2001).  

 

Birds chiefly migrate either by day or by night (however some species migrate 

during both). Smaller birds such as songbirds tend to migrate nocturnally, and 

these make up the bulk of migrants in terms of numbers and individuals. Larger 

birds such as raptors, cranes and pelicans undergo diurnal migration. Each 

strategy presents a number of potential benefits to the individuals. Migrating at 

night allows for daylight hours to be spent foraging (for diurnally active species), 

resulting in offset of energetic costs (Alerstam, 2009). Nocturnal migration also 

reduces exposure to predators whilst travelling because most are active during 

the day (Alerstam, 2009; Lank, 1989). Thirdly, climatic conditions are usually 

more favourable at night, and thus birds experience less turbulent winds and 

cooler temperatures, further reducing energetic costs (Kerlinger & Moore, 1989). 

Many diurnally migrating birds dynamically soar on thermals. This involves very 

little flapping flight and greatly reduces energetic costs (Hedenström, 1993). 

Many diurnal migrants such as falcons, swifts and swallows migrate using 

flapping-flight, however multiple representatives of these groups have been found 

to feed on the wing during migration (e.g. on insects). This fly-and-forage strategy 

reduces the need for stopovers and may be more beneficial and widespread than 

previously thought (Strandberg & Alerstam, 2007). Diurnal migrants also have a 

greater ability to locate their conspecifics (more important for juveniles), as well 

as assess the suitability (or unsuitability) of potential stopover sites (Alerstam, 

2009). The latter could be greatly important for mitigating potential costs and risks 

whilst resting.  

 

   Insect migration 
 

Insects are perhaps the least studied migratory group despite being the most 

abundant in terrestrial ecosystems. This is largely due to their small sizes making 

them difficult to observe and quantify, leading to a bias towards larger species 

such as butterflies and dragonflies, and economically significant species such as 

agricultural pests. Multiple insect orders have been found to contain migrant 

species, for example: Lepidoptera (butterflies and moths), Odonata (dragonflies), 
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Diptera (true flies), Orthoptera (grasshoppers and crickets), Hemiptera (true 

bugs), Coleoptera (beetles) and most recently, Hymenoptera (bees) (Fijen, 2020; 

Dingle, 2014). The majority of insect migrations fundamentally differ from those of 

birds by typically being multigenerational (meaning that the annual migration 

circuit comprises of at least two, and often three or more, generations) (Chapman 

et al., 2015; Stefanescu et al., 2013). One well-known exception to this general 

rule is provided by the Bogong moth (Agrotis infusa) in Australia which travels to 

the Australian Alps each spring to diapause, and returns to its lowland breeding 

grounds in a single generation (Warrant et al., 2016). However, the reasons to 

migrate remain the same as those for birds, and insects also exhibit a large array 

of physiological and behavioural adaptations.   

 

Unlike birds, insects are not true navigators, they simply orientate towards a 

chosen heading without the goal of a predetermined destination (Mouritsen, 

2018; Mouritsen et al., 2013). Orientation methods for individual species are 

comparatively understudied and mostly limited to a select few ‘classic’ insect 

migrant species, such as the monarch butterfly. Monarchs use a time-

compensated sun compass, in which an internal clock in conjunction with the 

sun’s position is used to determine the preferred migration direction towards its 

winter diapause site in Mexico (Mouritsen & Frost, 2002). In addition, research 

from the Reppert group has indicated that polarized light patterns and magnetic 

information may also be used; similar to birds, these cues are likely differentially 

prioritised under different conditions (Guerra et al., 2014; Reppert et al., 2004). 

Finally, the lack of taxonomic scope of orientation research on insects means that 

the cues and mechanisms are largely undefined, for example we do not know 

with certainty how nocturnal migrating insects orientate in low light, we only know 

that they do (Chapman et al., 2015).  

 

The multigenerational nature of insect migration without a predetermined 

destination may seem risky and can sometimes be described as a form of 

‘hedge-betting’, however insects have evolved a number of ways to offset the 

potential costs (Holland et al., 2006). Firstly, insect migrants reduce risks by often 

being generalists in terms of resources required for reproduction and 

development. For example, painted lady butterflies (Vanessa cardui) use multiple 
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larval foodplants such as nettles and mallows which are widely distributed and 

frequently common making finding them more likely (Stefanescu et al., 2013; 

Ackery, 1988). Migrant insect species also produce more eggs than resident 

species, potentially to offset higher mortality rates during migration (Chapman et 

al., 2015). Many insects temporarily pause reproduction to prioritise storage of 

fuel in the form of fats for locomotion (Haunerland, 1997). This is known as the 

oogenesis flight syndrome and it improves the chances of the eventual high egg-

load being laid in a suitable location (Rankin et al., 1986). Conversely, unlike 

high-latitude resident species, many migrants constantly move and reproduce 

year-round, resulting in higher reproductive productivity over the course of the 

year (Chapman et al., 2015). As with birds, the evolution of flight greatly facilitates 

insect migration, the most extreme example being aphids which may spawn a 

predominantly migratory winged generation from a flightless parent generation 

depending on stressors as a means of evolutionary escape (Taylor et al., 1979). 

Finally, to counter their often low mass and flight power, many insects selectively 

choose to migrate in wind currents aligning with their preferred heading. By flying 

high (>150 m above ground level) in favourable winds silver Y moths (Autographa 

gamma) achieve high travel speeds (>25 m/s) and can travel great distances over 

the course of a single night (Chapman et al., 2010; Chapman et al., 2008). 

 

Similar to birds, insect migration occurs both by day and night. Insect migration at 

night is considered to generally occur at high altitudes where an individual’s flight 

speed is added to the wind speeds. If the direction of wind currents align with a 

preferred heading this can be greatly beneficial to insects. Furthermore, on days 

when high altitude winds are in an unfavourable direction, nocturnal migrants 

have been found to not migrate, and instead wait for nights with more favourable 

wind directions (Chapman et al., 2008). In arid regions following of winds is 

particularly advantageous as it transports migrants to atmospheric convergence 

zones where rains are more likely (Chapman et al., 2015). Diurnal migration of 

insects occurs at both low altitudes (below flight boundary layer) and high 

altitudes. It was previously thought that some species only migrated close to the 

ground, however now it is thought that usage of high altitudes is also mediated by 

wind directions. Diurnal high-altitude migration presents similar benefits to 

nocturnal high-altitude migration (i.e. greater speeds and distances achieved) if 
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wind directions are favourable. Diurnal migration at lower altitudes reduces the 

impact of winds on individuals. Lower wind speeds mean migration in head and 

crosswinds is achievable, and the risk of drift is greatly reduced. Furthermore, low 

altitude flight increases opportunity for feeding, reproduction, oviposition (and the 

likelihood of encountering foodplants) (Chapman et al., 2015).  The main costs of 

low-altitude migration are lower travel speeds, increased flight cost and exposure 

to diurnal insectivorous predators such as larger insects (e.g. dragonflies) and 

vertebrates (Chapman et al., 2015).   

 

   Importance of migration 
 

Insect and bird migrants are composed of representatives from many trophic 

levels. Many insects such as locusts are herbivores and therefore feed primarily 

on plant matter at every life stage. The vast majority of bird migrants are 

predatory and feed on a broad range of prey items. Furthermore, due to the multi-

staged lifecycles of insects (and to a lesser extent seasonal dietary changes in 

birds) temporal changes in diet are not uncommon in migrants (e.g. the 

marmalade hoverfly (Episyrphus balteatus) hoverfly is an aphid predator in the 

larval stage but feeds on pollen as an adult fly). Resultingly, mass seasonal 

influxes of migrants covering a range of trophic levels can have a great impact on 

local ecosystems. On a small scale, temporary influxes of organisms present 

local predators with a highly important and plentiful food source (Bauer & Hoye, 

2014). Due to the seasonal predictability of such movements, some predators 

such as Eleonora’s falcons (Falco eleonorae) have shifted their breeding season 

to coincide with the autumn migration period to exploit southward movement of 

songbirds (Walter, 1979). Mass migrations also transport vast quantities of 

nutrients in the form of waste such as faeces and corpses. This is particularly 

significant for insects as entire generations die during migration (Chapman et al., 

2015). Insect bodies are 10% nitrogen and 1% phosphorus, by dry weight, both 

important limiting nutrients for plants (Elser et al., 2000), consequently mass 

deaths of insect migrants greatly benefit local plant ecosystems (Landry & 

Parrott, 2016). An estimated 3.5 trillion insects migrate over the southern United 

Kingdom annually at altitudes of above 150 metres. If these densities are 

consistent across continents, insect migration accounts for the most important 
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annual animal movement in terrestrial ecosystems (Hu et al., 2016). Many insect 

migrants (and a handful of bird migrants) feed on pollen and nectar and therefore 

can act as pollinators. Transport of pollen grains over large distances greatly 

increases genetic flow between plant populations, and further benefits plant 

communities (Paschke et al., 2002). Finally, due to the sometimes vast distances 

(and high population densities) involved with migration, there is an increased 

potential for spread of pathogens and parasites (Krauss & Webster, 2010). They 

are also exposed to a broader range of parasites (and pathogens) and therefore 

increase the likelihood of introducing a novel parasite (or pathogen) to a resident 

ecosystem (Altizer et al., 2011; Waldenström et al., 2002).  

 

Due to their broad range of ecological impacts it is unsurprising that many bird 

and insect migrant species are of high socioeconomic value to humans. Birds are 

becoming of increasing value for ecotourism; however, this is currently only 

relevant for larger species such as greater flamingo (Phoenicopterus roseus) in 

locations such as Cyprus and Tanzania. Insects in particular are of great 

importance in agriculture. Migratory pollinators benefit agricultural crops in much 

the same way they help wild plant populations, increased genetic diversity has 

been shown to increase plant health and crop yield (Doyle et al., 2020). Many 

insect migrants also provide an effective biological control service, for example 

some hoverfly larvae and ladybirds (Coccinellidae) have been found to greatly 

reduce aphid numbers in crops (Schmidt et al., 2003; Hindayana et al., 2001; 

Dixon & Dixon, 2000; Dixon et al., 1997). Many insects are also considered to be 

agricultural pests. Herbivorous species such as desert locusts (Schistocerca 

gregaria) directly consume vegetation and in high densities can be extremely 

damaging. A desert locust swarm on the horn of Africa was estimated to have on 

a daily basis consumed enough vegetation to feed 400,000 people for a year 

(MacKenzie, 1985). As previously mentioned, many migrants are vectors, and 

bring disease to crops and livestock. A famous example of this are aphids, which 

feed on plants by sucking sap through a needle-like stylet (whilst simultaneously 

injecting saliva); in this way they introduce a broad range of pathogens 

(particularly mosaic viruses) to a broad range of important crops (such as: beans, 

brassicas, capsicum, carrots, celery, lettuces, sweetcorns and sweetpotatoes) 

(Valenzuela & Hoffmann, 2015; Jones, 2004). Migrant pathogen vectors may also 



 21 

impact on humans directly. Recent evidence has suggested that both Anopheles 

and Culex mosquitos are also migrating at high altitudes utilising favourable 

winds, perhaps explaining the annual recurrence of Japanese encephalitis and 

malaria in regions where the mosquito vector and disease are not found year-

round (Dao et al., 2014; Huestis et al., 2019; Satterfield et al., 2020).  

 

   Declines and conservation of migration 
 

 Migratory species, like much of the world’s biodiversity are in decline 

(Wilcove & Wikelski, 2008). This is due to a number of causes, all of which are 

anthropogenic. Humans are already responsible for the extinction of some 

migrants such as the passenger pigeon, which was wiped out primarily by active 

hunting, despite at one point being the most abundant bird species in North 

America (Bucher, 1992). Forms of pollution such as light and electromagnetic 

negatively affect orientation in many species, particularly those which migrate at 

night (Grubisic et al., 2018, Van Doren et al., 2017). However, despite migration 

evolving in response to temporal changes in climate and habitat, it is habitat 

destruction and climate change that are impacting on migration most heavily. This 

is due to the speed and magnitude at which they are occurring. The nature of 

large temporal distributions presents the problem of differing conservation 

practices between countries and regions. Only 9% of migrant bird species are 

adequately protected across their global range, far less than the 45% of non-

migrants (Runge et al., 2015). High site fidelity and the importance of stopover 

sites places some bird species in particular risk as has been seen for waders in 

the wake of China’s extensive development (22,000 km2) on the mudflats of the 

Yellow Sea (Studds et al., 2017). Effective conservation of birds must involve 

protection of habitats at all stages of their journey, particularly wintering, breeding 

and stopover grounds (Higuchi, 2012). Climate change increasing extreme 

weather events poses additional difficulty for migrants, particularly on passage, 

however these can be offset by prolonged stay at stopovers (for birds) and 

selective flight timing (in insects). Climate change is primarily affecting migrant 

birds by creating shifts in seasonal timings and consequently suboptimal breeding 

timing. This poor timing generally means lower food availability, and thus lower 

fledgling success or in the case of red knots (Calidris canutus), smaller fledgling 
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size resulting in their beaks becoming less able to reach their mollusc food in 

sediment on the wintering grounds (Van Gils et al., 2016; Both & Visser, 2001).  

 

    

Migration in the Mediterranean / Introduction to study site 
 

An estimated 2.1 billion birds migrate between Europe and Africa, all of which 

must traverse the Mediterranean region (Hahn et al., 2009). Birds and (some) 

insects have been found to either avoid crossing geographic barriers (such as 

mountains or vast expanses of water) or cross them via the shortest possible 

route (Alerstam, 2001; Brattström et al., 2008; Wikelski et al., 2006). For birds this 

has led to the formation of migratory bottlenecks at points along particular 

‘flyways’, where great numbers of migrants are funnelled through small 

geographic regions which align with favourable routes. In the Mediterranean, 

flyways occur along routes which incorporate the shortest sea-crossings. 

Frequently in the Mediterranean, islands are used as ‘stepping-stones’ between 

continents during migration and provide a vital stopover site to break up the sea 

crossing. Cyprus is the only large island in the eastern Mediterranean Sea, and is 

an important stopover site for an estimated 150 million birds annually (Hellicar et 

al. 2014). Unfortunately, perhaps many Mediterranean islands are better known 

for the volume of illegal killing of migrant birds which occurs on these islands. 

This also takes place on Cyprus. An estimate of at least 2 million songbirds are 

illegally caught and killed on Cyprus every year (BirdLife Cyprus, 2019). The focal 

species is the blackcap which is plucked and boiled to be served as the traditional 

delicacy ‘ambelopoulia’. Capture of blackcaps is achieved by means of 

indiscriminate methods such as limesticks and illegal mist netting (and playback 

devices). At least 1 million blackcaps are believed to be killed across the 

Mediterranean each year (Brochet, et al., 2016). Despite passing of laws, the 

illegal capture of songbirds undoubtably persists and is now an underground 

industry worth an estimated 15 million Euros per year (Shialis, 2017). Insect-

focused research in the vicinity of Cyprus is broadly focused on agricultural pest 

species, and thus the true composition and scale of insect migrants in Cyprus is 

not fully known (Campion et al., 1977). 
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 Our primary field site is located on the tip of the Karpaz peninsular of Cyprus 

(coordinates: 35.692824 N, 34.584572 E). The site is surrounded by sea on all 

sides except to the south-west, and the nearest landmasses are Syria to the east 

(108 km), Turkey to the north (110 km) and Israel to the southeast (465 km). The 

habitat at the site is a combination of scrub and rocky ground. The site was 

selected due to Jason Chapman observing great numbers of migrant hoverflies 

arriving in spring 2018. Data from Israel, obtained by a vertical looking radar will 

be used to compare observations between locations. 

 

   Aims 
 

In this thesis I aim to look into the migratory patterns of the eastern 

Mediterranean with a particular focus on both Cyprus and birds. I will analyse 

broader regional patterns by comparing observations on Cyprus with those 

recorded on the mainland in Israel. Abundances at each site will be compared to 

evaluate and contextualise the scale at which migration is occurring in Cyprus. 

Temporal migration patterns in Israel and Cyprus will be compared to infer 

region-wide patterns and furthermore be used to theorise routes for birds arriving 

in Cyprus. The effect of local wind patterns on migration will be tested to discover 

the impact wind has on different bird families. Finally, the taxonomic assemblages 

for both bird and insect migrants in Cyprus will be presented and the significance 

of these findings will be discussed.  
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Chapter 1:  A comparison of spring migration 
patterns between Israel and Cyprus by using 
ornithological radar data and on-the-ground 
observations  

 

   Abstract 
 

Each year, Israel and other countries bordering the Mediterranean sea to the east 

host vast quantities of migrant birds as they travel between Africa and Europe. 

This is largely driven by the tendency for many birds to avoid travel across large 

expanses of water. Despite this, the eastern Mediterranean island of Cyprus is 

also a migratory hotspot. This is thought to be because some birds use Cyprus as 

a stepping-stone across the sea. Little is known of Cyprus’s place in bird 

migration across the eastern Mediterranean other than species assemblages and 

that a great many birds pass through. In this chapter, findings from Cyprus are 

contextualised by comparing them with data from a famous eastern 

Mediterranean migration hotspot, the Hula Valley of northern Israel. Furthermore, 

the effect of wind currents on bird migration at each site is assessed. In Cyprus, 

bird abundance was found to increase in the presence of headwinds. In Israel, 

songbird migration was found to increase when wind speeds decreased. Larger 

birds such as raptors were found to be less affected by wind currents. Whilst not 

truly greater, migration traffic rates on Cyprus were found to be proportionally 

greater than those of Israel. Temporal seasonal trends between raptor groups at 

both sites correlated significantly for simultaneous days. These findings were 

used to hypothesise vertical assemblages of bird migration over Cyprus and to 

consider the cross-Mediterranean route taken by migratory birds arriving at 

Cyprus. 
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   Introduction 
 

Twice every year billions of birds make poleward journeys to exploit temporarily 

plentiful resources and multiple other benefits (Dokter et al., 2018; Gilg & Yoccoz, 

2010; Hahn et al., 2009). A probable underestimate of 19% of all bird species 

undergo annual movements, northwards in the spring and southwards in the 

autumn (Somveille et al. 2013). These migratory journeys vary greatly in scale 

from short, often within-country movements and changes in altitude to extensive 

intercontinental movements, sometimes spanning the length of the globe 

(Barcante et al., 2017; Egevang et al., 2010). Different bird groups also adopt 

different strategies of migration (Alerstam, 2009). Songbirds, as well as most 

physically smaller bird families migrate at night in cooler temperatures, whereas 

larger birds such as storks, cranes and birds of prey migrate during daylight hours 

utilising thermals to soar, reducing energetic flight costs (Baudinette & Schmidt-

Nielsen, 1974). Some smaller birds like swifts and Swallows also migrate 

diurnally as they are particularly well adapted for flight and spend much of their 

life aloft (Lockley, 1969). 

 

In order to reduce risk and energetic costs, most migrating birds avoid major 

geographic barriers such as large bodies of water (Berthold, 2001). In the 

Western Palearctic this has resulted in the routes of many migrant species 

converging to involve the shortest crossing of the Mediterranean. This has led to 

multiple geographic bottlenecks and ‘flyways’ where vast numbers of birds are 

funnelled through small regions. In Europe, the three best known flyways are: the 

western flyway that crosses the Mediterranean at the Gibraltar strait, the central 

flyway that crosses between Tunisia and Italy, and the eastern flyway that skirts 

the Mediterranean via the ‘Levant’ region and Turkey. On a smaller scale but for 

the same reasons migratory birds are known to follow valleys in mountain ranges 

and coastlines aligning with their track direction (Alerstam & Pettersson, 1977; 

Bruderer & Liechti, 1999). Israel lies on the eastern flyway and is famous for 

passages of large diurnal migrants. Over a million raptors and storks travel 

through Israel each year, including the entire global population of lesser spotted 

eagles (Clanga pomarina) and Levant sparrowhawks (Accipiter brevipes) 
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(Leshem & Yom-Tov, 1996). Cyprus is the only large island in the eastern 

Mediterranean Sea and also a migration hotspot. An estimated 150 million birds 

use it as a stopover point each year (Hellicar et al., 2014). Whilst some species 

avoid crossing the sea altogether, many use Cyprus as a steppingstone into 

Europe in the spring (and vice versa in the autumn) (Flint & Stewart, 1992).  

 

Climate presents multiple challenges to migratory birds such as unpredictable 

temperatures and precipitation (Richardson, 1978). However, one of the greatest 

challenges is posed by the medium in which they travel, air currents (Chapman et 

al., 2011; Liechti, 2006). Wind direction and speed can greatly impact on birds in 

flight. Unfavourable wind directions greatly increase energetic costs of migration, 

reduce travel speed and can result in considerable drift (Chapman et al., 2011). 

Conversely, wind currents aligning favourably with a migrant’s intended track 

direction can be greatly beneficial (Karlsson et al. 2011). Migrant birds 

morphologically reduce energetic costs via fat deposition and hypertrophy of 

muscles crucial for flight (Piersma, 1998). Birds can further minimise potential 

expenditure by not only refuelling and resting at stopover sites, but also by 

waiting for more favourable conditions (Hutto, 1998). Songbirds in particular are 

known to wait for nights when air currents have a tailwind component or are 

weak, but will depart regardless of suitability after a number of days (usually 6-8) 

due to the costs of late arrival (Åkesson & Hedenström, 2000; Kokko, 1999; 

Weber et al., 1998). Conversely, some migrant species such as Osprey (Pandion 

haliaetus) have shown no selectivity for winds (Thorup et al., 2006).  

 

Recording of bird migration comes with multiple difficulties. The main difficulty 

quantifying nocturnal migration is that the darkness greatly reduces visibility and 

thus active observation of nocturnal migrants is nearly impossible. Techniques 

such as audio recording of flight calls and counting numbers passing across the 

moon have been used to estimate nocturnal migration intensities (Nisbet & Drury, 

1969; Schrama et al., 2007). Both of these approaches come with multiple 

drawbacks: not all nocturnal migrants call in flight, and those that do are not 

constantly calling; secondly due to silhouetting species identification is usually 

impossible, the lunar cycle and cloud cover reduce repeatability and cannot be 

carried out for extensive periods due to moon movement changing the area of 
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sky you are counting against, and resulting in lower estimates. The main method 

used to monitor nocturnal migration is mist netting (Peckford & Taylor, 2008). 

Many migration monitoring stations are situated in known stopover regions, and 

resultingly catch a sample of birds replenishing fat reserves or undergoing 

stationing flights (Bonter et al., 2007). The main drawbacks of this monitoring 

technique are that unless a recapture, it is difficult to tell if an individual is 

migrating for some species, and more crucially (with the exception of stations 

situated in high altitude mountain passes) birds actively migrating typically fly at 

high elevations and thus are not caught (Komenda‐Zehnder et al., 2010). Diurnal 

migrant species are easier to count as they can be actively observed, and thus 

simple census counts are effective. However, in favourable conditions some birds 

attain altitudes of >1 km (particularly those which soar on thermals such as 

raptors and storks), making them very difficult to see and identify (Sparr et al., 

2000). In recent years many of these shortcomings have be mitigated by usage of 

vertical-looking ornithological radars (Bauer et al., 2017). Radars constantly 

record the number and altitude of everything that passes (with the exception of 

very small insects and objects) and do not require the capture or handling of any 

subjects (Nilsson et al., 2018). Furthermore, characteristics such as size, speed 

and wingbeat-frequency are factored in to categorise passing objects. Radars 

aren’t without drawbacks either, very low-flying birds are not detected and the 

categorisations in place are broad and far from species-level (Komenda‐Zehnder 

et al., 2010). Consequently, a combination of methods may reduce the 

shortcomings of a single survey method and be the most effective way to monitor 

migration intensity and composition.    

 

In the northern hemisphere there is a large skew towards migration studies 

conducted during the autumn period. This is perhaps due to a combination of 

several factors: firstly migration is on a slightly larger scale due to the addition of 

fledgelings (and tagging studies are often derived from birds tagged on the nest), 

secondly weather conditions are more favourable for observing diurnal migrants 

due to less cloud cover in hotspots (e.g. Spain and Israel), and thirdly there is far 

more migration research conducted in the northern hemisphere than the southern 

hemisphere and scientists are more likely to collect data from a starting point (i.e. 

when birds leave in the autumn), rather than when migration terminates (i.e. after 



 28 

arriving in spring)(Chapman, 2020 pers.comm.). Despite this, the spring migration 

period has greater time constraints and far higher costs associated with late 

arrival (Nilsson et al. 2013). Individuals that arrive earlier experience less 

competition at breeding grounds, have significantly greater reproductive 

performance and have more time to raise young in preparation for the autumn 

journey south (Kokko, 1999; McNamara et al., 1998; Van Noordwijk et al., 1995). 

As climate change increases, better understanding of the factors governing 

arrival timing at breeding grounds is of great importance for conservation.   

 

Little is known of Cyprus’s place in the eastern flyway other than species 

assemblages and that a great many birds pass through (Hellicar et al., 2014). 

Almost all extensive observational surveys on Cyprus have been conducted 

during the autumn, and all were carried out in the southern part of the island 

(Frost, 1994; Roth & Corso, 2005; Roth, 2008; Wilson, 2005). I was therefore 

interested in asking a number of questions: 

 

1. On what scale does spring bird migration occur through the north of the 

island and is it comparable with the abundance of birds migrating along the 

overland route through the Levant? 

2. Where do the birds that pass-through Cyprus cross from? Perhaps from a 

known mainland hotspot like Israel?  

3. To what extent do weather conditions impact on local and wider-scale 

migration patterns?   

 

In this study I compare radar data on bird migration traffic rates through the Hula 

Valley of northern Israel with on-the-ground counts of birds migrating through the 

north-east tip of Cyprus (approximately 465 km to the NNW) during the same 

spring migration period. Here I assess the similarities and differences between 

the migratory traffic rates of different bird groups over different timeframes to infer 

larger migratory patterns across the eastern Mediterranean. Additionally, I 

assessed the effect of weather patterns on the variability of migration. 

Consequently, this paper improves understanding of how migration patterns in 

Cyprus compare to those in Israel.  
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   Materials and Methods 
 

Figure 1: Map of the eastern Mediterranean Sea indicating study site locations 
(Red Circle: Kapraz peninsular of Cyprus, Blue Circle: Hula Valley of Israel) 

    

  Study Sites 
 

Data was collected in spring of 2019 between 28/03/19 – 05/05/19 at two study 

sites located on the Karpaz peninsular (or ‘Pan-handle’) of northern Cyprus 

(Figure 1). Study site 1 was located at the very tip of the peninsular (35° 41’ 

33.45” N, 34° 35’ 3.64” E), site 2 was located at the Oasis Hotel ~21 km west of 

the tip (35° 37’ 31.86” N, 34° 22’ 30.04” E). The peninsular aligns with a northeast 

by southwest axis and is surrounded on all sides except to the southwest by the 

Mediterranean Sea. The nearest landmasses are Syria to the east (108 km), 
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Turkey to the north (110 km), Lebanon to the southeast (186 km) and Israel due 

south (465 km). For the same time period radar data was obtained from a 

Birdscan MR1 X band vertical-looking radar situated in the Hula valley (33° 7’ 

35.39” N, 35° 36’ 39.87” E) in northern Israel (Figure 1). Hula valley itself aligns 

with a north by south axis and is ~6 km across, ~25 km long, and 90 m above sea 

level. The Israel site is 291 km SSE of site 1 in Cyprus.  

 

   Data Collection 
 

All Cyprus bird and insect migration data were collected by a team of students 

from Exeter University: myself, William Hawkes, Olivia Forster, Kate Lacey and 

Boya Gao. To record diurnally migrating birds in Cyprus, we stood atop a raised 

section of site 1 during three daily 45-minute counts at 10:00, 12:00 and 14:00. 

During these counts we recorded the number and direction of every bird that 

passed excluding gulls (Larus sp.) and peregrines (Falco peregrinus) as they 

were breeding at the site and therefore not migrating. If species-level 

identification could not be achieved, the bird would be identified to genus-level 

e.g. Circus sp. for unidentified ring ‘ringtail’ (female/immature plumage) harriers. 

Daily migration traffic rates were extrapolated from counts during these survey 

periods, as described below.  

 

As it was not possible to survey them whilst migrating, nocturnal migrants that 

had interrupted migration in Cyprus were surveyed via morning and evening 

counts due to their greatly reduced activity during the heat of the day. A 30-

minute constant effort survey at 07:00 for site 2 and at 17:00 for site 1 was 

undergone along an established ~1 km transect each day. Every bird observed 

was recorded and identified, birds heard calling but not observed were not 

recorded as it was difficult to ascertain numbers solely by auditory cues. Whilst 

this is obviously not a direct measure of bird migration activity, it was hoped that 

morning and evening counts of migrant birds on the ground may provide an 

indirect proxy for expected migration activity on the previous or following night. 

However, I recognise this is a far from perfect method as the number of grounded 

birds will be heavily influenced by meteorological conditions such as rainfall and 

wind direction/speed, and will not necessarily vary with actual migration activity. 



 31 

 

 The Israeli Birdscan radar collected altitudinal migration data via both short pulse 

emissions (which monitor migration activity between 50-800 m) and long pulse 

emissions (which monitors elevations above 800 m). However, in this study we 

omitted long pulse data as <10% of migration activity was recorded >800 m. The 

radar automatically categorises objects that pass through the vertical-pointing 

beam based on their echo signatures, and objects classified as birds are further 

categorised based on their flight style, wing-beat frequency and size 

characteristics (Schmid et al., 2019). 

 

 To make data from each site more comparable, the Cyprus bird migration data 

were compared against the most appropriate radar categories: day-flying raptors 

were compared with the radar category of diurnal ‘Large Single Bird’, and both 

diurnal and nocturnally migrating songbirds were compared with the radar 

category of ‘Passerine’. However, this did mean that we removed all data for 

swifts ‘Apus sp.’ (a very abundant migrant) from Cyprus as their flight 

characteristics are distinct from passerines and no distinct category was provided 

for swifts (Chapman, 2020 pers.comm). For brevity, henceforth both Cyprus’s 

birds of prey and Israel’s ‘Large Bird’ category will be referred to as raptor(s), and 

all smaller diurnal migrants, and nocturnal migrants will be referred to as 

passerines as these are representative of the largest portion of each group. 

Furthermore, to increase comparability Cyprus data was converted into an 

estimate of migratory traffic rate (MTR) (Schmaljohann et al., 2008). A migratory 

traffic rate is an estimate of how many individuals pass across a line of pre-

established length during a set time, e.g. ‘X birds/km/h’. There was little change in 

numbers observed during different timed diurnal surveys and due to the three 45-

minute surveys only accounting for a fraction of the total day, daily counts were 

converted into a per-minute value and scaled up to create an MTR for between 

07:00-18:00. Due to birds following coastlines, no birds were observed further 

than 50 metres either side of our position at the tip and so the Israel radar MTRs 

(calculated for 1 km) were divided by 10. The overwhelming majority of diurnal 

migrants observed in Cyprus travelled at altitudes below 100 m above ground 

level, and I am confident that none of the birds we recorded were above 200 m. 

Instead of MTRs, true numbers of recorded birds were used for both for nocturnal 
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comparisons as active migration was not observed on Cyprus, and therefore 

using an estimate of migration rate over time would be false. 

 

   Weather Data 
 

Wind data were obtained from the National Centres for Environmental Prediction 

database (NCEP) for north-eastern Cyprus and northern Israel. Data for both 

wind speed and direction were obtained. I tested for differences in speed and 

direction for different times of the day, but changes were minimal and so wind 

data for 12:00 each day was used for diurnal migrant analysis. Both directions 

and speeds were not found to be substantially different between ground level and 

300 m and so ground-level data was used. In Cyprus, due to the coastal-following 

and the orientation of the peninsular (65°) the desired direction of migration was 

northeast (Alerstam & Pettersson, 1977). In Israel, the Hula valley aligns north by 

south and thus the preferred migratory heading for spring was north (0°). Wind 

direction data was converted so that downwind direction was directly comparable 

with the migration track direction, and made suitable for linear analysis by using a 

scale of 0° to 180°, where ‘0’ represented the location-specific optimal direction. 

For Cyprus 0 was 65°, and for Israel 0 was 0° (and resultingly a true wind 

direction of e.g. 270° (easterly winds), would be converted to 155° and 90° for 

analysis for Cyprus and Israel respectively). Thus, the converted wind scale 

provided a linear measure of how favourable the wind was for migration at each 

location, ranging from 0 (perfectly aligned with the intended migration direction (or 

tailwinds)) to 180 (, which completely opposes the intended flight direction 

(headwinds)). 

 

   Statistical Analysis 
 

 All statistical analysis was performed using R studio for Mac Version 1.3.1.093 

(R Core Team, 2020, http://www.rstudio.com/). Differences in daily MTRs were 

tested for using paired t-tests. The effect of wind on migration was tested for 

using analysis of variance to select the generalised linear models that best fit 

variations in migratory traffic rates as a result of wind. For Cyprus, only values for 

north-easterly movement were used because to use a quasipoisson distribution 
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all values must be non-negative and instances of reverse migration (movement 

southwest) were uncommon. For Israel no directional data was provided by the 

radar and so absolute MTR values were used since the vast majority of birds are 

likely heading north. A further analysis of variance was conducted to test for 

comparative abundances between altitude bands (50-800 m) in Israel. Pearson’s 

product moment correlation coefficient tests were used to look for temporal 

relationships between groups between Cyprus and Israel. Cyprus MTRs were 

compared with Israel MTRs for the same day and 2 days either side for diurnal 

groups (passerines and raptors). For nocturnal migrants MTRs were not used as 

we did not actively observe nocturnal migration in Cyprus. The same correlations 

were performed except instead of same day, totals for Cyprus were compared 

against migration radar totals (exact numbers recorded over the radar, not an 

estimate across a 1 km transect) from the previous night in Israel (19:00-6:00) 

and consequently 2 nights either side of that. Days on which the radar did not 

function, or we were unable to survey were excluded from analysis. Distances 

were calculated using an online distance calculator (Georg, 2018). 

 

   Results & Discussion 
 

Average daily migration traffic rates for both diurnal groups were significantly 

higher in Cyprus than they were in Israel (raptors: t(29) = 5.5475, p <0.001, 

passerines: t(29) = 3.1355, p = 0.004). The mean daily MTR (between 07-18:00 

across 100 m) for raptors was 64.9 for Cyprus and 9.8 for Israel <200 m above 

ground (Figure 2 (a)). Mean daily MTR (between 07-18:00 across 100 m) for 

diurnally migrating songbirds was 528 in Cyprus and 112.9 in Israel below 200 m 

(Figure 2 (b)). Furthermore, Cyprus’s mean daily 0-200 m MTRs were greater 

than the sum of daily means at all four altitude bands (50-800 m) in Israel which 

was 25.2 for raptors and 211.3 for songbirds. Whilst these findings seem 

surprising, when considered in context they make more sense. For Cyprus, 100 

m represents the total length of the region through which migration was occurring, 

but for Israel 100 m only accounts for a small portion of the Hula valley which is 

~6 km across (east to west) (Werber, 2020 pers.comm.). When scaled to account 

for the entire valley’s width, the daily 50-200 m mean MTRs for  
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Israel far surpass those of Cyprus (raptors: t(29) = 6.444, p <0.001, mean Israel 

MTR: 590.2, passerines: t(29) = 8.953, p <0.001, mean Israel MTR: 6778.9) 

(Figure 2 (c, d)). Nevertheless, the MTRs for diurnal migrants on Cyprus are 

remarkably large for birds crossing just a 100 m stretch. These patterns are likely 

being caused by the peninsular acting as a migratory bottleneck or funnel. The 

vast majority of diurnal migrants departed land at the peninsular tip to avoid a 

longer sea-crossing. The observations at the tip represented a culmination of 

multiple local-scale migration strategies (i.e. followed southern coastline, northern 

coastline, stayed over land) and furthermore unlike at the Israel site, there simply 

was no other land to fly over resulting in a proportionally higher volume crossing a 

narrow area. Fundamentally, the vast volumes of migration over Israel are 

caused by the same reasons, but on a far larger scale. For Israel, the 

b) a) 

d) c) 

Figure 2: A comparison of mean daily <200 M MTRs (Migration Traffic Rates) 
between Cyprus and Israel (a) Daily raptor MTRs per 100 m (b) Daily passerine 
MTRs per 100 m (c) Comparison of daily raptor MTRs across Karpaz tip (100 m) 
and total width of the Hula Valley (6 km) (d) Comparison of daily passerine MTRs 
across Karpaz tip (100 m) and total width of the Hula Valley (6 km)     

Figure 2: A comparison of mean daily 0-200m MTRs (Migration Traffic Rates) between Cyprus and Israel 
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Mediterranean lies to the west, and the Arabian desert lies to the south and east 

(Safriel, 1968). This combined with the Egypt land-bridge connecting Asia and 

Africa to the south has resulted in Israel itself becoming a migratory bottleneck.  

 

The average number of nocturnal migrants recorded per day in Cyprus was lower 

than the mean nightly 50-200 m radar number (Cyprus: 55.2, Israel: 646.7), 

however this is less comparable as nocturnal migrants in Cyprus were not 

recorded actively migrating. The primary reason for comparing nocturnal groups 

was not to compare respective abundances, but instead to assess correlations in 

temporal patterns.  

 

The radar recorded a significant difference in traffic rates at different altitude 

bands. Both diurnal passerine migrants and raptors exhibited similar trends in 

altitude (Figure 3). The volume of diurnal migrants was significantly different 

between elevations (Raptors: F (3,116) 10.88, p <0.001; Passerines: F (3,116) 

47.14, p  <0.001). Tukey’s Post Hoc tests revealed that traffic rates were not 

significantly different between 50-200 m and 200-400 m, or between 400-600 m 

and 600-800 m but differed significantly between all other elevations for raptors (p 

<0.05), and differed significantly between all elevations except 400-600 and 600-

800 for passerines (p  <0.05). The greatest volume travelled below 200 m (mean 

raptors = 9.84, mean Passerines = 112.98 (Figure 3 (a, b))) and the traffic rates 

reduced considerably above 400 m. Nocturnal passerines displayed similar 

altitudinal trends, a significant difference was observed across all altitude bands 

(F (3,116) 79.716, p <0.001) and they flew slightly higher. Tukey’s Post Hoc tests 

were carried out. Numbers at both altitude-bands below 400 m were significantly 

different from those above 400 m (p <0.001), but not each other. Again, the 

highest MTRs occurred at altitudes of 50-200 m (mean = 259.33) and 200-400 m 

(mean = 266.77) (Figure 3 (c)). Using these findings to infer altitudinal 

assemblages over the Karpaz peninsular of Cyprus would not be entirely 

accurate as the geography of the sites differ in a few ways. In a 2018 study 

comparing radar findings between many sites, Bruderer et al. found that multiple 

factors impact on vertical distribution, particularly: proximity to mountains, sea-

crossings and winds. The study found that at sites immediately after a sea-

crossing such as Mallorca (an island similarly surrounded by the Mediterranean), 
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the largest volume of migration occurs below 200 m; and at montane site (or 

those close to mountains) most migration occurred at much higher altitudes (~800 

m above ground-level). Due to the relatively low-lying geography (~90 m 

elevation) and little mountain presence of the Hula valley, it is unsurprising that 

most migration occurred at low elevations. However, the extent recorded at these 

elevations was unexpected. 90% of all recorded 50-800 m diurnal migration 

occurred below 400 m, 52% below 200 m. Whilst similar in trends to other 

findings in Israel and further south in Egypt, this skew towards lower elevations 

was far greater than was expected (Bruderer et al., 2018; Dinevich & Leshem, 

2012). Due to the extreme and unexpected nature of the Israel radar findings, I 

think it is unwise to use them to estimate altitudinal assemblages over Cyprus, 

however I would predict that the findings would be similar to those observed on 

Mallorca wherein ~30% of all birds migrate below 200 m and ~50% migrate below 

500 m.  

 

Figure 3: Mean migration traffic rates 
in the four altitude bands (up to 800 
m) over Israel (a) raptors (b) diurnally 
migrating passerines (c) nocturnally 
migrating passerines 
 

 

 

 

 

Wind currents had slightly different effects on diurnal migration in Cyprus and 

Israel. There was a statistically significant effect for wind direction on migration 

b) a) 

c) 
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traffic rates for both raptors (f (1,33) 7.81, p = 0.009) and diurnally migrating 

passerines (f (1,33) 12.84, p = 0.001) in Cyprus (Figure 4 (a, b)). There was a 

positive effect for both groups (Raptors: est. = 0.009, S.E. = 0.003; Passerines: 

est. = 0.01, S.E. = 0.002), indicating that they were in higher abundance in 

headwinds (winds with a north-easterly component). Wind speed had no 

significant effect on either group in Cyprus. Wind direction and speed had no 

effect on MTRs of raptors in Israel. Wind speed however had a significant overall 

effect on diurnal passerines in Israel (f (1,118) 3.95, p = 0.049). There was a 

negative interaction (est. = -0.081, S.E. = 0.04) indicating that as wind speeds 

increased, migration traffic rates decreased (Figure 5). Whilst groups appear to 

have behaved differently between sites, it may be the slightly differing conditions 

that best explains these findings. Average wind speeds were slightly lower in 

Cyprus than in Israel (Cyprus: 4.47m/s, Israel: 6.39m/s), but variety of wind 

directions was higher. Easterly winds were virtually absent during the study 

period in Israel, this may have been caused by sheltering from a small patch of 

mountains to the valley’s west (Chapman, 2020 pers.comm.). Winds in Israel 

most frequently had a westerly component (westerly winds on 22 out of 39 days, 

mean direction: 250°) and often did not change direction for multiple consecutive 

days, presenting migrant birds with challenging crosswinds which can result in 

increased drift in flight (Liechti, 2006). Less wind-selective raptors and other large 

birds were seemingly not affected by this. However, such consistently 

unfavourable wind directions probably lead to smaller songbirds not waiting for 

favourable tailwinds, but instead waiting for days on which the wind was at its 

lowest speeds, resulting in the largest numbers migrating in ~5m/s or lower 

winds, much slower than their average self-powered flight speeds (~11 m/s) 

(Alerstam et al. 2011; Liechti & Bruderer, 2002). In Cyprus, our findings appear to 

be inverted, suggesting that both raptors and smaller diurnally migrating groups 

actively select for costly headwinds (Erni et al., 2002; Karlsson et al. 2011). This 

would only make sense in the context of benefitting from earlier arrival at 

breeding grounds (Shamoun-Baranes et al., 2017). However, in the more variable 

wind directions and lower average wind speeds it is more likely that we simply 

saw more migrants in headwinds due to them being driven down to ground-level 

where winds are usually weaker (Liechti, 2006). Conversely, on days of 

favourable tailwinds we possibly missed many migrants as they flew at higher 
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altitudes (>200 m) rendering them too high to spot, and therefore lower total 

numbers were reported for these days. The altitudinal distribution data from Israel 

perhaps both agrees with and is partially explained by this theory too because 

such consistently unfavourable wind directions possibly drove the majority of 

migrants to lower altitudes during the spring period.  

 
Figure 4: Regressions of migration traffic rates and wind direction in Cyprus for 
(a) raptors (b) diurnally migrating passerines (wind directions of 0 represents 
tailwinds, a wind direction of 180 represents headwinds) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

Figure 5: Regression of diurnal passerine migration traffic rates and wind speeds in 
Israel at each altitude band a) 50-200 m b) 200-400 m c) 400-600 m d) 600-800 m 

 

a) b) 

c) d) 
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Figure 6: Seasonal abundance trends in Israel and Cyprus for raptors, diurnally 
migrating passerines and nocturnally migrating passerines 
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Correlation tests were run to compare for similarities in the temporal trends of 

migration between Israel and Cyprus to elucidate patterns on a regional scale 

and perhaps ascertain if there is a direct link between migratory birds at the two 

sites (Figure 6). No significant correlation was found to be present between 

nocturnal or diurnal passerine groups using any temporal comparison. However, 

there was a statistically significant correlation found between raptor groups for 

simultaneous days (r(21) = 0.62, p = 0.002 (Figure 7)). Furthermore, the highest 

daily raptor MTRs for each site both occurred on 8th April (Cyprus: 288.44, Israel: 

31.94 (Figure 6)). However, when data for 8th April were removed, the correlation 

became insignificant. The mean flight speeds of raptors recorded by the radar 

was 9.57m/s. From this we can estimate that it would take a minimum of 8 hours 

27 minutes to travel the 291 km distance between the Hula valley and site 1 on 

the Karpaz tip. Moreover, as previously mentioned, we observed raptors working 

their way along the coastlines towards the Karpaz tip, rather than arriving from 

the sea to the tip and thus the travel time would certainly be much longer. 

Consequently, we would expect to observe at least a 1-day lag between patterns 

at sites if travel between Israel and Cyprus was occurring, but Pearson’s test 

performed under these conditions were not significant (all r(21) = <0.15, p >0.05). 

From these findings we can infer that it is highly unlikely that individuals recorded 

on Cyprus were the same as those recorded in the Hula valley region, and 

furthermore we can fairly safely assume that they were not from Israel at all.  As 

raptors are the group least affected by climatic conditions during migration, I 

hypothesise that bird migration occurs in waves fairly consistent across broad, 

regional fronts, but local weather systems impact on the speed and timings of bird 

groups differentially. Moreover, this would perhaps explain why unsurprisingly no 

correlation in migration patterns was found between the more wind-selective 

passerine groups across such large geographic scales.    

 

Whilst our findings on Cyprus are similar both in patterns and composition to 

those on the mainland portion of the eastern flyway, aspects such as where the 

migrants depart land to journey towards Cyprus during the spring and where the 

island’s part in the overall picture of large-scale migration patterns remains 

largely unclear. Whilst some species such as black stork (Ciconia nigra) and  
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Figure 7: Correlation between raptor migration traffic rates in Israel and Cyprus 
on simultaneous days 
 

great white pelican are known to cross between Europe and Israel via Cyprus, 

neither species was recorded during our data collection and this does not seem 

to be the case for our findings. Both species have wintering populations in Israel 

and have been found to fly across the Karpaz peninsular rather than follow its 

length and depart northeast at the tip like we observed (Bobek et al., 2008; Izhaki 

et al., 2002). Furthermore, whilst some instances of seemingly suboptimal 

migration routes do persist, it would make little sense to migrate northwest 

towards Cyprus only to turn upon arriving and depart in a northeasterly direction 

(Sutherland, 1998). This would lengthen the distance of migration and make the 

risky sea-crossing less justifiable. The uniformity of northeasterly departure found 

in our observations across all diurnally migrating bird species, combined with our 

findings of strong same-day similarities in migration intensity across the region 

suggests that the migrants observed on Cyprus had travelled from elsewhere. 

Demoiselle cranes (Grus virgo), like the majority of migrants we observed have a 

wintering population in Africa and breed in eastern Europe (and further east). 

During the spring migration this species has been found to depart land at Egypt 
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(another migration hotspot), cross Cyprus and then continue towards their 

breeding grounds to the north of the Black Sea (Hilgerloh, 2009; Meine et al., 

1996) (See Figure 1). These examples are admittedly of larger species than 

most recorded during the spring data collection period, however there exists a 

bias towards larger species in bird tracking studies due to their greater size, flight 

power and lifespans which increase their viability for their selection to be fitted 

with heavy and expensive tracking devices (Fiedler, 2009). I propose that these 

findings for Demoiselle cranes are representative of a broader range of species 

as this would render both a sea-crossing from Egypt (~360 km SSW of Cyprus) 

and an eventual northeasterly departure at the Karpaz tip beneficial.  

 

In conclusion, this study has built upon existing research on the effect wind 

current have on migrating birds. We found that wind had a lower impact on large 

migrant birds (raptors), whereas songbirds were more selective, choosing to fly in 

lower wind speeds when wind directions were consistently unfavourable. For the 

first time this study has compared migration intensity patterns in Cyprus with 

those of Israel on the mainland, and discovered significant similarities. 

Furthermore, migration traffic rates through the Karpaz peninsular of Cyprus were 

found to be proportionally greater than those in an established migratory hotspot, 

the Hula valley. The Akrotiri peninsular and Cape Greco to the island’s south are 

similarly known to host large levels of migration in the autumn period (Frost, 

1994; Roth & Corso, 2005; Roth, 2008; Wilson, 2005). Therefore, Cyprus’s other 

north-pointing peninsulas (Akamas peninsular and Cape Cormakitis) are probably 

also of great importance during spring when they favourably align with migratory 

headings. Finally, in order to prove the hypotheses presented, and to quantify 

vertical bird assemblages over Cyprus, future experimental design should 

incorporate radar analysis on Cyprus, on-the-ground observations undertaken in 

Hula valley, and multi-seasonal tracking of birds departing northeast from the tip 

of the Karpaz peninsular. 
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Chapter 2: The phenology of bird and insect 
migration through the Karpaz peninsular of Cyprus 
(Spring 2019)  

 

   Abstract 
 

The findings from the first season-long migration survey of the northeast 

peninsular of Cyprus are presented. Diversity and abundances of diurnally 

migrating birds, nocturnally migrating birds and diurnal insect migrants were 

monitored. 7487 diurnal bird migrants, 2644 nocturnal bird migrants and an 

estimated 50,065,998 diurnal insect migrants were recorded during a 39-day 

survey period. Migrating crag martins (Ptyonoprogne rupestris) and common 

kestrels (Falco tinnunculus) were recorded in surprisingly high numbers for 

Cyprus (90 crag martins, 165 common kestrels). If records for pallid harriers 

(Circus macrourus) (n = 60, seasonal estimate = 187) are accurate and 

representative of other years, the Karpaz peninsular would represent Europe’s 

most significant flyway for the species. This is of particular importance because 

pallid harriers are currently listed as globally near threatened on the IUCN 

Redlist. In addition, the first African migrant butterfly (Catopsilia florella) on 

Cyprus since 1986 and the first ever Cyprus record of the ladybird Harmonia 

quadripunctata were recorded. Furthermore, evidence of migratory behaviour in 

agricultural pest species Delia platura and Stomoxys calcitrans is presented, both 

of which were not previously considered migratory. Observations of illegal 

songbird trapping at the study sites is discussed anecdotally. As the first 

dedicated spring survey in the region, the findings from this survey considerably 

augment knowledge of spring bird and insect migration through the Karpaz 

peninsular of Cyprus. 
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Introduction 
 

Birds and diurnal insects have been found to migrate across seas via routes 

involving the least travel across open water (Alerstam, 2001). In the Mediterranean, 

the most extensively studied of these routes taken by many bird species are the 

western Flyway across the Gibraltar strait, the central or Adriatic flyway across the 

Sicilian Channel and Messina strait from Tunisia to Italy, and the Rift Valley/Red sea 

flyway in the east. Insects adhere to less pre-defined migration routes. Large insects 

are selective of favourable wind currents and achieve great distances by migrating at 

times when wind directions aligning with their preferred direction of flight, while 

smaller species are completely non-selective (Chapman et al., 2012; Chapman et 

al., 2015; Hu et al., 2016). It is believed that the vast majority of birds travelling by 

the eastern flyway bypass the Mediterranean Sea and instead travel northwards over 

land via Lebanon and Syria, however a great number may migrate via Cyprus. This 

may also be the case with insects. 

 

Cyprus is the only large Mediterranean island to the east and a known migratory 

hotspot, providing an important stopover point for an estimated 150 million birds 

every year (Hellicar et al. 2014). Over 400 bird species are recorded on Cyprus 

annually, however only approximately 60 are resident year-round (BirdLife Cyprus, 

2019). Of these ~85% of non-resident bird species recorded in Cyprus, some breed 

on the island, however many pass through en route to more distant destinations. It is 

now believed that Cyprus is used as a stepping-stone between Turkey and Africa by 

a significant number of birds (Flint & Stewart, 1992). Birds arrive in broad fronts but 

traverse to and concentrate at peninsulas favourable to their migratory heading. 

However, extensive observational research on bird migration in Cyprus is 

incomplete. All extensive migration data is from southern Cyprus, primarily from 

Akrotiri, except for two surveys carried out on the eastern coast at Cape Greco 

(Frost, 1994; Roth & Corso, 2005; Wilson, 2005, Roth, 2008). Furthermore, no 

dedicated observational studies have been carried out during the spring migration 

period. Even less is known about insect migration on Cyprus. Most insect migrant 

studies conducted in the eastern Mediterranean have been focused on agricultural 

pest species (Campion et al., 1977; Zhou et al., 2000). However, anecdotal 
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observations of hoverfly migration have suggested Cyprus may host extensive insect 

migration that has gone largely unreported (Chapman pers.comm. 2018). No 

systematic, season-long assessment on the scale and diversity of insect migrants 

has been carried out in Cyprus. 

 

Broadly speaking, birds and insects migrate via two strategies, diurnally or 

nocturnally (however some birds migrate during both day and night, and diurnal 

insects will continue sea-crossings into the night until they reach land) (Chapman et 

al., 2015). Diurnal bird migration is undergone by larger migrant species belonging to 

the Cinconiiformes (herons and storks), Accipitriformes (raptors) and Gruiformes 

(cranes). These species are able to use efficient soaring flight (in combination with 

flapping in some cases/if necessary) to take advantage of thermals which occur over 

land to migrate at altitudes of hundreds or even thousands of metres at low energetic 

costs (Leshem & Yom-Tov, 1996; Mateos-Rodríguez & Liechti, 2012). However, 

some smaller species, including members of the families: Apodidae (swifts), 

Meropidae (bee-eaters) and Hirundinidae (swallows and martins) also migrate 

diurnally, however this is due to their supreme flight abilities and highly aerial lifestyle 

(Lockley, 1969). Most smaller birds, particularly Passeriformes (‘songbirds’) migrate 

nocturnally to maximize possible foraging time during the day, reduce predation risk 

and avoid overheating and dehydration in the cooler and moister conditions at night 

(Alerstam, 2009). These songbirds typically travel at altitudes between 400-1600 m 

(however they can fly at altitudes higher than 3500 m) (Alerstam et al. 2011). 

Daylight hours are spent resting and refuelling for the next migratory flight (Alerstam, 

2009). Examples of diurnal insect migrant groups include (but are certainly not 

limited to) Lepidoptera (butterflies and moths), Odonata (dragonflies), Diptera (flies) 

and Coleoptera (beetles). In migratory insects, cues such as light intensity 

thresholds, temperature, atmospheric pressure and winds can trigger the decision to 

depart in a genetically predetermined direction (e.g. north or south) (Chapman et al., 

2015; Drake & Reynolds, 2012). Insect migrants close to the ground (this study’s 

focus) are less affected by wind currents and the risk of being drifted off course, as 

wind speeds are usually lower, however ability to combat drift varies greatly between 

taxa (Srygley & Dudley, 2008). 
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The aim of this study was to assess the migratory flow and composition at the 

Karpaz peninsular in the north-east of Cyprus. In this we examine both diurnally and 

nocturnally migrating birds, as well as diurnal insect migrants in three separate 

sections.  

 

 

 

 

Study Site 
 

The primary field site was located on the tip of the Karpaz peninsular or ‘pan-handle’. 

The site is surrounded by sea on all sides except the south-west. The nearest 

landmasses are Syria to the east (108 km), Turkey to the north (110 km) and Israel 

to the south (465 km) (Figure 8). The habitat around the Karpaz tip is rather varied, 

composed of rocky cliffs and open areas near the extreme tip, rapidly turning into 

scrub as you move away from the tip. The secondary field site was just inland from 

the Oasis Hotel located on the north coast approximately 21 km from the tip. This 

site composed of dunes, scrub and low-intensity farmland and was only used for 

surveying nocturnal-migrating species assemblages (Figure 9). 

 

Section 1: Diurnally migrating birds 
 

Methods 
 

Diurnal migration counts were carried out atop an elevated section of the Karpaz tip 

from 28th March to 5th May 2019. Three 45-minute counts were carried out daily from 

10:00am, 12:00am, 14:00pm. Binoculars were used to scan the surroundings 

Figure 8: (a) Location of study area (b) Location of two study sites (1) Karpaz tip 
site (2) Oasis hotel site (Google Maps, 2020)  
 

a) b) 
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(Swarovski EL 10x42 and Swarovski CL Pockets 8x25). All birds that passed us in 

the allocated time were counted, identified and their flight direction was noted. The  

 
  

9a) Tip site: Open habitat backing onto 
extensive scrubland  

9b) Tip site: Rocky open habitat 

9c) Tip site: Coastal cliff habitat  9d) Oasis Site: Hill Scrubland   

9e) Oasis site: Low-intensity farmland 9f) Oasis site: Open scrub and meadow 
habitat backing onto dunes  

Figure 9: (a-f) Photographs of habitats present at each site 
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many gulls that nest on the islets off the tip were ignored during the counts, as were 

the Peregrines as nesting pairs were present both at the tip and Oasis site. If 

species-level identification could not be achieved individuals were identified down to 

genus level e.g. Falco sp. Despite the likelihood that a portion of the swifts observed 

were pallid swifts, due to speed, aerial traffic and difficulty of identification, both 

common and pallid swifts were treated as common swifts due to the probability that 

they made up the overwhelming majority.  On a small number of days counts were 

not made due to very adverse weather or essential administration. Any significant 

observations made between surveys were also noted as supplementary information. 

For all species recorded the total heading southwest was subtracted from the total 

heading northeast to produce a migratory flow value. By using daily values from the 

three 45 minute surveys, an estimate for seasonal totals of birds passing between 

9:00 – 16:00 was made for the more frequently observed species. These timings 

were decided because as this section looks into trends at species-level, I thought it 

wise to not make estimates for times falling far outside our survey periods.  

Pearson’s correlation tests were performed to test for similarities in temporal trends 

between major bird groups recorded (raptors, herons, hirundines and swifts). The 

study period was divided into thirds (3x13 days) to create effective early, middle and 

late segments for our spring period. One-way analysis of variance tests were carried 

out on frequently recorded raptor species (n = >20) to test for significant differences 

in temporal abundance. If significance was found, post hoc tests were carried out to 

determine which time period(s) differed significantly from others. Seasonal 

abundance patterns were plotted for species where 10 or more individuals were 

recorded. 

 

Results 
 

We recorded 7487 birds of 26 species during 4185 minutes (69 hours, 45 minutes) of 

surveying, a mean passage rate of 1.79 individuals per minute. Of these 447 were 

Ciconiiformes of 6 species, and 412 were raptors (Accipitriformes) comprising of 12 

species and buzzards (Buteo sp.) which were not identified to species level. The 

remaining birds recorded were 2751 swifts, 149 bee-eaters, and 3728 hirundines. 

The three most abundant species were common swift (2739), barn swallow (2374) 

and red-rumped swallow (700) (Tables 1-4).  
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Species Total Number Observed Migratory Flow (% 
Northeast) 

Osprey (Pandion 
haliaetus) 

4 4 (100%) 

Lesser Spotted Eagle 
(Aquila pomarina) 

4 2 (75%) 

Short-toed Eagle 
(Circaetus gallicus) 

1 1 (100%) 

Black Kite (Milvus 
migrans) 

2 0 (50%) 

Marsh Harrier (Circus 
aeruginosus) 

49 11 (66.7%) 

Hen Harrier (Circus 
cyaneus) 

7 5 (85.7%) 

Pallid Harrier (Circus 
macrourus) 

60 56 (96.7%) 

Circus sp. 18 8 (72.2%) 

Steppe/Long-legged 
Buzzard (Buteo sp.) 

17 13 (88.2%) 

Eurasian Sparrowhawk 
(Accipiter nisus) 

21 1 (52.4%) 

Common Kestrel (Falco 
tinnunculus) 

165 139 (92.1%) 

Lesser Kestrel (Falco 
naumanni) 

14 2 (57.1%) 

Red-footed Falcon (Falco 
vespertinus) 

8 8 (100%) 

Eurasian Hobby (Falco 
subbuteo) 

42 18 (71.4%) 

Species Total Number Observed Migratory Flow (% 
Northeast) 

Common Swift (Apus 
apus) 

2739 1288 (73.3%) 

Alpine Swift (Apus melba) 12 8 (83.3%) 

European Bee-eater 
(Merops apiaster) 

149 145 (98.7%) 

Sand Martin (Riparia 
riparia) 

61 59 (98.4%) 

Eurasian Crag Martin 
(Ptyonoprogne rupestris) 

90 56 (81.1%) 

Barn Swallow (Hirundo 
rustica) 

2374 1992 (92%) 

Red-rumped Swallow 
(Cecropis daurica) 

700 660 (97.1%) 

Table 1: Totals for all raptor species observed, their migratory flow (northeast - 
southwest) and percentage which flew northeast 

Table 1: Totals for all raptor species observed, their migratory flow (NE – SW) 
and percentage which flew northeast  

Table 2: Totals for all swifts, bee-eaters and hirundine species observed, their 
migratory flow (northeast - southwest) and percentage which flew northeast 

Table 2: Totals for all Swifts, Bee-eaters and Hirundine species observed, their 
migratory flow (NE – SW) and percentage which flew northeast  
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Species Total Number Observed Migratory Flow (% 

Northeast) 

Cattle Egret (Bubulcus 
ibis) 

8 8 (100%) 

Little Egret (Egretta 
garzetta) 

8 6 (87.5%) 

Great Egret 
(Casmerodius albus) 

24 2 (54.2%) 

Grey Heron (Ardea 
cinerea) 

10 6 (80%) 

Purple Heron (Ardea 
purpurea) 

1 -1 (0%) 

Glossy Ibis (Plegadis 
falcinellus) 

396 396 (100%) 

 
 

Species Seasonal Estimate 

Pallid Harrier (Circus macrourus) 187 

Common Kestrel (Falco tinnunculus) 498 

Eurasian Hobby (Falco subbuteo) 131 

Common Swift (Apus apus) 8521 

Bee-eaters (Merops sp.) 464 

Barn Swallow (Hirundo rustica) 7386 

Red-rumped Swallow (Cecropis 
daurica) 

2178 

Glossy Ibis (Plegadis falcinellus) 1232 

 
Migration was undergone in a north-easterly direction for all species (except purple 

heron) following both the north and south coastlines, and centre of the peninsular 

towards the Klides Islands and out of view. Species predominantly migrated over the 

land until the tip, the main exception being glossy ibis (Plegadis falcinellus) for which 

291 were observed migrating out to sea parallel with the peninsular ~200 metres to 

the south.  

 

Of the raptors, the ring-tailed harriers were the earliest migrants to arrive in numbers 

and pass through. Pallid harriers (Circus macrourus) were recorded in each of the 

three survey periods, but abundance changed significantly over time (f (2,36) 6.01, p 

= 0.006) (Figure 10). Tukey’s Post Hoc tests revealed that the early spring period 

(first third of study period) differed significantly from the others (p <0.05), and the  

Common House Martin 
(Delichon urbicum) 

503 461 (95.8%) 

Table 4: Seasonal estimates between 9:00 – 16:00 

Table 3: Totals for all heron and ibis species observed, their migratory flow 
(northeast - southwest) and percentage which flew northeast 

Table 3: Totals for all Heron and Ibis species observed, their migratory flow (NE – 
SW) and percentage which flew northeast  
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Figure 10: (a-i) Spring migration trends for diurnal migrants, depicting total 
numbers observed against a triad (3-day period, middle date shown) for: a) Great 
Egret Casmerodius albus b) Grey Heron Ardea cinerea c) Glossy Ibis Plegadis 
falcinellus d) Marsh Harrier Circus aeruginosus e) Pallid Harrier Circus 
macrourus f) Long-legged/Steppe Buzzard Buteo sp. g) Sparrowhawk Accipiter 
nisus h) Common Kestrel Falco tinnunculus i) Lesser Kestrel Falco naumanni 
(Only species which had 10 or more observations are shown). 
Figure 10: Spring migration trends for diurnal migrants, depicting total numbers observed against a triad (3-day period, 
middle date shown) (i) 

10c) Plegadis falcinellus 

10d) Circus aeruginosus 10e) Circus macrourus 10f) Buteo sp. 

10g) Accipiter nisus 10h) Falco tinnunculus 10i) Falco naumanni 

10b) Ardea cinerea 10a) Casmerodius albus 
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Figures 11: (a-i) Spring migration trends for diurnal migrants, depicting total 
numbers observed against a triad (3-day period, middle date shown) for: a) 
Eurasian Hobby Falco subbuteo b) Common Swift Apus apus c) Alpine Swift 
Apus melba d) European Bee-eater Merops apiaster e) Sand Martin Riparia 
riparia f) Crag Martin Ptyonoprogne rupestris g) Barn Swallow Hirundo rustica h) 
Red-rumped Swallow Cecropis daurica  i) House Martin Delichon urbicum (Only 
species which had 10 or more observations are shown). 
Figure 11: Spring migration trends for diurnal migrants, depicting total numbers observed against a triad (3-day period, 
middle date shown) (ii) 

11a) Falco subbuteo 11b) Apus apus 11c) Apus melba 

11d) Merops apiaster 11e) Riparia riparia 11f) Ptyonoprogne rupestris 

11g) Hirundo rustica 11h) Cecropis daurica 11i) Delichon urbicum 
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Figure 12: Same-day correlations 
between diurnal migrant groups recorded 
on Cyprus(a) raptors and swifts (b) 
raptors and hirundines (c) swifts and 
hirundines 

 

 

 

 

 

 

latter two periods were not significantly different from each other (p >0.05). 

Furthermore, their migration had already started by the time the survey had begun 

(per obs.). Whilst also abundant in the early period, marsh harrier (Circus 

aeruginosus) numbers however did not differ significantly in numbers throughout the 

survey period (f (2,36) <0.02, p >0.05). The peak day for harrier migration was 

08/04/19 during which we observed 9 marsh harriers, 1 hen harrier (Circus cyaneus) 

and 14 pallid harriers (9:00-16:00 estimate: MH: 28, HH: 6, PH: 44). Ring-tailed 

harrier numbers dropped to mostly singletons after the first 13-day period. Common 

kestrels (Falco tinnunculus) and Eurasian sparrowhawks (Accipiter nisus) also 

showed no significant difference in abundance throughout the spring period (both: f 

(2,36) f <2.0, p >0.05). The latest migrants observed were Eurasian hobby (Falco 

subbuteo), red-footed falcon (Falco vespertinus) and European bee-eater (Merops 

apiaster) being first recorded on 13/04, 21/04 and 25/04 respectively (Figure 11). 

Hobby abundance in the last segment of study period differed significantly temporally 

c) 

b) a) 
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(f (2,36) 12.72, p <0.001). Tukey’s Post Hoc test found that hobby abundance in the 

last segment of study period significantly differed from the earlier two periods (p 

<0.001). Hirundines and common swifts were observed consistently throughout the 

spring period however with the exception of crag martins, their numbers sharply 

peaked at the end of April (Fig.4).  

 

A significant positive correlation was found between all diurnal migration groups 

except for Ciconiiformes (herons). Raptors correlated significantly with both swifts 

(r(37) = 0.47, p = 0.003) and hirundines (r(37) 0.43, p = 0.006). A strong significant 

correlation was found between swifts and hirundines (r(37) 0.85, p <0.001) (Figure 

12).  

 

Discussion 
 

This study is the first systematic survey of diurnal spring bird migration on the Karpaz 

peninsular, northern Cyprus. Whilst it was previously known to be a migration 

hotspot, this study is the first to quantify species assemblages and quantities 

migrating though the peninsular, as well as the direction and timing of these 

movements. Our findings largely agree with previous theories that diurnally migrating 

birds arrive at the island on a broad front (south in the spring) and continue along 

coastlines in a direction aligning with their intended migratory heading, eventually 

departing northwards towards Turkey. These migrants concentrate at and depart 

peninsulas so as to minimise the distance spent travelling over open water. We 

generally observed two strategies; either the individual arrived on the south of the 

island and immediately follows the coast, or travelled through the island and 

continued north-eastwards along the north coast. The latter strategy did appear to be 

more common (pers obs.), however not overwhelmingly so and no strategy 

appeared to be species-specific. Owing to this theory there are likely at least three 

major spring migration hotspots on Cyprus: the Karpaz peninsular to the east, the 

Akamas peninsular to the west, and Cape Cormakitis to the north. Interestingly 

glossy ibis were the only species observed migrating offshore (~200-300 m south). 

This appeared to be more commonly observed in an autumn study where birds were 

seen migrating over water from the peninsular down to Cape Greco (Roth & Corso, 

2005). Migration periods were generally not discrete, as was to be expected as 
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diurnal migrants display less discrete migration windows in spring than autumn 

(Leshem & Yom-Tov, 1996). Broadly speaking, harriers arrived first, then falcons and 

then larger birds like lesser-spotted eagle and black kite towards the end of the 

survey in May. However, there was a large degree of overlap. These observations 

are in keeping with those observed across the wider region and are believed to be 

correlated with diet (i.e. in spring, birds with diets of warm-blooded prey or less 

specialised prey migrate earlier due to emergence-timing at the higher latitudes, and 

species who feed solely on cold-blooded prey migrate later for the same reasons) 

(Newton, 2010). Finally, with the exception of the heron family, the seasonal patterns 

of each main diurnal group correlated significantly. These findings are possibly 

explained by my findings in Chapter 1, wherein more diurnal migrants (raptors and 

‘diurnally migrating passerines’) were recorded in headwinds probably as a result of 

being forced to migrate at low altitudes by suboptimal wind current directions, thus 

resulting in similar seasonal abundance patterns. 

 

The quantity of species totals recorded were not high (only barn swallow and swift 

>1000), particularly for raptors when compared with other studies in similar areas 

(Leshem & Yom-Tov, 1996; Corso, 2001; Alon et al., 2004; Roth & Corso, 2007) 

(Tables 1-3). This is possibly due to the low time spent surveying over a probably 

incomplete spring migration period. The estimates perhaps represent a more 

accurate total count for some species during the 39-day survey period (between 

9:00-16:00) (Table 4). A good example of this was that we first recorded European 

bee-eaters (Merops apiaster) from 04/04/19 and consistently saw small numbers 

between surveys but did not record them during a survey until 25/04/19, therefore, 

for some species our observations likely only represent their peak in numbers 

passing. Furthermore, our estimate of 464 bee-eaters passing is probably our largest 

underestimate as they are also known to migrate nocturnally (Sapir et al., 2011). 

Some of our most notable raptor sightings also occurred between surveys: 01/04/19 

13:30~ ‘mixed group of 20 harriers and one Buteo sp. passed northeast after bad 

weather front, of which 4 male pallid harriers and 1 male hen harrier’ (Pers.obs). We 

probably missed many sightings between surveys and thus the estimates are 

probably conservative. The two most notable findings were for pallid harriers and 

common kestrels, the two most frequently recorded raptor species. Pallid harriers 

are listed as near threatened globally and are in decline (IUCN Redlist, 2020). The 
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numbers we observed during our surveys (N=60) are comparable to spring averages 

observed over Israel (56) and southern Italy (47.6), the latter being considered 

Europe’s most significant flyway for the species (Leshem & Yom-Tov, 1996; Corso, 

2001) (Table 1). As mentioned, many were observed between surveys, and so if our 

estimate of 187 individuals is accurate, it would be of high significance for the 

species. There is of course the chance however that spring 2019 was a particularly 

good year or weather conditions funnelled more than average towards the Karpaz 

peninsular. Common kestrels are well known partial migrants, as such were 

expected to be primarily resident individuals with a small number exhibiting migratory 

behaviour, however we observed the opposite. 152 of 165 (92.1%) of common 

kestrels were observed travelling northeast towards open sea (~110 km from Turkey, 

the nearest landfall). Again, if the seasonal estimate of 498 is to believed, it is 

comparable to seasonal totals observed on the Strait of Messina in southern Italy 

(mean 642 per spring 1996-2000). Finally, we recorded 90 crag martins 

(Ptyonoprogne rupestris) during our surveys, which is more than would be expected 

for Cyprus (Gordon, 2002; 2003). On the island they are only known to breed in the 

west in the Troodos, and thus all of our observations were likely migrating indicating 

a stronger spring passage to the east of the island than was previously suspected.  

 

During the course of the surveys three species which we expected to see were not 

recorded: white stork, Montagu’s harrier and honey buzzard. On 27/03/19 both a pair 

of white stork were seen circling and a single Montagu’s harrier passed the Oasis 

Hotel flying northeast, however neither species were observed at the tip during or 

between surveys. According to Cyprus ornithological society both species are 

recorded infrequently during spring, but Montagu’s harrier are more common during 

the autumn period (Gordon, 2002; 2003). It is also possible that some of the 

unidentified Circus harriers comprised of Montagu’s harriers as juvenile and female 

ringtail harriers are difficult to identify, particularly from a distance.  Furthermore, in 

Europe most Montagu’s harriers appear to migrate via the western and central 

flyways (Trierweiler et al. 2014). Conversely, due to the timing of our sole sightings 

both species may have migrated predominantly earlier in March and we missed their 

migratory peak. We did not record a single honey buzzard throughout the season. 

Honey buzzards are however known to be sighted far less in spring than autumn, 

however in Israel to the south they are predominantly observed from 10th May and so 
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we could have ended the survey before they reached Cyprus (Leshem & Yom-Tov, 

1996).  

 

In conclusion, the Karpaz peninsular is known to be a migratory hotspot, however for 

the first time we have elucidated the assemblages, abundances and directions of 

diurnal bird migrants using the region. The Karpaz peninsular may possibly 

represent Europe’s most significant flyway for the globally near threatened pallid 

harrier, although more observations (in subsequent seasons) are required to verify 

this. Thankfully, the Karpaz peninsular is currently protected as a SEPA (‘Special 

environment protected area’) (Šeffer et al. 2010). However, our findings only 

represent a start to assess the importance of the peninsular for diurnally migrating 

birds. We would recommend more focused and longer surveys to be carried out in 

future seasons (both spring and autumn) over multiple years to effectively quantify 

and monitor temporal changes in species.  

 

Section 2: Nocturnally migrating birds 
 

Methods 
 

Nocturnal-migrating bird counts were carried out twice daily also from 28th March to 

5th May 2019 and counts were missed due to the same reasons stated in the 

methods for Section 1. Due to songbirds and other night-time migrants reducing 

activity during the hottest periods of the day, these counts were carried out for 30 

minutes at 7:00am and 5:00pm. The morning surveys were conducted at the Oasis 

Hotel site, and the evening surveys at Karpaz peninsula tip (Figure 8). Both counts 

were constant effort counts in which the variety and abundance of species observed 

on an established ~1 km transect during the allotted time was recorded. Both ~1 km 

transects passed through a diverse array of habitats (Figure 9). Only sightings of 

species were recorded as it was difficult to perceive numbers of some species 

singing or calling. Some known resident species were recorded because many are 

partial migrants. All diurnally migrating species (Section 1) observed on the 

transects were omitted except for M.apiaster due to it also migrating at night. Once 

again, binoculars were used by all parties to identify birds down to species level. I 

also recorded the date for the first sighting of every species encountered and 
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documented any additional observations. Just as with Section 1 the findings for the 

39-day survey period were split into 3 parts to assess temporal differences in 

abundance. One-way analysis of variance tests were carried out to test for significant 

differences in temporal abundances of each major family recorded (except for with 

Passeridae and Fringillidae because the former mainly comprised of sparrows 

(Passer spp.) which are not considered to be obligate migrants, and representatives 

of the latter were infrequently recorded). 

 

Results & Discussion 
 

In total we recorded 2644 birds of 64 species. Nocturnal bird migration occurred on a 

fairly consistent level throughout the spring period, however earlier abundances were 

slightly higher, once again suggesting that the survey period should have started 

earlier (means: 28/03-09/04 = 74, 10/04-22/04 = 61, 23/04-05/05 = 55.3). 

Abundance of larks (alaudidae) was found to vary significantly over the course of the 

spring period (f (2,36) 4.56, p = 0.02). Tukey’s Post Hoc tests revealed that lark 

abundance differed significantly during the middle (13 days) of the study period (p 

<0.05) (Figure 13). Shrike (laniidae) abundances also significantly differed 

temporally (f (2,36) 4.4601, p = 0.02). Tukey’s Post Hoc tests revealed that 

abundances differed significantly in during the final period of the spring (p <0.05). No 

significant variance in temporal abundance was found in any other nocturnal migrant 

group. The findings are split into major families and an ‘other’ section (for birds from 

other families from which they were the sole representative or were recorded too 

infrequently to observe seasonal trends) below. Here seasonal patterns and 

phenologies are discussed at species level for recorded representatives of each 

nocturnal migrant family. The seasonal abundance patterns for species where 5 or 

more individuals were recorded are shown in Figures 13-16.  Global distribution 

data for all species were obtained from BirdLife International (BirdLife International, 

2020). The migratory status of each species was obtained from BirdLife Cyprus’s 

annual reports (Gordon, 2002; 2003).  
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Figure 13: (a-i) Spring migration trends for nocturnal migrants, depicting total 
numbers observed against a triad (3-day period, middle date shown) for: a) Crested 
Lark Galerida cristata (N = 144) b) Short-toed Lark Calandrella rufescens (N=114) 
c) Tawny Pipit Anthus campestris (N=9) d) Tree Pipit Anthus trivialis (N=60) e) 
White Wagtail Motacilla alba (N=100) f) Yellow Wagtail Motacilla flava (N=82) g) 
Nightingale Luscinia megarhynchos (N=22) h) Redstart Phoenicurus phoenicurus 
(N=22)  i) Northern Wheatear Oenanthe oenanthe (N=124) (Only species which 
had 5 or more observations are shown).   
Figure 13: Spring migration trends for nocturnal migrants, depicting total numbers observed against a triad (3-day period, 
middle date shown) (i) 

 

13a) Galerida cristata 13b) Calandrella brachydactyla 13c) Anthus campestris 

13d) Anthus trivialis 13f) Motacilla flava 13e) Motacilla alba 

13g) Luscinia megarhynchos 13h) Phoenicurus phoenicurus 13i) Oenanthe oenanthe 
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Alaudidae 
 

Three species of lark were recorded during the survey period. The most frequently 

recorded being crested lark (Galerida cristata), of which 144 individuals were 

recorded. Many of these were likely the same individuals as crested Lark was seen 

on every day a survey was undergone except one, and the highest daily value 

between sites was 8. This was unsurprising as Crested Lark are considered a 

resident species on Cyprus, and we observed no evidence of migration.114 short-

toed larks (Calandrella brachydactyla) were recorded and our results showed peak 

passage between 28/03 – 03/04 (69 records), however two smaller spikes were 

observed during the middle and end of April (Figure 13). Skylark (Alauda arvensis), 

a common winter resident, was observed once on 03/04/2020. 

 

Motacillidae 
 

During the survey we had 8 records of tawny pipit (Anthus campestris) fairly evenly 

spread through the spring period and 60 tree pipit peaking in numbers between 12 – 

18/04/2020, both considered passage migrants in Cyprus. Both white wagtail 

(Motacilla alba) and yellow wagtail (Motacilla flava) were fairly frequently observed 

having 100 and 82 records respectively. A distinct but expected difference in 

passage times was seen, white wagtails were not observed after 19th April, but 

yellow wagtails were still recorded at the end of the survey period (Figure 13). These 

differences are likely due to white wagtails being a winter visitor and passage 

migrant to Cyprus unlike yellow wagtails, which winter much further south and thus 

migrate later. No systematic count of yellow wagtail races was carried out however 

the majority appeared to be consistent with the widespread European subspecies 

flava (blue-headed wagtail) and the Balkan subspecies feldegg (black-headed 

wagtail). 

 

Musciapidae 
 

13 species from the Musciapidae family were recorded during the spring survey 

period. Nightingale (Luscinia megarhynchos) were recorded in small numbers fairly 

regularly throughout April, the highest number of individuals during a single survey 
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was 4. Considering the elusive nature of Nightingales and the abundance of bush 

and scrub at survey sites, these frequent records suggest a far higher spring-

passage abundance. Black redstart (Phoenicurus ochruros) were observed far less 

frequently and earlier than redstart (P.phoenicurus), this is likely due to black 

redstarts wintering in Cyprus and in more northerly regions than redstarts and 

therefore they leave earlier. Northern (Oenanthe oenanthe), Cyprus (O.cypriaca) and 

black-eared wheatear (O.hispanica) were all recorded, however the latter was far 

less abundant. Northern wheatear numbers peaked between the 31/03 – 

04/04/2019, but continued to arrive in small numbers until May (Figure 13). Cyprus 

wheatear were never recorded more than 10 times on a survey, likely meaning that 

individuals recorded were breeding and probably the same individuals (Figure 14). 

Stonechat (Saxicola rubicola) are wintering visitors on Cyprus, whinchat (Saxicola 

rubetra) are passage migrants which winter across central Africa and so 

unsurprisingly migratory patterns observed where remarkably similar to those of both 

observed redstart species. Whinchat numbers did peak comparatively later than 

Redstart’s, 23 individuals were recorded at dusk on 15th April (Figure 14).  Blue rock 

thrush (Monticola solitarius) are another winter visitor and were recorded consistently 

in low numbers until after 5th April when records abruptly ceased (Figure 14). 

Interestingly these consistent numbers and their sex ratios anecdotally staying 

consistent (2 male 2 females) (pers.obs) suggests that these were likely the same 

individuals and had stopped over for at least 9 days. 4 flycatcher species were 

recorded: spotted (Musciapa striata), pied (Ficedula hypoleuca), semicollared 

(F.semitorquata) and collared (F.albicollis), all in low numbers. All species were 

recorded most between 17-26th April, except for semicollared of which 3 individuals 

were seen during the duration of the study and was recorded twice on 2nd April. After 

26th April only spotted flycatcher was consistently recorded which makes sense at it 

is also the flycatcher with the most southerly wintering range and small numbers stay 

and breed in Cyprus during the summer months (Figure 14). Finally, two other 

Musciapid species were observed outside of surveys in the region, the European 

robin (Erithacus rubecula) on 27th March (an abundant winter visitor), and more 

notably two white-throated robins (Irania gutturalis) (adult male on 13/04/19, adult 

female on 28/04/19), a rarely seen spring passage migrant/visitor.  
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Figures 14: (a-i) Spring migration trends for nocturnal migrants, depicting total 
numbers observed against a triad (3-day period, middle date shown) for: a) Cyprus 
Wheatear Oenanthe cypriaca (N = 112) b) Whinchat Saxicola rubetra (N=84) c) 
Stonechat Saxicola rubicola (N=5) d) Blue Rock Thrush Monticola solitarius 
(N=14) e) Spotted Flycatcher Muscicapa striata (N=14) f) Collared Flycatcher 
Ficedula albicollis (N=7) g) Blackcap Sylvia atricapilla (N=208) h) Lesser 
Whitethroat Sylvia curruca (N=208)  i) Sardinian Warbler Sylvia melanocephala 
(N=149) (Only species which had 5 or more observations are shown). 
Figure 14: Spring migration trends for nocturnal migrants, depicting total numbers observed against a triad (3-day period, 
middle date shown) (ii) 

 

14a) Oenanthe cypriaca 14c) Saxicola rubicola 14b) Saxicola rubetra 

14d) Monticola solitarius 14f) Ficedula albicollis 14e) Muscicapa striata 

14g) Sylvia atricapilla 14i) Sylvia melanocephala 14h) Sylvia curruca 
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Sylviidae 
 

Barred warbler (Sylvia nisoria), garden warbler (S. borin), blackcap (S. atricapilla), 

lesser whitethroat (S. curruca), Sardinian warbler (S. melanocephala), Rüppell's 

warbler (S. ruppeli), whitethroat (S. communis), eastern subalpine warbler (S. 

cantillans), great reed warbler (Acrocephalus arundinaceus), icterine warbler 

(Hippolais icterina), olivaceous warbler (Iduna pallida), wood warbler (Phylloscopus 

sibilatrix) and eastern Bonelli's warbler (P. orientalis) were all recorded during 

surveys. Due to duller early-spring plumage and the poor conditions of some birds, 

willow warbler (P. trochilus) and chiffchaff (P. collybita) were treated as a species 

pair. Cyprus warbler (S. melanothorax) was observed only outside of surveys. 

Blackcap, lesser whitethroat and chiffchaff/willow warbler were the three highest 

recorded species during the spring. Sardinian warbler was recorded consistently in 

fair numbers throughout the study period. Once considered a winter visitor, they 

have become an increasingly common breeding species and resident in the last 30 

years and so a portion were probably there on Cyprus before the survey period, 

however the low increase in numbers observed suggests that there is passage 

during the spring (Figure 14) (Richardson, 2014). Great numbers of lesser 

whitethroat and chiffchaff/willow warbler were recorded from late March to early April 

(as well as a single eastern Bonelli’s warbler), however numbers of lesser 

whitethroat remained high for longer than chiffchaff/willow warbler (Figure 14 + 15). 

During this same period Rüppell’s warbler and eastern subalpine warbler also 

underwent their strongest passage, albeit in significantly lower numbers. Whilst 

present from the beginning of the survey, blackcap and whitethroat numbers peaked 

after 16th April along with wood warbler in comparatively low numbers. Blackcaps 

continued to be recorded consistently in smaller number for the remainder of the 

survey period, and during the end of April/beginning of May small numbers of barred, 

garden, great reed, olivaceous and icterine warblers were recorded. If distance to 

migrate and arrival time are correlated, the vast majority (if not all) of the early-spring 

chiffchaff/willow warblers were probably chiffchaffs. Furthermore, a far smaller 

second peak for these combined species was observed in late April, perhaps these 

were willow warblers and their migratory timing is more distinct that expected. 

Conversely, a portion of the chiffchaffs winter south of the Sahara and would also 

take longer to migrate. The distance-arrival timing correlation however does not 
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explain the order of arrival entirely. One would expect that barred warblers would 

have arrived earlier as they winter in the Horn of Africa similarly to many other 

species, some of which were the first to pass through Cyprus such as lesser 

whitethroat and Rüppell’s warbler. In these cases, perhaps timing was less due to 

distance from wintering ground, but instead more predicted by local climate at 

breeding areas. Rüppell’s warblers breed in southern Greece and Turkey where 

summers quickly become very hot and dry, lesser whitethroats breed in 

comparatively higher latitudes (and further west) in Europe. Barred warbler breed 

towards eastern Europe in ‘continental climes’ which have a wider climatic range 

than the west due to no Gulf Stream influence. Snow still regularly falls in April in e.g. 

Ukraine, and perhaps for these reasons early migration is perhaps not just less 

important, but disadvantageous.   

 

Laniidae 
 

4 shrike species were recorded which arrived in 3 distinct waves. Masked shrike 

(Lanius nubicus) arrived earliest and was first recorded on 29th March. Masked 

shrikes are a common passage migrant and also the only shrike species which 

commonly breeds on Cyprus. Woodchat shrike (Lanius senator) arrived from 11th 

April in small numbers, however these numbers further reduced after 19th April. 

Thirdly from 25th April red-backed shrikes (Lanius collurio) arrived in high densities 

as well as two lesser grey shrikes (Lanius minor) (Figure 15). Once again arrival 

timings were strongly predicted by distance from wintering grounds, e.g. lesser grey 

shrike has the most southerly winter distribution and arrived latest. Unlike in a similar 

study undergone in the autumn, individuals were infrequently observed in similar 

numbers or in the same location on consecutive days during our surveys suggesting 

that stopovers in Cyprus during spring may be shorter (Roth, 2008). 

 

Passeridae & Fringillidae 
 

Both house (Passer domesticus) and Spanish sparrow (Passer hispaniolenis) were 

seen with some regularity during the course of the survey. Whilst the house sparrow 

is considered a true resident, the Spanish sparrow is believed to be both resident 

and a passage migrant. It is difficult to tell the degree to which migration occurred for  
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Figures 15: (a-i) Spring migration trends for nocturnal migrants, depicting total 
numbers observed against a triad (3-day period, middle date shown) for: a) 
Rüppell’s Warbler Sylvia ruppeli (N = 27) b) Whitethroat Sylvia communis (N=72) 
c) Eastern Subalpine Warbler Sylvia cantillans (N=6) d) Wood Warbler 
Phylloscopus sibilatrix (N=30) e) Chiffchaff/Willow Warbler P.trochilus/collybita 
(N=151) f) Red-backed Shrike Lanius collurio (N=52) g) Woodchat Shrike Lanius 
senator (N=15) h) Masked Shrike Lanius nubicus (N=11)  i) Spanish Sparrow 
Passer hispaniolensis (N=136) (Only species which had 5 or more observations are 
shown).  
 
Figure 15: Spring migration trends for nocturnal migrants, depicting total numbers observed against a triad (3-day period, 
middle date shown) (iii) 

 

15a) Sylvia ruppeli 15c) Sylvia cantillans 15b) Sylvia communis 

15d) Phylloscopus sibilatrix 15f) Lanius collurio 15e) P.trochilus/collybita 

15g) Lanius senator 15i) Passer hispaniolensis 15f) Lanius nubicus 
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such a sociable species, however the largest flocks were observed during mid-April 

(Figure 15). These could have been resident flocks with a degree of transience 

however. Chaffinches (Fringilla coelebs) are winter visitors to the study area, only 

three sightings were made on the 28th & 29th March. Linnet (Carduelis cannabina) 

and goldfinch (Carduelis carduelis) were observed in small numbers, both 

considered resident with small degrees of passage, however linnet was observed 

more frequently earlier in the study period. One vagrant trumpeter finch (Bucanetes 

githagineus) was recorded at dusk on 5th May. 

 

Emberizidae  
 

We recorded 4 bunting species and observed a clear difference in timing between 

them. Between late-March and mid-April corn bunting (Emberiza calandra) and 

Cretzschmar’s bunting (E.caesia) were the only species recorded. Corn bunting is a 

winter visitor, passage migrant and resident breeder on Cyprus and was frequently 

heard singing during late March and only recorded once after 13th April. The largest 

number of Cretzschmar’s bunting were seen at the beginning of April, but continued 

to persist in smaller numbers until mid-April (Figure 16). Whilst they are known to 

breed on Cyprus, these Cretzschmar’s buntings were probably migrants due to the 

observation site’s geography and unfavourable breeding habitats and their 

persistence for multiple days. Ortolan bunting (E.hortulana) were recorded after mid-

April in fairly low numbers until the end of the survey. 2 black-headed buntings 

(E.melanocephala) were recorded on 28th April.  

 

Other 
 

5 species of Columbidae were recorded either during and outside of survey periods, 

feral pigeon (Columba livia) unsurprisingly was the most frequently and consistently 

recorded species. All other representatives were recorded in very low numbers. 

During surveys only singles of wood pigeon (Columba palumbus) and collared dove 

(Streptopelia decaocto) were recorded, however outside of surveys both species 

were more abundant in other habitats. Laughing dove (Streptopelia senegalensis) 

was seen frequently in urban areas and once during a count, this species has rapidly 

increased in abundance over recent years. The origin of this laughing dove’s spread 
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is not certain, nonetheless small numbers would be expected from surrounding 

mainland countries where they are an established species, however it is more likely 

due to intentional human releases for hunting. A single turtle dove (Streptopelia 

turur) (a once very abundant passage migrant) was seen during a diurnal migrant 

survey on 15th April (Browne & Aebischer, 2005). A vagrant Namaqua dove (Oena 

capensis) was also seen out of survey on 26th April. 

 

 

 

 
 
 

 
 
 
 
 

 

Small numbers of common cuckoo (Cuculus canorus) were recorded, most  

 

Figures 16: (a-f) Spring migration trends for nocturnal migrants, depicting total 
numbers observed against a triad (3-day period, middle date shown) for: a) Ortolan 
Bunting Emberiza hortulana (N = 18) b) Cretzschmar’s Bunting Emberiza caesia 
(N=65) c) Corn Bunting Emberiza calandra (N=17) d) Common Cuckoo Cuculus 
canorus (N=6) e) Eurasian Hoopoe Upupa epops (N=119) f) European Bee-eater 
Merops apiaster (N=78) (Only species which had 5 or more observations are 
shown). 
Figure 16: Spring migration trends for nocturnal migrants, depicting total numbers observed against a triad (3-day period, 
middle date shown) (iv) 

 

16a) Emberiza hortulana 16c) Emberiza calandra 16b) Emberiza caesia 

16d) Cuculus canorus 16f) Merops apiaster 16e) Upupa epops 
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frequently in late April. Eurasian hoopoe (Upupa epops) were seen in good numbers 

throughout the study period. Hoopoe numbers observed two peaks, first on 31st 

March when 21 individuals were recorded, and on 05th April when 14 when observed 

(Figure 16). The majority of passage had ceased by 14th April and the low numbers 

recorded after were possibly the same individuals as some remain on Cyprus 

throughout the summer. Whilst some are resident, most kingfishers (Alcedo atthis) 

records on Cyprus are likely migratory, we made several coastal observations 

outside of surveys and one during the survey at dusk on 2nd April. As with the diurnal 

migrant surveys, European bee-eaters (Merops apiaster) were frequently seen 

before they were recorded during a survey, however from 27th April they were 

recorded consistently until the end of the study period (Figure 16). Wryneck (Jynx 

torquilla) were recorded 3 times on surveys during the study period, due to their 

shyness were likely more abundant. Two juvenile golden orioles (Oriolus oriolus) 

were seen on 29th April and 1st of May. Migration of golden orioles certainly started 

far earlier however as a group of individuals (including adults) was seen in a section 

of woodland on 10th April. Due to their forest-dwelling habits, they probably avoid the 

scrub habitats we surveyed, and instead refuelled in woodland.  

 

Despite not surveying in any wetland environments we did record some wetland-

associated species as after heavy rains the open area of the tip site would flood in 

areas. Here we recorded individuals of ringed plover (Charadrius hiaticula) and little 

stint (Calidris minuta) (both common passage migrants in the region). Further 

unexpected sightings include: in late March several stone curlew (Burhinus 

oedicnemus) and a corncrake (Crex crex) were seen on the dunes behind the Oasis 

Hotel, on 4th April a raven (Corvus corax) (a species facing extinction in Cyprus) was 

observed at the Karpaz tip, and finally on 13th April during a diurnal migrant count a 

single collared pratincole (Glareola pratincola) passed heading southwest.  

 

Differences Between Sites 
 

A total of 65 nocturnal migrant surveys were carried out during the spring, 32 in the 

morning and 33 in the evening. On occasion surveys were not carried out due to the 

same reasons as for the diurnal migrant surveys. Despite geographic closeness and 

fairly similar habitats, findings differed in a number of ways between sites. Firstly, 
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overall numbers differed substantially. Of the 2644 individual birds recorded on all 

surveys 727 were recorded on the dawn surveys and 1917 were recorded during the 

dusk surveys. Throughout the spring the mean number of birds recorded on morning 

surveys was 22.7 and 58.1 for evening surveys. However, the volume of birds at the 

tip sharply dropped after 20th April and the average numbers for each site per survey 

become more similar (morning: 28.5, evening: 35.5) (Figure 17). Variety and 

numbers of species also varied between sites as 44 total species were recorded at 

the Oasis site compared to 59 species at the Karpaz tip. 21 species observed during 

evening surveys were not recorded at the Oasis site. The only obligate migrant 

species (on Cyprus) recorded at the morning site and not at the tip during surveys 

were song thrush (Turdus philomelos), black-eared wheatear (O.hispanica) and 

great reed Warbler (A.arundinaceus). Excluding the 3 previously mentioned species, 

only 4 migrant species were recorded in higher numbers at the morning site than at 

the tip: European bee-eater (M.apiaster) , tree pipit (A.trivialis) , Sardinian warbler 

(S.melanocephala), eastern subalpine warbler (S.cantillans) and red-backed shrike 

(L.collurio). However as previously stated, it is highly likely that Sardinian warbler 

observations were duplicated due to the high probability that breeding was occurring 

(Richardson, 2014).  Differences in timings for some species was observed between 

sites. No lag in arrival times was recorded, peaks for species were temporally shared 

between sites for most species. This is unsurprising as the distance between sites 

was 21 km and songbirds commonly migrate distances of 200 km or more in a single 

night (Hall-Karlsson & Fransson, 2008). However, for species which had passed 

through during our spring period, we noted that they continued to be recorded at the 

tip site for longer than the Oasis site. Some examples include: northern wheatear 

was not recorded after 9th April at the Oasis site, but continued to be frequently 

recorded until 1st May at the tip, white wagtail observations ceased after 29th March 

and 19th April for the dawn and dusk surveys respectively, whinchat arrived at both 

sites in early April and was not recorded at the Oasis after 24th April but persisted at 

the tip for until the end of the study period, Rüppell’s warbler was last recorded on 4th 

April in the morning, and 17th April in the evening. I theorise that these differences 

are due to the Karpaz tip being used as a staging site for many nocturnally migrating 

birds (Warnock, 2010). Whilst the difference in timings observed may be explained 

partially by the vast difference in numbers of birds observed between sites, we argue 

that the higher numbers at the tip are partially because of the longer persistence of 
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birds which are refuelling to cross the sea which is clearly visible around the site. In 

conjunction with this, the disparity in numbers is once again likely caused by the 

funnelling effect of the island’s geography. 

 

 

 

 

Conservation Observations & Conclusions 
 

Many Mediterranean islands have become infamous for their conservation measures 

and killing of birds, and Cyprus is no exception. A 2014 BirdLife Cyprus publication 

estimated that more than 2 million songbirds birds are illegally caught and killed on 

the island annually (BirdLife Cyprus, 2019). Promisingly, during our study period we 

saw very little evidence of hunting. During our surveys we observed many used 

shotgun cartridges (likely for use on doves and pigeons) but heard no gunfire. We 

also observed a small number of warblers (blackcap and olivaceous) which had 

escaped limesticks and resultingly had very poor feather condition. No limesticks or 

illegal mist nets were seen, however we were not actively searching for them. Our 

findings, or lack thereof corresponded with those of BirdLife Cyprus who did not find 

a single mist net during the period (BirdLife Cyprus, 2019). Whilst positive, these 

findings must be contextualised by the fact that spring trapping levels are historically 

lower than those in Autumn.  

Figure 17: Total number of nocturnally migrating birds recorded per day for 
morning and evening surveys throughout the spring period. 
 
Figure 17: Total number of nocturnally migrating birds recorded per day for morning and evening surveys throughout 
the spring period 
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Increased awareness of the illegal trapping of songbirds in Cyprus has also 

negatively affected its tourism industry, an increasing number of people choose 

alternate destinations due to the bad reputation. The losses due to this are estimated 

to be between 40 – 100 million Euros every year (Terra Cypria, 2019). During our 

study period the Karpaz tip received a steady flow of tourists, mostly for sightseeing 

purposes, but also for wildlife. A combination of organised wildlife tours or 

photographers visited on a near daily basis, particularly in the latter half of Spring. 

Some photographers were locals, which despite using frowned upon methods (audio 

call playback, driving over habitats and approaching birds in 4x4 vehicles very 

closely), indicates a more positive view of birds in Cyprus.  

 

In conclusion, Cyprus is of incredible importance to nocturnal migrating birds. It plays 

host to vast numbers and a staggering array of species during the spring and 

autumn windows. The spring phenologies of these species on Cyprus are still not 

fully understood, however this study provides a strong starting point from which 

future assessments should derive. A key difficulty of conserving migratory species is 

that protection of breeding and wintering grounds is not enough, species must be 

safeguarded throughout their migration route (Kirby et al. 2008). Whilst the evidence 

for illegal trapping of songbirds was low in 2019, counter-efforts must continue. The 

Karpaz tip is clearly of great importance to many nocturnal migrant species and 

therefore its status as a SEPA must be maintained and enforced (Šeffer et al. 2010).  

 

Section 3: Diurnal Insect Migration 
 

Methods 
 

Due to the variety in size and flight power of insects, multiple techniques were used 

to quantify abundance and assemblages of insect migrants. Smaller insects were 

surveyed via a combination of sweeping a butterfly net and video recordings. 

Butterfly net sweeping was undergone continuously for two minutes every two hours 

(10:00 – 16:00) atop gulleys close to shore. All insects caught during the two-minute 

sweeping were transferred to insect cages for identification. At least family-level 

identification was achieved for nearly all insects caught. Every insect recorded using 
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this survey method could safely be considered migratory as they were caught 

arriving from the sea. Video recordings were taken every day across the (5m) width 

of a set section of dirt track at site 1. Recordings were taken at 30fps 1080p 

resolution using a smartphone set to record for 1 minute every 30 minutes between 

10:00-16:00. Larger insects (i.e. butterflies and dragonflies) were surveyed in flight 

by eye both because their larger size makes identification achievable from a distance 

and their greater flight speeds and agility enables them to avoid capture in the 

butterfly net sweeping surveys. For butterflies and dragonflies, a 15-minute count 

was undergone once every two hours (10:00-16:00), during which every individual 

was counted and identified as it crossed a pre-established 15m line.  

 

 For analysis all video files were converted to AVI files using FFMPEG software 

(https://ffmpeg.org) and each frame was viewed individually with ImageJ 

(https://imagej.nih.gov/ij/). Insects were counted as they cross the halfway point of 

the screen and identified at least to order. Occasional second counts were 

undertaken further inland at the tip to compare with numbers observed at the point of 

arrival, and to estimate the number joining our sampled assemblages. Inland 

samples were found to be 5-times higher than those counted on the dirt track near 

the peninsular’s very tip. Due to these findings our counts were multiplied and then 

extrapolated further to become representative of the width of the peninsular that 

insects were actively observed migrating through (40 m across) for a set length of 

time (10:00-16:00). Pearson’s correlation tests were carried out to compare insect 

migration trends with those of diurnal bird migrants. 

 

Due to the often irruptive nature of insect migration, timing and location of surveys 

occasionally were required to be slightly more flexible than those for birds. The 

primary example of this occurred on 05/04/19 when extreme levels of butterfly 

migration took place early in the morning at site 2. A 15-minute count was 

undertaken using the same methods as stated previously. Furthermore, a similar 

method was used to extrapolate the count for the width of the peninsular at site 2 (5 

km) over a set time (6:00-9:30). Nocturnal insect migrants are not covered in this 

report due to theft of our light trap early in the study period. 

 

https://ffmpeg.org/
https://imagej.nih.gov/ij/
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The briefness of my focus on insects is because a student who collected data with 

me is focusing on the insect data for his thesis and so I simply present a broad 

synopsis of our findings, particularly as a counterpoint in relation to the bird data. 

 

Results 
 
 
 
Insect Order Percentage of Total Estimated Total Number 

Diptera 84.05 42,078,205 

Hymenoptera 5.61 2,810,411 

Coleoptera 1.12 562,843 

Hemiptera 2.65 1,325,343 

Lepidoptera 5.64 2,822,267 

Neuroptera 0.08 38,030 

Psocoptera 0.08 39,931 

Odonata 0.78 388,958 

 
 
 

Insect Family Percentage of Total Estimated Total Number 

Acroceridae 0.04 19015 

Anthomyiidae 43.72 20783351 

Apidae 2.274 1081000 

Calliphoriadae 1.844 876590 

Cantharidae 0.26 123597 

Carabidae 0.24 114090 

Chalcidae 1.044 496290 

Chloropidae 3.91 1858712 

Coccinelidae 0.132 62749 

Crambidae 0.13 61799 

Culicidae (mosquitoe) 0.04 19015 

Dermestidae 0.036 17113 

Drosophilidae 1.67 793875 

Ichneumonidae 3.23 1535458 

Lycaenidae 0.04 19015 

Micro moth 0.22 104582 

Muscidae 0.94 446852 

Mycetophillidae 0.06 28522 

Nitidulidae 0.02 9507 

Nymphaliidae 0.254 120745 

Pallopteridae 1.28 608479 

Table 5: Seasonal totals for every insect order recorded 
 
Table 5: Seasonal totals for every insect order recorded 

sdsdf 
 

Table 6: Totals for each insect family recorded during sweep surveys and video 
recordings  
 
Table 6: Totals for each insect family recorded during sweep surveys and video recordings 

sdssd 
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Phoriidae 5.156 2451028 

Plutellidae  0.22 104582 

Scarabeidae 0.1 47537 

Sciaridae 0.16 76060 

Sepsidae 11.2 5324189 

Staphylinidae 0.624 296633 

Syrphidae 18.98 9022599 

Tephritidae 0.328 155923 

Vespidae 0.214 101730 

 
 
 

Date Estimated Total Number 

28/03/2019 1,663,800 

01/04/2019 1,110,600 

25/04/2019 8,123,400 

28/04/2019 5,746,800 

30/04/2019 4,474,800 

01/05/2019 3,452,400 

02/05/2019 11,118,000 

03/05/2019 2,485,200 

04/05/2019 3,055,200 

 
From our combined survey counts an estimated total of 50,065,988 insects migrated 

through the Karpaz peninular of Cyprus between 28/03/19-05/05/19 (Table 5). This 

consisted of 8 different insect orders. By far the most abundant order was Diptera 

which made up 84.05% of the total insect abundance (est. = 42078205). The three 

most abundant fly families were Anthomyiidae (est. = 20,783,351), Syrphidae 

(hoverflies) (est. = 9,022,599) and Sepsidae (est. = 5,324,189) (Table 6). Of the 

estimated 2,822,267 Lepidoptera recorded, 1,596,849 were butterflies, 99% of which 

were painted ladies (Vanessa cardui). An estimated 905,967 of the remaining 

Lepidoptera were the pyralid moth rush veneer (Nomophila noctuella). Almost all of 

the 388,958 Odonata estimated comprised of vagrant emperors (Anax ephippiger). 

82.4% of the seasonal total is represented by just 9 days of extreme migration 

(determined as days on which insect estimates exceeded 1 million), clustered in two 

peaks at one at the beginning of the survey period, and one at the end (Table 7 + 

Figure 18). From large insect active migration counts, 83.53% of all butterflies and 

dragonflies were found to be travelling southwest and arriving from the sea. No 

significant correlation was found between the seasonal patterns of diurnal bird 

Table 7: Days on which insect migration was estimated to exceed 1 million 
individuals  
 
Table 7: Days on which insect migration was estimated to exceed 1 million individuals 

asasas 
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migrants and insects (r (37) >0, p >0.05). Finally, we recorded the first spring arrivals 

of the African migrant butterfly Catopsilia florella and the ladybird Harmonia 

quadripunctata in Cyprus (a known migrant and probable migrant species 

respectively), and additionally found strong supporting evidence for migratory 

behaviour in not previously considered migratory species such as Delia platura and 

Stomoxys calcitrans. 

 

 

Discussion 
 

This study was the first systematic survey of day-flying insect migrants in the 

northeast of Cyprus. Our findings not only demonstrate the vast volume of insect 

biomass that passes through the peninsular but also indicates the taxonomic variety 

and composition of these movements. By far the most abundant insect order 

observed were flies (Diptera), which have been largely neglected in the field of insect 

migration.  

 

Due to the lack of historical surveys from the region it is difficult to tell whether or not 

our findings from spring 2019 are representative of prior or subsequent seasons. It is 

unlikely that adjacent seasons would exhibit similar trends for painted lady butterflies  

Figure 18: Temporal abundance trends of insect migrants, diurnal bird migrants 
and nocturnal bird migrants across the spring season 
 
 sdsd 
Figure 18: Temporal abundance trends of insect migrants, diurnal bird migrants and nocturnal bird migrants across the 
spring season 
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in particular because 2019 produced unusually high numbers of the species. This is 

because in most years populations are greatly limited by climatic conditions in the 

arid regions where they spend the winter (Hu, et al., 2021). Years on which huge 

numbers are observed are caused by significantly higher than average rainfall in 

these areas; most notably for Cyprus, the Arabian desert (Benyamini, 2017). 

Furthermore but to a lesser extent, when sequential waves pass through and breed 

in the same regions parasitoids and pathogens greatly increase in prevalence, we 

observed this at Site 1 many caterpillars at almost every instar stage simultaneously 

feed on the same plants. This could limit subsequent northward journeys and by 

extension the quantity that eventually return south (Stefanescu, et al., 2012). 

However, parasitoid prevalence is far more impactful on populations of resident 

species (Altizer et al., 2011; Chapman et al., 2015). There is the possibility that some 

species that weren’t abundant during our data collection period would be more 

abundant in other years such as red admirals (Vanessa atalanta) and hummingbird 

hawk-moth (Macroglossum stellatarum), but not to such an extreme extent as 

V.cardui due to their less obligate migrant lifescycles and less historically fluctuating 

populations (Cuadrado, 2017; Stefanescu, 2001). As mentioned, extensive hoverfly 

migration was also observed the spring before, perhaps flies or some fly groups 

exhibit less year-to-year variation (Chapman pers.comm., 2019). Also due to the 

short migration windows observed it could also be possible that (for example vagrant 

emperor (A.ephippiger)) migration occurs in high volumes annually but due to lack of 

historical study it has gone unnoticed on the peninsular. The most feasible 

conclusion is that spring 2019 was a particularly strong year for insect migration in 

most cases, however Diptera undoubtably are the most numerous migrants each 

year. 

 

Substantial differences were observed between the migration of insects and diurnal 

avian migrants and no similarities in seasonal patterns were found (Figure 18). 

Insects were observed to migrate in the opposite direction to birds and concentrate 

in numbers further inland. These findings seem to completely oppose a preference 

for heading northwards in spring. However, this may be partially explained by a 

combination of insect’s lower ability to combat climatic conditions and their less 

established migration routes (Chapman et al., 2015). Insects, like birds have been 

shown to reduce the distance of sea-crossings, however have a less fixed 
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destination (Brattström et al., 2008; Wikelski et al., 2006). Therefore, insects 

observed in Cyprus were possibly travelling up through the Middle East and were 

either already over sea, or chose to cross from Israel or Lebanon (visible from the 

peninsular) and arrived at the closest point, the Karpaz tip. This theory is further 

supported by a message received from Nir Sapir in Haifa on 04/04/19, which stated 

that Israel was experiencing vast levels of painted lady migration; the next day in 

Cyprus we observed the highest levels of painted lady migration of the season (Sapir 

pers.comm., 2019). Upon arrival at the Karpaz tip, there is no other over-land 

direction to fly except southwest, and numbers likely concentrated further inland 

because the points at which the insects arrived were probably indiscrete due to 

increased drift in flight and thus became more funnelled inland. Furthermore, for 

painted lady butterflies and larger hoverflies reproduction was observed on Cyprus, 

perhaps the next generation moved northwards as mainland Turkey is viewable from 

the north of the island. Insects also exhibited far more discrete migration windows 

than birds, heavy migration for a species seldom lasted longer than 2-3 days. It is 

possible that similarly to birds, high altitudes were attained on some days and thus 

much insect migration went undetected, however I doubt this to be the case. A 2018 

radar study by Bruderer et al. has shown that birds arrive at lower altitudes after sea-

crossings, and therefore it is unlikely that less powerful insects regularly attain 

greater altitudes upon arriving from the sea. The spikes observed broadly fell at the 

beginning and end of the 39-day study period, particularly for Dipterans. This 

temporally correlates with the length of time for flies to complete development from 

egg to adult. Therefore, these windows may be truly discrete generational waves 

similarly enabled by plentiful rains further south, however as northward migration 

persists (and if resources remain plentiful) I would expect waves to become less 

discrete due to oviposition occurring over months for some species of hoverflies 

(Howlett & Gee, 2019).  

 

Mass movements of insects carry out a number of essential ecosystem services. 

Influxes of insects represent plentiful prey items for resident and migrant carnivores 

alike. We frequently witnessed various species of warbler (Sylvia & Phylloscopus 

spp.) continuously feeding on days of vast fly migration (Pers.obs.). Such plentiful 

and temporary opportunities for easier prey can also lead to ‘prey switching’ in some 

species (Terry et al., 2017). On days when thousands of vagrant emperors were 
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present, we observed common kestrels (a species which usually preys exclusively 

on warm-blooded vertebrates (Orihuela-Torres et al., 2017)) hawking for dragonflies 

for long spells, frequently catching and devouring multiple dragonflies within a minute 

(Pers.obs.). On a broader scale, most insect migrations involve the death of multiple 

generations in the completion of a migratory cycle (Satterfield et al., 2020). This 

results in transport of biomass to regions which would not otherwise receive it (Bauer 

& Hoye, 2014). Insect bodies are composed of 10% Nitrogen and 1% Phosphorus by 

dry weight, both are important limiting nutrients in soil (Elser et al., 2000). Mass 

movements and the resulting mass deaths lead to transfer of these important 

nutrients, greatly benefiting local plant ecosystems (Landry & Parrott, 2016). In 

Cyprus we observed the start of this process, exacerbated by migratory culling via 

entomophaga fungi, thousands of Eristalis sp. hoverflies had succumbed and littered 

the ground, many of which will decompose and eventually improve soil health 

(Pers.obs.). Thirdly, many of the orders recorded on Cyprus use flowers as a food 

source and thus are pollinators. Individuals of medium-sized hoverfly genera 

Eupeodes and Episyrphus have been found to carry an average of ten pollen grains 

each on their bodies during migratory flights (Wotton et al., 2019) . Theoretically this 

could mean that our estimate of over 9,022,599 hoverflies could pollinate over 90 

million flowers (if the same species of plant are revisited). Long-distance transport of 

pollen further assists the genetic diversity of plant populations across great distances 

(Paschke et al., 2002). This has been shown to be the case for species with 

fragmented distributions such as an endangered violet (Viola cazorlensis) in Spain, 

which benefits from high gene flow due to pollination from migratory hummingbird 

hawkmoths (M.stellatarum) (Herrera & Bazaga, 2008).    

 

Many of the insect migrants recorded on Cyprus are of socioeconomic importance to 

humans, including some of the most frequently recorded species. Cross pollination 

from migratory families such as hoverflies has been shown to positively impact on 

agriculture by increasing crop genetic diversity leading to healthier plants and higher 

yields (Doyle et al., 2020). Furthermore, ladybirds (e.g. Coccinella septempunctata) 

and larvae of some hoverflies (e.g.Episyrphus balteatus) are aphid predators, and 

therefore are an effective biological control for reducing aphid numbers in crops 

(Wotton et al., 2019; Schmidt et al., 2003; Hindayana et al., 2001; Dixon & Dixon, 

2000; Dixon et al., 1997). Conversely, many species recorded are known agricultural 
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pests, including the most numerous insect we recorded, the Anthomyiid fly Delia 

platura or the ‘bean seed fly’ (est. = 20,783,351). This species is a pest of a wide 

range of crops (such as potato, alfalfa, beans, cotton, onion, wheat and peas) which 

are attacked at germination and can result in a loss of up to 60% of seedlings 

(Guerra et al., 2017; Kessing & Mau, 1991). Our study presents the first evidence of 

this species exhibiting migratory behaviour. We also recorded high numbers of 

Stomoxys flies (52% of est. 446852 Muscidae), also known as ‘stable flies’. These 

are a hematophagous pest of livestock and in high enough concentrations can cause 

anaemia in cattle and reduce milk yields (Catangui et al., 1997). Like many blood-

feeding insects stable flies are also a vector for disease and carry the potential to 

spread Surra, brucellosis, equine infectious anaemia, African horse sickness, 

fowlpox and anthrax (Baldacchino et al., 2013; Turell & Knudson, 1987). When 

combined with migratory behaviour, vectors of disease have an increased potential 

for spreading pathogens over a wider geographic range. 

 

In conclusion, we found that insect migration occurring in the northeast of Cyprus is 

many magnitudes greater than that of birds and accounts for the greatest biomass of 

animal movement in the region. Furthermore, we have not only proven that the 

taxonomic diversity of insect migration is greater than was previously known in 

Cyprus (John et al., 2019), but also put forward evidence of migratory behaviour in 

insect species not previously thought to undergo such movements. In light of their 

profound socioeconomic importance to humans and growing evidence that insect 

populations are on the decline (Dirzo et al., 2014; Sánchez-Bayo & Wyckhuys, 

2019), it is of great importance that more research should look into understanding 

annual cycles and anthropogenic impacts if we seek to effectively coexist with “the 

little things that run the world” (Satterfield et al., 2020; Wilson, 1987). 
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General Conclusion 
 
 
It is perhaps ironic that we are discovering the levels of decline in migration almost 

simultaneously to uncovering its importance (Wilcove & Wikelski, 2008). Indeed, 

there is still much left unstudied and understudied in the field of migration. In this 

thesis I presented the findings from the first dedicated spring migration survey of 

northeast Cyprus. We discovered a new ladybird species for Cyprus (H. 

quadripunctata) and rediscovered a butterfly (C. florella) not seen on the island since 

1968. The latter of these two species is a known migrant species and the former is a 

suspected migrant. Moreover, we presented evidence of migrational behaviour in 

two fly species (D. platura and S. calcitrans) not previously considered migratory, 

both of which are agricultural pests. As well as for crag martins (P. rupestris) and 

common kestrels (F. tinnunculus), we recorded high numbers of globally near 

threatened pallid harriers (C. macrourus). If our pallid harrier records (and resulting 

estimate) are accurate, northeast Cyprus would provisionally represent Europe’s 

most important flyway for the species. On a broader scale, I contextualised bird 

migration traffic rates on Cyprus by comparing them with those simultaneously 

occurring over Israel. I found that due to a bottleneck effect, the Karpaz peninsular 

hosts proportionally higher rates of migration than over the Hula valley of Israel (per 

equivalent area), and furthermore propose that Cyprus’s other northern peninsulars 

experience similar trends in the spring (and so too do the southern peninsulars in the 

autumn). Furthermore, it was encouraging that we observed very few signs of illegal 

bird trapping and killing at our study sites. Considering the findings I have presented 

in this thesis, Cyprus’s Karpaz peninsular can irrefutably be considered a migration 

hotspot. Due to a lack of historical records, only surveys in subsequent years will 

reveal whether or not the abundance of migratory birds and insects it hosts are 

under threat.  
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