Supplementary material

New soil carbon sequestration with nitrogen enrichment: a meta-analysis

Xiaomin Huang^{1,2,3}, César Terrer⁴, Feike A. Dijkstra⁵, Bruce A. Hungate⁶, Weijian Zhang^{1,3},

Kees Jan van Groenigen^{2*}

¹ Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, 100081, China
² Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4 RJ, UK
³ College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
⁴ Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000
East Avenue, Livermore, California 94550, USA
⁵ Sydney Institute of Agriculture, School of Life and Environmental Sciences, the University of Sydney, Camden, NSW 2570, Australia
⁶ Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona 86011, USA

Published in: Plant and Soil

*corresponding author: Kees Jan van Groenigen

E-mail: kj.vangroenigen@exeter.ac.uk

Tel.: (+44) 7754 392965

Table S1 Overview of the models with the most explanatory power for N-induced effects on new soil C stocks.

Table S2 Overview of the models with the most explanatory power for N-induced effects on soil C input proxies.

Table S3 Overview of the models with the most explanatory power for N-induced effects on old soil C respiration.

Table S4 Overview of the models with the most explanatory power for N-induced effects on old soil C stocks.

Table S5 Overview of the models with the most explanatory power for N-induced effects on total soil C stocks.

Fig. S1 Results of a meta-analysis on the responses of new soil C stocks, old soil C stocks, total soil C stocks and soil C input proxies to N addition in long-term field experiments.

Fig. S2 The relationship between N-induced effects on soil C input proxies (lnR_I) and N-induced effects on new soil C stocks (lnR_N) .

Data S1. New C stocks and experimental conditions for all studies included in our meta-analysis.

Data S2. Soil C input proxies and experimental conditions for all studies included in our meta-analysis.

Data S3. Old C stocks and experimental conditions for all studies included in our meta-analysis.

Data S4. Total C stocks and experimental conditions for all studies included in our meta-analysis.

Data S5. Respiration of old soil C and experimental conditions for all studies included in our metaanalysis. **Table S1** Overview of the models with the most explanatory power for N-induced effects on new soil C stocks (lnR_N) . All models within two AICc units of the top-supported model are shown.

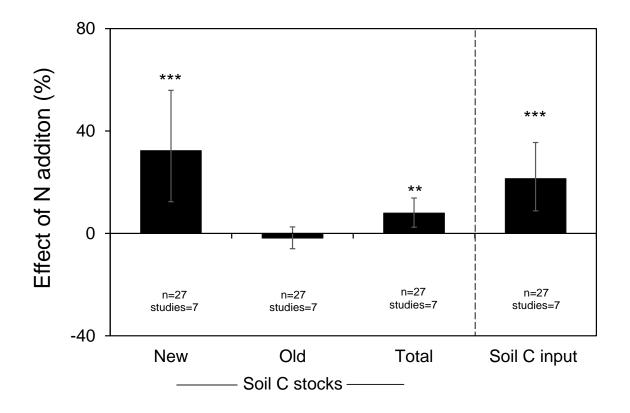
Best- models	Moderator	AICc
1^{st}	$lnR_N \sim 1 + Control N$	135.7106
2^{nd}	$lnR_N \sim 1 + Control \ N + Clay$	136.5874
3 rd	$lnR_N \thicksim 1 + Plant \ type + Control \ N + \Delta N$	136.7315
4 th	$lnR_N \sim 1 + Control \ N + \Delta N$	136.7574
5 th	$lnR_N \sim 1 + Control N + CN$ ratio	136.8038
6 th	$lnR_N \thicksim 1 + Plant \ type + Control \ N$	136.8182
7 th	$lnR_N \sim 1 + Control \; N + \Delta N + Clay$	137.2498
8 th	$lnR_N \sim 1 + Control \ N + Clay + CN \ ratio$	137.3919
9 th	$lnR_N \sim 1 + Other nutrients + Control N$	137.4739
10^{th}	$lnR_N \sim 1 + Plant \; type + Control \; N + \Delta N + Clay$	137.5201
11^{th}	$lnR_N \thicksim 1 + Control \; N + CO_2 \; ppm$	137.6023

Table S2 Overview of the models with the most explanatory power for N-induced effects on soil C input (lnR_I) . All models within two AICc units of the top-supported model are shown.

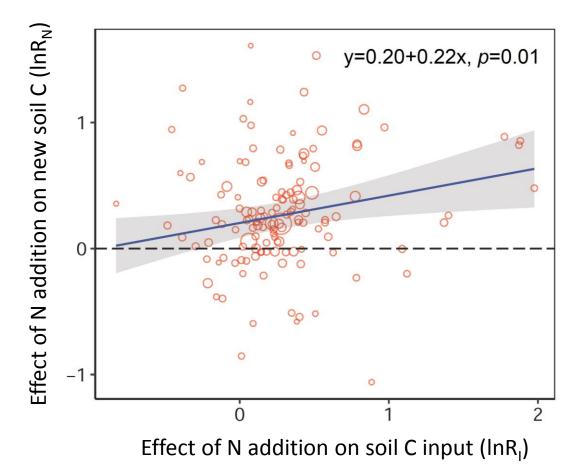
Best- models	Moderator	AICc
1 st	$lnR_I \sim 1 + Control N + CN$ ratio	120.6579
2^{nd}	$lnR_I \sim 1 + Control N$	121.0118
3 rd	$lnR_I \sim 1 + Plant type + Control N + CN ratio$	121.1872
4 th	$lnR_{I} \sim 1 + Control N + CO_{2} ppm + CN ratio$	121.7603
5 th	$lnR_I \sim 1 + Other nutrients + Control N + CN ratio$	121.8924
6 th	$lnR_I \sim 1 + Plant type + Control N + \Delta N + CN ratio$	122.0628
7 th	$lnR_I \sim 1 + Method + Control N + CN ratio$	122.1707
8 th	$lnR_I \sim 1 + Label type + Control N$	122.1965
9 th	$lnR_{I} \thicksim 1 + Plant \ type + Other \ nutrients + Control \ N + CN \ ratio$	122.2396
10 th	$lnR_I \sim 1 + Control N + \Delta N + CN$ ratio	122.2457
11^{th}	$lnR_{I} \sim 1 + Control N + \Delta N$	122.3899
12 th	$lnR_I \sim 1 + Plant type + Control N + CO_2 ppm + CN ratio$	122.4051
13 th	$lnR_I \sim 1 + Control N + Clay + CN$ ratio	122.5674
14 th	$lnR_{I} \sim 1 + Control N + CO_{2} ppm$	122.6186

Table S3 Overview of the models with the most explanatory power for N-induced effects on old soil C respiration (lnR_{OR}). All models within two AICc units of the top-supported model are shown.

Best-models	Moderator	AICc
1 st	$lnR_{OR} \sim 1 + Other nutrients + Control N + \Delta N$	19.49341
2^{nd}	$lnR_{OR} \sim 1 + Control N + \Delta N$	19.57815
3 rd	$\ln R_{OR} \sim 1 + \Delta N$	19.58053
4 th	$lnR_{OR} \sim 1 + Other nutrients + \Delta N$	20.24332


Table S4 Overview of the models with the most explanatory power for N-induced effects on old soil C stocks (lnR_0). All models within two AICc units of the top-supported model are shown.

Best- models	Moderator	AICc
1 st	$lnRo \thicksim 1 + Control N + \Delta N + Clay + CO_2 ppm + CN ratio$	-196.9888
2^{nd}	$lnR_{O} \thicksim 1 + Control \ N + \Delta N + Duration + CO_2 \ ppm + CN \ ratio$	-196.6015
3 rd	$lnR_0 \sim 1 + Control N + \Delta N + CO_2 ppm + CN ratio$	-196.5938
4 th	$lnR_0 \sim 1 + Method + Control N + \Delta N + CO_2 ppm+ CN ratio$	-195.8358
5 th	$lnR_{O} \thicksim 1 + Control \ N + \Delta N + Clay + Duration + CO_{2} \ ppm + CN \ ratio$	-195.4151
6 th	$lnR_{O} \sim 1 + Control N + \Delta N + CO_{2} ppm$	-195.3538


Table S5 Overview of the models with the most explanatory power for N-induced effects on total soil C stocks (lnR_T). All models within two AICc units of the top-supported model are shown.

Best-models	Moderator	AICc
1 st	$lnR_T \sim 1 + CO_2 ppm$	-209.8029
2^{nd}	$lnR_T \thicksim 1 + Control \ N + CO_2 \ ppm$	-208.7923
3 rd	$lnR_T \sim 1 + Duration + CO_2 ppm$	-208.1367
4 th	$lnR_T \thicksim 1 + CO_2 \ ppm + pH$	-208.0492

Fig. S1 Fig. 1 Results of a meta-analysis on the responses of new soil C stocks, old soil C stocks, total soil C stocks and soil C input proxies to N addition in long-term field experiments. The number of observations (n) and total number of independent studies included in each analysis are displayed below each bar. Error bars indicate 95% confidence intervals. ** and *** indicate significance at p < 0.01 and p < 0.001, respectively.

Fig. S2 The relationship between N-induced effects on soil C input proxies (lnR_I) and N-induced effects on new soil C stocks (lnR_N) . The analysis is based on 134 paired observations of lnR_I and lnR_N , derived from 28 independent studies.

