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Abstract

A major difficulty when modelling nonlinear structures from experimental vibration data is to determine the
type of nonlinear functions that will better predict its dynamic response. In this paper we address this issue
by developing a recursive framework in which the characteristics and parameters of nonlinear structures are
identified using measured input and output time-domain data. Forward-backward and exhaustive search
regression algorithms are exploited based on optimisation techniques to recursively select and quantify the
best nonlinear functions from a predefined library of nonlinear terms. The framework assumes localised
nonlinearities for which their location is assumed to be known. The proposed methodology is demonstrated
using numerical and experimental examples of single and multi-degree-of-freedom systems. The results
presented highlight key advantages of the proposed method including: the capability of treating multi-
degree of freedom nonlinear systems holding different types of localised nonlinearities, and the capability of
selecting nonlinear terms with a light computational effort and with limited number of time samples.

Keywords: Nonlinear System Identification, Data Driven Model, Nonlinearity Characterisation, Nonlinear
Structures, Modal coupling, Nonlinear Optimisation Algorithm.

1. Introduction

There has been much recent interest in developing methods for delivering mathematical models capable
of predicting the behaviour of structures with nonlinearities. This is mainly due to the fact that industrial
applications demand more efficient and lightweight structures which results in structural designs that are
more prone to nonlinear effects. Experimental modal analysis has been widely developed and implemented5

throughout the academia and industry to identify systems with linearity and superposition assumptions [1].
Nonetheless, the lack of knowledge about the mechanism of nonlinearity in structures while in service has
encouraged the development of nonlinear system identification (NSI) methods to identify nonlinear models
using vibration test data.

Linear structural systems are commonly identified from vibration data using conventional Frequency10

response functions (FRFs). However nonlinear structures cannot be identified based on such FRF data
since the superposition principle does not apply to nonlinear systems and as the averaging process required
for estimating FRFs would likely lead to the inability to capture detailed nonlinear behaviours such as sudden
jumps in vibration regime and bifurcations. To deal with nonlinear systems, numerous methods have been
developed recently focusing on detection, localisation, characterisation and quantification of nonlinearities15

in structural systems, many of which have been reviewed in [2]. Detection of nonlinearities can be achieved
by simple techniques such as observation of distorted peaks of a FRF or recognition of jumps in time history
responses [2]. However the localisation, characterization and quantification techniques applied to nonlinear
system identification are still open research topics [3]. It is preferable to have a parsimonious model 1
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1The simplest model with great explanatory predictive power that explain data with a minimum number of parameters.
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capable of estimating dynamics of system accurately. Finding the location of nonlinearity is often facilitated20

by engineering knowledge and can often be narrowed down to a small number of possibilities, typically joints
especially for the common engineering structures [4].

In this paper, we will focus on data-driven methods to characterize nonlinear structural dynamics that, in
an effort to minimise loss of information, use directly time-domain data. The data used for the identification
are normally forced response data or measured resonance decay data. Approaches that use forced response25

data include among others restoring force surface method [5, 6], reverse path approaches [7, 8], subspace-
based techniques [9, 10] and NARMAX [11]. Alternatively, Londoño et al. [12, 13] used resonance decay
data to generate backbone curves as a useful tool providing valuable information about system dynamics.
Backbone curves have been also employed for identification of the parameters of nonlinear structures [14–
16]. In general, backbone curve measurements require emulating undamped and unforced conditions and30

therefore the experimental extraction of backbone curves remains a challenging topic that has been tackled
using control-based continuation [17, 18] and phase-locked-loop techniques [19]. These techniques rely on
satisfying phase quadrature criterion which takes place when the single-point harmonic forcing and the
displacement at the forcing location are in quadrature, i.e., the phase is locked at an angle equal to π/2.
It has been reported by Volvert and Kerschen [20] that the fundamental, superharmonic and subharmonic35

resonances of nonlinear mechanical systems may exhibit phase lags that are not necessarily equal to π/2.
Besides, appropriate forcing to satisfy this criteria was found particularly critical for complex MDOF systems
featuring close modes [18, 21].

It is essential to ensure that any mathematical model selected in the context of NSI process is physically
meaningful and capable of predicting the performance of structures in operational and extreme loading40

conditions. In most common NSI methods an ansatz is made as an educated guess for the type of nonlinearity
prior to parameter estimation [10, 22, 23]; on the other hand, in methods that do not require an ansatz,
the delivered model are not typically parsimonious [24]. For example, the polynomial nonlinear state space
(PNLSS) method [24] uses best linear approximation (BLA) to initialise nonlinear system identification in
the state space. The high number of the polynomial parameters generated for nonlinear model in the PNLSS45

method cause the selected model to be not parsimonious. Decoupling methods have also been introduced
recently to address this issue [25], however, the number of parameters to be estimated still remains high.

Since selecting a nonlinear model (a candidate), has significant importance and is not yet clearly solved,
in this study we proposed a model selection method for nonlinear engineering structures. There are some
existing algorithms for model selection. Forward, backward and exhaustive search methods have been50

developed for nonlinear model selection problems [11, 26, 27]. The methods have been applied for the linear-
in-parameters nonlinear models which can be solved using classical least squares-type approaches. However,
dealing with nonlinear models that are not linear-in-parameters still have not been completely addressed
when it comes to nonlinear model selection for engineering structures. More recently, Ben Abdessalem et al.
[28] explored variants of approximate Bayesian computation for model selection and parameter estimation.55

Their approach requires high computational effort due to the fact that the numerical structural model needs
to be run in each iteration to estimate the true parameters based on prior distribution of the parameters.
They also search in a predefined library of nonlinear models but do not consider the combination of models in
the library which might be the solution for the problem. Taghipour et al. [29] proposed an optimisation-based
framework for model selection based on experimental data from stepped sine results. They examined different60

models comparing the experimental and simulated stepped sine results. Therefore, the framework involves
a high computational cost to generate stepped sine data. Reviewing the above-mentioned literatures, it is
essential to develop an efficient data-driven model selection framework in time-domain to include nonlinear-
in-parameter functions allowing to deliver parsimonious model with light computational effort.

In this paper, an optimisation-based data-driven framework is proposed for automated model selection65

and parameter estimation of proportionally damped structures with localized nonlinearities to overcome the
necessity of assuming the type of nonlinearity. The method assumes that the structure behaves linearly at
the low levels of vibration and that the location of the nonlinear elements are known. Unlike the methods
reviewed above [28, 29] which require stepped sine tests or running a finite element model in each itera-
tion, in the method proposed here, the measured inputs: forces and outputs: accelerations, velocities, and70

displacements are transformed into modal space and directly substituted into the equations of motions so
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that a nonlinear model can be fitted using nonlinear regression. Therefore it does not require the solution
of the differential equations of motion. Forward-backward and exhaustive search regression approaches are
considered in the framework to deliver a parsimonious model and the algorithms select the dominant non-
linear terms from a comprehensive predefined library which includes linear- and nonlinear-in-parameters75

nonlinear functions. The proposed methodology is initially examined using various numerical examples,
and is validated experimentally using a test rig that consists a bolted structure which displays nonlinear
behavior. The primary scope is to use time-domain data to identify the nonlinearity form and its parame-
ters for structures with single nonlinear element. The rest of this paper is structured as follow. Section 2
introduces the methodology proposed in this work. Simulated SDOF systems with nonlinear elements are80

used in Section 3 to explore the features of algorithms applied for model selection and parameter estimation.
The procedure is then validated using experimental data in Section 5. In Section 4 applicability of proposed
method is demonstrated for Multi-degree-of-freedom (MDOF) systems. The main conclusions are discussed
in Section 6.

2. The proposed methodology85

In this section a methodology for nonlinear system identification of engineering structures including non-
linearity characterization and parameter estimation is discussed. We consider a nonlinear system represented
by the following equation of motion in physical space:

Mq̈ + Cq̇ + Kq +
r∑

i=1

ρT
i fnl(ρiq) = F (1)

where q̈, q̇ and q are respectively the acceleration, velocity and displacement m × n matrices, where m is
numbers of degrees of freedom and n is number of time-domain points; M, C and K are the m×m matrices90

of mass, damping and stiffness, F is the force matrix and ρ is a location vector of the r nonlinear elements.
The function fnl represents generic nonlinear stiffness force.

The equation of motion can be transformed into linear modal space as in the Eq. (2) using the matrix
of linear mode shapes Φ. Thus, system dynamics can be expressed in terms of the linear modal coordinates
u(t).

Msü + Csu̇ + Ksu +
r∑

i=1

ΦT ρTi fnl(ρiΦu) = ΦTF (2)

where Ms = ΦTMΦ, Cs = ΦTCΦ and Ks = ΦTKΦ are the diagonal modal matrices for mass, damping
and stiffness. Diagonal modal matrices indicate decoupling of the equations of motions in the linear part,
however coupling among linear modes remain and are due to the presence nonlinear terms in the summation95

in Eq. (2). This facilitates data manipulation for MDOF systems and reduce the dimension of identification
problem which is discussed in Section 4 in more details. For the purpose of nonlinear model identification
(i.e. selecting fnl), we assumed that the characteristics of underlying linear system i.e. natural frequencies,
damping ratios and mode shapes are known and validated experimentally using one of the standard available
methods e.g. Polymax [30].100

In synopsis, the proposed methodology begins with conducting forced vibration test and then processing
the acquired response time-series data. Afterwards, optimisation-based model selection and parameter
estimation algorithms used for nonlinear model identification. More detailed description is discussed in the
following subsections.

2.1. Forced vibration and data processing105

Transient responses contains information about all of the underlying fundamental features of a dynamical
system, including those properties that are susceptible to change as a function of the vibration amplitude.
Therefore, in this study, we are interested in transient response records from the initial part of the system
response under harmonic excitation (sine or sweep-sine) and also free vibration response record when setting
the system free after achieving a desired response nearby a resonance. Harmonic excitation is used as it110
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can excite the structure at specific frequencies that are more likely to activate certain nonlinear effects (e.g.,
opening and closing a joint). It is important to note that the excitation level should satisfy the level of
expected performance during the lifetime of the structure. It is due to the fact that the identified model
will be accurate over the amplitude region where data is available, but outside it (i.e. where data are not
available), there would be no means to assess the reliability of the model. In particular, it is expected that115

the large displacement response acquired nearby a resonance condition of a nonlinear system would provide
more useful information about the nonlinear dynamics of the structure.

The methodology discussed in this paper requires the availability of the following time-domain data:
acceleration, velocity and displacement response records and also the applied excitation force. Notice that
in case of a numerical studies, all the information could be made available from the numerical solver directly.120

On the other hand, displacement and velocity response data can be obtained from experimentally measured
acceleration data using numerical integration [12, 31, 32] , Kalman filtering [33] or wavelet transform [34].
In this work, acceleration response is integrated numerically to calculate velocity and displacement.

Three different approaches are considered by recasting Eq. (2) to show the applicability of the iden-
tification method in different levels of information available from structural system. The first approach
(Approach I) considers the case when modal mass (Ms), damping (Cs) and linear stiffness (Ks) coefficients
in the Eq. (2) are known and only nonlinear forces are unknown. Linear damping and stiffness are also
considered to be unknown along the nonlinear part in the second approach (Approach II). Finally, all of
the parameters in the Eq. (2) are considered to be unknown and requiring to be identified in the Approach
III. The approaches are formularised in Eqs. (3) where the terms in bold and underlined are considered
unknown to be found using the proposed method as described in the following section.

(I) :
r∑

i=1

ΦT ρTi fnl(ρiΦu) = ΦTF− (Msü + Csu̇ + Ksu) (3a)

(II) : Csu̇ + Ksu +
r∑

i=1

ΦT ρTi fnl(ρiΦu) = ΦTF−Msü (3b)

(III) : Msü + Csu̇ + Ksu +
r∑

i=1

ΦT ρTi fnl(ρiΦu) = ΦTF (3c)

2.2. Optimisation-based nonlinear model identification125

The aim is to identify reliable mathematical models for the stiffness nonlinearities included in the struc-
tural system. To this end, the optimization routine is set up to minimise the mean square error (MSE)
given by Eq. (4) as the cost function that measures the discrepancy between observed and predicted data:

Minimize : MSE =
1

n

n∑

i=1

(y∗mmi
− ymmi)

2

Subject to :
1

nc

nc∑

j=1

1

n

n∑

i=1

(y∗cm(j)i
− ycm(j)i)

2 < εc

(4)

where n is the size of the time series data and y∗ and y are the observed and predicted data which are
equal to the right hand side and left hand side of the Eqs. (3) respectively. Subscripts mm and cm denote
the main and constraint modes and nc denotes the number of constraint modes. The difference between
the main and constrains modes will be explained later in Section 4. Also, εc is the tolerance of nonlinear
inequality constraint which indicates how accurate the estimated model should satisfy the responses of130

constraint modes.
The optimisation routine is implemented based on different approaches presented in Eqs. (3). The

existing parameters of the underlying linear system are assumed to be true and are directly substituted into
the equation of motion in Eqs. (3) when considering the approach (I), and the parameter estimation of
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nonlinear model is subsequently done. To consider cases where the linear parameters are inaccurate, in the135

approaches (II) and (III) above, the parameters of linear model are estimated in parallel with the parameters
of nonlinear model.

For parameter estimation, the optimisation problem defined in Eq. (4) is solved using a gradient-based
interior point algorithm. This algorithm, which is available in the fmincon function of MATLAB [35], is
suitable for parameter estimation of nonlinear-in-parameter models. Besides, scatter search (SS) method140

[36], which is available in the GlobalSearch function of MATLAB [35], is used to run the aforementioned
gradient-based optimisation algorithm multiple times to reach a global optimum solution. It starts searching
from different scattered initial points in the neighbourhood of user-defined initial point.

It is important to express the nonlinear optimisation problem in terms of scaled parameters. This
will facilitate the convergence of gradient-based optimisation algorithm. For this purpose, parameters in145

Eqs. (3) are scaled linearly based on the observed maximum force and responses. For example, maximum
displacement is used to scale dead space or gap distance parameter in the dead-zone nonlinear model so
that the scaled search space is bounded to [0,1]. This example is studied in Section 3.

In addition, for better chances of reaching a global minimum, the initial values and bounds for the
parameters need to be carefully selected. The existing parameters of the underlying linear system from linear150

modal testing i.e. damping ratios and natural frequencies of the system are used to initialise the respective
variables of the linear parameters when considering approaches (II) and (III). Lower upper bounds are set
for the linear parameters considering reliable linear modal identification. In this way small inaccuracies in
primarily identified linear parameters can be compensated for. For the parameters of nonlinear models,
the algorithm considers initial values and bounds assigned by the user in the scaled space as explained for155

dead-zone nonlinear model above.
Once the optimisation problem is defined, nonlinear model selection is carried out using two indepen-

dent optimisation-based algorithms: the forward regression nonlinear optimization (FRNLO) + backward
regression nonlinear optimization (BRNLO) and the exhaustive search nonlinear optimization (ESNLO)
algorithms. Both algorithms use a predefined and comprehensive library of nonlinear models typically en-160

countered in common engineering applications as the one shown in Table 1. The main concept behind the
algorithms are discussed below.

FRNLO algorithm works out the nonlinear model of a system as follows:

• Step 1: Add one nonlinear term at a time from the library of nonlinear terms to the structural model
in Eqs. (3) (when FRNLO starts, it includes the linear part only) and calculate the cost function using165

Eq. (4).

• Step 2: Try a different nonlinear term from the library of nonlinear terms and calculate the respective
cost function using Eq. (4).

• Step 3: Once all nonlinear terms present in the library have been independently examined, select and
add the nonlinear term with the minimum cost function value to the structural model and eliminate170

that term from the library of nonlinear terms.

• Step 4: Check the stopping criteria based on Eqs. (4,5), if not satisfied go to Step 1 and iterate.

• Step 5: If stopping criteria is satisfied then deliver the nonlinear structural model.

It should be mentioned that the estimated parameters of current iteration are fed to FRNLO algorithm
in order to initialise the next iteration. FRNLO delivers the nonlinear model with an initial set of terms,175

however, some nonlinear terms initially recognized by the algorithm might have negligible contribution to
the system dynamics, which only become evident when other terms are added. Therefore, we introduce
BRNLO to eliminate terms with negligible contribution and to provide a parsimonious model. BRNLO
algorithm works as follows:

• Step 1: Receive the nonlinear structural model and its parameters delivered by FRNLO180
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• Step 2: Eliminate one nonlinear term from the model at a time and evaluate cost function using Eq.
(4) for each combination of remained terms.

• Step 3: Once all models examined after each independent elimination, select and store the nonlinear
structural model with the minimum cost.

• Step 4: Check the stopping criteria based on Eqs. (4,5), if not satisfied go to Step 2 and iterate.185

• Step 5: If stopping criteria is satisfied then deliver the nonlinear structural model.

As an alternative, we also consider the ESNLO algorithm which consists of the following steps:

• Step 1: generate all the possible combinations of the candidate nonlinear terms available in the library
and categorize them for complexity into groups based on their number of parameters.

• Step 2: calculate cost function using Eq. (4) for all combinations in category s.190

• Step 3: select the combination with minimum cost in category s.

• Step 4: Check the stopping criteria based on Eqs. (4,5), if not satisfied go to Step 2 and iterate for
s=s+1.

• Step 5: If stopping criteria is satisfied then deliver the nonlinear structural model.

The selected model will be the least complex (smallest number of nonlinear terms) and more accurate model195

to describe the nonlinear behaviour of the structure.
The steps of the nonlinear system identification method implemented in this paper are also illustrated in

Fig. 1. As it can be seen there, once the nonlinear model is selected and parameter estimation is completed,
the fitted model goes through validation process.

Primarily, MSE is enforced as stopping criteria for model selection when its value drops lower than200

user-assigned threshold ε1. Secondly, when the change of two consecutive MSE values is less than ε2 as
shown in Eq. (5), the algorithm stops and delivers the nonlinear model. Notice that the later criterion
will be determinant in cases when by adding more nonlinear terms, the model prediction accuracy does
not improve significantly, and so, the extra complexity is not worth it; in such cases the extra term will be
rejected.205

∆MSE(s)

∆s
< ε2 (5)

Once system response records are available and the goal of identification is set based on the approaches
defined in Eqs. (3), the model selection and parameter estimation method proposed in this work can be
initiated.

3. Application to nonlinear SDOF systems210

In this section a series of SDOF systems with stiffness nonlinearity (Fig. 2) are used to illustrate
the applicability of the procedure presented above. The load excitation and acceleration response can be
measured experimentally or obtained from numerical solver and then velocity and displacement are derived
from acceleration using numerical integration [31].

Eq. (1) can be rewritten for the case of a nonlinear SDOF system as presented in Eq. (6). A number of215

stiffness nonlinearities typically encountered in common engineering applications will be examined. In the
following examples, the nonlinear model library assumed polynomials up to 7-th order in this study. Two
nonlinear models are also included in the library representing non-smooth nonlinearities: the step function
and also dead-zone using the forms given in [37] and presented in Table 1.

M q̈ + Cq̇ +Kq + fnl(q) = F (6)
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Define a library of nonlinear functions

Vibration test measurement (forced or decay)

Processing excitation and response signals

Assign constraints and initial
conditions for optimisation

Try each of the terms in the
library and minimize MSE

Select best term and store

Update the non-
linear element by

adding selected term

Stopping
criteria

Update the library by
removing selected term

FRNLO selected model
FRNLO estimated parameters

Initialise BRNLO using
FRNLO estimated parameters

Eleminate one term at a
time and Minimise MSE

Select and store best non-
linear terms remained

Stopping
criteria

BRBLO selected model
and estimated parameters

Define all possible combi-
nations of nonlinear models

Categorise the combina-
tions from simple to complex

Minimise MSE for category (s)

Select and store the best
combination in category (s)

Stopping
criteria

ESNLO selected model
and estimated parameters

Validate the selected model

End

No

Yes

Yes

No No

Yes

FRNLO

BRNLO ESNLO

Figure 1: Flowchart of the proposed nonlinear system identification framework.

Figure 2: Single degree of freedom system with stiffness nonlinearity.

In Table 1, Ff is the step force, Kf is the hardening coefficient, Kd is the stiffness after contact,220

θr1 = q − d
2 , θr2 = q + d

2 , U(θ) ∼= 1
2 [tanh(σgθ) + 1], and d is the backlash or dead space. We note

that the constant value σg = 107 is used to define the smoothness of change between the two regimes in the
non-smooth functions.

Table 2 summarises the type of nonlinearities and the numerical values used in each of the case studies
considered below. In addition, the parameters of the underlying linear system named mass, damping ratio225

and stiffness are assumed to be: M = 0.6874 kg; C = 1.35 N.sec/m and K = 3.3×104 N/m (fn = 34.73 Hz,
ζ = 0.0045). A numerical integrator based on Runge-Kutta methods was used to solve the nonlinear
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Table 1: Nonlinearities considered in the example SDOF systems.

No. Nonlinear term fnl(q) No. Nonlinear term fnl(q)

1 |q|q 7 sign(q)
√
|q|

2 q3 8 q
√
|q|

3 |q|q3 9 |q|q
√
|q|

4 q5 10 q3
√
|q|

5 |q|q5 11 Ff

(
2

(1+e(−σgq))
− 1

)
+Kfq

6 q7 12 Kd (θr2 + [θr1U (θr1)− θr2U (θr2)])

differential equation of motion. A transient response of the structure when it is vibrated using a harmonic
excitation F = F0 sin(ωt) is computed and used for nonlinear identification of SDOF examples presented
here. The amplitude of harmonic excitation is F0 = 5N and ω equals to the natural frequency of the230

structure.

Table 2: Parameters assigned for nonlinearities in the SDOF system example.

Polynomial Step Dead Zone
Case K2(N/m2) K3(N/m3) K5(N/m5) Ff (N) Kf (N/m) d(mm) Kd(N/m)

1 - 1.05× 109 - - - - -
2 −9.05× 105 1.05× 109 - - - - -
3 −9.05× 105 1.05× 109 3.1× 1013 - - - -
4 - - - 3 100 - -
5 - 1.05× 109 - 3 100 - -
6 - - - - - 4 2.7× 105

The results will be discussed based on the three above mentioned approaches in Eqs. (3). Moreover, the
performance of the preposed nonlinear identification methods: FRNLO, BRNLO and ESNLO are evaluated
and compared considering the different approaches. In order to validate the results, the backbone curves
estimated from the fitted model are compared with the backbone curves generated for true system using235

nonlinear resonance decay method (NLRDM) [12]. Further, the stepped sine sweep response of the nonlinear
models estimated using the proposed method is shown on top of the backbone curves.

Case 1: cubic stiffness. The response shown in Fig. 3 was generated numerically from Eq. (6) using
ODE45 in MATLAB for the SDOF system Case 1 in Table 2. Variation in amplitude and presence of higher
harmonics can be observed in the internal linear and nonlinear forces presented in Fig. 3(b). The duration240

of numerical integrating is 3 second with sampling frequency Fs = 100fn.

0 0.5 1 1.5 2 2.5 3

-2

0

2

10
-3

0 0.5 1 1.5 2 2.5 3

-20

0

20

Figure 3: Response of SDOF structure when cubic nonlinearity is considered (a) Displacement (b) Internal forces.

Once the data is generated, the FRNLO algorithm was applied to infer the nonlinear model and estimated
its parameters. Both of the stopping criteria were set as ε1 = ε2 = 10−6. The tolerance of nonlinear
inequality constraint in the Eqs. (4) is also set to εc = 10−6. The algorithm converges in one iteration and
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the cubic nonlinear model is selected with MSE = 1.833× 10−18. The trivial value of MSE for one model245

suggests that there is no need to initiate the other algorithms, (i.e. BRNLO and ESNLO) however, after
running BRNLO, it is also delivers the same model selected by FRNLO. Table 3 reports the identification
results error based on the three approaches presented above in Eqs. (3).

It can be seen that accurate estimation is achieved and as the level of complexity (estimating both linear
and nonlinear part) increases the estimation error shows a slight increase, however, the level of error is250

within an acceptable level. Fig. 4 compares the identified nonlinear force-displacement and backbone curve
results for the SDOF system with cubic nonlinearity. Results show good match between true and estimated
force-displacement response and also the estimated backbone curve and generated one using the NLRDM
[12]. Finally, they are superimposed onto several synthetic stepped-sine sweep responses for different levels
of excitation (F0 = [0.0125, 0.25, 0.5, 1]N).255

Table 3: Identification results for SDOF system case 1: cubic stiffness using FRNLO algorithm.

System parameters Identification results error (%)
approach I approach II approach III

M (kg) 0.687 - - 9.2× 10−3

C (N.s/m) 1.35 - 1.6× 10−14 9.2× 10−3

K (N/m) 3.27× 104 - 2.2× 10−14 9.2× 10−3

K3(N/m
3
) 1.05× 109 2.3× 10−3 1.08× 10−2 1.3× 10−2

-4 -2 0 2 4

10
-3

-30

-20

-10

0

10

20

30

33 34 35 36 37 38

0

0.5

1

1.5

2

2.5

3
10

-3

Figure 4: Identification of SDOF with cubic stiffness using the FRNLO algorithm (a) Nonlinear force-displacement response (b)
Backbone curves generated from estimated and true system based on [12] overlaying on the stepped-sine simulation responses
of true system.

Case 2: Quadratic and cubic stiffness. The second case corresponds to a SDOF system that includes a
quadratic and cubic stiffness nonlinearities. As before, a transient response of 3 sec duration under harmonic
loading is used for identification purpose. The progression of models selection using FRNLO, BRNLO and
ESNLO methods is shown in the Fig. 5 in terms of MSE values and difference between two successive
MSE values, where, the stopping criteria was set as ε1 = ε2 = 10−6. The horizontal axis shows the260

number of nonlinear models selected from library with their models indicated in the caption respectively.
Initially, it can be seen that the FRNLO selects four polynomial terms as best fit to the data, following that,
BRNLO cross out the two terms with negligible contribution. It is observed from Fig. 5a that ∆MSE(s)/∆s
increases when adding fourth term from the library. The reason is that the MSE value is highly decreased
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by adding the fourth term with respect to the previous MSE values and therefore the rate of change of MSE265

(∆MSE(s)/∆s) in this step is higher than the previous one. For BRBLO, in Fig. 5b, it can be seen that
after removing 2 terms, the MSE remains below ε1, but when third nonlinear term is removed, the MSE
increases, and therefore only 2 terms are removed.

Furthermore, ESNLO algorithm follows a straightforward path and identifies the best and simplest
combination of nonlinear function to describe the dynamic behaviour of the structure.270

1 2 3 4

10
-10

10
0

1 2 3 4

10
-2

10
0

0 1 2 3

10
0

0 1 2 3
10

-10

10
0

1 2

10
-10

10
0

1 2

10
-1

10
0

Figure 5: Nonlinear model selection for case 2 based on (a) FRNLO (selected models: [|q|q3, |q|q5, |q|q, q3]) (b) BRNLO (selected
models: [|q|q, q3]) and (c) exhastive search (selected models: [|q|q, q3]) algorithms.

The identification results error is reported in Table 4 for nonlinear system with quadric and cubic stiffness
nonlinearity. All three approaches presented in Eqs. (3) are examined here. It should be noted that in case of
approach II and III, linear parameters from linear modal testing are also used to constrain the optimisation
algorithm and provide the initial condition to start the optimisation with. Fig. 6 presents the identification
results in terms of nonlinear force-displacement and backbone curves. These results show good agreement275

between the estimated and true system response. The stepped-sine sweep responses of the identified system
with different levels of excitation (F0 = [0.05, 0.25, 0.5, 1]N) illustrates that the identifies model follows the
dynamic behaviour of the structure acceptably.

Table 4: Identification results for SDOF system case 2: quadratic and cubic stiffness using FRNLO+BRNLO algorithm.

System parameters Identification results error (%)
approach I approach II approach III

M (kg) 0.687 - - 3.4× 10−3

C (N.s/m) 1.35 - 1.6× 10−14 3.4× 10−3

K (N/m) 3.27× 104 - 2.2× 10−14 3.4× 10−3

K2(N/m
2
) −9.05× 105 1.1× 10−4 4× 10−2 1.5× 10−2

K3(N/m
3
) 1.05× 109 2.4× 10−3 6.8× 10−3 4.6× 10−3

Case 3: Quadratic, cubic and Quintic stiffness. The performance of the proposed identification
algorithms for model selection is now investigated by considering a SDOF system with quadratic, cubic and280

quintic stiffness nonlinearity. As before we assume that the input excitation force is applied to the structure
at the system natural frequency in order to generate high amplitude response.

The convergence of three proposed algorithm in selecting the best nonlinear model is illustrated in Fig. 7.
As it can be seen four nonlinear polynomial term is selected based on FRNLO algorithm with the final MSE
value of 8 × 10−11. Although |q|q3 is selected as the initial match from FRNLO, the BRNLO algorithm285

is capable of identifying that the term interfered with the true contributing models as the MSE value
decreased to 7.5 × 10−12 by eliminating |q|q3. The identification results of ESNLO algorithm are reported
in Table 5 and considers the three approaches presented above in Eqs. (3). Again the estimation error in
all of the cases is considerably low.

Fig. 8a compares the nonlinear force-displacement estimated from the fitted model and from the true290

model. The results show good agreement even though there are three nonlinearities combined together.
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Figure 6: Identification of SDOF with Quadratic+cubic stiffness using the FRNLO+BRNLO algorithms (a) Nonlinear force-
displacement response (b) Backbone curves generated from estimated and true system based on [12] overlaying on the stepped-
sine simulation responses of true system.
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Figure 7: Nonlinear model selection for case 3 based on (a) FRNLO (selected models: [|q|q3, |q|q5, |q|q, q3]) (b) BRNLO (selected
models: [|q|q, q3]) and (c) ESNLO (selected models: [|q|q, q3]) algorithms.

Table 5: Identification results for SDOF system case 3: Quadratic, cubic and Quintic stiffness using FRNLO+BRNLO algo-
rithm.

System parameters Identification results error (%)
approach I approach II approach III

M (kg) 0.687 - - 1.5× 10−3

C (N.s/m) 1.35 - 1.6× 10−14 1.5× 10−3

K (N/m) 3.27× 104 - 2.2× 10−14 1.5× 10−3

K2(N/m
2
) −9.05× 105 1.8× 10−4 8.3× 10−2 5.2× 10−2

K3(N/m
3
) 1.05× 109 1.2× 10−3 6× 10−3 4× 10−3

K5(N/m
5
) 1.05× 109 1.6× 10−3 4× 10−4 1.3× 10−2

From Fig. 8b, the backbone curve produced based on the identification method in this paper shows a
clear match with the backbone curve using NLRDM [12]. For the purpose of validation, the stepped-sine
sweep responses of the identified system with different levels of excitation (F0 = [0.05, 0.25, 0.5, 1, 2]N)
presented which indicates a successful identification. This example displays different behaviour at low and295

high amplitude vibration levels and shown that the proposed data-driven method is able to deal with complex
and smooth nonlinearities. In terms of computational time, in this example, FRNLO algorithm proceeds in
20 sec, BRNLO in 7.5 sec and ESNLO in 10 sec. It can be seen that the FRNLO+BRNLO results in higher
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computational time to accomplish the desired identification result in comparison with ESNLO.
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Figure 8: Identification of SDOF with Quadratic+cubic+Quintic stiffness using the ESNLO algorithm (a) Nonlinear force-
displacement response (b) Backbone curves generated from estimated and true system based on [12] overlaying on the stepped-
sine simulation responses of true system.

Case 4 and 5: Step and cubic stiffness. To demonstrate the application of developed method to300

identify nonlinear structures with non-smooth nonlinearities, step function with linear stiffness and the
combination of step with cubic stiffness nonlinearity are now investigated. Step function can be used to
model locking connection that after released have linear or nonlinear stiffness. Approach III is used to
fully identify the dynamic parameters of nonlinear structure for this example. Accurate model selection
is achieved using the proposed method in this study. Fig. 9a shows the results for case 4, where the305

backbone curve estimated using the model fitted by ESNLO algorithm is compared with the true backbone
curve identified using NLRDM [12]. Similar result have been seen for FRNLO+BRNLO algorithm which
indicates that if proper nonlinear models included in the library the identified model will be selected with
negligible error. The FRNLO+BRNLO algorithm results is not reported here for brevity. The identified
nonlinear force-displacement results based on ESNLO also shows a good agreement with true simulation310

results. The stepped-sine sweep responses of the identified system for F0 = [2.8, 5]N levels of excitation are
overlaid on the backbone curves which show a good agreement. For low excitation level F0 = 2.8N and low
frequency band, it can be observed that the amplitude of the stepped-sine sweep responses is very small
(near zero) which is due to the fact that the system is not vibrating at the resonance condition. Moreover,
results for case 5 are presented in Fig. 9b, where a successful estimation of a nonlinear model is achieved.315

Parameter estimation results for the two cases are reported in Table 6 showing a accurate model prediction.

Table 6: Parameter estimation results for Step nonlinearity.

Nonlinearity Type
Step + Linear stiffness Step + Cubic stiffness
Ff (N) Kf (N/m) Ff (N) Kf (N/m) K3(N/m3)

Estimation 3 100 3 100 1.05× 109

Error (%) 2.76× 10−6 1.64× 10−5 7.17e× 10−6 4.76× 10−4 1× 10−3

Case 6: Dead zone (Backlash). Non-smooth nature of the nonlinearity can be seen also in the engineer-
ing structures like gear backlash nonlinearity [37]. Backlash or dead zone nonlinear example also considered
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stiffness nonlinearities.

in this study using the nonlinear function No. 12 in Table 1. As before, the simulation data are generated
for 3 second under harmonic excitation described in Section 3 using the values assigned for Dead zone non-320

linearity from Table 2. Again, approach III is used to fully identify the dynamic parameters of nonlinear
structure. Fig. 10 shows the backbone curve prediction based on ESNLO algorithm. It can be seen that
if the nonlinear function is included in the library of nonlinear terms, the model selection and parameter
estimation is successful and can provide accurate prediction of nonlinear dynamics of structure. The stepped-
sine sweep responses of the identified system with different levels of excitation (F0 = [0.25, 0.5, 1, 2]N) are325

also presented.
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Figure 10: Results for system with Dead zone (Backlash) nonlinearity using the ESNLO algorithm (a) Nonlinear force-
displacement response (b) Backbone curves generated for estimated and true system based on [12] overlaying on the stepped-sine
simulation responses of true system.
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3.1. Discussion and sensitivity analysis

In this section we consider some issues that can affect the robustness of the proposed method in the case
of practical application. The effects of obtaining velocity and displacement from acceleration measurement,
noise in the measured responses and the comprehensiveness in the library of nonlinear terms are first eval-330

uated. The effects of generating velocity and displacement data from measured acceleration on the model
selection and parameter estimation are discussed using Case 2 in Table 2 (quadratic+cubic) and considering
approach I to identify the nonlinear model. The accelerations were numerically integrated, and the resulting
velocity were passed through a first order high-pass Butterworth filter with a cutoff frequency of 15 Hz, the
filtered velocities were then numerically integrated and passed through the same filter, the temporal mean335

was also subtracted before each integration such that the accelerations, velocities, and displacements were
zero mean. Considering the same stopping criteria values ε1 = ε2 = 10−6, model selection is carried out
using FRNLO+BRNLO and ESNLO algorithms. From Fig. 11, it can be seen that one more nonlinear
term (q7) is added to the selected model when comparing with the results from Fig. 7 which is based on the
response data generated from simulation. Some error introduced to the model due to the selected model340

with extra terms, however, the model is still reliable which is clear from Fig. 12a. By relaxing the stopping
criteria one can deliver more parsimonious model with enough accuracy which discussed in Section 5 when
discussing results using experimental data.
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Figure 11: Nonlinear model selection for case 2 based on the data obtained from integration of acceleration (a) FRNLO
(selected models: [|q|q3, q7, |q|q, q3, |q|q5]) (b) BRNLO (selected models: [|q|q3, q7, |q|q, q3, |q|q5]) and (c) exhastive search
(selected models: [|q|q, q3, q7]) algorithms.
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Figure 12: Comparison of backbone curve for (a) Simulation data and the data obtained from integration of acceleration (b)
Different noise levels (20, 40, 70 dB).
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The effects of noise level present in experimental measurement are now discussed on the model selection
and parameter estimation. To simulate the test condition, similarly, Case 2 in Table 2 is evaluated by345

adding white Gaussian noise to the synthesised acceleration measurements considering signal-to-noise ratios
(SNR) of 20, 40 and 70 dB. In practice, electromagnetic shakers typically yield a SNR of 60∼80 dB, which is
coherent with a noise-free assumption [38]. Therefore, the input force is assumed to be noiseless. The noise
is considered on the acceleration record data and then velocity and displacement derived using integration.
Fig. 12b present the backbone curves generated for data with different levels of added noise. It is observed350

that only high level of noise (20 db) cause some distortion in the estimated backbone curve which is evident
when predicting the dynamics response at the low vibration amplitudes. Similarly, the effect of noise level
on model selection is noticeable for high level of noise (20 db) as more polynomial terms are selected
(|q|q3, q7, |q|q, q3, |q|q5, q5) when identifying the nonlinear model at the system. For medium to low level of
noise, the selected model are the same to the noise free case.355

The importance of including enough nonlinear models in the library of nonlinear terms is studied now.
We tried to identified the system studied above in the Case 6 (dead zone) considering only polynomial
models in the library of nonlinear terms. Results are presented in Fig. 13. One can see that the nonlinearity
can be approximated using polynomial functions by adding the terms |q|q, q3, |q|q3, q5, |q|q5. This estimation
seems to be valid for a certain range of amplitudes (higher) of the system response. However, the estimation360

shows important discrepancies at low amplitudes of vibration. The response of system in time-domain is
presented in Fig. 13b which generally shows good agreement in terms of frequency and overall amplitude.
One can see that a unique nonlinear behviour might be described using different nonlinear models as long
as that model captures important nonlinear features of the system. Furthermore, it should be noted that
even simpler combination of models which satisfies the stopping criteria would be acceptable depending on365

the desired prediction accuracy and safety requirement.
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Figure 13: Comparison of fitting results to the dead zone nonlinearity using polynomial nonlinear terms only (a) Backbone
curves and nonlinear force-displacement response (b) Displacement, velocity and acceleration response.

Finally, the effects of inaccurate parameters of underlying linear system are investigated considering the
example Case 2 in Table 2. Approach (II) is used to formulate the cost function while FRNLO+BRNLO
algorithms are used for model selection and parameter estimation. Fig. 14 shows the results of a sensitivity
analysis based on 500 samples randomly generated for the pair of natural frequency and damping ratio.370

Normal distribution with a mean of 34.73 Hz and a standard deviation of 0.17 Hz is considered to model
natural frequency variation. Generalized extreme value distribution with location parameter µ = 0.0091,
scale parameter σ = 0.0073, and shape parameter k = 0.066 is considered for the damping ration. Extreme
value distribution is used to avoid generating negative damping ratio values while allowing for a higher
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dispersion in the randomly generated damping ratios. It can be seen in Fig. 14a that the estimated natural375

frequency and damping ration converge towards the true values of the linear parameters that are presented in
Section 3. This shows that small inaccuracies in the linear parameters can be corrected using the approach
(II) if the initial linear parameters are located in the basin of attraction of optimisation problem, that
is, if the initial linear parameters are relatively close to the true frequency and damping ratio. Fig. 14b
shows that the variation of the estimated linear parameters is low. We also notice that the model selection380

was successful for all of the randomly generated inaccurate frequencies and damping ratios for which the
quadratic and cubic terms were correctly selected. Fig. 14c presents the scatter of estimated nonlinear
parameters versus true values which also indicates satisfactory estimation.
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Figure 14: Effects of inaccurate underlying linear system parameters for case 2 example (a) scatter of random initial points
and estimated values for natural frequency and damping ratio (b) scatter of estimated natural frequency and damping ratio
versus true values (c) scatter of estimated versus true nonlinear parameters.

4. Application to nonlinear MDOF systems

The aim of this section is to present how the framework introduced above can be extended to identify385

nonlinear MDOF systems. The nonlinearity effect can produce cross-coupling between linear modes of
vibration [21, 39] in MDOF systems. The example model studied here is taken from [40] which consists of
two masses and one nonlinear element as shown in Fig. 15. The location of nonlinear element is defined by
ρ = [1 0]. The underlying linear system parameters and excitation force is defined as follow:

M =

[
1 0
0 1

]
kg,C =

[
9.33 1.41
1.41 9.33

]
N.sec/m,K =

[
35619 −3553
−3553 35619

]
N/m,

[
F1

F2

]
=

[
F0 sin(ωt)

0

]
N (7)
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The linear natural frequencies are 28.5 and 31.5 Hz and mass normalized mode shapes are [−0.7071 −
0.7071]T and [−0.7071 0.7071]T . We rewrite the modal equations based on Eq. (2) for quadratic+cubic
stiffness nonlinearity for demonstration only.

ü1 + 2ζ1ω1u̇1 + ω2
m1

u1 + ap(1)(au1 + bu2)|(au1 + bu2)|+ ap(2)(au1 + bu2)3 = ΦT
1 F

ü2 + 2ζ2ω2u̇2 + ω2
m2

u2 + bp(1)(au1 + bu2)|(au1 + bu2)|+ bp(2)(au1 + bu2)3 = ΦT
2 F

(8)

Here, ωk is the kth natural frequency of the underlying linear system and ζk is the damping ratio. The390

nonlinearity location vector ρ and linear mode shapes Φ are assumed to be known. In Eq. (8), [a, b] = ΦT ρTi
and, the jth coefficient of the nonlinear function contributing to the system response is presented by p(j).
As it can be seen, by writing the equations of motions in terms of the linear modal coordinates, it is possible
to decouple them in the linear part (assuming proportional damping) but the modal coupling created by
the nonlinearities becomes evident.395

For the model selection, the optimisation problem is tuned to consider one of the modal equations as
the only contributor to the cost function to be optimised, while the other modal equations are considered as
nonlinear inequality constraint functions according to Eq. (4). Consequently, the effect of nonlinearities in
the system is considered in all of the modes at the same time and the estimated parameters will be unique.
The criterion for selecting the main mode is driven by the nonlinear effect that requires to be modelled and400

the frequency range at which the structure must be excited to activate it.
For instance, if the structure has a nonlinearity that distorts more significantly the first resonance peak,

then that mode should be targeted and the structure should be excited nearby the first linear frequency.
Using the resulting response data, the first modal equation should be considered as the only contributor to
the cost function, while the others will be used as constraint function.405

As it was mention before, the optimisation problem can be setup for model selection and parameter
estimation considering the modal equation at the excited mode as main function and the equations of other
mode as constraints. Transient response of the structure when it is harmonically excited near a resonance
condition for a duration of T=3 sec is used for the nonlinear identification. As before, the time-domain
data obtained from acceleration outputs are processed to obtain the velocity and displacement responses410

and provided as an input to FRNLO+BRNLO algorithms for model selection and parameters estimation.
Approach I is used and the nonlinear element considered in this example (located between mass 1 and

ground) is assumed to be a quadratic+cubic+quintic function with the coefficients −9.05×105 N/m
2
, 1.05×

109 N/m
3
, −3.1× 1013 N/m

5
respectively. Fig. 16 presents the convergence of model seletion process along

the forced response of mass 1 for different levels of harmonic excitation F0 = [2, 5, 7, 10]N. According to Fig.415

16a,b the model selection using FRNLO results in four polynomial terms. It follows that BRNLO eliminate
one term from the selected bin.

The estimated and simulated forced responses in Fig. 16c indicates a successful and accurate identifica-
tion of MDOF case.

Figure 15: Two degree of freedom system with stiffness nonlinearity.

It is worth mentioning that various nonlinearities would probably trigger different internal resonances420

when the system excited by high level input force. Therefore, it is important that the selected nonlinear
model captures these features especially in the MDOF systems. However, studying these internal resonances
are beyond the scope of the present study.
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Figure 16: Identification results for 2DOF example using the FRNLO+BRNLO algorithms (a) FRNLO convergence
[q3, q7, |q|q, q5] (b) BRNLO convergence [q3, |q|q, q5] (c) forced responses of mass 1 for force levels F0 = [2, 5, 7, 10]N.

5. Experimental Example

The SDOF test structure considered in this work consists of a lumped mass excited on the horizontal425

direction and fixed to the ground with two steel plate at each side as shown in Fig. 17. The thin plates
are considered as a source of geometric nonlinearity. The mass are connected to the plates using bolted
joints with uniform bolt torque of 4 N.m. Friction and the uneven contact area in the joints at higher
vibration amplitudes can also be regarded as another source of nonlinearity for the lightweight structure
in this study. The model is excited by an electrodynamic shaker (LDSV201) and instrumented with a430

piezoelectric accelerometers (PCB M353B18) and one force sensor (PCB 208C02) to measure the shakers
driving force. Following the measurement, the accelerations were numerically integrated, and the resulting
velocity were passed through a first order high-pass Butterworth filter with a cutoff frequency of 15 Hz, the
filtered velocities were then numerically integrated and passed through the same filter, the temporal mean
was also subtracted before each integration such that the accelerations, velocities, and displacements were435

zero mean. Additionally, a laser displacement sensor (ZX2-LDA11) is used to measure the mass displacement
in the horizontal direction. Laser readings are used only to verify that the displacement obtained numerically
from the acceleration record is reliable. The vibration tests were controlled and recorded using Quattro Data
Physics Analyser.

A single-degree-of-freedom (SDOF) model is use to model the test rig, and therefore the geometric440

nonlinearity is considered lumped in the degree of freedom we are using to describe the dynamic response.
The results from linear modal testing using low vibration levels gives the natural frequency and damping
ratio fn = 34.8 Hz, ζ = 0.0045 respectively. The identification process carried out based on approach
(III). The linear parameters from linear modal testing are used to constrain the optimisation algorithm
and provided the initial condition to start the optimisation with.445

The model selection and parameters estimation carried out using forced response under harmonic loading
with amplitude 1N and loading frequency equal to natural frequency. Free decay response by releasing the
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system from a 3.3 mm initial displacement is used to validate the estimated model. The results of model
selection and parameter estimation are shown in Fig. 18. The results plotted in left hand panel shows
that the model selection based on FRNLO algorithm converges after adding 5 polynomial nonlinear terms450

(p(1)|q|q3, p(2)q7, p(3)|q|q, p(4)q3, p(5)|q|q5) to the equation of motion where p(j) is the parameter of jth

nonlinear term. The MSE curve flattens and the difference between consecutive MSE drops to lower
than ∆MSE(s)/∆s < ε2 which have been selected 10−6. Relaxing the stopping criteria to 10−3 results in
more parsimonious selected model (p(1)|q|q3, p(2)q7, p(3)|q|q, p(4)q3), however, it may be at the cost of a
reduced prediction accuracy. FRNLO+BRNLO provides the same nonlinear model as ESNLO algorithm.455

To validate the selected model, stepped sine simulation results are also plotted in top of the backbone curves.
In addition, the force displacement responses of nonlinear identified model are compared with the measured
data which exhibits satisfactory agreement.

Figure 17: Experimental rig of a SDOF system with lumped mass and connecting thin steel plates.

Table 7 reports the parameter estimation results for experimental example. Adopting the selected model
and estimated parameters, Fig. 18b presents the comparison between nonlinear force-displacement curves460

from experimental data and identified model. Also, backbone curves estimated from two identified models
when setting two different stopping criteria thresholds and the experimentally measured backbone curve
using NLRDM method [12] are presented. Stepped sine test responses are overlaid for different levels of
excitation (F0 = [0.125, 0.25, 0.5, 1]N). A satisfactory agreement can be observed in the results for large to
low range of displacement which confirms successful identification of nonlinear dynamics of the structure in465

the considered domain of performance.
Fig. 19 presents the free decay response of the experimental example which is used for validation. Fig.

19a shows that the fitted model is able to predict the dynamic response of the structure. An estimation of
the nonlinear force time series is presented in Fig. 19b which shows a good match between experimental
and identified nonlinear forces. Results also show that the fitted model captures the nonlinear response of470

the structure both at lower and higher amplitudes of vibration as shown in terms of the backbone curve in
Fig. 18b and in terms of the time series in Fig. 19b.

Table 7: Parameter estimation of identified model for experimental SDOF example using FRNLO+BRNLO algorithms for
stopping criteria ε1 = ε2 = 10−6.

p(1) (N/m4) p(2) (N/m7) p(3) (N/m2) p(4) (N/m3) p(5) (N/m6)
−9× 1011 1.69× 1019 −2.1× 106 2.99× 109 9.343× 1016

6. Conclusion

The research presents a new, data-driven method, for model selection and parameter estimation of
structure containing discrete nonlinear stiffness. The structure is excited by a harmonic force near the475

19

                  



1 2 3 4 5 6

0.19

0.2

0.21

0.22

0.23

1 2 3 4 5 6

10
-5

10
0

33 34 35 36 37 38

0

0.5

1

1.5

2

2.5

3

3.5
10

-3

-2 0 2

10
-3

-20

0

20

Figure 18: Identification results for experimental example using the FRNLO+BRNLO algorithms (a) Progression of model
selection convergence (b) Nonlinear force-displacement and backbone curve comparison.
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Figure 19: Comparison of time series responses of experimental example (a) Displacement of the true and identified models
(b) Nonlinear force of the true and identified models.

resonance frequency of underlying linear system where the nonlinearities in the system can be activated and
the transient response data recorded. This data alongside modal equations of motions that are coupled due
to the presence of nonlinear terms are used to identify linear and nonlinear parameters. In the proposed
method, nonlinear model selection and parameter estimation is carried out systematically at a single step
using recursive optimisation-based algorithms.480

Forward-backward and exhaustive search nonlinear optimisation algorithms are presented and used to
select the best possible nonlinear model and estimate its parameters from a predefined library of nonlinear
terms. The algorithms initiate the process using the information identified for the underlying linear system.
They progresss by adding nonlinear models to the equations of motions from a comprehensive predefined
library of nonlinear terms. The parsimony principle is deeply embedded in the framework proposed in this485

paper.
Through numerical examples various nonlinear cases are investigated while considering different levels

of information available from the underlying linear system. The results showed that the model selection can
be carried out satisfactorily, even if no a prior knowledge about the nonlinearity is given; this provided that
the library of nonlinear terms is exhaustive enough.490

It was also shown that the proposed method can be extended to identifying nonlinear models for MDOF
systems that have a single nonlinear element. Since there is no need to run structural simulation in each
iteration, the proposed method can identify important nonlinear models efficiently.. The proposed method
is also demonstrated on an experimental test case study, where a nonlinear structure with geometric and
bolted joint nonlinearities is examined. The presented method was capable of producing a nonlinear model495
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to satisfactorily describe the dynamics of the structure at low to high levels of vibration.
The framework presented in this paper is a versatile tool that can be extended to cover different kind of

nonlinearities. The proposed method can be used to identify more complex nonlinear structures for which
it is recommended to excite the structure in the mode which involve most important nonlinear dynamics for
the expected performance level.500

From a practical point of view, FRNlO+BRNLO algorithm is efficient in terms of computational time
and accuracy especially when the number of nonlinear elements increases, whereas, ESNLO can be more
applicable for structures with limited nonlinear elements as it generates a bulk of combinations depending
on the population of predefined library of nonlinear models. The algorithms can be vastly speed up by
implementing the routines in such a way that take advantage of multi-core processors and parallel computing.505

Furthermore, others forms of excitation could be used for model selection and parameter estimation using
the method proposed in this paper. For instance, sweep sine type excitation around the resonance frequency
of interest can be used as an alternative loading instead of sine excitation. It should be noted that other types
of forcing such as random excitation could be considered if the structural response amplitude is enough as to
produce a strong nonlinear structural response. It is also noteworthy that the identified nonlinear model will510

be valid only over the amplitude range cover by the response data used in the identification task. Future
works would need to assess the application of the proposed method for systems with non-proportional
and nonlinear damping as they will introduce further cross couplings in the modal equations of motions.
Moreover, the effects that uncertainties in the underlying linear model of nonlinear MDOF systems could
have on the effectivity of nonlinear identification method presented in this paper remain unclear and need515

further investigation. This will help developing more robust model selection strategies for the structural
systems with multiple nonlinear elements in which the effects of higher mode truncation can be addressed.
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